WO2023180357A1 - Dispositif de mesure de la concentration atmosphérique en ozone et de la concentration atmosphérique en dioxyde d'azote - Google Patents

Dispositif de mesure de la concentration atmosphérique en ozone et de la concentration atmosphérique en dioxyde d'azote Download PDF

Info

Publication number
WO2023180357A1
WO2023180357A1 PCT/EP2023/057272 EP2023057272W WO2023180357A1 WO 2023180357 A1 WO2023180357 A1 WO 2023180357A1 EP 2023057272 W EP2023057272 W EP 2023057272W WO 2023180357 A1 WO2023180357 A1 WO 2023180357A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
nitrogen dioxide
concentration
atmospheric
atmospheric concentration
Prior art date
Application number
PCT/EP2023/057272
Other languages
English (en)
Inventor
Nathalie REDON
Thomas FAGNIEZ
Original Assignee
Institut Mines Telecom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Mines Telecom filed Critical Institut Mines Telecom
Publication of WO2023180357A1 publication Critical patent/WO2023180357A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0039O3
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0022General constructional details of gas analysers, e.g. portable test equipment using a number of analysing channels
    • G01N33/0024General constructional details of gas analysers, e.g. portable test equipment using a number of analysing channels a chemical reaction taking place or a gas being eliminated in one or more channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0037NOx

Definitions

  • the present invention relates to the field of measurement and detection of atmospheric pollutants, and more specifically ozone and nitrogen oxide.
  • ozone In the lower layers of the atmosphere, ozone is produced under the action of solar radiation (UV) on other pollutants, particularly industrial or automobile pollutants, for example hydrocarbons or nitrogen oxide.
  • UV solar radiation
  • Ozone is an allotropic variety of oxygen that is long-lived and can be transported over long distances. Ozone has a significant health impact, causing inflammation of the ocular mucous membranes, bronchi and bronchioles which can lead to asthma or even excess respiratory mortality when present in too high a concentration. Furthermore, an overconcentration of ozone also causes necrosis on plants and leads to the decline of ecosystems.
  • Nitrogen dioxide mainly results from the combustion of hydrocarbons, particularly from road traffic, industry and thermal power plants. It can cause inflammation of the bronchi and lead to respiratory complications. From an environmental point of view, an overconcentration of nitrogen dioxide induces acidification and eutrophication of wetlands, and particularly fresh water.
  • the Directive sets an exposure limit value of 40 pg/m 3 on average annually and 200 pg/m 3 not to exceed more than 18 hours per year, as well as a threshold of alert of 400 pg/m 3 as an hourly average over a period of 3 consecutive hours.
  • Metal oxide resistive type sensors are known, such as MICS 2714 reference sensor marketed by SGX Sensortech®. They include a sensitive layer whose electrical conductivity changes upon contact with ozone and nitrogen dioxide. They have the advantage of measuring atmospheric concentrations in a wide range from a few ppb (parts per billion) to several ppm (parts per million) and have a rapid response time. They are also compact, inexpensive and have a lifespan of several years. Unfortunately, they are not very selective, that is to say they measure the total atmospheric concentration of ozone and nitrogen oxide without the possibility of distinguishing between the two pollutants during the measurement.
  • UV photometry implemented according to standard EN 14625:2013. UV photometry is based on the absorption of radiation in the ultraviolet spectral range. In this wavelength range, ozone presents a specific absorption band distinct from other gases.
  • Chemiluminescence consists of detecting a light emission resulting from a chemical reaction between nitrogen dioxide and luminol.
  • UV photometry and chemiluminescence require specific devices that are bulky (generally having a length greater than 50 cm), heavy (often weighing more than 10 kg), and expensive.
  • these devices require the addition of external pumps and power supply to the terrestrial electrical network. They can therefore only be implemented in a limited number of fixed air quality monitoring stations. There is therefore a need for a device for measuring the atmospheric concentration of ozone and the atmospheric concentration of nitrogen oxide in the air which is selective, robust and simple to implement.
  • the invention aims to meet at least one of these needs, and it achieves this by means of a device for measuring the atmospheric concentration of ozone and the atmospheric concentration of nitrogen dioxide, the device comprising a module acquisition device comprising first and second identical sensors, of the metal oxide resistive type, and configured to measure a total atmospheric concentration of nitrogen dioxide and ozone, the first sensor being covered with an ozone-tight filter and permeable to nitrogen dioxide.
  • the invention simply makes it possible, by selectively filtering the ozone reaching the first sensor, to overcome the defect of lack of selectivity inherent in metal oxide type sensors, while retaining the advantages of these sensors which have been previously mentioned.
  • the device also makes it possible to measure an atmospheric concentration of nitrogen oxide and an atmospheric concentration of ozone in ranges covering those mentioned in European Directive 2008/50/EC of May 2008.
  • the device comprises a processing module for determining the atmospheric concentration of ozone, by subtracting the atmospheric concentration of nitrogen oxide measured by the first sensor from the total atmospheric concentration of nitrogen oxide and ozone measured by the second sensor.
  • the measurement of each of the atmospheric concentrations of ozone and nitrogen oxide can thus be obtained by a simple subtraction operation.
  • the first and second sensors are spaced from each other by a distance less than 100 cm, preferably less than 20 cm, better still less than 5 cm.
  • a close distance between the sensors ensures that the atmospheric concentrations of ozone and nitrogen oxide measured are representative of the same sample of the atmosphere around the device.
  • the filter comprises an ozone trapping material which may be chosen from potassium iodide, polyphenilene sulfide and mixtures thereof.
  • the ozone trapping material is potassium iodide.
  • the filter comprises a porous fibrous support whose fibers are covered at least partially, preferably entirely, by the ozone-trapping material.
  • the fibrous support can be chosen from paper, a glass fiber veil, a woven and a non-woven.
  • the fibrous support is a paper, preferably non-acidic.
  • the fibrous support may have a weight of between 10 and 30 g/m 2 , in particular between 15 and 20 g/m 2 .
  • the fibrous support can extend over an area less than or equal to 1 cm 2 .
  • the first sensor can be partially or entirely covered by the filter, so as to prevent ozone from accessing the sensitive layer of said sensor.
  • the filter can completely cover the sensitive layer of the first sensor
  • the filter can be separated from the first sensor by a distance less than or equal to 5 mm, preferably less than or equal to 1 mm.
  • the second sensor is preferably entirely not superimposed on the filter.
  • Each sensor can have a length less than or equal to 1 cm.
  • Each sensor can be of the metal oxide resistive type from SnCL, Ta2O5, WO3, 1112O3, ZnO and their mixtures.
  • the mass of the measuring device is less than 50 g and/or the volume of the measuring device is less than 1 cm 3 .
  • the measuring device can thus be easily moved.
  • the device may include a housing, the acquisition module and the processing module being housed in the housing.
  • the box may have a volume of less than 1000 cm 3 .
  • the processing module can be at a distance greater than 10 cm, or even greater than 1 m, from the acquisition module.
  • the processing module can be connected by a wired connection to the acquisition module, particularly when the acquisition module and the processing module are housed in the frame.
  • the processing module can be connected to the acquisition module by means of a wireless connection, for example by WiFi, Bluetooth® or Zigbee.
  • the invention also relates to an object comprising the device according to the invention, the object being chosen from a measuring station for the home, an air monitoring measuring station, an exposure evaluation station individual to ozone and/or nitrogen dioxide, and an element of a motor vehicle.
  • the invention also relates to a method of manufacturing a device according to the invention, the method comprising: i) the preparation of a composition by mixing the ozone-trapping material with a solvent, in particular aqueous, ii) impregnation of the support with the composition, iii) and drying, in particular by heating, of the composition in order to evaporate the solvent.
  • Step i) may involve dissolving the ozone-trapping material in the solvent.
  • the invention also relates to a method for measuring the atmospheric concentration of ozone and the atmospheric concentration of nitrogen dioxide, the method comprising a) the provision of a device according to the invention, b) the joint measurement of the concentration atmospheric nitrogen dioxide concentration by means of the first sensor and the total atmospheric concentration of ozone and nitrogen dioxide by means of the second sensor, and c) determining the atmospheric concentration of ozone by subtracting the atmospheric concentration of nitrogen dioxide measured nitrogen from the total atmospheric concentration of nitrogen dioxide and ozone measured in step b).
  • the invention can be better understood on reading the detailed description and the appended drawing which follows, in which
  • FIG. 1 is a schematic cross-sectional view of an example of a device according to the invention.
  • FIG. 2 is a photograph of an example of a device according to the invention.
  • FIG. 3 are graphs representing the measurement of the atmospheric ozone concentration measured by each of the first and second sensors of the device illustrated in Figure 2 and subjected to a regulated ozone atmosphere, and
  • FIG. 4 are graphs representing the measurement of the atmospheric concentration of nitrogen dioxide measured by each of the first and second sensors of the device illustrated in Figure 2 and subjected to a regulated nitrogen dioxide atmosphere.
  • Figure 1 We have schematically illustrated in Figure 1 an exemplary embodiment of a device 1 according to the invention.
  • the device 1 comprises an acquisition module 5 of the first 10 and second 15 identical sensors, which are carried by a support 20. They are separated from each other, for example by a distance d less than 1 cm.
  • the sensors are of the metal oxide resistive type. They each include a sensitive layer 25 whose electrical resistivity varies on contact with nitrogen dioxide and/or ozone.
  • the sensitive layer of the first sensor is covered by a filter 30, for example made of non-acidic paper whose fibers are covered with potassium iodide. In this way, the ozone is trapped by the potassium iodide and cannot reach the sensitive layer.
  • the first sensor 10 thus only measures the atmospheric concentration of nitrogen oxide.
  • the surface of the second sensor 15 is in direct contact with the atmosphere and can thus measure the total atmospheric concentration of ozone and nitrogen oxide.
  • the atmospheric concentration of ozone can thus simply be determined.
  • the device comprises a processing module 35 connected to the acquisition module and configured to perform this mathematical subtraction operation.
  • Figure 2 is a photograph of a prototype device according to the invention, which represents a first sensor 15 covered by a filter 30.
  • This first sensor like the second sensor, is reference MICS 2714 marketed by SGX Sensortech®. It is coated with a non-acidic paper filter coated with potassium iodide which was manufactured as follows.
  • non-acid paper reference AFT500750 marketed by the company Lightning Packaging® was then immersed in the solution, then dried on a hot plate for 12 hours at a temperature of 50°C in order to evaporate the water from the composition filtering.
  • the fibers of non-acidic paper are coated with a deposit of potassium iodide.
  • the curves in Figure 3 represent the evolution over time of the atmospheric ozone concentration measured by the first and second sensors.
  • the device was introduced into an enclosure whose atmosphere, of controlled composition, is free of nitrogen dioxide and whose atmospheric concentration of ozone has been regulated.
  • the second sensor not covered by the filter measures an evolution of the ozone content as a function of the regulation of the atmospheric concentration of the ozone content, as observed on the dotted curve.
  • the first sensor covered by the filter does not measure any atmospheric ozone concentration, when ozone is injected into the enclosure, which highlights the ozone-tight nature of the filter.
  • the curves in Figure 4 represent the evolution over time of the atmospheric concentration of nitrogen dioxide measured by the first and second sensors.
  • the device was introduced into an enclosure whose atmosphere, of controlled composition, is free of ozone and whose atmospheric concentration of nitrogen dioxide has been regulated.
  • the first and second sensors each measure an atmospheric concentration of nitrogen dioxide, which is lower for the first sensor, which highlights the ozone-permeable nature of the filter.
  • the invention makes it possible in a simple manner to selectively measure the concentrations of ozone and nitrogen oxide by means of sensitive, robust, light and inexpensive sensors.
  • the invention is not limited to the embodiments of the examples presented in the description for illustrative purposes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

Dispositif (1) de mesure de la concentration atmosphérique en ozone et de la concentration atmosphérique en dioxyde d'azote, le dispositif comportant un module d'acquisition (5) comportant des premier (10) et deuxième (15) capteurs identiques, du type résistif à oxyde métallique, et configurés pour mesurer une concentration atmosphérique totale en oxyde d'azote et en ozone, le premier capteur (10) étant recouvert d'un filtre (30) étanche à l'ozone et perméable au dioxyde d'azote.

Description

Description
Titre : Dispositif de mesure de la concentration atmosphérique en ozone et de la concentration atmosphérique en dioxyde d’azote
La présente invention concerne le domaine de la mesure et de la détection de polluants atmosphériques, et plus spécifiquement de l’ozone et de l’oxyde d’azote.
Dans les couches basses de l’atmosphère, l’ozone est produit sous l'action du rayonnement solaire (UV) sur d’autres polluants, notamment industriels ou automobiles, par exemple des hydrocarbures ou de l’oxyde d’azote. L’ozone est une variété allotropique de l’oxygène qui présente une longue durée de vie et peut être transportée sur de longues distances. L’ozone présente un impact sanitaire important, causant des inflammations des muqueuses oculaires, des bronches et des bronchioles qui peuvent entraîner de l’asthme voire une surmortalité respiratoire lorsqu’il est présent en trop forte concentration. Par ailleurs, une surconcentration en ozone provoque aussi des nécroses sur les végétaux en entraîne un dépérissement des écosystèmes.
Le dioxyde d’azote résulte principalement de la combustion d’hydrocarbures, notamment issu du trafic routier, de l’industrie et des centrales thermiques. Il peut provoquer des inflammations des bronches en entraîner des complications respiratoires. D’un point de vue environnemental, une surconcentration en dioxyde d’azote induit une acidification et une eutrophisation des milieux humides, et notamment de l’eau douce.
Afin de limiter les effets néfastes de ces polluants, la Directive européenne 2008/50/CE du mai 2008 régule les concentrations atmosphériques maximales admissibles.
En particulier, pour l’ozone, elle fixe une valeur limite d’exposition moyenne sur une durée de 8 heures de 120 pg/m3, qui ne doit pas être dépassée plus de 25 jours par an, un seuil d’alerte sur une concentration atmosphérique moyenne mesurée sur une durée de 8 heures de 120 pg/m3 et un niveau critique en moyenne horaire de 180 pg/m3. Pour l’oxyde d’azote, la Directive fixe une valeur limite d’exposition de 40 pg/m3 en moyenne annuelle et de 200 pg/m3 à ne pas dépasser plus de 18 heures par an, ainsi qu’un seuil d’alerte de 400 pg/m3 en moyenne horaire sur une période de 3 heures consécutives.
La mesure de si faibles concentrations atmosphériques d’ozone et d’azote nécessite des appareils spécifiques, suffisamment sensibles et permettant des mesures reproductibles. Des capteurs du type résistif à oxyde métallique sont connus, comme le capteur de référence MICS 2714 commercialisé par la SGX Sensortech®. Ils comportent une couche sensible dont la conductivité électrique évolue au contact de l’ozone et du dioxyde d’azote. Ils présentent l’avantage de mesurer des concentrations atmosphériques dans une large gamme allant de quelques ppb (parties par milliard) à plusieurs ppm (parties par millions) et présentent un temps de réponse rapide. Il sont en outre compacts, peu coûteux et ont une durée de vie de plusieurs années. Malheureusement, ils sont peu sélectifs, c’est-à-dire qu’ils mesurent la concentration atmosphérique totale en ozone et d’oxyde d’azote sans possibilité de distinguer des deux polluants au cours de la mesure.
Il est aussi connu de mesurer les concentrations atmosphériques totales en ozone et dioxyde d’azote au moyen de cellules électrochimiques, en mesurant le courant électrique généré par l’interaction de ces gaz avec un électrolyte solide. Contrairement aux capteurs résistifs, l’électrolyse de l’ozone et du dioxyde d’azote est une technique sélective. Cependant, elle ne permet de détecter des concentrations atmosphériques en dioxyde d’azote et/ou en ozone que dans une gamme restreinte allant de 20 ppb à 300 ppb. Son temps de réponse est en outre lent et une cellule d’électrolyse présente généralement une durée de vie limitée, inférieure à 2 ans.
Pour mesurer efficacement et avec précision une si faible concentration atmosphérique d’ozone, une autre méthode connue est la photométrie UV mise en œuvre selon la norme EN 14625:2013. La photométrie UV est basée sur l’absorption de la radiation dans la gamme spectrale dans l’ultraviolet. Dans cette plage de longueurs d'onde, l’ozone présente une bande d’absorption spécifique distincte des autres gaz.
Pour mesurer une faible concentration atmosphérique en dioxyde d'azote, il est encore connu de mettre en œuvre la chimiluminescence en suivant les prescriptions de la norme EN14211:2012. La chimiluminescence consiste a détecter une émission lumineuse résultant d'une réaction chimique entre le dioxyde d'azote et le luminol.
Cependant, la photométrie UV et la chimiluminescence nécessitent des appareils spécifiques encombrants (présentant généralement une longueur supérieure à 50 cm), lourds (d’une masse souvent supérieure à 10 kg), et coûteux. En outre, ces appareils nécessitent l’adjonction de pompes externes et une alimentation au réseau électrique terrestre. Ils ne peuvent donc être mis en œuvre que dans un nombre restreint de stations fixes de surveillance de la qualité de l'air. Il existe donc un besoin pour un dispositif de mesure de la concentration atmosphérique en ozone et de la concentration atmosphérique d’oxyde d’azote dans l’air qui soit sélectif, robuste et de mise en œuvre simple.
En outre, pour améliorer la résolution spatiale et temporelle des modèles de prévision de la qualité de l’air, il est nécessaire de disposer d’un plus grand nombre de mesures locales des concentrations atmosphériques en ozone et en dioxyde d’azote, que celles disponibles à ce jour.
H existe donc aussi un besoin pour un dispositif de mesure de la concentration atmosphérique en ozone et de la concentration atmosphérique d’oxyde d’azote qui soit aisément transportable et qui puisse être déployé facilement dans de nombreux endroits.
L’invention vise à répondre à au moins l’un de ces besoins, et elle y parvient au moyen d’un dispositif de mesure de la concentration atmosphérique en ozone et de la concentration atmosphérique en dioxyde d’azote, le dispositif comportant un module d’acquisition comportant des premier et deuxième capteurs identiques, du type résistif à oxyde métallique, et configurés pour mesurer une concentration atmosphérique totale en dioxyde d’azote et en ozone, le premier capteur étant recouvert d’un filtre étanche à l’ozone et perméable au dioxyde d’azote.
L’invention permet simplement, en filtrant sélectivement l’ozone atteignant le premier capteur, de s’affranchir du défaut de manque de sélectivité inhérent aux capteurs du type à oxyde métallique, tout en conservant les avantages de ces capteurs qui ont été préalablement mentionnés. Le dispositif permet en outre de mesurer une concentration atmosphérique d’oxyde d’azote et une concentration atmosphérique d’ozone dans des gammes couvrant celles mentionnées dans la Directive européenne 2008/50/CE du mai 2008.
De préférence, le dispositif comporte un module de traitement pour déterminer la concentration atmosphérique en ozone, en soustrayant la concentration atmosphérique en oxyde d’azote mesurée par le premier capteur de la concentration atmosphérique totale en oxyde d’azote et en ozone mesurée par le deuxième capteur. La mesure de chacune des concentrations atmosphériques en ozone et en oxyde d’azote peut ainsi être obtenue par une simple opération de soustraction.
De préférence, les premier et deuxième capteurs sont espacés l’un de l’autre d’une distance inférieure à 100 cm, de préférence inférieure à 20 cm, mieux inférieure à 5 cm. Une distance proche entre les capteurs assure que les concentrations atmosphériques en ozone et en oxyde d’azote mesurées sont représentatives d’un même échantillon de l’atmosphère autour du dispositif.
Par filtre « étanche » à l’ozone, on considère qu’une quantité d’ozone peut traverser le filtre, mais dans une concentration inférieure à la limite de détection de chacun des premier et deuxième capteurs.
Le filtre comporte un matériau piégeant l’ozone qui peut être choisi parmi l’iodure de potassium, le sulfure de polyphénilène et leurs mélanges.
De préférence, le matériau piégeant l’ozone est l’iodure de potassium.
De préférence, le filtre comporte un support fibreux poreux dont les fibres sont recouvertes au moins partiellement, de préférence entièrement, par le matériau piégeant l’ozone.
Le support fibreux peut être choisi parmi un papier, un voile de fibres de verre, un tissé et un non tissé. De préférence, le support fibreux est un papier, de préférence non acide.
Le support fibreux peut présenter un grammage compris entre 10 et 30 g/m2, notamment compris entre 15 et 20 g/m2.
Le support fibreux peut s’étendre sur une aire inférieure ou égale à 1 cm2.
Le premier capteur peut être recouvert partiellement ou entièrement par le filtre, de façon à empêcher l’ozone d’accéder à la couche sensible dudit capteur. Le filtre peut recouvrir entièrement la couche sensible du premier capteur
Le filtre peut être séparé du premier capteur d’une distance inférieure ou égale à 5 mm, de préférence inférieure ou égale à 1 mm.
Le deuxième capteur est de préférence entièrement non superposé au filtre.
Chaque capteur peut présenter une longueur inférieure ou égale à 1 cm.
Chaque capteur peut être du type résistif à oxyde métallique parmi SnCL, Ta2Û5, WO3, 1112O3, ZnO et leurs mélanges.
De préférence, la masse du dispositif de mesure est inférieure à 50 g et/ou le volume du dispositif de mesure est inférieur à 1 cm3. Le dispositif de mesure peut ainsi être aisément déplacé. Par ailleurs, le dispositif peut comporter un boitier, le module d’acquisition et le module de traitement étant logés dans le boitier. Le boitier peut présenter un volume inférieur à 1000 cm3.
Dans une variante, le module de traitement peut être à une distance supérieure à 10 cm, voire supérieure à 1 m du module d’acquisition.
Le module de traitement peut être relié par une connexion filaire au module d’acquisition, notamment lorsque le module d’acquisition et le module de traitement sont logés dans le bâti. En variante, le module de traitement peut être relié au module d’acquisition au moyen d’une connexion sans fil, par exemple par WiFi, Bluetooth® ou Zigbee.
L’invention concerne encore un objet comportant le dispositif selon l’invention, l’objet étant choisi parmi une station de mesure pour l’habitat, une station de mesure de surveillance de l’air, une station d’évaluation d’une exposition individuelle à l’ozone et/ou au dioxyde d’azote, et un élément d’un véhicule automobile.
L’invention concerne encore un procédé de fabrication d’un dispositif selon l’invention, le procédé comportant : i) la préparation d’une composition en mélangeant le matériau piégeant l’ozone avec un solvant, notamment aqueux, ii) l’imprégnation du support avec la composition, iii) et le séchage, notamment par chauffage, de la composition afin d’évaporer le solvant.
L’étape i) peut comporter la dissolution du matériau piégeant l’ozone dans le solvant.
L’invention concerne aussi un procédé de mesure de la concentration atmosphérique en ozone et de la concentration atmosphérique en dioxyde d’azote, le procédé comportant a) la fourniture d’un dispositif selon l’invention, b) la mesure conjointe de la concentration atmosphérique en dioxyde d’azote au moyen du premier capteur et de la concentration atmosphérique totale en ozone et en dioxyde d’azote au moyen du deuxième capteur, et c) la détermination de la concentration atmosphérique en ozone en soustrayant la concentration atmosphérique en dioxyde d’azote mesurée de la concentration atmosphérique totale en dioxyde d’azote et en ozone mesurée à l’étape b). L’invention pourra être mieux comprise à la lecture de la description détaillée et du dessin annexé qui va suivre, dans lequel
[Fig. 1] est une vue schématique en coupe transversale d’un exemple de dispositif selon l’invention,
[Fig. 2] est une photographie d’un exemple de dispositif selon l’invention,
[Fig. 3] sont des graphiques représentant la mesure de la concentration atmosphérique en ozone mesurée par chacun des premier et deuxième capteurs du dispositif illustré sur la figure 2 et soumis à une atmosphère régulée en ozone, et
[Fig. 4] sont des graphiques représentant la mesure de la concentration atmosphérique en dioxyde d’azote mesurée par chacun des premier et deuxième capteurs du dispositif illustré sur la figure 2 et soumis à une atmosphère régulée en dioxyde d’azote.
On a illustré schématiquement sur la figure 1 un exemple de réalisation d’un dispositif 1 selon l’invention.
Le dispositif 1 comporte un module d’acquisition 5 des premier 10 et deuxième 15 capteurs identiques, qui sont portés par un support 20. Ils sont séparés l’un de l’autre, par exemple d’une distance d inférieure à 1 cm.
Les capteurs sont du type résistif à oxyde métallique. Ils comportent chacun une couche sensible 25 dont la résistivité électrique varie au contact du dioxyde d’azote et/ou de l’ozone.
La couche sensible du premier capteur est recouverte par un filtre 30, par exemple fait d’un papier non acide dont les fibres sont recouvertes d’iodure de potassium. De cette façon, l’ozone est piégé par l’iodure de potassium et ne peut atteindre la couche sensible. Le premier capteur 10 ne mesure ainsi que la concentration atmosphérique en oxyde d’azote.
Au contraire, la surface du deuxième capteur 15 est en contact direct avec l’atmosphère et peut ainsi mesurer la concentration atmosphérique totale en ozone et en oxyde d’azote.
En soustrayant la concentration atmosphérique en oxyde d’azote mesurée par le premier à la concentration atmosphérique totale en oxyde d’azote et ozone, la concentration atmosphérique en ozone peut ainsi simplement être déterminée.
De préférence, le dispositif comporte un module de traitement 35 relié au module d’acquisition et configuré pour effectuer cette opération mathématique de soustraction. La figure 2 est une photographie d’un prototype de dispositif selon l’invention, qui représente un premier capteur 15 recouvert par un filtre 30.
Ce premier capteur, tout comme le deuxième capteur, est de référence MICS 2714 commercialisé par la SGX Sensortech®. Il est revêtu par un filtre de papier non acide recouvert d’iodure de potassium qui a été fabriqué de la façon suivante.
75 g d’iodure de potassium ont été dissous dans 100 ml d’eau distillée au moyen d’un agitateur magnétique pour former une composition filtrante. Après une heure de mélange, la bonne dissolution de l’iodure de potassium est constatée par observation visuelle en vérifiant la transparence, l’homogénéité et l’absence de précipités dans la composition filtrante.
Un échantillon de papier non acide de référence AFT500750 commercialisé par la société Lightning Packaging® a ensuite été immergé dans la solution, puis séché sur une plaque chauffante pendant 12 heures à une température de 50 °C afin d’évaporer l’eau de la composition filtrante. Comme cela est observé sur l’encadré sur la figure 2, les fibres du papier non acide sont enrobées par un dépôt d’iodure de potassium.
Les performances du dispositif sont illustrées par les courbes des figures 3 et 4.
Les courbes de la figure 3 représentent l’évolution avec les temps de la concentration atmosphérique d’ozone mesurée par les premier et deuxièmes capteurs. Pour la mesure illustrée sur la figure 3, le dispositif a été introduit dans une enceinte dont l’atmosphère, de composition contrôlée, est exempte de dioxyde d’azote et dont la concentration atmosphérique en ozone a été régulée.
Le deuxième capteur non recouvert par le filtre mesure une évolution de la teneur en ozone en fonction de la régulation de la concentration atmosphérique de la teneur en ozone, comme observé sur la courbe en pointillés. Le premier capteur recouvert par le filtre, ne mesure aucune concentration atmosphérique en ozone, lorsque de l’ozone est injecté dans l’enceinte, ce qui met en évidence le caractère étanche à l’ozone du filtre.
Les courbes de la figure 4 représentent l’évolution avec les temps de la concentration atmosphérique en dioxyde d’azote mesurée par les premier et deuxième capteurs. Pour la mesure illustrée sur la figure 4, le dispositif a été introduit dans une enceinte dont l’atmosphère, de composition contrôlée, est exempte d’ozone et dont la concentration atmosphérique en dioxyde d’azote a été régulée. Les premier et deuxième capteurs mesurent chacun une concentration atmosphérique en dioxyde d’azote, qui est plus faible pour le premier capteur, ce qui met en évidence le caractère perméable à l’ozone du filtre.
Comme cela est apparu tout au long de la description, l’invention permet de manière simple de mesurer sélectivement les concentrations en ozone et en oxyde d’azote au moyen de capteurs sensibles, robustes, légers et peu coûteux. Bien évidemment, l’invention n’est pas limitée aux modes de réalisation aux exemples présentés dans la description à titre illustratif.

Claims

Revendications
1. Dispositif (1) de mesure de la concentration atmosphérique en ozone et de la concentration atmosphérique en dioxyde d’azote, le dispositif comportant un module d’acquisition (5) comportant des premier (10) et deuxième (15) capteurs identiques, du type résistif à oxyde métallique, et configurés pour mesurer une concentration atmosphérique totale en dioxyde d’azote et en ozone, le premier capteur (10) étant recouvert d’un filtre (30) étanche à l’ozone et perméable au dioxyde d’azote.
2. Dispositif selon la revendication 1 , comportant un module de traitement (35) pour déterminer la concentration atmosphérique en ozone, en soustrayant la concentration atmosphérique en dioxyde d’azote mesurée par le premier capteur (10) de la concentration atmosphérique totale en dioxyde d’azote et en ozone mesurée par le deuxième capteur (15).
3. Dispositif selon l’une quelconque des revendications 1 et 2, les premier et deuxième capteurs étant espacés l’un de l’autre d’une distance (d) inférieure à 100 cm, de préférence inférieure à 20 cm, mieux inférieure à 5 cm.
4. Dispositif selon l’une quelconque des revendications précédentes, la masse du dispositif de mesure étant inférieure à 50 g et/ou le volume du dispositif de mesure étant inférieur à 1 cm3.
5. Dispositif selon l’une quelconque des revendications précédentes, le filtre (30) comportant un matériau piégeant l’ozone choisi parmi l’iodure de potassium, le sulfure de polyphénilène et leurs mélanges.
6. Dispositif selon la revendication précédente, le matériau piégeant l’ozone étant l’iodure de potassium.
7. Dispositif selon l’une quelconque des revendications 5 et 6, le filtre comportant un support fibreux poreux dont les fibres sont recouvertes au moyen partiellement, de préférence entièrement, par le matériau piégeant l’ozone.
8. Dispositif selon la revendication précédente, le support fibreux étant un papier, de préférence non acide.
9. Dispositif selon l’une quelconque des revendications précédentes, l’oxyde métallique étant choisi parmi SnCh, Ta2Û5, WO3, ImOs, ZnO et leurs mélanges.
10. Procédé de fabrication d’un dispositif selon l’une quelconque des revendications précédentes, le procédé comportant : i) la préparation d’une composition en mélangeant le matériau piégeant l’ozone avec un solvant, notamment aqueux. ii) l’imprégnation du support avec la composition, iii) et le séchage, notamment par chauffage, de la composition afin d’évaporer le solvant.
11. Procédé de mesure de la concentration atmosphérique en ozone et de la concentration atmosphérique en dioxyde d’azote, le procédé comportant a) la fourniture d’un dispositif selon l’une quelconque des revendications 1 à 9, b) la mesure conjointe de la concentration atmosphérique en dioxyde d’azote au moyen du premier capteur et de la concentration atmosphérique totale en ozone et en dioxyde d’azote au moyen du deuxième capteur, et c) la détermination de la concentration atmosphérique en ozone en soustrayant la concentration atmosphérique en dioxyde d’azote mesurée de la concentration atmosphérique totale en dioxyde d’azote et en ozone mesurée à l’étape b).
PCT/EP2023/057272 2022-03-22 2023-03-22 Dispositif de mesure de la concentration atmosphérique en ozone et de la concentration atmosphérique en dioxyde d'azote WO2023180357A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2202504A FR3133926A1 (fr) 2022-03-22 2022-03-22 Dispositif de mesure de la concentration atmosphérique en ozone et de la concentration atmosphérique en dioxyde d’azote
FRFR2202504 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023180357A1 true WO2023180357A1 (fr) 2023-09-28

Family

ID=81851268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/057272 WO2023180357A1 (fr) 2022-03-22 2023-03-22 Dispositif de mesure de la concentration atmosphérique en ozone et de la concentration atmosphérique en dioxyde d'azote

Country Status (2)

Country Link
FR (1) FR3133926A1 (fr)
WO (1) WO2023180357A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060130442A1 (en) * 2002-05-03 2006-06-22 Carl Freudenberg Kg Ozone filter material
US20170276634A1 (en) * 2016-03-22 2017-09-28 Alphasense Limited Electrochemical gas sensor, filter and methods
DE102016218172A1 (de) * 2016-09-21 2018-03-22 Robert Bosch Gmbh Summengassensoren
WO2019154779A1 (fr) * 2018-02-06 2019-08-15 Airlabs Bv Appareil de détection d'ozone et/ou de dioxyde d'azote

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060130442A1 (en) * 2002-05-03 2006-06-22 Carl Freudenberg Kg Ozone filter material
US20170276634A1 (en) * 2016-03-22 2017-09-28 Alphasense Limited Electrochemical gas sensor, filter and methods
DE102016218172A1 (de) * 2016-09-21 2018-03-22 Robert Bosch Gmbh Summengassensoren
WO2019154779A1 (fr) * 2018-02-06 2019-08-15 Airlabs Bv Appareil de détection d'ozone et/ou de dioxyde d'azote

Also Published As

Publication number Publication date
FR3133926A1 (fr) 2023-09-29

Similar Documents

Publication Publication Date Title
US7615192B2 (en) Ozone gas measurement apparatus
EP2304416B1 (fr) Capteur d'humidité capacitif à diélectrique hydrophile nano-poreux et procédé pour sa réalisation
Choi et al. Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film
Platt et al. Spectroscopic measurement of the free radicals NO 3, BrO, IO, and OH in the troposphere
Quercia et al. Fabrication and characterization of a sensing device based on porous silicon
WO2023180357A1 (fr) Dispositif de mesure de la concentration atmosphérique en ozone et de la concentration atmosphérique en dioxyde d'azote
Perkins et al. Optoelectronic gas sensing platforms: from metal oxide lambda sensors to nanophotonic metamaterials
CA2634550A1 (fr) Procede de mesure et d'alerte fiabilisees et individualisees de pollutions de l'air et dispositif associe
Itagaki et al. HCl detection using polymer-porphyrin composite coated optical fiber sensor
JP5192341B2 (ja) ガス測定装置および方法
EP1261867A2 (fr) Analyseur en continu de composes organiques volatiles, dispositif et procede d'evaluation en continu de la qualite de l'air ambiant interieur et utilisation de ce dispositif pour le pilotage d'une installation de ventilation
EP0901009A2 (fr) Procédé, élément de capteur, et capteur de gaz pour la détection du dioxyde d'azote
JP2008196945A (ja) 不飽和炭化水素ガスの検知素子及び測定方法並びに測定装置
EP3884266B1 (fr) Dispositif optique de détection de composés volatils et procédé de détection et de quantification de composés volatils associé
Boarino et al. Towards a deeper comprehension of the interaction mechanisms between mesoporous silicon and NO2
Safa et al. ZnO/rGO nanocomposite layer as a sensitive layer for simplistic ethanol vapor sensor and UV light detector
FR2779826A1 (fr) Detecteur d'ozone, de dioxyde d'azote ou de tout autre gaz polluant et son utilisation
Noor et al. Sol-gel derived thin films for hydrogen sulphide gas sensing
Sharma et al. II–VI Semiconductor-Based Optical Gas Sensors
JP2009229269A (ja) 酸化性ガスの測定方法、ガス検知素子、ガス検知素子の作製方法および測定装置
FR3072889B1 (fr) Procede de preparation d’un adsorbant pour composes organiques volatils, procede de quantification de composes organiques volatils
EP3631423A1 (fr) Dispositif optique de détection et de quantification de composés volatils
Hagen et al. Potentiometric CO2 Gas Sensor Based on Zeolites
EP1041039A1 (fr) Nouvelles compositions d'oxydes métalliques, des capteurs semi-conducteurs préparés à partir d'une telle composition et leurs utilisations pour la détection des gaz
Elizalde-Torres et al. Thermally assisted NO2 and NH3 gas desorption process in a polyaniline thin film based optochemical sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23711101

Country of ref document: EP

Kind code of ref document: A1