WO2023181120A1 - 電波制御システム、制御装置、電波制御方法、及び非一時的なコンピュータ可読媒体 - Google Patents

電波制御システム、制御装置、電波制御方法、及び非一時的なコンピュータ可読媒体 Download PDF

Info

Publication number
WO2023181120A1
WO2023181120A1 PCT/JP2022/013171 JP2022013171W WO2023181120A1 WO 2023181120 A1 WO2023181120 A1 WO 2023181120A1 JP 2022013171 W JP2022013171 W JP 2022013171W WO 2023181120 A1 WO2023181120 A1 WO 2023181120A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
reflector
sub
frequency
radio wave
Prior art date
Application number
PCT/JP2022/013171
Other languages
English (en)
French (fr)
Inventor
亮太 二瓶
純一 船田
健司 若藤
昂平 吉田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2024508848A priority Critical patent/JPWO2023181120A5/ja
Priority to PCT/JP2022/013171 priority patent/WO2023181120A1/ja
Publication of WO2023181120A1 publication Critical patent/WO2023181120A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present disclosure relates to a radio wave control system, a control device, a radio wave control method, and a non-transitory computer-readable medium.
  • 5G 5th Generation
  • 4G 4th Generation
  • 5G wireless communication area formed by base stations is narrower than the 4G wireless communication area.
  • RAN Radio Access Network
  • an appropriate communication area is created for each carrier by performing beamforming that allows radio waves used by each carrier to be transmitted in different directions. becomes possible.
  • Patent Document 1 discloses a multi-beam antenna configuration in which a plurality of antenna elements are divided into subunits, and each subunit transmits radio waves in different directions.
  • the multi-beam antenna of Patent Document 1 uses a distributor to distribute signals to each subunit.
  • Patent Document 1 discloses the configuration of a multi-beam antenna that transmits a signal of a specific frequency in an arbitrary direction.
  • a plurality of communication carriers share a multi-beam antenna
  • one object of the present disclosure is to provide a radio wave control system, a control device, a radio wave control method, and a non-temporary radio wave control system that enable beamforming of multiple signals having different frequencies with a simple configuration.
  • the objective is to provide a computer readable medium.
  • a radio wave control system includes transmitting means for transmitting a first signal of a first frequency and a second signal of a second frequency, and a transmitting means for transmitting a first signal of a first frequency and a second signal of a second frequency; a reflector that reflects or transmits the first signal and the second signal to beamform the first signal and the second signal in different directions; and electrically controlling the antenna element.
  • a control device includes a management unit that manages the frequency and phase adjustment amount of a signal, and a control device that manages the phase adjustment amount of the first signal at the first frequency transmitted from the transmitting device to the reflector.
  • a management unit that manages the frequency and phase adjustment amount of a signal
  • a control device that manages the phase adjustment amount of the first signal at the first frequency transmitted from the transmitting device to the reflector.
  • a radio wave control method includes determining the phase of a first signal of a first frequency and a second signal of a second frequency transmitted from a transmitting device to a reflecting plate; electrically controlling periodically arranged antenna elements so that the first signal and the second signal are in phase, beamforming the first signal in a specific direction; The second signal is beamformed in a direction different from that of the first signal.
  • a program determines the phases of a first signal of a first frequency and a second signal of a second frequency, which are transmitted from a transmitter to a reflector. electrically controlling periodically arranged antenna elements to beamform the first signal in a specific direction so that the first signal and the second signal are in phase; A program that causes a computer to beamform a second signal in a direction different from the first signal.
  • a radio wave control system a control device, a radio wave control method, and a non-transitory computer-readable medium that enable beamforming of a plurality of signals having different frequencies with a simple configuration.
  • FIG. 1 is a configuration diagram of a radio wave control system according to a first embodiment
  • FIG. 3 is a flowchart regarding a radio wave control method executed by the control device according to the first embodiment.
  • 1 is a configuration diagram of a transmitting device according to Embodiment 1.
  • FIG. 1 is a configuration diagram of a control device according to a first embodiment
  • FIG. 2 is a configuration diagram of a radio wave control system according to a second embodiment.
  • FIG. 3 is a configuration diagram of a radio wave control system according to a third embodiment.
  • FIG. 3 is a configuration diagram of a radio wave control system according to a fourth embodiment.
  • FIG. 2 is a configuration diagram of a control device and a transmitting device according to each embodiment.
  • the radio wave control system in FIG. 1 includes a transmitter 10, a reflector 20, and a controller 30.
  • the transmitting device 10 and the control device 30 may be computer devices that operate by a processor executing a program stored in a memory.
  • the transmitting device 10 transmits a first signal at a first frequency and a second signal at a second frequency. Specifically, the transmitting device 10 transmits a first signal using radio waves of a first frequency, and transmits a second signal using radio waves of a second frequency.
  • the transmitting device 10 is a device used as a transmitting means for transmitting a signal.
  • the first frequency and the second frequency may be, for example, frequencies included in a range used for mobile communication.
  • the first frequency may be, for example, a center frequency included in a certain frequency band.
  • the second frequency may also be a center frequency included in a certain frequency band.
  • the first frequency and the second frequency may be different center frequencies in the same frequency band.
  • the first frequency may be included in a frequency band different from the frequency band in which the second frequency is included.
  • FIG. 1 shows that the signal or radio wave is transmitted linearly, in reality, the signal or radio wave is incident on the entire reflector 20 or a part of the reflector 20. do.
  • the transmitting device 10 may transmit the first signal and the second signal at substantially the same timing, or may transmit the second signal at a timing different from the timing at which the first signal is transmitted. .
  • the reflecting plate 20 reflects or transmits the first signal and the second signal at the periodically arranged antenna elements 22.
  • the reflector 20 is shown to have a plurality of antenna elements 22 . Further, the reflector 20 beamforms the first signal in a certain direction, and beamforms the second signal in a direction different from the first signal.
  • the reflecting plate 20 may be a metasurface reflecting plate using metasurface technology, for example.
  • the reflector 20 may be a RIS (Reconfigurable Intelligent Surface) reflector.
  • the antenna element 22 is arranged on the surface of the reflection plate 20.
  • the antenna element 22 is an element that can realize arbitrary dielectric constant and magnetic permeability.
  • the antenna element 22 is a structure that is sufficiently small relative to the wavelength of radio waves, and may be a patch antenna, for example.
  • it may be determined whether the reflector 20 operates as a reflector that reflects radio waves or as a reflector that transmits radio waves.
  • the reflector 20 can operate as a reflector that reflects radio waves or as a reflector that transmits radio waves by stacking a glass substrate on the antenna element and adjusting the distance between the glass substrate and the antenna element. may be controlled.
  • Beamforming is a state in which radio waves reflected or transmitted by a plurality of antenna elements 22 overlap, and the radio waves have directivity in a specific direction.
  • a radio wave having directivity in a specific direction is a state in which a composite wave of radio waves reflected or transmitted by a plurality of antenna elements 22 forms a beam.
  • the reflecting plate 20 transmits or reflects radio waves such that the direction of the directivity of the radio waves propagating the first signal is different from the direction of the directivity of the radio waves propagating the second signal.
  • the control device 30 electrically controls the plurality of antenna elements 22 to control the phases of the first signal and the second signal, thereby determining the direction in which the first signal and the second signal are beamformed. Control. Controlling the phase of a signal may mean changing the phase of the signal or switching the phase of the signal.
  • the control device 30 may switch the phase of reflected or transmitted radio waves by controlling a variable resonance circuit built into the reflection plate 20.
  • the control device 30 changes the phase of the reflected or transmitted radio waves by switching the material used as the antenna element 22. You may switch.
  • a liquid crystal layer may be provided on the surface of the reflection plate 20, and the control device 30 may control the dielectric constant by changing the voltage applied to the reflection plate 20 and switch the phase of the reflected or transmitted radio waves.
  • a liquid crystal layer may be provided for each reflective element.
  • the control device 30 controls the phase so that the radio waves reflected or transmitted by the plurality of antenna elements 22 become beams having directivity in a specific direction.
  • the control device 30 controls the phase of the radio wave propagating the first signal so that it becomes a beam having directivity in the first direction.
  • the radio wave of the first frequency that propagates the first signal is transmitted to the reflector plate 20 that is controlled so that the radio wave of the first frequency that propagates the first signal becomes a beam having directivity in the first direction.
  • radio waves are incident.
  • the radio waves propagating the second signal have different frequencies and phases from the radio waves of the first signal, so they are reflected or transmitted through the reflecting plate 20 as beams with directivity in a direction different from the first direction. do.
  • the control device 30 controls the reflector 20 so that the amount of phase rotation of the radio wave of the first frequency that is reflected or transmitted through the reflector 20 becomes a specific value. Since the amount of phase rotation differs depending on the frequency, the amount of phase rotation of the radio waves of the second frequency reflected or transmitted through the reflection plate 20 is different from the amount of phase rotation of the radio waves of the first frequency. As a result, the radio waves of the second frequency are reflected or transmitted through the reflection plate 20 as beams having directivity in a direction different from that of the radio waves of the first frequency that are reflected or transmitted through the reflection plate 20.
  • the control device 30 determines the phase of the first signal of the first frequency transmitted from the transmitting device 10 to the reflecting plate 20 (S11). Next, as the phase of the first signal is determined, the phase of the second signal is determined (S12). Next, the control device 30 electrically controls the antenna elements 22 periodically arranged on the reflector plate 20 so that the first signal and the second signal have the determined phases (S13). Thereby, the control device 30 beamforms the first signal in a specific direction, and beamforms the second signal in a direction different from that of the first signal.
  • the transmitter 10 includes a signal generator 12, a power amplifier 14, and an antenna 16.
  • the signal generation unit 12 may be software or a module whose processing is executed by a processor executing a program stored in a memory.
  • the signal generation section 12 may be hardware such as a circuit or a chip.
  • the signal generation unit 12 generates a signal by modulating a carrier wave of a specific frequency using transmission data.
  • a carrier wave of a specific frequency may be a carrier wave having a specific center frequency.
  • the signal generation unit 12 generates a plurality of signals having different frequencies by changing the frequency of the carrier wave.
  • the frequency of the carrier wave may be the center frequency of the carrier wave.
  • the signal generation unit 12 may generate a signal for each frequency used by a communication carrier.
  • the power amplifier 14 may be a wideband power amplifier that amplifies a plurality of signals having different frequencies generated in the signal generation section 12.
  • a wideband power amplifier for example, a TWTA (Traveling Wave Tube Amplifier) may be used, or other amplifiers that support a wide range of frequencies from several GHz to several tens of GHz may be used.
  • TWTA Traveling Wave Tube Amplifier
  • the antenna 16 transmits the signal amplified by the power amplifier 14.
  • a signal transmitted from the antenna 16 is reflected or transmitted by the reflecting plate 20.
  • Antenna 16 is an antenna that transmits a plurality of signals having different frequencies that are amplified by power amplifier 14 .
  • a different antenna element may be used for each frequency, or an antenna element capable of transmitting a plurality of signals having different frequencies may be used.
  • FIG. 3 shows that signals of frequency f1, frequency f2, and frequency f3 are transmitted from the antenna 16.
  • the signals with frequencies f1, f2, and f3 may be signals with center frequencies of f1, f2, and f3.
  • the control device 30 includes a management section 32 and a phase control section 34.
  • the management unit 32 and the phase control unit 34 may be software or modules whose processing is executed by a processor executing a program stored in a memory.
  • the management section 32 and the phase control section 34 may be hardware such as a circuit or a chip.
  • the management unit 32 manages information regarding the amount of phase adjustment.
  • the amount of phase adjustment may be, for example, the value of the phase of reflected or transmitted radio waves.
  • the phase adjustment amount may be managed as a phase rotation amount.
  • the amount of phase rotation may be, for example, an angle between the reflecting surface of the reflecting plate 20 and the direction of a beam formed by a reflected signal or a transmitted signal.
  • the phase adjustment amount may be managed for each frequency.
  • the phase rotation amount R1 may be associated with the frequency f1.
  • the phase control unit 34 controls the antenna elements arranged on the reflection plate 20 so as to match the phase adjustment amount extracted from the management unit 32.
  • the phase control unit 34 may determine the voltage value according to the amount of phase adjustment.
  • the phase control unit 34 may transmit to the reflection plate 20 a signal instructing switching to the material of the antenna element that corresponds to the amount of adjustment of the extracted phase.
  • the phase control unit 34 extracts the phase rotation amount R1 associated with the frequency f1 from the management unit 32. In this case, the phase control unit 34 controls the antenna element 22 so that the amount of phase rotation of the signal of frequency f1 incident on the reflection plate 20 becomes R1.
  • c is the speed of radio waves, and a value of 300,000 kilometers per second is used.
  • ⁇ 1 is calculated as 10.714 [m].
  • the phase control unit 34 controls the antenna element 22 so that the amount of phase rotation of the signal of frequency f1 incident on the reflection plate 20 becomes R1
  • the phase of the signal of frequency f2 incident on the reflection plate 20 Calculate the rotation amount R2.
  • the speed of radio waves is the same for both the frequency f1 signal and the frequency f2 signal. Therefore, similarly to the signal of frequency f1, when the signal of frequency f2 travels a distance of ⁇ 1_1, the amount of phase rotation R2 with respect to wavelength ⁇ 2 is calculated.
  • the phase rotation of the signal with the frequency f2 The amount R2 is also automatically determined.
  • the radio wave control system transmits or reflects a plurality of signals with different frequencies transmitted from the transmitter 10 on the reflector 20, thereby providing a plurality of signals having directivity in different directions.
  • beam can be formed.
  • the transmitting device 10 may have any configuration as long as it transmits a plurality of signals with different frequencies.
  • the reflector plate 20 to form a plurality of beams having directivity in different directions, it is possible to prevent the configuration of a radio wave control system that forms a plurality of beams from becoming complicated.
  • the power amplifier 14 in the transmitting device 10 in Embodiment 1 may be replaced with an LNA (Low Noise Amplifier), and the transmitting device 10 may be used as a receiving device.
  • the receiving device receives multiple signals having different frequencies and demodulates each signal.
  • FIG. 5 a configuration example of the radio wave control system according to the second embodiment will be described using FIG. 5.
  • a sub-reflector 41, a sub-reflector 42, and a sub-reflector 43 are added to the radio wave control system of FIG.
  • the sub-reflector 41, the sub-reflector 42, and the sub-reflector 43 have antenna elements arranged periodically.
  • the control device 30 is connected to the reflector 20, the sub-reflector 41, the sub-reflector 42, and the sub-reflector 43, and electrically controls the antenna elements arranged in each device.
  • f1 signal a signal of frequency f1
  • f2 signal a signal of f2
  • f3 signal a signal of f3
  • f1, f2, and f3 have different values.
  • the f1 signal, f2 signal, and f3 signal are signals with different frequencies.
  • the control device 30 controls the plurality of antenna elements 22 arranged on the reflector 20 so that when the f1 signal is incident on the reflector 20, the amount of phase rotation of the f1 signal transmitted through the reflector 20 becomes R1. . That is, the control device 30 beamforms the f1 signal in the R1 direction with respect to the reflection plate 20. When the direction in which the f1 signal is beamformed is determined, the direction in which the f2 and f3 signals incident on the reflection plate 20 are beamformed is also determined.
  • the f1 signal transmitted through the reflection plate 20 enters the sub-reflection plate 41.
  • the f2 signal transmitted through the reflection plate 20 enters the sub-reflection plate 42.
  • the f3 signal transmitted through the reflection plate 20 enters the sub-reflection plate 43. That is, the sub-reflector 41 is arranged in the direction of movement of the f1 signal, the sub-reflection plate 42 is arranged in the direction of movement of the f2 signal, and the sub-reflection plate 43 is arranged in the direction of movement of the f3 signal. .
  • the sub-reflector 41 is incident on the sub-reflector 41, only the f2 signal is incident on the sub-reflector 42, and only the f3 signal is incident on the sub-reflector 43.
  • a sub-reflection plate 41, a sub-reflection plate 42, and a sub-reflection plate 43 are arranged at the positions. In other words, the sub-reflector 41, the sub-reflector 42, and the sub-reflector 43 are arranged at a distance L from the reflector 20 so that they do not overlap.
  • the sub-reflector 41, the sub-reflector 42, and the sub-reflector 43 are squares with one side of 15 cm or rectangles with long sides of 15 cm.
  • the sub-reflector 41, the sub-reflector 42, and the sub-reflector 43 need to be arranged at a distance L from the reflector 20, with a distance of 15 cm or more between their center points. .
  • the distance from the reflector 20 to each of the sub-reflector 41, sub-reflector 42, and sub-reflector 43 is Although different, the distance from the reflection plate 20 to each sub-reflection plate is regarded as the distance L here. Further, the distance from the reflecting plate 20 to each sub-reflecting plate is the distance from the reflecting plate 20 to the center of each sub-reflecting plate.
  • phase rotation amount R1 of the f1 signal on the reflection plate 20 is 60[deg]
  • the phase rotation amount R2 of the f2 signal on the reflection plate 20 is calculated as 62.143[deg].
  • the square or rectangular sub-reflector 41 and sub-reflector 42 are 4[m] from the reflector 20. ] Must be located at a distance.
  • each sub-reflector is configured so that the f1 signal, f2 signal, and f3 signal transmitted through the reflector plate 20 are connected to the far field. It must be placed in a certain area.
  • the far field is the distance at which the combined waves of the respective signals transmitted through the antenna element 22 form a beam.
  • the distance between the reflecting plate 20 and each sub-reflecting plate is too short, the peaks of the amplitudes of the respective signals will not overlap sufficiently, and a beam will not be formed.
  • the distance that becomes a far field is 2 ⁇ when the size D of the reflecting plate 20 is negligibly small, and the distance that becomes a far field increases in proportion to the wavelength ⁇ .
  • the distance that becomes a far field is 2 ⁇ D 2 / ⁇ , and since the size D of the reflector 20 is fixed, the longer the wavelength, the distance that becomes a far field. becomes shorter.
  • a case where the size D of the reflector 20 cannot be ignored is a case where the size D of the reflector 20 is equal to or larger than the wavelength.
  • the control device 30 electrically controls the plurality of antenna elements arranged on the sub-reflector 41 to control the phase of the f1 signal that passes through the sub-reflector 41.
  • the control device 30 beamforms the f1 signal in an arbitrary direction by controlling the phase of the f1 signal.
  • the control device 30 electrically controls the plurality of antenna elements arranged on the sub-reflector 42 to control the phase of the f2 signal transmitted through the sub-reflector 42.
  • the control device 30 electrically controls the plurality of antenna elements arranged on the sub-reflector 43 to control the phase of the f3 signal transmitted through the sub-reflector 43.
  • the control device 30 electrically controls the sub-reflector 41, the sub-reflector 42, and the sub-reflector 43, so that the signals incident on the respective sub-reflectors are control the phase of
  • the control device 30 controls, for example, to beamform the f1 signal in a specific direction.
  • the direction of beamforming of the f2 signal and the f3 signal is automatically determined by determining the beamforming of the f1 signal. Therefore, the direction of beamforming of the plurality of signals cannot be set to an arbitrary direction simply by the control device 30 performing phase control on the reflection plate 20 to which a plurality of signals having different frequencies are incident.
  • a sub-reflection plate 41 on which the f1 signal is incident, a sub-reflection plate 42 on which the f2 signal is incident, and a sub-reflection plate 43 on which the f3 signal is incident are arranged at positions apart from the reflection plate 20. do.
  • the control device 30 can beamform the f1 signal, the f2 signal, and the f3 signal in any direction by independently controlling the sub-reflector 41, the sub-reflector 42, and the sub-reflector 43.
  • the control device that controls the reflection plate 20 may be a different device from the control device that controls the sub-reflection plates 41 to 43.
  • the sub-reflectors 41 to 43 may be controlled by the same control device, or may be controlled by different control devices.
  • the control device 30 may control the reflector and the sub-reflector, and the control device that controls the reflector and the control device that controls the sub-reflector may be different. good.
  • each reflector may be controlled by a different control device.
  • each sub-reflector may be controlled by a different control device for each sub-reflector.
  • the reflector 20 and the sub-reflectors 41 to 43 are shown to be transmission type reflectors, but the radio wave control system is configured using reflective reflectors. Good too.
  • the radio wave control system in FIG. 5 may configure one base station.
  • the reflector 20 and the sub-reflectors 41 to 43 cannot be installed horizontally to the ground due to the length of the distance L, the reflector 20 and the sub-reflectors 41 to 43 cannot be installed horizontally to the ground. It may be installed vertically.
  • FIG. 6 a sub-reflector 51, a sub-reflector 52, and a sub-reflector 53 are added to the radio wave control system of FIG.
  • antenna elements are periodically arranged, similarly to the reflector 20.
  • the control device 30 is connected to the reflector 20, the sub-reflector 41, the sub-reflector 42, the sub-reflector 43, the sub-reflector 51, the sub-reflector 52, and the sub-reflector 53, and is arranged in each device. Electrically control the antenna element.
  • the control device 30 electrically controls the antenna element arranged on the reflection plate 20 to change the direction in which the f1 signal transmitted through the reflection plate 20 is beamformed.
  • the f1 signal whose beamforming direction has been changed is expressed as an f1' signal.
  • the direction in which the f2 signal and f3 signal are beamformed is also changed.
  • the f2 signal and f3 signal whose beamforming direction has changed are expressed as f2' signal and f3' signal.
  • the f1' signal enters the sub-reflector 51
  • the f2' signal enters the sub-reflector 52
  • the f3' signal enters the sub-reflector 53.
  • only the f1' signal is incident on the sub-reflector 51
  • only the f2' signal is incident on the sub-reflector 52
  • the sub-reflector 53 is incident on the f2' signal.
  • a sub-reflector 51, a sub-reflector 52, and a sub-reflector 53 are arranged at a position where only the f3′ signal is incident.
  • the distance relationship between the reflector 20 and the sub-reflectors 51-53 is the same as the distance relationship between the reflector 20 and the sub-reflectors 41-43.
  • the locations where the sub-reflector 51, the sub-reflector 52, and the sub-reflector 53 are arranged are determined in the same manner as the steps in which the locations of the sub-reflector 41, the sub-reflector 42, and the sub-reflector 43 are determined. Ru.
  • the radio wave control system of FIG. 6 changes the direction in which the signal transmitted through the reflection plate 20 is beamformed. Thereby, compared to the case where the direction in which the signals transmitted through the reflection plate 20 are beamformed is fixed, it is possible to beamform the signals over a wide range.
  • the radio wave control system of FIG. 7 has a reflector 61, a sub-reflector 71, a sub-reflector 72, and a sub-reflector 73 added to the radio control system of FIG. Similarly to the reflector 20, antenna elements are periodically arranged in the reflector 61, the sub-reflector 71, the sub-reflector 72, and the sub-reflector 73.
  • the control device 30 is connected to a reflector 61, a sub-reflector 71, a sub-reflector 72, and a sub-reflector 73, and is arranged in each device. Electrically control the antenna element.
  • the control device 30 electrically controls the antenna element disposed on the reflector 20 to transmit the f1 signal transmitted through the reflector 20 to the sub-reflectors 41 to 43 and the sub-reflectors 51 to 53.
  • beam forming is performed on the reflecting plate 61.
  • the f1 signal, f2 signal, and f3 signal that are beamformed in the direction of the reflection plate 61 are referred to as f1'' signal, f2'' signal, and f3'' signal.
  • the f1'' signal, the f2'' signal, and the f3' signal are incident on the reflection plate 61.
  • the distance between the reflector 20 and the reflector 61 may be sufficiently shorter than the distance between the reflector 20 and the sub-reflectors 41 to 43.
  • the distance between the reflector 20 and the reflector 61 is such that the distance between the f1'' signal, f2'' signal, and f3'' signal on the reflector 61 fits within one side of the reflector 61.
  • the distance may be as follows.
  • the f1 signal transmitted through the reflection plate 20 the f2
  • the f2 There is no need to greatly adjust the refraction angles of the signal and the f3 signal.
  • the reflector 20 is of a reflective type, there is no need to greatly adjust the reflection angles of the f1 signal, f2 signal, and f3 signal reflected by the reflector 20.
  • the reflecting plate 61 reflects the incident f1'' signal, f2'' signal, and f3'' signal.
  • the control device 30 may electrically control an antenna element disposed on the reflector plate 61 so as to reflect the incident f1'' signal in a specific direction.
  • the specific direction may be, for example, a direction in which the amount of phase rotation is R11.
  • the reflection directions of the f2'' and f3'' signals are determined according to the frequencies of the f2'' and f3'' signals. That is, by the control device 30 performing phase control to adjust the reflection direction of the f1'' signal, the reflection directions of the f2'' signal and the f3' signal are also determined.
  • the f1'' signal reflected by the reflection plate 61 enters the sub-reflection plate 71.
  • the f2'' signal reflected by the reflection plate 61 is incident on the sub-reflection plate 72.
  • the f3'' signal transmitted through the reflection plate 61 enters the sub-reflection plate 73. That is, the sub-reflector 71 is arranged in the direction of movement of the f1'' signal, the sub-reflection plate 72 is arranged in the direction of movement of the f2'' signal, and the sub-reflection plate 73 is arranged in the direction of movement of the f3'' signal. placed on the direction.
  • the sub-reflector 71, the sub-reflector 72, and the sub-reflector 73 are arranged at a position where only the f3'' signal is incident on the reflector 73.
  • the distance relationship between the reflector 61 and the sub-reflectors 71-73 is similar to the distance relationship between the reflector 20 and the sub-reflectors 41-43.
  • the locations where the sub-reflector 71, the sub-reflector 72, and the sub-reflector 73 are arranged are determined in the same manner as the steps in which the locations of the sub-reflector 41, the sub-reflector 42, and the sub-reflector 43 are determined. Ru.
  • the radio wave control system in FIG. 7 can transmit signals around the reflector 20 by using the reflector 61. Thereby, the communication area in which communication can be performed with the transmitting device 10 can be further expanded.
  • FIG. 8 is a block diagram showing a configuration example of the control device 30 and the transmitting device 10 (hereinafter referred to as the control device 30 etc.) described in the above embodiment.
  • the control device 30 and the like include a network interface 1201, a processor 1202, and a memory 1203.
  • Network interface 1201 may be used to communicate with network nodes.
  • the network interface 1201 may include, for example, a network interface card (NIC) compliant with the IEEE 802.3 series. IEEE stands for Institute of Electrical and Electronics Engineers.
  • NIC network interface card
  • the processor 1202 reads software (computer program) from the memory 1203 and executes it, thereby performing the processing of the control device 20 and the like described using the flowchart in the above embodiment.
  • Processor 1202 may be, for example, a microprocessor, MPU, or CPU.
  • Processor 1202 may include multiple processors.
  • the memory 1203 is configured by a combination of volatile memory and nonvolatile memory.
  • Memory 1203 may include storage located remotely from processor 1202.
  • processor 1202 may access memory 1203 via an I/O (Input/Output) interface, which is not shown.
  • I/O Input/Output
  • memory 1203 is used to store software modules. By reading these software module groups from the memory 1203 and executing them, the processor 1202 can perform the processing of the control device 30 and the like described in the above embodiments.
  • each of the processors included in the control device 30 and the like in the above-described embodiments executes one or more programs including a group of instructions for causing a computer to execute the algorithm explained using the drawings. Execute.
  • the program includes instructions (or software code) that, when loaded into a computer, cause the computer to perform one or more of the functions described in the embodiments.
  • the program may be stored on a non-transitory computer readable medium or a tangible storage medium.
  • computer readable or tangible storage media may include random-access memory (RAM), read-only memory (ROM), flash memory, solid-state drive (SSD) or other memory technology, CD - Including ROM, digital versatile disc (DVD), Blu-ray disc or other optical disc storage, magnetic cassette, magnetic tape, magnetic disc storage or other magnetic storage device.
  • the program may be transmitted on a transitory computer-readable medium or a communication medium.
  • transitory computer-readable or communication media includes electrical, optical, acoustic, or other forms of propagating signals.
  • transmitting means for transmitting a first signal at a first frequency and a second signal at a second frequency; a reflector that beamforms the first signal and the second signal in different directions by reflecting or transmitting the first signal and the second signal in periodically arranged antenna elements; control means for controlling the direction in which the first signal and the second signal are beamformed by electrically controlling the antenna element to control the phases of the first signal and the second signal;
  • a radio control system equipped with .
  • the control means includes: The antenna element of the first sub-reflector is electrically controlled so as to beamform the first signal transmitted via the reflector in a specific direction, and the antenna element of the first sub-reflector is electrically controlled to beamform the first signal transmitted via the reflector electrically controlling the antenna element of the second sub-reflector so as to beamform the second signal in a direction different from the first signal beam-formed on the first sub-reflector;
  • the first sub-reflector is arranged at a position that does not overlap with the second sub-reflector, and at a position where the first signal of the first signal and the second signal can be incident.
  • the second sub-reflector is arranged at a position that does not overlap with the first sub-reflector, and where the second signal of the first signal and the second signal can be incident.
  • the control means includes: The antenna element of the third sub-reflector is electrically controlled so as to beamform the first signal transmitted via the reflector in a specific direction, and the antenna element of the third sub-reflector is electrically controlled to beamform the first signal transmitted via the reflector. electrically controlling the antenna element of the fourth sub-reflector so as to beamform the second signal in a direction different from the first signal beam-formed on the third sub-reflector;
  • the radio wave control system according to appendix 2 or 3.
  • the control means includes: At a first timing, the first signal is beamformed in the direction in which the first sub-reflector is arranged, and the second signal is beamformed in the direction in which the second sub-reflector is arranged; At the second timing, the first signal is beam-formed in the direction in which the third sub-reflector is arranged, and the second signal is beam-formed in the direction in which the fourth sub-reflector is arranged.
  • the radio wave control system described in Appendix 4. Appendix 6)
  • the third sub-reflector is arranged at a position that does not overlap with the fourth sub-reflector, and where the first signal of the first signal and the second signal can be incident.
  • the fourth sub-reflector is arranged at a position that does not overlap with the third sub-reflector, and at a position where the second signal of the first signal and the second signal can be incident.
  • the radio wave control system according to supplementary note 4 or 5. (Appendix 7) a fifth sub-reflector having periodically arranged antenna elements; a sixth sub-reflector having periodically arranged antenna elements; further comprising a second reflecting plate having periodically arranged antenna elements and disposed at a position where the first signal and the second signal reflected or transmitted by the reflecting plate can be incident;
  • the control means includes: The first signal transmitted through the second reflection plate is beamformed in the direction in which the fifth sub-reflection plate is arranged, and the second signal transmitted through the second reflection plate is The radio wave control system according to any one of Supplementary Notes 2 to 6, wherein the signal is beamformed in a direction in which the sixth sub-reflector is arranged.
  • the radio wave control system according to any one of Supplementary Notes 1 to 7, further comprising an amplifying means for amplifying the first signal and the second signal.
  • a management means for managing the frequency and phase adjustment amount of the signal; The amount of phase adjustment of the first signal of the first frequency transmitted from the transmitter to the reflection plate is extracted from the management means, and the phase of the first signal reflected or transmitted by the reflection plate is determined by the amount of phase adjustment.
  • a control device that controls a direction in which the first signal and a second signal of a second frequency are beamformed by controlling based on the following.
  • the control means includes: The phase of the first signal is controlled so as to beamform the first signal to a first sub-reflector having periodically arranged antenna elements, and the second signal is arranged periodically.
  • the control device according to supplementary note 9, wherein the control device controls the phase of the second signal so as to perform beamforming to a second sub-reflector having an antenna element.
  • (Appendix 11) determining the phase of a first signal at a first frequency and a second signal at a second frequency transmitted from the transmitter to the reflector; Beamforming the first signal in a specific direction by electrically controlling periodically arranged antenna elements so that the determined phases of the first signal and the second signal are obtained. .
  • a radio wave control method executed in a control device comprising beamforming the second signal in a direction different from that of the first signal.
  • (Appendix 12) determining the phase of a first signal at a first frequency and a second signal at a second frequency transmitted from the transmitter to the reflector; Beamforming the first signal in a specific direction by electrically controlling periodically arranged antenna elements so that the determined phases of the first signal and the second signal are obtained.
  • a non-transitory computer-readable medium storing a program that causes a computer to beamform the second signal in a direction different from that of the first signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

簡易な構成にて異なる周波数を有する複数の信号のビームフォーミングを可能とする電波制御システムを提供することを目的とする。本開示にかかる電波制御システムは、第1の周波数の第1の信号及び第2の周波数の第2の信号を送信する送信装置(10)と、周期的に配置されたアンテナ素子において第1の信号及び第2の信号を反射もしくは透過して第1の信号及び第2の信号を、それぞれ異なる方向へビームフォーミングする反射板(20)と、アンテナ素子を電気的に制御して第1の信号及び第2の信号の位相を制御することによって第1の信号及び前記第2の信号をビームフォーミングする方向を制御する制御装置(30)と、を備える。

Description

電波制御システム、制御装置、電波制御方法、及び非一時的なコンピュータ可読媒体
 本開示は、電波制御システム、制御装置、電波制御方法、及び非一時的なコンピュータ可読媒体に関する。
 近年、3GPP(3rd Generation Partnership Project)において標準規格が規定された無線通信規格である5G(5th Generation)の通信エリアが拡大している。一般的に、5Gは、4G(4th Generation)と比較して高周波数帯が用いられている。そのため、基地局が形成する5Gの無線通信エリアは、4Gの無線通信エリアと比較して狭くなっている。これにより、5Gの無線通信エリアを拡大するためには、多数の基地局を設置する必要があり、通信事業者にとって設置コストの負担が増加する。また、多数の基地局を設置する必要があるため、複数の通信事業者が別々に基地局を設置する場合、設置場所が限られてしまう。そこで、5Gの通信エリアを形成する基地局を、複数の通信事業者が共有して使用するRAN(Radio Access Network)インフラシェアリングの検討が行われている。
 複数の通信事業者が共有して使用するRANインフラにおいて、それぞれの通信事業者が使用する電波を異なる方向へ発信可能なビームフォーミングを行うことによって、通信事業者毎に適切な通信エリアを形成することが可能となる。
 特許文献1には、複数のアンテナ素子がサブユニットに分割され、それぞれのサブユニットが異なる方向へ電波を送信するマルチビームアンテナの構成が開示されている。特許文献1のマルチビームアンテナは、分配器を用いてそれぞれのサブユニットへ信号を分配する。
国際公開第2017/126522号
 特許文献1には、特定の周波数の信号を任意の方向へ送信するマルチビームアンテナの構成が開示されている。ここで、複数の通信事業者がマルチビームアンテナを共有する場合、通信事業者毎に異なる周波数を有する複数の信号のビームフォーミングを行う必要がある。しかし、特許文献1に開示されているマルチビームアンテナにおいて異なる周波数を有する複数の信号のビームフォーミングを行う場合、周波数の数だけ分配器、パワーアンプ等を用意する必要があり、位相器の数も周波数の数に応じて増加する。そのため、装置が複雑化するという問題がある。
 本開示の目的の一つは、上述した課題に鑑み、簡易な構成にて異なる周波数を有する複数の信号のビームフォーミングを可能とする電波制御システム、制御装置、電波制御方法、及び非一時的なコンピュータ可読媒体を提供することにある。
 本開示の第1の態様にかかる電波制御システムは、第1の周波数の第1の信号及び第2の周波数の第2の信号を送信する送信手段と、周期的に配置されたアンテナ素子において前記第1の信号及び前記第2の信号を反射もしくは透過して前記第1の信号及び前記第2の信号を、それぞれ異なる方向へビームフォーミングする反射板と、前記アンテナ素子を電気的に制御して前記第1の信号及び前記第2の信号の位相を制御することによって前記第1の信号及び前記第2の信号をビームフォーミングさせる方向を制御する制御手段と、を備える。
 本開示の第2の態様にかかる制御装置は、信号の周波数と位相調整量とを管理する管理手段と、送信装置から反射板へ送信された第1の周波数第1の信号の位相調整量を前記管理手段から抽出し、前記反射板において反射もしくは透過される前記第1の信号の位相を前記位相調整量に基づいて制御することによって、前記第1の信号及び第2の周波数の第2の信号をビームフォーミングさせる方向を制御する制御手段と、を備える。
 本開示の第3の態様にかかる電波制御方法は、送信装置から反射板へ送信された、第1の周波数の第1の信号及び第2の周波数の第2の信号の位相を決定し、決定された前記第1の信号及び前記第2の信号の位相となるように、周期的に配置されたアンテナ素子を電気的に制御して、前記第1の信号を特定の方向へビームフォーミングさせ、前記第2の信号を前記第1の信号と異なる方向へビームフォーミングさせる。
 本開示の第4の態様にかかるプログラムは、送信装置から反射板へ送信された、第1の周波数の第1の信号及び第2の周波数の第2の信号の位相を決定し、決定された前記第1の信号及び前記第2の信号の位相となるように、周期的に配置されたアンテナ素子を電気的に制御して、前記第1の信号を特定の方向へビームフォーミングさせ、前記第2の信号を前記第1の信号と異なる方向へビームフォーミングさせる、ことをコンピュータに実行させるプログラム。
 本開示により、簡易な構成にて異なる周波数を有する複数の信号のビームフォーミングを可能とする電波制御システム、制御装置、電波制御方法、及び非一時的なコンピュータ可読媒体を提供することができる。
実施の形態1にかかる電波制御システムの構成図である。 実施の形態1にかかる制御装置において実行される電波制御方法に関するフローチャートである。 実施の形態1にかかる送信装置の構成図である。 実施の形態1にかかる制御装置の構成図である。 実施の形態2にかかる電波制御システムの構成図である。 実施の形態3にかかる電波制御システムの構成図である。 実施の形態4にかかる電波制御システムの構成図である。 それぞれの実施の形態にかかる制御装置及び送信装置の構成図である。
 (実施の形態1)
 以下、図面を参照して本発明の実施の形態について説明する。図1を用いて実施の形態1にかかる電波制御システムの構成例について説明する。図1の電波制御システムは、送信装置10、反射板20、及び制御装置30を有している。送信装置10及び制御装置30は、プロセッサがメモリに格納されたプログラムを実行することによって動作するコンピュータ装置であってもよい。
 送信装置10は、第1の周波数の第1の信号及び第2の周波数の第2の信号を送信する。具体的には、送信装置10は、第1の周波数の電波を用いて第1の信号を送信し、第2の周波数の電波を用いて第2の信号を送信する。送信装置10は、信号を送信する送信手段として用いられる装置である。第1の周波数及び第2の周波数は、例えば、モバイル通信に用いられる域に含まれる周波数であってもよい。第1の周波数とは、例えば、ある周波数帯域に含まれる中心周波数であってもよい。第2の周波数も、ある周波数帯域に含まれる中心周波数であってもよい。また、第1の周波数及び第2の周波数は、同じ周波数帯域における異なる中心周波数であってもよい。もしくは、第1の周波数は、第2の周波数が含まれる周波数帯域と異なる周波数帯域に含まれてもよい。
 図1の点線の矢印は、信号もしくは信号を搬送する電波を示している。また、図1においては、信号もしくは電波が直線的に送信されることが示されているが、実際には、信号もしくは電波は、反射板20の全体もしくは反射板20の一部の領域に入射する。
 送信装置10は、実質的に同一のタイミングに第1の信号及び第2の信号を送信してもよく、第1の信号を送信するタイミングと異なるタイミングに第2の信号を送信してもよい。
 反射板20は、周期的に配置されたアンテナ素子22において、第1の信号及び第2の信号を反射もしくは透過する。図1においては、反射板20が複数のアンテナ素子22を有していることが示されている。さらに、反射板20は、第1の信号をある方向へビームフォーミングし、第2の信号を第1の信号とは異なる方向へビームフォーミングする。
 反射板20は、例えばメタサーフェス技術を用いたメタサーフェス反射板であってもよい。例えば、反射板20は、RIS(Reconfigurable Intelligent Surface)反射板であってもよい。
 アンテナ素子22は、反射板20の表面に配置される。アンテナ素子22は、任意の誘電率及び透磁率を実現可能な素子である。アンテナ素子22は、電波の波長に対して十分に小さい構造体であり、例えばパッチアンテナであってもよい。また、反射板20は、アンテナ素子22に用いられる素材に応じて、電波を反射する反射板として動作するか、電波を透過する反射板として動作するかが決定されてもよい。もしくは、反射板20は、アンテナ素子にガラス基板を重ね、ガラス基板とアンテナ素子との間の距離を調整することによって、電波を反射する反射板として動作するか、電波を透過する反射板として動作するかが制御されてもよい。
 ビームフォーミングは、複数のアンテナ素子22において反射もしくは透過された電波が重なりあい、電波が特定方向に指向性を有する状態である。つまり、特定方向に指向性を有する電波とは、複数のアンテナ素子22において反射もしくは透過された電波の合成波がビームを形成している状態である。第1の信号を伝搬する電波が有する指向性の方向と、第2の信号を伝搬する電波が有する指向性の方向とが異なるように、反射板20は、電波を透過もしくは反射する。
 制御装置30は、複数のアンテナ素子22を電気的に制御して、第1の信号及び第2の信号の位相を制御することによって、第1の信号及び第2の信号をビームフォーミングさせる方向を制御する。信号の位相を制御するとは、信号の位相を変化させる、もしくは、信号の位相を切り替えることであってもよい。
 例えば、制御装置30は、反射板20に組み込まれた可変共振回路を制御することによって反射もしくは透過する電波の位相を切り替えてもよい。もしくは、反射板20の表面に反射位相が異なる複数の材料が配置されている場合に、制御装置30は、アンテナ素子22として用いる材料をスイッチングして切り替えることによって、反射もしくは透過する電波の位相を切り替えてもよい。もしくは、反射板20の表面に液晶層を設け、制御装置30は、反射板20に印加する電圧を変更することによって、誘電率を制御し、反射もしくは透過する電波の位相を切り替えてもよい。液晶層は、反射素子毎に設けられてもよい。
 制御装置30は、複数のアンテナ素子22において反射もしくは透過される電波が、特定の方向へ指向性を有するビームとなるように位相を制御する。例えば、制御装置30は、第1の信号を伝搬する電波を第1の方向へ指向性を有するビームとなるように位相を制御する。ここで、第1の信号を伝搬する第1の周波数の電波を第1の方向へ指向性を有するビームとなるように制御された反射板20に、第2の信号を伝搬する第2の周波数の電波が入射する。この時、第2の信号を伝搬する電波は、第1の信号の電波と周波数及び位相が異なるため、第1の方向とは異なる方向へ指向性を有するビームとして、反射板20を反射もしくは透過する。
 言い換えると、制御装置30は、反射板20を反射もしくは透過する第1の周波数の電波の位相回転量が特定の値となるように反射板20を制御する。位相回転量は、周波数によって異なるため、反射板20を反射もしくは透過する第2の周波数の電波の位相回転量は、第1の周波数の電波の位相回転量とは異なる。その結果、第2の周波数の電波は、反射板20を反射もしくは透過する第1の周波数の電波とは異なる方向へ指向性を有するビームとして、反射板20を反射もしくは透過する。
 続いて、図2を用いて制御装置30において実行される電波制御方法について説明する。はじめに、制御装置30は、送信装置10から反射板20へ送信された第1の周波数の第1の信号の位相を決定する(S11)。次に、第1の信号の位相が決定されたことに伴い、第2の信号の位相が決定する(S12)。次に、制御装置30は、第1の信号及び第2の信号が決定された位相となるように、反射板20に周期的に配置されたアンテナ素子22を電気的に制御する(S13)。これにより、制御装置30は、第1の信号を特定の方向へビームフォーミングさせ、第2の信号を第1の信号と異なる方向へビームフォーミングさせる。
 続いて、図3を用いて送信装置10の構成例について説明する。送信装置10は、信号生成部12、パワーアンプ14、及びアンテナ16を有している。信号生成部12は、プロセッサがメモリに格納されたプログラムを実行することによって処理が実行されるソフトウェアもしくはモジュールであってもよい。または、信号生成部12は、回路もしくはチップ等のハードウェアであってもよい。
 信号生成部12は、例えば、特定の周波数の搬送波を、送信データを用いて変調した信号を生成する。特定の周波数の搬送波とは、特定の中心周波数を有する搬送波であってもよい。例えば、信号生成部12は、搬送波の周波数を変更することによって、異なる周波数を有する複数の信号を生成する。搬送波の周波数は、搬送波の中心周波数であってもよい。例えば、信号生成部12は、通信事業者が使用する周波数毎に、信号を生成してもよい。
 パワーアンプ14は、信号生成部12において生成される異なる周波数を有する複数の信号を増幅する広帯域のパワーアンプであってもよい。広帯域のパワーアンプとして、例えば、TWTA(Traveling Wave Tube Amplifier)が用いられてもよく、数GHzから数十GHzの幅広い周波数に対応する他のアンプが用いられてもよい。
 アンテナ16は、パワーアンプ14において増幅された信号を送信する。アンテナ16から送信された信号は、反射板20において反射もしくは透過される。アンテナ16は、パワーアンプ14において増幅される異なる周波数を有する複数の信号を送信するアンテナである。アンテナ16は、周波数毎に異なるアンテナ素子が用いられてもよく、異なる周波数を有する複数の信号を送信可能なアンテナ素子が用いられてもよい。図3においては、周波数f1、周波数f2、及び周波数f3の信号がアンテナ16から送信されていることを示している。周波数f1、周波数f2、及び周波数f3の信号は、中心周波数がf1、f2、及びf3の信号であってもよい。
 続いて、図4を用いて制御装置30の構成例について説明する。制御装置30は、管理部32及び位相制御部34を有している。管理部32及び位相制御部34は、プロセッサがメモリに格納されたプログラムを実行することによって処理が実行されるソフトウェアもしくはモジュールであってもよい。または、管理部32及び位相制御部34は、回路もしくはチップ等のハードウェアであってもよい。
 管理部32は、位相の調整量に関する情報を管理する。位相の調整量は、例えば、反射もしくは透過する電波の位相の値であってもよい。位相の調整量は、例えば、位相回転量として管理されてもよい。位相回転量は、例えば、反射板20の反射面と、反射された信号もしくは透過された信号が形成するビームの方向との角度であってもよい。位相の調整量は、周波数毎に管理されてもよい。例えば、周波数f1に対して位相回転量R1が関連付けられてもよい。
 位相制御部34は、管理部32から抽出した位相の調整量となるように反射板20に配置されたアンテナ素子を制御する。例えば、位相制御部34は、位相の調整量に応じた電圧値を決定してもよい。または、位相制御部34は、抽出した位相の調整量となるアンテナ素子の材料へのスイッチングを指示する信号を反射板20へ送信してもよい。
 ここで、周波数毎に定まる位相回転量について説明する。位相制御部34は、管理部32から、周波数f1に関連付けられた位相回転量R1を抽出する。この場合、位相制御部34は、反射板20に入射した周波数f1の信号の位相回転量がR1となるようにアンテナ素子22を制御する。この時、f1=28[GHz]とすると、周波数f1の信号の波長λ1は、λ1=c/f1として算出される。cは、電波の速度であり、秒速30万キロメートルの値が用いられる。この場合、λ1=10.714[m]と算出される。ここで位相回転量R1=45[deg]とした場合、波長に換算すると、λ1_1=λ1×(45/360)=1.339[m]と算出される。
 ここで、位相制御部34が、反射板20に入射した周波数f1の信号の位相回転量がR1となるようにアンテナ素子22を制御した場合に、反射板20に入射した周波数f2の信号の位相回転量R2を算出する。電波の速度は、周波数f1の信号及びf2の信号ともに同じである。そのため、周波数f1の信号と同じように、周波数f2の信号がλ1_1の距離だけ進むときの、波長λ2に対する位相回転量R2を算出する。ここで、周波数f2=29[GHz]とすると、周波数f2の信号の波長λ2は、λ2=c/f2=10.345[m]と算出される。位相回転量R2=λ1_1/λ2から、位相回転量R2=46.607[deg]と算出される。
 これにより、反射板20に入射した周波数f1=28[GHz]の信号の位相回転量がR1=45[deg]となるようにアンテナ素子22が制御されている場合、周波数f2の信号の位相回転量R2も自動的に定まる。具体的には、反射板20に入射した周波数f2=29[GHz]の信号の位相回転量R2は、46.607[deg]となる。
 つまり、周波数f1=28[GHz]の信号は、反射板20に対して45[deg]の方向にビームフォーミングし、周波数f2=29[GHz]の信号は、反射板20に対して46.607[deg]の方向にビームフォーミングする。
 以上説明したように、実施の形態1にかかる電波制御システムは、送信装置10から送信される周波数の異なる複数の信号を、反射板20において透過もしくは反射させることによって異なる方向へ指向性を有する複数のビームを形成することができる。この場合、送信装置10は、周波数の異なる複数の信号を送信する構成であればよい。さらに、異なる方向へ指向性を有する複数のビームを形成するために反射板20を用いることによって、複数のビームを形成する電波制御システムの構成が複雑化することを防止することができる。
 また、実施の形態1における送信装置10におけるパワーアンプ14をLNA(Low Noise Amplifier)に置き換えて、送信装置10を受信装置としてもよい。この場合、受信装置は、異なる周波数を有する複数の信号を受信して、それぞれの信号を復調する。
 (実施の形態2)
 続いて、図5を用いて実施の形態2にかかる電波制御システムの構成例について説明する。図5は、図1の電波制御システムに、副反射板41、副反射板42、及び副反射板43が追加されている。副反射板41、副反射板42、及び副反射板43は、反射板20と同様に、アンテナ素子が周期的に配置されている。制御装置30は、反射板20、副反射板41、副反射板42、及び副反射板43に接続され、それぞれの装置に配置されたアンテナ素子を電気的に制御する。
 ここで、送信装置10が、周波数f1の信号(以下、f1信号とする)、f2の信号(以下、f2信号とする)、及びf3の信号(以下、f3信号とする)を送信する場合について説明する。f1、f2、及びf3は、それぞれが異なる値とする。つまり、f1信号、f2信号、及びf3信号は、それぞれが異なる周波数の信号とする。
 制御装置30は、反射板20にf1信号が入射した場合に、反射板20を透過するf1信号の位相回転量がR1となるように反射板20に配置された複数のアンテナ素子22を制御する。つまり、制御装置30は、反射板20に対してR1の方向にf1信号をビームフォーミングさせる。f1信号がビームフォーミングされる方向が定まると、反射板20に入射するf2信号及びf3信号がビームフォーミングされる方向も定まる。
 反射板20を透過したf1信号は、副反射板41へ入射する。反射板20を透過したf2信号は、副反射板42へ入射する。反射板20を透過したf3信号は、副反射板43へ入射する。つまり、副反射板41は、f1信号の進行方向上に配置され、副反射板42は、f2信号の進行方向上に配置され、副反射板43は、f3信号の進行方向上に配置される。
 また、f1信号、f2信号、及びf3信号のうち副反射板41にはf1信号のみが入射し、副反射板42にはf2信号のみが入射し、副反射板43にはf3信号のみが入射する位置に、副反射板41、副反射板42、及び副反射板43が配置される。つまり、副反射板41、副反射板42、及び副反射板43は、反射板20から距離L離れた位置において、それぞれが重ならない位置に配置される。例えば、副反射板41、副反射板42、及び副反射板43は1辺が15cmの正方形もしくは長辺が15cmの矩形であるとする。この場合、副反射板41、副反射板42、及び副反射板43は、反射板20から距離L離れた位置において、それぞれの中心点間の距離が15cm以上の位置に配置される必要がある。副反射板41、副反射板42、及び副反射板43を同一平面上に並べた場合、反射板20から、副反射板41、副反射板42、及び副反射板43のそれぞれまでの距離は異なるが、ここでは、反射板20からそれぞれの副反射板までの距離を距離Lとみなす。また、反射板20からそれぞれの副反射板までの距離は、反射板20から、それぞれの副反射板の中心までの距離とする。
 例えば、反射板20におけるf1信号の位相回転量R1が60[deg]の場合、反射板20におけるf2信号の位相回転量R2は、62.143[deg]と算出される。この時、副反射板41及び副反射板42の中心点間の距離dと、距離Lとは、d=L×ΔRを満たす。ΔRは、ΔR=(R2-R1)×π/180とあらわされる。d=0.15[m]、R2=62.143[deg]、R1=60[deg]とすると、L=4[m]となる。つまり、f1信号の位相回転量R1=60[deg]となるように制御された場合、1辺が15cmの正方形もしくは矩形の副反射板41及び副反射板42は、反射板20から4[m]離れた位置に配置される必要がある。
 さらに、f1信号、f2信号、及びf3信号のそれぞれの指向性が明確に示されるように、それぞれの副反射板は、反射板20を透過したf1信号、f2信号、及びf3信号が遠方界となる領域に配置される必要がある。遠方界は、アンテナ素子22を透過したそれぞれの信号の合成波がビームを形成している距離である。一方、反射板20とそれぞれの副反射板との距離が近すぎる場合、それぞれの信号の振幅の山が十分に重なり合わず、ビームが形成されない。遠方界となる距離は、反射板20のサイズDが無視できるほど小さい場合、2πλとなり、波長λに比例して遠方界になる距離は長くなる。一方、反射板20のサイズDが無視できない場合、遠方界になる距離は、2×D/λとなり、反射板20のサイズDは固定されているため、波長が長くなるほど遠方界になる距離は短くなる。反射板20のサイズDが無視できない場合とは、反射板20のサイズDが、波長以上のサイズとなる場合である。
 制御装置30は、副反射板41に配置された複数のアンテナ素子を電気的に制御して、副反射板41を透過するf1信号の位相を制御する。制御装置30は、f1信号の位相を制御することによって、f1信号を任意の方向へビームフォーミングさせる。さらに、制御装置30は、副反射板42に配置された複数のアンテナ素子を電気的に制御して、副反射板42を透過するf2信号の位相を制御する。さらに、制御装置30は、副反射板43に配置された複数のアンテナ素子を電気的に制御して、副反射板43を透過するf3信号の位相を制御する。
 以上説明したように、制御装置30は、反射板20に加えて、副反射板41、副反射板42、及び副反射板43を電気的に制御して、それぞれの副反射板に入射した信号の位相を制御する。制御装置30は、異なる周波数を有する複数の信号が入射される反射板20における位相制御を行う場合、例えば、f1信号を特定の方向へビームフォーミングさせるように制御する。この時、f2信号及びf3信号のビームフォーミングの方向は、f1信号のビームフォーミングが決定されることにより自動的に決定される。そのため、制御装置30が、異なる周波数を有する複数の信号が入射される反射板20における位相制御を行うだけでは、複数の信号のビームフォーミングの方向を任意の方向に設定することはできない。
 一方、実施の形態2においては、反射板20から離れた位置に、f1信号が入射する副反射板41、f2信号が入射する副反射板42、及びf3信号が入射する副反射板43を配置する。制御装置30は、副反射板41、副反射板42、及び副反射板43を独立に制御することによって、f1信号、f2信号、及びf3信号を任意の方向にビームフォーミングすることができる。また、反射板20を制御する制御装置は、副反射板41~43を制御する制御装置と異なる装置であってもよい。さらに、副反射板41~43は、同じ制御装置によって制御されてもよく、それぞれが異なる制御装置によって制御されてもよい。他の実施の形態においても同様に、制御装置30が、反射板及び副反射板を制御してもよく、反射板を制御する制御装置と、副反射板を制御する制御装置とは異なってもよい。さらに、反射板が複数存在する場合、それぞれの反射板は、反射板毎に異なる制御装置によって制御されてもよい。また、副反射板が複数存在する場合も、それぞれの副反射板は、副反射板毎に異なる制御装置によって制御されてもよい。
 また、実施の形態2においては、反射板20、副反射板41~43が、透過型の反射板であることを示しているが、反射型の反射板を用いて電波制御システムが構成されてもよい。
 また、図5の電波制御システムは、1つの基地局を構成してもよい。この場合、距離Lの長さによって、地面に水平の方向に反射板20と副反射板41~43とを設置することができない場合、反射板20と副反射板41~43とを、地面と鉛直方向に設置してもよい。
 (実施の形態3)
 続いて、図6を用いて実施の形態3にかかる電波制御システムの構成例について説明する。図6は、図5の電波制御システムに、副反射板51、副反射板52、及び副反射板53が追加されている。副反射板51、副反射板52、及び副反射板53は、反射板20と同様に、アンテナ素子が周期的に配置されている。制御装置30は、反射板20、副反射板41、副反射板42、副反射板43、副反射板51、副反射板52、及び副反射板53に接続され、それぞれの装置に配置されたアンテナ素子を電気的に制御する。
 図5においては、反射板20を透過するf1信号がビームフォーミングする方向が定められ、それと共にf2信号及びf3信号がビームフォーミングする方向も定められ、その後は、それぞれの信号のビームフォーミングは固定される。
 一方、図6においては、制御装置30が、反射板20に配置されたアンテナ素子を電気的に制御して、反射板20を透過するf1信号がビームフォーミングする方向を変化させる。図6においては、ビームフォーミングする方向が変化したf1信号を、f1’信号とあらわしている。また、f1信号がビームフォーミングする方向を変化させることによって、f2信号及びf3信号がビームフォーミングする方向も変化する。ビームフォーミング方向が変化したf2信号及びf3信号を、f2’信号及びf3’信号とあらわしている。
 f1’信号は、副反射板51に入射し、f2’信号は、副反射板52に入射し、f3’信号は、副反射板53に入射する。また、f1’信号、f2’信号、及びf3’信号のうち副反射板51にはf1’信号のみが入射し、副反射板52にはf2’信号のみが入射し、副反射板53にはf3’信号のみが入射する位置に、副反射板51、副反射板52、及び副反射板53が配置される。反射板20と副反射板51~53との間の距離の関係は、反射板20と、副反射板41~43との間の距離の関係と同様である。副反射板51、副反射板52、及び副反射板53が配置される場所は、副反射板41、副反射板42、及び副反射板43の配置場所が決定された手順と同様に決定される。
 以上説明したように、図6の電波制御システムは、反射板20を透過する信号がビームフォーミングする方向を変化させる。これにより、反射板20を透過する信号がビームフォーミングする方向が固定である場合と比較して、広範囲に信号をビームフォーミングさせることができる。
 (実施の形態4)
 続いて、図7を用いて実施の形態4にかかる電波制御システムの構成例について説明する。図7の電波制御システムは、図6の電波制御システムに、反射板61、副反射板71、副反射板72、及び副反射板73が追加されている。反射板61、副反射板71、副反射板72、及び副反射板73は、反射板20と同様に、アンテナ素子が周期的に配置されている。制御装置30は、図6に示される反射板及び副反射板に加えて、反射板61、副反射板71、副反射板72、及び副反射板73に接続され、それぞれの装置に配置されたアンテナ素子を電気的に制御する。
 図7においては、制御装置30が、反射板20に配置されたアンテナ素子を電気的に制御して、反射板20を透過するf1信号を、副反射板41~43、副反射板51~53に加えて、反射板61へビームフォーミングさせることが示されている。反射板61の方向へビームフォーミングするf1信号、f2信号、及びf3信号を、f1’’信号、f2’’信号、及びf3’’信号とする。f1’’信号、f2’’信号、及びf3’’信号は、反射板61へ入射する。つまり、f1’’信号、f2’’信号、及びf3’’信号は、それぞれが異なる反射板へ入射するのではなく、一つの反射板へ入射する。そのため、反射板20と反射板61との間の距離は、反射板20と副反射板41~43との間の距離と比較して十分に短い距離であってもよい。例えば、反射板20と反射板61との間の距離は、反射板61におけるf1’’信号、f2’’信号、及びf3’’信号の間の間隔が、反射板61の一辺に収まる程度となる距離であってもよい。言い換えると、f1’’信号の位相回転量R1、f2’’信号の位相回転量R2、f3’’信号の位相回転量R3の差異を大きくするために、反射板20を透過するf1信号、f2信号、及びf3信号の屈折角度を大きく調整する必要はない。また、反射板20が反射型である場合、反射板20を反射するf1信号、f2信号、及びf3信号の反射角度を大きく調整する必要はない。
 反射板61は、入射したf1’’信号、f2’’信号、及びf3’’信号を反射する。例えば、制御装置30は、入射したf1’’信号を、特定の方向へ反射させるように反射板61に配置されたアンテナ素子を電気的に制御してもよい。特定の方向とは、例えば、位相回転量がR11となる方向であってもよい。この時、f2’’信号及びf3’’信号の反射方向は、f2’’信号及びf3’’信号の周波数に応じて定まる。つまり、制御装置30が、f1’’信号の反射方向を調整するための位相制御を行うことによって、f2’’信号及びf3’’信号の反射方向も定まる。
 反射板61を反射したf1’’信号は、副反射板71へ入射する。反射板61を反射したf2’’信号は、副反射板72へ入射する。反射板61を透過したf3’’信号は、副反射板73へ入射する。つまり、副反射板71は、f1’’信号の進行方向上に配置され、副反射板72は、f2’’信号の進行方向上に配置され、副反射板73は、f3’’信号の進行方向上に配置される。
 また、f1’’信号、f2’’信号、及びf3’’信号のうち副反射板71にはf1’’信号のみが入射し、副反射板72にはf2’’信号のみが入射し、副反射板73にはf3’’信号のみが入射する位置に、副反射板71、副反射板72、及び副反射板73が配置される。反射板61と副反射板71~73との間の距離の関係は、反射板20と、副反射板41~43との間の距離の関係と同様である。副反射板71、副反射板72、及び副反射板73が配置される場所は、副反射板41、副反射板42、及び副反射板43の配置場所が決定された手順と同様に決定される。
 以上説明したように、図7の電波制御システムは、反射板61を用いることによって、反射板20の周囲に信号を送信することができる。これにより、送信装置10と通信することができる通信エリアをさらに拡大することができる。
 図8は、上述の実施の形態において説明した制御装置30及び送信装置10(以下、制御装置30等とする)の構成例を示すブロック図である。図8を参照すると、制御装置30等は、ネットワークインタフェース1201、プロセッサ1202、及びメモリ1203を含む。ネットワークインタフェース1201は、ネットワークノードと通信するために使用されてもよい。ネットワークインタフェース1201は、例えば、IEEE 802.3 seriesに準拠したネットワークインタフェースカード(NIC)を含んでもよい。IEEEは、Institute of Electrical and Electronics Engineersを表す。
 プロセッサ1202は、メモリ1203からソフトウェア(コンピュータプログラム)を読み出して実行することで、上述の実施形態においてフローチャートを用いて説明された制御装置20等の処理を行う。プロセッサ1202は、例えば、マイクロプロセッサ、MPU、又はCPUであってもよい。プロセッサ1202は、複数のプロセッサを含んでもよい。
 メモリ1203は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。メモリ1203は、プロセッサ1202から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1202は、図示されていないI/O(Input/Output)インタフェースを介してメモリ1203にアクセスしてもよい。
 図8の例では、メモリ1203は、ソフトウェアモジュール群を格納するために使用される。プロセッサ1202は、これらのソフトウェアモジュール群をメモリ1203から読み出して実行することで、上述の実施形態において説明された制御装置30等の処理を行うことができる。
 図8を用いて説明したように、上述の実施形態における制御装置30等が有するプロセッサの各々は、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行する。
 上述の例において、プログラムは、コンピュータに読み込まれた場合に、実施形態で説明された1又はそれ以上の機能をコンピュータに行わせるための命令群(又はソフトウェアコード)を含む。プログラムは、非一時的なコンピュータ可読媒体又は実体のある記憶媒体に格納されてもよい。限定ではなく例として、コンピュータ可読媒体又は実体のある記憶媒体は、random-access memory(RAM)、read-only memory(ROM)、フラッシュメモリ、solid-state drive(SSD)又はその他のメモリ技術、CD-ROM、digital versatile disc(DVD)、Blu-ray(登録商標)ディスク又はその他の光ディスクストレージ、磁気カセット、磁気テープ、磁気ディスクストレージ又はその他の磁気ストレージデバイスを含む。プログラムは、一時的なコンピュータ可読媒体又は通信媒体上で送信されてもよい。限定ではなく例として、一時的なコンピュータ可読媒体又は通信媒体は、電気的、光学的、音響的、またはその他の形式の伝搬信号を含む。
 なお、本開示における技術的思想は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 第1の周波数の第1の信号及び第2の周波数の第2の信号を送信する送信手段と、
 周期的に配置されたアンテナ素子において前記第1の信号及び前記第2の信号を反射もしくは透過して前記第1の信号及び前記第2の信号を、それぞれ異なる方向へビームフォーミングする反射板と、
 前記アンテナ素子を電気的に制御して前記第1の信号及び前記第2の信号の位相を制御することによって前記第1の信号及び前記第2の信号をビームフォーミングさせる方向を制御する制御手段と、を備える電波制御システム。
 (付記2)
 周期的に配置されたアンテナ素子を有する第1の副反射板と、
 周期的に配置されたアンテナ素子を有する第2の副反射板と、をさらに備え、
 前記制御手段は、
 前記反射板を介して送信された前記第1の信号を特定方向へビームフォーミングさせるように前記第1の副反射板のアンテナ素子を電気的に制御し、前記反射板を介して送信された前記第2の信号を、前記第1の副反射板においてビームフォーミングされる前記第1の信号とは異なる方向へビームフォーミングさせるように前記第2の副反射板のアンテナ素子を電気的に制御する、付記1に記載の電波制御システム。
 (付記3)
 前記第1の副反射板は、前記第2の副反射板と重ならない位置であって、前記第1の信号及び前記第2の信号のうち、前記第1の信号が入射可能な位置に配置され、
 前記第2の副反射板は、前記第1の副反射板と重ならない位置であって、前記第1の信号及び前記第2の信号のうち、前記第2の信号が入射可能な位置に配置される、付記2に記載の電波制御システム。
 (付記4)
 周期的に配置されたアンテナ素子を有する第3の副反射板と、
 周期的に配置されたアンテナ素子を有する第4の副反射板と、をさらに備え、
 前記制御手段は、
 前記反射板を介して送信された前記第1の信号を特定方向へビームフォーミングさせるように前記第3の副反射板のアンテナ素子を電気的に制御し、前記反射板を介して送信された前記第2の信号を、前記第3の副反射板においてビームフォーミングされる前記第1の信号とは異なる方向へビームフォーミングさせるように前記第4の副反射板のアンテナ素子を電気的に制御する、付記2又は3に記載の電波制御システム。
 (付記5)
 前記制御手段は、
 第1のタイミングにおいて前記第1の信号を前記第1の副反射板が配置された方向へビームフォーミングさせ前記第2の信号を前記第2の副反射板が配置された方向へビームフォーミングさせ、
 前記第2のタイミングにおいて前記第1の信号を前記第3の副反射板が配置された方向へビームフォーミングさせ前記第2の信号を前記第4の副反射板が配置された方向へビームフォーミングさせる、付記4に記載の電波制御システム。
 (付記6)
 前記第3の副反射板は、前記第4の副反射板と重ならない位置であって、前記第1の信号及び前記第2の信号のうち、前記第1の信号が入射可能な位置に配置され、
 前記第4の副反射板は、前記第3の副反射板と重ならない位置であって、前記第1の信号及び前記第2の信号のうち、前記第2の信号が入射可能な位置に配置される、付記4又は5に記載の電波制御システム。
 (付記7)
 周期的に配置されたアンテナ素子を有する第5の副反射板と、
 周期的に配置されたアンテナ素子を有する第6の副反射板と、
 周期的に配置されたアンテナ素子を有し、前記反射板において反射もしくは透過された前記第1の信号及び前記第2の信号が入射可能な位置に配置された第2の反射板をさらに備え、
 前記制御手段は、
 前記第2の反射板を介して送信された前記第1の信号を前記第5の副反射板が配置された方向へビームフォーミングさせ、前記第2の反射板を介して送信された前記第2の信号を前記第6の副反射板が配置された方向へビームフォーミングさせる、付記2から6のいずれか1項に記載の電波制御システム。
 (付記8)
 前記第1の信号及び前記第2の信号を増幅する増幅手段をさらに備える、付記1乃至7のいずれか1項に記載の電波制御システム。
 (付記9)
 信号の周波数と位相調整量とを管理する管理手段と、
 送信装置から反射板へ送信された第1の周波数第1の信号の位相調整量を前記管理手段から抽出し、前記反射板において反射もしくは透過される前記第1の信号の位相を前記位相調整量に基づいて制御することによって、前記第1の信号及び第2の周波数の第2の信号をビームフォーミングさせる方向を制御する制御手段と、を備える制御装置。
 (付記10)
 前記制御手段は、
 前記第1の信号を、周期的に配置されたアンテナ素子を有する第1の副反射板へビームフォーミングさせるように前記第1の信号の位相を制御し、前記第2の信号を周期的に配置されたアンテナ素子を有する第2の副反射板へビームフォーミングさせるように前記第2の信号の位相を制御する、付記9に記載の制御装置。
 (付記11)
 送信装置から反射板へ送信された、第1の周波数の第1の信号及び第2の周波数の第2の信号の位相を決定し、
 決定された前記第1の信号及び前記第2の信号の位相となるように、周期的に配置されたアンテナ素子を電気的に制御して、前記第1の信号を特定の方向へビームフォーミングさせ、前記第2の信号を前記第1の信号と異なる方向へビームフォーミングさせる、制御装置において実行される電波制御方法。
 (付記12)
 送信装置から反射板へ送信された、第1の周波数の第1の信号及び第2の周波数の第2の信号の位相を決定し、
 決定された前記第1の信号及び前記第2の信号の位相となるように、周期的に配置されたアンテナ素子を電気的に制御して、前記第1の信号を特定の方向へビームフォーミングさせ、前記第2の信号を前記第1の信号と異なる方向へビームフォーミングさせる、ことをコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体。
 10 送信装置
 12 信号生成部
 14 パワーアンプ
 16 アンテナ
 20 反射板
 22 アンテナ素子
 30 制御装置
 32 管理部
 34 位相制御部
 41 副反射板
 42 副反射板
 43 副反射板
 51 副反射板
 52 副反射板
 53 副反射板
 61 反射板
 71 副反射板
 72 副反射板
 73 副反射板

Claims (12)

  1.  第1の周波数の第1の信号及び第2の周波数の第2の信号を送信する送信手段と、
     周期的に配置されたアンテナ素子において前記第1の信号及び前記第2の信号を反射もしくは透過して前記第1の信号及び前記第2の信号を、それぞれ異なる方向へビームフォーミングする反射板と、
     前記アンテナ素子を電気的に制御して前記第1の信号及び前記第2の信号の位相を制御することによって前記第1の信号及び前記第2の信号をビームフォーミングさせる方向を制御する制御手段と、を備える電波制御システム。
  2.  周期的に配置されたアンテナ素子を有する第1の副反射板と、
     周期的に配置されたアンテナ素子を有する第2の副反射板と、をさらに備え、
     前記制御手段は、
     前記反射板を介して送信された前記第1の信号を特定方向へビームフォーミングさせるように前記第1の副反射板のアンテナ素子を電気的に制御し、前記反射板を介して送信された前記第2の信号を、前記第1の副反射板においてビームフォーミングされる前記第1の信号とは異なる方向へビームフォーミングさせるように前記第2の副反射板のアンテナ素子を電気的に制御する、請求項1に記載の電波制御システム。
  3.  前記第1の副反射板は、前記第2の副反射板と重ならない位置であって、前記第1の信号及び前記第2の信号のうち、前記第1の信号が入射可能な位置に配置され、
     前記第2の副反射板は、前記第1の副反射板と重ならない位置であって、前記第1の信号及び前記第2の信号のうち、前記第2の信号が入射可能な位置に配置される、請求項2に記載の電波制御システム。
  4.  周期的に配置されたアンテナ素子を有する第3の副反射板と、
     周期的に配置されたアンテナ素子を有する第4の副反射板と、をさらに備え、
     前記制御手段は、
     前記反射板を介して送信された前記第1の信号を特定方向へビームフォーミングさせるように前記第3の副反射板のアンテナ素子を電気的に制御し、前記反射板を介して送信された前記第2の信号を、前記第3の副反射板においてビームフォーミングされる前記第1の信号とは異なる方向へビームフォーミングさせるように前記第4の副反射板のアンテナ素子を電気的に制御する、請求項2又は3に記載の電波制御システム。
  5.  前記制御手段は、
     第1のタイミングにおいて前記第1の信号を前記第1の副反射板が配置された方向へビームフォーミングさせ前記第2の信号を前記第2の副反射板が配置された方向へビームフォーミングさせ、
     第2のタイミングにおいて前記第1の信号を前記第3の副反射板が配置された方向へビームフォーミングさせ前記第2の信号を前記第4の副反射板が配置された方向へビームフォーミングさせる、請求項4に記載の電波制御システム。
  6.  前記第3の副反射板は、前記第4の副反射板と重ならない位置であって、前記第1の信号及び前記第2の信号のうち、前記第1の信号が入射可能な位置に配置され、
     前記第4の副反射板は、前記第3の副反射板と重ならない位置であって、前記第1の信号及び前記第2の信号のうち、前記第2の信号が入射可能な位置に配置される、請求項4又は5に記載の電波制御システム。
  7.  周期的に配置されたアンテナ素子を有する第5の副反射板と、
     周期的に配置されたアンテナ素子を有する第6の副反射板と、
     周期的に配置されたアンテナ素子を有し、前記反射板において反射もしくは透過された前記第1の信号及び前記第2の信号が入射可能な位置に配置された第2の反射板をさらに備え、
     前記制御手段は、
     前記第2の反射板を介して送信された前記第1の信号を前記第5の副反射板が配置された方向へビームフォーミングさせ、前記第2の反射板を介して送信された前記第2の信号を前記第6の副反射板が配置された方向へビームフォーミングさせる、請求項2から6のいずれか1項に記載の電波制御システム。
  8.  前記第1の信号及び前記第2の信号を増幅する増幅手段をさらに備える、請求項1乃至7のいずれか1項に記載の電波制御システム。
  9.  信号の周波数と位相調整量とを管理する管理手段と、
     送信装置から反射板へ送信された第1の周波数の第1の信号の位相調整量を前記管理手段から抽出し、前記反射板において反射もしくは透過される前記第1の信号の位相を前記位相調整量に基づいて制御することによって、前記第1の信号及び第2の周波数の第2の信号をビームフォーミングさせる方向を制御する制御手段と、を備える制御装置。
  10.  前記制御手段は、
     前記第1の信号を、周期的に配置されたアンテナ素子を有する第1の副反射板へビームフォーミングさせるように前記第1の信号の位相を制御し、前記第2の信号を周期的に配置されたアンテナ素子を有する第2の副反射板へビームフォーミングさせるように前記第2の信号の位相を制御する、請求項9に記載の制御装置。
  11.  送信装置から反射板へ送信された、第1の周波数の第1の信号及び第2の周波数の第2の信号の位相を決定し、
     決定された前記第1の信号及び前記第2の信号の位相となるように、周期的に配置されたアンテナ素子を電気的に制御して、前記第1の信号を特定の方向へビームフォーミングさせ、前記第2の信号を前記第1の信号と異なる方向へビームフォーミングさせる、制御装置において実行される電波制御方法。
  12.  送信装置から反射板へ送信された、第1の周波数の第1の信号及び第2の周波数の第2の信号の位相を決定し、
     決定された前記第1の信号及び前記第2の信号の位相となるように、周期的に配置されたアンテナ素子を電気的に制御して、前記第1の信号を特定の方向へビームフォーミングさせ、前記第2の信号を前記第1の信号と異なる方向へビームフォーミングさせる、ことをコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体。
PCT/JP2022/013171 2022-03-22 2022-03-22 電波制御システム、制御装置、電波制御方法、及び非一時的なコンピュータ可読媒体 WO2023181120A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024508848A JPWO2023181120A5 (ja) 2022-03-22 電波制御システム、制御装置、電波制御方法、及びプログラム
PCT/JP2022/013171 WO2023181120A1 (ja) 2022-03-22 2022-03-22 電波制御システム、制御装置、電波制御方法、及び非一時的なコンピュータ可読媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/013171 WO2023181120A1 (ja) 2022-03-22 2022-03-22 電波制御システム、制御装置、電波制御方法、及び非一時的なコンピュータ可読媒体

Publications (1)

Publication Number Publication Date
WO2023181120A1 true WO2023181120A1 (ja) 2023-09-28

Family

ID=88100350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013171 WO2023181120A1 (ja) 2022-03-22 2022-03-22 電波制御システム、制御装置、電波制御方法、及び非一時的なコンピュータ可読媒体

Country Status (1)

Country Link
WO (1) WO2023181120A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139063A (ja) * 2014-01-21 2015-07-30 日本電業工作株式会社 アンテナ
US20210013953A1 (en) * 2019-07-12 2021-01-14 Qualcomm Incorporated Wideband and multi-band architectures for multi-user transmission with lens antennas
US20210036753A1 (en) * 2019-08-01 2021-02-04 Samsung Electronics Co., Ltd. Method and apparatus for transmitting or receiving signals in wireless communication system
US20210058137A1 (en) * 2019-08-19 2021-02-25 Metawave Corporation Method and apparatus for wireless infrastructure
US20210167512A1 (en) * 2019-11-29 2021-06-03 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving signal in a wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139063A (ja) * 2014-01-21 2015-07-30 日本電業工作株式会社 アンテナ
US20210013953A1 (en) * 2019-07-12 2021-01-14 Qualcomm Incorporated Wideband and multi-band architectures for multi-user transmission with lens antennas
US20210036753A1 (en) * 2019-08-01 2021-02-04 Samsung Electronics Co., Ltd. Method and apparatus for transmitting or receiving signals in wireless communication system
US20210058137A1 (en) * 2019-08-19 2021-02-25 Metawave Corporation Method and apparatus for wireless infrastructure
US20210167512A1 (en) * 2019-11-29 2021-06-03 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving signal in a wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GU, LIZHENG ET AL.: "A Dual-Band Steerable Dual-Beam Metasurface Antenna Based on Common Feeding Network", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 69, no. 10, 5 April 2021 (2021-04-05), pages 6340 - 6350, XP011881996, Retrieved from the Internet <URL:https://ieeexplore.ieee.org/document/9395360> DOI: 10.1109/ TAP.2021.3069482 *
LUO JIE; HAN LIPING; ZHAO ZHEN; ZHANG WENMEI: "A Dual-frequency Dual-beam Antenna Based on Metasurface", 2021 14TH UK-EUROPE-CHINA WORKSHOP ON MILLIMETRE-WAVES AND TERAHERTZ TECHNOLOGIES (UCMMT), IEEE, 13 September 2021 (2021-09-13), pages 1 - 3, XP034004540, DOI: 10.1109/UCMMT53364.2021.9569937 *

Also Published As

Publication number Publication date
JPWO2023181120A1 (ja) 2023-09-28

Similar Documents

Publication Publication Date Title
RU2610460C2 (ru) Система связи прямой видимости свч-диапазона с несколькими входами и выходами для применения в помещении
US9397740B2 (en) Modular antenna array with RF and baseband beamforming
JP2017508402A (ja) 輻射ベクトルの仮想回転を用いたコンパクトなアンテナアレイ
CN109302851B (zh) 一种反射阵天线及通信设备
KR101563309B1 (ko) 액티브 위상 배열 안테나를 이용한 통신 시스템 및 방법
US11258182B2 (en) Meta-structure based reflectarrays for enhanced wireless applications
KR20150027306A (ko) 스위칭된 기생 엘리먼트들을 갖는 조향 가능한 빔 안테나들을 사용하는 빔 조향을 위한 방법 및 장치
US11664881B2 (en) Method and apparatus for wireless infrastructure
JP2010530652A (ja) フェーズ・アレイ・アンテナを使用する無線エリア・ネットワーク対応システムおよび方法
US20180123239A1 (en) Phased Array System and Beam Scanning Method
US9787382B2 (en) Joint beamforming in point-to-point wireless communication networks
CN107154817A (zh) 紧凑型无源中继器
US9728862B2 (en) Method and apparatus for beamforming
US20240275074A1 (en) Active redirection devices for wireless applications
JP2011176512A (ja) アクティブフェーズドアレイアンテナ装置
WO2023181120A1 (ja) 電波制御システム、制御装置、電波制御方法、及び非一時的なコンピュータ可読媒体
US10574358B2 (en) High-frequency signal transmission/reception device
Pan et al. PMSat: Optimizing Passive Metasurface for Low Earth Orbit Satellite Communication
JP5958737B2 (ja) 電波伝搬環境制御用構造体
JP2013214862A (ja) アンテナ装置
CN108352619B (zh) 一种反射面天线及天线对准方法
CN103166691B (zh) 一种智能天线及其激励方法
WO2023181118A1 (ja) 電波制御システム、制御装置、電波制御方法、及び非一時的なコンピュータ可読媒体
WO2024067130A1 (zh) 网络部署方法、网络调节装置及存储介质
JP6836475B2 (ja) 無線通信システム、無線通信方法及び無線通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024508848

Country of ref document: JP

Kind code of ref document: A