WO2023181354A1 - 情報処理装置、算出方法及び記憶媒体 - Google Patents
情報処理装置、算出方法及び記憶媒体 Download PDFInfo
- Publication number
- WO2023181354A1 WO2023181354A1 PCT/JP2022/014405 JP2022014405W WO2023181354A1 WO 2023181354 A1 WO2023181354 A1 WO 2023181354A1 JP 2022014405 W JP2022014405 W JP 2022014405W WO 2023181354 A1 WO2023181354 A1 WO 2023181354A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- abnormality
- data
- information processing
- degree
- time series
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 94
- 238000004364 calculation method Methods 0.000 title claims abstract description 92
- 230000005856 abnormality Effects 0.000 claims abstract description 184
- 238000012545 processing Methods 0.000 claims description 28
- 238000001514 detection method Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 16
- 238000012549 training Methods 0.000 claims description 13
- 230000007704 transition Effects 0.000 claims description 6
- 230000015654 memory Effects 0.000 description 17
- 230000003287 optical effect Effects 0.000 description 16
- 238000012986 modification Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 206010034719 Personality change Diseases 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000003936 working memory Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G3/00—Observing or tracking cosmonautic vehicles
Definitions
- the present disclosure relates to the technical field of an information processing device, a calculation method, and a storage medium that perform processing related to detecting changes in space objects.
- Patent Document 1 the luminosity information of a target object, which is an artificial object orbiting the earth, is compared with the luminosity information of a reference star, and after correcting the luminosity information of the target object, the luminosity information of the target object is A monitoring system is disclosed that detects an abnormality in the posture or shape of a target object based on periodicity.
- one of the main objectives of the present disclosure is to provide an information processing device, a calculation method, and a storage medium that can perform processing to suitably detect changes in space objects. .
- One aspect of the information processing apparatus is an information processing apparatus, the information processing apparatus comprising: a data acquisition means for acquiring time series data representing the luminosity of a space object; and a degree of abnormality regarding the state of the space object based on the time series data.
- An information processing apparatus includes an abnormality degree calculation means.
- One aspect of the calculation method is a calculation method in which a computer acquires time series data representing the luminosity of a space object, and calculates the degree of abnormality regarding the state of the space object based on the time series data.
- One aspect of the storage medium is storage that stores a program that causes a computer to execute a process of acquiring time series data representing the luminosity of a space object and calculating an abnormality degree regarding the state of the space object based on the time series data. It is a medium.
- FIG. 1 shows a configuration of an observation system according to a first embodiment. This is an example of the data structure of observation data. An example of a block configuration of an information processing device is shown. This is an example of a functional block related to abnormality detection related processing. It is an example of the functional block of the abnormality degree calculation part when the abnormality degree calculation model is an autoencoder. It is an example of the table of the abnormality degree based on a 1st example of output.
- FIG. 3 is a diagram illustrating an overview of learning processing of an abnormality degree calculation model. It is an example of a flowchart of abnormality detection related processing. It is an example of the functional block regarding the abnormality detection related process based on a modification.
- FIG. 2 is a block diagram of an information processing device in a second embodiment. It is an example of the flowchart which shows the processing procedure in 2nd Embodiment.
- FIG. 1 shows the configuration of an observation system 100 according to the first embodiment.
- the observation system 100 mainly includes an optical observation device 1, an information processing device 2, and a storage device 4.
- the optical observation device 1 is installed on the ground and optically observes a space object 5 such as a satellite, which is an observation target located in the sky.
- the optical observation device 1 then supplies observation data “Da” indicating the observation results regarding the space object 5 to the information processing device 2.
- the space object 5 is not limited to a satellite, and may be any space object such as space debris.
- FIG. 2 is an example of the data structure of observation data Da.
- the observation data Da mainly includes information indicating observation time, luminous intensity, and sensor name.
- the "observation time” indicates the observation time (date and time) at which the corresponding luminosity was observed, and functions as a timestamp.
- Luminosity indicates the luminosity (brightness) of the observed space object 5.
- “Sensor name” indicates the name or identification information (ID) of the optical observation device 1 or a sensor included in the optical observation device 1 that observes the luminous intensity. Note that whether or not the space object 5 can be observed depends on the weather, etc., so there are times when the space object 5 cannot be observed. Therefore, the observation data Da generated by the optical observation device 1 becomes temporally discontinuous time-series data (that is, data in which observation intervals are not necessarily constant).
- the information processing device 2 performs processing related to abnormality detection of the space object 5 (also referred to as "anomaly detection related processing") based on the temporal change in luminosity (so-called light curve) indicated by the time-series observation data Da supplied from the optical observation device 1. call).
- the abnormality of the space object 5 corresponds to, for example, a change in attitude or shape of the space object 5.
- the information processing device 2 calculates the degree of abnormality indicating the degree of abnormality of the space object 5 (or the probability of occurrence of the abnormality).
- the storage device 4 is a memory that stores various information necessary for abnormality detection related processing by the information processing device 2.
- the storage device 4 stores observation data DB 41, parameter information 42, and training data 43.
- the observation data DB 41 is a database of observation data Da supplied from the optical observation device 1 to the information processing device 2.
- the information processing device 2 receives the observation data Da from the optical observation device 1, it adds a record corresponding to the received observation data Da to the observation data DB 41.
- the observation data DB 41 may further include information indicating a processing result of the information processing device 2, such as the degree of abnormality calculated by the information processing device 2.
- the parameter information 42 indicates the parameters of the model used to calculate the abnormality degree (also referred to as the "abnormality degree calculation model").
- the abnormality degree calculation model may be, for example, a learning model based on machine learning, a learning model based on a neural network, or another type of learning model such as a support vector machine, or a combination of these. There may be.
- an autoencoder used for anomaly detection is used as an anomaly degree calculation model.
- the abnormality degree calculation model is a neural network that uses time-series data indicating the luminosity of the space object 5 in a normal state as input data and is trained to output data that reproduces the input data.
- the parameter information 42 is parameter information indicating the weight of the network of the autoencoder, etc., and is obtained by learning the autoencoder using the training data 43.
- the training data 43 is training data used for learning the abnormality degree calculation model.
- the abnormality degree calculation model is an autoencoder
- time-series data representing the luminosity of the space object 5 in a normal state is stored in the storage device 4 as the training data 43.
- the storage device 4 may be an external storage device such as a hard disk connected to or built in the information processing device 2, or may be a storage medium such as a flash memory that is detachable from the information processing device 2. . Furthermore, the storage device 4 may be composed of one or more server devices that perform data communication with the information processing device 2. Further, the database and the like stored in the storage device 4 may be distributed and stored in a plurality of devices or storage media.
- the configuration of the observation system 100 shown in FIG. 1 is an example, and various changes may be made to the configuration.
- the optical observation device 1 and the information processing device 2 may be configured as one unit.
- the information processing device 2 and the storage device 4 may be configured as one unit.
- the information processing device 2 may be composed of a plurality of devices. In this case, the plurality of devices constituting the information processing device 2 exchange information necessary for executing pre-assigned processing between these devices. In this case, the information processing device 2 functions as an information processing system.
- FIG. 3 shows an example of a block configuration of the information processing device 2.
- the information processing device 2 includes a processor 21, a memory 22, and an interface 23 as hardware.
- Processor 21, memory 22, and interface 23 are connected via data bus 29.
- the processor 21 executes a predetermined process by executing a program stored in the memory 22.
- the processor 21 is a processor such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or a TPU (Tensor Processing Unit).
- Processor 21 may be composed of multiple processors.
- Processor 21 is an example of a computer.
- the memory 22 is composed of various types of volatile memory and nonvolatile memory such as RAM (Random Access Memory) and ROM (Read Only Memory).
- the memory 22 also stores programs for the information processing device 2 to execute various processes. Further, the memory 22 is used as a working memory and temporarily stores information etc. acquired from the storage device 4. Note that the memory 22 may function as the storage device 4. Similarly, the storage device 4 may function as the memory 22 of the information processing device 2. Note that the program executed by the information processing device 2 may be stored in a storage medium other than the memory 22.
- the interface 23 is an interface for electrically connecting the information processing device 2 and other devices by wire or wirelessly. These interfaces may be wireless interfaces such as network adapters for wirelessly transmitting and receiving data to and from other devices, or may be hardware interfaces for connecting to other devices via cables or the like. Furthermore, in this embodiment, the interface 23 performs interface operations for the input section 24, display section 25, and sound output section 26 included in the information processing device 2.
- the input unit 24 is a user interface for the user of the observation system 100 to input predetermined information, and includes, for example, a button, a switch, a touch panel, or a voice input device.
- the display unit 25 is, for example, a display or a projector, and displays predetermined information under the control of the processor 21.
- the sound output unit 26 is, for example, a speaker, and outputs sound (voice) under the control of the processor 21.
- the input section 24, the display section 25, and the sound output section 26 may be external devices that are electrically connected to the information processing device 2 via the interface 23 by wire or wirelessly. Further, the interface 23 may perform an interface operation for any device other than the input section 24, the display section 25, and the sound output section 26.
- FIG. 4 is an example of functional blocks related to abnormality detection related processing.
- the processor 21 of the information processing device 2 functionally includes an observation data acquisition section 31, a segment data generation section 32, an abnormality degree calculation section 33, and an output control section 34 regarding abnormality detection related processing. Note that in FIG. 4, blocks where data is exchanged are connected by solid lines, but the combination of blocks where data is exchanged is not limited to this. The same applies to other functional block diagrams to be described later.
- the observation data acquisition unit 31 acquires observation data Da indicating the observation results of the space object 5 from the optical observation device 1 via the interface 23. Then, the observation data acquisition unit 31 stores the acquired observation data Da in the observation data DB 41. In addition to or instead of storing the observation data Da in the observation data DB 41, the observation data acquisition unit 31 may supply the observation data Da to the segment data generation unit 32.
- the segment data generation unit 32 generates segment data based on the time-series observation data Da acquired by the observation data acquisition unit 31.
- the segment data indicates the time-series observed value and observation time of the luminosity of the space object 5 observed in a certain period, and is generated from observation data Da corresponding to the observation time of a predetermined number of objects. .
- the above-mentioned predetermined number may be a predetermined constant or a variable number.
- the segment data generation unit 32 supplies the generated segment data to the abnormality degree calculation unit 33.
- the segment data generation unit 32 divides the time-series observation data Da at the timing at which the observation of the space object 5 by the optical observation device 1 becomes discontinuous (for example, at the timing at which the observation interval is longer than a predetermined length of time). , divides the time-series observation data Da. Then, the segment data generation unit 32 generates segment data for each group of the divided observation data Da. According to this aspect, the segment data generation unit 32 can group pieces of observation data Da that have similar observation times as segment data. Thereby, the accuracy of the degree of abnormality can be improved. Note that in this case as well, an upper limit number of observation data Da to be included in the segment data may be determined.
- the abnormality degree calculation unit 33 calculates the abnormality degree of the space object 5 at the time when the luminous intensity indicated by the segment data is observed.
- the abnormality degree calculation unit 33 configures an abnormality degree calculation model based on the parameter information 42, and calculates the abnormality degree based on the information output by the abnormality degree calculation model by inputting segment data to the abnormality degree calculation model. do.
- the abnormality degree calculation unit 33 supplies information regarding the calculated abnormality degree to the output control unit 34.
- the abnormality degree calculation unit 33 may record information regarding the calculated abnormality degree in the observation data DB 41.
- the output control unit 34 controls the output related to the degree of abnormality calculated by the degree of abnormality calculation unit 33.
- the output control unit 34 performs control to display information regarding the abnormality degree calculated by the abnormality degree calculation unit 33 on the display unit 25.
- the output control unit 34 detects the presence or absence of an abnormality in the space object 5 based on the degree of abnormality, and outputs information based on the detection result via the display unit 25 or the sound output unit 26.
- the output control unit 34 supplies a display signal based on the detection result to the display unit 25 via the interface 23 to cause the display unit 25 to display predetermined information, or outputs a sound output signal based on the detection result.
- the output control unit 34 is an example of a "display means" and a "warning means.”
- each component of the observation data acquisition unit 31, segment data generation unit 32, abnormality degree calculation unit 33, and output control unit 34 described in FIG. 4 can be realized, for example, by the processor 21 executing a program. Further, each component may be realized by recording necessary programs in an arbitrary non-volatile storage medium and installing them as necessary. Note that at least a part of each of these components is not limited to being implemented by software based on a program, but may be implemented by a combination of hardware, firmware, and software. Furthermore, at least a portion of each of these components may be realized using a user-programmable integrated circuit, such as a field-programmable gate array (FPGA) or a microcontroller.
- FPGA field-programmable gate array
- this integrated circuit may be used to implement a program made up of the above-mentioned components.
- at least a part of each component is configured by an ASSP (Application Specific Standard Produce), an ASIC (Application Specific Integrated Circuit), or a quantum processor (Quantum Computer Control Chip). may be done.
- ASSP Application Specific Standard Produce
- ASIC Application Specific Integrated Circuit
- quantum processor Quantum Computer Control Chip
- FIG. 5 is an example of functional blocks of the abnormality degree calculation unit 33 when the abnormality degree calculation model is an autoencoder.
- the abnormality degree calculation section 33 includes a model execution section 37 and an error calculation section 47.
- the model execution unit 37 configures an anomaly degree calculation model that is a self-encoder based on the parameter information 42, and when the segment data supplied from the segment data generation unit 32 is input to the abnormality degree calculation model, the abnormality degree calculation model Get the data output by .
- the anomaly degree calculation model outputs data (also referred to as "restored data") obtained by restoring the input segment data when segment data indicating the luminosity of the space object 5 in a normal state is input. has been studied. Therefore, the model execution unit 37 supplies the restored data output by the abnormality degree calculation model to the error calculation unit 47.
- the error calculation unit 47 calculates the error (so-called restoration error) between the restored data supplied from the model execution unit 37 and the segment data that is the input data of the abnormality degree calculation model, as the degree of abnormality.
- the error calculation unit 47 may calculate the above-mentioned error using any loss function used in machine learning or the like. For example, the error calculation unit 47 calculates the L1 norm or L2 norm of the difference vector between the input data and the restored data as the degree of abnormality. Then, the error calculation unit 47 outputs the calculated degree of abnormality.
- the anomaly degree calculation unit 33 uses the anomaly degree calculation model, which is a trained self-encoder, to suitably determine the anomaly degree, which is an index indicating the probability of occurrence of an attitude change, etc. of the space object 5. It can be calculated as follows.
- the output control unit 34 performs control to display information regarding the degree of abnormality calculated by the degree of abnormality calculation unit 33 on the display unit 25.
- the output control unit 34 may display on the display unit 25 a graph or a table showing the transition of the degree of abnormality in time series calculated by the degree of abnormality calculation unit 33.
- FIG. 6 is an example of a table showing the transition of the degree of abnormality output by the output control unit 34 in the first output example.
- the table shown in FIG. 6 has items of "time” and "abnormality degree", and for example, a record is generated for each segment data generated by the segment data generation unit 32.
- Time indicates the representative time of the observation time of the luminosity included in the corresponding segment data.
- the output control unit 34 may determine the representative time based on an arbitrary rule from a plurality of observation times corresponding to a plurality of luminosities included in the segment data. For example, the output control unit 34 may set the earliest or latest time among the plurality of observation times as the representative time, or may set the median value of the plurality of observation times as the representative time. Note that, instead of "time”, the output control unit 34 provides "time zone" as an item in the table, which indicates a time zone specified by the earliest time and latest time among the plurality of observation times described above. Good too.
- Abnormality degree indicates the abnormality degree calculated from the corresponding segment data. Note that the output control unit 34 may highlight a record in which the degree of abnormality is equal to or higher than a predetermined threshold value as a record corresponding to the observation result of the space object 5 suspected of causing an abnormality.
- the user can suitably use the degree of abnormality presented by the information processing device 2 as a criterion for determining whether or not an abnormality has occurred in the space object 5.
- the output control unit 34 detects the presence or absence of an abnormality in the space object 5 based on the degree of abnormality, and outputs the abnormality detection result through the display unit 25 or the sound output unit 26. For example, the output control unit 34 determines that an abnormality has occurred in the space object 5 when the abnormality degree calculated by the abnormality degree calculation unit 33 based on the latest segment data generated by the segment data generation unit 32 is equal to or higher than a predetermined threshold. A warning to that effect is output from the display section 25 or the sound output section 26.
- the above threshold value is stored in the memory 22 or the storage device 4 in advance, for example.
- the output control unit 34 recognizes an abnormal period in which an abnormality has occurred in the space object 5 and another normal period based on the degree of abnormality in time series, and displays them on a graph or table representing the degree of abnormality.
- the abnormal period and normal period are clearly identified by color coding, etc.
- the information processing device 2 can autonomously detect an abnormality in the space object 5 and suitably notify the user of the abnormality detection result.
- the output control unit 34 may store the abnormality detection result in the storage device 4 instead of outputting the abnormality detection result on the display unit 25 or the sound output unit 26, and the output control unit 34 may store the abnormality detection result in the storage device 4.
- the information may be sent to another device (which may be a terminal used by an administrator, etc.) that manages the status of the system.
- FIG. 7 is a diagram illustrating an overview of the learning process of the abnormality degree calculation model by the information processing device 2.
- the processor 21 of the information processing device 2 functionally includes an input data generation section 38 and a parameter update section 39.
- the input data generation unit 38 generates data that matches the input format of the anomaly degree calculation model, based on the training data 43 that indicates the time-series luminosity of the space object 5 in a normal state. For example, the input data generation unit 38 generates segment data from the training data 43 by performing the same processing as the segment data generation unit 32. As another example, if a plurality of segment data matching the input format of the abnormality degree calculation model is stored in advance as the training data 43, the input data generation unit 38 generates segment data to be input to the abnormality degree calculation model. The data are sequentially extracted from the training data 43.
- the parameter update unit 39 inputs the data supplied from the input data generation unit 38 as input data to the abnormality degree calculation model, and calculates the restoration error between the data output from the abnormality degree calculation model and the input data. Then, the parameter updating unit 39 determines the parameters of the anomaly degree calculation model using a gradient descent method, an error backpropagation method, or the like so that the restoration error is minimized. Then, the parameter update unit 39 updates the parameter information 42 with the determined parameters.
- the learning process of the abnormality degree calculation model may be executed by a device other than the information processing device 2.
- a device other than the information processing device 2 executes the above-described learning process, and the parameter information 42 obtained by the learning process is stored in the storage device 4. Ru.
- FIG. 8 is an example of a flowchart of abnormality detection related processing.
- the information processing device 2 repeatedly executes the process shown in the flowchart shown in FIG.
- the information processing device 2 acquires observation data Da from the optical observation device 1, and stores the acquired observation data Da in the observation data DB 41 (step S11).
- the information processing device 2 determines whether it is time to generate segment data (step S12). For example, when the information processing device 2 determines that a predetermined number of observation data Da necessary for generating segment data has been accumulated, it determines that it is time to generate segment data. In another example, when the information processing device 2 detects that the acquisition interval of observation data Da is equal to or greater than a predetermined interval, the information processing device 2 determines that it is time to generate segment data, and immediately before the acquisition interval becomes equal to or greater than the predetermined interval. Segment data is generated based on observation data Da.
- the information processing device 2 when the information processing device 2 detects an external input (including a user input by the input unit 24) requesting the output of information regarding the degree of abnormality, the information processing device 2 outputs the observation data Da stored in the observation data DB 41. Generate segment data as a target. In this case, if the external input includes information specifying a period, the information processing device 2 extracts observation data Da corresponding to the specified period from the observation data DB 41, and extracts the observation data Da from the extracted observation data Da. It is a good idea to generate segment data.
- step S12 determines that it is time to generate segment data
- step S13 determines that it is not the segment data generation timing
- step S12 determines that it is not the segment data generation timing
- the information processing device 2 calculates the degree of abnormality of the space object 5 based on the generated segment data (step S14). In this case, the information processing device 2 calculates the degree of abnormality based on the data output by the degree of abnormality calculation model when the segment data is input to the degree of abnormality calculation model configured using the parameter information 42.
- the information processing device 2 performs output control regarding the degree of abnormality calculated in step S14 (step S15).
- the information processing device 2 displays the transition of the degree of abnormality in time series, detects the presence or absence of an abnormality in the space object 5 based on the degree of abnormality, and displays or outputs the detection result as audio. or
- the information processing device 2 may convert the segment data into feature amount data representing the feature amount by performing feature extraction processing, adding a lag feature amount, or the like.
- the feature amount data is data in a predetermined tensor format that matches the input format of the abnormality degree calculation model.
- FIG. 9 is an example of functional blocks related to abnormality detection related processing of the processor 21 of the information processing device 2 according to this modification.
- the processor 21 includes a feature generation unit 35 in addition to the processing units 31 to 34 shown in FIG.
- the feature amount generation unit 35 converts the segment data generated by the segment data generation unit 32 into feature amount data that matches the input format of the abnormality degree calculation model.
- the feature amount generation unit 35 may generate feature amount data from the segment data based on any feature extraction technique.
- the feature amount generation unit 35 may generate segment data or data obtained by adding a lag feature amount to the feature amount as the feature amount data.
- the lag feature amount is generated based on, for example, a predetermined number of segment data generated immediately before the target segment data.
- the feature amount generation section 35 supplies the generated feature amount data to the abnormality degree calculation section 33. Thereafter, the abnormality degree calculation unit 33 calculates the abnormality degree based on the data output by the abnormality degree calculation model when the feature amount data is input to the abnormality degree calculation model.
- the information processing device 2 can calculate the degree of abnormality with higher accuracy.
- the abnormality degree calculation model may be a model other than an autoencoder.
- the abnormality degree calculation model may be a model that converts input data into data in a feature space with a predetermined number of dimensions.
- the data (normal data) on the above-mentioned feature space when the space object 5 is in a normal state is stored in advance in the storage device 4, etc., and the information processing device 2 outputs the abnormality degree calculation model.
- the error between the data and the normal data is calculated as the degree of abnormality.
- the information processing device 2 can suitably calculate the abnormality degree.
- FIG. 10 is a block diagram of the information processing device 2X in the second embodiment.
- the information processing device 2X includes a data acquisition means 32X and an abnormality degree calculation means 33X.
- the information processing device 2X may be composed of a plurality of devices.
- the data acquisition means 32X acquires time series data representing the luminosity of the space object.
- the data acquisition unit 32X can be, for example, the observation data acquisition unit 31 or the segment data generation unit 32 in the first embodiment (including modified examples, the same applies hereinafter).
- the abnormality degree calculation means 33X calculates the abnormality degree regarding the state of the space object based on the time series data.
- the abnormality degree calculation means 33X can be the abnormality degree calculation section 33 in the first embodiment.
- FIG. 11 is an example of a flowchart showing the processing procedure in the second embodiment.
- the data acquisition means 32X acquires time series data representing the luminosity of a space object (step S21).
- the abnormality degree calculating means 33X calculates the abnormality degree regarding the state of the space object based on the time series data (step S22).
- the information processing device 2X can suitably calculate the degree of abnormality regarding the state of the space object.
- Non-transitory computer-readable media include various types of tangible storage media.
- Examples of non-transitory computer-readable media include magnetic storage media (e.g., flexible disks, magnetic tapes, hard disk drives), magneto-optical storage media (e.g., magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, CD-R/W, semiconductor memory (e.g., mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory).
- Transitory computer readable media may be supplied to the computer by a transitory computer readable medium.
- Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
- Transitory computer readable media include electrical wires and optical
- the program can be supplied to the computer via a wired communication path such as a fiber or a wireless communication path.
- the information processing device according to appendix 1 or 2, further comprising an abnormality detection means for detecting an abnormality of the space object based on the degree of abnormality.
- the data acquisition means acquires, as the time series data, segment data in which the observed time series luminosity is divided into a predetermined number of data representing the luminosity;
- the information processing device according to any one of Supplementary Notes 1 to 3, wherein the abnormality degree calculation means calculates the abnormality degree based on the segment data.
- the data acquisition means acquires, as the time series data, segment data in which the observed time series luminosity is divided based on observation intervals;
- the information processing device according to any one of Supplementary Notes 1 to 3, wherein the abnormality degree calculation means calculates the abnormality degree based on the segment data.
- the information processing device according to any one of Supplementary Notes 1 to 5, further comprising a display unit that displays information regarding the degree of abnormality.
- the information processing device according to any one of Supplementary Notes 1 to 7, further comprising a warning unit that warns of the occurrence of an abnormality when an abnormality of the space object is detected based on the abnormality degree.
- the computer is Obtain time series data representing the luminosity of space objects, calculating an abnormality degree regarding the state of the space object based on the time series data; Calculation method.
- a data acquisition means for acquiring time series data representing the luminosity of a space object;
- An abnormality degree calculation means for calculating an abnormality degree regarding the state of the space object based on the time series data;
- the abnormality degree calculation means calculates the abnormality degree based on the time series data and the learning model, The information processing according to appendix 11, wherein the learning model is a model learned to output data obtained by restoring the input to the learning model based on training data representing the luminosity of the space object in a normal state. system.
- the information processing system according to appendix 11 or 12, further comprising an abnormality detection means for detecting an abnormality in the space object based on the degree of abnormality.
- the data acquisition means acquires, as the time series data, segment data in which the observed time series luminosity is divided into a predetermined number of data representing the luminosity;
- the information processing system according to any one of appendices 11 to 13, wherein the abnormality degree calculation means calculates the abnormality degree based on the segment data.
- the data acquisition means acquires, as the time series data, segment data in which the observed time series luminosity is divided based on observation intervals;
- the information processing system according to appendix 16 wherein the display means displays information indicating the transition of the degree of abnormality.
- 18 18.
- Optical observation device 2 Information processing device 4 Storage device 21 Processor 22 Memory 23 Interface 24 Input section 25 Display section 26 Sound output section 41 Observation data DB 42 Parameter information 43 Training data 100 Observation system
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
情報処理装置2Xは、データ取得手段32Xと、異常度算出手段33Xと、を備える。データ取得手段32Xは、宇宙物体の光度を表す時系列データを取得する。異常度算出手段33Xは、時系列データに基づき、宇宙物体の状態に関する異常度を算出する。
Description
本開示は、宇宙物体の変化検知に関する処理を行う情報処理装置、算出方法及び記憶媒体の技術分野に関する。
人工衛星などの宇宙物体の異常検知を行う技術が存在する。例えば、特許文献1には、地球を周回する人工物である目標対象物の光度情報と基準恒星との光度情報を比較し、目標対象物の光度情報を補正した後、目標対象物の光度の周期性に基づき目標対象物の姿勢や形状の異常を検出する監視システムが開示されている。
特許文献1に記載の異常検出方法では、基準恒星の選定や目標対象物以外の光度の選別がその後の処理に大きく影響し、熟練の技術者による対処が必要となる。
本開示は、上述した課題を鑑み、宇宙物体の変化を好適に検知するための処理を実行することが可能な情報処理装置、算出方法及び記憶媒体を提供することを主な目的の1つとする。
情報処理装置の一の態様は、情報処理装置であって、宇宙物体の光度を表す時系列データを取得するデータ取得手段と、前記時系列データに基づき、前記宇宙物体の状態に関する異常度を算出する異常度算出手段と、を有する情報処理装置である。
算出方法の一の態様は、コンピュータが、宇宙物体の光度を表す時系列データを取得し、前記時系列データに基づき、前記宇宙物体の状態に関する異常度を算出する、算出方法である。
記憶媒体の一の態様は、宇宙物体の光度を表す時系列データを取得し、前記時系列データに基づき、前記宇宙物体の状態に関する異常度を算出する処理をコンピュータに実行させるプログラムを格納した記憶媒体である。
本開示の1つの効果の例として、宇宙物体の変化を検知するための異常度を好適に算出することができる。
以下、図面を参照しながら、情報処理装置、算出方法及び記憶媒体の実施形態について説明する。
<第1実施形態>
(1)システム構成
図1は、第1実施形態に係る観測システム100の構成を示す。観測システム100は、主に、光学観測装置1と、情報処理装置2と、記憶装置4と、を有する。
(1)システム構成
図1は、第1実施形態に係る観測システム100の構成を示す。観測システム100は、主に、光学観測装置1と、情報処理装置2と、記憶装置4と、を有する。
光学観測装置1は、地上に設置されており、上空に存在する観測対象である衛星などの宇宙物体5を光学的に観測する。そして、光学観測装置1は、宇宙物体5に関する観測結果を示す観測データ「Da」を情報処理装置2に供給する。なお、宇宙物体5は、衛星に限らず、スペースデブリなどの任意の宇宙物体であってもよい。
図2は、観測データDaのデータ構造の一例である。観測データDaは、主に、観測時刻と、光度と、センサ名とを夫々示す情報を含んでいる。ここで、「観測時刻」は、対応する光度が観測された観測時刻(日時)を示し、タイムスタンプとして機能する。「光度」は、観測された宇宙物体5の光度(輝度)を示す。「センサ名」は、光学観測装置1又は光学観測装置1に含まれる光度を観測するセンサの名称又は識別情報(ID)を示す。なお、宇宙物体5の観測可否は天候等によって左右されるため、宇宙物体5を観測できない時間帯が存在する。よって、光学観測装置1が生成する観測データDaは、時間的に不連続な時系列データ(即ち観測間隔が一定とは限らないデータ)となる。
再び図1を参照し、観測システム100の各要素について説明する。情報処理装置2は、光学観測装置1から供給される時系列の観測データDaが示す光度の時間変化(所謂ライトカーブ)に基づき、宇宙物体5の異常検知に関する処理(「異常検知関連処理」とも呼ぶ。)を行う。宇宙物体5の異常は、例えば、宇宙物体5の姿勢変更又は形状の変更などが該当する。本実施形態では、情報処理装置2は、宇宙物体5の異常の度合い(又は異常発生の確からしさ)を示す異常度を算出する。
記憶装置4は、情報処理装置2による異常検知関連処理に必要な各種情報を記憶するメモリである。例えば、記憶装置4は、観測データDB41と、パラメータ情報42と、訓練データ43とを記憶する。
観測データDB41は、光学観測装置1から情報処理装置2に供給される観測データDaのデータベースである。情報処理装置2は、光学観測装置1から観測データDaを受信した場合、受信した観測データDaに相当するレコードを観測データDB41に追加する。なお、観測データDB41には、情報処理装置2が算出した異常度などの情報処理装置2の処理結果を示す情報がさらに含まれてもよい。
パラメータ情報42は、異常度の算出に用いるモデル(「異常度算出モデル」とも呼ぶ。)のパラメータを示す。異常度算出モデルは、例えば、機械学習に基づく学習モデルであり、ニューラルネットワークに基づく学習モデルであってもよく、サポートベクターマシーンなどの他の種類の学習モデルであってもよく、これらの組み合わせであってもよい。本実施形態では、一例として、異常度算出モデルとして、アノマリ検知などに用いられる自己符号化器(オートエンコーダ)を用いる。この場合、異常度算出モデルは、正常状態の宇宙物体5の光度を示す時系列データを入力データとして用い、入力データを再現するデータを出力するように学習されるニューラルネットワークである。この場合、パラメータ情報42は、自己符号化器のネットワークの重み等を示すパラメータの情報であり、訓練データ43を用いて自己符号化器を学習することにより得られる。
訓練データ43は、異常度算出モデルの学習に用いる訓練データである。例えば、異常度算出モデルが自己符号化器の場合、正常状態の宇宙物体5の光度を表す時系列データが訓練データ43として記憶装置4に記憶されている。
なお、記憶装置4は、情報処理装置2に接続又は内蔵されたハードディスクなどの外部記憶装置であってもよく、情報処理装置2に対して着脱自在なフラッシュメモリなどの記憶媒体であってもよい。また、記憶装置4は、情報処理装置2とデータ通信を行う1又は複数のサーバ装置から構成されてもよい。また、記憶装置4に記憶されるデータベース等は、複数の装置又は記憶媒体により分散して記憶されてもよい。
図1に示す観測システム100の構成は一例であり、当該構成に種々の変更が行われてもよい。例えば、光学観測装置1と情報処理装置2とは、一体となって構成されてもよい。同様に、情報処理装置2と記憶装置4とは、一体となって構成されてもよい。また、情報処理装置2は、複数の装置から構成されてもよい。この場合、情報処理装置2を構成する複数の装置は、予め割り当てられた処理を実行するために必要な情報の授受を、これらの複数の装置間において行う。この場合、情報処理装置2は、情報処理システムとして機能する。
(2)情報処理装置のハードウェア構成
図3は、情報処理装置2のブロック構成の一例を示す。情報処理装置2は、ハードウェアとして、プロセッサ21と、メモリ22と、インターフェース23とを含む。プロセッサ21、メモリ22及びインターフェース23は、データバス29を介して接続されている。
図3は、情報処理装置2のブロック構成の一例を示す。情報処理装置2は、ハードウェアとして、プロセッサ21と、メモリ22と、インターフェース23とを含む。プロセッサ21、メモリ22及びインターフェース23は、データバス29を介して接続されている。
プロセッサ21は、メモリ22に記憶されているプログラムを実行することにより、所定の処理を実行する。プロセッサ21は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、TPU(Tensor Processing Unit)などのプロセッサである。プロセッサ21は、複数のプロセッサから構成されてもよい。プロセッサ21は、コンピュータの一例である。
メモリ22は、RAM(Random Access Memory)、ROM(Read Only Memory)などの各種の揮発性メモリ及び不揮発性メモリにより構成される。また、メモリ22には、情報処理装置2が各種の処理を実行するためのプログラムが記憶される。また、メモリ22は、作業メモリとして使用され、記憶装置4から取得した情報等を一時的に記憶する。なお、メモリ22は、記憶装置4として機能してもよい。同様に、記憶装置4は、情報処理装置2のメモリ22として機能してもよい。なお、情報処理装置2が実行するプログラムは、メモリ22以外の記憶媒体に記憶されてもよい。
インターフェース23は、情報処理装置2と他の装置とを有線又は無線により電気的に接続するためのインターフェースである。これらのインターフェースは、他の装置とデータの送受信を無線により行うためのネットワークアダプタなどのワイアレスインタフェースであってもよく、他の装置とケーブル等により接続するためのハードウェアインターフェースであってもよい。また、本実施形態では、インターフェース23は、情報処理装置2に含まれる入力部24、表示部25、及び音出力部26のインターフェース動作を行う。
入力部24は、観測システム100のユーザが所定の情報を入力するためのユーザインタフェースであり、例えば、ボタン、スイッチ、タッチパネル、又は音声入力装置などが該当する。表示部25は、例えば、ディスプレイ、プロジェクタであり、プロセッサ21の制御に基づき所定の情報を表示する。音出力部26は、例えば、スピーカであり、プロセッサ21の制御に基づき音(音声)を出力する。なお、入力部24、表示部25、音出力部26は、情報処理装置2とインターフェース23を介して有線又は無線により電気的に接続する外部装置であってもよい。また、インターフェース23は、入力部24、表示部25、音出力部26以外の任意の装置のインターフェース動作を行ってもよい。
(3)機能ブロック
図4は、異常検知関連処理に関する機能ブロックの一例である。情報処理装置2のプロセッサ21は、異常検知関連処理に関し、機能的には、観測データ取得部31と、セグメントデータ生成部32と、異常度算出部33と、出力制御部34と、を有する。なお、図4では、データの授受が行われるブロック同士を実線により結んでいるが、データの授受が行われるブロックの組み合わせはこれに限定されない。後述する他の機能ブロックの図においても同様である。
図4は、異常検知関連処理に関する機能ブロックの一例である。情報処理装置2のプロセッサ21は、異常検知関連処理に関し、機能的には、観測データ取得部31と、セグメントデータ生成部32と、異常度算出部33と、出力制御部34と、を有する。なお、図4では、データの授受が行われるブロック同士を実線により結んでいるが、データの授受が行われるブロックの組み合わせはこれに限定されない。後述する他の機能ブロックの図においても同様である。
観測データ取得部31は、インターフェース23を介し、宇宙物体5の観測結果を示す観測データDaを光学観測装置1から取得する。そして、観測データ取得部31は、取得した観測データDaを観測データDB41に記憶する。なお、観測データ取得部31は、観測データDaを観測データDB41に記憶することに加えて、又はこれに代えて、観測データDaをセグメントデータ生成部32に供給してもよい。
セグメントデータ生成部32は、観測データ取得部31が取得した時系列の観測データDaに基づき、セグメントデータを生成する。ここで、セグメントデータは、ある期間において観測された宇宙物体5の時系列の光度の観測値及び観測時刻を示すものであって、所定個数分の観測時刻に対応する観測データDaにより生成される。上述の所定個数は、予め定められた定数であってもよく、可変数であってもよい。セグメントデータ生成部32は、生成したセグメントデータを、異常度算出部33に供給する。
ここで、上述の所定個数が可変数の場合について補足説明する。例えば、セグメントデータ生成部32は、時系列の観測データDaを、光学観測装置1による宇宙物体5の観測が不連続となるタイミング(例えば観測間隔が所定時間長以上空いたタイミング)で区切ることで、時系列の観測データDaを分割する。そして、セグメントデータ生成部32は、分割された観測データDaのグループごとに、セグメントデータを生成する。この態様によれば、セグメントデータ生成部32は、観測時刻が近似する観測データDaのまとまりをセグメントデータとしてグループ化することができる。これにより、異常度の精度を向上させることができる。なお、この場合においても、セグメントデータに含める観測データDaの上限数が定められていてもよい。
異常度算出部33は、セグメントデータ生成部32が生成したセグメントデータに基づき、当該セグメントデータが示す光度が観測された時刻における宇宙物体5の異常度を算出する。この場合、異常度算出部33は、パラメータ情報42に基づき異常度算出モデルを構成し、異常度算出モデルにセグメントデータを入力することで異常度算出モデルが出力する情報に基づき、異常度を算出する。異常度算出部33が実行する処理の具体例については後述する。異常度算出部33は、算出した異常度に関する情報を、出力制御部34に供給する。異常度算出部33は、算出した異常度に関する情報を、観測データDB41に記録してもよい。
出力制御部34は、異常度算出部33が算出した異常度に関する出力の制御を行う。第1の出力例では、出力制御部34は、異常度算出部33が算出した異常度に関する情報を、表示部25に表示する制御を行う。第2の出力例では、出力制御部34は、異常度に基づいて宇宙物体5の異常の有無の検知を行い、その検知結果に基づく情報を表示部25又は音出力部26により出力する。この場合、出力制御部34は、検知結果に基づく表示信号を、インターフェース23を介して表示部25に供給することで、表示部25に所定の情報を表示させたり、検知結果に基づく音出力信号を、インターフェース23を介して音出力部26に供給することで、音出力部26に音又は音声を出力させたりする。出力制御部34が実行する処理の詳細について後述する。出力制御部34は、「表示手段」及び「警告手段」の一例である。
なお、図4において説明した観測データ取得部31、セグメントデータ生成部32、異常度算出部33、及び出力制御部34の各構成要素は、例えば、プロセッサ21がプログラムを実行することによって実現できる。また、必要なプログラムを任意の不揮発性記憶媒体に記録しておき、必要に応じてインストールすることで、各構成要素を実現するようにしてもよい。なお、これらの各構成要素の少なくとも一部は、プログラムによるソフトウェアで実現することに限ることなく、ハードウェア、ファームウェア、及びソフトウェアのうちのいずれかの組み合わせ等により実現してもよい。また、これらの各構成要素の少なくとも一部は、例えばFPGA(Field-Programmable Gate Array)又はマイクロコントローラ等の、ユーザがプログラミング可能な集積回路を用いて実現してもよい。この場合、この集積回路を用いて、上記の各構成要素から構成されるプログラムを実現してもよい。また、各構成要素の少なくとも一部は、ASSP(Application Specific Standard Produce)、ASIC(Application Specific Integrated Circuit)又は量子プロセッサ(量子コンピュータ制御チップ)により構成されてもよい。このように、各構成要素は、種々のハードウェアにより実現されてもよい。以上のことは、後述する他の実施の形態においても同様である。さらに、これらの各構成要素は,例えば,クラウドコンピューティング技術などを用いて、複数のコンピュータの協働によって実現されてもよい。
(4)異常度算出部
次に、異常度算出部33の処理の具体例について説明する。
次に、異常度算出部33の処理の具体例について説明する。
図5は、異常度算出モデルが自己符号化器である場合の異常度算出部33の機能ブロックの一例である。異常度算出部33は、機能的には、モデル実行部37と、誤差算出部47とを有する。
モデル実行部37は、パラメータ情報42に基づき自己符号化器である異常度算出モデルを構成し、異常度算出モデルにセグメントデータ生成部32から供給されるセグメントデータを入力した場合に異常度算出モデルが出力するデータを取得する。この場合、異常度算出モデルは、正常状態の宇宙物体5の光度を示すセグメントデータが入力された場合に、入力されたセグメントデータを復元したデータ(「復元データ」とも呼ぶ。)を出力するように学習されている。従って、モデル実行部37は、異常度算出モデルが出力する復元データを、誤差算出部47に供給する。
誤差算出部47は、モデル実行部37から供給される復元データと、異常度算出モデルの入力データであるセグメントデータとの誤差(所謂、復元誤差)を、異常度として算出する。この場合、誤差算出部47は、機械学習などで用いられる任意の損失関数を用いて上述の誤差を算出してもよい。例えば、誤差算出部47は、入力データと復元データとの差分ベクトルのL1ノルム又はL2ノルムを、異常度として算出する。そして、誤差算出部47は、算出した異常度を出力する。
このように、異常度算出部33は、学習済みの自己符号化器である異常度算出モデルを用いることで、宇宙物体5の姿勢変化等の発生の確からしさを示す指標となる異常度を好適に算出することができる。
(5)出力制御部
次に、出力制御部34の処理の具体例について説明する。
次に、出力制御部34の処理の具体例について説明する。
第1の出力例では、出力制御部34は、異常度算出部33が算出した異常度に関する情報を、表示部25に表示する制御を行う。この場合、出力制御部34は、異常度算出部33が算出した時系列での異常度の遷移を示すグラフ又はテーブルを、表示部25に表示してもよい。
図6は、第1の出力例において出力制御部34が出力する異常度の遷移を示すテーブルの一例である。図6に示すテーブルは、「時刻」及び「異常度」の項目を有しており、例えば、セグメントデータ生成部32が生成したセグメントデータごとにレコードが生成される。
「時刻」は、対応するセグメントデータに含まれる光度の観測時刻の代表時刻を示している。この場合、出力制御部34は、セグメントデータに含まれる複数の光度に対応する複数の観測時刻から任意の規則に基づき代表時刻を定めてもよい。例えば、出力制御部34は、上述の複数の観測時刻のうち最も早い又は遅い時刻を代表時刻としてもよく、上述の複数の観測時刻の中央値を代表時刻としてもよい。なお、出力制御部34は、「時刻」に代えて、上述の複数の観測時刻のうち最も早い時刻及び最も遅い時刻により特定される時間帯を示す「時間帯」を、テーブルの項目として設けてもよい。
「異常度」は、対応するセグメントデータにより算出された異常度を示している。なお、出力制御部34は、異常度が所定の閾値以上となるレコードを、異常発生の疑いがある宇宙物体5の観測結果に対応するレコードとして強調表示してもよい。
第1の出力例によれば、ユーザは、情報処理装置2により提示された異常度を、宇宙物体5の異常の発生の有無の判定材料として好適に用いることができる。
第2の出力例では、出力制御部34は、異常度に基づいて宇宙物体5の異常の有無の検知を行い、異常検知結果を表示部25又は音出力部26により出力する。例えば、出力制御部34は、セグメントデータ生成部32が生成した最新のセグメントデータに基づき異常度算出部33が算出した異常度が所定の閾値以上となった場合、宇宙物体5に異常が発生した旨の警告を、表示部25又は音出力部26により出力する。上述の閾値は、例えば、予めメモリ22又は記憶装置4に記憶されている。他の例では、出力制御部34は、時系列での異常度に基づき、宇宙物体5に異常が発生した異常期間とその他の通常期間とを夫々認識し、異常度を表すグラフ又はテーブル上において異常期間及び通常期間を色分け等により夫々識別可能に明示する。
第2の出力例によれば、情報処理装置2は、宇宙物体5の異常検知を自律的に行い、異常検知結果をユーザに好適に通知することができる。
なお、第2の出力例において、出力制御部34は、異常検知結果を表示部25又は音出力部26により出力する代わりに、異常検知結果を記憶装置4に記憶してもよく、宇宙物体5の状態管理を行う他の装置(管理者が用いる端末等であってもよい)に送信してもよい。
(6)学習処理
次に、異常度算出モデルの学習処理について補足説明する。図7は、情報処理装置2による異常度算出モデルの学習処理の概要を示す図である。学習処理において、情報処理装置2のプロセッサ21は、機能的には、入力データ生成部38と、パラメータ更新部39とを有する。
次に、異常度算出モデルの学習処理について補足説明する。図7は、情報処理装置2による異常度算出モデルの学習処理の概要を示す図である。学習処理において、情報処理装置2のプロセッサ21は、機能的には、入力データ生成部38と、パラメータ更新部39とを有する。
入力データ生成部38は、正常状態の宇宙物体5の時系列での光度を示す訓練データ43に基づき、異常度算出モデルの入力形式に整合したデータを生成する。例えば、入力データ生成部38は、セグメントデータ生成部32と同一の処理を行うことで、訓練データ43からセグメントデータを生成する。他の例として、異常度算出モデルの入力形式に整合した複数のセグメントデータが訓練データ43として予め記憶されていた場合には、入力データ生成部38は、異常度算出モデルに入力するセグメントデータを順に訓練データ43から抽出する。
パラメータ更新部39は、入力データ生成部38から供給されるデータを入力データとして異常度算出モデルに入力し、異常度算出モデルから出力されるデータと入力データとの復元誤差を算出する。そして、パラメータ更新部39は、復元誤差が最小化されるように、勾配降下法や誤差逆伝播法などにより、異常度算出モデルのパラメータを決定する。そして、パラメータ更新部39は、決定したパラメータによりパラメータ情報42を更新する。
なお、異常度算出モデルの学習処理は、情報処理装置2以外の装置により実行されてもよい。この場合、情報処理装置2による異常検知関連処理の実行前に、情報処理装置2以外の装置が上述した学習処理を実行し、当該学習処理により得られたパラメータ情報42が記憶装置4に記憶される。
(7)処理フロー
図8は、異常検知関連処理のフローチャートの一例である。情報処理装置2は、図8に示すフローチャートの処理を繰り返し実行する。
図8は、異常検知関連処理のフローチャートの一例である。情報処理装置2は、図8に示すフローチャートの処理を繰り返し実行する。
まず、情報処理装置2は、観測データDaを光学観測装置1から取得し、取得した観測データDaを観測データDB41に記憶する(ステップS11)。
次に、情報処理装置2は、セグメントデータの生成タイミングであるか否か判定する(ステップS12)。例えば、情報処理装置2は、セグメントデータの生成に必要な所定個数分の観測データDaが蓄積されたと判定した場合、セグメントデータの生成タイミングであると判定する。他の例では、情報処理装置2は、観測データDaの取得間隔が所定間隔以上となったことを検知した場合、セグメントデータの生成タイミングであると判定し、取得間隔が所定間隔以上となる直前の観測データDaに基づきセグメントデータを生成する。さらに別の例では、情報処理装置2は、異常度に関する情報の出力を要求する外部入力(入力部24によるユーザ入力を含む)を検知した場合に、観測データDB41に記憶された観測データDaを対象としてセグメントデータを生成する。この場合、情報処理装置2は、外部入力に期間を指定する情報が含まれている場合には、指定された期間に該当する観測データDaを観測データDB41から抽出し、抽出した観測データDaからセグメントデータを生成するとよい。
そして、情報処理装置2は、セグメントデータの生成タイミングであると判定した場合(ステップS12;Yes)、ステップS11で取得した観測データDaに基づきセグメントデータを生成する(ステップS13)。一方、情報処理装置2は、セグメントデータの生成タイミングではないと判定した場合(ステップS12;No)、引き続きステップS11及びステップS12を実行する。
セグメントデータの生成後、情報処理装置2は、生成したセグメントデータに基づき宇宙物体5の異常度を算出する(ステップS14)。この場合、情報処理装置2は、パラメータ情報42を用いて構成した異常度算出モデルにセグメントデータを入力した場合に異常度算出モデルが出力するデータに基づき、異常度を算出する。
そして、情報処理装置2は、ステップS14で算出した異常度に関する出力制御を行う(ステップS15)。この場合、例えば、情報処理装置2は、時系列での異常度の遷移を表示したり、異常度に基づいて宇宙物体5の異常の有無の検知を行い、その検知結果を表示又は音声出力したりする。
(8)変形例
上述した実施形態に好適な変形例について説明する。以下の変形例は組み合わせて上述の実施形態に適用してもよい。
上述した実施形態に好適な変形例について説明する。以下の変形例は組み合わせて上述の実施形態に適用してもよい。
(変形例1)
情報処理装置2は、セグメントデータに対し、特徴抽出処理やラグ特徴量の追加などを行うことで、特徴量を表す特徴量データに変換してもよい。この場合、特徴量データは、異常度算出モデルの入力形式に整合するような所定のテンソル形式のデータとなる。
情報処理装置2は、セグメントデータに対し、特徴抽出処理やラグ特徴量の追加などを行うことで、特徴量を表す特徴量データに変換してもよい。この場合、特徴量データは、異常度算出モデルの入力形式に整合するような所定のテンソル形式のデータとなる。
図9は、本変形例に係る情報処理装置2のプロセッサ21の異常検知関連処理に関する機能ブロックの一例である。プロセッサ21は、図4において示された各処理部31~34に加え、特徴量生成部35を有する。特徴量生成部35は、セグメントデータ生成部32が生成したセグメントデータを異常度算出モデルの入力形式に整合する特徴量データに変換する。この場合、特徴量生成部35は、任意の特徴抽出技術に基づき、セグメントデータから特徴量データを生成してもよい。また、特徴量生成部35は、セグメントデータ又はその特徴量に対してラグ特徴量を追加したデータを、特徴量データとして生成してもよい。ここで、ラグ特徴量は、例えば、対象のセグメントデータの直前に生成された所定個数分のセグメントデータに基づき生成される。そして、特徴量生成部35は、生成した特徴量データを、異常度算出部33に供給する。その後、異常度算出部33は、異常度算出モデルに特徴量データを入力した場合に異常度算出モデルが出力するデータに基づき、異常度を算出する。
本変形例によれば、情報処理装置2は、異常度の算出をより高精度に実行することができる。
(変形例2)
異常度算出モデルは、自己符号化器以外のモデルであってもよい。例えば、異常度算出モデルは、入力データを所定次元数の特徴空間のデータに変換するモデルであってもよい。この場合、例えば、宇宙物体5が正常状態の場合における上述の特徴空間上でのデータ(正常データ)が予め記憶装置4等に記憶されており、情報処理装置2は、異常度算出モデルが出力するデータと、正常データとの誤差を、異常度として算出する。
異常度算出モデルは、自己符号化器以外のモデルであってもよい。例えば、異常度算出モデルは、入力データを所定次元数の特徴空間のデータに変換するモデルであってもよい。この場合、例えば、宇宙物体5が正常状態の場合における上述の特徴空間上でのデータ(正常データ)が予め記憶装置4等に記憶されており、情報処理装置2は、異常度算出モデルが出力するデータと、正常データとの誤差を、異常度として算出する。
このように、自己符号化器以外の異常度算出モデルを用いた場合においても、情報処理装置2は、異常度を好適に算出することができる。
<第2実施形態>
図10は、第2実施形態における情報処理装置2Xのブロック図である。情報処理装置2Xは、データ取得手段32Xと、異常度算出手段33Xと、を備える。情報処理装置2Xは、複数の装置から構成されてもよい。
図10は、第2実施形態における情報処理装置2Xのブロック図である。情報処理装置2Xは、データ取得手段32Xと、異常度算出手段33Xと、を備える。情報処理装置2Xは、複数の装置から構成されてもよい。
データ取得手段32Xは、宇宙物体の光度を表す時系列データを取得する。データ取得手段32Xは、例えば、第1実施形態(変形例を含む、以下同じ。)における観測データ取得部31又はセグメントデータ生成部32とすることができる。
異常度算出手段33Xは、時系列データに基づき、宇宙物体の状態に関する異常度を算出する。異常度算出手段33Xは、第1実施形態における異常度算出部33とすることができる。
図11は、第2実施形態における処理手順を示すフローチャートの一例である。まず、データ取得手段32Xは、宇宙物体の光度を表す時系列データを取得する(ステップS21)。次に、異常度算出手段33Xは、時系列データに基づき、宇宙物体の状態に関する異常度を算出する(ステップS22)。
第2実施形態によれば、情報処理装置2Xは、宇宙物体の状態に関する異常度を好適に算出することができる。
なお、上述した各実施形態において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(Non-transitory computer readable medium)を用いて格納され、コンピュータであるプロセッサ等に供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記憶媒体(Tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記憶媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記憶媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory)を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(Transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
その他、上記の各実施形態の一部又は全部は、以下の付記のようにも記載され得るが以下には限られない。
[付記1]
宇宙物体の光度を表す時系列データを取得するデータ取得手段と、
前記時系列データに基づき、前記宇宙物体の状態に関する異常度を算出する異常度算出手段と、
を有する情報処理装置。
[付記2]
前記異常度算出手段は、前記時系列データと、学習モデルとに基づき、前記異常度を算出し、
前記学習モデルは、正常状態での前記宇宙物体の光度を表す訓練データに基づき、前記学習モデルへの入力を復元したデータを出力するように学習されたモデルである、付記1に記載の情報処理装置。
[付記3]
前記異常度に基づき、前記宇宙物体の異常を検知する異常検知手段をさらに有する、付記1または2に記載の情報処理装置。
[付記4]
前記データ取得手段は、前記時系列データとして、観測された時系列の前記光度を所定個数分の前記光度を表すデータに区切ったセグメントデータを取得し、
前記異常度算出手段は、前記セグメントデータに基づき、前記異常度を算出する、付記1~3のいずれか一項に記載の情報処理装置。
[付記5]
前記データ取得手段は、前記時系列データとして、観測された時系列の前記光度を、観測間隔に基づき区切ったセグメントデータを取得し、
前記異常度算出手段は、前記セグメントデータに基づき、前記異常度を算出する、付記1~3のいずれか一項に記載の情報処理装置。
[付記6]
前記異常度に関する情報を表示する表示手段をさらに有する、付記1~5のいずれか一項に記載の情報処理装置。
[付記7]
前記表示手段は、前記異常度の遷移を示す情報を表示する、付記6に記載の情報処理装置。
[付記8]
前記異常度に基づき前記宇宙物体の異常を検知した場合、当該異常の発生を警告する警告手段をさらに有する、付記1~7のいずれか一項に記載の情報処理装置。
[付記9]
コンピュータが、
宇宙物体の光度を表す時系列データを取得し、
前記時系列データに基づき、前記宇宙物体の状態に関する異常度を算出する、
算出方法。
[付記10]
宇宙物体の光度を表す時系列データを取得し、
前記時系列データに基づき、前記宇宙物体の状態に関する異常度を算出する処理をコンピュータに実行させるプログラムを格納した記憶媒体。
[付記11]
宇宙物体の光度を表す時系列データを取得するデータ取得手段と、
前記時系列データに基づき、前記宇宙物体の状態に関する異常度を算出する異常度算出手段と、
を有する情報処理システム。
[付記12]
前記異常度算出手段は、前記時系列データと、学習モデルとに基づき、前記異常度を算出し、
前記学習モデルは、正常状態での前記宇宙物体の光度を表す訓練データに基づき、前記学習モデルへの入力を復元したデータを出力するように学習されたモデルである、付記11に記載の情報処理システム。
[付記13]
前記異常度に基づき、前記宇宙物体の異常を検知する異常検知手段をさらに有する、付記11または12に記載の情報処理システム。
[付記14]
前記データ取得手段は、前記時系列データとして、観測された時系列の前記光度を所定個数分の前記光度を表すデータに区切ったセグメントデータを取得し、
前記異常度算出手段は、前記セグメントデータに基づき、前記異常度を算出する、付記11~13のいずれか一項に記載の情報処理システム。
[付記15]
前記データ取得手段は、前記時系列データとして、観測された時系列の前記光度を、観測間隔に基づき区切ったセグメントデータを取得し、
前記異常度算出手段は、前記セグメントデータに基づき、前記異常度を算出する、付記11~13のいずれか一項に記載の情報処理システム。
[付記16]
前記異常度に関する情報を表示する表示手段をさらに有する、付記11~15のいずれか一項に記載の情報処理システム。
[付記17]
前記表示手段は、前記異常度の遷移を示す情報を表示する、付記16に記載の情報処理システム。
[付記18]
前記異常度に基づき前記宇宙物体の異常を検知した場合、当該異常の発生を警告する警告手段をさらに有する、付記11~17のいずれか一項に記載の情報処理システム。
宇宙物体の光度を表す時系列データを取得するデータ取得手段と、
前記時系列データに基づき、前記宇宙物体の状態に関する異常度を算出する異常度算出手段と、
を有する情報処理装置。
[付記2]
前記異常度算出手段は、前記時系列データと、学習モデルとに基づき、前記異常度を算出し、
前記学習モデルは、正常状態での前記宇宙物体の光度を表す訓練データに基づき、前記学習モデルへの入力を復元したデータを出力するように学習されたモデルである、付記1に記載の情報処理装置。
[付記3]
前記異常度に基づき、前記宇宙物体の異常を検知する異常検知手段をさらに有する、付記1または2に記載の情報処理装置。
[付記4]
前記データ取得手段は、前記時系列データとして、観測された時系列の前記光度を所定個数分の前記光度を表すデータに区切ったセグメントデータを取得し、
前記異常度算出手段は、前記セグメントデータに基づき、前記異常度を算出する、付記1~3のいずれか一項に記載の情報処理装置。
[付記5]
前記データ取得手段は、前記時系列データとして、観測された時系列の前記光度を、観測間隔に基づき区切ったセグメントデータを取得し、
前記異常度算出手段は、前記セグメントデータに基づき、前記異常度を算出する、付記1~3のいずれか一項に記載の情報処理装置。
[付記6]
前記異常度に関する情報を表示する表示手段をさらに有する、付記1~5のいずれか一項に記載の情報処理装置。
[付記7]
前記表示手段は、前記異常度の遷移を示す情報を表示する、付記6に記載の情報処理装置。
[付記8]
前記異常度に基づき前記宇宙物体の異常を検知した場合、当該異常の発生を警告する警告手段をさらに有する、付記1~7のいずれか一項に記載の情報処理装置。
[付記9]
コンピュータが、
宇宙物体の光度を表す時系列データを取得し、
前記時系列データに基づき、前記宇宙物体の状態に関する異常度を算出する、
算出方法。
[付記10]
宇宙物体の光度を表す時系列データを取得し、
前記時系列データに基づき、前記宇宙物体の状態に関する異常度を算出する処理をコンピュータに実行させるプログラムを格納した記憶媒体。
[付記11]
宇宙物体の光度を表す時系列データを取得するデータ取得手段と、
前記時系列データに基づき、前記宇宙物体の状態に関する異常度を算出する異常度算出手段と、
を有する情報処理システム。
[付記12]
前記異常度算出手段は、前記時系列データと、学習モデルとに基づき、前記異常度を算出し、
前記学習モデルは、正常状態での前記宇宙物体の光度を表す訓練データに基づき、前記学習モデルへの入力を復元したデータを出力するように学習されたモデルである、付記11に記載の情報処理システム。
[付記13]
前記異常度に基づき、前記宇宙物体の異常を検知する異常検知手段をさらに有する、付記11または12に記載の情報処理システム。
[付記14]
前記データ取得手段は、前記時系列データとして、観測された時系列の前記光度を所定個数分の前記光度を表すデータに区切ったセグメントデータを取得し、
前記異常度算出手段は、前記セグメントデータに基づき、前記異常度を算出する、付記11~13のいずれか一項に記載の情報処理システム。
[付記15]
前記データ取得手段は、前記時系列データとして、観測された時系列の前記光度を、観測間隔に基づき区切ったセグメントデータを取得し、
前記異常度算出手段は、前記セグメントデータに基づき、前記異常度を算出する、付記11~13のいずれか一項に記載の情報処理システム。
[付記16]
前記異常度に関する情報を表示する表示手段をさらに有する、付記11~15のいずれか一項に記載の情報処理システム。
[付記17]
前記表示手段は、前記異常度の遷移を示す情報を表示する、付記16に記載の情報処理システム。
[付記18]
前記異常度に基づき前記宇宙物体の異常を検知した場合、当該異常の発生を警告する警告手段をさらに有する、付記11~17のいずれか一項に記載の情報処理システム。
以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。すなわち、本願発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。また、引用した上記の特許文献等の各開示は、本書に引用をもって繰り込むものとする。
1 光学観測装置
2 情報処理装置
4 記憶装置
21 プロセッサ
22 メモリ
23 インターフェース
24 入力部
25 表示部
26 音出力部
41 観測データDB
42 パラメータ情報
43 訓練データ
100 観測システム
2 情報処理装置
4 記憶装置
21 プロセッサ
22 メモリ
23 インターフェース
24 入力部
25 表示部
26 音出力部
41 観測データDB
42 パラメータ情報
43 訓練データ
100 観測システム
Claims (10)
- 宇宙物体の光度を表す時系列データを取得するデータ取得手段と、
前記時系列データに基づき、前記宇宙物体の状態に関する異常度を算出する異常度算出手段と、
を有する情報処理装置。 - 前記異常度算出手段は、前記時系列データと、学習モデルとに基づき、前記異常度を算出し、
前記学習モデルは、正常状態での前記宇宙物体の光度を表す訓練データに基づき、前記学習モデルへの入力を復元したデータを出力するように学習されたモデルである、請求項1に記載の情報処理装置。 - 前記異常度に基づき、前記宇宙物体の異常を検知する異常検知手段をさらに有する、請求項1または2に記載の情報処理装置。
- 前記データ取得手段は、前記時系列データとして、観測された時系列の前記光度を所定個数分の前記光度を表すデータに区切ったセグメントデータを取得し、
前記異常度算出手段は、前記セグメントデータに基づき、前記異常度を算出する、請求項1~3のいずれか一項に記載の情報処理装置。 - 前記データ取得手段は、前記時系列データとして、観測された時系列の前記光度を、観測間隔に基づき区切ったセグメントデータを取得し、
前記異常度算出手段は、前記セグメントデータに基づき、前記異常度を算出する、請求項1~3のいずれか一項に記載の情報処理装置。 - 前記異常度に関する情報を表示する表示手段をさらに有する、請求項1~5のいずれか一項に記載の情報処理装置。
- 前記表示手段は、前記異常度の遷移を示す情報を表示する、請求項6に記載の情報処理装置。
- 前記異常度に基づき前記宇宙物体の異常を検知した場合、当該異常の発生を警告する警告手段をさらに有する、請求項1~7のいずれか一項に記載の情報処理装置。
- コンピュータが、
宇宙物体の光度を表す時系列データを取得し、
前記時系列データに基づき、前記宇宙物体の状態に関する異常度を算出する、
算出方法。 - 宇宙物体の光度を表す時系列データを取得し、
前記時系列データに基づき、前記宇宙物体の状態に関する異常度を算出する処理をコンピュータに実行させるプログラムを格納した記憶媒体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/014405 WO2023181354A1 (ja) | 2022-03-25 | 2022-03-25 | 情報処理装置、算出方法及び記憶媒体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/014405 WO2023181354A1 (ja) | 2022-03-25 | 2022-03-25 | 情報処理装置、算出方法及び記憶媒体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023181354A1 true WO2023181354A1 (ja) | 2023-09-28 |
Family
ID=88100811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/014405 WO2023181354A1 (ja) | 2022-03-25 | 2022-03-25 | 情報処理装置、算出方法及び記憶媒体 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023181354A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011112284A (ja) * | 2009-11-26 | 2011-06-09 | Mitsubishi Electric Corp | 軌道推定システム |
JP5709651B2 (ja) * | 2011-06-03 | 2015-04-30 | 三菱電機株式会社 | 追尾装置 |
JP2015202809A (ja) * | 2014-04-15 | 2015-11-16 | 三菱重工業株式会社 | 監視システムおよび監視方法 |
JP2020504820A (ja) * | 2016-12-22 | 2020-02-13 | マイリオタ ピーティーワイ エルティーディーMyriota Pty Ltd | 拡張された衛星エフェメリス・データを生成するシステムおよび方法 |
WO2020085412A1 (ja) * | 2018-10-25 | 2020-04-30 | 国立研究開発法人宇宙航空研究開発機構 | 予測装置、予測方法、及び予測プログラム |
WO2021019672A1 (ja) * | 2019-07-30 | 2021-02-04 | 日本電信電話株式会社 | 異常度推定装置、異常度推定方法、およびプログラム |
CN112623283A (zh) * | 2020-12-30 | 2021-04-09 | 苏州三六零智能安全科技有限公司 | 太空物体异常检测方法、装置、设备及存储介质 |
-
2022
- 2022-03-25 WO PCT/JP2022/014405 patent/WO2023181354A1/ja unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011112284A (ja) * | 2009-11-26 | 2011-06-09 | Mitsubishi Electric Corp | 軌道推定システム |
JP5709651B2 (ja) * | 2011-06-03 | 2015-04-30 | 三菱電機株式会社 | 追尾装置 |
JP2015202809A (ja) * | 2014-04-15 | 2015-11-16 | 三菱重工業株式会社 | 監視システムおよび監視方法 |
JP2020504820A (ja) * | 2016-12-22 | 2020-02-13 | マイリオタ ピーティーワイ エルティーディーMyriota Pty Ltd | 拡張された衛星エフェメリス・データを生成するシステムおよび方法 |
WO2020085412A1 (ja) * | 2018-10-25 | 2020-04-30 | 国立研究開発法人宇宙航空研究開発機構 | 予測装置、予測方法、及び予測プログラム |
WO2021019672A1 (ja) * | 2019-07-30 | 2021-02-04 | 日本電信電話株式会社 | 異常度推定装置、異常度推定方法、およびプログラム |
CN112623283A (zh) * | 2020-12-30 | 2021-04-09 | 苏州三六零智能安全科技有限公司 | 太空物体异常检测方法、装置、设备及存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220277225A1 (en) | Method and device for detecting anomalies, corresponding computer program and non-transitory computer-readable medium | |
CN106471527B (zh) | 从全局模型进行本地化学习 | |
CN108011782B (zh) | 用于推送告警信息的方法和装置 | |
US10637751B2 (en) | Methods and systems for online monitoring using a variable data sampling rate | |
CN111046027B (zh) | 时间序列数据的缺失值填充方法和装置 | |
JP6355683B2 (ja) | リスク早期警報方法、装置、記憶媒体およびコンピュータプログラム | |
US11455203B2 (en) | Abnormality detection support device, abnormality detection support method, and program | |
WO2018008708A1 (ja) | 震央距離推定装置、震央距離推定方法、及びコンピュータ読み取り可能な記録媒体 | |
US20200125225A1 (en) | Augmenting user interface to convey a state of drilling operations | |
US10929258B1 (en) | Method and system for model-based event-driven anomalous behavior detection | |
JP2018077779A (ja) | センサインタフェース装置、測定情報通信システム、測定情報通信方法、及び測定情報通信プログラム | |
KR20180010581A (ko) | 감시 데이터 제공 시스템 및 방법 | |
JP6613175B2 (ja) | 異常検出装置、系統安定度監視装置、及びそのシステム | |
US20180365124A1 (en) | Log analysis system, log analysis method, and log analysis program | |
CN113748389A (zh) | 用于监控工业过程步骤的方法和设备 | |
CN110490132B (zh) | 数据处理方法和装置 | |
WO2023181354A1 (ja) | 情報処理装置、算出方法及び記憶媒体 | |
JP6273835B2 (ja) | 状態判定装置、状態判定方法および状態判定プログラム | |
US12000868B2 (en) | Waveform segmentation device and waveform segmentation method | |
JP7265127B2 (ja) | 機械学習プログラム、機械学習方法及び機械学習システム | |
WO2023181355A1 (ja) | 情報処理装置、検知方法及び記憶媒体 | |
KR20200075712A (ko) | 공간 데이터를 기초로 한 인공신경망을 이용한 비정상 데이터 구분 장치 | |
JP2016105267A (ja) | 情報処理装置、情報処理方法、およびプログラム | |
KR101432469B1 (ko) | 시간 동기화가 개선된 지진 감시 시스템 및 그 제공 방법 | |
JP7397801B2 (ja) | 呼吸障害を有する被験者を検出する装置及び呼吸障害を有する被験者を検出する装置の作動方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22933493 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024509656 Country of ref document: JP Kind code of ref document: A |