WO2023181166A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2023181166A1
WO2023181166A1 PCT/JP2022/013476 JP2022013476W WO2023181166A1 WO 2023181166 A1 WO2023181166 A1 WO 2023181166A1 JP 2022013476 W JP2022013476 W JP 2022013476W WO 2023181166 A1 WO2023181166 A1 WO 2023181166A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
charge pump
power
voltage
power conversion
Prior art date
Application number
PCT/JP2022/013476
Other languages
French (fr)
Japanese (ja)
Inventor
一真 藤原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/013476 priority Critical patent/WO2023181166A1/en
Publication of WO2023181166A1 publication Critical patent/WO2023181166A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a power conversion device having a smoothing capacitor.
  • Patent Document 1 describes a generator motor drive device.
  • This generator motor drive device includes a generator motor, a capacitor, a driver, a booster, and a controller.
  • the controller performs discharge control when an instruction is input.
  • the controller operates the booster and the driver, and performs control to discharge the power stored in the capacitor using the generator motor as a load.
  • the controller continues to turn on the switching element of the booster to form a closed circuit including the capacitor.
  • the power stored in the capacitor is discharged, and the voltage between the terminals of the capacitor reaches a voltage value close to the zero level.
  • the charge in the capacitor is discharged by driving the inverter circuit of the booster. Therefore, when discharging the charge of the capacitor, both the plurality of semiconductor elements that constitute the inverter circuit and the load of the generator motor need to be in a normal state. Therefore, if any one of these semiconductor elements and the generator motor becomes abnormal, there is a problem in that the charge in the capacitor cannot be discharged.
  • the present disclosure has been made to solve the above-mentioned problems, and aims to provide a power conversion device that can more reliably discharge the residual charge of a smoothing capacitor.
  • a power conversion device has a power semiconductor element connected in a bridge manner, and is connected between a power conversion circuit connected to a DC power source via a switch, and a power line and a ground line of the power conversion circuit.
  • a charge pump circuit having a plurality of charge pump capacitors, a drive circuit that drives the power semiconductor element using electric power generated by the charge pump circuit, and a voltage of the smoothing capacitor. and a control circuit, the charge pump circuit operating to alternately connect at least one charge pump capacitor among the plurality of charge pump capacitors to the power supply line and the ground line.
  • the control circuit may cause the charge pump circuit to perform a discharging operation in which the at least one charge pump capacitor is alternately connected to the power supply line and the ground line after the switch is in an open state. and when the voltage of the smoothing capacitor becomes equal to or less than a threshold voltage, or when the elapsed time from the start of the discharging operation exceeds a threshold time, the discharging operation of the charge pump circuit is stopped. It is configured to allow
  • FIG. 1 is a diagram showing a schematic configuration of a power conversion device according to Embodiment 1.
  • FIG. 3 is a diagram illustrating a discharging operation in the power conversion device according to the first embodiment.
  • 5 is a flowchart showing the flow of discharge processing in the power conversion device according to the first embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of a power conversion device according to this embodiment.
  • a power conversion device 14 used in a mechanical and electrical integrated generator motor for vehicles will be described as an example.
  • the power conversion device 14 includes a power conversion circuit 7, a charge pump circuit 8, a drive circuit 6, a control circuit 10, and a voltage detection circuit 11.
  • the power conversion device 14 is configured to operate the generator motor 12.
  • the generator motor 12 is a rotating part of a mechanical and electrically integrated generator motor that serves as an auxiliary machine for an automobile.
  • the power conversion circuit 7 is connected to the first DC power supply 1 via the power supply line 1a and the first switch 3.
  • the first DC power supply 1 is provided outside the power conversion device 14.
  • the first switch 3 is provided on the power supply line 1a.
  • the first switch 3 performs opening and closing operations based on commands from an electronic control unit (ECU) 13.
  • ECU electronice control unit
  • the power conversion circuit 7 has a plurality of power semiconductor elements 9.
  • the plurality of power semiconductor elements 9 are bridge-connected between the power supply line 1a and the ground line 1b.
  • the power conversion circuit 7 is configured to generate necessary output power by switching operations of each power semiconductor element 9.
  • the power conversion circuit 7 converts DC power supplied from the first DC power supply 1 into AC power.
  • the converted AC power is supplied to the generator motor 12.
  • the power conversion circuit 7 rectifies alternating current power supplied from the generator motor 12 and converts it into direct current.
  • the drive circuit 6 is configured to drive the plurality of power semiconductor elements 9 of the power conversion circuit 7 based on commands from the control circuit 10.
  • the drive circuit 6 is provided for each phase of the generator motor 12.
  • a smoothing capacitor 5 is connected between the power supply line 1a and the ground line 1b.
  • the smoothing capacitor 5 has a function of smoothing ripple voltage generated during power conversion.
  • the smoothing capacitor 5 preferably has a low equivalent series resistance (ESR) and a relatively large capacitance.
  • ESR equivalent series resistance
  • an electrolytic capacitor or the like is used as the smoothing capacitor 5.
  • the charge pump circuit 8 is configured to generate power for driving the power semiconductor element 9.
  • the charge pump circuit 8 has a configuration in which a capacitor, a diode, and a switch are combined. In the charge pump circuit 8, the switch is alternately switched between the power supply side and the ground side, thereby raising the lower end voltage and boosting the output voltage.
  • the driving power generated by the charge pump circuit 8 is supplied to each power semiconductor element 9 via the driving circuit 6.
  • the charge pump circuit 8 includes a low side charge pump capacitor 8b, a high side charge pump capacitor 8a, a charge pump drive circuit 8c, a switch 8d, and a switch 8e.
  • the switch 8d is provided corresponding to the high side charge pump capacitor 8a.
  • Switch 8e is provided corresponding to low side charge pump capacitor 8b. The operation of each switch 8d, 8e is switched by a charge pump drive circuit 8c.
  • the low-side charge pump capacitor 8b is connected to the power supply line 1c when the switch 8e is switched to the power supply side. Power is supplied to the power supply line 1c from the second DC power supply 2 via the control power generation circuit 15.
  • a second switch 4 is provided between the second DC power supply 2 and the control power generation circuit 15. The second switch 4 performs opening and closing operations based on commands from the ECU 13. When the second switch 4 is in the closed state, power is supplied from the second DC power supply 2 to the control circuit 10 and the power supply line 1c via the control power generation circuit 15. When the second switch 4 is in the open state, power supply to the control circuit 10 and the power supply line 1c is cut off.
  • the low-side charge pump capacitor 8b is connected to the ground line 1b when the switch 8e is switched to the ground side.
  • the high side charge pump capacitor 8a is connected to the power supply line 1a when the switch 8d is switched to the power supply side. Power is supplied from the first DC power supply 1 to the power supply line 1a.
  • the high side charge pump capacitor 8a is connected to the ground line 1b when the switch 8d is switched to the ground side.
  • the charge pump circuit 8 can perform an operation of alternately connecting each of the low side charge pump capacitor 8b and the high side charge pump capacitor 8a to the power supply line and the ground line.
  • the output voltage is boosted by alternately connecting the low-side charge pump capacitor 8b and the high-side charge pump capacitor 8a to the power supply line and the ground line.
  • a voltage that is the sum of the output voltage boosted on the low side and the voltage of the power supply line 1a is output.
  • the high-side output is supplied as driving power to the power semiconductor element 9 of the upper arm via the driving circuit 6.
  • the low-side output is supplied as driving power to the power semiconductor element 9 of the lower arm via the driving circuit 6.
  • the low-side charge pump capacitor 8b and the high-side charge pump capacitor 8a used for charge pump operation are capable of rapidly transferring and discharging charges. Therefore, it is preferable to use capacitors with low ESR and low equivalent series inductance (ESL) for each of the low-side charge pump capacitor 8b and the high-side charge pump capacitor 8a.
  • capacitors with low ESR and low equivalent series inductance (ESL) for each of the low-side charge pump capacitor 8b and the high-side charge pump capacitor 8a.
  • ESL equivalent series inductance
  • a ceramic capacitor or the like is used for each of the low side charge pump capacitor 8b and the high side charge pump capacitor 8a.
  • control power generation circuit 15 includes a DC/DC converter, a linear regulator, and the like.
  • the control circuit 10 is configured to control each function of the power conversion device 14.
  • the control circuit 10 mainly operates using electric power supplied from the second DC power supply 2 via the control power generation circuit 15.
  • the control circuit 10 is configured mainly of a microcomputer IC, for example.
  • the control circuit 10 communicates with a higher-level ECU 13 mounted on the vehicle side. In response to an operation request from the ECU 13, the control circuit 10 determines whether the charge pump circuit 8 is allowed to operate, issues commands to the drive control circuit 6a of the drive circuit 6, and the like.
  • the charge pump circuit 8 and the drive circuit 6 may be functions realized by one IC such as a driver IC. It is only necessary to provide means for permitting and disallowing the respective functions of the charge pump circuit 8 and the drive circuit 6.
  • the ECU 13 mainly has the role of collecting and controlling information from each sensor of the vehicle.
  • the ECU 13 has a function of commanding the opening and closing operations of the first switch 3 and the second switch 4.
  • both the first switch 3 and the second switch 4 are preferably controlled to the open state in order to ensure safety during vehicle maintenance and to prevent the battery from dying due to dark current.
  • information on the state of the vehicle including the open/close states of the first switch 3 and the second switch 4 and information on the state of the power conversion device 14 are exchanged with each other. .
  • first DC power supply 1 and the second DC power supply 2 are of the same voltage system.
  • the voltage of the first DC power supply 1, which requires relatively large power is higher than the voltage of the second DC power supply 2.
  • internal insulation may be required.
  • the smoothing capacitor 5 and charge pump circuit 8 that require discharge have the same grounding system, internal insulation can be achieved by various measures. For example, by using an isolated power supply in the control power generation circuit 15 or by performing insulation treatment between a weak electric system such as the control circuit 10 and a strong electric system such as the charge pump circuit 8 and the drive circuit 6, Internal insulation can be provided.
  • the voltage detection circuit 11 is configured to detect the voltage of the power line 1a of the first DC power supply 1. Voltage detection circuit 11 is one of the sensors. While the control circuit 10 is operating, the voltage detection circuit 11 can monitor the residual voltage of the smoothing capacitor 5.
  • FIG. 2 is a diagram illustrating the discharging operation in the power conversion device according to the present embodiment.
  • the charge pump circuit 8 in FIG. 2 has the same connection configuration as the charge pump circuit 8 in FIG. In FIG. 1, low-side charge pump capacitor 8b is alternately connected to power supply line 1c and ground line 1b by switch 8e.
  • the power supply line 1c is connected to the second DC power supply 2 via the control power generation circuit 15.
  • High side charge pump capacitor 8a is alternately connected to power supply line 1a and ground line 1b by switch 8d.
  • the power line 1a is connected to a smoothing capacitor 5. Based on these, the charge pump circuit 8 in FIG. 2 is schematically represented using a variable DC power supply and a variable capacitor.
  • the drive circuit 6 includes a push-pull circuit 6b and an inverting level shift circuit 6c.
  • the push-pull circuit 6b is configured by connecting two stages of complementary transistors and the like.
  • Push-pull circuit 6b amplifies current to drive power semiconductor element 9.
  • the power semiconductor element 9 is an N-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • an NPN type bipolar transistor is used as an upper stage transistor, and a PNP type bipolar transistor is applied as a lower stage transistor.
  • the collector of the upper stage transistor is connected to the output stage of the high side charge pump capacitor 8a.
  • the collector of the lower transistor is connected to the source terminal of the power semiconductor element 9.
  • the midpoint where the emitters of the upper and lower transistors are connected becomes the output stage of the push-pull circuit 6b.
  • the output stage of the push-pull circuit 6b is connected to the gate terminal of the power semiconductor element 9 via a gate resistor.
  • the upper stage NPN transistor becomes conductive, and a gate voltage is applied to the power semiconductor element 9 by a push operation. As a result, the power semiconductor element 9 becomes conductive.
  • the Lo signal is input to the push-pull circuit 6b, the PNP transistor in the lower stage becomes conductive, and the gate and source of the power semiconductor element 9 become at the same potential due to the pull operation. As a result, the power semiconductor element 9 enters the cut-off state.
  • the level shift circuit 6c has a pull-up resistor 16 and a switching element 17.
  • Pull-up resistor 16 is connected to the output stage of high-side charge pump capacitor 8a.
  • Switching element 17 is connected in series between pull-up resistor 16 and ground line 1b.
  • the output of the level shift circuit 6c is input to the push-pull circuit 6b via a base resistor.
  • the push-pull circuit 6b When the switching element 17 becomes conductive, the push-pull circuit 6b performs a pull operation, and the power semiconductor element 9 enters a cut-off state. When the switching element 17 is cut off, the push-pull circuit 6b performs a push operation, and the power semiconductor element 9 becomes conductive.
  • the switching element 17 becomes conductive, and the pull-up resistor 16 is connected to ground. Therefore, the charge on the high-side charge pump capacitor 8a is consumed via the pull-up resistor 16.
  • the switch 8d when the switch 8d is switched to the power supply side, the consumed charge is supplied from the smoothing capacitor 5 to the high side charge pump capacitor 8a. Since the first switch 3 is in the open state, no charge is supplied to the smoothing capacitor 5 from the first DC power supply 1. Therefore, the smoothing capacitor 5 continues to discharge without being charged. As a result, the capacitor voltage of the smoothing capacitor 5 decreases. In this manner, in this embodiment, the residual charge in the smoothing capacitor 5 is discharged by the discharge operation of the charge pump circuit 8.
  • the voltage detection circuit 11 has a resistor 11a for voltage division, as shown in FIG.
  • Resistor 11a is connected in series between control circuit 10 and smoothing capacitor 5. As a result, even if the operation of the control circuit 10 is stopped after the discharging process is completed, the charge of the smoothing capacitor 5 is consumed via the resistor 11a. Therefore, the residual charge in the smoothing capacitor 5 can be more completely discharged.
  • the charges in the smoothing capacitor 5 can be discharged by continuing the operation of the charge pump circuit 8 while the power semiconductor element 9 is stopped. Therefore, even if the power conversion circuit 7 or the generator motor 12 is in an abnormal state, the charge in the smoothing capacitor 5 can be discharged. If the power semiconductor element 9 is operated in a state where there is an abnormality in the power conversion circuit 7 or the generator motor 12, there is a risk that a large current will be generated due to a power supply short circuit or the like. In contrast, in the present embodiment, the electric charge in the smoothing capacitor 5 can be discharged more safely because the electric charge can be discharged without operating the power conversion circuit 7.
  • FIG. 3 is a flowchart showing the flow of discharge processing in the power conversion device according to the present embodiment.
  • the discharging process shown in FIG. 3 is executed by the control circuit 10 when the operation of the power conversion device 14 is stopped.
  • step S101 in FIG. 3 the control circuit 10 determines whether the first switch 3 is in an open state based on a notification from the higher-level ECU 13. If the first switch 3 is in the open state, the processes from step S102 onwards are executed. If the first switch 3 is in the closed state, the process of step S101 is repeated. Note that the control circuit 10 may start the process of step S101 when receiving a notification from the ECU 13.
  • step S102 the control circuit 10 outputs a stop signal to the drive control circuit 6a.
  • the drive circuit 6 stops driving the power conversion circuit 7, and the power conversion circuit 7 stops operating.
  • the control circuit 10 may perform a process to confirm that the drive circuit 6 is in a stopped state.
  • step S103 the control circuit 10 calculates the threshold time Tth. Details of the process in step S103 will be described later.
  • step S104 the control circuit 10 outputs an operation permission signal to the charge pump circuit 8 that allows the operation of the charge pump circuit 8.
  • the charge pump circuit 8 performs a discharging operation.
  • the residual charge in the smoothing capacitor 5 is gradually discharged by the discharge operation of the charge pump circuit 8. That is, in this embodiment, the smoothing capacitor 5 can be discharged by using the circuit function used in the normal operation of the power conversion device 14. In this embodiment, since there is no need to separately provide a discharge circuit, the configuration of the power converter 14 can be simplified.
  • step S106 the control circuit 10 determines whether the elapsed time T since the discharge operation of the charge pump circuit 8 was started exceeds the threshold time Tth. If the elapsed time T exceeds the threshold time Tth, the process of step S107 is executed. If the elapsed time T is less than or equal to the threshold time Tth, the discharge operation of the charge pump circuit 8 is continued.
  • step S107 the control circuit 10 determines whether the voltage Vcon of the smoothing capacitor 5 is equal to or lower than the threshold voltage Vth. Voltage Vcon is detected by voltage detection circuit 11. The threshold voltage Vth is set in advance. If the voltage Vcon is less than or equal to the threshold voltage Vth, the process of step S108 is executed. On the other hand, if the voltage Vcon is larger than the threshold voltage Vth, the process of step S109 is executed.
  • step S108 the control circuit 10 outputs an operation stop signal to the charge pump circuit 8 to stop the operation of the charge pump circuit 8. As a result, the discharging operation of the charge pump circuit 8 is stopped.
  • step S109 the control circuit 10 determines that the first switch 3 is out of order.
  • the failure of the first switch 3 also includes a failure of the control system related to the first switch 3. In other words, if the voltage Vcon does not become equal to or lower than the threshold voltage Vth even though the elapsed time T exceeds the threshold time Tth, the first switch 3 is stuck or the ECU 13 is not able to control the first switch 3 normally. is estimated.
  • the control circuit 10 determines that the first switch 3 is out of order, it notifies the ECU 13 of information to that effect, for example. This makes it possible to notify the user of the failure of the first switch 3 using a warning light or the like provided in the vehicle.
  • the threshold time Tth which is a variable value, before allowing the charge pump circuit 8 to operate.
  • the voltage applied to the smoothing capacitor 5 varies depending on the state of the first DC power supply 1 and the operation of the power conversion circuit 7. Therefore, the time required for discharging the smoothing capacitor 5 tends to vary.
  • the control circuit 10 estimates the load current or load resistance value in advance.
  • the load current is a current consumed in the charge pump circuit 8 and the drive circuit 6 for all phases in the generator motor 12.
  • the load resistance value is the resistance value of the charge pump circuit 8 and the drive circuit 6 for all phases in the generator motor 12.
  • the control circuit 10 determines the voltage Vcon of the smoothing capacitor 5 immediately before performing the discharge process, the load current or load resistance value estimated in advance, and the target value of the voltage Vcon after the discharge process. Calculate the threshold time Tth.
  • the target value of the voltage Vcon after the discharge process is, for example, the threshold voltage Vth.
  • the processes in steps S107 and S109 can be omitted.
  • the control circuit 10 outputs an operation stop signal to the charge pump circuit 8 regardless of the voltage Vcon.
  • the process of step S106 can be omitted.
  • the control circuit 10 outputs an operation stop signal to the charge pump circuit 8 regardless of the elapsed time T when the voltage Vcon becomes equal to or lower than the threshold voltage Vth. That is, in the present embodiment, the control circuit 10 outputs an operation stop signal to the charge pump circuit 8 when the voltage Vcon becomes equal to or lower than the threshold voltage Vth, or when the elapsed time T exceeds the threshold time Tth. do.
  • the power conversion device 14 includes the power conversion circuit 7, the smoothing capacitor 5, the charge pump circuit 8, the drive circuit 6, the voltage detection circuit 11, and the control circuit 10. It is equipped with.
  • the power conversion circuit 7 includes power semiconductor elements 9 connected in a bridge manner. Power conversion circuit 7 is connected to first DC power supply 1 via first switch 3 . Smoothing capacitor 5 is connected between power supply line 1a of power conversion circuit 7 and ground line 1b.
  • Charge pump circuit 8 has a plurality of charge pump capacitors.
  • Drive circuit 6 drives power semiconductor element 9 using electric power generated by charge pump circuit 8 .
  • the voltage detection circuit 11 detects the voltage of the smoothing capacitor 5.
  • the charge pump circuit 8 can perform an operation of alternately connecting at least one high-side charge pump capacitor 8a among the plurality of charge pump capacitors to the power supply line 1a and the ground line 1b.
  • the control circuit 10 causes the charge pump circuit 8 to perform a discharging operation in which the high-side charge pump capacitor 8a is alternately connected to the power supply line 1a and the ground line 1b.
  • the control circuit 10 causes the charge pump circuit 8 to discharge when the voltage Vcon of the smoothing capacitor 5 becomes equal to or lower than the threshold voltage Vth, or when the elapsed time T from the start of the discharging operation exceeds the threshold time Tth. It is configured to stop the operation.
  • the first switch 3 is an example of a switch.
  • the first DC power supply 1 is an example of a DC power supply.
  • High side charge pump capacitor 8a is an example of a charge pump capacitor.
  • the charge in the smoothing capacitor 5 can be discharged by the discharging operation of the charge pump circuit 8 without operating the power conversion circuit 7.
  • the residual charge in the smoothing capacitor 5 can be more reliably discharged without depending on the states of the power conversion circuit 7 and the generator motor 12.
  • the configuration of the power converter 14 can be simplified.
  • the drive circuit 6 includes an inverting level shift circuit 6c.
  • the level shift circuit 6c includes a switching element 17 and a pull-up resistor 16.
  • the switching element 17 and the pull-up resistor 16 are connected in series between the output stage of the charge pump circuit 8 and the ground line 1b.
  • the switching element 17 is in the conductive state.
  • the pull-up resistor 16 is connected to the ground via the switching element 17 that is in a conductive state. Therefore, the charge of the high-side charge pump capacitor 8a can be consumed by the pull-up resistor 16.
  • the control circuit 10 causes the first switch 3 to malfunction if the voltage Vcon of the smoothing capacitor 5 does not become equal to or lower than the threshold voltage Vth even though the elapsed time T exceeds the threshold time Tth. It is determined that the According to this configuration, it is possible to notify the user of a failure of the first switch 3.
  • the control circuit 10 controls the voltage of the smoothing capacitor 5 before the discharge operation is started, the load current consumed in the charge pump circuit 8 and the drive circuit 6, and the threshold value.
  • the threshold time Tth is calculated based on the voltage Vth. According to this configuration, the threshold time Tth can be appropriately set according to the time required for discharge.
  • the voltage detection circuit 11 includes a resistor 11a.
  • the resistor 11a is connected in series between the control circuit 10 and the smoothing capacitor 5. According to this configuration, even if the operation of the control circuit 10 is stopped after the discharge process is completed, the charge of the smoothing capacitor 5 is consumed via the resistor 11a. Therefore, the residual charge in the smoothing capacitor 5 can be more completely discharged.
  • a power conversion device used in a mechanical and electrical integrated generator-motor for vehicles is taken as an example, but the present invention is not limited to this.
  • the present disclosure can be applied to various power conversion devices that require discharge processing of a smoothing capacitor.

Abstract

This power conversion device comprises: a power conversion circuit that is connected to a DC power supply via a switch; a smoothing capacitor that is connected between the power supply line and the ground line of the power conversion circuit; a charge pump circuit that has a charge pump capacitor; a drive circuit that drives power semiconductor elements; a voltage detection circuit that detects the voltage of the smoothing capacitor; and a control circuit. The charge pump circuit can perform an operation for causing the charge pump capacitor to alternately connect to the power supply line and the ground line. The control circuit is configured so as to cause the charge pump circuit to perform a discharging operation in which the charge pump capacitor is alternately connected to the power supply line and the ground line after the switch is brought into an open state and to stop the discharging operation of the charge pump circuit when the voltage of the smoothing capacitor becomes less than or equal to a threshold voltage or when an elapsed time from the start of the discharging operation exceeds a threshold time.

Description

電力変換装置power converter
 本開示は、平滑用コンデンサを有する電力変換装置に関するものである。 The present disclosure relates to a power conversion device having a smoothing capacitor.
 特許文献1には、発電電動機駆動装置が記載されている。この発電電動機駆動装置は、発電電動機、キャパシタ、ドライバ、昇圧器及びコントローラを有している。コントローラは、指示が入力されると放電制御を行う。放電制御において、コントローラは、昇圧器及びドライバを作動させ、発電電動機を負荷として、キャパシタに蓄電された電力を放電させる制御を行う。キャパシタの端子間電圧がしきい値に達すると、コントローラは、昇圧器のスイッチング素子を継続してオンにして、キャパシタを含む閉回路を形成する。これにより、キャパシタに蓄電された電力が放電され、キャパシタの端子間電圧が零レベル近くの電圧値に達する。 Patent Document 1 describes a generator motor drive device. This generator motor drive device includes a generator motor, a capacitor, a driver, a booster, and a controller. The controller performs discharge control when an instruction is input. In the discharge control, the controller operates the booster and the driver, and performs control to discharge the power stored in the capacitor using the generator motor as a load. When the voltage across the capacitor reaches a threshold, the controller continues to turn on the switching element of the booster to form a closed circuit including the capacitor. As a result, the power stored in the capacitor is discharged, and the voltage between the terminals of the capacitor reaches a voltage value close to the zero level.
特許第5529393号公報Patent No. 5529393
 上記の発電電動機駆動装置では、昇圧器のインバータ回路の駆動により、キャパシタの電荷が放電される。このため、キャパシタの電荷を放電する際には、インバータ回路を構成する複数の半導体素子と、発電電動機の負荷とがいずれも正常状態である必要がある。したがって、これらの半導体素子及び発電電動機のいずれか1つでも異常状態になると、キャパシタの電荷を放電できなくなってしまうという課題があった。 In the generator motor drive device described above, the charge in the capacitor is discharged by driving the inverter circuit of the booster. Therefore, when discharging the charge of the capacitor, both the plurality of semiconductor elements that constitute the inverter circuit and the load of the generator motor need to be in a normal state. Therefore, if any one of these semiconductor elements and the generator motor becomes abnormal, there is a problem in that the charge in the capacitor cannot be discharged.
 本開示は、上述のような課題を解決するためになされたものであり、平滑用コンデンサの残留電荷をより確実に放電できる電力変換装置を提供することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and aims to provide a power conversion device that can more reliably discharge the residual charge of a smoothing capacitor.
 本開示に係る電力変換装置は、ブリッジ接続されたパワー半導体素子を有し、スイッチを介して直流電源と接続された電力変換回路と、前記電力変換回路の電源ラインと接地ラインとの間に接続された平滑用コンデンサと、複数のチャージポンプコンデンサを有するチャージポンプ回路と、前記チャージポンプ回路により生成された電力を利用して、前記パワー半導体素子を駆動する駆動回路と、前記平滑用コンデンサの電圧を検出する電圧検出回路と、制御回路と、を備え、前記チャージポンプ回路は、前記複数のチャージポンプコンデンサのうち少なくとも1つのチャージポンプコンデンサを前記電源ラインと前記接地ラインとに交互に接続させる動作を実行可能であり、前記制御回路は、前記スイッチが開状態になった後に、前記少なくとも1つのチャージポンプコンデンサが前記電源ラインと前記接地ラインとに交互に接続される放電動作を前記チャージポンプ回路に実行させ、前記平滑用コンデンサの電圧が閾値電圧以下になった場合、又は、前記放電動作が開始されてからの経過時間が閾値時間を超えた場合、前記チャージポンプ回路の前記放電動作を停止させるように構成されている。 A power conversion device according to the present disclosure has a power semiconductor element connected in a bridge manner, and is connected between a power conversion circuit connected to a DC power source via a switch, and a power line and a ground line of the power conversion circuit. a charge pump circuit having a plurality of charge pump capacitors, a drive circuit that drives the power semiconductor element using electric power generated by the charge pump circuit, and a voltage of the smoothing capacitor. and a control circuit, the charge pump circuit operating to alternately connect at least one charge pump capacitor among the plurality of charge pump capacitors to the power supply line and the ground line. The control circuit may cause the charge pump circuit to perform a discharging operation in which the at least one charge pump capacitor is alternately connected to the power supply line and the ground line after the switch is in an open state. and when the voltage of the smoothing capacitor becomes equal to or less than a threshold voltage, or when the elapsed time from the start of the discharging operation exceeds a threshold time, the discharging operation of the charge pump circuit is stopped. It is configured to allow
 本開示によれば、平滑用コンデンサの残留電荷をより確実に放電させることができる。 According to the present disclosure, residual charges in the smoothing capacitor can be discharged more reliably.
実施の形態1に係る電力変換装置の概略構成を示す図である。1 is a diagram showing a schematic configuration of a power conversion device according to Embodiment 1. FIG. 実施の形態1に係る電力変換装置における放電動作を説明する図である。FIG. 3 is a diagram illustrating a discharging operation in the power conversion device according to the first embodiment. 実施の形態1に係る電力変換装置における放電処理の流れを示すフローチャートである。5 is a flowchart showing the flow of discharge processing in the power conversion device according to the first embodiment.
 実施の形態1.
 実施の形態1に係る電力変換装置について説明する。図1は、本実施の形態に係る電力変換装置の概略構成を示す図である。本実施の形態では、車両向けの機電一体型発電電動機に用いられる電力変換装置14を例に挙げて説明する。
Embodiment 1.
A power conversion device according to Embodiment 1 will be described. FIG. 1 is a diagram showing a schematic configuration of a power conversion device according to this embodiment. In this embodiment, a power conversion device 14 used in a mechanical and electrical integrated generator motor for vehicles will be described as an example.
 図1に示すように、電力変換装置14は、電力変換回路7、チャージポンプ回路8、駆動回路6、制御回路10及び電圧検出回路11を備えている。電力変換装置14は、発電電動機12を動作させるように構成されている。発電電動機12は、自動車用補機となる機電一体型発電電動機の回転機部分である。 As shown in FIG. 1, the power conversion device 14 includes a power conversion circuit 7, a charge pump circuit 8, a drive circuit 6, a control circuit 10, and a voltage detection circuit 11. The power conversion device 14 is configured to operate the generator motor 12. The generator motor 12 is a rotating part of a mechanical and electrically integrated generator motor that serves as an auxiliary machine for an automobile.
 電力変換回路7は、電源ライン1a及び第1スイッチ3を介して第1直流電源1に接続されている。第1直流電源1は、電力変換装置14の外部に設けられている。第1スイッチ3は、電源ライン1aに設けられている。第1スイッチ3は、電子制御装置(ECU:Electronic Control Unit)13の指令に基づき開閉動作を行う。第1スイッチ3が閉状態になると、第1直流電源1から電源ライン1aを介して電力変換回路7に直流電力が供給される。第1スイッチ3が開状態になると、第1直流電源1から電力変換回路7への電力供給が遮断される。 The power conversion circuit 7 is connected to the first DC power supply 1 via the power supply line 1a and the first switch 3. The first DC power supply 1 is provided outside the power conversion device 14. The first switch 3 is provided on the power supply line 1a. The first switch 3 performs opening and closing operations based on commands from an electronic control unit (ECU) 13. When the first switch 3 is in the closed state, DC power is supplied from the first DC power supply 1 to the power conversion circuit 7 via the power supply line 1a. When the first switch 3 is in the open state, the power supply from the first DC power supply 1 to the power conversion circuit 7 is cut off.
 電力変換回路7は、複数のパワー半導体素子9を有している。複数のパワー半導体素子9は、電源ライン1aと接地ライン1bとの間にブリッジ接続されている。電力変換回路7は、各パワー半導体素子9のスイッチング動作によって、必要な出力電力を生成するように構成されている。電動機駆動時には、電力変換回路7は、第1直流電源1から供給される直流電力を交流に変換する。変換された交流電力は、発電電動機12に供給される。発電時には、電力変換回路7は、発電電動機12から供給される交流電力を整流し、直流に変換する。 The power conversion circuit 7 has a plurality of power semiconductor elements 9. The plurality of power semiconductor elements 9 are bridge-connected between the power supply line 1a and the ground line 1b. The power conversion circuit 7 is configured to generate necessary output power by switching operations of each power semiconductor element 9. When driving the electric motor, the power conversion circuit 7 converts DC power supplied from the first DC power supply 1 into AC power. The converted AC power is supplied to the generator motor 12. During power generation, the power conversion circuit 7 rectifies alternating current power supplied from the generator motor 12 and converts it into direct current.
 駆動回路6は、制御回路10の指令に基づき、電力変換回路7の複数のパワー半導体素子9を駆動するように構成されている。駆動回路6は、発電電動機12の相毎に設けられている。 The drive circuit 6 is configured to drive the plurality of power semiconductor elements 9 of the power conversion circuit 7 based on commands from the control circuit 10. The drive circuit 6 is provided for each phase of the generator motor 12.
 電源ライン1aと接地ライン1bとの間には、平滑用コンデンサ5が接続されている。平滑用コンデンサ5は、電力変換時に発生するリップル電圧を平滑化する機能を有している。平滑用コンデンサ5には、等価直列抵抗(ESR:Equivalent Series Resistance)が低く、かつ静電容量が比較的大きいコンデンサが用いられるのが好ましい。例えば、平滑用コンデンサ5には、電解コンデンサ等が用いられる。 A smoothing capacitor 5 is connected between the power supply line 1a and the ground line 1b. The smoothing capacitor 5 has a function of smoothing ripple voltage generated during power conversion. The smoothing capacitor 5 preferably has a low equivalent series resistance (ESR) and a relatively large capacitance. For example, as the smoothing capacitor 5, an electrolytic capacitor or the like is used.
 チャージポンプ回路8は、パワー半導体素子9の駆動用電力を生成するように構成されている。チャージポンプ回路8は、コンデンサ、ダイオード及びスイッチが組み合わされた構成を有している。チャージポンプ回路8では、スイッチが電源側と接地側とに交互に切り替えられることによって、下端電圧が持ち上げられ、出力電圧が昇圧される。チャージポンプ回路8により生成された駆動用電力は、駆動回路6を介して各パワー半導体素子9に供給される。 The charge pump circuit 8 is configured to generate power for driving the power semiconductor element 9. The charge pump circuit 8 has a configuration in which a capacitor, a diode, and a switch are combined. In the charge pump circuit 8, the switch is alternately switched between the power supply side and the ground side, thereby raising the lower end voltage and boosting the output voltage. The driving power generated by the charge pump circuit 8 is supplied to each power semiconductor element 9 via the driving circuit 6.
 チャージポンプ回路8は、ローサイドチャージポンプコンデンサ8b、ハイサイドチャージポンプコンデンサ8a、チャージポンプ駆動回路8c、スイッチ8d及びスイッチ8eを有している。 The charge pump circuit 8 includes a low side charge pump capacitor 8b, a high side charge pump capacitor 8a, a charge pump drive circuit 8c, a switch 8d, and a switch 8e.
 スイッチ8dは、ハイサイドチャージポンプコンデンサ8aに対応して設けられている。スイッチ8eは、ローサイドチャージポンプコンデンサ8bに対応して設けられている。各スイッチ8d、8eの動作は、チャージポンプ駆動回路8cによって切り替えられる。 The switch 8d is provided corresponding to the high side charge pump capacitor 8a. Switch 8e is provided corresponding to low side charge pump capacitor 8b. The operation of each switch 8d, 8e is switched by a charge pump drive circuit 8c.
 ローサイドチャージポンプコンデンサ8bは、スイッチ8eが電源側に切り替えられると、電源ライン1cに接続される。電源ライン1cには、第2直流電源2から制御電源生成回路15を介して電力が供給される。第2直流電源2と制御電源生成回路15との間には、第2スイッチ4が設けられている。第2スイッチ4は、ECU13の指令に基づき開閉動作を行う。第2スイッチ4が閉状態になると、第2直流電源2から制御電源生成回路15を介して制御回路10及び電源ライン1cに電力が供給される。第2スイッチ4が開状態になると、制御回路10及び電源ライン1cへの電力供給が遮断される。ローサイドチャージポンプコンデンサ8bは、スイッチ8eが接地側に切り替えられると、接地ライン1bに接続される。 The low-side charge pump capacitor 8b is connected to the power supply line 1c when the switch 8e is switched to the power supply side. Power is supplied to the power supply line 1c from the second DC power supply 2 via the control power generation circuit 15. A second switch 4 is provided between the second DC power supply 2 and the control power generation circuit 15. The second switch 4 performs opening and closing operations based on commands from the ECU 13. When the second switch 4 is in the closed state, power is supplied from the second DC power supply 2 to the control circuit 10 and the power supply line 1c via the control power generation circuit 15. When the second switch 4 is in the open state, power supply to the control circuit 10 and the power supply line 1c is cut off. The low-side charge pump capacitor 8b is connected to the ground line 1b when the switch 8e is switched to the ground side.
 ハイサイドチャージポンプコンデンサ8aは、スイッチ8dが電源側に切り替えられると、電源ライン1aに接続される。電源ライン1aには、第1直流電源1から電力が供給される。ハイサイドチャージポンプコンデンサ8aは、スイッチ8dが接地側に切り替えられると、接地ライン1bに接続される。 The high side charge pump capacitor 8a is connected to the power supply line 1a when the switch 8d is switched to the power supply side. Power is supplied from the first DC power supply 1 to the power supply line 1a. The high side charge pump capacitor 8a is connected to the ground line 1b when the switch 8d is switched to the ground side.
 このように、チャージポンプ回路8は、ローサイドチャージポンプコンデンサ8b及びハイサイドチャージポンプコンデンサ8aのそれぞれを電源ラインと接地ラインとに交互に接続させる動作を実行可能である。ローサイドチャージポンプコンデンサ8b及びハイサイドチャージポンプコンデンサ8aのそれぞれが電源ラインと接地ラインとに交互に接続されることにより、出力電圧が昇圧される。 In this way, the charge pump circuit 8 can perform an operation of alternately connecting each of the low side charge pump capacitor 8b and the high side charge pump capacitor 8a to the power supply line and the ground line. The output voltage is boosted by alternately connecting the low-side charge pump capacitor 8b and the high-side charge pump capacitor 8a to the power supply line and the ground line.
 ハイサイドでは、ローサイドで昇圧された出力電圧と、電源ライン1aの電圧と、が加算された電圧が出力される。ハイサイドの出力は、駆動回路6を介して、上アームのパワー半導体素子9に駆動用電力として供給される。ローサイドの出力は、駆動回路6を介して、下アームのパワー半導体素子9に駆動用電力として供給される。 On the high side, a voltage that is the sum of the output voltage boosted on the low side and the voltage of the power supply line 1a is output. The high-side output is supplied as driving power to the power semiconductor element 9 of the upper arm via the driving circuit 6. The low-side output is supplied as driving power to the power semiconductor element 9 of the lower arm via the driving circuit 6.
 チャージポンプ動作に用いられるローサイドチャージポンプコンデンサ8b及びハイサイドチャージポンプコンデンサ8aでは、電荷を高速に出し入れできることが望ましい。このため、ローサイドチャージポンプコンデンサ8b及びハイサイドチャージポンプコンデンサ8aのそれぞれには、ESRが低くかつ等価直列インダクタンス(ESL:Equivalent Series Inductance)が低いコンデンサが用いられるのが好ましい。例えば、ローサイドチャージポンプコンデンサ8b及びハイサイドチャージポンプコンデンサ8aのそれぞれには、セラミックコンデンサ等が用いられる。 It is desirable that the low-side charge pump capacitor 8b and the high-side charge pump capacitor 8a used for charge pump operation are capable of rapidly transferring and discharging charges. Therefore, it is preferable to use capacitors with low ESR and low equivalent series inductance (ESL) for each of the low-side charge pump capacitor 8b and the high-side charge pump capacitor 8a. For example, a ceramic capacitor or the like is used for each of the low side charge pump capacitor 8b and the high side charge pump capacitor 8a.
 第2直流電源2の変動による影響を緩和するため、チャージポンプ回路8を含む制御用の各回路には、制御電源生成回路15を介して電力が供給されるのが好ましい。制御電源生成回路15は、DC/DCコンバータ、リニアレギュレータなどにより構成されている。 In order to alleviate the influence of fluctuations in the second DC power supply 2, it is preferable that power be supplied to each control circuit including the charge pump circuit 8 via the control power generation circuit 15. The control power generation circuit 15 includes a DC/DC converter, a linear regulator, and the like.
 制御回路10は、電力変換装置14の各機能を制御するように構成されている。制御回路10は、主に、第2直流電源2から制御電源生成回路15を介して供給される電力により動作する。制御回路10は、例えばマイクロコンピュータICを中心として構成されている。制御回路10は、車両側に搭載される上位のECU13と通信する。制御回路10は、ECU13からの動作要求に応じて、チャージポンプ回路8の動作許可判定、駆動回路6の駆動制御回路6aへの指令などを実行する。 The control circuit 10 is configured to control each function of the power conversion device 14. The control circuit 10 mainly operates using electric power supplied from the second DC power supply 2 via the control power generation circuit 15. The control circuit 10 is configured mainly of a microcomputer IC, for example. The control circuit 10 communicates with a higher-level ECU 13 mounted on the vehicle side. In response to an operation request from the ECU 13, the control circuit 10 determines whether the charge pump circuit 8 is allowed to operate, issues commands to the drive control circuit 6a of the drive circuit 6, and the like.
 チャージポンプ回路8及び駆動回路6は、ドライバICのような1つのICにより実現される機能であってもよい。チャージポンプ回路8及び駆動回路6のそれぞれの機能に対して、動作の許可及び非許可を行うことができる手段が備えられていればよい。 The charge pump circuit 8 and the drive circuit 6 may be functions realized by one IC such as a driver IC. It is only necessary to provide means for permitting and disallowing the respective functions of the charge pump circuit 8 and the drive circuit 6.
 ECU13は、主に、車両の各センサ情報を集約して統合制御する役割を持っている。ECU13は、第1スイッチ3及び第2スイッチ4の開閉動作を指令する機能を有している。車両が停止した際には、車両メンテナンス時の安全確保、及び暗電流によるバッテリ上がり防止のため、第1スイッチ3及び第2スイッチ4はいずれも開状態に制御されるのが好ましい。ECU13と制御回路10との間の通信では、第1スイッチ3及び第2スイッチ4のそれぞれの開閉状態を含む車両側の状態の情報、及び電力変換装置14の状態の情報が相互にやりとりされる。 The ECU 13 mainly has the role of collecting and controlling information from each sensor of the vehicle. The ECU 13 has a function of commanding the opening and closing operations of the first switch 3 and the second switch 4. When the vehicle is stopped, both the first switch 3 and the second switch 4 are preferably controlled to the open state in order to ensure safety during vehicle maintenance and to prevent the battery from dying due to dark current. In the communication between the ECU 13 and the control circuit 10, information on the state of the vehicle including the open/close states of the first switch 3 and the second switch 4, and information on the state of the power conversion device 14 are exchanged with each other. .
 第1直流電源1及び第2直流電源2のそれぞれには、鉛蓄電池、二次電池、燃料電池、キャパシタ等の各種蓄電デバイスを適用することができる。第1直流電源1及び第2直流電源2は、同電圧系である。あるいは、相対的に大きい電力を必要とする第1直流電源1の電圧は、第2直流電源2の電圧よりも高くなっている。第1直流電源1及び第2直流電源2の電圧が異なると、内部絶縁が必要になる場合がある。放電を必要とする平滑用コンデンサ5及びチャージポンプ回路8の接地系が同一であれば、種々の対応により内部絶縁を行うことができる。例えば、制御電源生成回路15において絶縁電源を使用したり、制御回路10等の弱電系と、チャージポンプ回路8及び駆動回路6等の強電系と、の間の絶縁処理を行ったりすることにより、内部絶縁を行うことができる。 Various power storage devices such as a lead acid battery, a secondary battery, a fuel cell, a capacitor, etc. can be applied to each of the first DC power supply 1 and the second DC power supply 2. The first DC power supply 1 and the second DC power supply 2 are of the same voltage system. Alternatively, the voltage of the first DC power supply 1, which requires relatively large power, is higher than the voltage of the second DC power supply 2. If the voltages of the first DC power supply 1 and the second DC power supply 2 are different, internal insulation may be required. If the smoothing capacitor 5 and charge pump circuit 8 that require discharge have the same grounding system, internal insulation can be achieved by various measures. For example, by using an isolated power supply in the control power generation circuit 15 or by performing insulation treatment between a weak electric system such as the control circuit 10 and a strong electric system such as the charge pump circuit 8 and the drive circuit 6, Internal insulation can be provided.
 電圧検出回路11は、第1直流電源1の電源ライン1aの電圧を検出するように構成されている。電圧検出回路11は、センサの1つである。制御回路10が動作している間は、電圧検出回路11により平滑用コンデンサ5の残留電圧を監視することができる。 The voltage detection circuit 11 is configured to detect the voltage of the power line 1a of the first DC power supply 1. Voltage detection circuit 11 is one of the sensors. While the control circuit 10 is operating, the voltage detection circuit 11 can monitor the residual voltage of the smoothing capacitor 5.
 図2は、本実施の形態に係る電力変換装置における放電動作を説明する図である。図2のチャージポンプ回路8は、図1のチャージポンプ回路8と同等の接続構成を有している。図1において、ローサイドチャージポンプコンデンサ8bは、スイッチ8eによって電源ライン1cと接地ライン1bとに交互に接続される。電源ライン1cは、制御電源生成回路15を介して第2直流電源2に接続されている。ハイサイドチャージポンプコンデンサ8aは、スイッチ8dによって電源ライン1aと接地ライン1bとに交互に接続される。電源ライン1aは、平滑用コンデンサ5に接続されている。これらに基づき、図2のチャージポンプ回路8は、可変直流電源及び可変コンデンサを用いて模式的に表されている。 FIG. 2 is a diagram illustrating the discharging operation in the power conversion device according to the present embodiment. The charge pump circuit 8 in FIG. 2 has the same connection configuration as the charge pump circuit 8 in FIG. In FIG. 1, low-side charge pump capacitor 8b is alternately connected to power supply line 1c and ground line 1b by switch 8e. The power supply line 1c is connected to the second DC power supply 2 via the control power generation circuit 15. High side charge pump capacitor 8a is alternately connected to power supply line 1a and ground line 1b by switch 8d. The power line 1a is connected to a smoothing capacitor 5. Based on these, the charge pump circuit 8 in FIG. 2 is schematically represented using a variable DC power supply and a variable capacitor.
 駆動回路6は、プッシュプル回路6bと、反転型のレベルシフト回路6cと、を有している。プッシュプル回路6bは、コンプリメンタリのトランジスタ等が2段接続されることにより構成されている。プッシュプル回路6bは、パワー半導体素子9を駆動するために電流を増幅する。図2に示す例では、パワー半導体素子9は、Nチャネル型のMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。また、プッシュプル回路6bでは、上段のトランジスタにNPN型のバイポーラトランジスタが適用されており、下段のトランジスタにPNP型のバイポーラトランジスタが適用されている。 The drive circuit 6 includes a push-pull circuit 6b and an inverting level shift circuit 6c. The push-pull circuit 6b is configured by connecting two stages of complementary transistors and the like. Push-pull circuit 6b amplifies current to drive power semiconductor element 9. In the example shown in FIG. 2, the power semiconductor element 9 is an N-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). Further, in the push-pull circuit 6b, an NPN type bipolar transistor is used as an upper stage transistor, and a PNP type bipolar transistor is applied as a lower stage transistor.
 プッシュプル回路6bにおいて、上段のトランジスタのコレクタは、ハイサイドチャージポンプコンデンサ8aの出力段に接続されている。下段のトランジスタのコレクタは、パワー半導体素子9のソース端子に接続されている。上段及び下段の各トランジスタのエミッタ同士が接続された中点は、プッシュプル回路6bの出力段となる。プッシュプル回路6bの出力段は、ゲート抵抗を介して、パワー半導体素子9のゲート端子に接続されている。 In the push-pull circuit 6b, the collector of the upper stage transistor is connected to the output stage of the high side charge pump capacitor 8a. The collector of the lower transistor is connected to the source terminal of the power semiconductor element 9. The midpoint where the emitters of the upper and lower transistors are connected becomes the output stage of the push-pull circuit 6b. The output stage of the push-pull circuit 6b is connected to the gate terminal of the power semiconductor element 9 via a gate resistor.
 プッシュプル回路6bにHi信号が入力されると、上段のNPNトランジスタが導通し、プッシュ動作によってパワー半導体素子9にゲート電圧が印加される。これにより、パワー半導体素子9は導通状態となる。プッシュプル回路6bにLo信号が入力されると、下段のPNPトランジスタが導通し、プル動作によってパワー半導体素子9のゲート及びソースが同電位となる。これにより、パワー半導体素子9は遮断状態となる。 When a Hi signal is input to the push-pull circuit 6b, the upper stage NPN transistor becomes conductive, and a gate voltage is applied to the power semiconductor element 9 by a push operation. As a result, the power semiconductor element 9 becomes conductive. When the Lo signal is input to the push-pull circuit 6b, the PNP transistor in the lower stage becomes conductive, and the gate and source of the power semiconductor element 9 become at the same potential due to the pull operation. As a result, the power semiconductor element 9 enters the cut-off state.
 レベルシフト回路6cは、プルアップ抵抗16及びスイッチング素子17を有している。プルアップ抵抗16は、ハイサイドチャージポンプコンデンサ8aの出力段に接続されている。スイッチング素子17は、プルアップ抵抗16と接地ライン1bとの間に直列に接続されている。レベルシフト回路6cの出力は、ベース抵抗を介してプッシュプル回路6bに入力される。 The level shift circuit 6c has a pull-up resistor 16 and a switching element 17. Pull-up resistor 16 is connected to the output stage of high-side charge pump capacitor 8a. Switching element 17 is connected in series between pull-up resistor 16 and ground line 1b. The output of the level shift circuit 6c is input to the push-pull circuit 6b via a base resistor.
 スイッチング素子17が導通したときには、プッシュプル回路6bはプル動作となり、パワー半導体素子9は遮断状態となる。スイッチング素子17が遮断されたときには、プッシュプル回路6bはプッシュ動作となり、パワー半導体素子9は導通状態となる。 When the switching element 17 becomes conductive, the push-pull circuit 6b performs a pull operation, and the power semiconductor element 9 enters a cut-off state. When the switching element 17 is cut off, the push-pull circuit 6b performs a push operation, and the power semiconductor element 9 becomes conductive.
 したがって、電力変換回路7の動作が停止しているときには、スイッチング素子17が導通状態になり、プルアップ抵抗16が対地接続される。したがって、ハイサイドチャージポンプコンデンサ8aの電荷は、プルアップ抵抗16を介して消費される。 Therefore, when the operation of the power conversion circuit 7 is stopped, the switching element 17 becomes conductive, and the pull-up resistor 16 is connected to ground. Therefore, the charge on the high-side charge pump capacitor 8a is consumed via the pull-up resistor 16.
 さらに、スイッチ8dが電源側に切り替えられたとき、ハイサイドチャージポンプコンデンサ8aには、消費された分の電荷が平滑用コンデンサ5から供給される。第1スイッチ3は開状態であるため、平滑用コンデンサ5には、第1直流電源1から電荷は供給されない。このため、平滑用コンデンサ5は、充電されることなく放電し続ける。これにより、平滑用コンデンサ5のコンデンサ電圧が低下していく。このように、本実施の形態では、チャージポンプ回路8の放電動作によって、平滑用コンデンサ5の残留電荷が放電される。 Further, when the switch 8d is switched to the power supply side, the consumed charge is supplied from the smoothing capacitor 5 to the high side charge pump capacitor 8a. Since the first switch 3 is in the open state, no charge is supplied to the smoothing capacitor 5 from the first DC power supply 1. Therefore, the smoothing capacitor 5 continues to discharge without being charged. As a result, the capacitor voltage of the smoothing capacitor 5 decreases. In this manner, in this embodiment, the residual charge in the smoothing capacitor 5 is discharged by the discharge operation of the charge pump circuit 8.
 ここで、電圧検出回路11は、図2に示すように、分圧するための抵抗器11aを有することが好ましい。抵抗器11aは、制御回路10と平滑用コンデンサ5との間に直列に接続される。これにより、放電処理の終了後に制御回路10の動作停止処理が実施された場合においても、平滑用コンデンサ5の電荷は、抵抗器11aを介して消費される。したがって、平滑用コンデンサ5の残留電荷をより完全に放電させることができる。 Here, it is preferable that the voltage detection circuit 11 has a resistor 11a for voltage division, as shown in FIG. Resistor 11a is connected in series between control circuit 10 and smoothing capacitor 5. As a result, even if the operation of the control circuit 10 is stopped after the discharging process is completed, the charge of the smoothing capacitor 5 is consumed via the resistor 11a. Therefore, the residual charge in the smoothing capacitor 5 can be more completely discharged.
 本実施の形態では、パワー半導体素子9が停止している状態においてチャージポンプ回路8の動作を継続することにより、平滑用コンデンサ5の電荷を放電させることができる。このため、電力変換回路7又は発電電動機12が仮に異常状態であったとしても、平滑用コンデンサ5の電荷を放電させることができる。電力変換回路7又は発電電動機12に異常がある状態でパワー半導体素子9を動作させた場合、電源短絡などにより大電流が発生してしまうおそれがある。これに対し、本実施の形態では、電力変換回路7を動作させずに放電できるため、平滑用コンデンサ5の電荷をより安全に放電させることができる。 In the present embodiment, the charges in the smoothing capacitor 5 can be discharged by continuing the operation of the charge pump circuit 8 while the power semiconductor element 9 is stopped. Therefore, even if the power conversion circuit 7 or the generator motor 12 is in an abnormal state, the charge in the smoothing capacitor 5 can be discharged. If the power semiconductor element 9 is operated in a state where there is an abnormality in the power conversion circuit 7 or the generator motor 12, there is a risk that a large current will be generated due to a power supply short circuit or the like. In contrast, in the present embodiment, the electric charge in the smoothing capacitor 5 can be discharged more safely because the electric charge can be discharged without operating the power conversion circuit 7.
 次に、本実施の形態に係る電力変換装置における放電処理の手順について説明する。図3は、本実施の形態に係る電力変換装置における放電処理の流れを示すフローチャートである。図3に示す放電処理は、電力変換装置14の動作が停止するときに、制御回路10によって実行される。 Next, the procedure of discharge processing in the power conversion device according to the present embodiment will be explained. FIG. 3 is a flowchart showing the flow of discharge processing in the power conversion device according to the present embodiment. The discharging process shown in FIG. 3 is executed by the control circuit 10 when the operation of the power conversion device 14 is stopped.
 まず、図3のステップS101では、制御回路10は、上位のECU13からの通知に基づき、第1スイッチ3が開状態であるか否かを判定する。第1スイッチ3が開状態である場合には、ステップS102以降の処理が実行される。第1スイッチ3が閉状態である場合には、ステップS101の処理が繰り返される。なお、制御回路10は、ECU13からの通知を受けたときにステップS101の処理を開始するようにしてもよい。 First, in step S101 in FIG. 3, the control circuit 10 determines whether the first switch 3 is in an open state based on a notification from the higher-level ECU 13. If the first switch 3 is in the open state, the processes from step S102 onwards are executed. If the first switch 3 is in the closed state, the process of step S101 is repeated. Note that the control circuit 10 may start the process of step S101 when receiving a notification from the ECU 13.
 ステップS102では、制御回路10は、駆動制御回路6aに停止信号を出力する。これにより、駆動回路6による電力変換回路7の駆動が停止し、電力変換回路7が動作を停止する。なお、制御回路10は、ステップS102の処理に代えて、駆動回路6が停止状態になっていることを確認する処理を行ってもよい。 In step S102, the control circuit 10 outputs a stop signal to the drive control circuit 6a. As a result, the drive circuit 6 stops driving the power conversion circuit 7, and the power conversion circuit 7 stops operating. Note that, instead of the process in step S102, the control circuit 10 may perform a process to confirm that the drive circuit 6 is in a stopped state.
 次に、ステップS103では、制御回路10は、閾値時間Tthを算出する。ステップS103の処理の詳細については後述する。 Next, in step S103, the control circuit 10 calculates the threshold time Tth. Details of the process in step S103 will be described later.
 次に、ステップS104では、制御回路10は、チャージポンプ回路8の動作を許可する動作許可信号をチャージポンプ回路8に出力する。これにより、ステップS105では、チャージポンプ回路8の放電動作が実行される。平滑用コンデンサ5の残留電荷は、チャージポンプ回路8の放電動作によって徐々に放電される。すなわち、本実施の形態では、電力変換装置14の通常動作で使用される回路機能を利用して、平滑用コンデンサ5の放電が可能となる。本実施の形態では、放電回路を別途設ける必要がないため、電力変換装置14の構成を簡素化できる。 Next, in step S104, the control circuit 10 outputs an operation permission signal to the charge pump circuit 8 that allows the operation of the charge pump circuit 8. As a result, in step S105, the charge pump circuit 8 performs a discharging operation. The residual charge in the smoothing capacitor 5 is gradually discharged by the discharge operation of the charge pump circuit 8. That is, in this embodiment, the smoothing capacitor 5 can be discharged by using the circuit function used in the normal operation of the power conversion device 14. In this embodiment, since there is no need to separately provide a discharge circuit, the configuration of the power converter 14 can be simplified.
 次に、ステップS106では、制御回路10は、チャージポンプ回路8の放電動作が開始されてからの経過時間Tが閾値時間Tthを超えたか否かを判定する。経過時間Tが閾値時間Tthを超えた場合には、ステップS107の処理が実行される。経過時間Tが閾値時間Tth以下である場合には、チャージポンプ回路8の放電動作が継続される。 Next, in step S106, the control circuit 10 determines whether the elapsed time T since the discharge operation of the charge pump circuit 8 was started exceeds the threshold time Tth. If the elapsed time T exceeds the threshold time Tth, the process of step S107 is executed. If the elapsed time T is less than or equal to the threshold time Tth, the discharge operation of the charge pump circuit 8 is continued.
 ステップS107では、制御回路10は、平滑用コンデンサ5の電圧Vconが閾値電圧Vth以下であるか否かを判定する。電圧Vconは、電圧検出回路11により検出されている。閾値電圧Vthは、あらかじめ設定されている。電圧Vconが閾値電圧Vth以下である場合には、ステップS108の処理が実行される。一方、電圧Vconが閾値電圧Vthよりも大きい場合には、ステップS109の処理が実行される。 In step S107, the control circuit 10 determines whether the voltage Vcon of the smoothing capacitor 5 is equal to or lower than the threshold voltage Vth. Voltage Vcon is detected by voltage detection circuit 11. The threshold voltage Vth is set in advance. If the voltage Vcon is less than or equal to the threshold voltage Vth, the process of step S108 is executed. On the other hand, if the voltage Vcon is larger than the threshold voltage Vth, the process of step S109 is executed.
 ステップS108では、制御回路10は、チャージポンプ回路8の動作を停止させる動作停止信号をチャージポンプ回路8に出力する。これにより、チャージポンプ回路8の放電動作が停止する。 In step S108, the control circuit 10 outputs an operation stop signal to the charge pump circuit 8 to stop the operation of the charge pump circuit 8. As a result, the discharging operation of the charge pump circuit 8 is stopped.
 ステップS109では、制御回路10は、第1スイッチ3が故障していると判定する。第1スイッチ3の故障には、第1スイッチ3に関わる制御系統の故障も含まれる。すなわち、経過時間Tが閾値時間Tthを超えても電圧Vconが閾値電圧Vth以下にならない場合、第1スイッチ3が固着しているか、又は、ECU13により第1スイッチ3を正常に制御できていないことが推定される。制御回路10は、第1スイッチ3が故障していると判定した場合、その旨の情報を例えばECU13に通知する。これにより、車両に設けられている警告灯などにより、第1スイッチ3の故障を使用者に報知することが可能となる。 In step S109, the control circuit 10 determines that the first switch 3 is out of order. The failure of the first switch 3 also includes a failure of the control system related to the first switch 3. In other words, if the voltage Vcon does not become equal to or lower than the threshold voltage Vth even though the elapsed time T exceeds the threshold time Tth, the first switch 3 is stuck or the ECU 13 is not able to control the first switch 3 normally. is estimated. When the control circuit 10 determines that the first switch 3 is out of order, it notifies the ECU 13 of information to that effect, for example. This makes it possible to notify the user of the failure of the first switch 3 using a warning light or the like provided in the vehicle.
 本実施の形態では、チャージポンプ回路8の動作を許可する前に、可変値である閾値時間Tthを算出しておくことが望ましい。平滑用コンデンサ5にかかる電圧は、第1直流電源1の状態及び電力変換回路7の動作によって変動する。このため、平滑用コンデンサ5の放電に要する時間には、ばらつきが生じやすい。 In this embodiment, it is desirable to calculate the threshold time Tth, which is a variable value, before allowing the charge pump circuit 8 to operate. The voltage applied to the smoothing capacitor 5 varies depending on the state of the first DC power supply 1 and the operation of the power conversion circuit 7. Therefore, the time required for discharging the smoothing capacitor 5 tends to vary.
 したがって、制御回路10は、負荷電流又は負荷抵抗値をあらかじめ推定する。負荷電流は、チャージポンプ回路8と、発電電動機12における全相分の駆動回路6と、において消費される電流である。負荷抵抗値は、チャージポンプ回路8と、発電電動機12における全相分の駆動回路6と、の抵抗値である。ステップS103において、制御回路10は、放電処理を実行する直前の平滑用コンデンサ5の電圧Vconと、あらかじめ推定された負荷電流又は負荷抵抗値と、放電処理後の電圧Vconの目標値と、に基づき閾値時間Tthを算出する。放電処理後の電圧Vconの目標値は、例えば閾値電圧Vthである。これにより、放電処理開始時点の電圧Vconのばらつきの影響が考慮された適切な放電時間を設定することができる。したがって、平滑用コンデンサ5の残留電荷をより確実に放電させることができるとともに、第1スイッチ3又は第1スイッチ3に関わる制御系統の故障を精度良く検出することができる。 Therefore, the control circuit 10 estimates the load current or load resistance value in advance. The load current is a current consumed in the charge pump circuit 8 and the drive circuit 6 for all phases in the generator motor 12. The load resistance value is the resistance value of the charge pump circuit 8 and the drive circuit 6 for all phases in the generator motor 12. In step S103, the control circuit 10 determines the voltage Vcon of the smoothing capacitor 5 immediately before performing the discharge process, the load current or load resistance value estimated in advance, and the target value of the voltage Vcon after the discharge process. Calculate the threshold time Tth. The target value of the voltage Vcon after the discharge process is, for example, the threshold voltage Vth. Thereby, it is possible to set an appropriate discharge time that takes into consideration the influence of variations in the voltage Vcon at the time of starting the discharge process. Therefore, the residual charge in the smoothing capacitor 5 can be discharged more reliably, and a failure in the first switch 3 or the control system related to the first switch 3 can be detected with high accuracy.
 図3に示す放電処理では、ステップS107及びS109の処理を省略することができる。この場合、制御回路10は、経過時間Tが閾値時間Tthを超えた場合には、電圧Vconに関わらず、動作停止信号をチャージポンプ回路8に出力する。また、図3に示す放電処理では、ステップS106の処理を省略することができる。この場合、制御回路10は、電圧Vconが閾値電圧Vth以下になった場合には、経過時間Tに関わらず、動作停止信号をチャージポンプ回路8に出力する。すなわち、本実施の形態では、制御回路10は、電圧Vconが閾値電圧Vth以下になった場合、又は、経過時間Tが閾値時間Tthを超えた場合に、動作停止信号をチャージポンプ回路8に出力する。 In the discharge process shown in FIG. 3, the processes in steps S107 and S109 can be omitted. In this case, if the elapsed time T exceeds the threshold time Tth, the control circuit 10 outputs an operation stop signal to the charge pump circuit 8 regardless of the voltage Vcon. Further, in the discharge process shown in FIG. 3, the process of step S106 can be omitted. In this case, the control circuit 10 outputs an operation stop signal to the charge pump circuit 8 regardless of the elapsed time T when the voltage Vcon becomes equal to or lower than the threshold voltage Vth. That is, in the present embodiment, the control circuit 10 outputs an operation stop signal to the charge pump circuit 8 when the voltage Vcon becomes equal to or lower than the threshold voltage Vth, or when the elapsed time T exceeds the threshold time Tth. do.
 以上説明したように、本実施の形態に係る電力変換装置14は、電力変換回路7と、平滑用コンデンサ5と、チャージポンプ回路8と、駆動回路6と、電圧検出回路11と、制御回路10と、を備えている。電力変換回路7は、ブリッジ接続されたパワー半導体素子9を有している。電力変換回路7は、第1スイッチ3を介して第1直流電源1と接続されている。平滑用コンデンサ5は、電力変換回路7の電源ライン1aと、接地ライン1bと、の間に接続されている。チャージポンプ回路8は、複数のチャージポンプコンデンサを有している。駆動回路6は、チャージポンプ回路8により生成された電力を利用して、パワー半導体素子9を駆動する。電圧検出回路11は、平滑用コンデンサ5の電圧を検出する。チャージポンプ回路8は、複数のチャージポンプコンデンサのうち少なくとも1つのハイサイドチャージポンプコンデンサ8aを電源ライン1aと接地ライン1bとに交互に接続させる動作を実行可能である。 As explained above, the power conversion device 14 according to the present embodiment includes the power conversion circuit 7, the smoothing capacitor 5, the charge pump circuit 8, the drive circuit 6, the voltage detection circuit 11, and the control circuit 10. It is equipped with. The power conversion circuit 7 includes power semiconductor elements 9 connected in a bridge manner. Power conversion circuit 7 is connected to first DC power supply 1 via first switch 3 . Smoothing capacitor 5 is connected between power supply line 1a of power conversion circuit 7 and ground line 1b. Charge pump circuit 8 has a plurality of charge pump capacitors. Drive circuit 6 drives power semiconductor element 9 using electric power generated by charge pump circuit 8 . The voltage detection circuit 11 detects the voltage of the smoothing capacitor 5. The charge pump circuit 8 can perform an operation of alternately connecting at least one high-side charge pump capacitor 8a among the plurality of charge pump capacitors to the power supply line 1a and the ground line 1b.
 制御回路10は、第1スイッチ3が開状態になった後に、ハイサイドチャージポンプコンデンサ8aが電源ライン1aと接地ライン1bとに交互に接続される放電動作をチャージポンプ回路8に実行させる。制御回路10は、平滑用コンデンサ5の電圧Vconが閾値電圧Vth以下になった場合、又は、放電動作が開始されてからの経過時間Tが閾値時間Tthを超えた場合、チャージポンプ回路8の放電動作を停止させるように構成されている。ここで、第1スイッチ3は、スイッチの一例である。第1直流電源1は、直流電源の一例である。ハイサイドチャージポンプコンデンサ8aは、チャージポンプコンデンサの一例である。 After the first switch 3 is opened, the control circuit 10 causes the charge pump circuit 8 to perform a discharging operation in which the high-side charge pump capacitor 8a is alternately connected to the power supply line 1a and the ground line 1b. The control circuit 10 causes the charge pump circuit 8 to discharge when the voltage Vcon of the smoothing capacitor 5 becomes equal to or lower than the threshold voltage Vth, or when the elapsed time T from the start of the discharging operation exceeds the threshold time Tth. It is configured to stop the operation. Here, the first switch 3 is an example of a switch. The first DC power supply 1 is an example of a DC power supply. High side charge pump capacitor 8a is an example of a charge pump capacitor.
 この構成によれば、電力変換回路7を動作させずに、チャージポンプ回路8の放電動作によって平滑用コンデンサ5の電荷を放電させることができる。これにより、電力変換回路7及び発電電動機12の状態に依存することなく、平滑用コンデンサ5の残留電荷をより確実に放電させることができる。また、専用の放電回路を別途設けることなく、電力変換装置14の通常動作で使用される回路を利用して放電できるため、電力変換装置14の構成を簡素化できる。 According to this configuration, the charge in the smoothing capacitor 5 can be discharged by the discharging operation of the charge pump circuit 8 without operating the power conversion circuit 7. Thereby, the residual charge in the smoothing capacitor 5 can be more reliably discharged without depending on the states of the power conversion circuit 7 and the generator motor 12. Further, since the circuit used in the normal operation of the power converter 14 can be used to discharge without separately providing a dedicated discharge circuit, the configuration of the power converter 14 can be simplified.
 本実施の形態に係る電力変換装置14では、駆動回路6は、反転型のレベルシフト回路6cを有している。レベルシフト回路6cは、スイッチング素子17及びプルアップ抵抗16を有している。スイッチング素子17及びプルアップ抵抗16は、チャージポンプ回路8の出力段と接地ライン1bとの間に直列に接続されている。パワー半導体素子9が遮断状態にある場合には、スイッチング素子17が導通状態となる。この構成によれば、電力変換回路7の動作が停止しているときには、導通状態のスイッチング素子17を介してプルアップ抵抗16が対地接続される。したがって、ハイサイドチャージポンプコンデンサ8aの電荷をプルアップ抵抗16によって消費することができる。 In the power conversion device 14 according to the present embodiment, the drive circuit 6 includes an inverting level shift circuit 6c. The level shift circuit 6c includes a switching element 17 and a pull-up resistor 16. The switching element 17 and the pull-up resistor 16 are connected in series between the output stage of the charge pump circuit 8 and the ground line 1b. When the power semiconductor element 9 is in the cut-off state, the switching element 17 is in the conductive state. According to this configuration, when the operation of the power conversion circuit 7 is stopped, the pull-up resistor 16 is connected to the ground via the switching element 17 that is in a conductive state. Therefore, the charge of the high-side charge pump capacitor 8a can be consumed by the pull-up resistor 16.
 本実施の形態に係る電力変換装置14では、制御回路10は、経過時間Tが閾値時間Tthを超えても平滑用コンデンサ5の電圧Vconが閾値電圧Vth以下にならない場合、第1スイッチ3が故障していると判定する。この構成によれば、第1スイッチ3の故障を使用者に報知することが可能となる。 In the power conversion device 14 according to the present embodiment, the control circuit 10 causes the first switch 3 to malfunction if the voltage Vcon of the smoothing capacitor 5 does not become equal to or lower than the threshold voltage Vth even though the elapsed time T exceeds the threshold time Tth. It is determined that the According to this configuration, it is possible to notify the user of a failure of the first switch 3.
 本実施の形態に係る電力変換装置14では、制御回路10は、放電動作が開始される前の平滑用コンデンサ5の電圧と、チャージポンプ回路8及び駆動回路6において消費される負荷電流と、閾値電圧Vthと、に基づいて、閾値時間Tthを算出する。この構成によれば、放電に必要な時間に応じて閾値時間Tthを適切に設定することができる。 In the power conversion device 14 according to the present embodiment, the control circuit 10 controls the voltage of the smoothing capacitor 5 before the discharge operation is started, the load current consumed in the charge pump circuit 8 and the drive circuit 6, and the threshold value. The threshold time Tth is calculated based on the voltage Vth. According to this configuration, the threshold time Tth can be appropriately set according to the time required for discharge.
 本実施の形態に係る電力変換装置14では、電圧検出回路11は、抵抗器11aを有している。抵抗器11aは、制御回路10と平滑用コンデンサ5との間に直列に接続されている。この構成によれば、放電処理の終了後に制御回路10の動作が停止しても、平滑用コンデンサ5の電荷は、抵抗器11aを介して消費される。したがって、平滑用コンデンサ5の残留電荷をより完全に放電させることができる。 In the power conversion device 14 according to the present embodiment, the voltage detection circuit 11 includes a resistor 11a. The resistor 11a is connected in series between the control circuit 10 and the smoothing capacitor 5. According to this configuration, even if the operation of the control circuit 10 is stopped after the discharge process is completed, the charge of the smoothing capacitor 5 is consumed via the resistor 11a. Therefore, the residual charge in the smoothing capacitor 5 can be more completely discharged.
 上記実施の形態では、車両向けの機電一体型発電電動機に用いられる電力変換装置を例に挙げたが、これには限られない。本開示は、平滑用コンデンサの放電処理を必要とする種々の電力変換装置に適用することができる。 In the above embodiment, a power conversion device used in a mechanical and electrical integrated generator-motor for vehicles is taken as an example, but the present invention is not limited to this. The present disclosure can be applied to various power conversion devices that require discharge processing of a smoothing capacitor.
 なお、本開示の実施の形態は全ての点で例示であって限定的なものではないと考えられるべきであり、本開示の技術的趣旨を逸脱しない範囲で様々な変更が可能であることは言うまでもない。 Note that the embodiments of the present disclosure should be considered to be illustrative in all respects and not limiting, and that various changes may be made without departing from the technical spirit of the present disclosure. Needless to say.
 1 第1直流電源、1a 電源ライン、1b 接地ライン、1c 電源ライン、2 第2直流電源、3 第1スイッチ、4 第2スイッチ、5 平滑用コンデンサ、6 駆動回路、6a 駆動制御回路、6b プッシュプル回路、6c レベルシフト回路、7 電力変換回路、8 チャージポンプ回路、8a ハイサイドチャージポンプコンデンサ、8b ローサイドチャージポンプコンデンサ、8c チャージポンプ駆動回路、8d スイッチ、8e スイッチ、9 パワー半導体素子、10 制御回路、11 電圧検出回路、11a 抵抗器、12 発電電動機、13 ECU、14 電力変換装置、15 制御電源生成回路、16 プルアップ抵抗、17 スイッチング素子、T 経過時間、Tth 閾値時間、Vcon 電圧、Vth 閾値電圧。 1 First DC power supply, 1a Power line, 1b Ground line, 1c Power line, 2 Second DC power supply, 3 First switch, 4 Second switch, 5 Smoothing capacitor, 6 Drive circuit, 6a Drive control circuit, 6b Push Pull circuit, 6c level shift circuit, 7 power conversion circuit, 8 charge pump circuit, 8a high side charge pump capacitor, 8b low side charge pump capacitor, 8c charge pump drive circuit, 8d switch, 8e switch, 9 power semiconductor element, 10 control Circuit, 11 voltage detection circuit, 11a resistor, 12 generator motor, 13 ECU, 14 power converter, 15 control power generation circuit, 16 pull-up resistor, 17 switching element, T elapsed time, Tth threshold time, Vcon voltage, Vth Threshold voltage.

Claims (5)

  1.  ブリッジ接続されたパワー半導体素子を有し、スイッチを介して直流電源と接続された電力変換回路と、
     前記電力変換回路の電源ラインと接地ラインとの間に接続された平滑用コンデンサと、
     複数のチャージポンプコンデンサを有するチャージポンプ回路と、
     前記チャージポンプ回路により生成された電力を利用して、前記パワー半導体素子を駆動する駆動回路と、
     前記平滑用コンデンサの電圧を検出する電圧検出回路と、
     制御回路と、
     を備え、
     前記チャージポンプ回路は、前記複数のチャージポンプコンデンサのうち少なくとも1つのチャージポンプコンデンサを前記電源ラインと前記接地ラインとに交互に接続させる動作を実行可能であり、
     前記制御回路は、
     前記スイッチが開状態になった後に、前記少なくとも1つのチャージポンプコンデンサが前記電源ラインと前記接地ラインとに交互に接続される放電動作を前記チャージポンプ回路に実行させ、
     前記平滑用コンデンサの電圧が閾値電圧以下になった場合、又は、前記放電動作が開始されてからの経過時間が閾値時間を超えた場合、前記チャージポンプ回路の前記放電動作を停止させるように構成されている電力変換装置。
    a power conversion circuit having bridge-connected power semiconductor elements and connected to a DC power source via a switch;
    a smoothing capacitor connected between the power supply line and the ground line of the power conversion circuit;
    a charge pump circuit having a plurality of charge pump capacitors;
    a drive circuit that drives the power semiconductor element using electric power generated by the charge pump circuit;
    a voltage detection circuit that detects the voltage of the smoothing capacitor;
    a control circuit;
    Equipped with
    The charge pump circuit is capable of performing an operation of alternately connecting at least one charge pump capacitor among the plurality of charge pump capacitors to the power supply line and the ground line,
    The control circuit includes:
    After the switch is in an open state, causing the charge pump circuit to perform a discharging operation in which the at least one charge pump capacitor is alternately connected to the power supply line and the ground line;
    The charge pump circuit is configured to stop the discharging operation of the charge pump circuit when the voltage of the smoothing capacitor becomes equal to or less than a threshold voltage, or when the elapsed time from the start of the discharging operation exceeds a threshold time. power conversion equipment.
  2.  前記駆動回路は、反転型のレベルシフト回路を有しており、
     前記レベルシフト回路は、前記チャージポンプ回路の出力段と前記接地ラインとの間に直列に接続されたスイッチング素子及びプルアップ抵抗を有しており、
     前記パワー半導体素子が遮断状態にある場合には、前記スイッチング素子が導通状態となる請求項1に記載の電力変換装置。
    The drive circuit has an inverting level shift circuit,
    The level shift circuit includes a switching element and a pull-up resistor connected in series between the output stage of the charge pump circuit and the ground line,
    The power conversion device according to claim 1, wherein when the power semiconductor element is in a cut-off state, the switching element is in a conductive state.
  3.  前記制御回路は、前記経過時間が前記閾値時間を超えても前記平滑用コンデンサの電圧が前記閾値電圧以下にならない場合、前記スイッチが故障していると判定する請求項1又は請求項2に記載の電力変換装置。 3. The control circuit determines that the switch is malfunctioning if the voltage of the smoothing capacitor does not become equal to or lower than the threshold voltage even if the elapsed time exceeds the threshold time. power converter.
  4.  前記制御回路は、前記放電動作が開始される前の前記平滑用コンデンサの電圧と、前記チャージポンプ回路及び前記駆動回路において消費される負荷電流と、前記閾値電圧と、に基づいて、前記閾値時間を算出する請求項1~請求項3のいずれか一項に記載の電力変換装置。 The control circuit determines the threshold time based on the voltage of the smoothing capacitor before the discharge operation is started, the load current consumed in the charge pump circuit and the drive circuit, and the threshold voltage. The power conversion device according to any one of claims 1 to 3, which calculates.
  5.  前記電圧検出回路は、前記制御回路と前記平滑用コンデンサとの間に直列に接続された抵抗器を有している請求項1~請求項4のいずれか一項に記載の電力変換装置。 The power conversion device according to any one of claims 1 to 4, wherein the voltage detection circuit includes a resistor connected in series between the control circuit and the smoothing capacitor.
PCT/JP2022/013476 2022-03-23 2022-03-23 Power conversion device WO2023181166A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/013476 WO2023181166A1 (en) 2022-03-23 2022-03-23 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/013476 WO2023181166A1 (en) 2022-03-23 2022-03-23 Power conversion device

Publications (1)

Publication Number Publication Date
WO2023181166A1 true WO2023181166A1 (en) 2023-09-28

Family

ID=88100371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013476 WO2023181166A1 (en) 2022-03-23 2022-03-23 Power conversion device

Country Status (1)

Country Link
WO (1) WO2023181166A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040470A (en) * 2002-07-03 2004-02-05 Denso Corp Electrical load driving device and electrical load driving circuit
JP2011035983A (en) * 2009-07-30 2011-02-17 Juki Corp Power supply circuit for inverter
US20180076752A1 (en) * 2016-09-09 2018-03-15 Metropolitan Industries, Inc. Motor control system and method for implementing a direct on-off communication control routine
JP2019103185A (en) * 2017-11-29 2019-06-24 日立オートモティブシステムズ株式会社 Electric motor control device
WO2020002666A1 (en) * 2018-06-28 2020-01-02 Valeo Equipements Electriques Moteur System for controlling a switch, switching arm and electrical installation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040470A (en) * 2002-07-03 2004-02-05 Denso Corp Electrical load driving device and electrical load driving circuit
JP2011035983A (en) * 2009-07-30 2011-02-17 Juki Corp Power supply circuit for inverter
US20180076752A1 (en) * 2016-09-09 2018-03-15 Metropolitan Industries, Inc. Motor control system and method for implementing a direct on-off communication control routine
JP2019103185A (en) * 2017-11-29 2019-06-24 日立オートモティブシステムズ株式会社 Electric motor control device
WO2020002666A1 (en) * 2018-06-28 2020-01-02 Valeo Equipements Electriques Moteur System for controlling a switch, switching arm and electrical installation

Similar Documents

Publication Publication Date Title
CN109428473B (en) Power supply system for vehicle
US7269535B2 (en) Fault diagnosing apparatus for vehicle and fault diagnosing method for vehicle
US8698435B2 (en) Motor drive device
CN111226364B (en) Power supply device, power control device, and relay determination method for power supply device
CN109428389B (en) Power supply system for vehicle
JP4676869B2 (en) Vehicle power system and boost power supply
EP2298625B1 (en) Electric power steering device
JP4715928B2 (en) Buck-boost converter
CN106664045B (en) Power conversion device
US9499063B2 (en) Power-supply device
CN111952933A (en) Driving circuit
CN111656666B (en) power conversion device
CN113924721B (en) Vehicle-mounted power supply system
JP3661630B2 (en) Hybrid vehicle drive device and control method thereof
KR20150040195A (en) Power conversion system for electric vehicles
US20190308573A1 (en) Vehicle-mounted power supply device
JP2014110666A (en) Discharge control system, and discharge device
US11264901B2 (en) Electric-power conversion system controller
WO2023181166A1 (en) Power conversion device
WO2023054025A1 (en) Power supply device
KR20150040196A (en) Power conversion system for electric vehicles
US10906484B2 (en) In-vehicle power supply device
JP3615004B2 (en) Power converter
CN113711480A (en) Power converter
WO2021039276A1 (en) Discharge control device and discharge control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933311

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024508888

Country of ref document: JP