WO2023181438A1 - Particle measuring system, and particle measuring method - Google Patents

Particle measuring system, and particle measuring method Download PDF

Info

Publication number
WO2023181438A1
WO2023181438A1 PCT/JP2022/028718 JP2022028718W WO2023181438A1 WO 2023181438 A1 WO2023181438 A1 WO 2023181438A1 JP 2022028718 W JP2022028718 W JP 2022028718W WO 2023181438 A1 WO2023181438 A1 WO 2023181438A1
Authority
WO
WIPO (PCT)
Prior art keywords
reliability
particle
measurement system
captured image
detection
Prior art date
Application number
PCT/JP2022/028718
Other languages
French (fr)
Japanese (ja)
Inventor
杜朗 鳥居
周平 野田
徳介 早見
建至 柿沼
勇太 橋本
錦陽 胡
理映子 水内
Original Assignee
株式会社東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社東芝
Publication of WO2023181438A1 publication Critical patent/WO2023181438A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length

Definitions

  • Embodiments of the present invention relate to a particle measurement system and a particle measurement method.
  • the deep learning method described above has a problem in that the measurement accuracy is not constant.
  • the concentration of Bacillus in sludge is not uniform but has shades, and there are variations in the number (concentration) of Bacillus appearing in the captured image. For this reason, for example, if the number of bacilli detected per captured image is small, the accuracy of the measurement result will be low if the number of captured images is small. Furthermore, it is not always easy for the operator to determine whether or not there are a small number of captured images.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a particle measurement system and a particle measurement method that can improve the accuracy when measuring particles using captured images. do.
  • the particle measurement system of the embodiment includes a light source that emits illumination light to a liquid containing particles to be measured, an objective lens that focuses the illumination light, and an imager that forms an image of the focused illumination light. a lens, an image sensor that captures the formed illumination light and outputs a captured image, a detection unit that detects the particles appearing in the captured image, and a detection result by the detection unit and a predetermined index. and a processing section that determines the next process based on the reliability.
  • FIG. 1 is a schematic configuration diagram of a particle measurement system according to an embodiment.
  • FIG. 2 is an explanatory diagram of parameters in the ray tracing matrix.
  • FIG. 3 is an explanatory diagram of relative transmitted light intensity, etc. for Bacillus spores.
  • FIG. 4 is an explanatory diagram of relative transmitted light intensity, etc. for acrylic particles.
  • FIG. 5 is a diagram showing an example of a captured image of sludge.
  • FIG. 6 is a diagram showing an example of a captured image and a teaching image used in deep learning.
  • FIG. 7 is a diagram showing an example of Bacillus detection results by deep learning.
  • FIG. 8 is a diagram showing an example of a reference table for reliability calculation.
  • FIG. 9 is a flowchart showing processing by the particle measurement system of the embodiment.
  • Bacillus spores are also simply called Bacillus.
  • FIG. 1 is a schematic configuration diagram of a particle measurement system 10 according to an embodiment.
  • the particle measurement system 10 includes a light source 11, a stage 13, a stage drive unit 14, a laser displacement meter 15, an objective lens 16, an imaging lens 17, an image sensor 18, a measurement control unit 19, and an information processing unit.
  • a device 20 is provided. Note that the measurement control section 19 and the information processing device 20 may be configured integrally. Further, the information processing device 20 may be divided into two or more parts.
  • the light source 11 emits illumination light L to a measurement sample SP (liquid, specimen) containing (micro) particles to be measured.
  • the stage 13 supports a slide glass (preparation) 12 that holds the measurement sample SP.
  • the stage drive unit 14 moves the stage 13 in the vertical direction in FIG. 1 along the optical axis.
  • the laser displacement meter 15 detects the position of the slide glass 12 using a laser.
  • the objective lens 16 condenses the illumination light L into parallel light.
  • the imaging lens 17 condenses the parallel illumination light L and forms an image.
  • the image sensor 18 captures the illumination light formed by the imaging lens 17 and outputs a captured image.
  • the measurement control section 19 controls the stage drive section 14 and the image sensor 18.
  • the information processing device 20 includes an acquisition section 21, a detection section 22, a calculation section 23, a processing section 24, a storage section 25, and a display section 26.
  • the acquisition unit 21 acquires a captured image from the image sensor 18.
  • the detection unit 22 detects particles, contaminants, etc. appearing in the captured image.
  • the calculation unit 23 calculates the reliability of particle detection based on the detection result by the detection unit 22 and a predetermined index (details will be described later).
  • the processing unit 24 executes various information processing. For example, the processing unit 24 determines the next process based on the reliability. For example, when the reliability is less than a predetermined threshold, the processing unit 24 causes the display unit 26 to display a screen requesting the user (worker) to take a predetermined action to improve the reliability. For example, the processing unit 24 requests the user to obtain additional captured images when the reliability is less than a predetermined threshold.
  • the processing unit 24 may automatically acquire an additional captured image when the reliability is less than a predetermined threshold.
  • the storage unit 25 stores operating programs of each unit 21 to 24, various parameters, captured images acquired by the acquisition unit 21, detection results by the detection unit 22, calculation results such as reliability by the calculation unit 23, and the processing unit. 24 is stored.
  • the display unit 26 displays various information according to instructions from the processing unit 24.
  • each of the units 21 to 24 described above may be executed by one processor (control unit) based on the operating program and various parameters stored in the storage unit 25. .
  • the intensity of the transmitted light increases as it approaches the condensing position, and the intensity of the transmitted light reaches its maximum at the condensing position. Then, by moving away from the condensing position again, the transmitted light intensity decreases. That is, the position where the transmitted light intensity is maximum is the light condensing position. At this time, the light condensing position can be specified by measuring the distance between the objective lens 16 and the position where the transmitted light intensity is maximum.
  • the optical path of the illumination light can be expressed by the following formula, so if the particle diameter of the particles is known in addition to the distance between the objective lens 16 and the position where the transmitted light intensity is maximum, , the refractive index of the particle can be found by solving the equation expressed by the ray tracing matrix below.
  • FIG. 2 is an explanatory diagram of parameters in the ray tracing matrix.
  • the radius of the particle PC is r
  • the refractive index of the particle is n
  • the distance between the particle and the objective lens 16 when the transmitted light intensity of the illumination light L is maximum in the target particle is Let it be z.
  • the distance from the optical axis when the illumination light L is incident on the particle is x 0
  • the angle of incidence when the illumination light L is incident on the particle is u 0
  • the distance from the optical axis of the illumination light L that has entered the image sensor 18 is x 1
  • the angle of incidence of the illumination light L that has entered the image sensor 18 is u 1 .
  • the distance between the objective lens 16 and the imaging lens 17 is l 1
  • the distance between the imaging lens 17 and the image sensor 18 is l 2
  • the focal length of the objective lens is f 1 and the focal length of the imaging lens 17 is f 2 .
  • the diameter of the particles can be calculated by solving the equation expressed by the ray tracing matrix.
  • useful microorganisms used in organic wastewater treatment can be considered particles depending on the conditions.
  • the condition is, for example, when useful microorganisms form spores. This is because when spores are formed, the shape etc. do not change and the shape is also almost constant depending on the useful microorganism.
  • spores of useful microorganisms have a specific size (e.g. particle diameter) and a specific refractive index, by treating them in the same way as particles, it is possible to detect such useful microorganisms and reduce the number of spores per observation field ( In turn, it becomes possible to measure the concentration.
  • the concentration When measuring the concentration, the number of useful microorganisms in the volume corresponding to the observation field x scanning distance is measured by scanning the observation position (image capture position) along the optical axis direction. measurement becomes possible.
  • the position corresponding to the distance z where the transmitted light intensity is maximum is determined in image acquisition. is known to be located within the depth of field (effective focal position) corresponding to the focal length f 1 of . Therefore, based on a preset transmitted light intensity threshold, a portion having a light intensity equal to or higher than the threshold can be regarded as a Bacillus spore.
  • the transmitted light intensity of the liquid containing Bacillus spores is greater than the transmitted light intensity of the liquid that does not contain Bacillus spores. Therefore, Bacillus spores can be detected reliably by setting the threshold value of transmitted light intensity for determining whether or not Bacillus spores are contained to a value slightly larger than the transmitted light intensity in a liquid that does not contain spores. can.
  • FIG. 3 is an explanatory diagram of relative transmitted light intensity, etc. for Bacillus spores. Specifically, FIG. 3 shows the difference in the actual position of the objective lens 16 with respect to the distance z between the Bacillus spores and the objective lens 16 when the transmitted light intensity for the Bacillus spores is maximum, the relative transmitted light intensity, FIG.
  • FIG. 4 is an explanatory diagram of relative transmitted light intensity, etc. for acrylic particles. More specifically, FIG. 4 shows the actual position of the objective lens 16 with respect to the distance z between the acrylic particles (particles) and the objective lens 16 when the transmitted light intensity is maximum for acrylic particles with a particle diameter of 30 ⁇ m. It is a figure explaining the relationship between a difference and relative transmitted light intensity.
  • images of Bacillus spores and acrylic particles at the focal position were acquired by the image sensor 18.
  • the stage 13 is moved up and down along the optical axis direction by the stage drive unit 14, and the position of the objective lens 16 when the relative transmitted light intensity of each particle becomes maximum on the image sensor 18 and the actual position are determined.
  • the positional difference ⁇ z from the position of the objective lens 16 was measured by the laser displacement meter 15.
  • the objective lens 16 When we calculated the positional difference ⁇ z, which corresponds to the difference between the distance z and the focal length of the objective lens, we found that the positional difference ⁇ z in the liquid containing Bacillus spores was 0.9 ⁇ m, and the position in the liquid containing acrylic particles with a particle size of 30 ⁇ m. It was found that the difference ⁇ z was 22.5 ⁇ m, which was almost the same as the measurement result using the laser displacement meter 15.
  • the positional difference ⁇ z 0.9 ⁇ m in the liquid containing Bacillus spores is effectively equal to the focal length of the objective lens 16 (within the depth of field), and the relative transmitted light intensity is maximum at the focal position. Understood. That is, in measuring Bacillus spores, it was concluded that Bacillus spores can be detected by measuring the intensity of transmitted light at a focal length.
  • FIG. 5 is a diagram showing an example of a captured image of sludge. As shown in FIGS. 5A and 5B, in addition to Bacillus spores B, contaminants C may also be seen in the captured image.
  • FIG. 6 is a diagram showing an example of a captured image and a teaching image used in deep learning.
  • (a) is a captured image showing Bacillus spores B and contaminants C. The user gives the center position P of the Bacillus spore B as correct data to this captured image, resulting in a teaching image shown in (b).
  • deep learning can be performed by training the network to detect the center position P of Bacillus spore B in the captured image.
  • FIG. 7 is a diagram showing an example of Bacillus detection results by deep learning.
  • the detection unit 22 calculates the likelihood (probability (likelihood) that each pixel is the center position of a Bacillus spore) of the detection result of Bacillus spores by image processing using deep learning.
  • FIG. 7(a) is an input image (captured image).
  • the detection unit 22 calculates, for example, a likelihood map shown in FIG. 7(b). This likelihood map shows that the brighter the map, the higher the likelihood, and the darker the map, the lower the likelihood.
  • the symbol Q indicates a portion where the likelihood is high corresponding to Bacillus spore B (FIG. 7(a)).
  • the detection unit 22 performs threshold processing on this likelihood and sets a pixel with a likelihood above a certain value as the center position of the bacillus, thereby obtaining the detection result shown in FIG. 7(c).
  • the symbol S indicates the center position of the detected Bacillus spore.
  • the reliability threshold is set based on, for example, the number of images required to measure the dominant concentration of Bacillus, the minimum concentration that the particle measurement system 10 can measure, the measurement error of the particle measurement system 10, and the like.
  • a value preset in the particle measurement system 10 may be used, or a different value may be set for each site where the particle measurement system 10 is introduced.
  • the reliability threshold is set to, for example, 1.0 for each of the following examples of reliability indicators. In that case, the measurement work is performed so that the reliability becomes 1.0 or more. Furthermore, if it is desired to further increase the reliability of the concentration measurement results, the threshold value may be set to a value greater than 1.0. Conversely, if the reliability does not need to be high, the threshold value may be set smaller than 1.0.
  • the reliability index is the number of particles
  • the calculation unit 23 calculates the reliability based on the number of detected particles.
  • the biometric method (standard counting method) has the idea that if approximately 30 target organisms are measured, the measured concentration will statistically match the actual concentration. Therefore, for example, the variable L can be set to 30.
  • the reliability may be calculated using the reference table shown in FIG. 8 instead of the above-mentioned formula.
  • the reliability index is the number of captured images
  • the calculation unit 23 calculates the reliability based on the number of captured images.
  • the concentration at which Bacillus becomes dominant is 10 5 [cells/ml] or higher.
  • the reliability is calculated from the number of captured images required to measure this density.
  • the reliability is calculated using the following formula.
  • the reliability is calculated based on the number of images, it is easy for the operator to understand. That is, for example, if the reliability does not meet the standard, it is sufficient to simply increase the number of captured images.
  • the reliability can be determined in the same way.
  • the reliability is calculated using the following formula.
  • the reliability index is the likelihood of Bacillus spore detection results
  • the calculation unit 23 calculates the reliability based on the likelihood of the detection result of Bacillus spores by image processing using deep learning.
  • the reliability standard is "the average value of the likelihood of Bacillus detection results is r or more”
  • the reliability is calculated using the following formula.
  • the reliability index is the detection result of foreign matter
  • the calculation unit 23 calculates the reliability based on the detection result of the contaminant.
  • the reliability standard is "the number of pixels occupied by contaminants other than Bacillus is s or less"
  • the reliability is calculated using the following formula.
  • the reliability may be calculated using the size and number of foreign objects.
  • FIG. 9 is a flowchart showing processing by the particle measurement system 10 of the embodiment. First, the work before this process will be explained.
  • the measurement operator samples water from the water treatment equipment where the microorganism (bacillus) to be measured is present.
  • Perform predetermined pretreatment filter treatment, heat treatment, etc.
  • the pretreated sample is set in the particle measurement system 10.
  • step S1 in FIG. 9 the acquisition unit 21 acquires a captured image from the image sensor 18.
  • step S2 the detection unit 22 detects Bacillus spores appearing in the captured image.
  • step S3 the calculation unit 23 calculates the reliability of particle detection based on the detection result in step S2 and a predetermined index.
  • step S4 the processing unit 24 determines whether the reliability calculated in step S3 is greater than or equal to the threshold value, and if Yes, the process ends, and if No, the process proceeds to Step S5.
  • step S5 the processing unit 24 causes the display unit 26 to display a screen requesting the user to take a predetermined action to improve reliability. For example, the processing unit 24 requests the user to obtain additional captured images. The user, looking at this display, shifts the slide glass 12 to take an image with the image sensor 18, or replaces the slide glass 12 and takes an image with the image sensor 18, in order to increase the reliability.
  • Other operations performed by the user include, for example, filter processing to remove impurities, heat treatment to sporeify viable Bacillus bacteria, and injection of an activator.
  • the measurement result will be marked as ⁇ concentration below the measurement lower limit'' or ⁇ unmeasurable,'' and the measurement will be terminated. It's okay.
  • the configuration of the particle measurement system 10 is different and the specimen is directly imaged without using the slide glass 12, it is also possible to shake the specimen to change its condition and then perform imaging with the image sensor 18. good.
  • the processing unit 24 automatically acquires an additional new captured image. You can do it like this. In that case, for example, it is assumed that a device for automatically shifting the slide glass 12 is provided.
  • step S5 After the predetermined operation requested in step S5 is completed, the process from step S1 onwards is executed again.
  • the accuracy of particle measurement can be improved by calculating the reliability of particle detection and determining the next process based on the reliability. .
  • the accuracy of particle measurement can be improved by requesting a worker to perform a specific task when reliability is low, even a worker without specialized knowledge can easily perform an appropriate task.
  • the particle measurement system 10 acquires a captured image by the image sensor 18 on the local terminal side, transfers the captured image to a cloud server via a communication interface and a communication network, and processes it by the information processing device 20 on the cloud server side.
  • the processing results may be displayed on a local terminal.
  • the particle measurement system 10 of the present embodiment includes a control device such as a CPU (Central Processing Unit), a storage device such as a ROM (Read Only Memory) or a RAM (Random Access Memory), an HDD (Hard Disk Drive), etc. It is equipped with an external storage device, a display device such as a display device, and an input device such as a keyboard and mouse, and has a hardware configuration that uses a normal computer.
  • a control device such as a CPU (Central Processing Unit)
  • a storage device such as a ROM (Read Only Memory) or a RAM (Random Access Memory), an HDD (Hard Disk Drive), etc.
  • a display device such as a display device
  • an input device such as a keyboard and mouse
  • the program executed by the particle measurement system 10 of this embodiment is a file in an installable format or an executable format, and can be installed on a DVD (Digital Versatile Disk), USB (Universal Serial Bus) memory, SSD (Solid State Drive). ) and other computer-readable recording media such as semiconductor storage devices.
  • DVD Digital Versatile Disk
  • USB Universal Serial Bus
  • SSD Solid State Drive
  • the program may be stored on a computer connected to a network such as the Internet, and provided by being downloaded via the network. Further, the program may be provided or distributed via a network such as the Internet.
  • the program may be configured to be provided by being pre-installed in a ROM or the like.
  • SYMBOLS 10 Particle measurement system, 11... Light source, 12... Slide glass, 13... Stage, 14... Stage drive part, 15... Laser displacement meter, 16... Objective lens, 17... Imaging lens, 18... Image sensor, 19... Measurement Control unit, 20... Information processing device, 21... Acquisition unit, 22... Detection unit, 23... Calculation unit, 24... Processing unit, 25... Storage unit, 26... Display unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A particle measuring system (10) according to an embodiment comprises: a light source (11) for emitting illuminating light onto a liquid containing a particle to be measured; an objective lens (16) for condensing the illuminating light; an imaging lens (17) for imaging the condensed illuminating light; an image sensor (18) for capturing an image of the imaged illuminating light and outputting a captured image; a detecting unit (22) for detecting the particle appearing in the captured image; a calculating unit (23) for calculating a particle detection reliability on the basis of a detection result from the detecting unit (22) and a predetermined indicator; and a processing unit (24) for determining next processing on the basis of the reliability.

Description

粒子計測システム、および、粒子計測方法Particle measurement system and particle measurement method
 本発明の実施形態は、粒子計測システム、および、粒子計測方法に関する。 Embodiments of the present invention relate to a particle measurement system and a particle measurement method.
 従来から、有機系廃水処理では、様々な有用微生物を利用して廃水中の有機物分解、窒素やリンの除去等が行われている。その際、汚泥濃度や処理水質などの指標に基づいて廃水処理を行っているが、有機物分解や窒素除去等に寄与する有用微生物の濃度を測定できれば有意義である。 Conventionally, in organic wastewater treatment, various useful microorganisms have been used to decompose organic matter and remove nitrogen and phosphorus from wastewater. At that time, wastewater treatment is performed based on indicators such as sludge concentration and treated water quality, but it would be meaningful if the concentration of useful microorganisms that contribute to organic matter decomposition and nitrogen removal could be measured.
 有用微生物(バチルスなどの粒子)の濃度を測定する従来技術として、例えば、コロニーカウント法やPCR(Polymerase Chain Reaction)法が存在する。しかし、これらの手法での測定には専門性の高い設備が必要、検体を専門施設に輸送する手間がかる、また測定時間が長い、といった課題がある。 Conventional techniques for measuring the concentration of useful microorganisms (particles such as Bacillus) include, for example, the colony counting method and the PCR (Polymerase Chain Reaction) method. However, measurement using these methods requires highly specialized equipment, requires time and effort to transport the specimen to specialized facilities, and requires a long measurement time.
 そこで、測定対象の粒子による光の屈折の特性を利用し、深層学習を用いた画像処理によって撮像画像から粒子(例えばバチルス芽胞)を検出する技術が提案されている。これにより、専門施設への検体の輸送が不要になり、かつ、短時間での粒子の濃度測定が可能となる。なお、バチルスなどの有用微生物は、微量粒子と呼ばれることもある。 Therefore, a technology has been proposed that uses the characteristics of light refraction by particles to be measured to detect particles (for example, Bacillus spores) from captured images through image processing using deep learning. This eliminates the need to transport the specimen to a specialized facility and enables particle concentration measurement in a short time. Note that useful microorganisms such as Bacillus are sometimes called microparticles.
特開2016-147044号公報Japanese Patent Application Publication No. 2016-147044
 しかしながら、上述の深層学習の手法では、測定精度が一定ではないという課題がある。例えば、汚泥中のバチルス濃度は均一ではなく濃淡があり、撮像画像に映っているバチルスの個数(濃度)にばらつきが存在する。このため、例えば、撮像画像1枚あたりで検出されるバチルスの個数が少ない場合、撮像画像の枚数が少ないと、測定結果の精度が低くなってしまう。また、撮像画像が少ないか否かの判断は作業者にとって容易とは限らない。 However, the deep learning method described above has a problem in that the measurement accuracy is not constant. For example, the concentration of Bacillus in sludge is not uniform but has shades, and there are variations in the number (concentration) of Bacillus appearing in the captured image. For this reason, for example, if the number of bacilli detected per captured image is small, the accuracy of the measurement result will be low if the number of captured images is small. Furthermore, it is not always easy for the operator to determine whether or not there are a small number of captured images.
 そこで、本発明は、上記事情に鑑みてなされたものであり、撮像画像を用いて粒子に関する測定を行う場合の精度を向上可能な粒子計測システム、および、粒子計測方法を提供することを課題とする。 Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide a particle measurement system and a particle measurement method that can improve the accuracy when measuring particles using captured images. do.
 実施形態の粒子計測システムは、測定対象の粒子を含む液体に対して照明光を出射する光源と、前記照明光を集光する対物レンズと、集光された前記照明光を結像する結像レンズと、結像された前記照明光を撮像して撮像画像を出力するイメージセンサと、前記撮像画像に映っている前記粒子を検出する検出部と、前記検出部による検出結果と所定の指標に基づいて粒子検出の信頼度を算出する算出部と、前記信頼度に基づいて次の処理を決定する処理部と、を備える。 The particle measurement system of the embodiment includes a light source that emits illumination light to a liquid containing particles to be measured, an objective lens that focuses the illumination light, and an imager that forms an image of the focused illumination light. a lens, an image sensor that captures the formed illumination light and outputs a captured image, a detection unit that detects the particles appearing in the captured image, and a detection result by the detection unit and a predetermined index. and a processing section that determines the next process based on the reliability.
図1は、実施形態の粒子計測システムの概要構成図である。FIG. 1 is a schematic configuration diagram of a particle measurement system according to an embodiment. 図2は、光線追跡行列におけるパラメータの説明図である。FIG. 2 is an explanatory diagram of parameters in the ray tracing matrix. 図3は、バチルス芽胞についての相対透過光強度などの説明図である。FIG. 3 is an explanatory diagram of relative transmitted light intensity, etc. for Bacillus spores. 図4は、アクリル粒子についての相対透過光強度などの説明図である。FIG. 4 is an explanatory diagram of relative transmitted light intensity, etc. for acrylic particles. 図5は、汚泥の撮像画像の例を示す図である。FIG. 5 is a diagram showing an example of a captured image of sludge. 図6は、深層学習で使用する撮像画像と教示画像の例を示す図である。FIG. 6 is a diagram showing an example of a captured image and a teaching image used in deep learning. 図7は、深層学習によるバチルス検出結果の例を示す図である。FIG. 7 is a diagram showing an example of Bacillus detection results by deep learning. 図8は、信頼度算出用の参照テーブルの例を示す図である。FIG. 8 is a diagram showing an example of a reference table for reliability calculation. 図9は、実施形態の粒子計測システムによる処理を示すフローチャートである。FIG. 9 is a flowchart showing processing by the particle measurement system of the embodiment.
 以下、図面を参照して、本発明の粒子計測システム、および、粒子計測方法の実施形態について説明する。なお、以下では、バチルス芽胞を単にバチルスとも称する。 Hereinafter, embodiments of the particle measurement system and particle measurement method of the present invention will be described with reference to the drawings. In addition, below, Bacillus spores are also simply called Bacillus.
 図1は、実施形態の粒子計測システム10の概要構成図である。粒子計測システム10は、光源11と、ステージ13と、ステージ駆動部14と、レーザ変位計15と、対物レンズ16と、結像レンズ17と、イメージセンサ18と、計測制御部19と、情報処理装置20と、を備える。なお、計測制御部19と情報処理装置20を一体に構成してもよい。また、情報処理装置20を2つ以上に分けて構成してもよい。 FIG. 1 is a schematic configuration diagram of a particle measurement system 10 according to an embodiment. The particle measurement system 10 includes a light source 11, a stage 13, a stage drive unit 14, a laser displacement meter 15, an objective lens 16, an imaging lens 17, an image sensor 18, a measurement control unit 19, and an information processing unit. A device 20 is provided. Note that the measurement control section 19 and the information processing device 20 may be configured integrally. Further, the information processing device 20 may be divided into two or more parts.
 光源11は、測定対象の(微小)粒子を含む測定用試料SP(液体、検体)に対して照明光Lを出射する。 The light source 11 emits illumination light L to a measurement sample SP (liquid, specimen) containing (micro) particles to be measured.
 ステージ13は、測定用試料SPを保持するスライドガラス(プレパラート)12を支持する。 The stage 13 supports a slide glass (preparation) 12 that holds the measurement sample SP.
 ステージ駆動部14は、ステージ13を光軸に沿って図1の上下方向に移動させる。
 レーザ変位計15は、スライドガラス12の位置をレーザによって検出する。
The stage drive unit 14 moves the stage 13 in the vertical direction in FIG. 1 along the optical axis.
The laser displacement meter 15 detects the position of the slide glass 12 using a laser.
 対物レンズ16は、照明光Lを集光して平行光とする。
 結像レンズ17は、平行光となった照明光Lを集光して結像する。
The objective lens 16 condenses the illumination light L into parallel light.
The imaging lens 17 condenses the parallel illumination light L and forms an image.
 イメージセンサ18は、結像レンズ17により結像された照明光を撮像して撮像画像を出力する。
 計測制御部19は、ステージ駆動部14やイメージセンサ18を制御する。
The image sensor 18 captures the illumination light formed by the imaging lens 17 and outputs a captured image.
The measurement control section 19 controls the stage drive section 14 and the image sensor 18.
 情報処理装置20は、取得部21と、検出部22と、算出部23と、処理部24と、記憶部25と、表示部26と、を備える。 The information processing device 20 includes an acquisition section 21, a detection section 22, a calculation section 23, a processing section 24, a storage section 25, and a display section 26.
 取得部21は、イメージセンサ18から撮像画像を取得する。 The acquisition unit 21 acquires a captured image from the image sensor 18.
 検出部22は、撮像画像に映っている粒子や夾雑物などを検出する。 The detection unit 22 detects particles, contaminants, etc. appearing in the captured image.
 算出部23は、検出部22による検出結果と所定の指標に基づいて粒子検出の信頼度を算出する(詳細は後述)。 The calculation unit 23 calculates the reliability of particle detection based on the detection result by the detection unit 22 and a predetermined index (details will be described later).
 処理部24は、各種の情報処理を実行する。例えば、処理部24は、信頼度に基づいて次の処理を決定する。例えば、処理部24は、信頼度が所定の閾値未満の場合に、信頼度を向上させるための所定の動作をユーザ(作業者)に要求する画面を表示部26に表示させる。例えば、処理部24は、信頼度が所定の閾値未満の場合に、追加の撮像画像の取得をユーザに要求する。 The processing unit 24 executes various information processing. For example, the processing unit 24 determines the next process based on the reliability. For example, when the reliability is less than a predetermined threshold, the processing unit 24 causes the display unit 26 to display a screen requesting the user (worker) to take a predetermined action to improve the reliability. For example, the processing unit 24 requests the user to obtain additional captured images when the reliability is less than a predetermined threshold.
 また、例えば、処理部24は、信頼度が所定の閾値未満の場合に、自動的に追加の撮像画像を取得するようにしてもよい。 Furthermore, for example, the processing unit 24 may automatically acquire an additional captured image when the reliability is less than a predetermined threshold.
 記憶部25は、各部21~24の動作プログラムや、各種パラメータや、取得部21が取得した撮像画像や、検出部22による検出結果や、算出部23による信頼度などの算出結果や、処理部24による処理結果などを記憶する。 The storage unit 25 stores operating programs of each unit 21 to 24, various parameters, captured images acquired by the acquisition unit 21, detection results by the detection unit 22, calculation results such as reliability by the calculation unit 23, and the processing unit. 24 is stored.
 表示部26は、処理部24からの指示により各種情報を表示する。 The display unit 26 displays various information according to instructions from the processing unit 24.
 なお、上記の各部21~24で行われる処理の全て若しくは一部は、記憶部25に記憶されている動作プログラムや各種のパラメータに基づいて1つのプロセッサ(制御部)によって実行される場合がある。 Note that all or part of the processing performed by each of the units 21 to 24 described above may be executed by one processor (control unit) based on the operating program and various parameters stored in the storage unit 25. .
 次に、粒子の計測原理について説明する。液体中の粒子の背面側から照明光を照射した場合、粒子のレンズ効果により、照明光は粒子の粒子径及び屈折率に応じた位置に集光される。 Next, the principle of particle measurement will be explained. When illumination light is irradiated from the back side of particles in a liquid, the illumination light is focused at a position according to the particle diameter and refractive index of the particles due to the lens effect of the particles.
 なお、集光位置に近づくほど透過光強度は高くなり、集光位置で透過光強度が最大となる。そして、ふたたび集光位置から離れることにより、透過光強度は低下する。すなわち、透過光強度が最大となる位置が集光位置である。このとき、対物レンズ16と透過光強度が最大となる位置との間の距離を測定することにより、集光位置を特定することができる。 Note that the intensity of the transmitted light increases as it approaches the condensing position, and the intensity of the transmitted light reaches its maximum at the condensing position. Then, by moving away from the condensing position again, the transmitted light intensity decreases. That is, the position where the transmitted light intensity is maximum is the light condensing position. At this time, the light condensing position can be specified by measuring the distance between the objective lens 16 and the position where the transmitted light intensity is maximum.
 この場合において、照明光の光路は、以下の式により表すことができるので、対物レンズ16と透過光強度が最大となる位置との間の距離に加えて、粒子の粒子径がわかっていれば、下記の光線追跡行列により表された方程式を解くことで、粒子の屈折率がわかる。 In this case, the optical path of the illumination light can be expressed by the following formula, so if the particle diameter of the particles is known in addition to the distance between the objective lens 16 and the position where the transmitted light intensity is maximum, , the refractive index of the particle can be found by solving the equation expressed by the ray tracing matrix below.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図2は、光線追跡行列におけるパラメータの説明図である。上記光線追跡行列において、粒子PCの半径をr、粒子の屈折率をn、そして対象となる粒子において照明光Lの透過光強度が最大となるときの粒子と対物レンズ16との間の距離をzとする。また、粒子に照明光Lが入射したときの光軸からの距離をx、粒子に照明光Lが入射したときの入射角度をuとする。また、イメージセンサ18に入射した照明光Lの光軸からの距離をx、イメージセンサ18に入射した照明光Lの入射角度をuとする。 FIG. 2 is an explanatory diagram of parameters in the ray tracing matrix. In the above ray tracing matrix, the radius of the particle PC is r, the refractive index of the particle is n, and the distance between the particle and the objective lens 16 when the transmitted light intensity of the illumination light L is maximum in the target particle is Let it be z. Further, the distance from the optical axis when the illumination light L is incident on the particle is x 0 , and the angle of incidence when the illumination light L is incident on the particle is u 0 . Further, the distance from the optical axis of the illumination light L that has entered the image sensor 18 is x 1 , and the angle of incidence of the illumination light L that has entered the image sensor 18 is u 1 .
 さらに、対物レンズ16と結像レンズ17との距離をl、結像レンズ17とイメージセンサ18との距離をlとする。また、対物レンズの焦点距離をf、結像レンズ17の焦点距離をfとする。 Further, the distance between the objective lens 16 and the imaging lens 17 is l 1 , and the distance between the imaging lens 17 and the image sensor 18 is l 2 . Further, the focal length of the objective lens is f 1 and the focal length of the imaging lens 17 is f 2 .
 そして、上述のように、粒子の屈折率がわかっていれば、上記光線追跡行列により表された方程式を解くことにより、粒子の粒子径を算出できる。 As described above, if the refractive index of the particles is known, the diameter of the particles can be calculated by solving the equation expressed by the ray tracing matrix.
 また、有機系廃水処理において用いられる有用微生物は、条件によっては、粒子とみなすことが可能である。条件とは、例えば、有用微生物が芽胞を形成している場合である。芽胞を形成している場合には、形状等が変化しなくなるとともに、その形状も有用微生物によりほぼ一定であるためである。 Additionally, useful microorganisms used in organic wastewater treatment can be considered particles depending on the conditions. The condition is, for example, when useful microorganisms form spores. This is because when spores are formed, the shape etc. do not change and the shape is also almost constant depending on the useful microorganism.
 有用微生物の芽胞は、固有の大きさ(例えば粒子径)及び固有の屈折率を有していることから、粒子と同様に取り扱うことにより、このような有用微生物の検出、観測視野あたりの個数(ひいては、濃度)を計測することが可能となる。 Since spores of useful microorganisms have a specific size (e.g. particle diameter) and a specific refractive index, by treating them in the same way as particles, it is possible to detect such useful microorganisms and reduce the number of spores per observation field ( In turn, it becomes possible to measure the concentration.
 濃度を計測する場合には、光軸方向に沿って、観察位置(画像撮像位置)を走査することにより、観察視野×走査距離に対応する容積中における有用微生物の個数を計測することで、濃度の計測が可能となる。 When measuring the concentration, the number of useful microorganisms in the volume corresponding to the observation field x scanning distance is measured by scanning the observation position (image capture position) along the optical axis direction. measurement becomes possible.
 ところで、光の屈折率が既知で粒径が1μm以下である汚泥中のバチルス(Bacillus)属菌株の芽胞(バチルス芽胞)では、透過光強度が最大となる距離zに対応する位置は画像取得においての焦点距離fに対応する被写界深度内(実効的な焦点位置)に位置することがわかっている。このため、あらかじめ設定した透過光強度閾値に基づいて閾値以上の光強度を持つ部分をバチルス芽胞と見なすことができる。 By the way, for spores of a Bacillus strain in sludge (Bacillus spores) with a known refractive index of light and a particle size of 1 μm or less, the position corresponding to the distance z where the transmitted light intensity is maximum is determined in image acquisition. is known to be located within the depth of field (effective focal position) corresponding to the focal length f 1 of . Therefore, based on a preset transmitted light intensity threshold, a portion having a light intensity equal to or higher than the threshold can be regarded as a Bacillus spore.
 この場合において、バチルス芽胞を含む液体の透過光強度は、バチルス芽胞を含まない液体の透過光強度よりも大きくなる。
 したがって、バチルス芽胞を含むか否かの判断を行うための透過光強度の閾値を、芽胞を含まない液中における透過光強度よりやや大きな値とすることにより、バチルス芽胞を確実に検出することができる。
In this case, the transmitted light intensity of the liquid containing Bacillus spores is greater than the transmitted light intensity of the liquid that does not contain Bacillus spores.
Therefore, Bacillus spores can be detected reliably by setting the threshold value of transmitted light intensity for determining whether or not Bacillus spores are contained to a value slightly larger than the transmitted light intensity in a liquid that does not contain spores. can.
 さらに、設定した閾値を用いて、試料を光軸方向に連続的に移動させつつ、順次画像を撮像し、撮像画像から得られた場所毎(画素毎)の透過光強度と粒子としてのバチルス芽胞の大きさ(粒子径)を判断基準とする深層学習(機械学習)を組み合わせることでバチルス芽胞の検出及び個数の計測、ひいては、バチルス芽胞の濃度の計測を高精度化することが可能となる。 Furthermore, using the set threshold, images were taken sequentially while moving the sample in the optical axis direction, and the transmitted light intensity and Bacillus spores as particles were obtained for each location (each pixel) from the captured images. By combining deep learning (machine learning) that uses the size (particle diameter) as a criterion, it becomes possible to detect and measure the number of Bacillus spores, and by extension, to measure the concentration of Bacillus spores with high accuracy.
 深層学習を行う場合、例えば、粒子の濃度が異なる複数の試料を予め調整し、試料毎にユーザ(作業者)の人手による検出結果が深層学習による検出結果と等しくなるように、教師あり学習を行って、学習対象の粒子の粒子径及び屈折率に応じて得られる粒子の検出結果を得るようにすればよい。 When performing deep learning, for example, multiple samples with different particle concentrations are prepared in advance, and supervised learning is performed so that the manual detection result of the user (operator) is equal to the detection result by deep learning for each sample. Then, a particle detection result obtained according to the particle diameter and refractive index of the particle to be learned may be obtained.
 次に、図3は、バチルス芽胞についての相対透過光強度などの説明図である。詳しくは、この図3は、バチルス芽胞について透過光強度が最大となるときのバチルス芽胞と対物レンズ16との間の距離zに対する実際の対物レンズ16の位置の差と、相対透過光強度と、の関係を説明する図である。 Next, FIG. 3 is an explanatory diagram of relative transmitted light intensity, etc. for Bacillus spores. Specifically, FIG. 3 shows the difference in the actual position of the objective lens 16 with respect to the distance z between the Bacillus spores and the objective lens 16 when the transmitted light intensity for the Bacillus spores is maximum, the relative transmitted light intensity, FIG.
 また、図4は、アクリル粒子についての相対透過光強度などの説明図である。より詳しくは、この図4は、粒子径=30μmのアクリル粒子について透過光強度が最大となるときのアクリル粒子(粒子)と対物レンズ16との間の距離zに対する実際の対物レンズ16の位置の差と、相対透過光強度と、の関係を説明する図である。 Further, FIG. 4 is an explanatory diagram of relative transmitted light intensity, etc. for acrylic particles. More specifically, FIG. 4 shows the actual position of the objective lens 16 with respect to the distance z between the acrylic particles (particles) and the objective lens 16 when the transmitted light intensity is maximum for acrylic particles with a particle diameter of 30 μm. It is a figure explaining the relationship between a difference and relative transmitted light intensity.
 まず、バチルス芽胞及びアクリル粒子について、イメージセンサ18により焦点位置における画像を取得した。
 その後、ステージ駆動部14によりステージ13を光軸方向に沿って上下方向に移動させ、イメージセンサ18上でそれぞれの粒子の相対透過光強度が最大となるときの対物レンズ16の位置と、実際の対物レンズ16の位置との位置差Δzをレーザ変位計15により測定した。
First, images of Bacillus spores and acrylic particles at the focal position were acquired by the image sensor 18.
After that, the stage 13 is moved up and down along the optical axis direction by the stage drive unit 14, and the position of the objective lens 16 when the relative transmitted light intensity of each particle becomes maximum on the image sensor 18 and the actual position are determined. The positional difference Δz from the position of the objective lens 16 was measured by the laser displacement meter 15.
 図3(A)は、バチルス芽胞を含む液体において、相対透過光強度が最大となった場合の撮像画像である。図3(A)に示すように、撮像領域の中心で相対透過光強度が最大となっていることがわかる。そして、図3(B)に示すように、バチルス芽胞を含む液体においては、位置差Δz=0μmで相対透過光強度が最大となると算出された。 FIG. 3(A) is a captured image when the relative transmitted light intensity reaches the maximum in a liquid containing Bacillus spores. As shown in FIG. 3A, it can be seen that the relative transmitted light intensity is maximum at the center of the imaging region. As shown in FIG. 3(B), it was calculated that in the liquid containing Bacillus spores, the relative transmitted light intensity was maximized at a positional difference Δz=0 μm.
 これに対し、図4(B)に示すように、粒子径=30μmのアクリル粒子を含む液体の場合、バチルス芽胞において相対透過光強度が最大となった位置差Δ0μmにおいては、相対透過光強度は負の値を有している。すなわち、透過光強度は、背景光強度より低くなっていることがわかる。また、図4(A)に示すように、アクリル粒子の周辺で相対透過光強度が最小となっていることがわかる。そして、図4(B)に示すように、粒子径=30μmのアクリル粒子を含む液体においては、位置差Δz=±15μmより外側で相対透過光強度が最大となると算出された。 On the other hand, as shown in Fig. 4(B), in the case of a liquid containing acrylic particles with a particle diameter of 30 μm, the relative transmitted light intensity is It has a negative value. That is, it can be seen that the transmitted light intensity is lower than the background light intensity. Moreover, as shown in FIG. 4(A), it can be seen that the relative transmitted light intensity is minimum around the acrylic particles. As shown in FIG. 4(B), in a liquid containing acrylic particles with a particle diameter of 30 μm, it was calculated that the relative transmitted light intensity becomes maximum outside the positional difference Δz=±15 μm.
 また、図4(C)は、粒子径=30μmのアクリル粒子を含む液体において、相対透過光強度が最大となった場合の撮像画像である。図4(C)に示すように、撮像領域の中心で相対透過光強度が最大となっていることがわかる。そして、図4(D)に示すように、粒子径=30μmのアクリル粒子を含む液体においては、位置差Δz=26μmで相対透過光強度が最大となると算出された。 Further, FIG. 4(C) is a captured image when the relative transmitted light intensity reaches the maximum in a liquid containing acrylic particles with a particle diameter of 30 μm. As shown in FIG. 4C, it can be seen that the relative transmitted light intensity is maximum at the center of the imaging region. As shown in FIG. 4(D), in a liquid containing acrylic particles with a particle diameter of 30 μm, the relative transmitted light intensity was calculated to be maximum at a position difference Δz=26 μm.
 この計測結果に基づき、上述した光線追跡行列を用い、バチルス芽胞及び粒子径30μmのアクリル粒子について、透過光強度が最大となるときの粒子であるバチルス芽胞及び粒子径30μmのアクリル粒子から対物レンズ16迄の距離zと、対物レンズの焦点距離との差に相当する位置差Δzを算出したところ、バチルス芽胞を含む液体における位置差Δz=0.9μm、粒子径30μmのアクリル粒子を含む液体における位置差Δz=22.5μmとなり、レーザ変位計15を用いた計測結果とほぼ一致することがわかった。このときの対物レンズ16と結像レンズ17との距離をl=130mm、結像レンズ17とイメージセンサ18との距離をl=164.5mm、対物レンズの焦点距離をf=4.1125mm、結像レンズ17の焦点距離をf=164.5mmとした。また、バチルス芽胞のr=1μm、n=1.4とし、アクリル粒子のn=1.5とした。 Based on this measurement result, using the above-mentioned ray tracing matrix, the objective lens 16 When we calculated the positional difference Δz, which corresponds to the difference between the distance z and the focal length of the objective lens, we found that the positional difference Δz in the liquid containing Bacillus spores was 0.9 μm, and the position in the liquid containing acrylic particles with a particle size of 30 μm. It was found that the difference Δz was 22.5 μm, which was almost the same as the measurement result using the laser displacement meter 15. At this time, the distance between the objective lens 16 and the imaging lens 17 is l 1 =130 mm, the distance between the imaging lens 17 and the image sensor 18 is l 2 =164.5 mm, and the focal length of the objective lens is f 1 =4. The focal length of the imaging lens 17 was f 2 =164.5 mm. Moreover, r=1 μm and n=1.4 for Bacillus spores, and n=1.5 for acrylic particles.
 特に、バチルス芽胞を含む液体における位置差Δz=0.9μmは、実効的に対物レンズ16の焦点距離と等しく(被写界深度内)、相対透過光強度は、焦点位置において最大となることがわかった。
 すなわち、バチルス芽胞の計測においては、焦点距離における透過光強度を測定することで、バチルス芽胞の検出が可能であるとの結論に至った。
In particular, the positional difference Δz = 0.9 μm in the liquid containing Bacillus spores is effectively equal to the focal length of the objective lens 16 (within the depth of field), and the relative transmitted light intensity is maximum at the focal position. Understood.
That is, in measuring Bacillus spores, it was concluded that Bacillus spores can be detected by measuring the intensity of transmitted light at a focal length.
 このようにして、バチルス芽胞について、透過光強度が最大の時に中心部が明るく光るという特性を利用し、撮像画像からバチルス芽胞のみを検出する。 In this way, only Bacillus spores are detected from the captured image by utilizing the characteristic of Bacillus spores that the center shines brightly when the transmitted light intensity is maximum.
 次に、図5は、汚泥の撮像画像の例を示す図である。図5(a)(b)に示すように、撮像画像には、バチルス芽胞Bのほかに、夾雑物Cが映る場合もある。 Next, FIG. 5 is a diagram showing an example of a captured image of sludge. As shown in FIGS. 5A and 5B, in addition to Bacillus spores B, contaminants C may also be seen in the captured image.
 次に、図6は、深層学習で使用する撮像画像と教示画像の例を示す図である。(a)はバチルス芽胞Bと夾雑物Cが映っている撮像画像である。この撮像画像に対してユーザが正解データとしてバチルス芽胞Bの中心位置Pを与えて(b)に示す教示画像とする。これらの画像を用いて、撮像画像においてバチルス芽胞Bの中心位置Pを検出するようにネットワークを学習させることで、深層学習を行うことができる。 Next, FIG. 6 is a diagram showing an example of a captured image and a teaching image used in deep learning. (a) is a captured image showing Bacillus spores B and contaminants C. The user gives the center position P of the Bacillus spore B as correct data to this captured image, resulting in a teaching image shown in (b). Using these images, deep learning can be performed by training the network to detect the center position P of Bacillus spore B in the captured image.
 次に、図7は、深層学習によるバチルス検出結果の例を示す図である。検出部22は、深層学習を用いた画像処理によるバチルス芽胞の検出結果の尤度(画素ごとのバチルス芽胞の中心位置である可能性(確からしさ))を算出する。 Next, FIG. 7 is a diagram showing an example of Bacillus detection results by deep learning. The detection unit 22 calculates the likelihood (probability (likelihood) that each pixel is the center position of a Bacillus spore) of the detection result of Bacillus spores by image processing using deep learning.
 図7(a)は入力画像(撮像画像)である。検出部22は、例えば、図7(b)に示す尤度マップを算出する。この尤度マップは、明るいほど尤度が高く、暗いほど尤度が低いことを示す。符号Qは、バチルス芽胞B(図7(a))に対応して尤度が高くなっている部分である。 FIG. 7(a) is an input image (captured image). The detection unit 22 calculates, for example, a likelihood map shown in FIG. 7(b). This likelihood map shows that the brighter the map, the higher the likelihood, and the darker the map, the lower the likelihood. The symbol Q indicates a portion where the likelihood is high corresponding to Bacillus spore B (FIG. 7(a)).
 そして、検出部22は、この尤度を閾値処理し、一定以上の尤度を持つ画素をバチルスの中心位置とすることで、図7(c)に示す検出結果を得る。図7(c)において、符号Sは、検出したバチルス芽胞の中心位置を示す。 Then, the detection unit 22 performs threshold processing on this likelihood and sets a pixel with a likelihood above a certain value as the center position of the bacillus, thereby obtaining the detection result shown in FIG. 7(c). In FIG. 7(c), the symbol S indicates the center position of the detected Bacillus spore.
 次に、信頼度の閾値について詳細に説明する。信頼度の閾値は、例えば、バチルスの優占化濃度を測定するために必要な画像枚数や、粒子計測システム10が測定できる最低濃度や、粒子計測システム10の測定誤差などに基づいて設定する。 Next, the reliability threshold will be explained in detail. The reliability threshold is set based on, for example, the number of images required to measure the dominant concentration of Bacillus, the minimum concentration that the particle measurement system 10 can measure, the measurement error of the particle measurement system 10, and the like.
 また、信頼度の閾値は、例えば、粒子計測システム10で事前に設定した値を使用してもよいし、あるいは、粒子計測システム10を導入する現場ごとに異なる値を設定してもよい。 Further, for the reliability threshold, for example, a value preset in the particle measurement system 10 may be used, or a different value may be set for each site where the particle measurement system 10 is introduced.
 具体的には、信頼度の閾値を、例えば、以下の信頼度の指標の各例について、1.0と設定する。その場合、信頼度が1.0以上になるように測定作業を実施する。また、濃度測定結果の信頼度をより高めたい場合は、閾値を1.0より大きい値に設定してもよい。逆に、信頼度が高くなくてよい場合は、閾値を1.0より小さく設定してもよい。 Specifically, the reliability threshold is set to, for example, 1.0 for each of the following examples of reliability indicators. In that case, the measurement work is performed so that the reliability becomes 1.0 or more. Furthermore, if it is desired to further increase the reliability of the concentration measurement results, the threshold value may be set to a value greater than 1.0. Conversely, if the reliability does not need to be high, the threshold value may be set smaller than 1.0.
 以下、信頼度の指標の例について説明する。 Hereinafter, examples of reliability indicators will be explained.
(信頼度の指標が粒子の個数)
 信頼度の指標が粒子の個数の場合、算出部23は、検出した粒子の個数に基づいて、信頼度を算出する。
(The reliability index is the number of particles)
When the reliability index is the number of particles, the calculation unit 23 calculates the reliability based on the number of detected particles.
 例えば、バチルス芽胞をL個計測すれば統計的に計測濃度と実際の濃度が一致すると仮定する。このとき、信頼度を以下の式で算出する。
Figure JPOXMLDOC01-appb-M000002
For example, it is assumed that if L Bacillus spores are measured, the measured concentration and the actual concentration will statistically match. At this time, the reliability is calculated using the following formula.
Figure JPOXMLDOC01-appb-M000002
 生物測定に関する手法(標準計数法)には、測定対象生物を約30個計測すれば統計的に計測濃度と実際の濃度が一致するという考え方がある。したがって、例えば、変数Lを30とすることができる。 The biometric method (standard counting method) has the idea that if approximately 30 target organisms are measured, the measured concentration will statistically match the actual concentration. Therefore, for example, the variable L can be set to 30.
 なお、その場合、上述の式ではなく、図8に示す参照テーブルを用いて信頼度を算出してもよい。ただし、変数L=30は一例であり、バチルス個数の値の範囲や信頼度の値は任意に設定することができる。 Note that in that case, the reliability may be calculated using the reference table shown in FIG. 8 instead of the above-mentioned formula. However, the variable L=30 is an example, and the range of the number of Bacilli and the reliability value can be set arbitrarily.
(信頼度の指標が撮像画像の枚数)
 信頼度の指標が撮像画像の枚数の場合、算出部23は、撮像画像の枚数に基づいて、信頼度を算出する。
(The reliability index is the number of captured images)
When the reliability index is the number of captured images, the calculation unit 23 calculates the reliability based on the number of captured images.
 有機系廃水処理において、バチルスが優占化する濃度は105[個/ml]以上である。この濃度を測定するために必要な撮像画像枚数から信頼度を計算する。 In organic wastewater treatment, the concentration at which Bacillus becomes dominant is 10 5 [cells/ml] or higher. The reliability is calculated from the number of captured images required to measure this density.
 例えば、バチルス濃度が105[個/ml]のとき、「撮像画像1枚あたりにバチルスがm個映る」とすると、「測定対象生物をL個計測」するためには、L/m枚の画像が必要である。よって、信頼度を以下の式で算出する。
Figure JPOXMLDOC01-appb-M000003
For example, when the Bacillus concentration is 10 5 [cells/ml], if ``m Bacilli appear per captured image'', in order to ``measure L organisms to be measured'', it is necessary to An image is required. Therefore, the reliability is calculated using the following formula.
Figure JPOXMLDOC01-appb-M000003
 画像枚数に基づいて信頼度を算出するので、作業者にとってわかりやすい。つまり、例えば、信頼度が基準を満たさない場合、撮像画像の枚数を増やすだけでよい。 Since the reliability is calculated based on the number of images, it is easy for the operator to understand. That is, for example, if the reliability does not meet the standard, it is sufficient to simply increase the number of captured images.
 また、粒子計測システム10が測定できる(または測定したい)最低濃度が決められている場合、同様に信頼度を求めることができる。 Furthermore, if the minimum concentration that the particle measurement system 10 can measure (or that it wants to measure) is determined, the reliability can be determined in the same way.
 例えば、粒子計測システム10が測定できる最低濃度が103[個/ml]のとき、「撮像画像1枚あたりにバチルスがn個映る」とすると、「測定対象生物をL個計測」するためには、L/n枚の画像が必要である。よって、信頼度を以下の式で算出する。
Figure JPOXMLDOC01-appb-M000004
For example, when the minimum concentration that the particle measurement system 10 can measure is 10 3 [particles/ml], if "n Bacilli appear per captured image", in order to "measure L organisms to be measured", requires L/n images. Therefore, the reliability is calculated using the following formula.
Figure JPOXMLDOC01-appb-M000004
(信頼度の指標がバチルス芽胞の検出結果の尤度)
 信頼度の指標がバチルス芽胞の検出結果の尤度の場合、算出部23は、深層学習を用いた画像処理によるバチルス芽胞の検出結果の尤度に基づいて、信頼度を算出する。
(The reliability index is the likelihood of Bacillus spore detection results)
When the reliability index is the likelihood of the detection result of Bacillus spores, the calculation unit 23 calculates the reliability based on the likelihood of the detection result of Bacillus spores by image processing using deep learning.
 例えば、信頼度の基準を「バチルス検出結果の尤度の平均値がr以上」としたとき、信頼度を以下の式で算出する。
Figure JPOXMLDOC01-appb-M000005
For example, when the reliability standard is "the average value of the likelihood of Bacillus detection results is r or more", the reliability is calculated using the following formula.
Figure JPOXMLDOC01-appb-M000005
(信頼度の指標が夾雑物の検出結果)
 信頼度の指標がバチルス芽胞以外の夾雑物の検出結果の場合、算出部23は、夾雑物の検出結果に基づいて、信頼度を算出する。
(The reliability index is the detection result of foreign matter)
When the reliability index is a detection result of a contaminant other than Bacillus spores, the calculation unit 23 calculates the reliability based on the detection result of the contaminant.
 例えば、信頼度の基準を「バチルス以外の夾雑物が占めるピクセル数がs以下」としたとき、信頼度を以下の式で算出する。
Figure JPOXMLDOC01-appb-M000006
For example, when the reliability standard is "the number of pixels occupied by contaminants other than Bacillus is s or less", the reliability is calculated using the following formula.
Figure JPOXMLDOC01-appb-M000006
 また、夾雑物が占めるピクセル数のほかに、夾雑物の大きさや個数などを用いて信頼度を算出するようにしてもよい。 Furthermore, in addition to the number of pixels occupied by foreign objects, the reliability may be calculated using the size and number of foreign objects.
 次に、図9は、実施形態の粒子計測システム10による処理を示すフローチャートである。まず、この処理以前の作業などについて説明する。 Next, FIG. 9 is a flowchart showing processing by the particle measurement system 10 of the embodiment. First, the work before this process will be explained.
 まず、測定作業者は、測定したい微生物(バチルス)が存在する水処理装置から採水する。採水した検体に所定の前処理(フィルタ処理、加熱処理など)を実施する。前処理の終わった検体を粒子計測システム10にセットする。 First, the measurement operator samples water from the water treatment equipment where the microorganism (bacillus) to be measured is present. Perform predetermined pretreatment (filter treatment, heat treatment, etc.) on the sampled water sample. The pretreated sample is set in the particle measurement system 10.
 次に、図9のステップS1において、取得部21は、イメージセンサ18から撮像画像を取得する。 Next, in step S1 in FIG. 9, the acquisition unit 21 acquires a captured image from the image sensor 18.
 次に、ステップS2において、検出部22は、撮像画像に映っているバチルス芽胞を検出する。 Next, in step S2, the detection unit 22 detects Bacillus spores appearing in the captured image.
 次に、ステップS3において、算出部23は、ステップS2による検出結果と所定の指標に基づいて粒子検出の信頼度を算出する。 Next, in step S3, the calculation unit 23 calculates the reliability of particle detection based on the detection result in step S2 and a predetermined index.
 次に、ステップS4において、処理部24は、ステップS3で算出した信頼度が閾値以上か否かを判定し、Yesの場合は処理を終了し、Noの場合はステップS5に進む。 Next, in step S4, the processing unit 24 determines whether the reliability calculated in step S3 is greater than or equal to the threshold value, and if Yes, the process ends, and if No, the process proceeds to Step S5.
 ステップS5において、処理部24は、信頼度を向上させるための所定の動作をユーザに要求する画面を表示部26に表示させる。例えば、処理部24は、追加の撮像画像の取得をユーザに要求する。ユーザは、この表示を見て、信頼度が上がるように、スライドガラス12をずらしてイメージセンサ18による撮像を行ったり、スライドガラス12を交換してイメージセンサ18による撮像を行ったりする。 In step S5, the processing unit 24 causes the display unit 26 to display a screen requesting the user to take a predetermined action to improve reliability. For example, the processing unit 24 requests the user to obtain additional captured images. The user, looking at this display, shifts the slide glass 12 to take an image with the image sensor 18, or replaces the slide glass 12 and takes an image with the image sensor 18, in order to increase the reliability.
 ユーザが行う作業としては、他に、例えば、夾雑物を除去するためのフィルタ処理や、バチルスの生菌を芽胞化させる加熱処理、活性剤注入などがある。 Other operations performed by the user include, for example, filter processing to remove impurities, heat treatment to sporeify viable Bacillus bacteria, and injection of an activator.
 また、信頼度を高める操作を一定回数以上行っても信頼度が閾値以上とならない状態が続いた場合、測定結果を「計測下限以下の濃度」または「測定不能」とし、測定を終了するようにしてもよい。 In addition, if the reliability does not exceed the threshold even after performing operations to increase the reliability a certain number of times, the measurement result will be marked as ``concentration below the measurement lower limit'' or ``unmeasurable,'' and the measurement will be terminated. It's okay.
 また、例えば、粒子計測システム10の構成が異なっていて、スライドガラス12を使用せずに検体を直接撮像する場合、検体を振るなどして状態を変えてからイメージセンサ18による撮像を行ってもよい。 For example, if the configuration of the particle measurement system 10 is different and the specimen is directly imaged without using the slide glass 12, it is also possible to shake the specimen to change its condition and then perform imaging with the image sensor 18. good.
 また、例えば、粒子計測システム10の構成が異なっていて、追加の新たな撮像画像の自動的な取得が可能になっている場合、処理部24が自動的に追加の新たな撮像画像を取得するようにしてもよい。その場合、例えば、スライドガラス12を自動的にずらす装置が設けられているものとする。 Further, for example, if the configuration of the particle measurement system 10 is different and it is possible to automatically acquire an additional new captured image, the processing unit 24 automatically acquires an additional new captured image. You can do it like this. In that case, for example, it is assumed that a device for automatically shifting the slide glass 12 is provided.
 ステップS5で要求した所定の動作が終わった後、再びステップS1以降の処理を実行する。 After the predetermined operation requested in step S5 is completed, the process from step S1 onwards is executed again.
 このようにして、本実施形態の粒子計測システム10によれば、粒子検出の信頼度を算出し、信頼度に基づいて次の処理を決定することで、粒子計測の精度を向上させることができる。つまり、信頼度が低い場合に作業者に具体的な作業を要求することで、専門知識のない作業者でも適切な作業を容易に実行できる。 In this way, according to the particle measurement system 10 of the present embodiment, the accuracy of particle measurement can be improved by calculating the reliability of particle detection and determining the next process based on the reliability. . In other words, by requesting a worker to perform a specific task when reliability is low, even a worker without specialized knowledge can easily perform an appropriate task.
 なお、以上では、粒子計測システム10をスタンドアロンで構成する場合について説明したが、これに限定されない。例えば、粒子計測システム10は、ローカル端末側でイメージセンサ18により撮像画像を取得し、その撮像画像を通信インタフェース及び通信ネットワークを介してクラウドサーバに転送し、クラウドサーバ側で情報処理装置20による処理を行い、処理結果をローカル端末で表示するようにしてもよい。 Note that, although the case where the particle measurement system 10 is configured as a stand-alone system has been described above, the present invention is not limited to this. For example, the particle measurement system 10 acquires a captured image by the image sensor 18 on the local terminal side, transfers the captured image to a cloud server via a communication interface and a communication network, and processes it by the information processing device 20 on the cloud server side. The processing results may be displayed on a local terminal.
 また、本実施形態の粒子計測システム10は、CPU(Central Processing Unit)などの制御装置と、ROM(Read Only Memory)やRAM(Random Access Memory)などの記憶装置と、HDD(Hard Disk Drive)などの外部記憶装置と、ディスプレイ装置などの表示装置と、キーボードやマウスなどの入力装置を備えており、通常のコンピュータを利用したハードウェア構成となっている。 In addition, the particle measurement system 10 of the present embodiment includes a control device such as a CPU (Central Processing Unit), a storage device such as a ROM (Read Only Memory) or a RAM (Random Access Memory), an HDD (Hard Disk Drive), etc. It is equipped with an external storage device, a display device such as a display device, and an input device such as a keyboard and mouse, and has a hardware configuration that uses a normal computer.
 また、本実施形態の粒子計測システム10で実行されるプログラムは、インストール可能な形式又は実行可能な形式のファイルで、DVD(Digital Versatile Disk)、USB(Universal Serial Bus)メモリ、SSD(Solid State Drive)などの半導体記憶装置等のコンピュータで読み取り可能な記録媒体に記録されて提供される。 Further, the program executed by the particle measurement system 10 of this embodiment is a file in an installable format or an executable format, and can be installed on a DVD (Digital Versatile Disk), USB (Universal Serial Bus) memory, SSD (Solid State Drive). ) and other computer-readable recording media such as semiconductor storage devices.
 また、当該プログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、当該プログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。 Alternatively, the program may be stored on a computer connected to a network such as the Internet, and provided by being downloaded via the network. Further, the program may be provided or distributed via a network such as the Internet.
 また、当該プログラムを、ROM等に予め組み込んで提供するように構成してもよい。 Furthermore, the program may be configured to be provided by being pre-installed in a ROM or the like.
 10…粒子計測システム、11…光源、12…スライドガラス、13…ステージ、14…ステージ駆動部、15…レーザ変位計、16…対物レンズ、17…結像レンズ、18…イメージセンサ、19…計測制御部、20…情報処理装置、21…取得部、22…検出部、23…算出部、24…処理部、25…記憶部、26…表示部 DESCRIPTION OF SYMBOLS 10... Particle measurement system, 11... Light source, 12... Slide glass, 13... Stage, 14... Stage drive part, 15... Laser displacement meter, 16... Objective lens, 17... Imaging lens, 18... Image sensor, 19... Measurement Control unit, 20... Information processing device, 21... Acquisition unit, 22... Detection unit, 23... Calculation unit, 24... Processing unit, 25... Storage unit, 26... Display unit

Claims (9)

  1.  測定対象の粒子を含む液体に対して照明光を出射する光源と、
     前記照明光を集光する対物レンズと、
     集光された前記照明光を結像する結像レンズと、
     結像された前記照明光を撮像して撮像画像を出力するイメージセンサと、
     前記撮像画像に映っている前記粒子を検出する検出部と、
     前記検出部による検出結果と所定の指標に基づいて粒子検出の信頼度を算出する算出部と、
     前記信頼度に基づいて次の処理を決定する処理部と、
     を備える粒子計測システム。
    a light source that emits illumination light to a liquid containing particles to be measured;
    an objective lens that focuses the illumination light;
    an imaging lens that forms an image of the condensed illumination light;
    an image sensor that captures the imaged illumination light and outputs a captured image;
    a detection unit that detects the particles appearing in the captured image;
    a calculation unit that calculates reliability of particle detection based on the detection result by the detection unit and a predetermined index;
    a processing unit that determines the next process based on the reliability;
    A particle measurement system equipped with
  2.  前記処理部は、前記信頼度が所定の閾値未満の場合に、前記信頼度を向上させるための所定の動作をユーザに要求する画面を表示部に表示させる、請求項1に記載の粒子計測システム。 The particle measurement system according to claim 1, wherein the processing unit causes a display unit to display a screen requesting a user to perform a predetermined operation to improve the reliability when the reliability is less than a predetermined threshold. .
  3.  前記指標は、前記粒子の個数であり、
     前記算出部は、検出した前記粒子の個数に基づいて、前記信頼度を算出する、請求項1に記載の粒子計測システム。
    The index is the number of particles,
    The particle measurement system according to claim 1, wherein the calculation unit calculates the reliability based on the number of the detected particles.
  4.  前記指標は、前記撮像画像の枚数であり、
     前記算出部は、前記撮像画像の枚数に基づいて、前記信頼度を算出する、請求項1に記載の粒子計測システム。
    The index is the number of captured images,
    The particle measurement system according to claim 1, wherein the calculation unit calculates the reliability based on the number of captured images.
  5.  前記粒子は、汚泥中の光の屈折率が既知のバチルス芽胞であり、
     前記指標は、前記バチルス芽胞の検出結果の尤度であり、
     前記算出部は、前記撮像画像による深層学習を用いた画像処理による前記バチルス芽胞の検出結果の尤度に基づいて、前記信頼度を算出する、請求項1に記載の粒子計測システム。
    The particles are Bacillus spores whose refractive index of light in sludge is known,
    The index is the likelihood of the detection result of the Bacillus spores,
    The particle measurement system according to claim 1, wherein the calculation unit calculates the reliability based on a likelihood of a detection result of the Bacillus spores obtained by image processing using deep learning using the captured image.
  6.  前記粒子は、汚泥中の光の屈折率が既知のバチルス芽胞であり、
     前記指標は、前記バチルス芽胞以外の夾雑物の検出結果であり、
     前記検出部は、前記撮像画像に映っている前記夾雑物を検出し、
     前記算出部は、前記夾雑物の検出結果に基づいて、前記信頼度を算出する、請求項1に記載の粒子計測システム。
    The particles are Bacillus spores whose refractive index of light in sludge is known,
    The indicator is a detection result of impurities other than the Bacillus spores,
    The detection unit detects the foreign matter appearing in the captured image,
    The particle measurement system according to claim 1, wherein the calculation unit calculates the reliability based on the detection result of the contaminants.
  7.  前記処理部は、前記信頼度が所定の閾値未満の場合に、追加の前記撮像画像の取得をユーザに要求する、請求項1に記載の粒子計測システム。 The particle measurement system according to claim 1, wherein the processing unit requests the user to acquire the additional captured image when the reliability is less than a predetermined threshold.
  8.  前記処理部は、前記信頼度が所定の閾値未満の場合に、自動的に追加の前記撮像画像を取得する、請求項1に記載の粒子計測システム。 The particle measurement system according to claim 1, wherein the processing unit automatically acquires the additional captured image when the reliability is less than a predetermined threshold.
  9.  測定対象の粒子を含む液体に対して照明光を出射する光源と、前記照明光を集光する対物レンズと、集光された前記照明光を結像する結像レンズと、結像された前記照明光を撮像して撮像画像を出力するイメージセンサと、検出部と、算出部と、処理部と、を備える粒子計測システムによる粒子計測方法であって、
     前記検出部が、前記撮像画像に映っている前記粒子を検出する検出ステップと、
     前記算出部が、前記検出ステップによる検出結果と所定の指標に基づいて粒子検出の信頼度を算出する算出ステップと、
     前記処理部が、前記信頼度に基づいて次の処理を決定する処理ステップと、を含む粒子計測方法。
    a light source that emits illumination light to a liquid containing particles to be measured; an objective lens that condenses the illumination light; an imaging lens that forms an image of the condensed illumination light; A particle measurement method using a particle measurement system comprising an image sensor that captures illumination light and outputs a captured image, a detection unit, a calculation unit, and a processing unit,
    a detection step in which the detection unit detects the particles appearing in the captured image;
    a calculation step in which the calculation unit calculates reliability of particle detection based on the detection result from the detection step and a predetermined index;
    A particle measuring method including a processing step in which the processing unit determines a next process based on the reliability.
PCT/JP2022/028718 2022-03-24 2022-07-26 Particle measuring system, and particle measuring method WO2023181438A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-048740 2022-03-24
JP2022048740A JP2023142064A (en) 2022-03-24 2022-03-24 Microparticle measuring system and microparticle measuring method

Publications (1)

Publication Number Publication Date
WO2023181438A1 true WO2023181438A1 (en) 2023-09-28

Family

ID=88100342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028718 WO2023181438A1 (en) 2022-03-24 2022-07-26 Particle measuring system, and particle measuring method

Country Status (2)

Country Link
JP (1) JP2023142064A (en)
WO (1) WO2023181438A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133928A (en) * 2008-10-30 2010-06-17 Sysmex Corp Apparatus, method for analyzing bacteria, and computer program
WO2016159131A1 (en) * 2015-03-30 2016-10-06 国立研究開発法人産業技術総合研究所 Particle size measuring method and device
JP2017167081A (en) * 2016-03-18 2017-09-21 株式会社島津製作所 Particle size distribution measurement device, data processing method, and data processing program
US20190357541A1 (en) * 2016-12-23 2019-11-28 Katholieke Universiteit Leuven Biocontrol organism
US20210019883A1 (en) * 2019-07-19 2021-01-21 Euroimmun Medizinische Labordiagnostika Ag Method for detecting the presence of different antinuclear antibody fluorescence pattern types and apparatus for this purpose
JP2021135129A (en) * 2020-02-26 2021-09-13 東芝インフラシステムズ株式会社 Microparticle measuring apparatus, microparticle measuring method and microparticle measuring program
JP2022039780A (en) * 2020-08-28 2022-03-10 シスメックス株式会社 Measurement method, measurement device, and measurement program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133928A (en) * 2008-10-30 2010-06-17 Sysmex Corp Apparatus, method for analyzing bacteria, and computer program
WO2016159131A1 (en) * 2015-03-30 2016-10-06 国立研究開発法人産業技術総合研究所 Particle size measuring method and device
JP2017167081A (en) * 2016-03-18 2017-09-21 株式会社島津製作所 Particle size distribution measurement device, data processing method, and data processing program
US20190357541A1 (en) * 2016-12-23 2019-11-28 Katholieke Universiteit Leuven Biocontrol organism
US20210019883A1 (en) * 2019-07-19 2021-01-21 Euroimmun Medizinische Labordiagnostika Ag Method for detecting the presence of different antinuclear antibody fluorescence pattern types and apparatus for this purpose
JP2021135129A (en) * 2020-02-26 2021-09-13 東芝インフラシステムズ株式会社 Microparticle measuring apparatus, microparticle measuring method and microparticle measuring program
JP2022039780A (en) * 2020-08-28 2022-03-10 シスメックス株式会社 Measurement method, measurement device, and measurement program

Also Published As

Publication number Publication date
JP2023142064A (en) 2023-10-05

Similar Documents

Publication Publication Date Title
CN106839976B (en) Method and device for detecting lens center
TW229266B (en)
Mateos‐Pérez et al. Comparative evaluation of autofocus algorithms for a real‐time system for automatic detection of Mycobacterium tuberculosis
CN110573855B (en) Particle measuring device and particle measuring method
JP5554776B2 (en) System and method for detecting and removing one or more defocused images or low contrast to noise ratio images
CN103885168B (en) Self-alignment method for microscopie unit
JP2011525009A5 (en)
JP2013041761A (en) Image processing device, method of generating image, and system
Dias et al. Image processing for identification and quantification of filamentous bacteria in in situ acquired images
JP5223069B2 (en) Sample analysis method and needle-shaped region analysis apparatus using the same
JP6558315B2 (en) Bubble diameter distribution measuring apparatus and bubble diameter distribution measuring method
WO2023048017A1 (en) Water quality monitoring system
WO2023181438A1 (en) Particle measuring system, and particle measuring method
JP7362509B2 (en) Microparticle measurement device, microparticle measurement method, and microparticle measurement program
TW201404878A (en) Device for automatically rapidly analyzing biological cells and related method thereof
Huang et al. Novel TB smear microscopy automation system in detecting acid-fast bacilli for tuberculosis–A multi-center double blind study
EP1947441A2 (en) Apparatus for determining positions of objects contained in a sample
WO2023095414A1 (en) Microparticle measurement method, microparticle measurement device, and microparticle measurement system
CN104345064A (en) A hole checking device
CN116697883A (en) Fixed-year analysis method for apatite fission track
JP6559876B2 (en) Cancer analysis system and cancer analysis method
JP7141537B2 (en) particle quantifier
WO2019193815A1 (en) Device for testing bacterium, and method for testing bacterium
CN111062920A (en) Method and device for generating semiconductor detection report
Jiang et al. Rapid microscope auto‐focus method for uneven surfaces based on image fusion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933574

Country of ref document: EP

Kind code of ref document: A1