WO2023181512A1 - Combustion system - Google Patents

Combustion system Download PDF

Info

Publication number
WO2023181512A1
WO2023181512A1 PCT/JP2022/044961 JP2022044961W WO2023181512A1 WO 2023181512 A1 WO2023181512 A1 WO 2023181512A1 JP 2022044961 W JP2022044961 W JP 2022044961W WO 2023181512 A1 WO2023181512 A1 WO 2023181512A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
flow path
recovery tank
tank
amount
Prior art date
Application number
PCT/JP2022/044961
Other languages
French (fr)
Japanese (ja)
Inventor
壮一郎 加藤
慎太朗 伊藤
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2023181512A1 publication Critical patent/WO2023181512A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes

Definitions

  • Combustion systems such as gas turbine systems that obtain power by burning fuel are used.
  • BACKGROUND ART Some combustion systems such as gas turbine systems use ammonia as a fuel, as disclosed in Patent Document 1, for example. By using ammonia as a fuel, carbon dioxide emissions are suppressed.
  • a purge operation is performed to discharge fuel from the pipes so that no fuel remains in the pipes when the system is stopped.
  • Ammonia has the property of being difficult to burn compared to other hydrocarbon fuels. Therefore, in a combustion system that uses ammonia as a fuel, when disposing of ammonia by, for example, a purge operation, a disposal method such as dissolving it in water in an ammonia recovery tank and disposing of it as industrial waste is adopted. Since simply disposing of ammonia that can be used as fuel is wasteful in both cost and energy, it is desired to reduce the amount of ammonia discarded.
  • An object of the present disclosure is to provide a combustion system that can reduce the amount of ammonia waste.
  • the combustion system of the present disclosure includes an ammonia tank, a combustor connected to the ammonia tank, an intake flow path connected to the combustor, and a compressor provided in the intake flow path. It includes an ammonia recovery tank connected to the ammonia tank, and a first flow path connecting the ammonia recovery tank and the compressor.
  • the engine including the combustor, the amount of ammonia supplied from the ammonia tank to the combustor, and the ammonia water sent from the ammonia recovery tank to the compressor via the first flow path so that the engine output reaches the set value.
  • the first control unit may be provided to control the supply amount of the liquid.
  • the first control unit may limit the supply amount of ammonia water sent from the ammonia recovery tank to the compressor via the first flow path to a first upper limit value or less.
  • It may include an exhaust flow path connected to the combustor, a denitrification device provided in the exhaust flow path, and a second flow path connecting the ammonia recovery tank and the denitrification device.
  • the denitrification equipment is connected to the ammonia tank, and based on the nitrogen oxide concentration in the exhaust gas discharged from the denitrification equipment, the amount of ammonia supplied from the ammonia tank to the denitrification equipment and the amount of ammonia sent from the ammonia recovery tank to the denitrification equipment are determined.
  • a second control unit may be provided to control the supply amount of ammonia water sent to via the second flow path.
  • the second control unit may limit the supply amount of ammonia water sent from the ammonia recovery tank to the denitrification device via the second flow path to a second upper limit value or less.
  • the amount of ammonia waste can be reduced.
  • FIG. 1 is a schematic diagram showing the configuration of a combustion system according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart illustrating an example of the overall flow of processing performed by the control device according to the embodiment of the present disclosure.
  • FIG. 3 is a flowchart illustrating an example of the flow of water supply processing to the ammonia recovery tank performed by the control device according to the embodiment of the present disclosure.
  • FIG. 4 is a flowchart illustrating an example of the process of supplying ammonia water to the compressor, which is performed by the control device according to the embodiment of the present disclosure.
  • FIG. 5 is a flowchart illustrating an example of the process of supplying ammonia water to the denitrification device, which is performed by the control device according to the embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram showing the configuration of a combustion system 1 according to the present embodiment.
  • the combustion system 1 is a gas turbine system that is an example of a combustion system that generates energy by burning fuel.
  • the combustion system 1 includes a compressor 11a, a turbine 11b, a combustor 12, a generator 13, an ammonia tank 14, a pump 15, an ammonia recovery tank 16, a boiler 17, Denitration device 18, pump 19, flow control valves 21, 22, 23, 24, 25, 26, ammonia concentration sensor 31, nitrogen oxide concentration sensor 32, ammonia concentration sensor 33, nitrogen oxide concentration sensor 34, an ammonia concentration sensor 35, a water level sensor 36, and a control device 40.
  • the combustion system 1 also includes an engine E1 including a compressor 11a, a turbine 11b, and a combustor 12.
  • Engine E1 is a gas turbine engine.
  • the compressor 11a and the turbine 11b rotate as a unit.
  • the compressor 11a and the turbine 11b are connected to each other by a shaft.
  • the compressor 11a is provided in an intake flow path 101 connected to the combustor 12. Air supplied to the combustor 12 flows through the intake flow path 101 . An intake port (not shown) through which air is taken in from the outside is provided at the upstream end of the intake flow path 101. Air taken in from the intake port passes through the compressor 11a and is sent to the combustor 12. The compressor 11a compresses air and discharges it downstream.
  • the turbine 11b is provided in an exhaust flow path 102 connected to the combustor 12. Exhaust gas discharged from the combustor 12 flows through the exhaust flow path 102 . Exhaust gas discharged from the combustor 12 passes through the turbine 11b and is sent to the downstream side of the turbine 11b in the exhaust flow path 102. The turbine 11b generates rotational power by being rotated by exhaust gas.
  • a generator 13 is connected to the compressor 11a.
  • the rotational power transmitted from the turbine 11b to the compressor 11a is used for power generation by the generator 13.
  • the combustor 12 is supplied with air compressed by the compressor 11a from the intake flow path 101, and ammonia in a liquid state is supplied as fuel from the ammonia tank 14. However, as described later, ammonia may be supplied to the combustor 12 in a gaseous state from the ammonia tank 14. In the combustor 12, combustion is performed using ammonia as fuel. Exhaust gas generated in the combustor 12 is discharged into the exhaust flow path 102.
  • Ammonia is stored in a liquid state in the ammonia tank 14.
  • ammonia is maintained in a liquid state at, for example, atmospheric pressure and -33°C.
  • the vapor pressure within the ammonia tank 14 is suppressed, and problems with the strength and structure of the tank are suppressed.
  • the ammonia tank 14 is connected to the flow path 103. Specifically, the flow path 103 communicates with a region in the ammonia tank 14 where liquid ammonia is stored. Liquid ammonia flows through the flow path 103 .
  • a pump 15 is provided in the flow path 103. The pump 15 pressurizes liquid ammonia supplied from the ammonia tank 14 and sends it downstream.
  • the flow path 103 branches into a flow path 104 and a flow path 105 on the downstream side of the pump 15 .
  • the flow path 104 is connected to the combustor 12.
  • the ammonia tank 14 is connected to the combustor 12 via the flow path 103 and the flow path 104. Therefore, ammonia can be supplied from the ammonia tank 14 to the combustor 12 via the flow path 103 and the flow path 104.
  • a flow control valve 21 is provided in the flow path 104 .
  • the flow control valve 21 adjusts the flow rate of ammonia sent to the combustor 12 through the flow path 104. Specifically, the amount of ammonia supplied to the combustor 12 is adjusted by adjusting the opening degree of the flow control valve 21.
  • the flow path 105 is connected to the ammonia recovery tank 16.
  • the ammonia tank 14 is connected to the ammonia recovery tank 16 via the flow path 103 and the flow path 105. Therefore, ammonia can be supplied from the ammonia tank 14 to the ammonia recovery tank 16 via the flow path 103 and the flow path 105.
  • a flow control valve 22 is provided in the flow path 105 .
  • the flow rate control valve 22 adjusts the flow rate of ammonia sent to the ammonia recovery tank 16 through the flow path 105. Specifically, the amount of ammonia supplied to the ammonia recovery tank 16 is adjusted by adjusting the opening degree of the flow rate control valve 22.
  • Water is supplied to the ammonia recovery tank 16.
  • the ammonia sent to the ammonia recovery tank 16 is dissolved in the water in the ammonia recovery tank 16. Therefore, ammonia water is stored in the ammonia recovery tank 16.
  • a purge operation is performed to open the flow control valve 22.
  • ammonia remaining in the channels 103, 104, and 105 is sent to the ammonia recovery tank 16. Therefore, remaining ammonia in the flow paths 103, 104, and 105 is suppressed.
  • a boiler 17 is provided in the exhaust flow path 102 on the downstream side of the turbine 11b.
  • the boiler 17 is provided with a flow path 106 through which water flows.
  • the water flowing through the flow path 106 is heated by the exhaust gas flowing through the exhaust flow path 102 and vaporizes into gas (that is, water vapor).
  • a flow path 106 of the boiler 17 is connected to a steam turbine (not shown). Steam generated in the boiler 17 is sent to a steam turbine. The steam then turns a steam turbine and generates rotational power. The rotary power generated by the steam turbine is used for power generation.
  • a denitrification device 18 is provided inside the boiler 17 in the exhaust flow path 102.
  • the denitrification device 18 is schematically shown by a broken-line rectangle, but the rectangle does not accurately indicate the arrangement of the denitrification device 18 in the boiler 17, and the arrangement of the denitrification device 18 in the boiler 17 is determined as appropriate. Can be set.
  • the denitrification device 18 only needs to be provided in the exhaust flow path 102, and may be provided outside the boiler 17.
  • Ammonia is supplied to the denitrification device 18, as will be described later.
  • the denitrification device 18 reacts nitrogen oxides (NOx) in the exhaust gas flowing through the exhaust flow path 102 with ammonia and decomposes them into nitrogen and water. This reaction is also called denitrification reaction.
  • NOx nitrogen oxides
  • the ammonia tank 14 is connected to the flow path 107. Specifically, the flow path 107 communicates with a region in the ammonia tank 14 where vaporized gaseous ammonia is stored. Gaseous ammonia flows through the flow path 107 .
  • the flow path 107 is branched into a flow path 108 and a flow path 109.
  • the flow path 108 is connected to the denitrification device 18.
  • the ammonia tank 14 is connected to the denitrification device 18 via the flow path 107 and the flow path 108. Therefore, ammonia gas, which is gaseous ammonia, can be supplied from the ammonia tank 14 to the denitrification device 18 via the flow path 107 and the flow path 108.
  • a flow rate control valve 23 is provided in the flow path 108 . The flow rate control valve 23 adjusts the flow rate of ammonia sent to the denitrification device 18 through the flow path 108. Specifically, the amount of ammonia supplied to the denitrification device 18 is adjusted by adjusting the opening degree of the flow control valve 23.
  • the flow path 109 is connected to the flow path 105. That is, the ammonia tank 14 is connected to the ammonia recovery tank 16 via the flow path 107, the flow path 109, and the flow path 105. Therefore, ammonia can be supplied from the ammonia tank 14 to the ammonia recovery tank 16 via the flow path 107, the flow path 109, and the flow path 105.
  • a flow control valve 24 is provided in the flow path 109 .
  • the flow rate control valve 24 adjusts the flow rate of ammonia sent to the ammonia recovery tank 16 through the flow path 109. Specifically, the amount of ammonia supplied to the ammonia recovery tank 16 is adjusted by adjusting the opening degree of the flow rate control valve 24.
  • the ammonia recovery tank 16 is connected to the flow path 110. Specifically, the flow path 110 communicates with a region in the ammonia recovery tank 16 where aqueous ammonia is stored. Ammonia water flows through the flow path 110.
  • a pump 19 is provided in the flow path 110. The pump 19 pressurizes ammonia water supplied from the ammonia recovery tank 16 and sends it downstream.
  • the flow path 110 branches into a flow path 111 and a flow path 112 on the downstream side of the pump 19 .
  • the flow path 111 is connected to the compressor 11a.
  • the ammonia recovery tank 16 is connected to the compressor 11a via the flow path 110 and the flow path 111. Therefore, ammonia water can be supplied from the ammonia recovery tank 16 to the compressor 11a via the flow path 110 and the flow path 111.
  • the compressor 11a is a multistage compressor.
  • the flow path 111 is connected to an intermediate stage of the compressor 11a. Therefore, ammonia water is supplied from the flow path 111 to the intermediate stage of the compressor 11a.
  • the flow path 110 and the flow path 111 correspond to an example of a first flow path through which aqueous ammonia flows.
  • a flow control valve 25 is provided in the flow path 111 .
  • the flow control valve 25 adjusts the flow rate of ammonia water sent to the compressor 11a through the flow path 111. Specifically, by adjusting the opening degree of the flow rate control valve 25, the amount of ammonia water supplied to the compressor 11a is adjusted.
  • the flow path 112 is connected to the denitrification device 18.
  • the ammonia recovery tank 16 is connected to the denitrification device 18 via the flow path 110 and the flow path 112. Therefore, ammonia water can be supplied from the ammonia recovery tank 16 to the denitrification device 18 via the flow path 110 and the flow path 112.
  • the flow path 110 and the flow path 112 correspond to an example of a second flow path through which aqueous ammonia flows.
  • the flow path 112 is provided with a flow rate control valve 26 .
  • the flow control valve 26 adjusts the flow rate of ammonia water sent to the denitrification device 18 through the flow path 112. Specifically, the amount of ammonia water supplied to the denitrification device 18 is adjusted by adjusting the opening degree of the flow rate control valve 26.
  • the exhaust flow path 102 is provided with an ammonia concentration sensor 31, a nitrogen oxide concentration sensor 32, an ammonia concentration sensor 33, and a nitrogen oxide concentration sensor 34.
  • the ammonia concentration sensor 31 and the nitrogen oxide concentration sensor 32 are arranged in the exhaust flow path 102 on the downstream side of the turbine 11b and on the upstream side of the denitration device 18.
  • the ammonia concentration sensor 31 detects the ammonia concentration in the exhaust gas flowing into the denitrification device 18.
  • the nitrogen oxide concentration sensor 32 detects the nitrogen oxide concentration in the exhaust gas flowing into the denitrification device 18 .
  • the ammonia concentration sensor 33 and the nitrogen oxide concentration sensor 34 are arranged downstream of the denitrification device 18 in the exhaust flow path 102.
  • the ammonia concentration sensor 33 detects the ammonia concentration in the exhaust gas discharged from the denitrification device 18.
  • the nitrogen oxide concentration sensor 34 detects the nitrogen oxide concentration in the exhaust gas discharged from the denitrification device 18.
  • the ammonia recovery tank 16 is provided with an ammonia concentration sensor 35 and a water level sensor 36.
  • the ammonia concentration sensor 35 detects the ammonia concentration of the ammonia water in the ammonia recovery tank 16.
  • the water level sensor 36 detects the water level of ammonia water in the ammonia recovery tank 16.
  • the control device 40 includes a central processing unit (CPU), a ROM in which programs and the like are stored, and a RAM as a work area.
  • the control device 40 controls the operation of each device within the combustion system 1. For example, the control device 40 controls the operation of the flow control valves 21, 22, 23, 24, 25, and 26, respectively. Further, the control device 40 controls the operations of the pumps 15 and 19, respectively. Further, the control device 40 acquires information from the generator 13 , the ammonia concentration sensor 31 , the nitrogen oxide concentration sensor 32 , the ammonia concentration sensor 33 , the nitrogen oxide concentration sensor 34 , the ammonia concentration sensor 35 , and the water level sensor 36 .
  • the control device 40 includes a first control section 41 and a second control section 42.
  • the functions of the first control section 41 and the second control section 42 are realized by a central processing unit, a ROM, and the like.
  • the first control unit 41 controls the supply amount of ammonia sent from the ammonia tank 14 to the combustor 12 and the amount of ammonia sent from the ammonia recovery tank 16 to the compressor 11a via channels 110 and 111 corresponding to the first channel. Control the amount of water supplied. Specifically, the first control unit 41 controls the above two supply amounts by controlling the operations of the flow rate control valve 21 and the flow rate control valve 25, respectively.
  • the second control unit 42 controls the supply amount of ammonia sent from the ammonia tank 14 to the denitrification device 18 and the amount of ammonia sent from the ammonia recovery tank 16 to the denitration device 18 via flow paths 110 and 112 corresponding to the second flow path. Control the amount of water supplied. Specifically, the second control unit 42 controls the above two supply amounts by controlling the operations of the flow rate control valve 23 and the flow rate control valve 26, respectively.
  • the control device 40 may be one device or may be divided into multiple devices. That is, the functions of the control device 40 may be realized by one device or may be divided into multiple devices. Details of the processing performed by the control device 40 will be described later.
  • the ammonia recovery tank 16 and the compressor 11a are connected by the flow paths 110 and 111 corresponding to the first flow path.
  • the ammonia water stored in the ammonia recovery tank 16 can be sent to the compressor 11a.
  • the ammonia water sent to the compressor 11a cools the air passing through the compressor 11a.
  • Ammonia contained in the ammonia water sent to the compressor 11a is then supplied to the combustor 12 as fuel.
  • the amount of ammonia water accumulated in the ammonia recovery tank 16 and discarded as industrial waste is reduced.
  • the ammonia water stored in the ammonia recovery tank 16 is effectively used as fuel for the combustor 12 without being discarded, the efficiency of the combustion system 1 is also improved.
  • the ammonia water sent to the compressor 11a cools the air passing through the compressor 11a. Therefore, the temperature of the compressed air in the compressor 11a decreases, the power for driving the compressor 11a is reduced, and the output of the compressor 11a is increased. Therefore, the efficiency of the combustion system 1 is effectively improved.
  • the intake flow path 101 and the exhaust flow path 102 may be connected by a detour flow path that bypasses the combustor 12.
  • a part of the air containing ammonia sent out from the compressor 11a is sent to the turbine 11b via the bypass flow path, and is used for cooling the turbine 11b.
  • ammonia contained in the air bypassing the combustor 12 is sent to the denitrification device 18 and used for the denitrification reaction in the denitrification device 18, so that it is not released into the atmosphere.
  • the ammonia recovery tank 16 and the denitrification device 18 are connected by flow paths 110 and 112 corresponding to the second flow path. Thereby, the ammonia water stored in the ammonia recovery tank 16 can be sent to the denitrification device 18. Ammonia contained in the ammonia water sent to the denitrification device 18 is used for the denitrification reaction in the denitrification device 18. Thereby, the ammonia water accumulated in the ammonia recovery tank 16 is further suppressed from being discarded as industrial waste, and the amount of ammonia discarded is further reduced.
  • the ammonia water stored in the ammonia recovery tank 16 is not discarded but is effectively utilized for the denitrification reaction in the denitrification device 18, the efficiency of the combustion system 1 is also improved.
  • the second flow path may be omitted from the combustion system 1.
  • FIG. 2 is a flowchart showing an example of the overall flow of processing performed by the control device 40.
  • step S101 the control device 40 determines whether the water level of the ammonia recovery tank 16 is below the lower limit value.
  • the lower limit value of step S101 is an index for determining whether the amount of water in the ammonia recovery tank 16 is less than the amount necessary for recovering ammonia.
  • the water level of the ammonia recovery tank 16 is below the lower limit value, this corresponds to a case where the amount of water in the ammonia recovery tank 16 is less than the amount required for recovering ammonia.
  • step S101/YES If it is determined that the water level of the ammonia recovery tank 16 is below the lower limit (step S101/YES), the process proceeds to step S102.
  • step S102 the control device 40 executes water supply processing to the ammonia recovery tank 16, and returns to step S101.
  • the water supply process to the ammonia recovery tank 16 is a process for supplying water to the ammonia recovery tank 16. Details of the water supply process to the ammonia recovery tank 16 will be described later with reference to FIG. 3.
  • step S101/NO the process proceeds to step S103.
  • step S103 the control device 40 determines whether the ammonia concentration in the ammonia recovery tank 16 (specifically, the ammonia concentration in the ammonia water) is below a threshold value.
  • the threshold value in step S103 is used to determine whether the ammonia water in the ammonia recovery tank 16 has an ammonia concentration that can be used for combustion in the combustor 12 or for denitrification reaction in the denitrification device 18. It is an indicator.
  • the ammonia concentration in the ammonia recovery tank 16 is below the threshold value, the ammonia water in the ammonia recovery tank 16 has an ammonia concentration that can be used for combustion in the combustor 12 or for the denitrification reaction in the denitrification device 18. This corresponds to the case where the
  • step S103/YES If it is determined that the ammonia concentration in the ammonia recovery tank 16 is below the threshold value (step S103/YES), the process proceeds to step S106, which will be described later. On the other hand, if it is determined that the ammonia concentration in the ammonia recovery tank 16 is higher than the threshold value (step S103/NO), the process proceeds to step S104.
  • step S104 the control device 40 determines whether conditions for prohibiting the supply of ammonia water to the compressor 11a are satisfied.
  • the prohibition condition for step S104 is that the rotation speed of the compressor 11a is too low. By using such prohibition conditions, it is possible to suppress combustion from becoming unstable due to ammonia water being supplied to the combustor 12 in a situation where the combustion of the combustor 12 is not stable.
  • the prohibition condition in step S104 is that the ammonia concentration detected by the ammonia concentration sensor 31 is higher than the nitrogen oxide concentration detected by the nitrogen oxide concentration sensor 32 (that is, the nitrogen oxide concentration detected by the nitrogen oxide concentration sensor 32 is The concentration of ammonia in the exhaust gas flowing into the denitrification device 18 is higher than the concentration of nitrogen oxides). By using such prohibition conditions, an increase in unburned ammonia is suppressed.
  • step S104/YES If it is determined that the conditions for prohibiting the supply of ammonia water to the compressor 11a are satisfied (step S104/YES), the process proceeds to step S106, which will be described later. On the other hand, if it is determined that the prohibition condition for supplying ammonia water to the compressor 11a is not satisfied (step S104/NO), the process proceeds to step S105.
  • step S105 the first control unit 41 of the control device 40 executes an ammonia water supply process to the compressor 11a.
  • the process of supplying ammonia water to the compressor 11a is a process of supplying ammonia water from the ammonia recovery tank 16 to the compressor 11a. Details of the ammonia water supply process to the compressor 11a will be described later with reference to FIG.
  • step S106 the control device 40 determines whether the prohibition condition for supplying ammonia water to the denitrification device 18 is satisfied.
  • the prohibition condition for step S106 is that the ammonia concentration detected by the ammonia concentration sensor 33 is higher than the nitrogen oxide concentration detected by the nitrogen oxide concentration sensor 34 (that is, the nitrogen oxide concentration detected by the nitrogen oxide concentration sensor 34 is The concentration of ammonia in the exhaust gas is higher than the concentration of nitrogen oxides).
  • step S106/YES If it is determined that the conditions for prohibiting the supply of ammonia water to the denitrification device 18 are satisfied (step S106/YES), the process returns to step S101. On the other hand, if it is determined that the prohibition condition for supplying ammonia water to the denitrification device 18 is not satisfied (step S106/NO), the process advances to step S107.
  • step S107 the control device 40 determines whether the NOx emission concentration is greater than or equal to the upper limit value.
  • the NOx emission concentration is the concentration of nitrogen oxides emitted from the combustion system 1.
  • the nitrogen oxide concentration detected by the nitrogen oxide concentration sensor 34 corresponds to the NOx emission concentration.
  • the upper limit value in step S107 is an index for determining whether the amount of nitrogen oxides discharged from the combustion system 1 is excessively large from the viewpoint of environmental deterioration. When the NOx emission concentration is equal to or greater than the upper limit value, this corresponds to a case where the amount of nitrogen oxides emitted from the combustion system 1 is excessively large from the viewpoint of environmental deterioration.
  • step S107/NO If it is determined that the NOx emission concentration is lower than the upper limit value (step S107/NO), the process returns to step S101. On the other hand, if it is determined that the NOx emission concentration is equal to or higher than the upper limit value (step S107/YES), the process advances to step S108.
  • step S108 the second control unit 42 of the control device 40 executes an ammonia water supply process to the denitrification device 18, and returns to step S101.
  • the process of supplying ammonia water to the denitrification device 18 is a process of supplying ammonia water from the ammonia recovery tank 16 to the denitrification device 18 . Details of the ammonia water supply process to the denitrification device 18 will be described later with reference to FIG.
  • FIG. 3 is a flowchart showing an example of the flow of water supply processing to the ammonia recovery tank 16 performed by the control device 40.
  • the processing flow shown in FIG. 3 is executed in step S102 in the flowchart of FIG.
  • control device 40 starts supplying water to the ammonia recovery tank 16 in step S201.
  • step S202 the control device 40 determines whether the water level of the ammonia recovery tank 16 is equal to or higher than the upper limit value.
  • the upper limit value in step S202 can be set as appropriate depending on the volume of the ammonia recovery tank 16, etc.
  • step S202 If it is determined that the water level of the ammonia recovery tank 16 is lower than the upper limit (step S202/NO), step S202 is repeated. On the other hand, if it is determined that the water level of the ammonia recovery tank 16 is equal to or higher than the upper limit value (step S202/YES), the process proceeds to step S203.
  • step S203 the control device 40 stops the water supply to the ammonia recovery tank 16, and the process flow shown in FIG. 3 ends. Normally, by using a lower limit switch and an upper limit switch that respectively detect when the water level of the ammonia recovery tank 16 has reached a lower limit value and an upper limit value, the make-up water tank that supplies water to the ammonia recovery tank 16 is The water level is controlled to be between the lower limit and upper limit.
  • FIG. 4 is a flowchart showing an example of the process of supplying ammonia water to the compressor 11a, which is performed by the control device 40 (specifically, the first control unit 41). The processing flow shown in FIG. 4 is executed in step S105 in the flowchart of FIG.
  • step S301 the first control unit 41 determines whether the amount of ammonia water supplied to the compressor 11a is less than the upper limit value.
  • the upper limit value in step S301 is an index for determining whether the amount of ammonia water supplied to the compressor 11a is large enough to cause a misfire in the combustor 12.
  • the amount of ammonia water supplied to the compressor 11a is larger than the upper limit value, this corresponds to a case where the amount of ammonia water supplied to the compressor 11a is large enough to cause a misfire in the combustor 12.
  • step S301/YES If it is determined that the amount of ammonia water supplied to the compressor 11a is less than the upper limit (step S301/YES), the process proceeds to step S302. In step S302, the first control unit 41 increases the amount of ammonia water supplied from the ammonia recovery tank 16 to the compressor 11a, and proceeds to step S304. On the other hand, if it is determined that the amount of ammonia water supplied to the compressor 11a is equal to or greater than the upper limit value (step S301/NO), the process proceeds to step S303. In step S303, the first control unit 41 reduces the amount of ammonia water supplied from the ammonia recovery tank 16 to the compressor 11a, and proceeds to step S304.
  • step S304 the first control unit 41 determines whether the output of the engine E1 is lower than the set value.
  • the set value in step S304 is set, for example, according to the required value of the amount of power generated by the generator 13.
  • step S304/YES If it is determined that the output of the engine E1 is lower than the set value (step S304/YES), the process advances to step S305.
  • step S305 the first control unit 41 increases the amount of ammonia supplied from the ammonia tank 14 to the combustor 12, and the process flow shown in FIG. 4 ends.
  • step S304/NO the process advances to step S306.
  • step S306 the first control unit 41 determines whether the output of the engine E1 is higher than the set value.
  • the set value in step S306 is the same as the set value in step S304.
  • step S306/YES If it is determined that the output of the engine E1 is higher than the set value (step S306/YES), the process proceeds to step S307.
  • step S307 the first control unit 41 reduces the amount of ammonia supplied from the ammonia tank 14 to the combustor 12, and the process flow shown in FIG. 4 ends.
  • step S306/NO the processing flow shown in FIG. 4 ends.
  • the amount of ammonia water supplied from the ammonia recovery tank 16 to the compressor 11a is set at the upper limit.
  • the value is increased or decreased so as to be maintained near the value (steps S302, S303).
  • the amount of ammonia supplied from the ammonia tank 14 to the combustor 12 increases or decreases depending on the output of the engine E1 (steps S305, S307). Thereby, the output of the engine E1 is controlled to the set value.
  • the first control unit 41 controls the amount of ammonia supplied from the ammonia tank 14 to the combustor 12 and the ammonia recovery tank 16 so that the output of the engine E1 becomes the set value.
  • the supply amount of ammonia water sent from the compressor 11a to the compressor 11a via the first flow path (in the above example, flow paths 110 and 111) is controlled.
  • the ammonia water stored in the ammonia recovery tank 16 is effectively used as fuel for the combustor 12, and the ammonia sent from the ammonia tank 14 to the combustor 12 is also used as fuel, thereby increasing the output of the engine E1 to the set value. can be controlled. Therefore, the output of the engine E1 can be appropriately controlled while reducing the amount of ammonia waste.
  • the first control unit 41 also controls the amount of ammonia water to be supplied from the ammonia recovery tank 16 to the compressor 11a via the first channel (channels 110 and 111 in the above example). It is limited to a first upper limit value (in the above example, the upper limit value in step S301) or less. This prevents the amount of ammonia water supplied to the compressor 11a from increasing to the extent that a misfire occurs in the combustor 12. Therefore, occurrence of misfire in the combustor 12 is suppressed.
  • the first upper limit value may be a fixed value or a value that changes depending on various parameters. Examples of the above parameters include the ammonia concentration of the ammonia water stored in the ammonia recovery tank 16.
  • FIG. 5 is a flowchart showing an example of the process of supplying ammonia water to the denitrification device 18, which is performed by the control device 40 (specifically, the second control section 42). The processing flow shown in FIG. 5 is executed in step S108 in the flowchart of FIG.
  • step S401 the second control unit 42 determines whether the amount of ammonia water supplied to the denitrification device 18 is less than the upper limit value.
  • the upper limit value in step S401 is an index for determining whether the amount of ammonia water supplied to the denitrification device 18 is large enough to prevent the denitrification reaction in the denitrification device 18 from proceeding smoothly.
  • the amount of ammonia water supplied to the denitrification device 18 is larger than the upper limit value, this corresponds to a case where the amount of ammonia water supplied to the denitrification device 18 is so large that the denitrification reaction in the denitrification device 18 does not proceed smoothly.
  • step S401/YES If it is determined that the amount of ammonia water supplied to the denitrification device 18 is less than the upper limit value (step S401/YES), the process proceeds to step S402.
  • step S402 the second control unit 42 increases the amount of ammonia water supplied from the ammonia recovery tank 16 to the denitrification device 18, and the process flow shown in FIG. 5 ends.
  • step S403 the second control unit 42 reduces the amount of ammonia water supplied from the ammonia recovery tank 16 to the denitrification device 18, and proceeds to step S404.
  • step S404 the second control unit 42 increases the amount of ammonia gas supplied from the ammonia tank 14 to the denitrification device 18, and the process flow shown in FIG. 5 ends.
  • the processing flow shown in FIG. 5 is repeated until it is determined that it is necessary to suppress the amount of nitrogen oxides discharged from the combustion system 1 based on the concentration of nitrogen oxides in the exhaust gas discharged from the denitrification device 18. . Specifically, the processing flow shown in FIG. 5 is repeated while the NOx emission concentration is equal to or higher than the upper limit value. In a situation where the processing flow shown in FIG. 5 is repeated, after the supply of ammonia water from the ammonia recovery tank 16 to the denitrification device 18 is started, the amount of ammonia water supplied from the ammonia recovery tank 16 to the denitrification device 18 is set at the upper limit. The value is increased or decreased so as to be maintained near the value (steps S402, S403).
  • step S404 When the amount of ammonia water supplied to the denitrification device 18 is equal to or greater than the upper limit value, the amount of ammonia gas supplied from the ammonia tank 14 to the denitrification device 18 is increased (step S404). Thereby, the NOx emission concentration falls below the upper limit value, and the amount of nitrogen oxides emitted from the combustion system 1 is appropriately suppressed.
  • the second control unit 42 supplies ammonia to be sent from the ammonia tank 14 to the denitrification device 18 based on the concentration of nitrogen oxides in the exhaust gas discharged from the denitrification device 18. and the supply amount of ammonia water sent from the ammonia recovery tank 16 to the denitrification device 18 via the second flow path (in the above example, flow paths 110 and 112).
  • the combustion system 1 It is possible to appropriately reduce the amount of nitrogen oxide emissions from Therefore, the amount of nitrogen oxides discharged from the combustion system 1 can be appropriately reduced while reducing the amount of ammonia waste.
  • the second control unit 42 also controls the amount of ammonia water to be supplied from the ammonia recovery tank 16 to the denitrification device 18 via the second channel (channels 110 and 112 in the above example). It is limited to the second upper limit value (in the above example, the upper limit value in step S401) or less. This prevents the amount of ammonia water supplied to the denitrification device 18 from increasing to the extent that the denitrification reaction in the denitrification device 18 does not proceed smoothly. Therefore, the denitrification reaction in the denitrification device 18 is prevented from proceeding smoothly.
  • the second upper limit value may be a fixed value or a value that changes depending on various parameters. Examples of the above-mentioned parameters include the ammonia concentration of the ammonia water stored in the ammonia recovery tank 16 and the exhaust gas temperature data required for the denitrification reaction.
  • control device 40 examples of processing performed by the control device 40 have been described with reference to FIGS. 2 to 5.
  • the processing performed by the control device 40 is not limited to the example described above.
  • the processes described using each flowchart above do not necessarily have to be executed in the order shown in each flowchart. Some processing steps may be performed in parallel. Also, additional processing steps may be employed or some processing steps may be omitted.
  • the engine E1 including the combustor 12 is a gas turbine engine.
  • the engine E1 including the combustor 12 is not limited to a gas turbine engine.
  • the engine E1 including the combustor 12 may be a reciprocating engine with a turbocharger.
  • the compressor of the turbocharger and the ammonia recovery tank 16 are connected through the first flow path, and the same effects as in the example described above are achieved.
  • the rotational power transmitted from the turbine 11b to the compressor 11a is used as energy to drive the generator 13.
  • the rotational power transmitted from the turbine 11b to the compressor 11a may be used for other purposes, such as for driving a moving body such as a ship.
  • ammonia is supplied from the ammonia tank 14 to the combustor 12 in a liquid state.
  • ammonia may be supplied to the combustor 12 from the ammonia tank 14 in a gaseous state.
  • a vaporizer is provided in the flow path 103 or 104, and ammonia is vaporized by the vaporizer.
  • ammonia is sent from the ammonia tank 14 to the flow path 107 in a gaseous state.
  • ammonia may be sent in a liquid state from the ammonia tank 14 to the flow path 107, and the ammonia may be vaporized in the flow path 107, the flow path 108, or the flow path 109.
  • the present disclosure contributes to reducing the amount of fuel wasted and improving efficiency in combustion systems such as gas turbine systems. can contribute to "ensuring access to modern energy.”
  • Combustion system 11a Compressor 12: Combustor 14: Ammonia tank 16: Ammonia recovery tank 18: Denitrification device 41: First control section 42: Second control section 101: Intake flow path 102: Exhaust flow path 110: Flow Channel (first channel, second channel) 111: Channel (first channel) 112: Channel (second channel) E1: Engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)

Abstract

A combustion system 1 comprises an ammonia tank 14, a combustor 12 connected to the ammonia tank 14, an intake flow path 101 connected to the combustor 12, a compressor 11a provided in the intake flow path 101, an ammonia recovery tub 16 connected to the ammonia tank 14, and a first flow path (flow paths 110, 111) connecting the ammonia recovery tub 16 and the compressor 11a.

Description

燃焼システムcombustion system
 本開示は、燃焼システムに関する。本出願は2022年3月25日に提出された日本特許出願第2022-049706号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。 The present disclosure relates to combustion systems. This application claims the benefit of priority based on Japanese Patent Application No. 2022-049706 filed on March 25, 2022, the contents of which are incorporated into this application.
 燃料を燃焼させることによって動力を得るガスタービンシステム等の燃焼システムが利用されている。ガスタービンシステム等の燃焼システムとして、例えば、特許文献1に開示されているように、アンモニアを燃料として用いるものがある。アンモニアを燃料として用いることによって、二酸化炭素の排出が抑制される。 Combustion systems such as gas turbine systems that obtain power by burning fuel are used. BACKGROUND ART Some combustion systems such as gas turbine systems use ammonia as a fuel, as disclosed in Patent Document 1, for example. By using ammonia as a fuel, carbon dioxide emissions are suppressed.
特開2016-191507号公報Japanese Patent Application Publication No. 2016-191507
 燃焼システムでは、システム停止時に配管内に燃料が残存しないように配管内から燃料を排出するパージ操作が行われる。アンモニアは、他の炭化水素燃料等と比べると燃焼しにくい性質を有する。ゆえに、アンモニアを燃料として用いる燃焼システムでは、例えば、パージ操作によってアンモニアを廃棄処分する場合は、アンモニア回収槽で水に溶解され、産業廃棄物として廃棄されるなどの処分方法が採られる。燃料として利用できるアンモニアを単純に廃棄することはコスト、エネルギーともに無駄であるため、アンモニアの廃棄量を低減することが望まれている。 In the combustion system, a purge operation is performed to discharge fuel from the pipes so that no fuel remains in the pipes when the system is stopped. Ammonia has the property of being difficult to burn compared to other hydrocarbon fuels. Therefore, in a combustion system that uses ammonia as a fuel, when disposing of ammonia by, for example, a purge operation, a disposal method such as dissolving it in water in an ammonia recovery tank and disposing of it as industrial waste is adopted. Since simply disposing of ammonia that can be used as fuel is wasteful in both cost and energy, it is desired to reduce the amount of ammonia discarded.
 本開示の目的は、アンモニアの廃棄量を低減することが可能な燃焼システムを提供することである。 An object of the present disclosure is to provide a combustion system that can reduce the amount of ammonia waste.
 上記課題を解決するために、本開示の燃焼システムは、アンモニアタンクと、アンモニアタンクと接続される燃焼器と、燃焼器と接続される吸気流路と、吸気流路に設けられる圧縮機と、アンモニアタンクと接続されるアンモニア回収槽と、アンモニア回収槽と圧縮機とを接続する第1流路と、を備える。 In order to solve the above problems, the combustion system of the present disclosure includes an ammonia tank, a combustor connected to the ammonia tank, an intake flow path connected to the combustor, and a compressor provided in the intake flow path. It includes an ammonia recovery tank connected to the ammonia tank, and a first flow path connecting the ammonia recovery tank and the compressor.
 燃焼器を含むエンジンと、エンジンの出力が設定値になるように、アンモニアタンクから燃焼器へ送られるアンモニアの供給量と、アンモニア回収槽から圧縮機へ第1流路を介して送られるアンモニア水の供給量とを制御する第1制御部を備えてもよい。 The engine including the combustor, the amount of ammonia supplied from the ammonia tank to the combustor, and the ammonia water sent from the ammonia recovery tank to the compressor via the first flow path so that the engine output reaches the set value. The first control unit may be provided to control the supply amount of the liquid.
 第1制御部は、アンモニア回収槽から圧縮機へ第1流路を介して送られるアンモニア水の供給量を第1上限値以下に制限してもよい。 The first control unit may limit the supply amount of ammonia water sent from the ammonia recovery tank to the compressor via the first flow path to a first upper limit value or less.
 燃焼器と接続される排気流路と、排気流路に設けられる脱硝装置と、アンモニア回収槽と脱硝装置とを接続する第2流路と、を備えてもよい。 It may include an exhaust flow path connected to the combustor, a denitrification device provided in the exhaust flow path, and a second flow path connecting the ammonia recovery tank and the denitrification device.
 脱硝装置は、アンモニアタンクと接続されており、脱硝装置から排出される排気ガス中の窒素酸化物濃度に基づいて、アンモニアタンクから脱硝装置へ送られるアンモニアの供給量と、アンモニア回収槽から脱硝装置へ第2流路を介して送られるアンモニア水の供給量とを制御する第2制御部を備えてもよい。 The denitrification equipment is connected to the ammonia tank, and based on the nitrogen oxide concentration in the exhaust gas discharged from the denitrification equipment, the amount of ammonia supplied from the ammonia tank to the denitrification equipment and the amount of ammonia sent from the ammonia recovery tank to the denitrification equipment are determined. A second control unit may be provided to control the supply amount of ammonia water sent to via the second flow path.
 第2制御部は、アンモニア回収槽から脱硝装置へ第2流路を介して送られるアンモニア水の供給量を第2上限値以下に制限してもよい。 The second control unit may limit the supply amount of ammonia water sent from the ammonia recovery tank to the denitrification device via the second flow path to a second upper limit value or less.
 本開示によれば、アンモニアの廃棄量を低減することができる。 According to the present disclosure, the amount of ammonia waste can be reduced.
図1は、本開示の実施形態に係る燃焼システムの構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of a combustion system according to an embodiment of the present disclosure. 図2は、本開示の実施形態に係る制御装置が行う処理の全体的な流れの一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of the overall flow of processing performed by the control device according to the embodiment of the present disclosure. 図3は、本開示の実施形態に係る制御装置が行うアンモニア回収槽への給水処理の流れの一例を示すフローチャートである。FIG. 3 is a flowchart illustrating an example of the flow of water supply processing to the ammonia recovery tank performed by the control device according to the embodiment of the present disclosure. 図4は、本開示の実施形態に係る制御装置が行う圧縮機へのアンモニア水供給処理の流れの一例を示すフローチャートである。FIG. 4 is a flowchart illustrating an example of the process of supplying ammonia water to the compressor, which is performed by the control device according to the embodiment of the present disclosure. 図5は、本開示の実施形態に係る制御装置が行う脱硝装置へのアンモニア水供給処理の流れの一例を示すフローチャートである。FIG. 5 is a flowchart illustrating an example of the process of supplying ammonia water to the denitrification device, which is performed by the control device according to the embodiment of the present disclosure.
 以下に添付図面を参照しながら、本開示の実施形態について説明する。実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本開示に直接関係のない要素は図示を省略する。 Embodiments of the present disclosure will be described below with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for easy understanding, and do not limit the present disclosure unless otherwise specified. In this specification and drawings, elements having substantially the same functions and configurations are designated by the same reference numerals to omit redundant explanation, and elements not directly related to the present disclosure are omitted from illustration. do.
 図1は、本実施形態に係る燃焼システム1の構成を示す模式図である。燃焼システム1は、燃料を燃焼させることによりエネルギーを生成する燃焼システムの一例に相当するガスタービンシステムである。図1に示すように、燃焼システム1は、圧縮機11aと、タービン11bと、燃焼器12と、発電機13と、アンモニアタンク14と、ポンプ15と、アンモニア回収槽16と、ボイラ17と、脱硝装置18と、ポンプ19と、流量制御弁21、22、23、24、25、26と、アンモニア濃度センサ31と、窒素酸化物濃度センサ32と、アンモニア濃度センサ33と、窒素酸化物濃度センサ34と、アンモニア濃度センサ35と、水位センサ36と、制御装置40とを備える。また、燃焼システム1は、圧縮機11aと、タービン11bと、燃焼器12とを含むエンジンE1を備える。エンジンE1は、ガスタービンエンジンである。 FIG. 1 is a schematic diagram showing the configuration of a combustion system 1 according to the present embodiment. The combustion system 1 is a gas turbine system that is an example of a combustion system that generates energy by burning fuel. As shown in FIG. 1, the combustion system 1 includes a compressor 11a, a turbine 11b, a combustor 12, a generator 13, an ammonia tank 14, a pump 15, an ammonia recovery tank 16, a boiler 17, Denitration device 18, pump 19, flow control valves 21, 22, 23, 24, 25, 26, ammonia concentration sensor 31, nitrogen oxide concentration sensor 32, ammonia concentration sensor 33, nitrogen oxide concentration sensor 34, an ammonia concentration sensor 35, a water level sensor 36, and a control device 40. The combustion system 1 also includes an engine E1 including a compressor 11a, a turbine 11b, and a combustor 12. Engine E1 is a gas turbine engine.
 圧縮機11aおよびタービン11bは、一体として回転する。圧縮機11aとタービン11bとは、シャフトによって互いに連結されている。 The compressor 11a and the turbine 11b rotate as a unit. The compressor 11a and the turbine 11b are connected to each other by a shaft.
 圧縮機11aは、燃焼器12と接続される吸気流路101に設けられている。吸気流路101には、燃焼器12に供給される空気が流通する。吸気流路101の上流側の端部には、空気が外部から取り込まれる不図示の吸気口が設けられる。吸気口から取り込まれた空気は、圧縮機11aを通過して、燃焼器12に送られる。圧縮機11aは、空気を圧縮して下流側に吐出する。 The compressor 11a is provided in an intake flow path 101 connected to the combustor 12. Air supplied to the combustor 12 flows through the intake flow path 101 . An intake port (not shown) through which air is taken in from the outside is provided at the upstream end of the intake flow path 101. Air taken in from the intake port passes through the compressor 11a and is sent to the combustor 12. The compressor 11a compresses air and discharges it downstream.
 タービン11bは、燃焼器12と接続される排気流路102に設けられている。排気流路102には、燃焼器12から排出された排気ガスが流通する。燃焼器12から排出された排気ガスは、タービン11bを通過して、排気流路102のうちタービン11bより下流側に送られる。タービン11bは、排気ガスによって回されることによって、回転動力を生成する。 The turbine 11b is provided in an exhaust flow path 102 connected to the combustor 12. Exhaust gas discharged from the combustor 12 flows through the exhaust flow path 102 . Exhaust gas discharged from the combustor 12 passes through the turbine 11b and is sent to the downstream side of the turbine 11b in the exhaust flow path 102. The turbine 11b generates rotational power by being rotated by exhaust gas.
 圧縮機11aには、発電機13が接続されている。タービン11bから圧縮機11aに伝達された回転動力は、発電機13による発電に利用される。 A generator 13 is connected to the compressor 11a. The rotational power transmitted from the turbine 11b to the compressor 11a is used for power generation by the generator 13.
 燃焼器12には、圧縮機11aにより圧縮された空気が吸気流路101から供給されるとともに、アンモニアが液体の状態でアンモニアタンク14から燃料として供給される。ただし、後述するように、燃焼器12には、アンモニアが気体の状態でアンモニアタンク14から供給されてもよい。燃焼器12では、アンモニアを燃料として用いて燃焼が行われる。燃焼器12で生じた排気ガスは、排気流路102に排出される。 The combustor 12 is supplied with air compressed by the compressor 11a from the intake flow path 101, and ammonia in a liquid state is supplied as fuel from the ammonia tank 14. However, as described later, ammonia may be supplied to the combustor 12 in a gaseous state from the ammonia tank 14. In the combustor 12, combustion is performed using ammonia as fuel. Exhaust gas generated in the combustor 12 is discharged into the exhaust flow path 102.
 アンモニアタンク14には、アンモニアが液体の状態で貯蔵される。アンモニアタンク14では、例えば、大気圧、かつ、-33℃で、アンモニアが液体の状態に維持されている。このように、アンモニアを低温の液体にした状態でアンモニアタンク14に貯蔵することによって、アンモニアタンク14内の蒸気圧が抑制され、タンクの強度および構造上の問題発生が抑制される。 Ammonia is stored in a liquid state in the ammonia tank 14. In the ammonia tank 14, ammonia is maintained in a liquid state at, for example, atmospheric pressure and -33°C. In this manner, by storing ammonia in a low-temperature liquid state in the ammonia tank 14, the vapor pressure within the ammonia tank 14 is suppressed, and problems with the strength and structure of the tank are suppressed.
 アンモニアタンク14は、流路103と接続されている。具体的には、流路103は、アンモニアタンク14内において液体のアンモニアが貯蔵される領域と連通する。流路103には、液体のアンモニアが流通する。流路103には、ポンプ15が設けられる。ポンプ15は、アンモニアタンク14から供給される液体のアンモニアを加圧して下流側に送出する。流路103は、ポンプ15よりも下流側において、流路104と流路105に分岐している。 The ammonia tank 14 is connected to the flow path 103. Specifically, the flow path 103 communicates with a region in the ammonia tank 14 where liquid ammonia is stored. Liquid ammonia flows through the flow path 103 . A pump 15 is provided in the flow path 103. The pump 15 pressurizes liquid ammonia supplied from the ammonia tank 14 and sends it downstream. The flow path 103 branches into a flow path 104 and a flow path 105 on the downstream side of the pump 15 .
 流路104は、燃焼器12と接続されている。このように、アンモニアタンク14は、流路103および流路104を介して燃焼器12と接続される。ゆえに、アンモニアタンク14から燃焼器12へ、流路103および流路104を介してアンモニアを供給できる。流路104には、流量制御弁21が設けられる。流量制御弁21は、流路104を通り燃焼器12に送られるアンモニアの流量を調整する。具体的には、流量制御弁21の開度が調整されることによって、燃焼器12へのアンモニアの供給量が調整される。 The flow path 104 is connected to the combustor 12. In this way, the ammonia tank 14 is connected to the combustor 12 via the flow path 103 and the flow path 104. Therefore, ammonia can be supplied from the ammonia tank 14 to the combustor 12 via the flow path 103 and the flow path 104. A flow control valve 21 is provided in the flow path 104 . The flow control valve 21 adjusts the flow rate of ammonia sent to the combustor 12 through the flow path 104. Specifically, the amount of ammonia supplied to the combustor 12 is adjusted by adjusting the opening degree of the flow control valve 21.
 流路105は、アンモニア回収槽16と接続されている。このように、アンモニアタンク14は、流路103および流路105を介してアンモニア回収槽16と接続される。ゆえに、アンモニアタンク14からアンモニア回収槽16へ、流路103および流路105を介してアンモニアを供給できる。流路105には、流量制御弁22が設けられる。流量制御弁22は、流路105を通りアンモニア回収槽16に送られるアンモニアの流量を調整する。具体的には、流量制御弁22の開度が調整されることによって、アンモニア回収槽16へのアンモニアの供給量が調整される。 The flow path 105 is connected to the ammonia recovery tank 16. In this way, the ammonia tank 14 is connected to the ammonia recovery tank 16 via the flow path 103 and the flow path 105. Therefore, ammonia can be supplied from the ammonia tank 14 to the ammonia recovery tank 16 via the flow path 103 and the flow path 105. A flow control valve 22 is provided in the flow path 105 . The flow rate control valve 22 adjusts the flow rate of ammonia sent to the ammonia recovery tank 16 through the flow path 105. Specifically, the amount of ammonia supplied to the ammonia recovery tank 16 is adjusted by adjusting the opening degree of the flow rate control valve 22.
 アンモニア回収槽16には、水が供給される。アンモニア回収槽16に送られたアンモニアは、アンモニア回収槽16内の水に溶解される。ゆえに、アンモニア回収槽16には、アンモニア水が貯蔵される。例えば、燃焼システム1の停止時に、流量制御弁22を開くパージ操作が行われる。それにより、流路103、104、105内に残存しているアンモニアがアンモニア回収槽16に送られる。ゆえに、流路103、104、105内にアンモニアが残存することが抑制される。 Water is supplied to the ammonia recovery tank 16. The ammonia sent to the ammonia recovery tank 16 is dissolved in the water in the ammonia recovery tank 16. Therefore, ammonia water is stored in the ammonia recovery tank 16. For example, when the combustion system 1 is stopped, a purge operation is performed to open the flow control valve 22. As a result, ammonia remaining in the channels 103, 104, and 105 is sent to the ammonia recovery tank 16. Therefore, remaining ammonia in the flow paths 103, 104, and 105 is suppressed.
 排気流路102のうちタービン11bより下流側には、ボイラ17が設けられる。ボイラ17には、水が流通する流路106が設けられている。流路106を流通する水は、排気流路102を流通する排気ガスによって加熱され、気化して気体(つまり、水蒸気)になる。ボイラ17の流路106は、図示しない蒸気タービンと接続されている。ボイラ17で発生した水蒸気は、蒸気タービンに送られる。そして、水蒸気によって蒸気タービンが回され、回転動力が生成される。蒸気タービンにより生成された回転動力は、発電に利用される。 A boiler 17 is provided in the exhaust flow path 102 on the downstream side of the turbine 11b. The boiler 17 is provided with a flow path 106 through which water flows. The water flowing through the flow path 106 is heated by the exhaust gas flowing through the exhaust flow path 102 and vaporizes into gas (that is, water vapor). A flow path 106 of the boiler 17 is connected to a steam turbine (not shown). Steam generated in the boiler 17 is sent to a steam turbine. The steam then turns a steam turbine and generates rotational power. The rotary power generated by the steam turbine is used for power generation.
 排気流路102のうち、ボイラ17内部に脱硝装置18が設けられる。図1では、脱硝装置18が破線の矩形により模式的に示されているが、当該矩形はボイラ17における脱硝装置18の配置を正確に示すものではなく、ボイラ17における脱硝装置18の配置は適宜設定され得る。ただし、脱硝装置18は、排気流路102に設けられればよく、ボイラ17外に設けられてもよい。脱硝装置18には、後述するように、アンモニアが供給される。脱硝装置18は、排気流路102を流通する排気中の窒素酸化物(NOx)をアンモニアと反応させて窒素と水に分解する。この反応は、脱硝反応とも呼ばれる。 A denitrification device 18 is provided inside the boiler 17 in the exhaust flow path 102. In FIG. 1, the denitrification device 18 is schematically shown by a broken-line rectangle, but the rectangle does not accurately indicate the arrangement of the denitrification device 18 in the boiler 17, and the arrangement of the denitrification device 18 in the boiler 17 is determined as appropriate. Can be set. However, the denitrification device 18 only needs to be provided in the exhaust flow path 102, and may be provided outside the boiler 17. Ammonia is supplied to the denitrification device 18, as will be described later. The denitrification device 18 reacts nitrogen oxides (NOx) in the exhaust gas flowing through the exhaust flow path 102 with ammonia and decomposes them into nitrogen and water. This reaction is also called denitrification reaction.
 アンモニアタンク14は、流路107と接続されている。具体的には、流路107は、アンモニアタンク14内において気化した気体のアンモニアが貯蔵される領域と連通する。流路107には、気体のアンモニアが流通する。流路107は、流路108と流路109に分岐している。 The ammonia tank 14 is connected to the flow path 107. Specifically, the flow path 107 communicates with a region in the ammonia tank 14 where vaporized gaseous ammonia is stored. Gaseous ammonia flows through the flow path 107 . The flow path 107 is branched into a flow path 108 and a flow path 109.
 流路108は、脱硝装置18と接続されている。このように、アンモニアタンク14は、流路107および流路108を介して脱硝装置18と接続される。ゆえに、アンモニアタンク14から脱硝装置18へ、流路107および流路108を介して気体のアンモニアであるアンモニアガスを供給できる。流路108には、流量制御弁23が設けられる。流量制御弁23は、流路108を通り脱硝装置18に送られるアンモニアの流量を調整する。具体的には、流量制御弁23の開度が調整されることによって、脱硝装置18へのアンモニアの供給量が調整される。 The flow path 108 is connected to the denitrification device 18. In this way, the ammonia tank 14 is connected to the denitrification device 18 via the flow path 107 and the flow path 108. Therefore, ammonia gas, which is gaseous ammonia, can be supplied from the ammonia tank 14 to the denitrification device 18 via the flow path 107 and the flow path 108. A flow rate control valve 23 is provided in the flow path 108 . The flow rate control valve 23 adjusts the flow rate of ammonia sent to the denitrification device 18 through the flow path 108. Specifically, the amount of ammonia supplied to the denitrification device 18 is adjusted by adjusting the opening degree of the flow control valve 23.
 流路109は、流路105と接続されている。つまり、アンモニアタンク14は、流路107、流路109および流路105を介してアンモニア回収槽16と接続される。ゆえに、アンモニアタンク14からアンモニア回収槽16へ、流路107、流路109および流路105を介してアンモニアを供給できる。流路109には、流量制御弁24が設けられる。流量制御弁24は、流路109を通りアンモニア回収槽16に送られるアンモニアの流量を調整する。具体的には、流量制御弁24の開度が調整されることによって、アンモニア回収槽16へのアンモニアの供給量が調整される。 The flow path 109 is connected to the flow path 105. That is, the ammonia tank 14 is connected to the ammonia recovery tank 16 via the flow path 107, the flow path 109, and the flow path 105. Therefore, ammonia can be supplied from the ammonia tank 14 to the ammonia recovery tank 16 via the flow path 107, the flow path 109, and the flow path 105. A flow control valve 24 is provided in the flow path 109 . The flow rate control valve 24 adjusts the flow rate of ammonia sent to the ammonia recovery tank 16 through the flow path 109. Specifically, the amount of ammonia supplied to the ammonia recovery tank 16 is adjusted by adjusting the opening degree of the flow rate control valve 24.
 例えば、燃焼システム1の停止時に、流量制御弁24を開くパージ操作が行われる。それにより、流路107、108、109内に残存しているアンモニアがアンモニア回収槽16に送られる。ゆえに、流路107、108、109内にアンモニアが残存することが抑制される。 For example, when the combustion system 1 is stopped, a purge operation is performed to open the flow control valve 24. As a result, ammonia remaining in the channels 107, 108, and 109 is sent to the ammonia recovery tank 16. Therefore, remaining ammonia in the flow paths 107, 108, and 109 is suppressed.
 燃焼システム1では、アンモニア回収槽16は、流路110と接続されている。具体的には、流路110は、アンモニア回収槽16内においてアンモニア水が貯蔵される領域と連通する。流路110には、アンモニア水が流通する。流路110には、ポンプ19が設けられる。ポンプ19は、アンモニア回収槽16から供給されるアンモニア水を加圧して下流側に送出する。流路110は、ポンプ19よりも下流側において、流路111と流路112に分岐している。 In the combustion system 1, the ammonia recovery tank 16 is connected to the flow path 110. Specifically, the flow path 110 communicates with a region in the ammonia recovery tank 16 where aqueous ammonia is stored. Ammonia water flows through the flow path 110. A pump 19 is provided in the flow path 110. The pump 19 pressurizes ammonia water supplied from the ammonia recovery tank 16 and sends it downstream. The flow path 110 branches into a flow path 111 and a flow path 112 on the downstream side of the pump 19 .
 流路111は、圧縮機11aと接続されている。このように、アンモニア回収槽16は、流路110および流路111を介して圧縮機11aと接続される。ゆえに、アンモニア回収槽16から圧縮機11aへ、流路110および流路111を介してアンモニア水を供給できる。例えば、圧縮機11aは、多段の圧縮機である。流路111は、圧縮機11aの中間段と接続されている。ゆえに、流路111から圧縮機11aの中間段にアンモニア水が供給される。流路110および流路111は、アンモニア水が流通する第1流路の一例に相当する。流路111には、流量制御弁25が設けられる。流量制御弁25は、流路111を通り圧縮機11aに送られるアンモニア水の流量を調整する。具体的には、流量制御弁25の開度が調整されることによって、圧縮機11aへのアンモニア水の供給量が調整される。 The flow path 111 is connected to the compressor 11a. In this way, the ammonia recovery tank 16 is connected to the compressor 11a via the flow path 110 and the flow path 111. Therefore, ammonia water can be supplied from the ammonia recovery tank 16 to the compressor 11a via the flow path 110 and the flow path 111. For example, the compressor 11a is a multistage compressor. The flow path 111 is connected to an intermediate stage of the compressor 11a. Therefore, ammonia water is supplied from the flow path 111 to the intermediate stage of the compressor 11a. The flow path 110 and the flow path 111 correspond to an example of a first flow path through which aqueous ammonia flows. A flow control valve 25 is provided in the flow path 111 . The flow control valve 25 adjusts the flow rate of ammonia water sent to the compressor 11a through the flow path 111. Specifically, by adjusting the opening degree of the flow rate control valve 25, the amount of ammonia water supplied to the compressor 11a is adjusted.
 流路112は、脱硝装置18と接続されている。このように、アンモニア回収槽16は、流路110および流路112を介して脱硝装置18と接続される。ゆえに、アンモニア回収槽16から脱硝装置18へ、流路110および流路112を介してアンモニア水を供給できる。流路110および流路112は、アンモニア水が流通する第2流路の一例に相当する。流路112には、流量制御弁26が設けられる。流量制御弁26は、流路112を通り脱硝装置18に送られるアンモニア水の流量を調整する。具体的には、流量制御弁26の開度が調整されることによって、脱硝装置18へのアンモニア水の供給量が調整される。 The flow path 112 is connected to the denitrification device 18. In this way, the ammonia recovery tank 16 is connected to the denitrification device 18 via the flow path 110 and the flow path 112. Therefore, ammonia water can be supplied from the ammonia recovery tank 16 to the denitrification device 18 via the flow path 110 and the flow path 112. The flow path 110 and the flow path 112 correspond to an example of a second flow path through which aqueous ammonia flows. The flow path 112 is provided with a flow rate control valve 26 . The flow control valve 26 adjusts the flow rate of ammonia water sent to the denitrification device 18 through the flow path 112. Specifically, the amount of ammonia water supplied to the denitrification device 18 is adjusted by adjusting the opening degree of the flow rate control valve 26.
 排気流路102には、アンモニア濃度センサ31、窒素酸化物濃度センサ32、アンモニア濃度センサ33および窒素酸化物濃度センサ34が設けられる。アンモニア濃度センサ31および窒素酸化物濃度センサ32は、排気流路102のうちタービン11bより下流側、かつ、脱硝装置18より上流側に配置される。アンモニア濃度センサ31は、脱硝装置18に流入する排気ガス中のアンモニア濃度を検出する。窒素酸化物濃度センサ32は、脱硝装置18に流入する排気ガス中の窒素酸化物濃度を検出する。アンモニア濃度センサ33および窒素酸化物濃度センサ34は、排気流路102のうち脱硝装置18より下流側に配置される。アンモニア濃度センサ33は、脱硝装置18から排出される排気ガス中のアンモニア濃度を検出する。窒素酸化物濃度センサ34は、脱硝装置18から排出される排気ガス中の窒素酸化物濃度を検出する。 The exhaust flow path 102 is provided with an ammonia concentration sensor 31, a nitrogen oxide concentration sensor 32, an ammonia concentration sensor 33, and a nitrogen oxide concentration sensor 34. The ammonia concentration sensor 31 and the nitrogen oxide concentration sensor 32 are arranged in the exhaust flow path 102 on the downstream side of the turbine 11b and on the upstream side of the denitration device 18. The ammonia concentration sensor 31 detects the ammonia concentration in the exhaust gas flowing into the denitrification device 18. The nitrogen oxide concentration sensor 32 detects the nitrogen oxide concentration in the exhaust gas flowing into the denitrification device 18 . The ammonia concentration sensor 33 and the nitrogen oxide concentration sensor 34 are arranged downstream of the denitrification device 18 in the exhaust flow path 102. The ammonia concentration sensor 33 detects the ammonia concentration in the exhaust gas discharged from the denitrification device 18. The nitrogen oxide concentration sensor 34 detects the nitrogen oxide concentration in the exhaust gas discharged from the denitrification device 18.
 アンモニア回収槽16には、アンモニア濃度センサ35および水位センサ36が設けられる。アンモニア濃度センサ35は、アンモニア回収槽16内のアンモニア水のアンモニア濃度を検出する。水位センサ36は、アンモニア回収槽16内のアンモニア水の水位を検出する。 The ammonia recovery tank 16 is provided with an ammonia concentration sensor 35 and a water level sensor 36. The ammonia concentration sensor 35 detects the ammonia concentration of the ammonia water in the ammonia recovery tank 16. The water level sensor 36 detects the water level of ammonia water in the ammonia recovery tank 16.
 制御装置40は、中央処理装置(CPU)、プログラム等が格納されたROM、ワークエリアとしてのRAM等を含む。制御装置40は、燃焼システム1内の各装置の動作を制御する。例えば、制御装置40は、流量制御弁21、22、23、24、25、26の動作をそれぞれ制御する。また、制御装置40は、ポンプ15、19の動作をそれぞれ制御する。また、制御装置40は、発電機13、アンモニア濃度センサ31、窒素酸化物濃度センサ32、アンモニア濃度センサ33、窒素酸化物濃度センサ34、アンモニア濃度センサ35および水位センサ36から情報を取得する。 The control device 40 includes a central processing unit (CPU), a ROM in which programs and the like are stored, and a RAM as a work area. The control device 40 controls the operation of each device within the combustion system 1. For example, the control device 40 controls the operation of the flow control valves 21, 22, 23, 24, 25, and 26, respectively. Further, the control device 40 controls the operations of the pumps 15 and 19, respectively. Further, the control device 40 acquires information from the generator 13 , the ammonia concentration sensor 31 , the nitrogen oxide concentration sensor 32 , the ammonia concentration sensor 33 , the nitrogen oxide concentration sensor 34 , the ammonia concentration sensor 35 , and the water level sensor 36 .
 制御装置40は、第1制御部41と、第2制御部42とを含む。第1制御部41および第2制御部42の機能は、中央処理装置およびROM等によって実現される。 The control device 40 includes a first control section 41 and a second control section 42. The functions of the first control section 41 and the second control section 42 are realized by a central processing unit, a ROM, and the like.
 第1制御部41は、アンモニアタンク14から燃焼器12へ送られるアンモニアの供給量と、アンモニア回収槽16から圧縮機11aへ第1流路に相当する流路110、111を介して送られるアンモニア水の供給量とを制御する。具体的には、第1制御部41は、流量制御弁21および流量制御弁25の動作をそれぞれ制御することによって、上記の2つの供給量をそれぞれ制御する。 The first control unit 41 controls the supply amount of ammonia sent from the ammonia tank 14 to the combustor 12 and the amount of ammonia sent from the ammonia recovery tank 16 to the compressor 11a via channels 110 and 111 corresponding to the first channel. Control the amount of water supplied. Specifically, the first control unit 41 controls the above two supply amounts by controlling the operations of the flow rate control valve 21 and the flow rate control valve 25, respectively.
 第2制御部42は、アンモニアタンク14から脱硝装置18へ送られるアンモニアの供給量と、アンモニア回収槽16から脱硝装置18へ第2流路に相当する流路110、112を介して送られるアンモニア水の供給量とを制御する。具体的には、第2制御部42は、流量制御弁23および流量制御弁26の動作をそれぞれ制御することによって、上記の2つの供給量をそれぞれ制御する。 The second control unit 42 controls the supply amount of ammonia sent from the ammonia tank 14 to the denitrification device 18 and the amount of ammonia sent from the ammonia recovery tank 16 to the denitration device 18 via flow paths 110 and 112 corresponding to the second flow path. Control the amount of water supplied. Specifically, the second control unit 42 controls the above two supply amounts by controlling the operations of the flow rate control valve 23 and the flow rate control valve 26, respectively.
 制御装置40は、1つの装置であってもよく、複数の装置に分かれていてもよい。つまり、制御装置40の機能は、1つの装置によって実現されてもよく、複数の装置に分かれていてもよい。制御装置40が行う処理の詳細については、後述する。 The control device 40 may be one device or may be divided into multiple devices. That is, the functions of the control device 40 may be realized by one device or may be divided into multiple devices. Details of the processing performed by the control device 40 will be described later.
 以上説明したように、燃焼システム1では、アンモニア回収槽16と圧縮機11aとが、第1流路に相当する流路110、111によって接続される。それにより、アンモニア回収槽16に貯まったアンモニア水を圧縮機11aに送ることができる。圧縮機11aに送られたアンモニア水によって、圧縮機11a内を通過する空気が冷却される。そして、圧縮機11aに送られたアンモニア水に含まれるアンモニアが燃焼器12に燃料として供給される。それにより、アンモニア回収槽16に貯まった産業廃棄物として廃棄されるアンモニア水量が低減される。さらに、アンモニア回収槽16に貯まったアンモニア水が廃棄されずに燃焼器12の燃料として有効活用されるので、燃焼システム1の効率も向上する。 As explained above, in the combustion system 1, the ammonia recovery tank 16 and the compressor 11a are connected by the flow paths 110 and 111 corresponding to the first flow path. Thereby, the ammonia water stored in the ammonia recovery tank 16 can be sent to the compressor 11a. The ammonia water sent to the compressor 11a cools the air passing through the compressor 11a. Ammonia contained in the ammonia water sent to the compressor 11a is then supplied to the combustor 12 as fuel. Thereby, the amount of ammonia water accumulated in the ammonia recovery tank 16 and discarded as industrial waste is reduced. Furthermore, since the ammonia water stored in the ammonia recovery tank 16 is effectively used as fuel for the combustor 12 without being discarded, the efficiency of the combustion system 1 is also improved.
 さらに、燃焼システム1では、上記のように、圧縮機11aに送られたアンモニア水によって、圧縮機11a内を通過する空気が冷却される。それにより、圧縮機11aにおける圧縮空気の温度が低下し、圧縮機11aを駆動する動力が削減され、圧縮機11aの出力が増強される。ゆえに、燃焼システム1の効率が効果的に向上する。 Furthermore, in the combustion system 1, as described above, the ammonia water sent to the compressor 11a cools the air passing through the compressor 11a. Thereby, the temperature of the compressed air in the compressor 11a decreases, the power for driving the compressor 11a is reduced, and the output of the compressor 11a is increased. Therefore, the efficiency of the combustion system 1 is effectively improved.
 吸気流路101と排気流路102とが、燃焼器12を迂回する迂回流路によって接続される場合がある。この場合、圧縮機11aから送出されるアンモニアを含む空気の一部が、迂回流路を介してタービン11bに送られ、タービン11bの冷却に利用される。この場合において、燃焼器12を迂回する空気に含まれるアンモニアは、脱硝装置18に送られ、脱硝装置18での脱硝反応に利用されるので、大気へ放出されることはない。 The intake flow path 101 and the exhaust flow path 102 may be connected by a detour flow path that bypasses the combustor 12. In this case, a part of the air containing ammonia sent out from the compressor 11a is sent to the turbine 11b via the bypass flow path, and is used for cooling the turbine 11b. In this case, ammonia contained in the air bypassing the combustor 12 is sent to the denitrification device 18 and used for the denitrification reaction in the denitrification device 18, so that it is not released into the atmosphere.
 また、燃焼システム1では、アンモニア回収槽16と脱硝装置18とが、第2流路に相当する流路110、112によって接続される。それにより、アンモニア回収槽16に貯まったアンモニア水を脱硝装置18に送ることができる。脱硝装置18に送られたアンモニア水に含まれるアンモニアは、脱硝装置18での脱硝反応に利用される。それにより、アンモニア回収槽16に貯まったアンモニア水が産業廃棄物として廃棄されることがより抑制され、アンモニアの廃棄量がより低減される。さらに、アンモニア回収槽16に貯まったアンモニア水が廃棄されずに脱硝装置18での脱硝反応に有効活用されるので、燃焼システム1の効率も向上する。ただし、燃焼システム1から第2流路が省略されてもよい。 Furthermore, in the combustion system 1, the ammonia recovery tank 16 and the denitrification device 18 are connected by flow paths 110 and 112 corresponding to the second flow path. Thereby, the ammonia water stored in the ammonia recovery tank 16 can be sent to the denitrification device 18. Ammonia contained in the ammonia water sent to the denitrification device 18 is used for the denitrification reaction in the denitrification device 18. Thereby, the ammonia water accumulated in the ammonia recovery tank 16 is further suppressed from being discarded as industrial waste, and the amount of ammonia discarded is further reduced. Furthermore, since the ammonia water stored in the ammonia recovery tank 16 is not discarded but is effectively utilized for the denitrification reaction in the denitrification device 18, the efficiency of the combustion system 1 is also improved. However, the second flow path may be omitted from the combustion system 1.
 以下、図2から図5を参照して、本実施形態に係る燃焼システム1の動作について説明する。 Hereinafter, the operation of the combustion system 1 according to the present embodiment will be described with reference to FIGS. 2 to 5.
 図2は、制御装置40が行う処理の全体的な流れの一例を示すフローチャートである。図2に示す処理フローが開始すると、ステップS101において、制御装置40は、アンモニア回収槽16の水位が下限値以下であるか否かを判定する。ステップS101の下限値は、アンモニア回収槽16の水量がアンモニアの回収に必要な量に満たないか否かを判断するための指標である。アンモニア回収槽16の水位が下限値以下である場合は、アンモニア回収槽16の水量がアンモニアの回収に必要な量に満たない場合に相当する。 FIG. 2 is a flowchart showing an example of the overall flow of processing performed by the control device 40. When the process flow shown in FIG. 2 starts, in step S101, the control device 40 determines whether the water level of the ammonia recovery tank 16 is below the lower limit value. The lower limit value of step S101 is an index for determining whether the amount of water in the ammonia recovery tank 16 is less than the amount necessary for recovering ammonia. When the water level of the ammonia recovery tank 16 is below the lower limit value, this corresponds to a case where the amount of water in the ammonia recovery tank 16 is less than the amount required for recovering ammonia.
 アンモニア回収槽16の水位が下限値以下であると判定された場合(ステップS101/YES)、ステップS102に進む。ステップS102において、制御装置40は、アンモニア回収槽16への給水処理を実行し、ステップS101に戻る。アンモニア回収槽16への給水処理は、アンモニア回収槽16へ水を供給する処理である。アンモニア回収槽16への給水処理の詳細については、図3を参照して後述する。一方、アンモニア回収槽16の水位が下限値より高いと判定された場合(ステップS101/NO)、ステップS103に進む。 If it is determined that the water level of the ammonia recovery tank 16 is below the lower limit (step S101/YES), the process proceeds to step S102. In step S102, the control device 40 executes water supply processing to the ammonia recovery tank 16, and returns to step S101. The water supply process to the ammonia recovery tank 16 is a process for supplying water to the ammonia recovery tank 16. Details of the water supply process to the ammonia recovery tank 16 will be described later with reference to FIG. 3. On the other hand, if it is determined that the water level of the ammonia recovery tank 16 is higher than the lower limit (step S101/NO), the process proceeds to step S103.
 ステップS103において、制御装置40は、アンモニア回収槽16のアンモニア濃度(具体的には、アンモニア水のアンモニア濃度)が閾値以下であるか否かを判定する。ステップS103の閾値は、アンモニア回収槽16中のアンモニア水が燃焼器12での燃焼、または、脱硝装置18での脱硝反応に利用できる程度のアンモニア濃度を有しているか否かを判断するための指標である。アンモニア回収槽16のアンモニア濃度が閾値以下である場合は、アンモニア回収槽16中のアンモニア水が燃焼器12での燃焼、または、脱硝装置18での脱硝反応に利用できる程度のアンモニア濃度を有していない場合に相当する。 In step S103, the control device 40 determines whether the ammonia concentration in the ammonia recovery tank 16 (specifically, the ammonia concentration in the ammonia water) is below a threshold value. The threshold value in step S103 is used to determine whether the ammonia water in the ammonia recovery tank 16 has an ammonia concentration that can be used for combustion in the combustor 12 or for denitrification reaction in the denitrification device 18. It is an indicator. When the ammonia concentration in the ammonia recovery tank 16 is below the threshold value, the ammonia water in the ammonia recovery tank 16 has an ammonia concentration that can be used for combustion in the combustor 12 or for the denitrification reaction in the denitrification device 18. This corresponds to the case where the
 アンモニア回収槽16のアンモニア濃度が閾値以下であると判定された場合(ステップS103/YES)、後述するステップS106に進む。一方、アンモニア回収槽16のアンモニア濃度が閾値より高いと判定された場合(ステップS103/NO)、ステップS104に進む。 If it is determined that the ammonia concentration in the ammonia recovery tank 16 is below the threshold value (step S103/YES), the process proceeds to step S106, which will be described later. On the other hand, if it is determined that the ammonia concentration in the ammonia recovery tank 16 is higher than the threshold value (step S103/NO), the process proceeds to step S104.
 ステップS104において、制御装置40は、圧縮機11aへのアンモニア水の供給の禁止条件が満たされているか否かを判定する。例えば、ステップS104の禁止条件としては、圧縮機11aの回転数が過度に低いことが挙げられる。このような禁止条件を用いることによって、燃焼器12の燃焼が安定していない状況で燃焼器12にアンモニア水が供給されることに起因して燃焼が不安定になることが抑制される。また、例えば、ステップS104の禁止条件としては、アンモニア濃度センサ31により検出されるアンモニア濃度が、窒素酸化物濃度センサ32により検出される窒素酸化物濃度よりも高いこと(つまり、燃焼器12から排出され脱硝装置18に流入する排気ガス中のアンモニア濃度が窒素酸化物濃度よりも高いこと)が挙げられる。このような禁止条件を用いることによって、未燃アンモニアが増加することが抑制される。 In step S104, the control device 40 determines whether conditions for prohibiting the supply of ammonia water to the compressor 11a are satisfied. For example, the prohibition condition for step S104 is that the rotation speed of the compressor 11a is too low. By using such prohibition conditions, it is possible to suppress combustion from becoming unstable due to ammonia water being supplied to the combustor 12 in a situation where the combustion of the combustor 12 is not stable. For example, the prohibition condition in step S104 is that the ammonia concentration detected by the ammonia concentration sensor 31 is higher than the nitrogen oxide concentration detected by the nitrogen oxide concentration sensor 32 (that is, the nitrogen oxide concentration detected by the nitrogen oxide concentration sensor 32 is The concentration of ammonia in the exhaust gas flowing into the denitrification device 18 is higher than the concentration of nitrogen oxides). By using such prohibition conditions, an increase in unburned ammonia is suppressed.
 圧縮機11aへのアンモニア水の供給の禁止条件が満たされていると判定された場合(ステップS104/YES)、後述するステップS106に進む。一方、圧縮機11aへのアンモニア水の供給の禁止条件が満たされていないと判定された場合(ステップS104/NO)、ステップS105に進む。 If it is determined that the conditions for prohibiting the supply of ammonia water to the compressor 11a are satisfied (step S104/YES), the process proceeds to step S106, which will be described later. On the other hand, if it is determined that the prohibition condition for supplying ammonia water to the compressor 11a is not satisfied (step S104/NO), the process proceeds to step S105.
 ステップS105において、制御装置40の第1制御部41は、圧縮機11aへのアンモニア水供給処理を実行する。圧縮機11aへのアンモニア水供給処理は、アンモニア回収槽16から圧縮機11aへアンモニア水を供給する処理である。圧縮機11aへのアンモニア水供給処理の詳細については、図4を参照して後述する。 In step S105, the first control unit 41 of the control device 40 executes an ammonia water supply process to the compressor 11a. The process of supplying ammonia water to the compressor 11a is a process of supplying ammonia water from the ammonia recovery tank 16 to the compressor 11a. Details of the ammonia water supply process to the compressor 11a will be described later with reference to FIG.
 ステップS105の次に、ステップS106において、制御装置40は、脱硝装置18へのアンモニア水の供給の禁止条件が満たされているか否かを判定する。例えば、ステップS106の禁止条件としては、アンモニア濃度センサ33により検出されるアンモニア濃度が、窒素酸化物濃度センサ34により検出される窒素酸化物濃度よりも高いこと(つまり、脱硝装置18から排出される排気ガス中のアンモニア濃度が窒素酸化物濃度よりも高いこと)が挙げられる。このような禁止条件を用いることによって、未燃アンモニアが増加することが抑制される。 After step S105, in step S106, the control device 40 determines whether the prohibition condition for supplying ammonia water to the denitrification device 18 is satisfied. For example, the prohibition condition for step S106 is that the ammonia concentration detected by the ammonia concentration sensor 33 is higher than the nitrogen oxide concentration detected by the nitrogen oxide concentration sensor 34 (that is, the nitrogen oxide concentration detected by the nitrogen oxide concentration sensor 34 is The concentration of ammonia in the exhaust gas is higher than the concentration of nitrogen oxides). By using such prohibition conditions, an increase in unburned ammonia is suppressed.
 脱硝装置18へのアンモニア水の供給の禁止条件が満たされていると判定された場合(ステップS106/YES)、ステップS101に戻る。一方、脱硝装置18へのアンモニア水の供給の禁止条件が満たされていないと判定された場合(ステップS106/NO)、ステップS107に進む。 If it is determined that the conditions for prohibiting the supply of ammonia water to the denitrification device 18 are satisfied (step S106/YES), the process returns to step S101. On the other hand, if it is determined that the prohibition condition for supplying ammonia water to the denitrification device 18 is not satisfied (step S106/NO), the process advances to step S107.
 ステップS107において、制御装置40は、NOx排出濃度が上限値以上であるか否かを判定する。NOx排出濃度は、燃焼システム1から排出される窒素酸化物濃度である。つまり、窒素酸化物濃度センサ34により検出される窒素酸化物濃度がNOx排出濃度に相当する。ステップS107の上限値は、燃焼システム1からの窒素酸化物の排出量が環境悪化の観点で過度に多いか否かを判断するための指標である。NOx排出濃度が上限値以上である場合は、燃焼システム1からの窒素酸化物の排出量が環境悪化の観点で過度に多い場合に相当する。 In step S107, the control device 40 determines whether the NOx emission concentration is greater than or equal to the upper limit value. The NOx emission concentration is the concentration of nitrogen oxides emitted from the combustion system 1. In other words, the nitrogen oxide concentration detected by the nitrogen oxide concentration sensor 34 corresponds to the NOx emission concentration. The upper limit value in step S107 is an index for determining whether the amount of nitrogen oxides discharged from the combustion system 1 is excessively large from the viewpoint of environmental deterioration. When the NOx emission concentration is equal to or greater than the upper limit value, this corresponds to a case where the amount of nitrogen oxides emitted from the combustion system 1 is excessively large from the viewpoint of environmental deterioration.
 NOx排出濃度が上限値より低いと判定された場合(ステップS107/NO)、ステップS101に戻る。一方、NOx排出濃度が上限値以上であると判定された場合(ステップS107/YES)、ステップS108に進む。ステップS108において、制御装置40の第2制御部42は、脱硝装置18へのアンモニア水供給処理を実行し、ステップS101に戻る。脱硝装置18へのアンモニア水供給処理は、アンモニア回収槽16から脱硝装置18へアンモニア水を供給する処理である。脱硝装置18へのアンモニア水供給処理の詳細については、図5を参照して後述する。 If it is determined that the NOx emission concentration is lower than the upper limit value (step S107/NO), the process returns to step S101. On the other hand, if it is determined that the NOx emission concentration is equal to or higher than the upper limit value (step S107/YES), the process advances to step S108. In step S108, the second control unit 42 of the control device 40 executes an ammonia water supply process to the denitrification device 18, and returns to step S101. The process of supplying ammonia water to the denitrification device 18 is a process of supplying ammonia water from the ammonia recovery tank 16 to the denitrification device 18 . Details of the ammonia water supply process to the denitrification device 18 will be described later with reference to FIG.
 図3は、制御装置40が行うアンモニア回収槽16への給水処理の流れの一例を示すフローチャートである。図3に示す処理フローは、図2のフローチャート中のステップS102において実行される。 FIG. 3 is a flowchart showing an example of the flow of water supply processing to the ammonia recovery tank 16 performed by the control device 40. The processing flow shown in FIG. 3 is executed in step S102 in the flowchart of FIG.
 図3に示す処理フローが開始すると、ステップS201において、制御装置40は、アンモニア回収槽16への給水を開始する。 When the process flow shown in FIG. 3 starts, the control device 40 starts supplying water to the ammonia recovery tank 16 in step S201.
 ステップS201の次に、ステップS202において、制御装置40は、アンモニア回収槽16の水位が上限値以上であるか否かを判定する。ステップS202の上限値は、アンモニア回収槽16の容積等に応じて適宜設定され得る。 After step S201, in step S202, the control device 40 determines whether the water level of the ammonia recovery tank 16 is equal to or higher than the upper limit value. The upper limit value in step S202 can be set as appropriate depending on the volume of the ammonia recovery tank 16, etc.
 アンモニア回収槽16の水位が上限値より低いと判定された場合(ステップS202/NO)、ステップS202が繰り返される。一方、アンモニア回収槽16の水位が上限値以上であると判定された場合(ステップS202/YES)、ステップS203に進む。ステップS203において、制御装置40は、アンモニア回収槽16への給水を停止し、図3に示す処理フローは終了する。通常、アンモニア回収槽16の水位が下限値および上限値に到達したことをそれぞれ検出する下限スイッチおよび上限スイッチを用いることによって、アンモニア回収槽16へ水を供給する補給水タンクは、アンモニア回収槽16の水位を下限値と上限値の間になるように制御している。 If it is determined that the water level of the ammonia recovery tank 16 is lower than the upper limit (step S202/NO), step S202 is repeated. On the other hand, if it is determined that the water level of the ammonia recovery tank 16 is equal to or higher than the upper limit value (step S202/YES), the process proceeds to step S203. In step S203, the control device 40 stops the water supply to the ammonia recovery tank 16, and the process flow shown in FIG. 3 ends. Normally, by using a lower limit switch and an upper limit switch that respectively detect when the water level of the ammonia recovery tank 16 has reached a lower limit value and an upper limit value, the make-up water tank that supplies water to the ammonia recovery tank 16 is The water level is controlled to be between the lower limit and upper limit.
 図4は、制御装置40(具体的には、第1制御部41)が行う圧縮機11aへのアンモニア水供給処理の流れの一例を示すフローチャートである。図4に示す処理フローは、図2のフローチャート中のステップS105において実行される。 FIG. 4 is a flowchart showing an example of the process of supplying ammonia water to the compressor 11a, which is performed by the control device 40 (specifically, the first control unit 41). The processing flow shown in FIG. 4 is executed in step S105 in the flowchart of FIG.
 図4に示す処理フローが開始すると、ステップS301において、第1制御部41は、圧縮機11aへのアンモニア水の供給量が上限値より少ないか否かを判定する。ステップS301の上限値は、燃焼器12において失火が生じる程度に圧縮機11aへのアンモニア水の供給量が多いか否かを判断するための指標である。圧縮機11aへのアンモニア水の供給量が上限値より多い場合は、燃焼器12において失火が生じる程度に圧縮機11aへのアンモニア水の供給量が多い場合に相当する。 When the process flow shown in FIG. 4 starts, in step S301, the first control unit 41 determines whether the amount of ammonia water supplied to the compressor 11a is less than the upper limit value. The upper limit value in step S301 is an index for determining whether the amount of ammonia water supplied to the compressor 11a is large enough to cause a misfire in the combustor 12. When the amount of ammonia water supplied to the compressor 11a is larger than the upper limit value, this corresponds to a case where the amount of ammonia water supplied to the compressor 11a is large enough to cause a misfire in the combustor 12.
 圧縮機11aへのアンモニア水の供給量が上限値より少ないと判定された場合(ステップS301/YES)、ステップS302に進む。ステップS302において、第1制御部41は、アンモニア回収槽16から圧縮機11aへのアンモニア水の供給量を増加させ、ステップS304に進む。一方、圧縮機11aへのアンモニア水の供給量が上限値以上であると判定された場合(ステップS301/NO)、ステップS303に進む。ステップS303において、第1制御部41は、アンモニア回収槽16から圧縮機11aへのアンモニア水の供給量を減少させ、ステップS304に進む。 If it is determined that the amount of ammonia water supplied to the compressor 11a is less than the upper limit (step S301/YES), the process proceeds to step S302. In step S302, the first control unit 41 increases the amount of ammonia water supplied from the ammonia recovery tank 16 to the compressor 11a, and proceeds to step S304. On the other hand, if it is determined that the amount of ammonia water supplied to the compressor 11a is equal to or greater than the upper limit value (step S301/NO), the process proceeds to step S303. In step S303, the first control unit 41 reduces the amount of ammonia water supplied from the ammonia recovery tank 16 to the compressor 11a, and proceeds to step S304.
 ステップS304において、第1制御部41は、エンジンE1の出力が設定値より低いか否かを判定する。ステップS304の設定値は、例えば、発電機13による発電量の要求値に応じて設定される。 In step S304, the first control unit 41 determines whether the output of the engine E1 is lower than the set value. The set value in step S304 is set, for example, according to the required value of the amount of power generated by the generator 13.
 エンジンE1の出力が設定値より低いと判定された場合(ステップS304/YES)、ステップS305に進む。ステップS305において、第1制御部41は、アンモニアタンク14から燃焼器12へのアンモニアの供給量を増加させ、図4に示す処理フローは終了する。一方、エンジンE1の出力が設定値以上であると判定された場合(ステップS304/NO)、ステップS306に進む。 If it is determined that the output of the engine E1 is lower than the set value (step S304/YES), the process advances to step S305. In step S305, the first control unit 41 increases the amount of ammonia supplied from the ammonia tank 14 to the combustor 12, and the process flow shown in FIG. 4 ends. On the other hand, if it is determined that the output of the engine E1 is equal to or greater than the set value (step S304/NO), the process advances to step S306.
 ステップS306において、第1制御部41は、エンジンE1の出力が設定値より高いか否かを判定する。ステップS306の設定値は、ステップS304の設定値と同様である。 In step S306, the first control unit 41 determines whether the output of the engine E1 is higher than the set value. The set value in step S306 is the same as the set value in step S304.
 エンジンE1の出力が設定値より高いと判定された場合(ステップS306/YES)、ステップS307に進む。ステップS307において、第1制御部41は、アンモニアタンク14から燃焼器12へのアンモニアの供給量を減少させ、図4に示す処理フローは終了する。一方、エンジンE1の出力が設定値以下であると判定された場合(ステップS306/NO)、図4に示す処理フローは終了する。 If it is determined that the output of the engine E1 is higher than the set value (step S306/YES), the process proceeds to step S307. In step S307, the first control unit 41 reduces the amount of ammonia supplied from the ammonia tank 14 to the combustor 12, and the process flow shown in FIG. 4 ends. On the other hand, if it is determined that the output of the engine E1 is equal to or less than the set value (step S306/NO), the processing flow shown in FIG. 4 ends.
 図4に示す処理フローが繰り返される状況において、アンモニア回収槽16から圧縮機11aへのアンモニア水の供給が開始された後、アンモニア回収槽16から圧縮機11aへのアンモニア水の供給量が、上限値近傍に維持されるように増減する(ステップS302、S303)。そして、アンモニアタンク14から燃焼器12へのアンモニアの供給量が、エンジンE1の出力に応じて増減する(ステップS305、S307)。それにより、エンジンE1の出力が設定値に制御される。 In a situation where the process flow shown in FIG. 4 is repeated, after the supply of ammonia water from the ammonia recovery tank 16 to the compressor 11a is started, the amount of ammonia water supplied from the ammonia recovery tank 16 to the compressor 11a is set at the upper limit. The value is increased or decreased so as to be maintained near the value (steps S302, S303). Then, the amount of ammonia supplied from the ammonia tank 14 to the combustor 12 increases or decreases depending on the output of the engine E1 (steps S305, S307). Thereby, the output of the engine E1 is controlled to the set value.
 以上説明したように、燃焼システム1では、第1制御部41は、エンジンE1の出力が設定値になるように、アンモニアタンク14から燃焼器12へ送られるアンモニアの供給量と、アンモニア回収槽16から圧縮機11aへ第1流路(上記の例では、流路110、111)を介して送られるアンモニア水の供給量とを制御する。それにより、アンモニア回収槽16に貯まったアンモニア水を燃焼器12の燃料として有効活用しつつ、アンモニアタンク14から燃焼器12へ送られるアンモニアも燃料として利用することによって、エンジンE1の出力を設定値に制御できる。ゆえに、アンモニアの廃棄量を低減しつつ、エンジンE1の出力を適切に制御できる。 As explained above, in the combustion system 1, the first control unit 41 controls the amount of ammonia supplied from the ammonia tank 14 to the combustor 12 and the ammonia recovery tank 16 so that the output of the engine E1 becomes the set value. The supply amount of ammonia water sent from the compressor 11a to the compressor 11a via the first flow path (in the above example, flow paths 110 and 111) is controlled. As a result, the ammonia water stored in the ammonia recovery tank 16 is effectively used as fuel for the combustor 12, and the ammonia sent from the ammonia tank 14 to the combustor 12 is also used as fuel, thereby increasing the output of the engine E1 to the set value. can be controlled. Therefore, the output of the engine E1 can be appropriately controlled while reducing the amount of ammonia waste.
 また、燃焼システム1では、第1制御部41は、アンモニア回収槽16から圧縮機11aへ第1流路(上記の例では、流路110、111)を介して送られるアンモニア水の供給量を第1上限値(上記の例では、ステップS301の上限値)以下に制限する。それにより、燃焼器12において失火が生じる程度に圧縮機11aへのアンモニア水の供給量が多くなることが抑制される。ゆえに、燃焼器12において失火が生じることが抑制される。第1上限値は、固定値であってもよく、各種パラメータに応じて変化する値であってもよい。上記のパラメータとしては、例えば、アンモニア回収槽16に貯まったアンモニア水のアンモニア濃度等が挙げられる。 In the combustion system 1, the first control unit 41 also controls the amount of ammonia water to be supplied from the ammonia recovery tank 16 to the compressor 11a via the first channel ( channels 110 and 111 in the above example). It is limited to a first upper limit value (in the above example, the upper limit value in step S301) or less. This prevents the amount of ammonia water supplied to the compressor 11a from increasing to the extent that a misfire occurs in the combustor 12. Therefore, occurrence of misfire in the combustor 12 is suppressed. The first upper limit value may be a fixed value or a value that changes depending on various parameters. Examples of the above parameters include the ammonia concentration of the ammonia water stored in the ammonia recovery tank 16.
 図5は、制御装置40(具体的には、第2制御部42)が行う脱硝装置18へのアンモニア水供給処理の流れの一例を示すフローチャートである。図5に示す処理フローは、図2のフローチャート中のステップS108において実行される。 FIG. 5 is a flowchart showing an example of the process of supplying ammonia water to the denitrification device 18, which is performed by the control device 40 (specifically, the second control section 42). The processing flow shown in FIG. 5 is executed in step S108 in the flowchart of FIG.
 図5に示す処理フローが開始すると、ステップS401において、第2制御部42は、脱硝装置18へのアンモニア水の供給量が上限値より少ないか否かを判定する。ステップS401の上限値は、脱硝装置18での脱硝反応が円滑に進まなくなる程度に脱硝装置18へのアンモニア水の供給量が多いか否かを判断するための指標である。脱硝装置18へのアンモニア水の供給量が上限値より多い場合は、脱硝装置18での脱硝反応が円滑に進まなくなる程度に脱硝装置18へのアンモニア水の供給量が多い場合に相当する。 When the process flow shown in FIG. 5 starts, in step S401, the second control unit 42 determines whether the amount of ammonia water supplied to the denitrification device 18 is less than the upper limit value. The upper limit value in step S401 is an index for determining whether the amount of ammonia water supplied to the denitrification device 18 is large enough to prevent the denitrification reaction in the denitrification device 18 from proceeding smoothly. When the amount of ammonia water supplied to the denitrification device 18 is larger than the upper limit value, this corresponds to a case where the amount of ammonia water supplied to the denitrification device 18 is so large that the denitrification reaction in the denitrification device 18 does not proceed smoothly.
 脱硝装置18へのアンモニア水の供給量が上限値より少ないと判定された場合(ステップS401/YES)、ステップS402に進む。ステップS402において、第2制御部42は、アンモニア回収槽16から脱硝装置18へのアンモニア水の供給量を増加させ、図5に示す処理フローは終了する。一方、脱硝装置18へのアンモニア水の供給量が上限値以上であると判定された場合(ステップS401/NO)、ステップS403に進む。ステップS403において、第2制御部42は、アンモニア回収槽16から脱硝装置18へのアンモニア水の供給量を減少させ、ステップS404に進む。ステップS404において、第2制御部42は、アンモニアタンク14から脱硝装置18へのアンモニアガスの供給量を増加させ、図5に示す処理フローは終了する。 If it is determined that the amount of ammonia water supplied to the denitrification device 18 is less than the upper limit value (step S401/YES), the process proceeds to step S402. In step S402, the second control unit 42 increases the amount of ammonia water supplied from the ammonia recovery tank 16 to the denitrification device 18, and the process flow shown in FIG. 5 ends. On the other hand, if it is determined that the amount of ammonia water supplied to the denitrification device 18 is equal to or greater than the upper limit value (step S401/NO), the process proceeds to step S403. In step S403, the second control unit 42 reduces the amount of ammonia water supplied from the ammonia recovery tank 16 to the denitrification device 18, and proceeds to step S404. In step S404, the second control unit 42 increases the amount of ammonia gas supplied from the ammonia tank 14 to the denitrification device 18, and the process flow shown in FIG. 5 ends.
 図5に示す処理フローは、脱硝装置18から排出される排気ガス中の窒素酸化物濃度に基づいて、燃焼システム1からの窒素酸化物の排出量の抑制が必要と判断される間、繰り返される。具体的には、NOx排出濃度が上限値以上である間、図5に示す処理フローが繰り返される。図5に示す処理フローが繰り返される状況において、アンモニア回収槽16から脱硝装置18へのアンモニア水の供給が開始された後、アンモニア回収槽16から脱硝装置18へのアンモニア水の供給量が、上限値近傍に維持されるように増減する(ステップS402、S403)。そして、脱硝装置18へのアンモニア水の供給量が上限値以上となる場合には、アンモニアタンク14から脱硝装置18へのアンモニアガスの供給量が増加する(ステップS404)。それにより、NOx排出濃度が上限値を下回り、燃焼システム1からの窒素酸化物の排出量が適切に抑制される。 The processing flow shown in FIG. 5 is repeated until it is determined that it is necessary to suppress the amount of nitrogen oxides discharged from the combustion system 1 based on the concentration of nitrogen oxides in the exhaust gas discharged from the denitrification device 18. . Specifically, the processing flow shown in FIG. 5 is repeated while the NOx emission concentration is equal to or higher than the upper limit value. In a situation where the processing flow shown in FIG. 5 is repeated, after the supply of ammonia water from the ammonia recovery tank 16 to the denitrification device 18 is started, the amount of ammonia water supplied from the ammonia recovery tank 16 to the denitrification device 18 is set at the upper limit. The value is increased or decreased so as to be maintained near the value (steps S402, S403). When the amount of ammonia water supplied to the denitrification device 18 is equal to or greater than the upper limit value, the amount of ammonia gas supplied from the ammonia tank 14 to the denitrification device 18 is increased (step S404). Thereby, the NOx emission concentration falls below the upper limit value, and the amount of nitrogen oxides emitted from the combustion system 1 is appropriately suppressed.
 以上説明したように、燃焼システム1では、第2制御部42は、脱硝装置18から排出される排気ガス中の窒素酸化物濃度に基づいて、アンモニアタンク14から脱硝装置18へ送られるアンモニアの供給量と、アンモニア回収槽16から脱硝装置18へ第2流路(上記の例では、流路110、112)を介して送られるアンモニア水の供給量とを制御する。それにより、アンモニア回収槽16に貯まったアンモニア水を脱硝装置18での脱硝反応に有効活用しつつ、アンモニアタンク14から脱硝装置18へ送られるアンモニアガスも脱硝反応に利用することによって、燃焼システム1からの窒素酸化物の排出量を適切に低減できる。ゆえに、アンモニアの廃棄量を低減しつつ、燃焼システム1からの窒素酸化物の排出量を適切に低減できる。 As described above, in the combustion system 1, the second control unit 42 supplies ammonia to be sent from the ammonia tank 14 to the denitrification device 18 based on the concentration of nitrogen oxides in the exhaust gas discharged from the denitrification device 18. and the supply amount of ammonia water sent from the ammonia recovery tank 16 to the denitrification device 18 via the second flow path (in the above example, flow paths 110 and 112). As a result, the combustion system 1 It is possible to appropriately reduce the amount of nitrogen oxide emissions from Therefore, the amount of nitrogen oxides discharged from the combustion system 1 can be appropriately reduced while reducing the amount of ammonia waste.
 また、燃焼システム1では、第2制御部42は、アンモニア回収槽16から脱硝装置18へ第2流路(上記の例では、流路110、112)を介して送られるアンモニア水の供給量を第2上限値(上記の例では、ステップS401の上限値)以下に制限する。それにより、脱硝装置18での脱硝反応が円滑に進まなくなる程度に脱硝装置18へのアンモニア水の供給量が多くなることが抑制される。ゆえに、脱硝装置18での脱硝反応が円滑に進まなくなることが抑制される。第2上限値は、固定値であってもよく、各種パラメータに応じて変化する値であってもよい。上記のパラメータとしては、例えば、アンモニア回収槽16に貯まったアンモニア水のアンモニア濃度や脱硝反応に必要な排気ガス温度データ等が挙げられる。 In the combustion system 1, the second control unit 42 also controls the amount of ammonia water to be supplied from the ammonia recovery tank 16 to the denitrification device 18 via the second channel ( channels 110 and 112 in the above example). It is limited to the second upper limit value (in the above example, the upper limit value in step S401) or less. This prevents the amount of ammonia water supplied to the denitrification device 18 from increasing to the extent that the denitrification reaction in the denitrification device 18 does not proceed smoothly. Therefore, the denitrification reaction in the denitrification device 18 is prevented from proceeding smoothly. The second upper limit value may be a fixed value or a value that changes depending on various parameters. Examples of the above-mentioned parameters include the ammonia concentration of the ammonia water stored in the ammonia recovery tank 16 and the exhaust gas temperature data required for the denitrification reaction.
 以上、添付図面を参照しながら本開示の実施形態について説明したが、本開示はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。 Although the embodiments of the present disclosure have been described above with reference to the accompanying drawings, it goes without saying that the present disclosure is not limited to such embodiments. It is clear that those skilled in the art can come up with various changes and modifications within the scope of the claims, and it is understood that these naturally fall within the technical scope of the present disclosure. be done.
 上記では、図2から図5を参照して、制御装置40が行う処理の例について説明した。ただし、制御装置40が行う処理は、上記で説明した例に限定されない。例えば、上記で各フローチャートを用いて説明した処理は、必ずしも各フローチャートに示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。 In the above, examples of processing performed by the control device 40 have been described with reference to FIGS. 2 to 5. However, the processing performed by the control device 40 is not limited to the example described above. For example, the processes described using each flowchart above do not necessarily have to be executed in the order shown in each flowchart. Some processing steps may be performed in parallel. Also, additional processing steps may be employed or some processing steps may be omitted.
 上記では、燃焼器12を含むエンジンE1がガスタービンエンジンである例を説明した。ただし、燃焼器12を含むエンジンE1は、ガスタービンエンジンに限定されない。例えば、燃焼器12を含むエンジンE1は、ターボチャージャー付きのレシプロエンジンであってもよい。この場合、ターボチャージャーの圧縮機とアンモニア回収槽16とが第1流路によって接続され、上記で説明した例と同様の効果が奏される。 In the above example, the engine E1 including the combustor 12 is a gas turbine engine. However, the engine E1 including the combustor 12 is not limited to a gas turbine engine. For example, the engine E1 including the combustor 12 may be a reciprocating engine with a turbocharger. In this case, the compressor of the turbocharger and the ammonia recovery tank 16 are connected through the first flow path, and the same effects as in the example described above are achieved.
 上記では、燃焼システム1において、タービン11bから圧縮機11aに伝達された回転動力が発電機13を駆動させるエネルギーとして利用される例を説明した。ただし、燃焼システム1において、タービン11bから圧縮機11aに伝達された回転動力が、例えば、船舶等の移動体を駆動させる目的等の他の用途に利用されてもよい。 In the above, an example has been described in which, in the combustion system 1, the rotational power transmitted from the turbine 11b to the compressor 11a is used as energy to drive the generator 13. However, in the combustion system 1, the rotational power transmitted from the turbine 11b to the compressor 11a may be used for other purposes, such as for driving a moving body such as a ship.
 上記では、アンモニアが液体の状態でアンモニアタンク14から燃焼器12に供給される例を説明した。ただし、アンモニアが気体の状態でアンモニアタンク14から燃焼器12に供給されてもよい。この場合、流路103または流路104に気化器が設けられ、気化器によってアンモニアが気化される。 In the above, an example has been described in which ammonia is supplied from the ammonia tank 14 to the combustor 12 in a liquid state. However, ammonia may be supplied to the combustor 12 from the ammonia tank 14 in a gaseous state. In this case, a vaporizer is provided in the flow path 103 or 104, and ammonia is vaporized by the vaporizer.
 上記では、アンモニアが気体の状態でアンモニアタンク14から流路107に送られる例を説明した。ただし、アンモニアが液体の状態でアンモニアタンク14から流路107に送られ、流路107、流路108または流路109においてアンモニアが気化されてもよい。 In the above, an example has been described in which ammonia is sent from the ammonia tank 14 to the flow path 107 in a gaseous state. However, ammonia may be sent in a liquid state from the ammonia tank 14 to the flow path 107, and the ammonia may be vaporized in the flow path 107, the flow path 108, or the flow path 109.
 本開示は、ガスタービンシステム等の燃焼システムにおける燃料の廃棄量の低減、および、効率の向上に資するので、例えば、持続可能な開発目標(SDGs)の目標7「手ごろで信頼でき、持続可能かつ近代的なエネルギーへのアクセスを確保する」に貢献することができる。 The present disclosure contributes to reducing the amount of fuel wasted and improving efficiency in combustion systems such as gas turbine systems. can contribute to "ensuring access to modern energy."
1:燃焼システム 11a:圧縮機 12:燃焼器 14:アンモニアタンク 16:アンモニア回収槽 18:脱硝装置 41:第1制御部 42:第2制御部 101:吸気流路 102:排気流路 110:流路(第1流路、第2流路) 111:流路(第1流路) 112:流路(第2流路) E1:エンジン 1: Combustion system 11a: Compressor 12: Combustor 14: Ammonia tank 16: Ammonia recovery tank 18: Denitrification device 41: First control section 42: Second control section 101: Intake flow path 102: Exhaust flow path 110: Flow Channel (first channel, second channel) 111: Channel (first channel) 112: Channel (second channel) E1: Engine

Claims (6)

  1.  アンモニアタンクと、
     前記アンモニアタンクと接続される燃焼器と、
     前記燃焼器と接続される吸気流路と、
     前記吸気流路に設けられる圧縮機と、
     前記アンモニアタンクと接続されるアンモニア回収槽と、
     前記アンモニア回収槽と前記圧縮機とを接続する第1流路と、
     を備える、
     燃焼システム。
    ammonia tank,
    a combustor connected to the ammonia tank;
    an intake flow path connected to the combustor;
    a compressor provided in the intake flow path;
    an ammonia recovery tank connected to the ammonia tank;
    a first flow path connecting the ammonia recovery tank and the compressor;
    Equipped with
    combustion system.
  2.  前記燃焼器を含むエンジンと、
     前記エンジンの出力が設定値になるように、前記アンモニアタンクから前記燃焼器へ送られるアンモニアの供給量と、前記アンモニア回収槽から前記圧縮機へ前記第1流路を介して送られるアンモニア水の供給量とを制御する第1制御部を備える、
     請求項1に記載の燃焼システム。
    an engine including the combustor;
    The amount of ammonia supplied from the ammonia tank to the combustor and the amount of ammonia water sent from the ammonia recovery tank to the compressor via the first flow path are adjusted so that the output of the engine reaches the set value. a first control unit that controls the supply amount;
    Combustion system according to claim 1.
  3.  前記第1制御部は、前記アンモニア回収槽から前記圧縮機へ前記第1流路を介して送られるアンモニア水の供給量を第1上限値以下に制限する、
     請求項2に記載の燃焼システム。
    The first control unit limits the amount of ammonia water supplied from the ammonia recovery tank to the compressor via the first flow path to a first upper limit value or less.
    Combustion system according to claim 2.
  4.  前記燃焼器と接続される排気流路と、
     前記排気流路に設けられる脱硝装置と、
     前記アンモニア回収槽と前記脱硝装置とを接続する第2流路と、
     を備える、
     請求項1から3のいずれか一項に記載の燃焼システム。
    an exhaust flow path connected to the combustor;
    a denitrification device provided in the exhaust flow path;
    a second flow path connecting the ammonia recovery tank and the denitrification device;
    Equipped with
    Combustion system according to any one of claims 1 to 3.
  5.  前記脱硝装置は、前記アンモニアタンクと接続されており、
     前記脱硝装置から排出される排気ガス中の窒素酸化物濃度に基づいて、前記アンモニアタンクから前記脱硝装置へ送られるアンモニアの供給量と、前記アンモニア回収槽から前記脱硝装置へ前記第2流路を介して送られるアンモニア水の供給量とを制御する第2制御部を備える、
     請求項4に記載の燃焼システム。
    The denitrification device is connected to the ammonia tank,
    Based on the concentration of nitrogen oxides in the exhaust gas discharged from the denitrification device, the amount of ammonia to be supplied from the ammonia tank to the denitrification device and the second flow path from the ammonia recovery tank to the denitrification device are determined. a second control unit that controls the supply amount of ammonia water sent through the
    Combustion system according to claim 4.
  6.  前記第2制御部は、前記アンモニア回収槽から前記脱硝装置へ前記第2流路を介して送られるアンモニア水の供給量を第2上限値以下に制限する、
     請求項5に記載の燃焼システム。
    The second control unit limits the amount of ammonia water supplied from the ammonia recovery tank to the denitrification device via the second flow path to a second upper limit value or less.
    Combustion system according to claim 5.
PCT/JP2022/044961 2022-03-25 2022-12-06 Combustion system WO2023181512A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-049706 2022-03-25
JP2022049706 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023181512A1 true WO2023181512A1 (en) 2023-09-28

Family

ID=88100474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044961 WO2023181512A1 (en) 2022-03-25 2022-12-06 Combustion system

Country Status (1)

Country Link
WO (1) WO2023181512A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530501A (en) * 1998-07-24 2003-10-14 ゼネラル・エレクトリック・カンパニイ Control device and method for injecting water into turbine engine
JP2007071188A (en) * 2005-09-09 2007-03-22 Niigata Power Systems Co Ltd Fuel control device for gas turbine
WO2010082359A1 (en) * 2009-01-14 2010-07-22 トヨタ自動車株式会社 Engine
JP2015147201A (en) * 2014-02-07 2015-08-20 三菱日立パワーシステムズ株式会社 Control device of gas turbine plant, gas turbine plant and denitration control method of gas turbine
JP6245404B1 (en) * 2016-04-28 2017-12-13 中国電力株式会社 Combustion equipment and power generation equipment
JP2019178840A (en) * 2018-03-30 2019-10-17 株式会社Ihi Combustion device, gas turbine and power generation device
JP2020148183A (en) * 2019-03-15 2020-09-17 三菱日立パワーシステムズ株式会社 Treatment plant for raw material fluid and treatment method for raw material fluid
JP2020147481A (en) * 2019-03-15 2020-09-17 三菱日立パワーシステムズ株式会社 Ammonia decomposition equipment, gas turbine plant with the same, ammonia decomposition method
JP2021022501A (en) * 2019-07-29 2021-02-18 株式会社Kri Ammonia storage/supply system and fuel cell system
JP2021032230A (en) * 2019-08-29 2021-03-01 株式会社豊田自動織機 Internal combustion engine system
JP6934555B1 (en) * 2020-08-25 2021-09-15 三菱造船株式会社 Ship
JP6940727B1 (en) * 2021-06-03 2021-09-29 株式会社三井E&Sマシナリー Excess ammonia treatment equipment and treatment method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530501A (en) * 1998-07-24 2003-10-14 ゼネラル・エレクトリック・カンパニイ Control device and method for injecting water into turbine engine
JP2007071188A (en) * 2005-09-09 2007-03-22 Niigata Power Systems Co Ltd Fuel control device for gas turbine
WO2010082359A1 (en) * 2009-01-14 2010-07-22 トヨタ自動車株式会社 Engine
JP2015147201A (en) * 2014-02-07 2015-08-20 三菱日立パワーシステムズ株式会社 Control device of gas turbine plant, gas turbine plant and denitration control method of gas turbine
JP6245404B1 (en) * 2016-04-28 2017-12-13 中国電力株式会社 Combustion equipment and power generation equipment
JP2019178840A (en) * 2018-03-30 2019-10-17 株式会社Ihi Combustion device, gas turbine and power generation device
JP2020148183A (en) * 2019-03-15 2020-09-17 三菱日立パワーシステムズ株式会社 Treatment plant for raw material fluid and treatment method for raw material fluid
JP2020147481A (en) * 2019-03-15 2020-09-17 三菱日立パワーシステムズ株式会社 Ammonia decomposition equipment, gas turbine plant with the same, ammonia decomposition method
JP2021022501A (en) * 2019-07-29 2021-02-18 株式会社Kri Ammonia storage/supply system and fuel cell system
JP2021032230A (en) * 2019-08-29 2021-03-01 株式会社豊田自動織機 Internal combustion engine system
JP6934555B1 (en) * 2020-08-25 2021-09-15 三菱造船株式会社 Ship
JP6940727B1 (en) * 2021-06-03 2021-09-29 株式会社三井E&Sマシナリー Excess ammonia treatment equipment and treatment method

Similar Documents

Publication Publication Date Title
EP2378096B1 (en) Engine
DK2525057T3 (en) EXHAUST GAS DENITRATION SYSTEM, SHIP EQUIPPED THEREOF, AND PROCEDURE FOR MANAGING EXHAUST GAS DENITRATION SYSTEM
US9145849B2 (en) Engine fueled by ammonia with selective reduction catalyst
WO2016031219A1 (en) Gas turbine engine system
JP2013002355A (en) Denitration device
JP2019178840A (en) Combustion device, gas turbine and power generation device
US20240019124A1 (en) Gas turbine system
AU2012355051A1 (en) Control method and control device for lean fuel intake gas turbine
WO2023181512A1 (en) Combustion system
AU2022252441A1 (en) Gas turbine system
US20240026814A1 (en) Combustion device and gas turbine system
KR20160041483A (en) System And Method For Selective Catalytic Reduction Of Ship Engine
KR102366079B1 (en) Denitration device, heat recovery boiler having same, gas turbine combined cycle power plant, and denitration method
JP2007278252A (en) Turbocharger control unit
JP5787791B2 (en) SOFC combined power generation apparatus and operation method thereof
JP4607720B2 (en) Gas turbine fuel control system
US20240068416A1 (en) Gas turbine equipment and gas turbine control method
KR20150092916A (en) Active SCR System for 2-Stroke Diesel Engine
US20240117763A1 (en) Gas turbine system
JP3658497B2 (en) Coal gasification combined cycle power plant
US20240175392A1 (en) Gas turbine cogeneration system and method of operating the same
KR20240080125A (en) Gas turbine cogeneration system, method of operating gas turbine cogeneration system, and method of modifying gas turbine cogeneration system
JP2023099906A (en) engine system
JP2018155222A (en) Exhaust emission control device
JP2001263087A (en) Gas turbine controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933642

Country of ref document: EP

Kind code of ref document: A1