WO2023180947A1 - Processo de produção de celulose microfibrilada a partir de pasta kraft de alto rendimento, celulose microfibrilada obtida a partir do processo e pasta kraft e produtos papeleiros que compreendem a referida celulose microfibrilada - Google Patents

Processo de produção de celulose microfibrilada a partir de pasta kraft de alto rendimento, celulose microfibrilada obtida a partir do processo e pasta kraft e produtos papeleiros que compreendem a referida celulose microfibrilada Download PDF

Info

Publication number
WO2023180947A1
WO2023180947A1 PCT/IB2023/052806 IB2023052806W WO2023180947A1 WO 2023180947 A1 WO2023180947 A1 WO 2023180947A1 IB 2023052806 W IB2023052806 W IB 2023052806W WO 2023180947 A1 WO2023180947 A1 WO 2023180947A1
Authority
WO
WIPO (PCT)
Prior art keywords
microfibrillated cellulose
pulp
paper
kraft pulp
pkar
Prior art date
Application number
PCT/IB2023/052806
Other languages
English (en)
French (fr)
Inventor
Ricardo Jorge ALVES RAMOS RODRIGUES
Bruna Filipa RAMOS DOS SANTOS
Ana Filipa MARTINS LOURENÇO
Original Assignee
Raiz - Instituto De Investigação Da Floresta E Papel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raiz - Instituto De Investigação Da Floresta E Papel filed Critical Raiz - Instituto De Investigação Da Floresta E Papel
Publication of WO2023180947A1 publication Critical patent/WO2023180947A1/pt

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/02Chemical or chemomechanical or chemothermomechanical pulp
    • D21H11/04Kraft or sulfate pulp
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/005Mechanical treatment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/10Packing paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • D21H27/40Multi-ply at least one of the sheets being non-planar, e.g. crêped

Definitions

  • the present invention relates to a process for producing microfibrillated cellulose from high-yield Kraft pulp. Additionally, the invention concerns the microfibrillated cellulose obtained from the process, and Kraft pulp and paper products comprising the microfibrillated cellulose obtained. The invention has application in the paper industry.
  • Microfibrillated celluloses have been the subject of increasing interest for different applications, particularly in the area of pulp and paper production. They can be produced from different raw materials such as, for example, cellulosic fibers from herbs and tubers, among others, and through processes that may involve enzymatic, chemical and mechanical operations, individually or in several stages (Klem et al, Nanocelluloses: A New Family of Nature-Based Materials, Angew. Chem., Int. Ed., 2011, 50, 5438-5466).
  • microfibrillated celluloses are produced from delignified and preferably bleached cellulosic pulp (Osong et al., Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: A review, 2016, 23, 93-123; Klemm et al., Nanocellulose as a natural source for technological applications in materials science: Today's state, Materials Today, 2018, 7, 720-748).
  • the microfibrillated cellulose production processes are carried out from conventional cellulosic raw materials, that is, cellulosic pulps delignified by typical chemical cooking processes, such as Kraft or sulfite. , and/or bleached, thus typically having total lignin contents of less than 5% by weight.
  • typical chemical cooking processes such as Kraft or sulfite.
  • bleached thus typically having total lignin contents of less than 5% by weight.
  • the documents that report the use of microfibrillated cellulose in the production of paper material consider it in accordance with its conventional definition with regard to the raw material, and its properties, which give rise to it.
  • Patent EP3341523B1 discloses a method of producing microfibrillated cellulose that requires fewer passes through refiners and, consequently, lower energy consumption, which involves the refining, with blades of certain dimensions, of a chemical pulp of cellulosic fibers.
  • Patent EP2494107B1 concerns a process for the production of microfibrillated cellulose with the aid of an extruder, in which at least one chemical product (among carboxymethylcellulose, methylcellulose, polyvinyl alcohol, calcium stearate, alcohols, surfactants and surfactants or other hydrophobic chemicals) is added to the extruder during the processing of a mixture of fibers, preferably cellulosic but cotton fibers and fibers from agricultural products, such as potato and of cereals.
  • at least one chemical product among carboxymethylcellulose, methylcellulose, polyvinyl alcohol, calcium stearate, alcohols, surfactants and surfactants or other hydrophobic chemicals
  • Patent application EP2196579A1 describes a method of producing microfibrillated cellulose, with lower associated energy consumption, which involves passing a suspension of a cellulose paste in a solvent (such as water, alcohols, dimethylsulfoxide, glycerol and mixtures thereof). ) through an orifice of a homogenizer so that said suspension is subjected to a pressure drop. Said diameter of said orifice is 100 to 700 pm and said pressure drop has a maximum value of 100 MPa.
  • a solvent such as water, alcohols, dimethylsulfoxide, glycerol and mixtures thereof.
  • Said diameter of said orifice is 100 to 700 pm and said pressure drop has a maximum value of 100 MPa.
  • the cellulose pulps described in the patent application concern conventional pulps and obtained by typical processes of their production, such as bleached, semi-bleached and unbleached pulps, by sulfite and sulfate chemical processes.
  • Patent application WO2014147293A1 discloses a process for producing microfibrillated cellulose that involves, in chemical cooking, a physical/mechanical treatment, such as pressing and shearing, of an impregnated cellulosic fiber source, which treatment is applied during or after impregnation of the fiber or during or after cooking the fiber, in which a change in the cellular structure of the fiber wall is observed, thus decreasing the energy consumption involved in the production of microfibrillated cellulose.
  • the process then continues with the typical cooking steps, for example by Kraft cooking, washing and bleaching, and a additional refining with enzymes or solvent and, finally, grinding the obtained fibril.
  • the invention describes the use of fibers from herbaceous and non-herbaceous plants and combinations thereof.
  • Patent EP2576629B1 describes a method of producing microfibrillated cellulose, said to be more efficient and economical in relation to the prior art, which involves acid hydrolysis at an elevated temperature or acidification followed by washing and hydrolysis at an elevated temperature of one cellulosic material.
  • the lignin content of the starting cellulosic material is less than 5% by weight.
  • chemical pulp from hardwood or resinous wood, bleached or unbleached, such as Kraft pulp, phyto and soda pulp is considered.
  • Patent EP2452014B1 describes a process for producing microfibrillated cellulose, more efficient compared to the prior art, which consists of processing a pulp of cellulosic fibers with an enzyme and mechanical treatment, in which both are carried out simultaneously in a single step.
  • Bleached fibers are used, for example softwood and hardwood, since, as described in the aforementioned patent, the presence of lignin in unbleached pulps leads to greater energy consumption in the production of microfibrillated cellulose.
  • Patent application US20160273165A1 discloses a method for producing a paper product with improved strength and filler and fines retention, which involves the addition of an anionic modified microfibrillated cellulose to a fiber suspension, in a amount of 0.1 to 10% by weight.
  • Patent application EP3433428A4 describes a board with improved compressive strength that involves the use of a cellulosic pulp with drainability values between 15 and 28 (in Schopper-Riegler values) to which between 1 and 5% by weight of microfibrillated cellulose and a hydrophobic additive, such as an alkylketene dimer, succinic anhydrides, rosin and a styrene maleic anhydride, or emulsions, modifications and mixtures thereof.
  • Patent EP2978894B1 describes a process for producing paper and cardboard with strength properties through a mixture of fibers that involves the addition, in a specific sequence, of microfibrillated cellulose, strength additives and microparticles, such as silica and bentonite, to this mixture of fibers.
  • Kraft cooking or southern cooking.
  • This chemical process consists of cooking wood in a cooking liquor usually consisting of sodium hydroxide and sodium sulphide, at temperatures in the order of 140 to 180 ° C, in pressurized reactors (Ek, Monica; Gellerstedt, G ⁇ ran; Henriksson, Gunnar; Pulp and Paper Chemistry and Technology Volume 2, Pulping Chemistry and Technology, 2009, De Gruyter, Berlin).
  • This chemical cooking process typically ends with a total lignin content of less than 5% by weight. It is necessary to prolong the Kraft cooking process to values below 5%, so that the pulp can be processed, either for direct paper production or for subsequent bleaching.
  • the Kraft cooking process is one of the processes typically used for production of the raw material used in the prior art microfibrillated cellulose production processes.
  • the low lignin content in the starting cellulosic pulps for the production of cellulose fibrils is necessary and, as such, a condition for the application of methods of production of these cellulose fibrils which entail lower expenditure of mechanical and chemical energy, as demonstrated by Chaker and co-authors who, when evaluating the suitability of cellulosic pulps for fibrillation, chose an initial pulp with a lignin content of less than 20% in weight and to which they also apply an additional bleaching step after cooking, in order to further reduce the lignin content to values substantially below 5%, typically below 1%, in order to reduce the influence of the presence of lignin on fibrillation of cellulose pulp (Chaker et al., Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps, Cellulose, 2013, 20, 2863 - 2875).
  • microfibrillated cellulose from cellulosic materials conventionally used for the production of microfibrillated cellulose, understood as cellulosic pulps delignified by typical chemical cooking processes, such as Kraft or sulfite, and/or additionally bleached, include modifications, to increase their efficiency and to reduce associated costs, which involves the use of, for example, organic solvents, chemical treatments, such as hydrolysis, and fibrillation developed for this purpose, in several stages or together.
  • Cellulosic pulps with a lignin content substantially lower than 5% are also used as raw material, for this purpose applying, for example, bleaching treatments to the starting cellulosic pulps.
  • microfibrillated cellulose production process that exempts its input raw material from the application of different complex chemical and/or mechanical treatments aimed at reducing the lignin content of said raw material to lower values. at 5% by weight, and which also dispenses with such treatments during its conversion into microfibrillated cellulose.
  • a microfibrillated cellulose production process that provides lower energy consumption, therefore lower associated costs, and that results in the production of microfibrillated cellulose that allows its application in the production of paper materials with resistance properties. increased, compared to microfibrillated celluloses produced by state-of-the-art production processes that use conventional cellulosic raw materials, that is, with lignin contents lower than 5%.
  • the present invention relates to a microfibrillated cellulose production process characterized by comprising the following steps: a) selection of a high-yield Kraft pulp with a total lignin content of 5% to 30% by weight; b) mechanical defibrillation of the pulp selected in step a) until obtaining a microfibrillated cellulose suspension with a minimum fines content of 15% by weight.
  • the process further comprises and before step b) an enzymatic hydrolysis of the paste selected in step a).
  • step a) hardwood, resinous wood pulp or mixtures thereof are selected.
  • the paste selected in step a) is eucalyptus paste.
  • the present invention further relates to microfibrillated cellulose obtained by the described process.
  • microfibrillated cellulose has a minimum fines content of 15% by weight.
  • the present invention further relates to Kraft pulp comprising the described microfibrillated cellulose.
  • the present invention further relates to a paper product comprising the described microfibrillated cellulose.
  • the paper product is a corrugated cardboard paper (containerboard), a kraftliner paper, a testliner paper, a paper for corrugated or fluting cardboard, a paper for sacks (sack kraft), a paper for bags of shopping bags, flexible packaging paper, tissue paper or printing and writing paper.
  • Fig. 1 shows the microscopic observation of microfibrillated cellulose produced from (a) high-yield Kraft pulp (used in the present invention) and (b) bleached kraft pulp (used in the prior art) and a (c) prior art commercial microfibrillated cellulose.
  • the bar indicates the 100 pm scale.
  • Fig. 2 shows the percentage of fines (based on the total sample, weighted in length, measured on a L&W Fiber Tester 912 equipment) of microfibrillated celluloses produced with different refining energies, from high-yield pulp (squares) and the from unbleached paste (diamonds) or bleached paste (circles).
  • the fines value for a commercial microfibrillated cellulose is shown in the solid line.
  • microfibrillated cellulose also referred to in this description as CMF, for simplification purposes
  • a high-yield Kraft pulp that is, within the scope of the present invention, a Kraft pulp with a content of total lignin from 5% to 30% in weight, as described below, which, surprisingly, simultaneously allows the production of microfibrillated cellulose with lower energy consumption in comparison, for example, from conventional Kraft pulp (which is associated with a low lignin content , that is, within the scope of the present invention, a total lignin content of less than 5% by weight, and in which the microfibrillated cellulose obtained presents a papermaking capacity that provides increased mechanical resistance properties to the paper products that incorporate it, in comparison with conventional solutions using microfibrillated celluloses produced through conventional cellulosic pulps, that is, delignified by typical chemical cooking processes, such as Kraft or sulfite, and/or additionally bleached.
  • a Kraft cooking process refers to Kraft cooking or sulfate cooking. This is a chemical process well known in the art that consists of cooking wood in a cooking liquor usually consisting of sodium hydroxide and sodium sulfide, at temperatures in the order of 140 to 180 ° C, in pressurized reactors.
  • a conventional Kraft process is understood here as a typical chemical cooking that gives a pulp yield of about 45-55%.
  • Kraft pulp refers to the pulp obtained by Kraft cooking.
  • unbleached Kraft pulp refers to a pulp produced by the conventional Kraft process, typically with a total lignin content of less than 5% by weight.
  • bleached Kraft pulp refers to a pulp produced using the conventional Kraft process and which is further subjected to a bleaching step, with a total lignin content typically less than 1% by weight.
  • the purpose of the bleaching step is to continue delignification by the action of oxidizing agents, such as oxygen, chlorine dioxide and hydrogen peroxide.
  • high-yield Kraft pulp refers to a Kraft pulp, produced through a chemical Kraft cooking process with a yield greater than 60%, and the pulp thus produced has a total lignin content of 5% to 30% by weight. Therefore, when reference is made in the present description to "high yield Kraft pulp", simplified reference is intended to a Kraft pulp comprising a total lignin content of 5% to 30% by weight.
  • the cooking yield is calculated by the following formula: pulp mass/wood mass x 100
  • total lignin content by weight is the sum of the contents of insoluble lignin (determined according to the Tappi 222 om-02 standard) and soluble lignin (determined according to the Tappi um 250 standard modified with the addition of borohydride to spectrophotometric measurement - Pinto P., Influence of the chemical structure of wood components on their performance in cellulosic pulp production processes. Comparative study between Eucalyptus gl obul us and other hardwoods , PhD Thesis University of Aveiro ,
  • microfibrillated cellulose refers to cellulose fibers composed of at least one elementary fiber that contain crystalline, paracrystalline and amorphous regions, with aspect ratio ( length/diameter) greater than 10, which may contain longitudinal fibrils, intertwining between particles or network-type structures, being produced by mechanical wood and/or chemical treatments such as, for example, enzymatic treatments.
  • microfibrillated celluloses produced exclusively by mechanical treatments as “mechanical microfibrillated celluloses” and when produced through a combination of these with enzymatic treatments as "enzymatic microfibrillated celluloses", since, being Chemically constituted by the same elements as the original pulp, the intrinsic characteristics of the microfibrillated celluloses produced depend directly on the process used for their production, making it impossible to characterize them through their constituents due to their heterogeneous nature. This is also expected for other production methods and depending on the raw materials involved.
  • the percentage of fines refers to the percentage of fibrils with a length less than or equal to 0.2 mm, measured on a L&W Fiber Tester 901 equipment, relative to the average length of the entire sample.
  • mechanical defibration technology it is possible to achieve 100% fines, combining modern machinery and adequate energy and time consumption.
  • the level of fines to be achieved may be higher or lower.
  • microfibrillated cellulose from high-yield kraft pulp refers to microfibrillated cellulose produced from high-yield kraft pulp.
  • microfibrillated cellulose from unbleached kraft pulp refers to microfibrillated cellulose produced from unbleached kraft pulp.
  • microfibrillated cellulose from bleached Kraft pulp refers to a microfibrillated cellulose produced from bleached Kraft pulp.
  • microfibrillated cellulose refers to samples that can be purchased on the market with the characteristic of being produced from fully deligfied wood pulp, after conventional Kraft cooking (total lignin content in the cellulosic fiber of the pulp produced less than 5% by weight), followed by a bleaching process to obtain the pulp that was finally used in the production of microfibrillated cellulose by a mechanical process with an enzymatic pre-treatment.
  • retention agent refers to an additive added in the formation of paper in order to retain fines and mineral fillers, such as, but not limited to, a linear cationic polyacrylamide.
  • corrugated paper corresponds to the paper commonly used for making cards (corrugated boards).
  • the top and bottom layer of a corrugated board is called linerboard. It is normally a two-layer product, a top layer and a base layer. Virgin fiber and recycled fiber are used in the production of this type of board. paper. In the first option, when the fiber used is predominantly virgin fiber produced chemically by the Kraft method, the product is called kraftliner. When predominantly recycled fibers are used, the product is referred to as testliner. The fluting between two liners is called paper for corrugated cardboard (fl uting, or corrugated medium).
  • tissue paper corresponds to papers used for hygienic and sanitary purposes, whether in a domestic environment or in public places.
  • microfibrillated cellulose from a high-yield Kraft pulp, the latter comprising, by definition, a high lignin content, that is, within the scope of the present invention, a total lignin content of 5 % to 30% by weight.
  • the process of the invention simultaneously allows the production of microfibrillated cellulose with a lower energy consumption compared to prior art processes that use conventional Kraft pulps (with a total lignin content of less than 5% by weight) and in which the microfibrillated cellulose obtained has a papermaking capacity that provides mechanical resistance properties added to paper products that incorporate it, compared to conventional solutions using microfibrillated cellulose produced through conventional cellulosic pulps (i.e., deligfied by typical chemical cooking processes, such as Kraft or sulfite, and/or bleached).
  • the process of the present invention makes it possible to produce microfibrillated cellulose, with the advantages mentioned above, from Kraft pulps with a high total lignin content (from 5% to 30% by weight), contrary to the practice established in the prior art that discourages the use of such pulps with a high total lignin content, also commonly referred to as high-yield Kraft pulps.
  • the process described here consists of the selection of a high-yield Kraft pulp followed by its mechanical defibrillation until obtaining a microfibrillated cellulose suspension.
  • the process may also include, and before the mechanical defibrication step, an enzymatic hydrolysis of the selected pulp. Examples
  • CMF PKAR Process for preparing microfibrillated cellulose from high-yield eucalyptus Kraft pulp
  • the second phase was carried out with the refining parameters: rotation speed 700 rpm, edge length 39.48 km/s, power 5.922 kW, SEL 0.10 Wm/s and specific energy 250 kWh/ton. Refining was carried out until a minimum fines content of 15% by weight was reached (length-weighted average, based on the total sample and determined on a L&W Fiber Tester 912 equipment).
  • Figure 1 shows the microscopic analysis of the microfibrillated cellulose suspensions obtained. It was possible to verify the fibrillation obtained after mechanical treatment and the heterogeneity of sizes within the same sample. In this sense, the samples were analyzed on a L&W Fiber Tester 912 equipment to determine particle sizes. Table 1 presents the length-weighted average of fiber lengths and diameters, as well as the degree of polymerization, calculated using the Mark Houwink equation (parameters and equation defined in Henrikson et al., Cellulose Nanopaper Structures of High Toughness, Biomacromolecules 2008, 9, 1579-1585) with the intrinsic viscosity values determined in samples dissolved in cupriethylenediamine solutions, according to ISO 5351: 2010.
  • Figure 2 represents the percentage of fines (based on the total sample, weighted in length, measured on a L&W Fiber Tester 912 equipment) of microfibrillated cellulose produced with different refining energies.
  • High yield eucalyptus Kraft pulp with a total lignin content of 10% by weight, was disintegrated and refined in a similar manner to that described in Example 1. A higher percentage of fines was obtained for the same refining energy with this high yield Kraft pulp compared to a bleached Kraft pulp obtained by the conventional Kraft process.
  • CMF PKAR After the production of CMF PKAR, its papermaking capacity was assessed, according to the following examples.
  • the CMF PKAR produced was added to a high yield Kraft pulp (PKAR) with a total lignin content of 7 wt%.
  • PKAR high yield Kraft pulp
  • this lignin content of the high-yield Kraft pulp to which CMF PKAR is added is not linked to the corresponding content of the PKAR pulp used for the production of CMF PKAR.
  • Any PKAR pulp with a total lignin content of 5% to 30% by weight can be used.
  • Example 6 Comparison of the papermaking capacity of microfibrillated cellulose obtained from high-yield eucalyptus Kraft pulp (CMF PKAR) incorporated into high-yield eucalyptus Kraft pulp (PKAR) in relation to the papermaking capacity of microfibrillated cellulose obtained from pulp Bleached eucalyptus kraft (CMF PKEB) incorporated into bleached eucalyptus kraft pulp (PKEB)
  • CMF PKAR high-yield eucalyptus Kraft pulp
  • PKEB bleached eucalyptus kraft pulp
  • PKEB Bleached Eucalyptus Kraft Pulp
  • Isotropic laboratory sheets were prepared on a benchtop sheet former. To this end, the folders were previously refined. The CMF suspension was added to the refined paste suspension, in a beaker, and subjected to magnetic stirring for 120 s, after which time the mixture was poured into the sheet former, following the ISO 5269-1 standard for sheet formation. . o Results
  • Tables 2 and 3 show the comparative results of the relative increases in mechanical resistance properties in relation to the references of sheets produced from PKEB paste without CMF PKEB and sheets produced from PKAR paste without addition of CMF PKAR.
  • Mechanical properties were measured according to the corresponding standards: burst index (ISO 2758:2015), tear index (ISO 1974:2012), tensile index (ISO 1924-2:2008), Scott-Bond (TAPPI 403) .
  • Table 2. Increases in resistance properties (%) obtained in sheets with incorporation of 5% CMF, relative to references (without CMF).
  • Example 7 Comparison of the papermaking capacity of microfibrillated cellulose obtained from high-yield eucalyptus Kraft pulp (CMF PKAR) or commercial microfibrillated cellulose (commercial CMF) (white) incorporated into high-yield eucalyptus Kraft pulp (PKAR )
  • 135 g/ m2 (OD) sheets were prepared from high yield eucalyptus Kraft pulp at a consistency of 0.64% (volume/wt) mixed with CMF PKAR at a consistency of 0.5% (wt/wt). Weight ) .
  • Table 4 presents the results for the mechanical resistance properties of 150 g/m 2 sheets from PKAR pastes with different proportions of CMF PKAR and of 150 g/m 2 sheets from PKAR paste without addition of CMF PKAR . Additionally, a comparison with the same results obtained with the addition of white commercial CMF to PKAR paste is also presented. Table 4. Increases in resistance properties (%) relative to the reference (PKAR without CMF PKAR).
  • Example 8 Comparison of the papermaking capacity of microfibrillated cellulose obtained from high-yield eucalyptus Kraft pulp (CMF PKAR) incorporated into high-yield eucalyptus Kraft pulp (PKAR) with and without retention agent 135 g/m sheets were prepared. m 2 (OD) from PKAR paste and at a consistency of 0.64% (volume/wt) mixed with CMF PKAR at a consistency of 0.5% (wt/wt). An additional series was produced with the addition of a retention agent according to the compositions shown in Table 5. The sheet formation procedure was the same as in the previous examples.
  • CMF PKAR high-yield eucalyptus Kraft pulp
  • PKAR high-yield eucalyptus Kraft pulp
  • compositions used in preparing the sheets 135 g/m 2 .
  • Table 6 shows the comparative results for the mechanical resistance properties of 150 g/m 2 sheets from pulps consisting of PKAR pulp with different proportions of CMF PKAR and of 150 g/m 2 sheets from PKAR pulp without addition of CMF PKAR. Two series are presented namely in the absence and presence of a retention agent (linear cationic polyacrylamide).
  • Example 9 Comparison of the papermaking capacity of microfibrillated cellulose obtained from high-yield eucalyptus Kraft pulp (CMF PKAR) incorporated into high-yield eucalyptus Kraft pulp (PKAR) with and without cationic starch.
  • CMF PKAR high-yield eucalyptus Kraft pulp
  • PKAR high-yield eucalyptus Kraft pulp
  • 135 g/ m2 (OD) sheets were prepared from PKAR paste, with incorporated cationic starch and at a consistency of 0.64% (volume/wt) mixed with CMF PKAR at a consistency of 0.5% (wt/wt). weight) and with a retention agent according to the compositions shown in Table 6.
  • Sheets 135 g/m (OD) o Results Structural properties and mechanical strength properties of 150 g/m 2 ( 135 gop/m 2 ) sheets
  • Table 8 shows the comparative results for the mechanical strength properties of 150 g/m 2 sheets from PKAR pulps with different proportions of CMF PKAR and of 150 g/m 2 sheets from PKAR pulp without added CMF PKAR, with and without starch and with and without retention agent.
  • Table 8 Increases in resistance properties (%) relative to the reference (PKAR without CMF), in the presence and absence of pasta starch and also in the presence of the retention agent.
  • paper additives commonly used in the production of paper material, such as cationic starch and retention agents maintains the competitive advantage of using CMF PKAR to reinforce mechanical properties.
  • Example 10 Comparison of the papermaking capacity of microfibrillated cellulose obtained from high-yield eucalyptus Kraft pulp (CMF PKAR), with 35 or 41% fines, added to high-yield eucalyptus Kraft pulp (PKAR) 135 sheets were prepared g/m 2 (OD) from PKAR paste, with incorporated cationic starch and at a consistency of 0.64% (volume/weight) mixed with CMF PKAR produced with a fines content of 35 or 41%, with a consistency of 0.5% (w/w) in the presence and absence of a retention agent.
  • CMF PKAR high-yield eucalyptus Kraft pulp
  • PKAR high-yield eucalyptus Kraft pulp
  • the CMF PKAR with higher fines content had a more pronounced effect on resistance, for example with a 50% increase in the burst index when compared to the reference without CMF PKAR.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)

Abstract

A presente invenção diz respeito a um processo de produção de uma celulose microfibrilada a partir de uma pasta de alto rendimento, que compreende os passos de selecção de uma pasta Kraft com um teor de lenhina total de 5 % a 30 % em peso e da sua des fibração até à obtenção de uma suspensão de celulose microf ibrilada com um teor mínimo de finos de 15 % em peso. Outros aspetos da presente invenção correspondem à celulose microfibrilada obtida a partir do processo e a pasta Kraft e produtos papeleiros que a compreendem. O processo descrito permite a produção de celulose microfibrilada com um menor consumo de energia e a celulose microfibrilada apresenta aptidão papeleira acrescida, resultando em produtos papeleiros com propriedades de resistência mecânica acrescidas.

Description

DESCRIÇÃO
TÍTULO DA INVENÇÃO
PROCESSO DE PRODUÇÃO DE CELULOSE MICROFIBRILADA A PARTIR DE PASTA KRAFT DE ALTO RENDIMENTO, CELULOSE MICROFIBRILADA OBTIDA A PARTIR DO PROCESSO E PASTA KRAFT E PRODUTOS PAPELEIROS QUE COMPREENDEM A REFERIDA CELULOSE MICROFIBRILADA
DOMÍNIO TÉCNICO
A presente invenção diz respeito a um processo de produção de celulose microf ibrilada a partir de pasta Kraft de alto rendimento . Adicionalmente a invenção di z respeito à celulose microf ibrilada obtida a partir do processo , e a pasta Kraft e a produtos papeleiros que compreendem a celulose microf ibrilada obtida . A invenção tem aplicação na área da indústria papeleira .
TÉCNICA ANTERIOR
Celuloses microf ibriladas têm vindo a ser alvo de cada vez maior interesse para diferentes aplicações , nomeadamente na área da produção de pasta e de papel . Podem ser produzidas a partir de di ferentes matérias-primas como , por exemplo , fibras celulósicas de herbáceas e tubérculos , entre outros , e através de processos que podem envolver operações enzimáticas , químicas e mecânicas , individualmente ou em várias etapas (Klem et al , Nanocelluloses : A New Family of Nature-Based Materials , Angew . Chem . , Int . Ed . , 2011 , 50 , 5438 - 5466 ) . Convencionalmente, as celuloses microf ibriladas são produzidas a partir de pasta celulósica deslenhif içada e preferencialmente branqueada (Osong et al . , Processing of wood-based microf ibrillated cellulose and nanof ibrillated cellulose, and applications relating to papermaking: A review, 2016, 23, 93-123; Klemm et al., Nanocellulose as a natural source for groundbreaking applications in materials science: Today's state, Materials Today, 2018, 7, 720-748) .
De facto, e como mostrado nos documentos de seguida mencionados, os processos de produção de celulose microf ibrilada são realizados a partir das convencionais matérias-primas celulósicas, isto é, pastas celulósicas deslenhif içadas pelos tipicos processos químicos de cozimento, como Kraft ou ao sulfito, e/ou branqueadas, possuindo assim tipicamente teores de lenhina total inferiores a 5% em peso. Da mesma forma, os documentos que relatam o uso de celulose microf ibrilada na produção de material papeleiro consideram-na de acordo com a sua definição convencional no que diz respeito à matéria-prima, e suas propriedades, que lhe dão origem.
A patente EP3341523B1 divulga um método de produção de celulose microf ibrilada que requer um menor número de passagens por refinadores e, consequentemente um menor consumo de energia, que envolve a refinação, com lâminas de determinadas dimensões, de uma pasta quimica de fibras celulósicas .
A patente EP2494107B1 diz respeito a um processo para a produção de celulose microf ibrilada com o auxilio de uma extrusora, em que pelo menos um produto quimico (de entre carboximetilcelulose, metilcelulose, álcool polivinilico, estearato de cálcio , álcoois , surfactantes e tensoativos ou outros produtos químicos hidro fóbicos ) é adicionado à extrusora durante o processamento de uma mistura de fibras , de preferência celulósicas mas podendo também ser incluídas fibras de algodão e fibras de produtos agrícolas , como de batata e de cereais .
0 pedido de patente EP2196579A1 descreve um método de produção de celulose microf ibrilada, com um menor consumo de energia associado , que envolve a passagem de uma suspensão de uma pasta de celulose num solvente ( como água, álcoois , dimetilssul fóxido , glicerol e suas misturas ) através de um ori fício de um homogenei zador de modo a que a referida suspensão sej a submetida a uma queda de pressão . 0 referido diâmetro do referido ori fício é de 100 a 700 pm e a referida queda de pressão tem um valor máximo de 100 MPa . As pastas de celulose descritas no pedido de patente di zem respeito às pastas convencionais e obtidas pelos processos tipicos de sua produção , como pastas branqueadas , semi-branqueadas e não branqueadas , pelos processos químicos ao sul fito e ao sul fato .
O pedido de patente WO2014147293A1 divulga um processo de produção de celulose microf ibrilada que envolve , no cozimento quimico , um tratamento f isico/mecânico , como prensagem e cisalhamento , de uma fonte de fibra celulósica impregnada, tratamento este que é aplicado durante ou após a impregnação da fibra ou durante ou após o cozimento da fibra, em que uma mudança na estrutura celular da parede da fibra é observada, diminuindo assim o consumo de energia envolvido na produção de celulose microf ibrilada . O processo continua depois com os passos tipicos de cozimento , por exemplo por cozimento Kraft , lavagem e branqueamento , e uma refinação adicional com enzimas ou solvente e , finalmente , a moagem da fibrila obtida . A invenção descreve o uso de fibras a partir de herbáceas e de não-herbáceas e suas combinações .
A patente EP2576629B1 descreve um método de produção de celulose microf ibrilada, dito como mais ef iciente e económico em relação à técnica anterior, que envolve uma hidrólise ácida a uma temperatura elevada ou uma acidi ficação seguida por lavagem e hidrólise a uma temperatura elevada de um material celulósico . 0 teor de lenhina do material celulósico de partida é inferior a 5% em peso . Como material celulósico é cons iderado pasta quimica de madeiras folhosas ou resinosas , branqueada ou não branqueada, como pasta Kraft , ao sul fito e à soda .
A patente EP2452014B1 descreve um processo de produção de celulose microf ibrilada, mais eficiente em relação à técnica anterior, que consiste no proces samento de uma pasta de fibras celulósicas com uma enzima e num tratamento mecânico, em que ambos são reali zados simultaneamente numa única etapa . São utili zadas fibras branqueadas , por exemplo de resinosas e de folhosas , uma vez que , como descrito na patente mencionada, a presença de lenhina em pastas não branqueadas leva a um maior consumo de energia na produção da celulose microf ibrilada .
0 pedido de patente US20160273165A1 divulga um método para a produção de um produto de papel com uma melhoria da resistência e da retenção de cargas e de finos , que envolve a adição de uma celulose microf ibrilada modi ficada aniónicamente a uma suspensão de f ibras , numa quantidade de 0 , 1 a 10 % em peso . O pedido de patente EP3433428A4 descreve um cartão com uma resistência à compressão melhorada que envolve o uso de uma pasta celulósica com valores de drenabilidade entre 15 e 28 ( em valores de Schopper-Riegler ) à qual é adicionada entre 1 a 5 % em peso de celulose microf ibrilada e um aditivo hidrofóbico , como um dimero de alquilceteno , anidridos succinicos , colofónias e um anidrido estireno maleico , ou emulsões , modi ficações e misturas dos mesmos .
A patente EP2978894B1 descreve um processo para a produção de papel e de cartão com propriedades de resistência através de uma mistura de fibras que envolve a adição , numa sequência especi fica, de celulose microf ibrilada, de aditivos de resistência e de microparticulas , como silica e bentonite , a essa mistura de fibras .
Um dos processos químicos mais usados industrialmente para a produção de pastas celulósicas a partir de madeiras é o cozimento Kraft , ou cozimento ao sul fato . Este processo quimico consiste no cozimento da madeira num licor de cozimento habitualmente constituído por hidróxido de sódio e sul fureto de sódio , a temperaturas da ordem dos 140 a 180 ° C, em reatores pressuri zados (Ek, Monica ; Gellerstedt , Gõran; Henriksson, Gunnar ; Pulp and Paper Chemistry and Technology Volume 2 , Pulping Chemistry and Technology, 2009 , De Gruyter, Berlim) . Este processo de cozimento quimico termina, tipicamente , com um teor de lenhina total inferior a 5% em peso . É necessário prolongar o processo de cozimento Kraft até valores inferiores a 5% , por forma a ser possível o processamento da pasta, sej a para produção direta de papel , sej a para posterior branqueamento . O processo de cozimento Kraft é um dos processos tipicamente utili zados para produção da matéria-prima usada nos processos de produção de celulose microf ibrilada do estado da técnica .
0 baixo conteúdo em lenhina nas pastas celulósicas de partida para a produção de fibrilas de celulose , obtido através da deslenhi f icação da madeira por processos químicos e através de etapas adicionais de branqueamento , é necessário e , como tal , condicionante para a aplicação de métodos de produção destas fibrilas de celulose que acarretam menores gastos de energia mecânica e quimica, como demonstrado por Chaker e co-autores que , ao avaliarem a adequabilidade de pastas celulósicas para fibrilação , escolheram uma pasta inicial com um conteúdo em lenhina inferior a 20 % em peso e à qual aplicam ainda um passo adicional de branqueamento após o seu cozimento , de modo reduzir adicionalmente o teor de lenhina a valores substancialmente inferiores a 5 % , tipicamente inferiores a 1 % , de modo a diminuir a influência da presença de lenhina na fibrilação da pasta celulósica ( Chaker et al . , Key role of the hemicellulose content and the cell morphology on the nanofibri llation ef fectiveness of cellulose pulps , Cellulose , 2013 , 20 , 2863 - 2875 ) .
Assim, o estado da arte mostra que os métodos de produção de celulose microf ibrilada, a partir dos materiais celulósicos convencionalmente usados para a produção de celulose microf ibrilada, entendidos como pastas celulósicas deslenhi f içadas pelos tipicos processos químicos de cozimento , como Kraft ou ao sul fito , e/ou adicionalmente branqueadas , incluem modi ficações , para um aumento da sua eficiência e para uma diminuição dos custos associados , que envolve o uso de , por exemplo , solventes orgânicos , tratamentos quimicos , como por hidrólise , e de equipamentos de fibrilação desenvolvidos para esse fim, em várias etapas ou em conj unto . São também utili zadas como matéria-prima, pastas celulósicas de teor de lenhina substancialmente inferior a 5 % , aplicando , para isso , por exemplo , tratamentos de branqueamento às pastas celulósicas de partida .
Existe assim a necessidade de um processo de produção de celulose microf ibrilada que isente a sua matéria-prima de entrada da aplicação de di ferentes tratamentos químicos e/ou mecânicos complexos que visam uma redução dos teores de lenhina da referida matéria-prima a valores inferiores a 5% em peso , e que dispense igualmente tais tratamentos durante a sua conversão em celulose microf ibrilada . Existe ainda a necessidade de um processo de produção de celulose microf ibrilada que proporcione um menor consumo de energia, logo menores custos associados , e que resulte na produção de uma celulose microf ibrilada que permita a sua aplicação na produção de materiais papeleiros com propriedades de resistência acrescidas , face às celuloses microf ibriladas produzidas pelos processos de produção do estado da técnica que recorrem a matérias-primas celulósicas convencionais , isto é com teores de lenhina inferiores a 5 % .
SUMÁRIO DA INVENÇÃO
A presente invenção refere-se a um processo de produção de celulose microf ibrilada caracteri zado por compreender os seguintes passos : a ) selecção de uma pasta Kraft de alto rendimento com um teor de lenhina total de 5 % a 30 % em peso ; b ) des fibração mecânica da pasta selecionada no passo a ) até à obtenção de uma suspensão de celulose microf ibrilada com um teor minimo de finos de 15 % em peso .
Numa forma preferencial da invenção o processo compreende ainda e antes do passo b ) uma hidrólise enzimática da pasta selecionada no passo a ) .
Numa forma preferencial da invenção é selecionada no passo a ) pasta de madeira folhosa, resinosa ou suas misturas .
Numa forma preferencial da invenção a pasta selecionada no passo a ) é pasta de eucalipto .
A presente invenção refere-se ainda a celulose microf ibrilada obtida pelo processo descrito .
Numa forma preferencial da invenção a celulose microf ibrilada apresenta um teor minimo de finos de 15 % em peso .
A presente invenção refere-se ainda a pasta Kraft que compreende a celulose microf ibrilada descrita .
A presente invenção refere-se ainda a um produto papeleiro que compreende a celulose microf ibrilada descrita . Numa forma preferencial da invenção o produto papeleiro é um papel cartão canelado (containerboard) , um papel kraftliner, um papel testliner, um papel para cartão canelado ou canelura (fluting) , um papel para sacos (sack kraft) , um papel para sacos de compras (shopping bags) , um papel para embalagens flexíveis (flexible packaging) , um papel tissue ou um papel de impressão e escrita.
BREVE DESCRIÇÃO DAS FIGURAS
A Fig. 1 apresenta a observação microscópica de celulose microf ibrilada produzida a partir de (a) pasta Kraft de alto rendimento (utilizada na presente invenção) e de (b) pasta kraft branqueada (utilizada na técnica anterior) e de uma (c) celulose microf ibrilada comercial da técnica anterior.
A barra indica a escala de 100 pm.
A Fig. 2 apresenta a percentagem de finos (baseada na amostra total, ponderada em comprimento, medida num equipamento L&W Fiber Tester 912) de celuloses microf ibriladas produzidas com diferentes energias de refinação, a partir de pasta de alto rendimento (quadrados) e a partir de pasta não branqueada (losangos) ou pasta branqueada (círculos) . O valor de finos para uma celulose microf ibrilada comercial é apresentado na linha a cheio.
DESCRIÇÃO DETALHADA DA INVENÇÃO
É aqui descrito um processo de produção de celulose microf ibrilada (também referida nesta descrição como CMF, para efeitos de simplificação) a partir de uma pasta Kraft de alto rendimento, isto é, no âmbito da presente invenção, uma pasta Kraft com um teor de lenhina total de 5% a 30 % em peso , de acordo com o descrito abaixo que , surpreendentemente , permite simultaneamente a produção de celulose microf ibrilada com um menor consumo de energia por comparação , por exemplo , a partir de uma pasta Kraft convencional ( à qual é associado , um baixo teor de lenhina, isto é , no âmbito da presente invenção , um teor de lenhina total inferior a 5% em peso , e em que a celulose microf ibrilada obtida apresenta uma aptidão papeleira que proporciona propriedades de resistência mecânica acrescidas aos produtos papeleiros que a incorporam, em comparação com as soluções convencionais do uso de celuloses microf ibriladas produzidas através de pastas celulósicas convencionais , isto é , deslenhi f içadas pelos tipicos processos químicos de cozimento , como Kraft ou ao sul fito , e/ou adicionalmente branqueadas .
No âmbito da presente invenção um processo de cozimento Kraft refere-se a cozimento Kraft ou coz imento ao sul fato . Trata- se de um processo quimico bem conhecido na técnica que consiste no cozimento da madeira num licor de cozimento habitualmente constituído por hidróxido de sódio e sul fureto de sódio , a temperaturas da ordem de 140 a 180 ° C, em reatores pressuri zados . Um processo Kraft convencional é aqui entendido como um tipico cozimento quimico que origina um rendimento de produção de pasta de cerca de 45-55% .
No âmbito da presente invenção , pasta Kraft refere-se a pasta obtida pelo cozimento Kraft .
No âmbito da presente invenção pasta Kraft não branqueada di z respeito a uma pasta produzida através do processo Kraft convencional , tipicamente com um teor de lenhina total inferior a 5% em peso . No âmbito da presente invenção pasta Kraft branqueada di z respeito a uma pasta produzida através do processo Kraft convencional e que é ainda suj eita a um passo de branqueamento , com um teor de lenhina total tipicamente inferior a 1 % em peso . O passo de branqueamento tem como finalidade a continuação da deslenhi f icação por ação de agentes oxidantes , como o oxigénio , dióxido de cloro e peroxido de hidrogénio .
No âmbito da presente invenção , pasta Kraft de alto rendimento di z respeito a uma pasta Kraft , produzida através de um processo quimico de cozimento Kraft com rendimento superior a 60% , e apresentando a pasta assim produzida um teor de lenhina total de 5 % a 30 % em peso . Ass im sendo , quando na presente descrição se faz referência a "pasta Kraft de alto rendimento" , pretende fazer-se referência simpli ficada a uma pasta Kraft que compreende um teor de lenhina total de 5 % a 30 % em peso .
No âmbito da presente invenção o rendimento do cozimento é calculado pela seguinte fórmula : massa pasta/massa de madeira x 100
(pesos em base absolutamente seca )
No âmbito da presente invenção , teor de lenhina total em peso é a soma dos teores de lenhina insolúvel ( determinados segundo a norma Tappi 222 om- 02 ) e de lenhina solúvel ( determinado segundo a norma Tappi um 250 modi ficada com adição de borohidreto para a medição espectrof otométrica - Pinto P . , Influência da estrutura quimica dos componentes da madeira no seu desempenho nos processos de produção de pastas celulósicas . Estudo comparativo entre Eucalyptus gl obul us e outras folhosas , Tese Doutoramento Universidade de Aveiro ,
2005 ) .
No âmbito da presente invenção , e de acordo com a norma ISO/TS 20477 , celulose microf ibrilada di z respeito a fibras de celulose compostas por, pelo menos , uma fibra elementar que contêm regiões cristalinas , paracristalinas e amorfas , com razão de aspecto ( comprimento/diâmetro ) superior a 10 , podendo conter fibrilas longitudinais , entrelaçamento entre partículas ou estruturas do tipo rede , sendo produzidas por tratamentos mecânicos de madeira e/ou quimicos como , por exemplo , tratamentos enzimáticos .
É assim comum na área da técnica em causa designar as celuloses microf ibriladas produzidas exclusivamente por tratamentos mecânicos por "celuloses microf ibriladas mecânicas" e quando produzidas através de uma combinação destes com tratamentos enzimáticos por "celuloses microf ibriladas enzimáticas" , uma vez que , sendo constituídas quimicamente pelos mesmos elementos que a pasta de origem, as características intrínsecas das celuloses microf ibriladas produzidas dependem diretamente do processo utili zado para a sua produção , sendo impossível a sua caracteri zação através dos seus constituintes devido à sua natureza heterogénea . Tal é também esperado para outros métodos de produção e consoante as matérias-primas envolvidas .
No âmbito da presente invenção percentagem de finos di z respeito à percentagem de fibrilas com comprimento inferior ou igual a 0 , 2 mm, medidos num equipamento L&W Fiber Tester 901 , relativo ao comprimento médio de toda a mostra total . Com a tecnologia de desfibração mecânica é possivel atingir os 100% de finos , combinando maquinaria moderna e consumos energéticos e de tempo adequados . No entanto , na prática industrial do atual estado da técnica é comum tratar a matéria-prima até atingir um nivel de finos perto de 50% em peso (medição efetuada num L&W Fiber Tester 912 , média ponderada em comprimento ) . Consoante o propósito de utili zação da CMF o nivel de finos a atingir poderá ser mais ou menos elevado .
No âmbito da presente invenção celulose microf ibrilada a partir de pasta Kraft de alto rendimento di z respeito a celulose microf ibrilada produzida a partir de uma pasta kraft de alto rendimento .
No âmbito da presente invenção celulose microf ibrilada a partir de pasta Kraft não branqueada di z respeito a celulose microf ibrilada produzida a partir de uma pasta kraft não branqueada .
No âmbito da presente invenção celulose microf ibrilada a partir de pasta Kraft branqueada di z respeito a uma celulose microf ibrilada produzida através de pasta Kraft branqueada .
No âmbito da presente invenção celulose micro f ibrilada comercial di z respeito a amostras possíveis de aquisição em mercado com a característica de serem produzidas a partir de pasta de madeira totalmente deslenhi f içada, após um cozimento Kraft convencional ( teor de lenhina total na fibra celulósica da pasta produzida inferior a 5% em peso ) , seguido de um processo de branqueamento para a obtenção da pasta que foi finalmente utili zada na produção da celulose microf ibrilada por um processo mecânico com um pré- tratamento enzimático . No âmbito da presente invenção , agente de retenção refere- se a um aditivo adicionado na formação do papel por forma a reter finos e cargas minerais , como por exemplo , mas não limitado a, uma poliacrilamida catiónica linear .
No âmbito da presente invenção um papel canelado ( contai nerboard) corresponde ao papel comummente usado para fazer cartões ( corruga ted boards) .
A camada de topo e de base de um cartão ( corrugated board} é o chamado linerboard. Normalmente trata-se de um produto de duas camadas , uma de topo e outra de base . Fibra virgem e fibra reciclada são usadas na produção deste tipo de papel . Na primeira opção , quando a fibra usada é predominantemente fibra virgem produzida quimicamente pelo método Kraft , o produto é denominado por kraftlíner. Quando são usadas predominantemente fibras recicladas o produto é referido por testlíner . A canelura entre dois liners é o chamado papel para cartão canelado ( fl uting, ou corruga ted médi um) .
No âmbito da presente invenção um papel tissue corresponde aos papéis usados com finalidades higiénicas e sanitárias , quer em ambiente doméstico quer em locais públicos .
É aqui descrito um processo de produção de celulose microf ibrilada a partir de uma pasta Kraft de alto rendimento , compreendendo esta última, por definição , um elevado teor de lenhina, isto é , no âmbito da presente invenção , um teor de lenhina total de 5 % a 30 % em peso .
Surpreendentemente , o processo da invenção permite simultaneamente a produção de celulose microf ibrilada com um menor consumo de energia por comparação com os processos da técnica anterior que recorrem a pastas Kraft convencionais ( com um teor de lenhina total inferior a 5% em peso ) e em que a celulose microf ibrilada obtida apresenta uma aptidão papeleira que proporciona propriedades de resistência mecânica acrescidas aos produtos papeleiros que a incorporam, em comparação com as soluções convencionais do uso de celuloses microf ibriladas produzidas através de pastas celulósicas convencionais ( isto é , deslenhi f içadas pelos tipicos processos químicos de cozimento , como Kraft ou ao sul fito , e/ou branqueadas ) .
De facto , e de modo surpreendente , o processo da presente invenção permite produzir celulose microf ibrilada, com as vantagens acima mencionadas , a partir de pastas Kraft com alto teor de lenhina total ( de 5% a 30% em peso ) , contrariamente à prática estabelecida na técnica anterior que desencoraj a a utilização de tais pastas de alto teor de lenhina total , também designadas habitualmente como pastas Kraft de alto rendimento .
O processo aqui descrito consiste na selecção de uma pasta Kraft de alto rendimento seguida da sua des fibração mecânica até à obtenção de uma suspensão de celulose microf ibrilada . O processo poderá incluir ainda, e antes do passo de des fibração mecânica, uma hidrólise enzimática da pasta selecionada . Exemplos
• Processo de preparação de celulose micro f ibrilada a partir de pasta Kraft de eucalipto de alto rendimento (CMF PKAR)
Exemplo 1
Num refinador cónico, pasta Kraft de eucalipto de alto rendimento, com um teor total de lenhina de 8 %, foi previamente desintegrada e sujeita a refinação, com os parâmetros de refinação: velocidade de rotação 1230 rpm, comprimento da aresta 0,574 km/s, potência 0,918 kW, SEL (carga especifica de energia aplicada pelo bordo das barras) 1, 6 Ws/m e energia especifica 350 kWh/ton. O produto resultante foi ainda refinado em duas fases num refinador de discos. A primeira fase foi efetuada com os parâmetros de refinação: velocidade de rotação 700 rpm, comprimento da aresta 39, 48 km/s, potência 5, 076 kW, SEL 0,15 Wm/ s e energia especifica 200 kWh/ton. A segunda fase foi efetuada com os parâmetros de refinação: velocidade de rotação 700 rpm, comprimento da aresta 39,48 km/s, potência 5,922 kW, SEL 0,10 Wm/ s e energia especifica 250 kWh/ton. A refinação foi conduzida até se atingir um teor minimo de finos de 15 % em peso (média ponderada em comprimento, baseado na amostra total e determinado num equipamento L&W Fiber Tester 912) .
A figura 1 apresenta a análise microscópica das suspensões de celulose microf ibrilada obtidas. Foi possível verificar a fibrilação obtida após tratamento mecânico e a heterogeneidade de tamanhos dentro da mesma amostra. Neste sentido, as amostras foram analisadas num equipamento L&W Fiber Tester 912 para determinação dos tamanhos de partícula. A tabela 1 apresenta a média ponderada em comprimento dos comprimentos e diâmetros das fibras, bem como o grau de polimerização, calculado através da equação de Mark Houwink (parâmetros e equação definidos em Henrikson et ai . , Cellulose Nanopaper Structures of High Toughness , Biomacromolecules 2008 , 9 , 1579- 1585 ) com os valores de viscosidade intrínseca determinados nas amostras dissolvidas em soluções de cuprietilenodiamina, segundo a norma ISO 5351 : 2010 .
Tabela 1 . Caracterização ( dimensões e grau de polimerização ) das celuloses microf ibriladas produzidas a partir de pasta kraft de alto rendimento utilizada na presente invenção e comparação com os valores obtidos em celuloses microf ibriladas produzidas a partir de pasta não branqueada, pasta branqueada e celulose microf ibrilada comercial da técnica anterior .
Figure imgf000019_0001
A figura 2 representa a percentagem de finos (baseada na amostra total , ponderada em comprimento , medida num equipamento L&W Fiber Tester 912 ) de celulose microf ibrilada produzida com di ferentes energias de refinação .
Foi possível veri ficar que , usando a mesma energia de refinação , obteve-se uma maior percentagem de finos com a pasta Kraft de alto rendimento do que com uma pasta Kraft obtida pelo processo Kraft convencional ( com um teor de lenhina total de 2 % ) , e do que com a pasta branqueada ( com um teor de lenhina total inferior a 1 % ) , tipicamente utili zadas na técnica anterior . Assim, demonstrou-se que com a pasta de alto rendimento , foi necessária uma menor quantidade de energia para produzir a mesma quantidade de finos .
Exemplo 2
Pasta Kraft de alto rendimento de eucalipto , com um teor de lenhina total de 5 % em peso , foi suj eita a desintegração e a refinação como descrito no Exemplo 1 . Os resultados obtidos demonstraram também que foi obtida uma maior percentagem de finos , usando a mesma energia de refinação , com esta pasta Kraft de alto rendimento do que com uma pasta Kraft branqueada obtida pelo processo Kraft convencional .
Exemplo 3
Pasta Kraft de alto rendimento de eucalipto , com um teor de lenhina total de 10 % em peso , foi desintegrada e a refinada de forma semelhante ao descrito no Exemplo 1 . Foi obtida uma maior percentagem de finos , para a mesma energia de refinação , com esta pasta Kraft de alto rendimento em comparação com uma pasta Kraft branqueada obtida pelo processo Kraft convencional .
Exemplo 4
Pasta Kraft de alto rendimento de eucalipto e de pinho na proporção 85/ 15 em peso , respetivamente , com um teor de lenhina total de 7 % em peso , foi suj eita a desintegração e a refinação como descrito no Exemplo 1 . Foi também veri ficada uma maior percentagem de finos , usando a mesma energia de refinação , com esta pasta Kraft de alto rendimento em comparação com uma pasta Kraft branqueada obtida pelo processo Kraft convencional . Exemplo 5
Pasta Kraft de alto rendimento de pinho, com um teor de lenhina total de 30 % em peso, foi sujeita a desintegração e a refinação como descrito no Exemplo 1. Foi também obtida uma maior percentagem de finos com esta pasta Kraft de alto rendimento do que com uma pasta Kraft branqueada obtida pelo processo Kraft convencional, em linha com os Exemplos anteriores .
• Aptidão papeleira da celulose microfibrilada a partir de pasta Kraft de alto rendimento
Após a produção de CMF PKAR, foi aferida a sua aptidão papeleira, de acordo com os exemplos seguintes. A CMF PKAR produzida foi adicionada a uma pasta Kraft de alto rendimento (PKAR) com um teor total de lenhina de 7 % em peso. No entanto, este teor de lenhina da pasta Kraft de alto rendimento à qual é adicionada a CMF PKAR não está vinculado ao teor correspondente da pasta PKAR usada para a produção da CMF PKAR. Uma qualquer pasta PKAR com um teor de lenhina total de 5 % a 30 % em peso pode ser usada.
Exemplo 6 - Comparação da aptidão papeleira de celulose microfibrilada obtida a partir de pasta Kraft de eucalipto de alto rendimento (CMF PKAR) incorporada a pasta Kraft de eucalipto de alto rendimento (PKAR) em relação à aptidão papeleira de celulose microfibrilada obtida a partir de pasta Kraft de eucalipto branqueada (CMF PKEB) incorporada a pasta Kraft de eucalipto branqueada (PKEB)
A Pasta Kraft de eucalipto de alto rendimento, a uma consistência de 0, 64 % (volume/peso) , foi misturada com CMF PKAR com uma consistência de 0,5 % (peso/peso) e 35 % de finos, nas proporções de 5 e 10 % em peso.
Pasta Kraft de eucalipto branqueada (PKEB) , com um teor de lenhina total inferior a 1% em peso, a uma consistência de 0, 64 % ( volume/peso ) foi misturada com CMF PKEB com uma consistência de 0,5 % (peso/peso) e 31, 45 ou 54 % de finos, nas proporções de 5 e 10 % em peso.
Folhas laboratoriais isotrópicas foram preparadas num formador de folhas de bancada. Para tal, as pastas foram previamente refinadas. A suspensão de CMF foi adicionada à suspensão de pasta refinada, num copo, e submetida a agitação magnética por 120 s, tempo após o qual se verteu a mistura para o formador de folhas, seguindo a norma ISO 5269-1 para a formação da folha. o Resultados
Propriedades estruturais e propriedades de resistência mecânica de folhas de 150 g/m2 (135 gOver dry (OD) /m2)
As Tabelas 2 e 3 mostram os resultados comparativos dos aumentos relativos das propriedades de resistência mecânica em relação às referências de folhas produzidas a partir de pasta PKEB sem CMF PKEB e folhas produzidas a partir de pasta PKAR sem adição de CMF PKAR. As propriedades mecânicas foram medidas de acordo com as normas correspondentes: indice de rebentamento (ISO 2758:2015) , indice de rasgamento (ISO 1974:2012, indice de tração (ISO 1924-2:2008) , Scott-Bond (TAPPI 403) . Tabela 2 . Acréscimos nas propriedades de resistência ( % ) obtidos em folhas com incorporação de 5 % de CMF, relativos às referências ( sem CMF) .
Figure imgf000023_0001
Tabela 3 . Acréscimos nas propriedades de resistência ( % ) obtidos em folhas com incorporação de 10 % de CMF, relativos às referências ( sem CMF) .
Figure imgf000023_0002
É possível veri ficar um acréscimo dos indices de rebentamento , de rasgamento e de tração para as folhas de pasta PKAR com CMF PKAR em relação à referência ( folhas de pasta PKAR sem CMF) . Este acréscimo também é superior ao acréscimo observado para as folhas de pasta PKEB com CMF PKEB em relação à referência correspondente ( folhas de pasta PKEB sem CMF) . Veri fica-se assim o efeito de obtenção de propriedades de resistência mecânica acrescidas em folhas constituídas por pasta PKAR e CMF PKAR em relação à opção convencional de adição de CMF PKEB a pasta PKEB .
Acréscimo dos indices de rebentamento , de rasgamento e de tração para as folhas de pasta PKAR com CMF PKAR em relação à referência ( folhas de pasta PKAR sem CMF) foram também observados com CMF PKAR com 15 % e 50% de finos em peso .
Exemplo 7 - Comparação da aptidão papeleira de celulose microf ibrilada obtida a partir de pasta Kraft de eucalipto de alto rendimento ( CMF PKAR) ou de celulose microf ibrilada comercial ( CMF comercial ) (branca ) incorporadas a pasta Kraft de eucalipto de alto rendimento ( PKAR)
Foram preparadas folhas 135 g/m2 ( OD) a partir de pasta Kraft de eucalipto de alto rendimento e a uma consistência de 0 , 64 % ( volume/peso ) misturada com CMF PKAR com uma consistência de 0 , 5 % (peso/peso ) .
O procedimento de formação das folhas foi igual ao do exemplo anterior . o Resultados
Propriedades de resistência mecânica de folhas de 150 g/m2 ( 135 gop/m2 )
A tabela 4 apresenta os resultados para as propriedades de resistência mecânica de folhas de 150 g/m2 a partir de pastas PKAR com di ferentes proporções de CMF PKAR e de folhas de 150 g/m2 a partir de pasta PKAR sem adição de CMF PKAR . Adicionalmente é apresentada também a comparação com os mesmos resultados obtidos com a adição de CMF comercial branca a pasta PKAR . Tabela 4 . Acréscimos nas propriedades de resistência ( % ) relativos à referência ( PKAR sem CMF PKAR) .
Figure imgf000025_0001
A incorporação de 5 e 10% em peso de CMF PKAR 35% finos aumenta a resistência mecânica das folhas , como o indice de rebentamento , de rasgamento e indice de tração . Os aumentos observados para a CMF PKAR são sempre superiores aos aumentos correspondentes com a CMF comercial .
Acréscimos da resistência mecânica das folhas , como o indice de rebentamento , de rasgamento e indice de tração foram também observados com CMF PKAR com 15 % e 50% de finos em peso .
Exemplo 8 - Comparação da aptidão papeleira de celulose microf ibrilada obtida a partir de pasta Kraft de eucalipto de alto rendimento ( CMF PKAR) incorporada a pasta Kraft de eucalipto de alto rendimento ( PKAR) com e sem agente de retenção Foram preparadas folhas 135 g/m2 ( OD) a partir de pasta PKAR e a uma consistência de 0 , 64 % ( volume/peso ) misturada com CMF PKAR com uma consistência de 0 , 5 % (peso/peso ) . Uma série adicional foi produzida com a adição de um agente de retenção de acordo com as composições apresentadas na Tabela 5 . 0 procedimento de formação das folhas foi igual aos dos exemplos anteriores .
Tabela 5 . Composições usadas na preparação das folhas 135 g/m2 .
Figure imgf000026_0001
A tabela 6 mostra os resultados comparativos para as propriedades de resistência mecânica de folhas de 150 g/m2 a partir de pastas constituídas por pasta PKAR com di ferentes proporções de CMF PKAR e de folhas de 150 g/m2 a partir de pasta PKAR sem adição de CMF PKAR . Duas séries são apresentadas nomeadamente na ausência e presença de um agente de retenção (poliacrilamida catiónica linear ) .
Tabela 6 . Acréscimos nas propriedades de resistência ( % ) relativos à referência ( PKAR sem CMF PKAR) na presença e ausência de agente de retenção .
Figure imgf000026_0002
Figure imgf000027_0001
A incorporação de 5 e 10% em peso de CMF PKAR 35% finos originou um acréscimo das propriedades de resistência mecânica em relação à referência, tanto na presença como na ausência de um agente de retenção ( resultados sempre positivos na tabela 4 ) . Adicionalmente veri ficou-se que na presença do agente de retenção a aptidão papeleira da CMF PKAR é potenciada ( aumento relativo à referência sem CMF superior ao observado sem agente de retenção ) .
Acréscimos das propriedades de resistência mecânica em relação à referência, tanto na presença como na ausência de um agente de retenção , foram também observados com CMF PKAR com 15 % e 50% de finos em peso .
Exemplo 9 - Comparação da aptidão papeleira de celulose microf ibrilada obtida a partir de pasta Kraft de eucalipto de alto rendimento ( CMF PKAR) incorporada a pasta Kraft de eucalipto de alto rendimento ( PKAR) com e sem amido catiónico .
Foram preparadas folhas 135 g/m2 ( OD) a partir de pasta PKAR, com amido catiónico incorporado e a uma consistência de 0 , 64 % ( volume/peso ) misturada com CMF PKAR com uma consistência de 0 , 5 % (peso/peso ) e com um agente de retenção de acordo com as composições apresentadas na Tabela 6 .
O procedimento de formação das folhas foi semelhante aos dos exemplos anteriores . Tabela 7 . Compos ições usadas na preparação das folhas 135 g/m2 .
2
Folhas 135 g/m ( OD)
Figure imgf000028_0001
o Resultados Propriedades estruturais e propriedades de resistência mecânica de folhas de 150 g/m2 ( 135 gop/m2 )
A Tabela 8 mostra os resultados comparativos para as propriedades de resistência mecânica de folhas de 150 g/m2 a partir de pastas PKAR com di ferentes proporções de CMF PKAR e de folhas de 150 g/m2 a partir de pasta PKAR sem adição de CMF PKAR, com e sem amido e com e sem agente de retenção .
Tabela 8 . Acréscimos nas propriedades de resistência ( % ) relativos à referência ( PKAR sem CMF) , na presença e ausência de amido de massa e ainda na presença do agente de retenção .
Figure imgf000028_0002
A utili zação de aditivos papeleiros comummente usados na produção de material papeleiro , tal como amido catiónico e agentes de retenção , mantem a vantagem competitiva da utili zação de CMF PKAR para reforço das propriedades mecânicas .
A vantagem competitiva da utili zação de CMF PKAR para reforço das propriedades foi também observada com CMF PKAR com 15 % e 50% de finos em peso .
Exemplo 10 - Comparação da aptidão papeleira de celulose microf ibrilada obtida a partir de pasta Kraft de eucalipto de alto rendimento ( CMF PKAR) , com 35 ou 41% finos , adicionada a pasta Kraft de eucalipto de alto rendimento ( PKAR) Foram preparadas folhas 135 g/m2 ( OD) a partir de pasta PKAR, com amido catiónico incorporado e a uma consistência de 0 , 64 % ( volume/peso ) misturada com CMF PKAR produzida com um teor de finos de 35 ou 41 % , com uma consistência de 0 , 5 % (peso/peso ) na presença e ausência de um agente de retenção .
O procedimento de formação das folhas foi de acordo com os dos exemplos anteriores . o Resultados
Propriedades de resistência mecânica de folhas de 150 g/m2 ( 135 gop/m2 )
Foram comparados na Tabela 9 e 10 os acréscimos das propriedades de resistência mecânica de pastas PKAR com incorporação de CMF PKAR com di ferentes niveis de finos em relação às propriedades das folhas constituídas por pasta de alto rendimento sem adição de CMF PKAR . Tabela 9 . Acréscimos nas propriedades de resistência ( % ) relativos à referência ( PKAR sem CMF) , na presença de amido de massa e na ausência do agente de retenção , das propriedades de resistência das folhas com adição de 5 % de CMF HYKEP com 35 ou 41 % de finos .
Figure imgf000030_0002
Tabela 10 . Acréscimos nas propriedades de resistência ( % ) relativos à referência ( PKAR sem CMF) , na presença de amido de massa e na presença do agente de retenção , das propriedades de resistência das folhas com adição de 5 ou 10 % de CMF PKAR com 35 ou 41 % de finos .
Figure imgf000030_0001
Com agente retenção
Figure imgf000030_0003
Como esperado , a CMF PKAR com maior teor de finos teve um efeito mais pronunciado nas resistências , por exemplo com um aumento de 50 % do indice de rebentamento quando comparado com a referência sem CMF PKAR .

Claims

REIVINDICAÇÕES
1. Processo de produção de celulose microf ibrilada, caracterizado por compreender os seguintes passos: a) selecção de uma pasta Kraft com um teor de lenhina total de 5 % a 30 % em peso; b) desfibração mecânica da pasta selecionada no passo a) até à obtenção de uma suspensão de celulose microf ibrilada com um teor minimo de finos de 15 % em peso .
2. Processo de acordo com a reivindicação 1, caracterizado por compreender ainda, entre os passos a) de seleção e b) de desfibração, um passo de hidrólise enzimática da pasta selecionada no passo a) .
3. Processo de acordo com qualquer uma das reivindicações anteriores, caracterizado por no passo a) a pasta ser selecionada do grupo que consiste em pasta de madeira folhosa, resinosa e suas misturas.
4. Processo de acordo com a reivindicação 3, caracterizado por no passo a) a pasta selecionada ser pasta de eucalipto .
5. Celulose microf ibrilada obtida pelo processo reivindicado em qualquer uma das reivindicações de 1 a 4.
6. Celulose microf ibrilada de acordo com a reivindicação 5, caracterizada por compreender um teor minimo de finos de 15 % em peso.
7. Pasta Kraft, caracterizada por compreender a celulose microf ibrilada reivindicada em qualquer uma das reivindicações 5 e 6.
8. Produto papeleiro, caracterizado por compreender a celulose microf ibrilada reivindicada em qualquer uma das reivindicações 5 e 6.
9. Produto papeleiro de acordo com a reivindicação 8, caracterizado por compreender ainda um agente de retenção .
10. Produto papeleiro de acordo com qualquer uma das reivindicações 8 e 9, caracterizado por ser selecionado do grupo consistindo em papel kraftliner, papel testliner, papel para cartão canelado, papel para sacos, papel para sacos de compras, papel para embalagens flexíveis, papel tissue e papel de impressão e escrita.
PCT/IB2023/052806 2022-03-23 2023-03-22 Processo de produção de celulose microfibrilada a partir de pasta kraft de alto rendimento, celulose microfibrilada obtida a partir do processo e pasta kraft e produtos papeleiros que compreendem a referida celulose microfibrilada WO2023180947A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT117870A PT117870A (pt) 2022-03-23 2022-03-23 Processo de produção de celulose microfibrilada a partir de pasta kraft de alto rendimento, celulose microfibrilada obtida a partir do processo e pasta kraft e produtos papeleiros que compreendem a referida celulose microfibrilada
PTPT117870 2022-03-23

Publications (1)

Publication Number Publication Date
WO2023180947A1 true WO2023180947A1 (pt) 2023-09-28

Family

ID=86331693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/052806 WO2023180947A1 (pt) 2022-03-23 2023-03-22 Processo de produção de celulose microfibrilada a partir de pasta kraft de alto rendimento, celulose microfibrilada obtida a partir do processo e pasta kraft e produtos papeleiros que compreendem a referida celulose microfibrilada

Country Status (2)

Country Link
PT (1) PT117870A (pt)
WO (1) WO2023180947A1 (pt)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HERRERA MARTHA ET AL: "Preparation and evaluation of high-lignin content cellulose nanofibrils from eucalyptus pulp", CELLULOSE, SPRINGER NETHERLANDS, NETHERLANDS, vol. 25, no. 5, 9 April 2018 (2018-04-09), pages 3121 - 3133, XP036497570, ISSN: 0969-0239, [retrieved on 20180409], DOI: 10.1007/S10570-018-1764-9 *
TARRÉS QUIM ET AL: "Evaluation of the fibrillation method on lignocellulosic nanofibers production from eucalyptus sawdust: A comparative study between high-pressure homogenization and grinding", INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, ELSEVIER BV, NL, vol. 145, 11 November 2019 (2019-11-11), pages 1199 - 1207, XP086012931, ISSN: 0141-8130, [retrieved on 20191111], DOI: 10.1016/J.IJBIOMAC.2019.10.046 *

Also Published As

Publication number Publication date
PT117870A (pt) 2023-09-25

Similar Documents

Publication Publication Date Title
Solala et al. On the potential of lignin-containing cellulose nanofibrils (LCNFs): a review on properties and applications
JP6622219B2 (ja) ナノフィブリル化セルロースの高効率な製造
Boufi et al. Nanofibrillated cellulose as an additive in papermaking process: A review
KR102669134B1 (ko) 종이, 판재 또는 이와 유사한 것을 제조하는 방법
US9458571B2 (en) Method for producing furnish, furnish and paper
US11214927B2 (en) Method for increasing the strength properties of a paper or board product
US9976256B2 (en) Method for making nanofibrillar cellulose and for making a paper product
TW200842225A (en) Method of producing a paper product
Sheikhi et al. An optimum mixture of virgin bagasse pulp and recycled pulp (OCC) for manufacturing fluting paper
Tarrés et al. Lignocellulosic micro/nanofibers from wood sawdust applied to recycled fibers for the production of paper bags
Brodin et al. Preparation of individualised lignocellulose microfibrils based on thermomechanical pulp and their effect on paper properties
Song et al. TEMPO-mediated oxidation of oat β-D-glucan and its influences on paper properties
González Tovar et al. Suitability of rapeseed chemithermomechanical pulp as raw material in papermaking
Espinosa et al. Recycled fibers for fluting production: The role of lignocellulosic micro/nanofibers of banana leaves
Hanhikoski et al. Fibrillation and characterization of lignin-containing neutral sulphite (NS) pulps rich in hemicelluloses and anionic charge
Imani et al. Coupled effects of fibril width, residual and mechanically liberated lignin on the flow, viscoelasticity, and dewatering of cellulosic nanomaterials
BR112013000544B1 (pt) método de processamento de pasta química
EP3746597A1 (en) High stretch paper and method of producing the same
US20120018110A1 (en) Fiber additive made from non-woody material and method of production and use
Moradbak et al. Effects of Alkaline Sulfite Anthraquinone and Methanol Pulping Conditions on the Mechanical and Optical Paper Properties of Bamboo (Gigantochloa scortechinii).
WO2013050436A1 (en) Paper and board production
WO2023180947A1 (pt) Processo de produção de celulose microfibrilada a partir de pasta kraft de alto rendimento, celulose microfibrilada obtida a partir do processo e pasta kraft e produtos papeleiros que compreendem a referida celulose microfibrilada
Tozluoglu et al. Effects of cellulose micro/nanofibers as paper additives in kraft and kraft-NaBH4pulps
US1824837A (en) Papermaking composition
FI128549B (en) Process for the production of paper, cardboard or the like

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23723251

Country of ref document: EP

Kind code of ref document: A1