WO2023181215A1 - Ladder and vehicle provided with said ladder - Google Patents

Ladder and vehicle provided with said ladder Download PDF

Info

Publication number
WO2023181215A1
WO2023181215A1 PCT/JP2022/013716 JP2022013716W WO2023181215A1 WO 2023181215 A1 WO2023181215 A1 WO 2023181215A1 JP 2022013716 W JP2022013716 W JP 2022013716W WO 2023181215 A1 WO2023181215 A1 WO 2023181215A1
Authority
WO
WIPO (PCT)
Prior art keywords
ladder
rib
lower rib
stage
cross
Prior art date
Application number
PCT/JP2022/013716
Other languages
French (fr)
Japanese (ja)
Inventor
拓朗 小関
真哉 阿部
憲一 山口
恵一郎 田中
Original Assignee
株式会社モリタホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社モリタホールディングス filed Critical 株式会社モリタホールディングス
Priority to PCT/JP2022/013716 priority Critical patent/WO2023181215A1/en
Priority to CN202280058719.3A priority patent/CN117897547A/en
Publication of WO2023181215A1 publication Critical patent/WO2023181215A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06CLADDERS
    • E06C5/00Ladders characterised by being mounted on undercarriages or vehicles Securing ladders on vehicles
    • E06C5/02Ladders characterised by being mounted on undercarriages or vehicles Securing ladders on vehicles with rigid longitudinal members
    • E06C5/04Ladders characterised by being mounted on undercarriages or vehicles Securing ladders on vehicles with rigid longitudinal members capable of being elevated or extended ; Fastening means during transport, e.g. mechanical, hydraulic
    • E06C5/06Ladders characterised by being mounted on undercarriages or vehicles Securing ladders on vehicles with rigid longitudinal members capable of being elevated or extended ; Fastening means during transport, e.g. mechanical, hydraulic by piston and cylinder, or equivalent means, operated by a pressure medium

Definitions

  • the present invention relates to a ladder that has a plurality of steps and is extendable and retractable on a vehicle such as a fire engine, and a vehicle equipped with the ladder.
  • Ladders that are used on vehicles such as firefighting ladder trucks and aerial work vehicles and are capable of telescoping, undulating, or turning operations are known.
  • a multi-tiered ladder assembly is constructed by each ladder being fitted together in a telescopic manner in order, and the ladder has an upper main aggregate, a lower main aggregate, and a diagonal aggregate that connects the two.
  • it has a horizontal beam that connects the lower ribs and a diagonal horizontal beam that connects the horizontal beams, each member is connected by welding, and the lower rib is sandwiched between the square pipe and these.
  • a bent plate material the bent plate material is higher than the height of the rectangular tube and protrudes upward from the rectangular tube, and the bent plate material is arranged so as not to protrude downward from the rectangular tube.
  • a ladder is disclosed.
  • Patent Document 1 provides a firefighting ladder that is low cost, lightweight, and has high strength and reliability. It has been demanded. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a ladder that is lighter and lower in cost than conventional ladders, and a vehicle equipped with the ladder.
  • the ladder of the present invention according to claim 1 is a ladder 3 that has a plurality of steps 31 and is extendable and retractable on a vehicle, and the ladder 31 has an upper rib 311 and a lower rib 312 that have the same cross-sectional shape.
  • the cross-sectional size of the upper rib 311 or the lower rib 312 in at least one step is the same as the cross-sectional size of the upper rib 311 or the lower rib 312 in the other steps.
  • the present invention according to claim 2 is the ladder according to claim 1, in which the lower rib 312 at the step above the lowest step has an inner diameter larger than the outer diameter of the telescopic cylinder 33 used for expanding and contracting the ladder 3.
  • the present invention according to claim 3 provides the ladder according to claim 2, in which the lower rib 312 housing the telescopic cylinder 33 is constituted by one pipe, and the upper rib 311 and the lower rib 312 are connected to the one pipe. It is characterized by the fact that the material is attached.
  • the present invention according to claim 4 provides the ladder according to claim 3, wherein one end of the connecting member is connected to the upper rib 311 via the diagonal rib box 313, and the other end is connected to the lower rib via the diagonal rib box 313.
  • the diagonal rib 314 is provided diagonally with respect to the main rib, and is characterized in that the width W of the diagonal rib 314 is the same in each step.
  • the present invention according to claim 5 is the ladder according to any one of claims 2 to 4, wherein the ladder 31 has five steps, and the upper rib 311 and the lower rib 312 in the first step and the second step.
  • the cross-sectional size of the upper rib 311 in the eye is the smallest among the ribs
  • the cross-sectional size of the lower rib 312 in the second stage, and the upper rib 311 and lower rib 312 in the third stage is the second smallest among the ribs
  • the cross-sectional size of the lower rib 312 in the second row is the second smallest among the ribs
  • the cross-sectional size of the upper rib 311 in the eye and the upper rib 311 in the 5th row is the third smallest among the ribs
  • the cross-sectional size of the lower rib 312 in the 5th row is the fourth smallest among the ribs
  • the lower rib 312 is characterized by having the largest cross-sectional size among the ribs.
  • the present invention as set forth in claim 6 is characterized in that, in the ladder as set forth in claim 5, the thickness of the lower rib 312 at the fourth step is smaller than the thickness of the lower rib 312 at the fifth step.
  • the upper rib 311 and the lower rib 312 have a square cross-sectional shape.
  • the tube 332 of the telescoping cylinder 33 is arranged so that the tube 332 of the telescopic cylinder 33 is connected to the inner surface of the lower rib 312 when the tube 332 is housed in the lower rib 312.
  • the tube pad 334 is provided with a pad 334 for a tube that is in contact with the inner diameter of the lower rib 312 that accommodates the tube 332, and a pad 334a that is smaller in length than the inner diameter of the lower rib 312 that accommodates the tube 332.
  • One pad 334a and the other pad 334b are arranged with a tube 332 in between, and piping or wiring is passed through the gap between one pad 334a and the lower rib 312. shall be.
  • the present invention according to claim 9 provides a ladder according to any one of claims 1 to 8, which includes a lower surface roller 50 that rotates by contact with the lower surface of the lower rib 312 when extending and contracting the ladder 3.
  • the lower surface roller 50 has a first part 51 and a second part 52, each having a pair of rotating bodies 501 and 502, which are adjacent to each other, and a first part 51 and a second part 52, each having a pair of rotating bodies 501 and 502, are adjacent to each other.
  • One bracket 511 and the other end side first bracket 512 that supports the other end of the pair of rotating bodies 501 of the first part 51 are provided separately, and support one end of the pair of rotating bodies 502 of the second part 52.
  • a second bracket 521 on one end side that supports the second portion 52 and a second bracket 522 on the other end side that supports the other ends of the pair of rotating bodies 502 of the second portion 52 are provided separately.
  • the present invention as set forth in claim 10 provides the ladder according to any one of claims 1 to 9, in which a swing suppression device is provided at the rear end of the lower rib 312 to suppress swinging when extending and contracting the ladder 3.
  • the swing suppressing body 36 includes a first main body 361 provided between a lower main rib 312 and a guide rail 315 that guides the sliding of the ladder 31 at the same stage of the ladder 31, and a guide rail. 315 and the first main body 361, and a first subsidiary body 362 disposed in the gap between the lower rib 312 and the first main body 361.
  • the present invention according to claim 11 is the ladder according to claim 10, in which the swing suppressing body 36 has one end connected to the guide rail 315 and the other end connected to the lower rib 312 at the same step of the ladder 31. It is characterized by having a second main body, and a second subsidiary body disposed in a gap between the second main body and the guide rail 315 provided on the ladder 31 of the next lower stage.
  • the present invention according to claim 12 provides the ladder according to any one of claims 1 to 11, which includes a refraction step 37 that can be bent downward at the tip of the ladder body 31, and a refraction center of the refraction step 37.
  • the present invention as set forth in claim 13 provides the ladder as set forth in claim 12, in which the bending step 37 has a convex portion 38 behind the bending center 37A, and the ladder body 31 has a receiving portion 39 corresponding to the convex portion 38. When the ladder 3 is in the stored state, the convex portion 38 and the receiving portion 39 are close to or in contact with each other.
  • the present invention according to claim 14 is the ladder according to any one of claims 1 to 13, which includes a ladder frame 32 that supports the rear part of the ladder 3.
  • a cylinder tip connection in which a undulation center body 321 located at the rear end and having a center point when the ladder 3 undulates, and a tip of a undulation cylinder 34 located in front of the undulation center body 321 and which undulates the ladder 3 are connected. It is characterized by being divided into a body 322.
  • a vehicle according to the present invention according to claim 15 is characterized in that the ladder 3 according to any one of claims 1 to 14 is attached.
  • the weight and cost of a ladder mounted on a vehicle can be reduced.
  • the ladder according to the first embodiment of the present invention is a ladder that has a plurality of steps and is extendable and retractable on a vehicle, and the ladder has upper ribs and lower ribs all having the same cross-sectional shape, and at least The cross-sectional size of the upper rib or lower rib in one stage is the same as the cross-sectional size of the upper rib or lower rib in another stage.
  • this embodiment by unifying the cross-sectional shape and cross-sectional size of the main ribs as much as possible, it becomes possible to use the steel materials that constitute the main ribs in common, reducing the types of steel materials and reducing the management effort. and costs can be reduced.
  • the lower rib at the step above the lowest step has an inner diameter larger than the outer diameter of the telescopic cylinder used for extending and contracting the ladder. It is arranged coaxially with the telescoping cylinder, and the telescoping cylinder retracts when the ladder is retracted.
  • the lower main rib in which the telescopic cylinder is stored can partially perform the function of preventing buckling of the telescopic cylinder, so the number of parts can be reduced compared to when the telescopic cylinder is placed outside the lower main rib. It is possible to reduce the number of ladders or to form the ladder with a narrow width, thereby reducing cost and weight.
  • a third embodiment of the present invention is that in the ladder according to the second embodiment, the lower rib housing the telescopic cylinder is composed of one pipe, and a connection is made to connect the upper rib and the lower rib to the one pipe. material is attached.
  • the number of parts is reduced compared to when the lower rib housing the telescoping cylinder is divided internally by two steel materials, such as a pipe housing the telescoping cylinder and a pipe attaching the connecting material. Since the amount of time required for processing can be reduced, costs and weight can be reduced.
  • a fourth embodiment of the present invention is a ladder according to the third embodiment, in which the connecting member has one end connected to the upper rib via the oblique rib box, and the other end connected to the lower rib via the oblique rib box.
  • This is an oblique bone that is connected to the main bone and is provided diagonally with respect to the main bone, and the width of the oblique bone is the same within each step.
  • costs can be reduced by unifying the sizes of the plurality of oblique bone boxes in each stage.
  • the width of the oblique bones in each stage the number of types of oblique bones can be reduced, which leads to a reduction in the number of confirmation steps compared to the conventional method, and improves manufacturing efficiency.
  • the ladder in the ladder according to any one of the second to fourth embodiments, has five steps, and the upper rib and lower rib in the first step and the lower rib in the second step.
  • the cross-sectional size of the upper rib is the smallest among the ribs
  • the cross-sectional size of the lower rib in the second row, the upper rib and the lower rib in the third row is the second smallest among the ribs
  • the cross-sectional size of the upper rib in the fourth row is 5.
  • the cross-sectional size of the upper rib in the 5th step is the third smallest among the main ribs
  • the cross-sectional size of the lower rib in the 5th step is the fourth smallest among the main ribs
  • the cross-sectional size of the lower rib in the 4th step is the smallest among the main ribs. This is the maximum value.
  • a total of 10 main ribs can be formed from five types of steel materials with different cross-sectional sizes, so that costs can be effectively reduced.
  • the thickness of the lower rib at the fourth step is made smaller than the thickness of the lower rib at the fifth step. According to this embodiment, by reducing the thickness of the lower rib, which has the largest cross-sectional size, it is possible to reduce the weight while satisfying the strength required for the rib.
  • the upper rib and the lower rib have a square cross-sectional shape. According to this embodiment, the overall height of the vehicle including the ladder can be reduced when the ladder is in the stowed state, such as when the vehicle is running, and the width of the ladder can be made small to reduce the weight.
  • An eighth embodiment of the present invention is the ladder according to any one of the second to seventh embodiments, wherein the tube of the telescopic cylinder is a tube that contacts the inner surface of the lower rib when stored in the lower rib.
  • the tube pad consists of one pad whose length is smaller than the inner diameter of the lower rib that stores the tube, and the other pad whose length is equal to the inner diameter of the lower rib that stores the tube.
  • the pad and the other pad are arranged with a tube in between, and piping or wiring is passed through the gap between the one pad and the lower rib.
  • a ninth embodiment of the present invention is a ladder according to any one of the first to eighth embodiments, which includes a lower roller that rotates by contact with the lower surface of the lower rib when extending and contracting the ladder, and
  • the roller has a first part and a second part adjacent to each other, each having a pair of rotating bodies, and a first bracket on one end side that supports one end of the pair of rotating bodies of the first part, and A first bracket on the other end side that supports the other end of the rotating body is provided separately, a second bracket on the one end side that supports one end of the pair of rotating bodies in the second part, and a pair of rotating bodies in the second part.
  • the other end side second bracket supporting the other end is provided separately.
  • a tenth embodiment of the present invention is a swing suppressing body that suppresses swinging when extending and contracting the ladder at the rear end of the lower rib in the ladder according to any one of the first to ninth embodiments.
  • the swing suppressing body includes a first main body provided between a guide rail for guiding the sliding of the ladder and the lower rib on the same stage of the ladder, a gap between the guide rail and the first main body, and a first subsidiary body disposed in the gap between the lower rib and the first main body.
  • An eleventh embodiment of the present invention is the ladder according to the tenth embodiment, in which the swing suppressing body has one end connected to the guide rail and the other end connected to the lower main rib at the same step of the ladder. It has a second main body and a second sub-body disposed in a gap between the second main body and a guide rail provided on the ladder one step below. According to this embodiment, by inserting the second subsidiary body into the gap between the second main body and another member to fill the gap, it is possible to effectively suppress the swinging of the ladder during expansion and contraction. Moreover, since the second sub-body may be formed according to the gap, manufacturing efficiency can be improved.
  • a twelfth embodiment of the present invention is a ladder according to any one of the first to eleventh embodiments, which includes a refraction step that can be bent downward at the tip of the ladder, and the refraction center of the refraction step is It is located inside the ladder when the ladder is in a contracted and stored state, and the bending center of the ladder comes into contact with the ladder, thereby preventing the bending step from bending. According to this embodiment, the total length of the ladder in the stored state can be reduced. Further, there is no need to separately provide a mechanism for preventing refraction, and cost and weight can be reduced.
  • a thirteenth embodiment of the present invention is a ladder according to the twelfth embodiment, in which the refraction step has a convex portion behind the refraction center, and the ladder has a receiving portion corresponding to the convex portion, When the ladder is in the stored state, the convex portion and the receiving portion are close to or in contact with each other. According to this embodiment, refraction of the refraction stage in the stored state can be more reliably prevented.
  • a fourteenth embodiment of the present invention is a ladder according to any one of the first to thirteenth embodiments, including a ladder frame that supports a rear part of the ladder, and a ladder frame that supports a rear end of the ladder. It is divided into a undulation center body located in front of the undulation center body, which has a center point when the ladder undulates, and a cylinder tip connection body, which is located in front of the undulation center body and is connected to the tip of the undulation cylinder that undulates the ladder. be.
  • the amount of steel used is reduced compared to the conventional ladder frame, which is integrally connected from the rear end of the ladder to the point where the tip of the undulation cylinder is connected, and reduces weight and costs. can be reduced.
  • a vehicle according to a fifteenth embodiment of the present invention is equipped with a ladder according to any one of the first to fourteenth embodiments. According to this embodiment, it is possible to reduce the weight and cost of the vehicle.
  • FIG. 1 is a left side view of a vehicle equipped with a ladder according to this embodiment.
  • the vehicle firefighting ladder truck
  • the ladder 3 includes a receiving device 6 for receiving and supporting the ladder 3 from below, a basket 7 attached to the tip of the ladder 3, and an outrigger 8.
  • the ladder 3 has a multi-step ladder 31 and is connected to the vehicle body 2 via a ladder frame 32, a support frame 5, and a gyro turntable 4. Further, the ladder 3 is provided with a telescoping cylinder 33 used to extend and contract the ladder 3, a undulation cylinder 34 used to undulate the ladder 3, and a refraction cylinder 35 used to adjust the refraction angle of the refraction step 37.
  • FIG. 2 is a cross-sectional view of the ladder. Note that since the ladder is symmetrical, only one side is shown in FIG. Moreover, FIG. 3 is a side view showing a state in which the ladder is contracted and the telescopic cylinder is housed in the lower rib.
  • the ladder 3 according to this embodiment has a five-step structure in which the ladder 31 has the first to fifth steps, and is expanded and contracted by sliding the ladder 31 using the telescopic cylinder 33.
  • the first stage is the highest stage among the five stages during reduction
  • the fifth stage is the lowest stage among the five stages during reduction.
  • the ladder 31 connects the upper rib 311 and the lower rib 312 at each stage via an oblique rib box 313 , an upper rib 311 which is a rib located above, a lower rib 312 which is a lower rib. and a guide rail 315 that is arranged above the lower rib 312 and guides the sliding of the ladder 31.
  • the upper rib 311 and the lower rib 312 are made of a steel material such as a metal pipe, and have the same cross-sectional shape regardless of whether they are on the same level or different levels.
  • the cross-sectional size of the upper rib 311 or the lower rib 312 in at least one stage is the same as the cross-sectional size of the upper rib 311 or the lower rib 312 in the other stages. Since the required strength etc. of the ladder 3, which is made up of multiple steps, differs depending on the step, conventionally, the cross-sectional shape and cross-sectional size of the steel material varied depending on which step it was used for, or whether it was used for the upper rib 311 or the lower rib 312. By unifying the cross-sectional shape and cross-sectional size of the main rib as much as possible while satisfying the required strength as in this example, it is possible to use the same steel material for the main rib, and the type of steel material can be changed.
  • the main ribs that have the same cross-sectional size even if the steps are different are made using one type of steel material among the stored materials.
  • the steel material may be cut to a predetermined length.
  • the cross-sectional shape of the main frame is the same even among vehicles with different sizes and number of steps of the ladder 3, it becomes possible to use steel materials in common in many vehicles regardless of the model.
  • a steel material with the cross-sectional size used as the upper rib 311 of the third tier for one vehicle may be used as the lower rib 312 of the second tier for another vehicle, thereby widening the scope of common use and reducing costs. can be further reduced.
  • the same cross-sectional size of the ribs means that the outer diameter and inner diameter are the same, and when the cross-sectional shape is elliptical or rectangular, the major axis and the minor axis are also the same.
  • the lower rib 312 in the fourth stage has an inner diameter larger than the outer diameter of the telescopic cylinder 33, is hollow inside, and has an open bottom surface.
  • the lower main rib 312 of the fourth step and the telescopic cylinder 33 are arranged approximately coaxially, and as shown in FIG. 3, the extendable cylinder 33 is housed inside the lower main rib 312 of the fourth step when the ladder 3 is reduced. It has become.
  • part of the function of preventing buckling of the telescopic cylinder 33 can be performed by the lower main rib 312 of the fourth stage in which it is stored. It becomes possible to reduce the width of the ladder 3 or to form the ladder 3 narrowly, thereby reducing cost and weight. Note that even when the ladder 3 has four or less steps or six or more steps, the telescopic cylinder 33 is housed in the lower rib 312 at the step one step above the lowest step.
  • the cross-sectional size of the upper rib 311 and lower rib 312 in the first stage is the same as that of the upper rib 311 in the second stage, and the cross-sectional size is the smallest among the ribs. I take it as a thing. Further, the cross-sectional size of the lower rib 312 in the second stage and the upper rib 311 and lower rib 312 in the third stage is the same, and the cross-sectional size is the second smallest among the ribs. Further, the cross-sectional size of the upper main rib 311 in the fourth stage and the upper main rib 311 in the fifth stage are the same, and the cross-sectional size is the third smallest among the main ribs.
  • the cross-sectional size of the lower rib 312 at the fifth stage is the fourth smallest among the ribs. Further, the cross-sectional size of the lower rib 312 at the fourth stage that accommodates the telescopic cylinder 33 is the largest among the ribs. As a result, a total of 10 main ribs can be formed from 5 types of steel materials having different cross-sectional sizes, so that costs can be effectively reduced.
  • the cross-sectional shapes of the upper rib 311 and the lower rib 312 are square. As a result, compared to the case where the cross-sectional shape of the upper rib 311 and the lower rib 312 is a rectangle that is long in the vertical direction, even if the distance from the upper surface of the upper rib 311 to the lower surface of the lower rib 312 is the same, the upper rib 311 Since the distance between the lower surface and the upper surface of the lower rib 312 can be increased, it becomes easier to secure installation space for piping, wires, etc. arranged between the upper rib 311 and the lower rib 312.
  • the distance from the upper surface of the upper rib 311 to the lower surface of the lower rib 312 can be made smaller than when the cross section is a rectangle that is long in the vertical direction.
  • the overall height of the vehicle, including the ladder 3 can be reduced when the vehicle is running.
  • the ladders 31 of each step can be brought closer to each other than when the cross-sectional shape is a rectangle long in the left-right direction. By making the width smaller, the weight can be reduced.
  • the thickness of the lower rib 312 in the fourth stage is smaller than the thickness of the lower rib 312 in the fifth stage.
  • the thickness of the lower rib 312 of the fourth stage which has the largest cross-sectional size, smaller than that of the lower rib 312 of the fifth stage, it is possible to reduce the weight while satisfying the strength required for the rib.
  • the thicknesses of the main ribs in the first to third stages are the same, and the thickness is smaller than the thickness of the lower main rib 312 in the fourth stage.
  • the thickness of the upper rib 311 in the fourth stage is the same as the thickness of the upper rib 311 in the fifth stage, and the thickness is the same as the thickness of the lower rib 312 in the fourth stage.
  • the oblique rib 314 is provided diagonally to the upper rib 311 and the lower rib 312 as one of the connecting members for connecting the upper rib 311 and the lower rib 312, and one end is provided on the lower surface of the upper rib 311. It is connected to the upper rib 311 via an upper rib box 313, and the other end is connected to the lower rib 312 via a lower rib box 313 provided on the lower rib 312.
  • a plurality of oblique ribs 314 are provided so as to thread between the upper rib 311 and the lower rib 312, and the width W (see FIG. 2) of the oblique rib 314 is the same in each stage.
  • the width W of the oblique bones 314 uniform for each stage, the sizes of the plurality of oblique bones boxes 313 used for connecting the oblique bones 314 can be made uniform for each stage, thereby reducing costs.
  • the size of the diagonal ribs 314 differs depending on the installation position even in the same level, it is necessary to proceed with work while checking the size at the manufacturing site to avoid mistakes in the size.
  • the width W of the diagonal ribs 314 By unifying the width W of the diagonal ribs 314, the number of different sizes of the diagonal ribs 314 can be reduced, so that the time required for the size confirmation process is reduced compared to the conventional method, and manufacturing efficiency is improved.
  • each of the ribs including the lower rib 312 of the fourth stage that accommodates the telescopic cylinder 33, is composed of one pipe, and the diagonal rib 314 is attached to the one pipe.
  • the lower rib 312 of the fourth stage that accommodates the telescopic cylinder 33 can be used as a pipe for housing the telescopic cylinder 33 and a pipe for attaching the diagonal rib 314.
  • the number of parts can be reduced and the processing effort can be reduced, so costs and weight can be reduced.
  • FIG. 4 is a diagram showing a single telescopic cylinder in a contracted state.
  • the telescopic cylinder 33 is entirely housed in the lower rib 312 of the fourth step when the ladder 3 is retracted, such as when the vehicle is running.
  • the rod 331 of the telescoping cylinder 33 is extended from this state and the ladder 3 begins to extend, the ladder 31 gradually slides toward the tip side, and the tube 332 of the telescoping cylinder 33, which was housed in the lower rib 312 of the fourth step, exposed to the outside. Note that the rod 331 remains housed within the lower rib 312 of the fourth stage.
  • the ladder 3 starts to contract by retracting the rod 331 of the telescopic cylinder 33 from the extended state, the ladder 31 gradually slides toward the rear end side, and the tube 332 of the telescopic cylinder 33 moves to four steps. It is covered by the lower rib 312 of the eye.
  • a plurality of rod pads 333 are attached to the rod 331 of the telescopic cylinder 33 at intervals in the longitudinal direction.
  • the rod pad 333 has a substantially tetrahedral shape, and the rod 331 passes through a hole provided at the center of the rod pad 333.
  • the rod pad 333 has the role of preventing the rod 331 from buckling.
  • the rod pad 333 is formed in a size that makes contact with the inner surface of the lower rib 312 of the fourth stage in which the rod 331 is accommodated, and also serves to guide the rod 331 so that it does not come into contact with the lower rib 312.
  • a plurality of tube pads 334 are attached to the tube 332 of the telescopic cylinder 33 at intervals in the longitudinal direction.
  • the tube pad 334 serves to prevent the tube 332 from buckling.
  • the tube pad 334 is arranged so as to protrude from the outer surface of the tube 332, and comes into contact with the inner surface of the lower rib 312 when the tube 332 is stored in the lower rib 312 of the fourth stage, so that the tube 332 It also serves as a guide to avoid contact with other objects.
  • FIG. 5 is a schematic cross-sectional view showing the telescopic cylinder housed in the lower rib.
  • two hydraulic pipes 40 through which oil used for operating the telescopic cylinder 33 flows are arranged along the tube 332.
  • the hydraulic piping 40 is fixed to the tube 332 with fixing members at intervals in the longitudinal direction, and is housed in the lower rib 312 together with the telescopic cylinder 33 when the ladder 31 is contracted.
  • the tube pad 334 consists of one pad 334a arranged on the upper surface of the tube 332 and the other pad 334b arranged on the lower surface of the tube 332.
  • One pad 334a and the other pad 334b are arranged with the tube 332 in between, and their positions differ by approximately 180 degrees.
  • One pad 334a has a horizontal length smaller than the inner diameter of the lower rib 312 of the fourth stage and the outer diameter of the tube 332, and the telescopic cylinder 33 is inserted into the gap between the one pad 334a and the lower rib 312.
  • a hydraulic pipe 40 is provided in parallel with the hydraulic pipe 40 . In this way, by effectively utilizing the limited space inside the lower rib 312 of the fourth step and arranging the pipes, etc., the width of the ladder 3 can be made as small as possible and the weight can be reduced.
  • other piping or wiring can also be passed through the gap between the one pad 334a and the lower rib 312.
  • the height of one pad 334a is such that the upper surface of one pad 334a comes into contact with the upper inner surface of the lower rib 312 when the tube 332 is stored in the lower rib 312 of the fourth stage.
  • the length of the other pad 334b in the lateral direction is approximately equal to the inner diameter of the lower rib 312 of the fourth stage that accommodates the tube 332, and the height of the other pad 334b is approximately equal to the inner diameter of the lower rib 312 of the fourth stage that accommodates the tube 332.
  • the lower surface is sized to be in contact with the lower inner surface of the lower rib 312.
  • FIG. 6A and 6B are diagrams showing the lower roller, FIG. 6A is a side view, and FIG. 6B is a cross-sectional view of one step in the direction of expansion and contraction.
  • the second to fifth ladders 31 are each provided with a lower roller 50 that rotates by contact with the lower surface of the lower rib 312 when the ladder 3 is extended or contracted.
  • the lower roller 50 includes a first portion 51 having a pair of rotating bodies 501 and a second portion 52 having a pair of rotating bodies 502 adjacent to each other.
  • the rotational axes of the rotating body 501 and the rotating body 502 face in the width direction of the lower rib 312.
  • One end of the pair of rotating bodies 501 of the first part 51 is supported by a first bracket 511 on one end side of a balance-shaped (substantially inverted triangular shape), and the other end of the pair of rotating bodies 501 of the first part 51 is shaped like a balance. It is supported by a first bracket 512 on the other end (approximately inverted triangular shape).
  • one end of the pair of rotating bodies 502 of the second part 52 is supported by a second bracket 521 on one end side of a balance-shaped (substantially inverted triangular shape), and the other end of the pair of rotating bodies 502 of the second part 52 is It is supported by a second bracket 522 on the other end side (approximately inverted triangular shape).
  • first bracket 511 on one end and the first bracket 512 on the other end are not directly connected but are provided separately, and the second bracket 521 on one end and the second bracket 522 on the other end are not directly connected.
  • fewer parts are required for connection compared to the case where the bracket supporting one end of the rotating body 501 or the rotating body 502 and the bracket supporting the other end are directly connected with connecting parts, etc. Costs such as material costs and processing costs can be reduced, and work efficiency can be improved.
  • the first bracket 511 on one end, the first bracket 512 on the other end, the second bracket 521 on one end, and the second bracket 522 on the other end are attached to the roller frame.
  • the roller frame includes a central suspension section 531 suspended in the width direction between the first section 51 and the second section 52, and a first suspension section 531 suspended in the width direction between the pair of rotating bodies 501 of the first section 51.
  • the second suspension part 533 is suspended in the width direction between the suspension part 532 and the pair of rotating bodies 502 of the second part 52, and one end of the central suspension part 531, the first suspension part 532, and the second suspension part 533. and one end support part 535 that supports the other ends of the central suspension part 531, the first suspension part 532, and the second suspension part 533.
  • the first bracket 511 on one end side engages with one end side of the first suspension part 532
  • the first bracket 512 on the other end side engages with the other end side of the first suspension part 532
  • the second bracket 521 on one end side engages with the other end side of the first suspension part 532.
  • the second bracket 522 on the other end side is engaged with one end side of the second suspension part 533
  • the second bracket 522 on the other end side is engaged with the other end side of the second suspension part 533.
  • FIGS. 7 and 8 are views showing the swing suppressing body
  • FIGS. 7(a) and 8(a) are side views
  • FIGS. 7(b) and 8(b) are cross-sectional views.
  • Swing suppressing bodies 36 are provided at the rear ends of the first to fourth ladders 31 to suppress swinging of the ladder 3 in the vertical direction and the like when expanding and contracting.
  • the swing suppressing body 36 includes a U-shaped member 361 as a first main body, an upper rear end pad 362 and a lower rear end pad 363 as first subsidiary bodies, and a J-shaped member 364 as a second main body. and a side rear end pad 365 as a second subsidiary body.
  • the material of the U-shaped member 361 and the J-shaped member 364 is, for example, SUS, and the material of the upper rear end pad 362, the lower rear end pad 363, and the side rear end pads 365 is, for example, nylon.
  • the U-shaped member 361 is arranged with a gap between the lower rib 312 and the guide rail 315 and is bolted.
  • the outer surface of the U-shaped member 361 is in contact with the outer surface of the lower rib 312 of the next step above.
  • the upper rear end pad 362 is arranged to fill the gap between the upper surface of the U-shaped member 361 and the lower surface of the guide rail 315.
  • the lower rear end pad 363 is arranged to fill the gap between the lower surface of the U-shaped member 361 and the upper surface of the lower rib 312.
  • One end of the J-shaped member 364 is connected to the outer surface of the guide rail 315, and the other end is connected to the upper surface of the lower rib 312 and bolted.
  • the side rear end pad 365 is arranged so as to fill the gap between the guide rail 315 at the next lower stage and the J-shaped member.
  • FIG. 9 is a side view showing the ladder from the bent step to the second step, with FIG. 9(a) showing the ladder when it is contracted, and FIG. 9(b) when it is extending.
  • a bending step 37 that can be bent downward is provided at the tip of the ladder 31.
  • the basket 7 is connected to the tip of the bending stage 37.
  • a refraction center 37A which is the center point when the refraction step 37 refracts, is located inside the ladder 31 inside the tip 31A of the second step when the ladder 3 is in a contracted storage state.
  • FIG. 10 is a detailed view of the stowage of the bending step, with FIG. 10(a) showing the convex portion, FIG. 10(b) showing the receiving portion, and FIG. 10(c) showing the convex portion when the ladder is in the stowed state.
  • the engagement state between the part and the receiving part is shown.
  • the lower diagrams in FIGS. 10(a) and 10(b) are enlarged views of the portions circled in the upper diagrams.
  • a convex portion 38 that is upwardly convex is provided behind the refraction center 37A, and in the second step of the ladder 31, a receiving portion 39 corresponding to the convex portion 38 is provided behind the tip 31A.
  • the convex portion 38 is configured to be close to or in contact with the receiving portion 39 when the ladder 3 is contracted and placed in the stored state, as shown in FIG. 10(c).
  • the length of the receiving portion 39 is greater than the length of the convex portion 38.
  • FIG. 11 is a side view showing the rear part of the ladder.
  • the ladder frame 32 that supports the rear part of the ladder 3 includes a undulation center body 321 having a center point when the ladder 3 undulates, and a cylinder tip connection body 322 to which the tip of the undulation cylinder 34 for undulating the ladder 3 is connected. It is divided into The undulation center body 321 is located at the rear end of the ladder 3, and the cylinder tip connectors 322 are located forward of the undulation center body 321 and are bolted to the ladder body 31, respectively.
  • a frame connection body 323 connected to the support frame 5 extends downward from the undulation center body 321, and the rear end of the undulation cylinder 34 is attached to the frame connection body 323.
  • the undulation center body 321 and the cylinder tip connection body 322 By dividing the contact point with the ladder 31 in the ladder frame 32 into two parts, the undulation center body 321 and the cylinder tip connection body 322, the undulation cylinder 34 can be connected from the rear end of the ladder 31 as in the conventional case. Compared to a ladder frame that is integrally connected up to the point where the tip is connected, the amount of steel used can be reduced, and weight and cost can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ladders (AREA)

Abstract

This ladder 3 has a ladder body 31 having a plurality of stages and that extends and contracts on a vehicle, wherein in the main ribs of the ladder body 31, an upper main rib 311 and a lower main rib 312have entirely the same cross-sectional shape, and the cross-sectional size of the upper main rib 311 or the lower main rib 312 on at least one stage is the same as the cross-sectional size of the upper main rib 311 or the lower main rib 312 on other stages. Consequently, there can be provided a vehicle ladder that is lighter and has a lower cost than a conventional ladder, and a vehicle provided with said ladder.

Description

梯子、及び当該梯子を備えた車両Ladders and vehicles equipped with such ladders
 本発明は、複数段の梯体を有して消防車等の車両上で伸縮等させる梯子、及び当該梯子を備えた車両に関する。 TECHNICAL FIELD The present invention relates to a ladder that has a plurality of steps and is extendable and retractable on a vehicle such as a fire engine, and a vehicle equipped with the ladder.
 消防用梯子車や高所作業車等の車上で用いられる伸縮、起伏又は旋回動作が可能な梯子が知られている。
 例えば、特許文献1には、複数段編成の梯子組立体は、各梯子が順次伸縮自在に嵌め合わされて構成され、梯子は、上親骨材と、下親骨材と、両者をつなぐ斜骨材と、下親骨同士を連結する横桟と、横桟同士をつなぐ横桟斜骨材とを有し、各部材が溶接により連結され、下親骨材は、角形管と、これらのあいだに挟まれて、折り曲げ板材とを有し、折り曲げ板材は、その高さが角形管の高さよりも高く、角形管の上方向に突出し、折り曲げ板材は、角形管の下方に突出しないように配置されている消防用梯子が開示されている。
2. Description of the Related Art Ladders that are used on vehicles such as firefighting ladder trucks and aerial work vehicles and are capable of telescoping, undulating, or turning operations are known.
For example, in Patent Document 1, a multi-tiered ladder assembly is constructed by each ladder being fitted together in a telescopic manner in order, and the ladder has an upper main aggregate, a lower main aggregate, and a diagonal aggregate that connects the two. , it has a horizontal beam that connects the lower ribs and a diagonal horizontal beam that connects the horizontal beams, each member is connected by welding, and the lower rib is sandwiched between the square pipe and these. , a bent plate material, the bent plate material is higher than the height of the rectangular tube and protrudes upward from the rectangular tube, and the bent plate material is arranged so as not to protrude downward from the rectangular tube. A ladder is disclosed.
特開2006-118246号公報JP2006-118246A
 特許文献1は、低コストかつ軽量で強度信頼性も高い消防用梯子を提供するものであるが、消防用梯子車や高所作業車等に搭載される梯子の更なる軽量化やコストダウンが求められている。
 そこで、本発明は、従来よりも軽量で低コストである梯子、及び当該梯子を備えた車両を提供することを目的とする。
Patent Document 1 provides a firefighting ladder that is low cost, lightweight, and has high strength and reliability. It has been demanded.
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a ladder that is lighter and lower in cost than conventional ladders, and a vehicle equipped with the ladder.
 請求項1記載の本発明の梯子は、複数段の梯体31を有し車両上で伸縮する梯子3であって、梯体31は、上親骨311及び下親骨312の断面形状がすべて同一であり、少なくとも一つの段における上親骨311又は下親骨312の断面サイズが、他の段における上親骨311又は下親骨312の断面サイズと同一であることを特徴とする。
 請求項2記載の本発明は、請求項1に記載の梯子において、最下段の一つ上の段における下親骨312は、内径が梯子3の伸縮に用いる伸縮シリンダ33の外径よりも大きく、伸縮シリンダ33と同軸に配置されており、梯子3が縮小したときに伸縮シリンダ33を収納することを特徴とする。
 請求項3記載の本発明は、請求項2に記載の梯子において、伸縮シリンダ33を収納する下親骨312は一つのパイプで構成され、一つのパイプに上親骨311と下親骨312を接続する接続材が取り付けられていることを特徴とする。
 請求項4記載の本発明は、請求項3に記載の梯子において、接続材は、一端が斜骨ボックス313を介して上親骨311と接続し、他端が斜骨ボックス313を介して下親骨312と接続した、親骨に対して斜めに設けられた斜骨314であり、斜骨314の幅Wが、各段内において同一であることを特徴とする。
 請求項5記載の本発明は、請求項2から請求項4のいずれか一項に記載の梯子において、梯体31が5段であり、1段目における上親骨311及び下親骨312と2段目における上親骨311の断面サイズが親骨のなかで最も小さく、2段目における下親骨312と3段目における上親骨311及び下親骨312の断面サイズが親骨のなかで二番目に小さく、4段目における上親骨311と5段目における上親骨311の断面サイズが親骨のなかで三番目に小さく、5段目における下親骨312の断面サイズが親骨のなかで四番目に小さく、4段目における下親骨312の断面サイズが親骨のなかで最大であることを特徴とする。
 請求項6記載の本発明は、請求項5に記載の梯子において、4段目における下親骨312の厚みを、5段目における下親骨312の厚みよりも小さくしたことを特徴とする。
 請求項7記載の本発明は、請求項1から請求項6のいずれか一項に記載の梯子において、上親骨311及び下親骨312の断面形状が正方形であることを特徴とする。
 請求項8記載の本発明は、請求項2から請求項7のいずれか一項に記載の梯子において、伸縮シリンダ33のチューブ332は、下親骨312に収納されるときに下親骨312の内面と接するチューブ用パッド334を備え、チューブ用パッド334は、チューブ332を収納する下親骨312の内径よりも長さが小さい一方のパッド334aと、チューブ332を収納する下親骨312の内径と長さが等しい他方のパッド334bとからなり、一方のパッド334aと他方のパッド334bがチューブ332を挟んで配置され、一方のパッド334aと下親骨312との隙間に配管又は配線が通されていることを特徴とする。
 請求項9記載の本発明は、請求項1から請求項8のいずれか一項に記載の梯子において、梯子3を伸縮させるときに下親骨312の下面との接触により回転する下面ローラ50を備え、下面ローラ50は、それぞれ一対の回転体501、502を有する第一部位51と第二部位52とが隣接してなり、第一部位51の一対の回転体501の一端を支持する一端側第一ブラケット511と、第一部位51の一対の回転体501の他端を支持する他端側第一ブラケット512とが分離して設けられ、第二部位52の一対の回転体502の一端を支持する一端側第二ブラケット521と、第二部位52の一対の回転体502の他端を支持する他端側第二ブラケット522とが分離して設けられていることを特徴とする。
 請求項10記載の本発明は、請求項1から請求項9のいずれか一項に記載の梯子において、下親骨312の後端において、梯子3を伸縮するときの揺動を抑制する揺動抑制体36を備え、揺動抑制体36は、梯体31の同一段において、梯体31のスライドをガイドするガイドレール315と下親骨312との間に設けられた第一主体361と、ガイドレール315と第一主体361との隙間、及び下親骨312と第一主体361との隙間に配置された第一副体362を有することを特徴とする。
 請求項11記載の本発明は、請求項10に記載の梯子において、揺動抑制体36は、梯体31の同一段において、一端がガイドレール315に接続し、他端が下親骨312に接続した第二主体と、一つ下の段の梯体31に設けられているガイドレール315と第二主体との隙間に配置された第二副体を有することを特徴とする。
 請求項12記載の本発明は、請求項1から請求項11のいずれか一項に記載の梯子において、梯体31の先端に下方へ屈折可能な屈折段37を備え、屈折段37の屈折中心37Aは、梯子3を縮小した収納状態において梯体31内に位置し、屈折中心37Aが梯体31に当接することで屈折段37の屈折が阻止されることを特徴とする。
 請求項13記載の本発明は、請求項12に記載の梯子において、屈折段37は屈折中心37Aよりも後方に凸部38を有し、梯体31は凸部38に対応する受け部39を有し、梯子3が収納状態にあるとき、凸部38と受け部39が近接又は接触していることを特徴とする。
 請求項14記載の本発明は、請求項1から請求項13のいずれか一項に記載の梯子において、梯子3の後部を支持する梯体フレーム32を備え、梯体フレーム32は、梯子3の後端に位置し梯子3が起伏する際の中心点を有する起伏中心体321と、起伏中心体321よりも前方に位置し梯子3を起伏させる起伏シリンダ34の先端が接続されているシリンダ先端接続体322とに分かれていることを特徴とする。
 請求項15記載の本発明の車両は、請求項1から請求項14のいずれか一項に記載の梯子3が取り付けられていることを特徴とする。
The ladder of the present invention according to claim 1 is a ladder 3 that has a plurality of steps 31 and is extendable and retractable on a vehicle, and the ladder 31 has an upper rib 311 and a lower rib 312 that have the same cross-sectional shape. The cross-sectional size of the upper rib 311 or the lower rib 312 in at least one step is the same as the cross-sectional size of the upper rib 311 or the lower rib 312 in the other steps.
The present invention according to claim 2 is the ladder according to claim 1, in which the lower rib 312 at the step above the lowest step has an inner diameter larger than the outer diameter of the telescopic cylinder 33 used for expanding and contracting the ladder 3. It is arranged coaxially with the telescopic cylinder 33, and is characterized by storing the telescopic cylinder 33 when the ladder 3 is contracted.
The present invention according to claim 3 provides the ladder according to claim 2, in which the lower rib 312 housing the telescopic cylinder 33 is constituted by one pipe, and the upper rib 311 and the lower rib 312 are connected to the one pipe. It is characterized by the fact that the material is attached.
The present invention according to claim 4 provides the ladder according to claim 3, wherein one end of the connecting member is connected to the upper rib 311 via the diagonal rib box 313, and the other end is connected to the lower rib via the diagonal rib box 313. 312, the diagonal rib 314 is provided diagonally with respect to the main rib, and is characterized in that the width W of the diagonal rib 314 is the same in each step.
The present invention according to claim 5 is the ladder according to any one of claims 2 to 4, wherein the ladder 31 has five steps, and the upper rib 311 and the lower rib 312 in the first step and the second step. The cross-sectional size of the upper rib 311 in the eye is the smallest among the ribs, the cross-sectional size of the lower rib 312 in the second stage, and the upper rib 311 and lower rib 312 in the third stage is the second smallest among the ribs, and the cross-sectional size of the lower rib 312 in the second row is the second smallest among the ribs, The cross-sectional size of the upper rib 311 in the eye and the upper rib 311 in the 5th row is the third smallest among the ribs, the cross-sectional size of the lower rib 312 in the 5th row is the fourth smallest among the ribs, The lower rib 312 is characterized by having the largest cross-sectional size among the ribs.
The present invention as set forth in claim 6 is characterized in that, in the ladder as set forth in claim 5, the thickness of the lower rib 312 at the fourth step is smaller than the thickness of the lower rib 312 at the fifth step.
According to a seventh aspect of the present invention, in the ladder according to any one of claims 1 to 6, the upper rib 311 and the lower rib 312 have a square cross-sectional shape.
According to an eighth aspect of the present invention, in the ladder according to any one of claims 2 to 7, the tube 332 of the telescoping cylinder 33 is arranged so that the tube 332 of the telescopic cylinder 33 is connected to the inner surface of the lower rib 312 when the tube 332 is housed in the lower rib 312. The tube pad 334 is provided with a pad 334 for a tube that is in contact with the inner diameter of the lower rib 312 that accommodates the tube 332, and a pad 334a that is smaller in length than the inner diameter of the lower rib 312 that accommodates the tube 332. One pad 334a and the other pad 334b are arranged with a tube 332 in between, and piping or wiring is passed through the gap between one pad 334a and the lower rib 312. shall be.
The present invention according to claim 9 provides a ladder according to any one of claims 1 to 8, which includes a lower surface roller 50 that rotates by contact with the lower surface of the lower rib 312 when extending and contracting the ladder 3. , the lower surface roller 50 has a first part 51 and a second part 52, each having a pair of rotating bodies 501 and 502, which are adjacent to each other, and a first part 51 and a second part 52, each having a pair of rotating bodies 501 and 502, are adjacent to each other. One bracket 511 and the other end side first bracket 512 that supports the other end of the pair of rotating bodies 501 of the first part 51 are provided separately, and support one end of the pair of rotating bodies 502 of the second part 52. A second bracket 521 on one end side that supports the second portion 52 and a second bracket 522 on the other end side that supports the other ends of the pair of rotating bodies 502 of the second portion 52 are provided separately.
The present invention as set forth in claim 10 provides the ladder according to any one of claims 1 to 9, in which a swing suppression device is provided at the rear end of the lower rib 312 to suppress swinging when extending and contracting the ladder 3. The swing suppressing body 36 includes a first main body 361 provided between a lower main rib 312 and a guide rail 315 that guides the sliding of the ladder 31 at the same stage of the ladder 31, and a guide rail. 315 and the first main body 361, and a first subsidiary body 362 disposed in the gap between the lower rib 312 and the first main body 361.
The present invention according to claim 11 is the ladder according to claim 10, in which the swing suppressing body 36 has one end connected to the guide rail 315 and the other end connected to the lower rib 312 at the same step of the ladder 31. It is characterized by having a second main body, and a second subsidiary body disposed in a gap between the second main body and the guide rail 315 provided on the ladder 31 of the next lower stage.
The present invention according to claim 12 provides the ladder according to any one of claims 1 to 11, which includes a refraction step 37 that can be bent downward at the tip of the ladder body 31, and a refraction center of the refraction step 37. 37A is located within the ladder body 31 when the ladder 3 is in a contracted storage state, and the refraction center 37A abuts against the ladder body 31, thereby preventing the refraction step 37 from being bent.
The present invention as set forth in claim 13 provides the ladder as set forth in claim 12, in which the bending step 37 has a convex portion 38 behind the bending center 37A, and the ladder body 31 has a receiving portion 39 corresponding to the convex portion 38. When the ladder 3 is in the stored state, the convex portion 38 and the receiving portion 39 are close to or in contact with each other.
The present invention according to claim 14 is the ladder according to any one of claims 1 to 13, which includes a ladder frame 32 that supports the rear part of the ladder 3. A cylinder tip connection in which a undulation center body 321 located at the rear end and having a center point when the ladder 3 undulates, and a tip of a undulation cylinder 34 located in front of the undulation center body 321 and which undulates the ladder 3 are connected. It is characterized by being divided into a body 322.
A vehicle according to the present invention according to claim 15 is characterized in that the ladder 3 according to any one of claims 1 to 14 is attached.
 本発明によれば、車両に搭載する梯子の重量とコストを低減することができる。 According to the present invention, the weight and cost of a ladder mounted on a vehicle can be reduced.
本発明の一実施例による梯子を備えた車両の左側面図Left side view of a vehicle equipped with a ladder according to an embodiment of the present invention 同梯体の横断面図Cross-sectional view of the same ladder 同梯子を縮小し伸縮シリンダが下親骨内に収納された状態を示す側面図Side view showing the same ladder in a reduced size state with the telescopic cylinder stored in the lower rib 同縮小状態の伸縮シリンダ単体を示す図Diagram showing a single telescopic cylinder in the same contracted state 同下親骨に収納されている伸縮シリンダを示す断面模式図A cross-sectional schematic diagram showing the telescopic cylinder housed in the lower rib. 同下面ローラを示す図Diagram showing the lower roller 同揺動抑制体を示す図Diagram showing the rocking suppressor 同揺動抑制体を示す図Diagram showing the rocking suppressor 同梯子の屈折段から2段目までを示す側面図Side view showing the bending step to the second step of the same ladder 同屈折段の収納に関する詳細図Detailed view of the storage of the refracting stage 同梯子の後部を示す側面図Side view showing the rear of the ladder
 本発明の第1の実施の形態による梯子は、複数段の梯体を有し車両上で伸縮する梯子であって、梯体は、上親骨及び下親骨の断面形状がすべて同一であり、少なくとも一つの段における上親骨又は下親骨の断面サイズが、他の段における上親骨又は下親骨の断面サイズと同一としたものである。
 本実施の形態によれば、出来るだけ親骨の断面形状及び断面サイズを統一することで、親骨の構成材料である鋼材を共通して使用することが可能となり、鋼材の種類を減らして管理の手間やコストを低減することができる。
The ladder according to the first embodiment of the present invention is a ladder that has a plurality of steps and is extendable and retractable on a vehicle, and the ladder has upper ribs and lower ribs all having the same cross-sectional shape, and at least The cross-sectional size of the upper rib or lower rib in one stage is the same as the cross-sectional size of the upper rib or lower rib in another stage.
According to this embodiment, by unifying the cross-sectional shape and cross-sectional size of the main ribs as much as possible, it becomes possible to use the steel materials that constitute the main ribs in common, reducing the types of steel materials and reducing the management effort. and costs can be reduced.
 本発明の第2の実施の形態は、第1の実施の形態による梯子において、最下段の一つ上の段における下親骨は、内径が梯子の伸縮に用いる伸縮シリンダの外径よりも大きく、伸縮シリンダと同軸に配置されており、梯子が縮小したときに伸縮シリンダが収納するものである。
 本実施の形態によれば、伸縮シリンダの座屈を防止する機能等の一部を収納先の下親骨が果たすことができるため、伸縮シリンダを下親骨の外に配置する場合よりも部材点数を少なくしたり梯子を幅狭に形成したりすること等が可能となり、コスト及び重量を低減できる。
In the second embodiment of the present invention, in the ladder according to the first embodiment, the lower rib at the step above the lowest step has an inner diameter larger than the outer diameter of the telescopic cylinder used for extending and contracting the ladder. It is arranged coaxially with the telescoping cylinder, and the telescoping cylinder retracts when the ladder is retracted.
According to this embodiment, the lower main rib in which the telescopic cylinder is stored can partially perform the function of preventing buckling of the telescopic cylinder, so the number of parts can be reduced compared to when the telescopic cylinder is placed outside the lower main rib. It is possible to reduce the number of ladders or to form the ladder with a narrow width, thereby reducing cost and weight.
 本発明の第3の実施の形態は、第2の実施の形態による梯子において、伸縮シリンダを収納する下親骨は一つのパイプで構成され、その一つのパイプに上親骨と下親骨を接続する接続材が取り付けられているものである。
 本実施の形態によれば、伸縮シリンダを収容する下親骨を、伸縮シリンダを収納するパイプと、接続材を取り付けるパイプというように、二つの鋼材で内部を区切って構成する場合よりも、部材点数を少なくして加工の手間も減らせるため、コスト及び重量を低減することができる。
A third embodiment of the present invention is that in the ladder according to the second embodiment, the lower rib housing the telescopic cylinder is composed of one pipe, and a connection is made to connect the upper rib and the lower rib to the one pipe. material is attached.
According to this embodiment, the number of parts is reduced compared to when the lower rib housing the telescoping cylinder is divided internally by two steel materials, such as a pipe housing the telescoping cylinder and a pipe attaching the connecting material. Since the amount of time required for processing can be reduced, costs and weight can be reduced.
 本発明の第4の実施の形態は、第3の実施の形態による梯子において、接続材は、一端が斜骨ボックスを介して上親骨と接続し、他端が斜骨ボックスを介して下親骨と接続した、親骨に対して斜めに設けられた斜骨であり、斜骨の幅が、各段内において同一としたものである。
 本実施の形態によれば、各段内における複数の斜骨ボックスのサイズを統一してコストを低減できる。また、各段内における斜骨の幅を統一することで斜骨の種類を少なくできるため、従来よりも確認工程を減らすことに繋がり、製造効率が向上する。
A fourth embodiment of the present invention is a ladder according to the third embodiment, in which the connecting member has one end connected to the upper rib via the oblique rib box, and the other end connected to the lower rib via the oblique rib box. This is an oblique bone that is connected to the main bone and is provided diagonally with respect to the main bone, and the width of the oblique bone is the same within each step.
According to this embodiment, costs can be reduced by unifying the sizes of the plurality of oblique bone boxes in each stage. Furthermore, by unifying the width of the oblique bones in each stage, the number of types of oblique bones can be reduced, which leads to a reduction in the number of confirmation steps compared to the conventional method, and improves manufacturing efficiency.
 本発明の第5の実施の形態は、第2から第4のいずれか一つの実施の形態による梯子において、梯体が5段であり、1段目における上親骨及び下親骨と2段目における上親骨の断面サイズが親骨のなかで最も小さく、2段目における下親骨と3段目における上親骨及び下親骨の断面サイズが親骨のなかで二番目に小さく、4段目における上親骨と5段目における上親骨の断面サイズが親骨のなかで三番目に小さく、5段目における下親骨の断面サイズが親骨のなかで四番目に小さく、4段目における下親骨の断面サイズが親骨のなかで最大としたものである。
 本実施の形態によれば、計10本の親骨を断面サイズが異なる5種類の鋼材で形成することができるため、コストを効果的に低減することができる。
In a fifth embodiment of the present invention, in the ladder according to any one of the second to fourth embodiments, the ladder has five steps, and the upper rib and lower rib in the first step and the lower rib in the second step. The cross-sectional size of the upper rib is the smallest among the ribs, the cross-sectional size of the lower rib in the second row, the upper rib and the lower rib in the third row is the second smallest among the ribs, and the cross-sectional size of the upper rib in the fourth row is 5. The cross-sectional size of the upper rib in the 5th step is the third smallest among the main ribs, the cross-sectional size of the lower rib in the 5th step is the fourth smallest among the main ribs, and the cross-sectional size of the lower rib in the 4th step is the smallest among the main ribs. This is the maximum value.
According to the present embodiment, a total of 10 main ribs can be formed from five types of steel materials with different cross-sectional sizes, so that costs can be effectively reduced.
 本発明の第6の実施の形態は、第5の実施の形態による梯子において、4段目における下親骨の厚みを、5段目における下親骨の厚みよりも小さくしたものである。
 本実施の形態によれば、断面サイズが最大である下親骨の厚みを小さくすることで、親骨として必要な強度を満たしつつ重量を軽減することができる。
In the sixth embodiment of the present invention, in the ladder according to the fifth embodiment, the thickness of the lower rib at the fourth step is made smaller than the thickness of the lower rib at the fifth step.
According to this embodiment, by reducing the thickness of the lower rib, which has the largest cross-sectional size, it is possible to reduce the weight while satisfying the strength required for the rib.
 本発明の第7の実施の形態は、第1から第6のいずれか一つの実施の形態による梯子において、上親骨及び下親骨の断面形状を正方形としたものである。
 本実施の形態によれば、車両走行時など梯子を収納状態としているときの梯子を含めた車両全高を小さくできると共に、梯体の横幅を小さく形成して重量を低減することができる。
According to a seventh embodiment of the present invention, in the ladder according to any one of the first to sixth embodiments, the upper rib and the lower rib have a square cross-sectional shape.
According to this embodiment, the overall height of the vehicle including the ladder can be reduced when the ladder is in the stowed state, such as when the vehicle is running, and the width of the ladder can be made small to reduce the weight.
 本発明の第8の実施の形態は、第2から第7のいずれか一つの実施の形態による梯子において、伸縮シリンダのチューブは、下親骨に収納されるときに下親骨の内面と接するチューブ用パッドを備え、チューブ用パッドは、チューブを収納する下親骨の内径よりも長さが小さい一方のパッドと、チューブを収納する下親骨の内径と長さが等しい他方のパッドとからなり、一方のパッドと他方のパッドがチューブを挟んで配置され、一方のパッドと下親骨との隙間に配管又は配線が通されているものである。
 本実施の形態によれば、伸縮シリンダを収容する下親骨の内部の限られたスペースを有効活用して配管等を配置することで、梯子の横幅を極力小さくして軽量化を図ることができる。
An eighth embodiment of the present invention is the ladder according to any one of the second to seventh embodiments, wherein the tube of the telescopic cylinder is a tube that contacts the inner surface of the lower rib when stored in the lower rib. The tube pad consists of one pad whose length is smaller than the inner diameter of the lower rib that stores the tube, and the other pad whose length is equal to the inner diameter of the lower rib that stores the tube. The pad and the other pad are arranged with a tube in between, and piping or wiring is passed through the gap between the one pad and the lower rib.
According to this embodiment, by effectively utilizing the limited space inside the lower rib that accommodates the telescopic cylinder and arranging piping, etc., the width of the ladder can be made as small as possible and the weight can be reduced. .
 本発明の第9の実施の形態は、第1から第8のいずれか一つの実施の形態による梯子において、梯子を伸縮させるときに下親骨の下面との接触により回転する下面ローラを備え、下面ローラは、それぞれ一対の回転体を有する第一部位と第二部位とが隣接してなり、第一部位の一対の回転体の一端を支持する一端側第一ブラケットと、第一部位の一対の回転体の他端を支持する他端側第一ブラケットとが分離して設けられ、第二部位の一対の回転体の一端を支持する一端側第二ブラケットと、第二部位の一対の回転体の他端を支持する他端側第二ブラケットとが分離して設けられているものである。
 本実施の形態によれば、回転体の一端を支持するブラケットと他端を支持するブラケットを連結部品等で直接繋ぐ場合と比べて、連結のための部品が少なくなるため、材料費や加工費等のコストを低減できると共に、作業効率を向上させることができる。
A ninth embodiment of the present invention is a ladder according to any one of the first to eighth embodiments, which includes a lower roller that rotates by contact with the lower surface of the lower rib when extending and contracting the ladder, and The roller has a first part and a second part adjacent to each other, each having a pair of rotating bodies, and a first bracket on one end side that supports one end of the pair of rotating bodies of the first part, and A first bracket on the other end side that supports the other end of the rotating body is provided separately, a second bracket on the one end side that supports one end of the pair of rotating bodies in the second part, and a pair of rotating bodies in the second part. The other end side second bracket supporting the other end is provided separately.
According to this embodiment, compared to the case where the bracket supporting one end of the rotating body and the bracket supporting the other end are directly connected with connecting parts, there are fewer parts for connecting, so material costs and processing costs are reduced. It is possible to reduce costs such as, etc., and improve work efficiency.
 本発明の第10の実施の形態は、第1から第9のいずれか一つの実施の形態による梯子において、下親骨の後端において、梯子を伸縮するときの揺動を抑制する揺動抑制体を備え、揺動抑制体は、梯体の同一段において、梯体のスライドをガイドするガイドレールと下親骨との間に設けられた第一主体と、ガイドレールと第一主体との隙間、及び下親骨と第一主体との隙間に配置された第一副体を有するものである。
 本実施の形態によれば、第一主体と他の部材との隙間に第一副体を挿入して隙間を埋めることで、伸縮時の梯子の揺動を効果的に抑制できる。また、当該隙間に応じて第一副体を形成すればよいため、製造効率を高めることができる。
A tenth embodiment of the present invention is a swing suppressing body that suppresses swinging when extending and contracting the ladder at the rear end of the lower rib in the ladder according to any one of the first to ninth embodiments. The swing suppressing body includes a first main body provided between a guide rail for guiding the sliding of the ladder and the lower rib on the same stage of the ladder, a gap between the guide rail and the first main body, and a first subsidiary body disposed in the gap between the lower rib and the first main body.
According to this embodiment, by inserting the first subsidiary body into the gap between the first main body and another member to fill the gap, it is possible to effectively suppress the swinging of the ladder during expansion and contraction. Further, since the first sub-body may be formed according to the gap, manufacturing efficiency can be improved.
 本発明の第11の実施の形態は、第10の実施の形態による梯子において、揺動抑制体は、梯体の同一段において、一端がガイドレールに接続し、他端が下親骨に接続した第二主体と、一つ下の段の梯体に設けられているガイドレールと第二主体との隙間に配置された第二副体を有するものである。
 本実施の形態によれば、第二主体と他の部材との隙間に第二副体を挿入して隙間を埋めることで、伸縮時の梯子の揺動を効果的に抑制できる。また、当該隙間に応じて第二副体を形成すればよいため、製造効率を高めることができる。
An eleventh embodiment of the present invention is the ladder according to the tenth embodiment, in which the swing suppressing body has one end connected to the guide rail and the other end connected to the lower main rib at the same step of the ladder. It has a second main body and a second sub-body disposed in a gap between the second main body and a guide rail provided on the ladder one step below.
According to this embodiment, by inserting the second subsidiary body into the gap between the second main body and another member to fill the gap, it is possible to effectively suppress the swinging of the ladder during expansion and contraction. Moreover, since the second sub-body may be formed according to the gap, manufacturing efficiency can be improved.
 本発明の第12の実施の形態は、第1から第11のいずれか一つの実施の形態による梯子において、梯体の先端に下方へ屈折可能な屈折段を備え、屈折段の屈折中心は、梯子を縮小した収納状態において梯体内に位置し、屈折中心が梯体に当接することで屈折段の屈折が阻止されるものである。
 本実施の形態によれば、収納状態における梯子の全長を小さくすることができる。また、屈折を防止する機構を別途設けなくて済み、コストや重量を低減することができる。
A twelfth embodiment of the present invention is a ladder according to any one of the first to eleventh embodiments, which includes a refraction step that can be bent downward at the tip of the ladder, and the refraction center of the refraction step is It is located inside the ladder when the ladder is in a contracted and stored state, and the bending center of the ladder comes into contact with the ladder, thereby preventing the bending step from bending.
According to this embodiment, the total length of the ladder in the stored state can be reduced. Further, there is no need to separately provide a mechanism for preventing refraction, and cost and weight can be reduced.
 本発明の第13の実施の形態は、第12の実施の形態による梯子において、屈折段は屈折中心よりも後方に凸部を有し、梯体は凸部に対応する受け部を有し、梯子が収納状態にあるとき、凸部と受け部が近接又は接触しているものである。
 本実施の形態によれば、収納状態にある屈折段の屈折をより確実に阻止することができる。
A thirteenth embodiment of the present invention is a ladder according to the twelfth embodiment, in which the refraction step has a convex portion behind the refraction center, and the ladder has a receiving portion corresponding to the convex portion, When the ladder is in the stored state, the convex portion and the receiving portion are close to or in contact with each other.
According to this embodiment, refraction of the refraction stage in the stored state can be more reliably prevented.
 本発明の第14の実施の形態は、第1から第13のいずれか一つの実施の形態による梯子において、梯子の後部を支持する梯体フレームを備え、梯体フレームは、梯子の後端に位置し梯子が起伏する際の中心点を有する起伏中心体と、起伏中心体よりも前方に位置し梯子を起伏させる起伏シリンダの先端が接続されているシリンダ先端接続体とに分かれているものである。
 本実施の形態によれば、従来のように梯体の後端から起伏シリンダの先端が接続されている箇所まで一体的に繋がっている梯体フレームよりも鋼材の使用量を減らし、重量及びコストを低減することができる。
A fourteenth embodiment of the present invention is a ladder according to any one of the first to thirteenth embodiments, including a ladder frame that supports a rear part of the ladder, and a ladder frame that supports a rear end of the ladder. It is divided into a undulation center body located in front of the undulation center body, which has a center point when the ladder undulates, and a cylinder tip connection body, which is located in front of the undulation center body and is connected to the tip of the undulation cylinder that undulates the ladder. be.
According to this embodiment, the amount of steel used is reduced compared to the conventional ladder frame, which is integrally connected from the rear end of the ladder to the point where the tip of the undulation cylinder is connected, and reduces weight and costs. can be reduced.
 本発明の第15の実施の形態による車両は、第1から第14のいずれか一つの実施の形態による梯子が取り付けられているものである。
 本実施の形態によれば、車両の軽量化とコスト低減を図ることができる。
A vehicle according to a fifteenth embodiment of the present invention is equipped with a ladder according to any one of the first to fourteenth embodiments.
According to this embodiment, it is possible to reduce the weight and cost of the vehicle.
 以下、本発明の一実施例による梯子、及び当該梯子を備えた車両について説明する。
 図1は本実施例による梯子を備えた車両の左側面図である。
 車両(消防用梯子車)は、車両前部に位置し運転席を有するキャビン1と、キャビン1よりも後方に位置する車体2と、キャビン1及び車体2よりも上方において伏臥した状態で収納される梯子3と、車体2の後部に位置するジャイロターンテーブル4と、ジャイロターンテーブル4の上に位置し梯子3の後端を支持する支持フレーム5と、キャビン1の後面に近接した位置において梯子3を下から受け支える受け装置6と、梯子3の先端に取り付けられたバスケット7と、アウトリガ8を備える。
 梯子3は多段の梯体31を有し、梯体フレーム32、支持フレーム5、及びジャイロターンテーブル4を介して車体2に接続されている。また、梯子3には、梯子3の伸縮に用いる伸縮シリンダ33と、梯子3の起伏に用いる起伏シリンダ34と、屈折段37の屈折角度の調節に用いる屈折シリンダ35が設けられている。
Hereinafter, a ladder according to an embodiment of the present invention and a vehicle equipped with the ladder will be described.
FIG. 1 is a left side view of a vehicle equipped with a ladder according to this embodiment.
The vehicle (firefighting ladder truck) consists of a cabin 1 located at the front of the vehicle and having a driver's seat, a vehicle body 2 located behind the cabin 1, and a vehicle stored in a prone position above the cabin 1 and the vehicle body 2. a gyro turntable 4 located at the rear of the vehicle body 2; a support frame 5 located on the gyro turntable 4 and supporting the rear end of the ladder 3; The ladder 3 includes a receiving device 6 for receiving and supporting the ladder 3 from below, a basket 7 attached to the tip of the ladder 3, and an outrigger 8.
The ladder 3 has a multi-step ladder 31 and is connected to the vehicle body 2 via a ladder frame 32, a support frame 5, and a gyro turntable 4. Further, the ladder 3 is provided with a telescoping cylinder 33 used to extend and contract the ladder 3, a undulation cylinder 34 used to undulate the ladder 3, and a refraction cylinder 35 used to adjust the refraction angle of the refraction step 37.
 図2は梯体の横断面図である。なお、梯体は左右対称であるため図2では片側のみ示している。また、図3は梯子を縮小し伸縮シリンダが下親骨内に収納された状態を示す側面図である。
 本実施例による梯子3は、梯体31が1段目から5段目までを有する5段構造であり、伸縮シリンダ33により梯体31をスライドさせることにより伸縮する。1段目は縮小時に5段のなかで最も上側に位置する段であり、5段目は縮小時に5段のなかで最も下側に位置する段である。
 梯体31は、各段において、上方に位置する親骨である上親骨311と、下方に位置する親骨である下親骨312と、斜骨ボックス313を介して上親骨311と下親骨312とを接続する斜骨314と、下親骨312よりも上方に配置され梯体31のスライドをガイドするガイドレール315を備える。
 上親骨311と下親骨312は、金属パイプ等の鋼材で形成し、同じ段であるか異なる段であるかに関わらず、断面形状はすべて同一としている。また、少なくとも一つの段における上親骨311又は下親骨312の断面サイズを、他の段における上親骨311又は下親骨312の断面サイズと同一としている。複数段からなる梯子3は段によって必要強度等が異なるため、従来は、どの段に用いるか、又は上親骨311用か下親骨312用かによって鋼材の断面形状や断面サイズがバラバラであったが、必要な強度を満たしつつ本実施例のように出来るだけ親骨の断面形状及び断面サイズを統一することで、親骨の構成材料である鋼材を共通して使用することが可能となり、鋼材の種類を減らして管理の手間やコストを低減することができる。例えば、同一形状で断面サイズが異なる複数種類の鋼材を保管しておき、梯子3を製作する際は、段が異なっても断面サイズが共通する親骨同士については、保管しているうちの一種類の鋼材を所定の長さに切断して用いればよい。
 また、梯子3のサイズや段数等が異なる車両間においても親骨の断面形状を同じとすれば、機種を問わず多くの車両において鋼材を共通利用することが可能となる。この場合、例えば、ある車両向けとしては3段目の上親骨311として使用した断面サイズの鋼材を、他の車両向けでは2段目の下親骨312として使用するなど、共通利用の範囲を広くしてコストをより一層低減できる。
 なお、親骨の断面サイズが同一とは、外径及び内径が同一であることをいい、断面形状が楕円形や長方形の場合は長径及び短径も同一である。
FIG. 2 is a cross-sectional view of the ladder. Note that since the ladder is symmetrical, only one side is shown in FIG. Moreover, FIG. 3 is a side view showing a state in which the ladder is contracted and the telescopic cylinder is housed in the lower rib.
The ladder 3 according to this embodiment has a five-step structure in which the ladder 31 has the first to fifth steps, and is expanded and contracted by sliding the ladder 31 using the telescopic cylinder 33. The first stage is the highest stage among the five stages during reduction, and the fifth stage is the lowest stage among the five stages during reduction.
The ladder 31 connects the upper rib 311 and the lower rib 312 at each stage via an oblique rib box 313 , an upper rib 311 which is a rib located above, a lower rib 312 which is a lower rib. and a guide rail 315 that is arranged above the lower rib 312 and guides the sliding of the ladder 31.
The upper rib 311 and the lower rib 312 are made of a steel material such as a metal pipe, and have the same cross-sectional shape regardless of whether they are on the same level or different levels. Further, the cross-sectional size of the upper rib 311 or the lower rib 312 in at least one stage is the same as the cross-sectional size of the upper rib 311 or the lower rib 312 in the other stages. Since the required strength etc. of the ladder 3, which is made up of multiple steps, differs depending on the step, conventionally, the cross-sectional shape and cross-sectional size of the steel material varied depending on which step it was used for, or whether it was used for the upper rib 311 or the lower rib 312. By unifying the cross-sectional shape and cross-sectional size of the main rib as much as possible while satisfying the required strength as in this example, it is possible to use the same steel material for the main rib, and the type of steel material can be changed. This can reduce management effort and costs. For example, if you store multiple types of steel materials with the same shape but different cross-sectional sizes, and when manufacturing Ladder 3, the main ribs that have the same cross-sectional size even if the steps are different are made using one type of steel material among the stored materials. The steel material may be cut to a predetermined length.
Further, if the cross-sectional shape of the main frame is the same even among vehicles with different sizes and number of steps of the ladder 3, it becomes possible to use steel materials in common in many vehicles regardless of the model. In this case, for example, a steel material with the cross-sectional size used as the upper rib 311 of the third tier for one vehicle may be used as the lower rib 312 of the second tier for another vehicle, thereby widening the scope of common use and reducing costs. can be further reduced.
Note that the same cross-sectional size of the ribs means that the outer diameter and inner diameter are the same, and when the cross-sectional shape is elliptical or rectangular, the major axis and the minor axis are also the same.
 4段目における下親骨312は、内径が伸縮シリンダ33の外径よりも大きく、内部が中空であり、下面が開口している。
 4段目の下親骨312と伸縮シリンダ33は略同軸に配置されており、図3に示すように、梯子3が縮小されたときに伸縮シリンダ33が4段目の下親骨312の内部に収納されるようになっている。これにより、伸縮シリンダ33の座屈を防止する機能等の一部を収納先の4段目の下親骨312が果たすことができるため、伸縮シリンダ33を下親骨312の外に配置する場合よりも部材点数を少なくしたり梯子3を幅狭に形成したりすること等が可能となり、コスト及び重量を低減できる。
 なお、梯子3が4段以下又は6段以上である場合も、最下段の一つ上の段における下親骨312に伸縮シリンダ33が収納されるようにする。
The lower rib 312 in the fourth stage has an inner diameter larger than the outer diameter of the telescopic cylinder 33, is hollow inside, and has an open bottom surface.
The lower main rib 312 of the fourth step and the telescopic cylinder 33 are arranged approximately coaxially, and as shown in FIG. 3, the extendable cylinder 33 is housed inside the lower main rib 312 of the fourth step when the ladder 3 is reduced. It has become. As a result, part of the function of preventing buckling of the telescopic cylinder 33 can be performed by the lower main rib 312 of the fourth stage in which it is stored. It becomes possible to reduce the width of the ladder 3 or to form the ladder 3 narrowly, thereby reducing cost and weight.
Note that even when the ladder 3 has four or less steps or six or more steps, the telescopic cylinder 33 is housed in the lower rib 312 at the step one step above the lowest step.
 図2に示すように、本実施例においては、1段目における上親骨311及び下親骨312と、2段目における上親骨311の断面サイズを同一とし、その断面サイズを親骨のなかで最も小さいものとしている。
 また、2段目における下親骨312と、3段目における上親骨311及び下親骨312の断面サイズを同一とし、その断面サイズを親骨のなかで二番目に小さいものとしている。
 また、4段目における上親骨311と、5段目における上親骨311の断面サイズを同一とし、その断面サイズを親骨のなかで三番目に小さいものとしている。
 また、5段目における下親骨312の断面サイズを親骨のなかで四番目に小さいものとしている。
 また、伸縮シリンダ33を収納する4段目における下親骨312の断面サイズを親骨のなかで最大としている。
 これにより、計10本の親骨を断面サイズが異なる5種類の鋼材で形成することができるため、コストを効果的に低減することができる。
As shown in FIG. 2, in this embodiment, the cross-sectional size of the upper rib 311 and lower rib 312 in the first stage is the same as that of the upper rib 311 in the second stage, and the cross-sectional size is the smallest among the ribs. I take it as a thing.
Further, the cross-sectional size of the lower rib 312 in the second stage and the upper rib 311 and lower rib 312 in the third stage is the same, and the cross-sectional size is the second smallest among the ribs.
Further, the cross-sectional size of the upper main rib 311 in the fourth stage and the upper main rib 311 in the fifth stage are the same, and the cross-sectional size is the third smallest among the main ribs.
Further, the cross-sectional size of the lower rib 312 at the fifth stage is the fourth smallest among the ribs.
Further, the cross-sectional size of the lower rib 312 at the fourth stage that accommodates the telescopic cylinder 33 is the largest among the ribs.
As a result, a total of 10 main ribs can be formed from 5 types of steel materials having different cross-sectional sizes, so that costs can be effectively reduced.
 上親骨311及び下親骨312の断面形状は正方形としている。これにより、上親骨311及び下親骨312の断面形状が上下方向に長い長方形の場合と比べると、上親骨311の上面から下親骨312の下面までの距離は同じであっても、上親骨311の下面と下親骨312の上面との間隔を大きくできるため、上親骨311と下親骨312との間に配置される配管類やワイヤー類等の設置スペースを確保しやすくなる。このため、上親骨311の上面から下親骨312の下面までの距離を、断面が上下方向に長い長方形の場合よりも小さくすることが可能となり、それにより、車両走行時など梯子3を収納状態としているときの、梯子3を含めた車両全高を小さくできる。
 また、上親骨311及び下親骨312の断面形状を正方形とすることで、断面形状を左右方向に長い長方形とした場合よりも各段の梯体31同士を近接させることができるため、梯体31の横幅を小さく形成して重量を低減できる。
The cross-sectional shapes of the upper rib 311 and the lower rib 312 are square. As a result, compared to the case where the cross-sectional shape of the upper rib 311 and the lower rib 312 is a rectangle that is long in the vertical direction, even if the distance from the upper surface of the upper rib 311 to the lower surface of the lower rib 312 is the same, the upper rib 311 Since the distance between the lower surface and the upper surface of the lower rib 312 can be increased, it becomes easier to secure installation space for piping, wires, etc. arranged between the upper rib 311 and the lower rib 312. Therefore, the distance from the upper surface of the upper rib 311 to the lower surface of the lower rib 312 can be made smaller than when the cross section is a rectangle that is long in the vertical direction. The overall height of the vehicle, including the ladder 3, can be reduced when the vehicle is running.
Moreover, by making the cross-sectional shape of the upper main rib 311 and the lower main rib 312 square, the ladders 31 of each step can be brought closer to each other than when the cross-sectional shape is a rectangle long in the left-right direction. By making the width smaller, the weight can be reduced.
 4段目における下親骨312の厚みは、5段目における下親骨312の厚みよりも小さくしている。断面サイズが最大である4段目の下親骨312の厚みを5段目の下親骨312よりも小さくすることで、親骨として必要な強度を満たしつつ重量を軽減することができる。
 なお、1段目から3段目における親骨同士の厚みは同一としており、その厚みは4段目における下親骨312の厚みよりも小さい。また、4段目における上親骨311の厚みと5段目における上親骨311の厚みは同一としており、その厚みは4段目における下親骨312の厚みと同一である。
The thickness of the lower rib 312 in the fourth stage is smaller than the thickness of the lower rib 312 in the fifth stage. By making the thickness of the lower rib 312 of the fourth stage, which has the largest cross-sectional size, smaller than that of the lower rib 312 of the fifth stage, it is possible to reduce the weight while satisfying the strength required for the rib.
Note that the thicknesses of the main ribs in the first to third stages are the same, and the thickness is smaller than the thickness of the lower main rib 312 in the fourth stage. Further, the thickness of the upper rib 311 in the fourth stage is the same as the thickness of the upper rib 311 in the fifth stage, and the thickness is the same as the thickness of the lower rib 312 in the fourth stage.
 斜骨314は、図3に示すように、上親骨311と下親骨312とを接続する接続材の一つとして、親骨に対して斜めに設けられ、一端が上親骨311の下面に設けられた上側の斜骨ボックス313を介して上親骨311に接続し、他端が下親骨312に設けられた下側の斜骨ボックス313を介して下親骨312と接続している。斜骨314は、上親骨311と下親骨312の間を縫うように複数設けられているが、斜骨314の幅W(図2参照)は、各段内において同一としている。
 このように、斜骨314の幅Wを段ごとに統一することで、斜骨314の接続に用いる複数の斜骨ボックス313のサイズを段ごとに統一することができるため、コストを低減できる。また、同じ段であっても斜骨314のサイズが取付位置によって異なる為、製造現場においてはサイズを間違えないように確認しつつ作業を進める必要があるが、本実施例では、各段内における斜骨314の幅Wを統一することで斜骨314のサイズの種類を少なくできるため、従来よりもサイズの確認工程にかかる時間が減り、製造効率が向上する。
As shown in FIG. 3, the oblique rib 314 is provided diagonally to the upper rib 311 and the lower rib 312 as one of the connecting members for connecting the upper rib 311 and the lower rib 312, and one end is provided on the lower surface of the upper rib 311. It is connected to the upper rib 311 via an upper rib box 313, and the other end is connected to the lower rib 312 via a lower rib box 313 provided on the lower rib 312. A plurality of oblique ribs 314 are provided so as to thread between the upper rib 311 and the lower rib 312, and the width W (see FIG. 2) of the oblique rib 314 is the same in each stage.
In this way, by making the width W of the oblique bones 314 uniform for each stage, the sizes of the plurality of oblique bones boxes 313 used for connecting the oblique bones 314 can be made uniform for each stage, thereby reducing costs. In addition, since the size of the diagonal ribs 314 differs depending on the installation position even in the same level, it is necessary to proceed with work while checking the size at the manufacturing site to avoid mistakes in the size. By unifying the width W of the diagonal ribs 314, the number of different sizes of the diagonal ribs 314 can be reduced, so that the time required for the size confirmation process is reduced compared to the conventional method, and manufacturing efficiency is improved.
 また、伸縮シリンダ33を収容する4段目の下親骨312も含め、各親骨はすべて一つのパイプで構成し、その一つのパイプに斜骨314を取り付けている。
 伸縮シリンダ33を収容する4段目の下親骨312も一つのパイプとすることにより、例えば伸縮シリンダ33を収容する下親骨312を、伸縮シリンダ33を収納するパイプと、斜骨314を取り付けるパイプというように、二つの鋼材で内部を区切って構成する場合よりも、部材点数を少なくして加工の手間も減らせるため、コスト及び重量を低減することができる。
In addition, each of the ribs, including the lower rib 312 of the fourth stage that accommodates the telescopic cylinder 33, is composed of one pipe, and the diagonal rib 314 is attached to the one pipe.
By making the lower rib 312 of the fourth stage that accommodates the telescopic cylinder 33 into one pipe, for example, the lower rib 312 that accommodates the telescopic cylinder 33 can be used as a pipe for housing the telescopic cylinder 33 and a pipe for attaching the diagonal rib 314. Compared to the case where the interior is divided by two steel materials, the number of parts can be reduced and the processing effort can be reduced, so costs and weight can be reduced.
 図4は縮小状態の伸縮シリンダ単体を示す図である。
 上述のように、伸縮シリンダ33は、車両走行時など梯子3を縮めた状態では4段目の下親骨312にその全体が収納されている。
 その状態から伸縮シリンダ33のロッド331を伸ばして梯子3を伸長させ始めると、それに伴い梯体31が先端側へ徐々にスライドし、4段目の下親骨312に納まっていた伸縮シリンダ33のチューブ332が外部に露出する。なお、ロッド331は4段目の下親骨312内に納まったままである。
 また、梯子3が伸長した状態から伸縮シリンダ33のロッド331を縮めて梯子3を縮小させ始めると、それに伴い梯体31が後端側へ徐々にスライドし、伸縮シリンダ33のチューブ332が4段目の下親骨312に覆われていく。
FIG. 4 is a diagram showing a single telescopic cylinder in a contracted state.
As described above, the telescopic cylinder 33 is entirely housed in the lower rib 312 of the fourth step when the ladder 3 is retracted, such as when the vehicle is running.
When the rod 331 of the telescoping cylinder 33 is extended from this state and the ladder 3 begins to extend, the ladder 31 gradually slides toward the tip side, and the tube 332 of the telescoping cylinder 33, which was housed in the lower rib 312 of the fourth step, exposed to the outside. Note that the rod 331 remains housed within the lower rib 312 of the fourth stage.
Further, when the ladder 3 starts to contract by retracting the rod 331 of the telescopic cylinder 33 from the extended state, the ladder 31 gradually slides toward the rear end side, and the tube 332 of the telescopic cylinder 33 moves to four steps. It is covered by the lower rib 312 of the eye.
 伸縮シリンダ33のロッド331には、長手方向に間隔をおいて複数のロッド用パッド333が取り付けられている。ロッド用パッド333は略四面体であり、ロッド331はロッド用パッド333の中心に設けられている穴を貫通している。
 ロッド用パッド333は、ロッド331の座屈を防止する役割をもつ。また、ロッド用パッド333は、ロッド331の収容先である4段目の下親骨312の内面と接する大きさに形成されており、ロッド331が下親骨312に接触しないようにガイドする役割も果たす。
A plurality of rod pads 333 are attached to the rod 331 of the telescopic cylinder 33 at intervals in the longitudinal direction. The rod pad 333 has a substantially tetrahedral shape, and the rod 331 passes through a hole provided at the center of the rod pad 333.
The rod pad 333 has the role of preventing the rod 331 from buckling. Further, the rod pad 333 is formed in a size that makes contact with the inner surface of the lower rib 312 of the fourth stage in which the rod 331 is accommodated, and also serves to guide the rod 331 so that it does not come into contact with the lower rib 312.
 伸縮シリンダ33のチューブ332には、長手方向に間隔をおいて複数のチューブ用パッド334が取り付けられている。チューブ用パッド334は、チューブ332の座屈を防止する役割をもつ。また、チューブ用パッド334は、チューブ332の外面から突出するように配置されており、チューブ332が4段目の下親骨312に収納される際に下親骨312の内面と接し、チューブ332が下親骨312に接触しないようにガイドする役割も果たす。 A plurality of tube pads 334 are attached to the tube 332 of the telescopic cylinder 33 at intervals in the longitudinal direction. The tube pad 334 serves to prevent the tube 332 from buckling. Further, the tube pad 334 is arranged so as to protrude from the outer surface of the tube 332, and comes into contact with the inner surface of the lower rib 312 when the tube 332 is stored in the lower rib 312 of the fourth stage, so that the tube 332 It also serves as a guide to avoid contact with other objects.
 図5は下親骨に収納されている伸縮シリンダを示す断面模式図である。
 チューブ332の近傍には、伸縮シリンダ33の動作に用いる油が流れる二本の油圧配管40がチューブ332に沿って配置されている。油圧配管40は、長手方向に間隔をおいて固定材でチューブ332に留められており、梯体31を縮小したときに伸縮シリンダ33と共に下親骨312内に収納される。
 チューブ用パッド334は、チューブ332の上面に配置された一方のパッド334aと、チューブ332の下面に配置された他方のパッド334bからなる。一方のパッド334aと他方のパッド334bはチューブ332を挟んで配置されており、両者の位置は略180度異なる。
 一方のパッド334aは、4段目の下親骨312の内径、及びチューブ332の外径よりも横方向の長さを小さくし、これにより生じる一方のパッド334aと下親骨312との隙間に、伸縮シリンダ33と並列的に設けられている油圧配管40を通している。このように、4段目の下親骨312の内部の限られたスペースを有効活用して配管等を配置することで、梯子3の横幅を極力小さくして軽量化を図ることができる。なお、油圧配管40と共に又は油圧配管40に代えて、他の配管や配線を一方のパッド334aと下親骨312との隙間に通すこともできる。
 また、一方のパッド334aの高さは、チューブ332が4段目の下親骨312に収納される際に一方のパッド334aの上面が下親骨312の上側の内面に接する大きさとしている。他方のパッド334bは、横方向の長さはチューブ332を収納する4段目の下親骨312の内径と略等しくし、高さはチューブ332が4段目の下親骨312に収納される際に他方のパッド334bの下面が下親骨312の下側の内面に接する大きさとしている。これにより、チューブ332が第4の下親骨312に収納される際は、一方のパッド334aと他方のパッド334bが第4の下親骨312の内面と接するため、チューブ332と下親骨312が接触することを確実に防止できる。
FIG. 5 is a schematic cross-sectional view showing the telescopic cylinder housed in the lower rib.
In the vicinity of the tube 332, two hydraulic pipes 40 through which oil used for operating the telescopic cylinder 33 flows are arranged along the tube 332. The hydraulic piping 40 is fixed to the tube 332 with fixing members at intervals in the longitudinal direction, and is housed in the lower rib 312 together with the telescopic cylinder 33 when the ladder 31 is contracted.
The tube pad 334 consists of one pad 334a arranged on the upper surface of the tube 332 and the other pad 334b arranged on the lower surface of the tube 332. One pad 334a and the other pad 334b are arranged with the tube 332 in between, and their positions differ by approximately 180 degrees.
One pad 334a has a horizontal length smaller than the inner diameter of the lower rib 312 of the fourth stage and the outer diameter of the tube 332, and the telescopic cylinder 33 is inserted into the gap between the one pad 334a and the lower rib 312. A hydraulic pipe 40 is provided in parallel with the hydraulic pipe 40 . In this way, by effectively utilizing the limited space inside the lower rib 312 of the fourth step and arranging the pipes, etc., the width of the ladder 3 can be made as small as possible and the weight can be reduced. In addition, together with the hydraulic piping 40 or in place of the hydraulic piping 40, other piping or wiring can also be passed through the gap between the one pad 334a and the lower rib 312.
Further, the height of one pad 334a is such that the upper surface of one pad 334a comes into contact with the upper inner surface of the lower rib 312 when the tube 332 is stored in the lower rib 312 of the fourth stage. The length of the other pad 334b in the lateral direction is approximately equal to the inner diameter of the lower rib 312 of the fourth stage that accommodates the tube 332, and the height of the other pad 334b is approximately equal to the inner diameter of the lower rib 312 of the fourth stage that accommodates the tube 332. The lower surface is sized to be in contact with the lower inner surface of the lower rib 312. As a result, when the tube 332 is stored in the fourth lower rib 312, one pad 334a and the other pad 334b are in contact with the inner surface of the fourth lower rib 312, so the tube 332 and the lower rib 312 come into contact. This can definitely be prevented.
 図6は下面ローラを示す図であり、図6(a)は側面図、図6(b)は一つの段における伸縮方向の断面図である。
 2段目から5段目の梯体31には、梯子3を伸縮させるときに下親骨312の下面との接触により回転する下面ローラ50をそれぞれ設けている。下面ローラ50は、一対の回転体501を有する第一部位51と、一対の回転体502を有する第二部位52とが隣接してなる。回転体501及び回転体502の回転軸は下親骨312の幅方向を向いている。
 第一部位51の一対の回転体501の一端は、天秤状(略逆三角形状)の一端側第一ブラケット511に支持され、第一部位51の一対の回転体501の他端は、天秤状(略逆三角形状)の他端側第一ブラケット512に支持されている。また、第二部位52の一対の回転体502の一端は天秤状(略逆三角形状)の一端側第二ブラケット521に支持され、第二部位52の一対の回転体502の他端は、天秤状(略逆三角形状)の他端側第二ブラケット522に支持されている。
 このように、一端側第一ブラケット511と他端側第一ブラケット512を直接的には繋がず分離して設け、一端側第二ブラケット521と他端側第二ブラケット522を直接的には繋がず分離して設けることで、回転体501又は回転体502の一端を支持するブラケットと他端を支持するブラケットを連結部品等で直接繋ぐ場合と比べて、連結のための部品が少なくなるため、材料費や加工費等のコストを低減できると共に、作業効率を向上させることができる。
 一端側第一ブラケット511、他端側第一ブラケット512、一端側第二ブラケット521、及び他端側第二ブラケット522は、ローラ枠に取り付けられている。ローラ枠は、第一部位51と第二部位52との間において幅方向に懸架された中央懸架部531と、第一部位51の一対の回転体501の間において幅方向に懸架された第一懸架部532と、第二部位52の一対の回転体502の間において幅方向に懸架された第二懸架部533と、中央懸架部531、第一懸架部532、及び第二懸架部533の一端を支持する一端側支持部534と、中央懸架部531、第一懸架部532、及び第二懸架部533の他端を支持する一端側支持部535を備える。一端側第一ブラケット511は第一懸架部532の一端側と係合し、他端側第一ブラケット512は第一懸架部532の他端側と係合し、一端側第二ブラケット521は第二懸架部533の一端側と係合し、他端側第二ブラケット522は第二懸架部533の他端側と係合している。
6A and 6B are diagrams showing the lower roller, FIG. 6A is a side view, and FIG. 6B is a cross-sectional view of one step in the direction of expansion and contraction.
The second to fifth ladders 31 are each provided with a lower roller 50 that rotates by contact with the lower surface of the lower rib 312 when the ladder 3 is extended or contracted. The lower roller 50 includes a first portion 51 having a pair of rotating bodies 501 and a second portion 52 having a pair of rotating bodies 502 adjacent to each other. The rotational axes of the rotating body 501 and the rotating body 502 face in the width direction of the lower rib 312.
One end of the pair of rotating bodies 501 of the first part 51 is supported by a first bracket 511 on one end side of a balance-shaped (substantially inverted triangular shape), and the other end of the pair of rotating bodies 501 of the first part 51 is shaped like a balance. It is supported by a first bracket 512 on the other end (approximately inverted triangular shape). Further, one end of the pair of rotating bodies 502 of the second part 52 is supported by a second bracket 521 on one end side of a balance-shaped (substantially inverted triangular shape), and the other end of the pair of rotating bodies 502 of the second part 52 is It is supported by a second bracket 522 on the other end side (approximately inverted triangular shape).
In this way, the first bracket 511 on one end and the first bracket 512 on the other end are not directly connected but are provided separately, and the second bracket 521 on one end and the second bracket 522 on the other end are not directly connected. By providing them separately, fewer parts are required for connection compared to the case where the bracket supporting one end of the rotating body 501 or the rotating body 502 and the bracket supporting the other end are directly connected with connecting parts, etc. Costs such as material costs and processing costs can be reduced, and work efficiency can be improved.
The first bracket 511 on one end, the first bracket 512 on the other end, the second bracket 521 on one end, and the second bracket 522 on the other end are attached to the roller frame. The roller frame includes a central suspension section 531 suspended in the width direction between the first section 51 and the second section 52, and a first suspension section 531 suspended in the width direction between the pair of rotating bodies 501 of the first section 51. The second suspension part 533 is suspended in the width direction between the suspension part 532 and the pair of rotating bodies 502 of the second part 52, and one end of the central suspension part 531, the first suspension part 532, and the second suspension part 533. and one end support part 535 that supports the other ends of the central suspension part 531, the first suspension part 532, and the second suspension part 533. The first bracket 511 on one end side engages with one end side of the first suspension part 532, the first bracket 512 on the other end side engages with the other end side of the first suspension part 532, and the second bracket 521 on one end side engages with the other end side of the first suspension part 532. The second bracket 522 on the other end side is engaged with one end side of the second suspension part 533, and the second bracket 522 on the other end side is engaged with the other end side of the second suspension part 533.
 図7及び図8は揺動抑制体を示す図であり、図7(a)及び図8(a)は側面図、図7(b)及び図8(b)は横断面図である。
 1段目から4段目の梯体31の後端には、伸縮するときの梯子3の上下方向などの揺動を抑制する揺動抑制体36がそれぞれ設けられている。
 揺動抑制体36は、第一主体としてのコ字状部材361と、第一副体としての上方後端パッド362及び下方後端パッド363を備えると共に、第二主体としてのJ字状部材364と、第二副体としての側方後端パッド365を備える。コ字状部材361及びJ字状部材364の材質は例えばSUSであり、上方後端パッド362、下方後端パッド363、及び側方後端パッド365の材質は例えばナイロンである。
 コ字状部材361は、下親骨312とガイドレール315との間に隙間をあけて配置されボルト止めされている。コ字状部材361の外側面は、一つ上の段の下親骨312の外側面と接している。上方後端パッド362は、コ字状部材361の上面とガイドレール315の下面との隙間を埋めるように配置されている。下方後端パッド363は、コ字状部材361の下面と下親骨312の上面との隙間を埋めるように配置されている。
 J字状部材364は、一端がガイドレール315の外側面に接続し、他端が下親骨312の上面に接続してボルト止めされている。側方後端パッド365は、一つ下の段のガイドレール315とJ字部材との隙間を埋めるように配置されている。
 第一主体361や第二主体364と他の部材との隙間に第一副体362、363や第二副体365を挿入して隙間を埋めることで、伸縮時の梯子3の揺動を効果的に抑制できる。また、当該隙間に応じて第一副体362又は第二副体を形成すればよいため、製造効率を高めることができる。
7 and 8 are views showing the swing suppressing body, FIGS. 7(a) and 8(a) are side views, and FIGS. 7(b) and 8(b) are cross-sectional views.
Swing suppressing bodies 36 are provided at the rear ends of the first to fourth ladders 31 to suppress swinging of the ladder 3 in the vertical direction and the like when expanding and contracting.
The swing suppressing body 36 includes a U-shaped member 361 as a first main body, an upper rear end pad 362 and a lower rear end pad 363 as first subsidiary bodies, and a J-shaped member 364 as a second main body. and a side rear end pad 365 as a second subsidiary body. The material of the U-shaped member 361 and the J-shaped member 364 is, for example, SUS, and the material of the upper rear end pad 362, the lower rear end pad 363, and the side rear end pads 365 is, for example, nylon.
The U-shaped member 361 is arranged with a gap between the lower rib 312 and the guide rail 315 and is bolted. The outer surface of the U-shaped member 361 is in contact with the outer surface of the lower rib 312 of the next step above. The upper rear end pad 362 is arranged to fill the gap between the upper surface of the U-shaped member 361 and the lower surface of the guide rail 315. The lower rear end pad 363 is arranged to fill the gap between the lower surface of the U-shaped member 361 and the upper surface of the lower rib 312.
One end of the J-shaped member 364 is connected to the outer surface of the guide rail 315, and the other end is connected to the upper surface of the lower rib 312 and bolted. The side rear end pad 365 is arranged so as to fill the gap between the guide rail 315 at the next lower stage and the J-shaped member.
By inserting the first sub-body 362, 363 and the second sub-body 365 into the gap between the first main body 361, second main body 364 and other members to fill the gap, the swinging of the ladder 3 during expansion and contraction is effected. can be suppressed. Further, since it is sufficient to form the first sub-body 362 or the second sub-body depending on the gap, manufacturing efficiency can be improved.
 図9は梯子の屈折段から2段目までを示す側面図であり、図9(a)は縮小時、図9(b)は伸長時である。
 梯体31の先端部には、下方へ屈折可能な屈折段37が設けられている。なお、図9では省略しているが、屈折段37の先端にはバスケット7が接続される。
 屈折段37が屈折するときの中心点である屈折中心37Aは、梯子3を縮小した収納状態においては2段目の先端31Aよりも内側の梯体31内に位置する。屈折段37の屈折中心37Aを2段目の梯体31の先端31Aよりも内側に引き込むことで、収納状態における梯子3の全長を短くすることができる。
 また、収納状態における屈折段37の屈折は、梯体31の2段目に当接することで阻止されるので、屈折を防止する機構を別途設けなくて済み、コストや重量を低減することができる。
FIG. 9 is a side view showing the ladder from the bent step to the second step, with FIG. 9(a) showing the ladder when it is contracted, and FIG. 9(b) when it is extending.
A bending step 37 that can be bent downward is provided at the tip of the ladder 31. Although not shown in FIG. 9, the basket 7 is connected to the tip of the bending stage 37.
A refraction center 37A, which is the center point when the refraction step 37 refracts, is located inside the ladder 31 inside the tip 31A of the second step when the ladder 3 is in a contracted storage state. By pulling the refraction center 37A of the refraction step 37 inward than the tip 31A of the second step ladder 31, the total length of the ladder 3 in the stored state can be shortened.
Further, since the refraction of the refraction step 37 in the stored state is prevented by contacting the second step of the ladder 31, there is no need to separately provide a mechanism for preventing refraction, and cost and weight can be reduced. .
 図10は屈折段の収納に関する詳細図であり、図10(a)は凸部を示し、図10(b)は受け部を示し、図10(c)は梯子が収納状態にあるときの凸部と受け部との係合状態を示している。なお、図10(a)、(b)における下図は上図の〇で囲まれた部分の拡大図である。
 屈折段37において屈折中心37Aよりも後方には上方へ凸となった凸部38が設けられ、梯体31の2段目において先端31Aよりも後方には凸部38に対応する受け部39が設けられており、梯子3を縮小して収納状態にすると、図10(c)に示すように、凸部38が受け部39に近接又は接触するように構成されている。受け部39の長さは凸部38の長さよりも大きい。
 これにより、屈折段37が下方へ屈折しようとする動きは凸部38が受け部39に当接することにより妨げられるため、屈折段37の屈折をより確実に阻止することができる。
FIG. 10 is a detailed view of the stowage of the bending step, with FIG. 10(a) showing the convex portion, FIG. 10(b) showing the receiving portion, and FIG. 10(c) showing the convex portion when the ladder is in the stowed state. The engagement state between the part and the receiving part is shown. Note that the lower diagrams in FIGS. 10(a) and 10(b) are enlarged views of the portions circled in the upper diagrams.
In the refraction step 37, a convex portion 38 that is upwardly convex is provided behind the refraction center 37A, and in the second step of the ladder 31, a receiving portion 39 corresponding to the convex portion 38 is provided behind the tip 31A. The convex portion 38 is configured to be close to or in contact with the receiving portion 39 when the ladder 3 is contracted and placed in the stored state, as shown in FIG. 10(c). The length of the receiving portion 39 is greater than the length of the convex portion 38.
As a result, the movement of the bending step 37 to bend downward is prevented by the convex portion 38 coming into contact with the receiving portion 39, so that the bending of the bending step 37 can be more reliably prevented.
 図11は梯子の後部を示す側面図である。
 梯子3の後部を支持する梯体フレーム32は、梯子3が起伏する際の中心点を有する起伏中心体321と、梯子3を起伏させる起伏シリンダ34の先端が接続されているシリンダ先端接続体322に分かれている。起伏中心体321は梯子3の後端に位置し、シリンダ先端接続体322は起伏中心体321よりも前方に位置してそれぞれ梯体31にボルト止めされている。
 起伏中心体321から下方へは支持フレーム5と接続したフレーム接続体323が延出しており、フレーム接続体323には起伏シリンダ34の後端が取り付けられている。
 このように梯体フレーム32のうち梯体31との接触箇所を起伏中心体321とシリンダ先端接続体322の二部分に分けることで、従来のように梯体31の後端から起伏シリンダ34の先端が接続されている箇所まで一体的に繋がっている梯体フレームよりも鋼材の使用量を減らし、重量及びコストを低減することができる。
FIG. 11 is a side view showing the rear part of the ladder.
The ladder frame 32 that supports the rear part of the ladder 3 includes a undulation center body 321 having a center point when the ladder 3 undulates, and a cylinder tip connection body 322 to which the tip of the undulation cylinder 34 for undulating the ladder 3 is connected. It is divided into The undulation center body 321 is located at the rear end of the ladder 3, and the cylinder tip connectors 322 are located forward of the undulation center body 321 and are bolted to the ladder body 31, respectively.
A frame connection body 323 connected to the support frame 5 extends downward from the undulation center body 321, and the rear end of the undulation cylinder 34 is attached to the frame connection body 323.
By dividing the contact point with the ladder 31 in the ladder frame 32 into two parts, the undulation center body 321 and the cylinder tip connection body 322, the undulation cylinder 34 can be connected from the rear end of the ladder 31 as in the conventional case. Compared to a ladder frame that is integrally connected up to the point where the tip is connected, the amount of steel used can be reduced, and weight and cost can be reduced.
 本発明の梯子を搭載することで、消防用梯子車や高所作業車等の軽量化とコスト低減を図ることができる。 By installing the ladder of the present invention, it is possible to reduce the weight and cost of firefighting ladder trucks, aerial work vehicles, etc.
3 梯子
31 梯体
37 屈折段
37A 屈折中心
311 上親骨
312 下親骨
313 斜骨ボックス
314 斜骨
315 ガイドレール
32 梯体フレーム
321 起伏中心体
322 先端接続体
33 伸縮シリンダ
332 チューブ
334 チューブ用パッド
334a 一方のパッド
334b 他方のパッド
34 起伏シリンダ
36 揺動抑制体
361 第一主体(コ字状部材)
362、363 第一副体(上方後端パッド、下方後端パッド)
364 第二主体(J字状部材)
365 第二副体(側方後端パッド)
38 凸部
39 受け部
50 下面ローラ
51 第一部位
52 第二部位
501、502 回転体
511 第一ブラケット
521 第二ブラケット
W 斜骨の幅
3 Ladder 31 Ladder 37 Bending step 37A Bending center 311 Upper rib 312 Lower rib 313 Oblique rib box 314 Oblique rib 315 Guide rail 32 Ladder frame 321 Undulating center body 322 Tip connector 33 Telescopic cylinder 332 Tube 334 Tube pad 334a One side Pad 334b Other pad 34 Luffing cylinder 36 Swing suppressor 361 First main body (U-shaped member)
362, 363 First accessory body (upper rear end pad, lower rear end pad)
364 Second main body (J-shaped member)
365 Second accessory body (lateral rear end pad)
38 Convex portion 39 Receiving portion 50 Lower surface roller 51 First portion 52 Second portion 501, 502 Rotating body 511 First bracket 521 Second bracket W Width of oblique bone

Claims (15)

  1.  複数段の梯体を有し車両上で伸縮する梯子であって、
    前記梯体は、上親骨及び下親骨の断面形状がすべて同一であり、
    少なくとも一つの段における前記上親骨又は前記下親骨の断面サイズが、他の段における前記上親骨又は前記下親骨の断面サイズと同一であることを特徴とする梯子。
    A ladder having a plurality of steps and extending and contracting on a vehicle,
    In the ladder, the cross-sectional shape of the upper rib and the lower rib are all the same,
    A ladder characterized in that the cross-sectional size of the upper rib or the lower rib in at least one step is the same as the cross-sectional size of the upper rib or the lower rib in the other steps.
  2.  最下段の一つ上の段における前記下親骨は、内径が前記梯子の伸縮に用いる伸縮シリンダの外径よりも大きく、前記伸縮シリンダと同軸に配置されており、前記梯子が縮小したときに前記伸縮シリンダを収納することを特徴とする請求項1に記載の梯子。 The lower rib at the step above the lowest step has an inner diameter larger than the outer diameter of a telescoping cylinder used to extend and retract the ladder, and is disposed coaxially with the telescoping cylinder, so that when the ladder is contracted, 2. The ladder according to claim 1, wherein the ladder houses a telescoping cylinder.
  3.  前記伸縮シリンダを収納する前記下親骨は一つのパイプで構成され、前記一つのパイプに前記上親骨と前記下親骨を接続する接続材が取り付けられていることを特徴とする請求項2に記載の梯子。 3. The lower rib housing the telescopic cylinder is composed of one pipe, and a connecting member for connecting the upper rib and the lower rib is attached to the one pipe. ladder.
  4.  前記接続材は、一端が斜骨ボックスを介して前記上親骨と接続し、他端が前記斜骨ボックスを介して前記下親骨と接続した、前記親骨に対して斜めに設けられた斜骨であり、
    前記斜骨の幅が、各段内において同一であることを特徴とする請求項3に記載の梯子。
    The connecting material is an oblique rib provided diagonally with respect to the main rib, one end of which is connected to the upper main rib via the oblique bone box, and the other end is connected to the lower main rib via the oblique bone box. can be,
    4. A ladder according to claim 3, wherein the width of the oblique bones is the same within each rung.
  5.  前記梯体が5段であり、
    1段目における前記上親骨及び前記下親骨と2段目における前記上親骨の断面サイズが前記親骨のなかで最も小さく、
    前記2段目における前記下親骨と3段目における前記上親骨及び前記下親骨の断面サイズが前記親骨のなかで二番目に小さく、
    4段目における前記上親骨と5段目における前記上親骨の断面サイズが前記親骨のなかで三番目に小さく、
    前記5段目における前記下親骨の断面サイズが前記親骨のなかで四番目に小さく、
    前記4段目における前記下親骨の断面サイズが前記親骨のなかで最大であることを特徴とする請求項2から請求項4のいずれか一項に記載の梯子。
    the ladder has five tiers,
    The cross-sectional sizes of the upper rib and the lower rib in the first stage and the upper rib in the second stage are the smallest among the ribs,
    The cross-sectional size of the lower rib in the second stage and the upper rib and the lower rib in the third stage is the second smallest among the ribs,
    The cross-sectional size of the upper rib in the fourth stage and the upper rib in the fifth stage is the third smallest among the master ribs,
    The cross-sectional size of the lower rib in the fifth stage is the fourth smallest among the ribs,
    The ladder according to any one of claims 2 to 4, wherein the cross-sectional size of the lower rib at the fourth step is the largest among the ribs.
  6.  前記4段目における前記下親骨の厚みを、前記5段目における前記下親骨の厚みよりも小さくしたことを特徴とする請求項5に記載の梯子。 The ladder according to claim 5, wherein the thickness of the lower rib at the fourth step is smaller than the thickness of the lower rib at the fifth step.
  7.  前記上親骨及び前記下親骨の断面形状が正方形であることを特徴とする請求項1から請求項6のいずれか一項に記載の梯子。 The ladder according to any one of claims 1 to 6, wherein the upper rib and the lower rib have a square cross-sectional shape.
  8.  前記伸縮シリンダのチューブは、前記下親骨に収納されるときに前記下親骨の内面と接するチューブ用パッドを備え、
    前記チューブ用パッドは、前記チューブを収納する前記下親骨の内径よりも長さが小さい一方のパッドと、前記チューブを収納する前記下親骨の内径と長さが等しい他方のパッドとからなり、前記一方のパッドと前記他方のパッドが前記チューブを挟んで配置され、
    前記一方のパッドと前記下親骨との隙間に配管又は配線が通されていることを特徴とする請求項2から請求項7のいずれか一項に記載の梯子。
    The tube of the telescopic cylinder includes a tube pad that contacts the inner surface of the lower rib when stored in the lower rib,
    The tube pad consists of one pad whose length is smaller than the inner diameter of the lower rib that accommodates the tube, and the other pad whose length is equal to the inner diameter of the lower rib that accommodates the tube, one pad and the other pad are arranged to sandwich the tube,
    8. The ladder according to claim 2, wherein piping or wiring is passed through a gap between the one pad and the lower rib.
  9.  前記梯子を伸縮させるときに前記下親骨の下面との接触により回転する下面ローラを備え、
    前記下面ローラは、それぞれ一対の回転体を有する第一部位と第二部位とが隣接してなり、
    前記第一部位の前記一対の回転体の一端を支持する一端側第一ブラケットと、前記第一部位の前記一対の回転体の他端を支持する他端側第一ブラケットとが分離して設けられ、
    前記第二部位の前記一対の回転体の一端を支持する一端側第二ブラケットと、前記第二部位の前記一対の回転体の他端を支持する他端側第二ブラケットとが分離して設けられていることを特徴とする請求項1から請求項8のいずれか一項に記載の梯子。
    a lower surface roller that rotates by contact with the lower surface of the lower rib when the ladder is expanded or contracted;
    The lower surface roller has a first portion and a second portion adjacent to each other, each having a pair of rotating bodies,
    A first bracket on one end side that supports one end of the pair of rotating bodies of the first part and a first bracket on the other end side that supports the other end of the pair of rotating bodies of the first part are provided separately. is,
    A second bracket on one end side that supports one end of the pair of rotating bodies of the second part and a second bracket on the other end side that supports the other end of the pair of rotating bodies of the second part are provided separately. The ladder according to any one of claims 1 to 8, characterized in that:
  10.  前記下親骨の後端において、前記梯子を伸縮するときの揺動を抑制する揺動抑制体を備え、
    前記揺動抑制体は、前記梯体の同一段において、前記梯体のスライドをガイドするガイドレールと前記下親骨との間に設けられた第一主体と、
    前記ガイドレールと前記第一主体との隙間、及び前記下親骨と前記第一主体との隙間に配置された第一副体を有することを特徴とする請求項1から請求項9のいずれか一項に記載の梯子。
    At the rear end of the lower rib, a swing suppressing body that suppresses swing when extending and contracting the ladder,
    The swing suppressing body includes a first main body provided between the lower main rib and a guide rail that guides the slide of the ladder at the same stage of the ladder;
    Any one of claims 1 to 9, further comprising a first subsidiary body disposed in a gap between the guide rail and the first main body and a gap between the lower master rib and the first main body. Ladder as described in Section.
  11.  前記揺動抑制体は、前記梯体の同一段において、一端が前記ガイドレールに接続し、他端が前記下親骨に接続した第二主体と、一つ下の段の前記梯体に設けられている前記ガイドレールと前記第二主体との隙間に配置された第二副体とを有することを特徴とする請求項10に記載の梯子。 The swing suppressing body is provided at the same stage of the ladder, with a second main body having one end connected to the guide rail and the other end connected to the lower rib, and the ladder one step below. 11. The ladder according to claim 10, further comprising a second subsidiary body disposed in a gap between the guide rail and the second main body.
  12.  前記梯体の先端に下方へ屈折可能な屈折段を備え、
    前記屈折段の屈折中心は、前記梯子を縮小した収納状態において前記梯体内に位置し、
    前記屈折中心が前記梯体に当接することで前記屈折段の屈折が阻止されることを特徴とする請求項1から請求項11のいずれか一項に記載の梯子。
    A refraction step that can be bent downward is provided at the tip of the ladder,
    The refraction center of the refraction stage is located within the ladder when the ladder is in a contracted and stored state;
    12. The ladder according to claim 1, wherein the refraction center comes into contact with the ladder, thereby preventing the refraction step from refraction.
  13.  前記屈折段は前記屈折中心よりも後方に凸部を有し、
    前記梯体は前記凸部に対応する受け部を有し、
    前記梯子が前記収納状態にあるとき、前記凸部と前記受け部が近接又は接触していることを特徴とする請求項12に記載の梯子。
    The refraction step has a convex portion behind the refraction center,
    The ladder has a receiving part corresponding to the convex part,
    13. The ladder according to claim 12, wherein when the ladder is in the stored state, the convex portion and the receiving portion are close to or in contact with each other.
  14.  前記梯子の後部を支持する梯体フレームを備え、
    前記梯体フレームは、前記梯子の後端に位置し前記梯子が起伏する際の中心点を有する起伏中心体と、前記起伏中心体よりも前方に位置し前記梯子を起伏させる起伏シリンダの先端が接続されているシリンダ先端接続体とに分かれていることを特徴とする請求項1から請求項13のいずれか一項に記載の梯子。
    comprising a ladder frame that supports a rear part of the ladder;
    The ladder frame includes a undulation center body located at the rear end of the ladder and having a center point when the ladder undulates, and a tip of a undulation cylinder located in front of the undulation center body for undulating the ladder. The ladder according to any one of claims 1 to 13, characterized in that the ladder is divided into a cylinder end connecting body and a connected cylinder end connecting body.
  15.  請求項1から請求項14のいずれか一項に記載の梯子が取り付けられていることを特徴とする車両。 A vehicle equipped with the ladder according to any one of claims 1 to 14.
PCT/JP2022/013716 2022-03-23 2022-03-23 Ladder and vehicle provided with said ladder WO2023181215A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/013716 WO2023181215A1 (en) 2022-03-23 2022-03-23 Ladder and vehicle provided with said ladder
CN202280058719.3A CN117897547A (en) 2022-03-23 2022-03-23 Scaling ladder and vehicle with scaling ladder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/013716 WO2023181215A1 (en) 2022-03-23 2022-03-23 Ladder and vehicle provided with said ladder

Publications (1)

Publication Number Publication Date
WO2023181215A1 true WO2023181215A1 (en) 2023-09-28

Family

ID=88100573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013716 WO2023181215A1 (en) 2022-03-23 2022-03-23 Ladder and vehicle provided with said ladder

Country Status (2)

Country Link
CN (1) CN117897547A (en)
WO (1) WO2023181215A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155247U (en) * 1981-03-26 1982-09-29
JPS62260986A (en) * 1986-04-26 1987-11-13 イベコ マギルス アクチエンゲゼルシヤフト Ladder for fire extinguishment
JPH11159269A (en) * 1997-09-05 1999-06-15 Iveco Magirus Ag Ladder device for fire brigade
JP2008101340A (en) * 2006-10-17 2008-05-01 Matsumoto Kiko Kk Telescopic escape ladder
US20160215560A1 (en) * 2014-11-24 2016-07-28 Oshkosh Corporation Aerial ladder for a fire apparatus
US20200071996A1 (en) * 2018-04-23 2020-03-05 Oshkosh Corporation Aerial ladder assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155247U (en) * 1981-03-26 1982-09-29
JPS62260986A (en) * 1986-04-26 1987-11-13 イベコ マギルス アクチエンゲゼルシヤフト Ladder for fire extinguishment
JPH11159269A (en) * 1997-09-05 1999-06-15 Iveco Magirus Ag Ladder device for fire brigade
JP2008101340A (en) * 2006-10-17 2008-05-01 Matsumoto Kiko Kk Telescopic escape ladder
US20160215560A1 (en) * 2014-11-24 2016-07-28 Oshkosh Corporation Aerial ladder for a fire apparatus
US20200071996A1 (en) * 2018-04-23 2020-03-05 Oshkosh Corporation Aerial ladder assembly

Also Published As

Publication number Publication date
CN117897547A (en) 2024-04-16

Similar Documents

Publication Publication Date Title
US5884791A (en) Telescopic jib for vehicular cranes
CN103085739B (en) Bumper Reinforcement
US9284039B2 (en) Rudder system for an aircraft
WO2023181215A1 (en) Ladder and vehicle provided with said ladder
JP6913960B2 (en) Structure support device between fixed structures
JPH02175597A (en) Mast apparatus for lift truck
US6978907B2 (en) Telescopic jib for a vehicular crane
JP7086454B2 (en) Telescopic boom
JP7287030B2 (en) Telescopic cylinder assembly for telescopic boom
JP6569311B2 (en) Jib overhang storage mechanism
CN215309884U (en) Crank arm aerial ladder and aerial ladder fire truck
US20190127998A1 (en) Hollow two-point lever
JP5087033B2 (en) Buckling prevention mechanism of multistage telescopic cylinder
JP4059042B2 (en) Body structure
US20200217093A1 (en) Distribution Boom for Mobile Concrete Pumps Comprising Joints for Adjacent Arms, and Mobile Concrete Pump
JP5454308B2 (en) crane
EP3945637A1 (en) Scalable high compaction ratio hoop column deployable mesh reflector system
JP4676207B2 (en) Aerial work platform
JP6037377B2 (en) Folding crane
CN216946105U (en) Coaxiality-adjustable arm support and overhead working truck
KR100765624B1 (en) Center piller reinforcing structure
KR102033925B1 (en) Expansion and contraction structure of high rise ladder structure for fire truck
JPH11130377A (en) Telescopic boom supporting structure for crane
US20240011242A1 (en) Bending boom, boom device, and work machine
CN112614660B (en) Vehicle-mounted movable transformer radiator support structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933357

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024509544

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280058719.3

Country of ref document: CN