WO2023179803A1 - 一种间接式波浪能装置液压负载分级控制系统及方法 - Google Patents

一种间接式波浪能装置液压负载分级控制系统及方法 Download PDF

Info

Publication number
WO2023179803A1
WO2023179803A1 PCT/CN2023/091531 CN2023091531W WO2023179803A1 WO 2023179803 A1 WO2023179803 A1 WO 2023179803A1 CN 2023091531 W CN2023091531 W CN 2023091531W WO 2023179803 A1 WO2023179803 A1 WO 2023179803A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
hydraulic cylinder
solenoid valve
generator set
pressure
Prior art date
Application number
PCT/CN2023/091531
Other languages
English (en)
French (fr)
Inventor
叶寅
盛松伟
王文胜
王坤林
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Priority to AU2023238513A priority Critical patent/AU2023238513B2/en
Publication of WO2023179803A1 publication Critical patent/WO2023179803A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to the technical field of hydraulic power generation control of wave energy devices, and in particular to an indirect wave energy device hydraulic load classification control system and method.
  • the conventional hydraulic wave energy device conversion process is as follows. Driven by the waves, the wave-absorbing floating body drives the hydraulic cylinder installed with it to reciprocate. During the reciprocating motion, the hydraulic cylinder pumps hydraulic oil into the high-pressure accumulator group. That is, converting wave energy into hydraulic energy is called primary energy conversion. When the pressure of the accumulator group reaches the set pressure, the control valve group is started to release the high-pressure hydraulic oil in the accumulator group to impact the hydraulic motor, causing it to rotate and convert the hydraulic energy into rotating mechanical energy, which is called secondary energy. Convert. The hydraulic motor drives the generator coaxially connected with it to rotate and generate electricity, and converts the rotating mechanical energy into electrical energy, which is called three-level energy conversion.
  • the primary energy conversion process of the wave energy device is a mechanical vibration process. In this process, under different wave forces, there is an optimal wave capture efficiency. This efficiency corresponds to an optimal hydraulic load, that is, the hydraulic cylinder's
  • the work damping force is the effective work area of the hydraulic cylinder multiplied by the accumulator pressure.
  • the primary energy conversion efficiency is optimized by adjusting the effective work area of the hydraulic cylinder, that is, adjusting the number of hydraulic cylinder loads. Therefore, how to make the wave energy device automatically select the corresponding hydraulic load according to the size of the wave, that is, independently select the number of hydraulic cylinders that can effectively perform work, has become a key factor in improving the power generation efficiency of the wave energy device.
  • the so-called hydraulic cylinder that effectively performs work means that the oil outlet of the hydraulic cylinder is connected to the high-pressure accumulator group.
  • the hydraulic cylinder that performs invalid work means that the oil outlet of the hydraulic cylinder is connected to the low-pressure circuit. Participate in doing the work.
  • the present invention proposes an indirect wave energy device hydraulic load classification control system and method, which indirectly automatically measures the size of the wave through its own energy conversion system, and independently selects the size of the hydraulic load according to the size of the wave, realizing the wave energy device. Improved primary energy conversion efficiency and strong operability.
  • the first aspect of the present invention provides an indirect wave energy device hydraulic load classification control system, including a first hydraulic cylinder group, a second hydraulic cylinder group, a third hydraulic cylinder group, and a high-pressure accumulator group.
  • the pressure detection control module the first hydraulic generator set, the second hydraulic generator set and the third hydraulic generator set; the output end of the first hydraulic cylinder group is directly connected to the input end of the high-pressure accumulator group, and the The output ends of the second hydraulic cylinder group and the third hydraulic cylinder group are respectively connected to the input end of the high-pressure accumulator group and the return tank through independent reversing valves.
  • the output end of the high-pressure accumulator group They are respectively connected to the first hydraulic generator set, the second hydraulic generator set and the third hydraulic generator set through independent solenoid valves, and the detection end of the pressure detection control module is used to obtain the high-pressure accumulator.
  • the internal pressure of the group is compared with the preset pressure level, and the on and off of the reversing valve and the solenoid valve are respectively controlled according to the comparison results.
  • the reversing valve is used to control the The second hydraulic cylinder group and the third hydraulic cylinder group enter/exit the effective working state, and the solenoid valve is used to control the first hydraulic generator set, the second hydraulic generator set and the third hydraulic generator set Enter/exit power generation state.
  • a second aspect of the present invention provides an indirect wave energy device hydraulic load grading control method, which is used in the above-mentioned indirect wave energy device hydraulic load grading control system, and is characterized in that it includes: real-time acquisition of the high-pressure accumulator group
  • the internal pressure P is set to gradually increasing pressure values P1, P2, P3, P4, P5 and P6, as well as gradually increasing pressure values P21, P22, P31 and P32.
  • the following pressure relationship P1 ⁇ P21 also needs to be satisfied.
  • the control method includes a first mode, a second mode, a third mode, a fourth mode and a fifth mode, and each mode can only be converted to an adjacent mode at a time;
  • the second hydraulic cylinder group and the third hydraulic cylinder group are triggered to be connected to the oil return tank through the corresponding reversing valve, and connected to the corresponding first hydraulic generator group.
  • the solenoid valve disconnect the solenoid valve corresponding to the second hydraulic generator set and the third hydraulic generator set, after P2 ⁇ P ⁇ P22 is triggered, and only under the condition of P ⁇ P1, Only then is it allowed to disconnect the solenoid valve corresponding to the first hydraulic generator set;
  • the second hydraulic cylinder group is triggered to be connected to the input end of the high-pressure accumulator group through the corresponding reversing valve, and the third hydraulic cylinder group is connected to the input end of the high-pressure accumulator group through the corresponding reversing valve.
  • the reversing valve is connected to the oil return tank, communicates with the solenoid valve corresponding to the first hydraulic generator set, and disconnects the solenoid valves corresponding to the second hydraulic generator set and the third hydraulic generator set, After P22 ⁇ P ⁇ P4 is triggered, and only under the condition of P ⁇ P21, the second hydraulic cylinder group is allowed to be controlled to be connected to the oil return tank through the corresponding reversing valve;
  • the second hydraulic cylinder group is triggered to be connected to the input end of the high-pressure accumulator group through the corresponding reversing valve, and the third hydraulic cylinder group is connected to the input end of the high-pressure accumulator group through the corresponding reversing valve.
  • the reversing valve is connected to the oil return tank, communicates with the solenoid valve corresponding to the first hydraulic generator set and the second hydraulic generator set, and disconnects the solenoid valve corresponding to the third hydraulic generator set, After P4 ⁇ P ⁇ P32 is triggered, the disconnection of the third step is allowed only under the condition of P ⁇ P3.
  • the second hydraulic cylinder group and the third hydraulic cylinder group are triggered to connect to the input end of the high-pressure accumulator group through the corresponding reversing valve to communicate.
  • the solenoid valve corresponding to the first hydraulic generator set and the second hydraulic generator set is disconnected from the solenoid valve corresponding to the third hydraulic generator set.
  • the third hydraulic cylinder group is allowed to be controlled to be connected to the oil return tank through the corresponding reversing valve;
  • the reversing valve corresponding to the second hydraulic cylinder group and the third hydraulic cylinder group is triggered to connect to the input end of the high-pressure accumulator group to communicate with the third hydraulic cylinder group.
  • the solenoid valves corresponding to a hydraulic generator set, the second hydraulic generator set and the third hydraulic generator set are allowed to be disconnected only under the condition of P ⁇ P5 after P ⁇ P6 is triggered.
  • the beneficial effects of the present invention are: during the instantaneous change of wave impact, all hydraulic loads can be automatically loaded or all hydraulic loads can be automatically deloaded, so that the wave energy device can operate in a full load state or in a state with optimal energy conversion efficiency. It can reduce the motion amplitude of the wave-absorbing floating body, thereby reducing the probability of collision between the wave-absorbing floating body and the device base, and protecting the wave energy device.
  • Figure 1 is a schematic structural diagram of a hydraulic load classification control system for an indirect wave energy device disclosed in Embodiment 1 of the present invention.
  • Figure 2 is a schematic structural diagram of the hydraulic load classification control system of the indirect wave energy device disclosed in Embodiment 2 of the present invention.
  • Figure 3 is the control logic diagram of the hysteresis comparison controller.
  • Figure 4 is a schematic diagram of the operation of the hydraulic load classification control system of the indirect wave energy device disclosed in Embodiment 2 of the present invention under small wave conditions.
  • Figure 5 is a schematic diagram of the operation of the hydraulic load classification control system of the indirect wave energy device disclosed in Embodiment 2 of the present invention when changing from small wave conditions to medium wave conditions.
  • Figure 6 is a schematic diagram of the operation of the hydraulic load classification control system of the indirect wave energy device disclosed in Embodiment 2 of the present invention from medium to large wave conditions.
  • Figure 7 is a schematic diagram of the operation of the hydraulic load classification control system of the indirect wave energy device disclosed in Embodiment 2 of the present invention under larger wave conditions.
  • This embodiment proposes an indirect wave energy device hydraulic load classification control system.
  • This embodiment takes the three-level load, that is, the addition and subtraction load adjustment of three hydraulic cylinders, as an example. As shown in Figure 1, it includes the first hydraulic cylinder group. 1.
  • the second hydraulic cylinder group 2 the third hydraulic cylinder group 3, the high-pressure accumulator group 4, the pressure detection control module 5, the first hydraulic generator set 6, the second hydraulic generator set 7 and the third hydraulic generator set 8;
  • the output end of the first hydraulic cylinder group 1 is directly connected to the input end of the high-pressure accumulator group 4, and the output ends of the second hydraulic cylinder group 2 and the third hydraulic cylinder group 3 are connected to the high-pressure accumulator through independent reversing valves respectively.
  • the input end of the high-pressure accumulator set 4 is connected to the oil return tank.
  • the output end of the high-pressure accumulator set 4 is connected to the first hydraulic generator set 6, the second hydraulic generator set 7 and the third hydraulic generator set 8 through independent solenoid valves.
  • the pressure The detection end of the detection control module 5 is used to obtain the internal pressure of the high-pressure accumulator group 4, compare the internal pressure with the preset pressure level, and control the on and off of the reversing valve and the solenoid valve respectively according to the comparison results.
  • the directional valve is used to control the second hydraulic cylinder group 2 and the third hydraulic cylinder group 3 to enter/exit the effective working state
  • the solenoid valve is used to control the first hydraulic generator set 6, the second hydraulic generator set 7 and the third hydraulic generator set 8 Enter/exit power generation state.
  • This embodiment provides yet another indirect hydraulic load classification control system for wave energy devices. Based on the first embodiment, the following describes the first hydraulic cylinder group 1, the second hydraulic cylinder group 2, the third hydraulic cylinder group 3, and the high pressure Accumulator group 4. Pressure detection control The connection relationship between the module 5, the first hydraulic generator set 6, the second hydraulic generator set 7 and the third hydraulic generator set 8 will be further described.
  • the first hydraulic cylinder group 1 includes a first hydraulic cylinder 101.
  • the input end of the first hydraulic cylinder 101 is connected to the oil return tank through a first one-way valve 102.
  • the output end of the first hydraulic cylinder 101 passes through a second
  • the one-way valve 103 is connected to the output end of the high-pressure accumulator group 4.
  • the second hydraulic cylinder group 2 includes a second hydraulic cylinder 201.
  • the input end of the second hydraulic cylinder 201 is connected to the oil return tank through a third one-way valve 202.
  • the output end of the second hydraulic cylinder 201 is connected to the A end of the first 2-position 3-way directional valve 204 through the fourth one-way valve 203, and the B end of the first 2-position 3-way directional valve 204 is connected to the oil return tank.
  • the C end of the two-position three-way reversing valve 204 is connected to the input end of the high-pressure accumulator group 4.
  • the third hydraulic cylinder group 3 includes a third hydraulic cylinder 301. The input end of the third hydraulic cylinder 301 passes through the fifth one-way valve.
  • the output end of the third hydraulic cylinder 301 is connected to the D end of the second two-position three-way reversing valve 304 through the sixth one-way valve 303, and the E end of the second two-position three-way reversing valve 304 It is connected to the oil return tank, and the F end of the second two-position three-way valve 304 is connected to the input end of the high-pressure accumulator group 4 .
  • the first hydraulic generator set 6 includes a first two-position two-way solenoid valve 601.
  • the G end of the first two-position two-way solenoid valve 601 is connected to the output end of the high-pressure accumulator group 4.
  • the first two-position two-way solenoid valve 601 The H end is connected to the input end of the first hydraulic motor 602, the controlled end of the first two-position two-way solenoid valve 601 is connected to the control end of the pressure detection control module 5, and the output end of the first hydraulic motor 602 is connected to the oil return tank.
  • the output shaft of the first hydraulic motor 602 is connected with the input shaft of the first generator 603 .
  • the second hydraulic generator set 7 includes a second two-position two-way solenoid valve 701.
  • the I end of the second two-position two-way solenoid valve 701 is connected to the output end of the high-pressure accumulator group 4.
  • the second two-position two-way solenoid valve 701 The J end of the second hydraulic motor 702 is connected to the input end of the second hydraulic motor 702, the controlled end of the second two-position two-way solenoid valve 701 is connected to the control end of the pressure detection control module 5, and the output end of the second hydraulic motor 702 is connected to the return tank.
  • the output shaft of the second hydraulic motor 702 is connected with the input shaft of the second generator 703 .
  • the third hydraulic generator set 8 includes a third two-position two-way solenoid valve 801 .
  • the K end of the third two-position two-way solenoid valve 801 is connected to the output end of the high-pressure accumulator group 4 .
  • the third two-position two-way solenoid valve 801 The L end of the third hydraulic motor 802 is connected to the input end of the third hydraulic motor 802, the controlled end of the third two-position two-way solenoid valve 801 is connected to the control end of the pressure detection control module 5, and the output end of the third hydraulic motor 802 is connected to the return tank.
  • the output shaft of the third hydraulic motor 802 is connected with the input shaft of the third generator 803 .
  • the pressure detection control module 5 includes a pressure sensor 501.
  • the detection end of the pressure sensor 501 is installed at the output end of the high-pressure accumulator group 4.
  • the control end of the pressure sensor 501 is connected to the first hysteresis comparator 502 and the second hysteresis comparator respectively. 503.
  • the input terminals of the third hysteresis comparator 504, the fourth hysteresis comparator 505 and the fifth hysteresis comparator 506 are connected.
  • the first hysteresis comparator 502, the second hysteresis comparator 503 and the third hysteresis comparator 502 are connected.
  • the output terminals of the comparator 504, the fourth hysteresis comparator 505 and the fifth hysteresis comparator 506 are respectively connected to the first two-position two-way solenoid valve 601, the first two-position three-way reversing valve 204, and the second two-position three-way valve. Pass The controlled ends of the reversing valve 304, the third two-position two-way solenoid valve 801 and the second two-position two-way solenoid valve 701 are connected.
  • control logic diagram of the hysteresis comparison controller is shown in Figure 3.
  • the control logic diagram of the hysteresis comparison controller receives the pressure signal from the pressure sensor. In the initial state, it is in the 0 state and no voltage signal is output. When the pressure gradually rises to po, the voltage signal is output, which is state 1. If the pressure continues to rise, , will continue in the 1 state; when the pressure drops but does not reach pc, it is still in the 1 state; when the pressure drops to pc, the voltage signal output stops, is in the 0 state, and starts the next cycle.
  • This embodiment provides an indirect wave energy device hydraulic load classification control method, which is used in the indirect wave energy device hydraulic load classification control system described in Embodiment 1, which is characterized in that it includes: real-time acquisition of high-pressure accumulator group 4
  • the internal pressure P is set to gradually increasing pressure values P1, P2, P3, P4, P5 and P6, as well as gradually increasing pressure values P21, P22, P31 and P32.
  • the following pressure relationship P1 ⁇ P21 also needs to be satisfied.
  • the control method includes a first mode, a second mode, a third mode, a fourth mode and a fifth mode, and each mode can only transform to an adjacent mode at a time;
  • the second hydraulic cylinder group 2 is triggered to be connected to the input end of the high-pressure accumulator group 4 through the corresponding reversing valve, and the third hydraulic cylinder group 3 is connected through the corresponding reversing valve.
  • the return tank connect the corresponding solenoid valve of the first hydraulic generator set 6, disconnect the corresponding solenoid valves of the second hydraulic generator set 7 and the third hydraulic generator set 8, after P22 ⁇ P ⁇ P4 is triggered, there are and only Only under the condition of P ⁇ P21, the second hydraulic cylinder group 2 is allowed to be controlled to be connected to the oil return tank through the corresponding reversing valve;
  • the second hydraulic cylinder group 2 is triggered to be connected to the input end of the high-pressure accumulator group 4 through the corresponding reversing valve, and the third hydraulic cylinder group 3 is connected through the corresponding reversing valve.
  • the return tank connect the solenoid valves corresponding to the first hydraulic generator set 6 and the second hydraulic generator set 7, and disconnect the solenoid valve corresponding to the third hydraulic generator set 8.
  • the second hydraulic cylinder group 2 and the third hydraulic cylinder group 3 are triggered to connect to the input end of the high-pressure accumulator group 4 through the corresponding reversing valve and communicate with the first hydraulic generator group. 6 and the solenoid valve corresponding to the second hydraulic generator set 7. Disconnect the solenoid valve corresponding to the third hydraulic generator set 8.
  • the third hydraulic generator is allowed to be controlled only under the condition of P ⁇ P31.
  • the three hydraulic cylinder group 3 is connected to the oil return tank through the corresponding reversing valve;
  • the reversing valves corresponding to the second hydraulic cylinder group 2 and the third hydraulic cylinder group 3 are triggered to connect to the input end of the high-pressure accumulator group 4 and communicate with the first hydraulic generator group 6 and the third hydraulic cylinder group 3.
  • the solenoid valves corresponding to the second hydraulic generator set 7 and the third hydraulic generator set 8 are triggered by P ⁇ P6, and only under the condition of P ⁇ P5, the solenoid valve corresponding to the third hydraulic generator set 8 is allowed to be disconnected.
  • the size of the wave is indirectly measured, and the size of the hydraulic load is independently adjusted according to the size of the wave, which can improve the primary energy conversion efficiency of the wave energy device. Moreover, the adjustment process does not frequently open and close the valve.
  • all hydraulic loads can be automatically loaded or all hydraulic loads can be automatically deloaded, so that the wave energy device can operate in a full load state or in a state with optimal energy conversion efficiency.
  • the method described according to this embodiment can be extended to control the addition and subtraction of loads of more hydraulic cylinders, and divide the hydraulic load into more stages, thereby adapting to wave conditions in multiple oceans.
  • This embodiment provides another indirect wave energy device hydraulic load classification control method for the indirect wave energy device hydraulic load classification control system described in Embodiment 2, including: obtaining the high-pressure accumulator group in real time through the pressure sensor 501
  • the internal pressure P of 4 is set to gradually increasing pressure values P1, P2, P3, P4, P5 and P6, as well as gradually increasing pressure values P21, P22, P31 and P32.
  • P1 and P2 are the lower limit threshold and the upper limit threshold of the first hysteresis comparator 502 respectively
  • P21 and P22 are the second hysteresis comparator 503 respectively.
  • the lower limit threshold and the upper limit threshold, P31 and P32 are respectively the lower limit threshold and the upper limit threshold of the third hysteresis comparator 504, P5 and P6 are respectively the lower limit threshold and the upper limit threshold of the fourth hysteresis comparator 505, P3 and P4 are respectively the lower limit threshold and the upper limit threshold of the fourth hysteresis comparator 505. five lower thresholds and upper thresholds of the hysteresis comparator 506;
  • the control method includes a first mode, a second mode, a third mode, a fourth mode and a fifth mode, and each mode can only transform to an adjacent mode at a time;
  • the first hysteresis comparator 502 In the first mode, if P2 ⁇ P ⁇ P22, the first hysteresis comparator 502 is triggered to control the G terminal and the H terminal of the first two-position two-way solenoid valve 601 to communicate. After P2 ⁇ P ⁇ P22 is triggered, there are and Only under the condition of P ⁇ P1, the first hysteresis comparator 502 is allowed to disconnect the connection between the G terminal and the H terminal of the first two-position two-way solenoid valve 601;
  • the second hysteresis comparator 503 In the second mode, if P22 ⁇ P ⁇ P4, the second hysteresis comparator 503 is triggered to control the A terminal and the C terminal of the first two-position three-way valve 204 to communicate. After P22 ⁇ P ⁇ P4 is triggered, there is And only under the condition of P ⁇ P21, the second hysteresis comparator 503 is allowed to disconnect the connection between the A terminal and the C terminal of the first two-position three-way valve 204;
  • the fifth hysteresis comparator 506 is triggered to control the I terminal and J terminal of the second two-position two-way solenoid valve 701 to communicate. After P4 ⁇ P ⁇ P32 is triggered, there are and Only under the condition of P ⁇ P3, the fifth hysteresis comparator 506 is allowed to disconnect the connection between the I terminal and the J terminal of the second two-position two-way solenoid valve 701;
  • the third hysteresis comparator 504 is triggered to control the E terminal of the second two-position three-way valve 304 to communicate with F. After P32 ⁇ P ⁇ P6 is triggered, there are and Only under the condition of P ⁇ P31, the third hysteresis comparator 504 is allowed to be controlled to disconnect the connection between the E terminal and the F terminal of the second two-position three-way valve 304;
  • the fourth hysteresis comparator 505 is triggered to control the K terminal and L terminal of the third two-position two-way solenoid valve 801 to communicate. After P ⁇ P6 is triggered, there is and only P Only under the condition of ⁇ P5, the fourth hysteresis comparator 505 is allowed to disconnect the connection between the K terminal and the L terminal of the third two-position two-way solenoid valve 801.
  • the system operates in the initial mode.
  • the oil outlet of the first hydraulic cylinder 101 is set to be directly connected to the high-pressure accumulator group 4 to perform a normal energy storage and pressure stabilization process and to be in a loading state for effective work.
  • the oil outlets of the second hydraulic cylinder 201 and the third hydraulic cylinder 301 are connected to the A end of the first 2-position 3-way directional valve 204 and the D-end of the second 2-position 3-way directional valve 304 respectively.
  • the valve cores of the three-way directional valve 204 and the second two-position three-way directional valve 304 are both in the right position, A and B are connected, D and E are connected, and the oil outlets of the second hydraulic cylinder 201 and the third hydraulic cylinder 301 are connected.
  • the low-pressure oil circuit returning to the oil tank is in a follow-up state of ineffective work.
  • the first hydraulic cylinder group 1 is always running, that is, it is not controlled.
  • the first hydraulic cylinder 101 is in the loading state, and the second hydraulic cylinder group 2 and the third hydraulic cylinder group 3 are in the following state. Due to being driven by the small waves, the stroke of the first hydraulic cylinder 101 and The speed is relatively small, the flow input by the first hydraulic cylinder 101 to the high-pressure accumulator group 4 is small, the pressure of the high-pressure accumulator group 4 gradually increases, and the pressure signal is measured using the pressure sensor 501.
  • the pressure of the high-pressure accumulator group 4 will drop immediately.
  • the first hysteresis comparator 502 returns to state 0, and no voltage signal is input to the first two-position two-way solenoid valve 601.
  • the valve core returns to the right position, G terminal. and H terminal are in disconnected state, the first hydraulic motor 602 and the first generator 603 stop working, and the accumulator starts the energy storage process of the next cycle. Therefore, in the case of small waves, the pressure of the high-pressure accumulator group 4 will never be higher than P2, and only the first hydraulic cylinder 101 is in the loading state.
  • the stroke and speed of the first hydraulic cylinder 101 also increase accordingly, and the flow rate input by the first hydraulic cylinder 101 to the high-pressure accumulator group 4 increases, and the first hydraulic cylinder 101 The flow rate input from cylinder 101 to the accumulator is large.
  • the first hydraulic motor 602 will continue to work. At this time, although the first hydraulic motor 602 is always on, the pressure of the high-pressure accumulator group 4 will continue to increase.
  • the second hysteresis comparator 503 starts to be in state 1, so a voltage signal is input to the first two-position three-way reversing valve 204, causing the valve core to move left, and the A terminal
  • terminal C is connected and terminal B is disconnected
  • the oil outlet of the second hydraulic cylinder 201 will be connected to the high-pressure accumulator group 4 and be in a loading state for effective work.
  • the second hydraulic cylinder 201 has achieved autonomous loading. As shown in Figure 5.
  • both the first hydraulic cylinder 101 and the second hydraulic cylinder 201 are in a loading state, and the sum of the flows of the first hydraulic cylinder 101 and the second hydraulic cylinder 201 into the high-pressure accumulator group 4 is greater than that of the first hydraulic motor 602 flow, the pressure of the high-pressure accumulator group 4 will continue to rise.
  • the fifth hysteresis comparator 506 begins to be in state 1, so a voltage signal is input to the second two-position two-way solenoid valve 701, so that The valve core moves to the left, the I end and the J end are in a connected state, and the high-pressure hydraulic cylinder in the high-pressure accumulator group 4 releases the impact to the second hydraulic motor 702 to drive the second generator 703 to work.
  • both the first hydraulic cylinder 101 and the second hydraulic cylinder 201 are in an effective work state, and the sum of the flows input by the two hydraulic cylinders into the high-pressure accumulator group 4 is less than the first hydraulic motor 602 and the second hydraulic motor 702 the sum of flows.
  • the second hydraulic motor 702 when the second hydraulic motor 702 is turned on, the pressure of the high-pressure accumulator group 4 will drop.
  • the fifth hysteresis comparator 506 returns to state 0, and no voltage signal is input to the second two-bit comparator.
  • the solenoid valve 701 Turn on the solenoid valve 701, and under the action of the return spring, the valve core returns to the right position, the I end and the J end are in a disconnected state, the second hydraulic motor 702 and the second generator 703 stop working, and the high-pressure accumulator group 4 The pressure begins to rise again from P3.
  • the pressure of the high-pressure accumulator group 4 will fluctuate within the range of P3 and P4, which is manifested in that the first hydraulic motor 602 works continuously and the second hydraulic motor 702 works intermittently.
  • the setting of P22 value needs to satisfy the condition of P2 ⁇ P22 ⁇ P4.
  • the movement stroke and speed of the first hydraulic cylinder 101 and the second hydraulic cylinder 201 increase accordingly, and the flow rate input to the high-pressure accumulator group 4 also changes accordingly. is larger.
  • the sum of the flow rates of the first hydraulic cylinder 101 and the second hydraulic cylinder 201 is greater than the sum of the flow rates of the first hydraulic motor 602 and the second hydraulic motor 702. Both the first hydraulic motor 602 and the second hydraulic motor 702 will will work continuously. At this time, although the first hydraulic motor 602 and the second hydraulic motor 702 are always on, the pressure of the high-pressure accumulator group 4 will continue to rise.
  • the third The hysteresis comparator 504 When the pressure of the high-pressure accumulator group 4 rises to P32, the third The hysteresis comparator 504 is initially in state 1, so a voltage signal is input to the second two-position three-way directional valve 304, causing the valve core to move to the left.
  • the D and F terminals are connected, the E terminal is disconnected, and the third hydraulic pressure
  • the oil outlet of the cylinder 301 will be connected to the high-pressure accumulator group and will be in a loading state to effectively perform work.
  • the third hydraulic cylinder 301 has also realized independent loading, as shown in Figure 6.
  • the first hydraulic cylinder 101, the second hydraulic cylinder 201 and the third hydraulic cylinder 301 flow into the high-pressure accumulator group.
  • the sum of the traffic of 4 is greater than the first
  • the sum of the flows of the hydraulic motor 602 and the second hydraulic motor 702, the pressure of the high-pressure accumulator group 4 will continue to rise.
  • the fourth hysteresis comparator 505 starts to be in state 1, so there is a voltage signal input Go to the third two-position two-way solenoid valve 801 to move the valve core to the left, the K end and the L end are in a connected state, and the high-pressure hydraulic cylinder of the high-pressure accumulator group 4 releases the impact to the third hydraulic motor 802 to drive the third generator 803 to work , as shown in Figure 7.
  • the first hydraulic cylinder 101, the second hydraulic cylinder 201 and the third hydraulic cylinder 301 are all in the effective power state, and the first hydraulic cylinder 101, the second hydraulic cylinder 201 and the third hydraulic cylinder 301 input the accumulator.
  • the sum of the flow rates is less than the sum of the flow rates of the first hydraulic motor 602 , the second hydraulic motor 702 and the third hydraulic motor 802 . Therefore, when the third hydraulic motor 802 is turned on, the pressure of the high-pressure accumulator group 4 will drop. When it drops to P5, the fourth hysteresis comparator 505 returns to state 0, and no voltage signal is input to the third bit 2. Turn on the solenoid valve 801, and under the action of the return spring, the valve core returns to the right position, the K end and the L end are in a disconnected state, the third hydraulic motor 802 and the third generator 803 stop working, and the high-pressure accumulator group 4 The pressure begins to rise again from P5.
  • the pressure of the high-pressure accumulator group 4 will fluctuate within the range of P5 and P6, which is manifested in that the first hydraulic motor 602 and the second hydraulic motor 702 work continuously, and the third hydraulic motor 802 works intermittently.
  • the setting of P32 value needs to satisfy the condition of P4 ⁇ P32 ⁇ P6.
  • the hydraulic load is automatically loaded step by step.
  • the valve core Under the action of the return spring, the valve core returns to the right position. Ends A and B are in a connected state, end C is disconnected, and the oil outlet of the second hydraulic cylinder 201 is also restored to the connection back to the oil tank.
  • the low-pressure oil circuit is in a follow-up state of ineffective work. Achieved autonomous reduction from level 2 load to level 1 load.
  • the pressure of the high-pressure accumulator group 4 will maintain a fluctuation between P1 and P2, which is manifested in that the first hydraulic motor 602 works intermittently, and the second hydraulic motor 702 and the third hydraulic motor 802 do not work. Among them, the setting of P21 value needs to satisfy the condition of P1 ⁇ P21 ⁇ P3.
  • the hydraulic load is automatically reduced step by step.
  • each hydraulic cylinder and hydraulic motor realizes the step-by-step automatic loading of the hydraulic load during the process from small waves to medium waves to large waves. It also describes the realization of the hydraulic load during the process from large waves to medium waves to small waves.
  • Automatic load shedding step by step each switch can only switch to the adjacent mode, and each hysteresis comparator is set with a lower limit threshold and an upper limit threshold, so that the hysteresis comparator will not immediately switch the reversing valve or Solenoid valve ensures smooth mode switching and high energy conversion efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

一种间接式波浪能装置液压负载分级控制系统及方法,系统包括第一液压缸组(1)、第二液压缸组(2)、第三液压缸组(3)、高压蓄能器组(4)、压力检测控制模块(5)、第一液压发电机组(6)、第二液压发电机组(7)和第三液压发电机组(8),压力检测控制模块(5)的检测端用于获取高压蓄能器组(4)的内部压力,并将内部压力与预先设定的压力级别进行比较,根据比较结果分别控制换向阀(204、304)和电磁阀(601、701、801)的通断。

Description

一种间接式波浪能装置液压负载分级控制系统及方法 技术领域:
本发明涉及波浪能装置液压发电控制技术领域,尤其涉及一种间接式波浪能装置液压负载分级控制系统及方法。
背景技术:
常规液压式的波浪能装置转换流程如下,在波浪的驱动下,吸波浮体带动与其安装在一起的液压缸做往复运动,液压缸在往复运动过程中将液压油泵入到高压蓄能器组,也即是将波浪能转换成液压能,称为一级能量转换。当蓄能器组的压力达到设定的压力时,启动控制阀组,释放蓄能器组中的高压液压油冲击液压马达,使其旋转,将液压能转换成旋转机械能,称为二级能量转换。由液压马达驱动与其同轴连接的发电机旋转发电,将旋转机械能转换成电能,称为三级能量转换。
波浪能装置的一级能量转换过程是一个机械振动过程,该过程中,不同波浪力下,都存在一个最优的波浪俘获效率,该效率对应存在一个最优液压负载,也即是液压缸的做功阻尼力,其大小为液压缸有效做功面积乘以蓄能器压力。在蓄能器压力设定的情况下,通过调节液压缸有效做功面积,也即是调节液压缸加载的数量,使一级能量转换效率达到最优。因此,如何使波浪能装置根据波浪的大小,自动的选择相应的液压负载,即自主选择有效做功的液压缸的数量,成了提高波浪能装置发电效率的关键因素。所谓有效做功的液压缸,也即是该条液压缸的出油口接入到高压蓄能器组中,无效做功的液压缸,是指液压缸的出油口接入到低压回路中,不参与做功。
当前,大多数波浪能装置调节液压负载大小主要是靠手动调节,通过人为的判断波浪大小,然后控制液压缸出油口的方向。让波浪能装置根据波浪大小自主调节液压负载大小的控制技术鲜有报道。有鉴于此,申请人于此前申请了发明专利“一种波浪能装置液压自动分级加载控制器”(申请号CN201610614272.X),该控制器需要通过额外增加多个液压设备来测量波浪功率,测量系统独立于能量转换系统之外,并且该控制器的控制精确程度与流量调节阀有关,现实操作中,流量调节阀很难做到精确调节流量,微小的振动都会导致流量调节阀流量-压力特性曲线发生变化,因此该系统的实际应用中效果并不理想。
发明内容:
针对上述问题,本发明提出一种间接式波浪能装置液压负载分级控制系统及方法,通过自身能量转换系统间接自动测量波浪的大小,并根据波浪的大小自主选择液压负载的大小,实现波浪能装置一级能量转换效率的提高,可操作性强。
为解决上述技术问题,本发明第一方面提供了一种间接式波浪能装置液压负载分级控制系统,包括第一液压缸组、第二液压缸组、第三液压缸组、高压蓄能器组、压力检测控制模块、第一液压发电机组、第二液压发电机组和第三液压发电机组;所述第一液压缸组的输出端与所述高压蓄能器组的输入端直连,所述第二液压缸组和所述第三液压缸组的输出端均分别通过独立的换向阀与所述高压蓄能器组的输入端以及回油箱连接,所述高压蓄能器组的输出端分别通过独立的电磁阀与所述第一液压发电机组、所述第二液压发电机组和所述第三液压发电机组连接,所述压力检测控制模块的检测端用于获取所述高压蓄能器组的内部压力,并将所述内部压力与预先设定的压力级别进行比较,根据比较结果分别控制所述换向阀和所述电磁阀的通断,所述换向阀用于控制所述第二液压缸组和所述第三液压缸组进入/退出有效做工状态,所述电磁阀用于控制所述第一液压发电机组、所述第二液压发电机组和所述第三液压发电机组进入/退出发电状态。
本发明第二方面提供了一种间接式波浪能装置液压负载分级控制方法,用于上述的间接式波浪能装置液压负载分级控制系统,其特征在于,包括:实时获取所述高压蓄能器组的内部压力P,设定逐渐增加的压力值P1、P2、P3、P4、P5和P6,以及逐渐增加的压力值P21、P22、P31和P32,其中,还需要满足如下的压力关系P1<P21<P3<P31<P5,P2<P22<P4<P32<P6;
所述控制方法包括第一模式、第二模式、第三模式、第四模式和第五模式,每个模式每次只能向相邻的模式进行变换;
第一模式,若P2≤P<P22,则触发所述第二液压缸组和所述第三液压缸组通过对应的所述换向阀连接到回油箱,连通所述第一液压发电机组对应的所述电磁阀,断开所述第二液压发电机组和所述第三液压发电机组对应的所述电磁阀,在P2≤P<P22触发后,有且仅有在P≤P1条件下,才允许断开所述第一液压发电机组对应的所述电磁阀;
第二模式,若P22≤P<P4,则触发所述第二液压缸组通过对应的所述换向阀连接到所述高压蓄能器组的输入端,所述第三液压缸组通过对应的所述换向阀连接到回油箱,连通所述第一液压发电机组对应的所述电磁阀,断开所述第二液压发电机组和所述第三液压发电机组对应的所述电磁阀,在P22≤P<P4触发后,有且仅有在P≤P21条件下,才允许控制所述第二液压缸组通过对应的所述换向阀连接到回油箱;
第三模式,若P4≤P<P32,则触发所述第二液压缸组通过对应的所述换向阀连接到所述高压蓄能器组的输入端,所述第三液压缸组通过对应的所述换向阀连接到回油箱,连通所述第一液压发电机组和所述第二液压发电机组对应的所述电磁阀,断开所述第三液压发电机组对应的所述电磁阀,在P4≤P<P32触发后,有且仅有在P≤P3条件下,才允许断开所述第 二液压发电机组对应的所述电磁阀;
第四模式,若P32≤P<P6,则触发所述第二液压缸组和所述第三液压缸组通过对应的所述换向阀连接到所述高压蓄能器组的输入端,连通所述第一液压发电机组和所述第二液压发电机组对应的所述电磁阀,断开所述第三液压发电机组对应的所述电磁阀,在P32≤P<P6触发后,有且仅有在P≤P31条件下,才允许控制所述第三液压缸组通过对应的所述换向阀连接到回油箱;
第五模式,若P≥P6,则触发所述第二液压缸组和所述第三液压缸组对应的所述换向阀连接到所述高压蓄能器组的输入端,连通所述第一液压发电机组、所述第二液压发电机组和所述第三液压发电机组对应的所述电磁阀,在P≥P6触发后,有且仅有在P≤P5条件下,才允许断开所述第三液压发电机组对应的所述电磁阀。
本发明的有益效果为:在波浪冲击瞬时变化过程中,可以进行自动加载全部液压负载,或者自动减载全部液压负载,使波浪能装置在全负载状态或在能量转换效率最优状态下运行,能够减小吸波浮体的运动幅度,从而降低吸波浮体与装置基体之间的碰撞概率,对波浪能装置进行保护。
附图说明
图1是本发明实施例1公开的间接式波浪能装置液压负载分级控制系统的结构示意图。
图2是本发明实施例2公开的间接式波浪能装置液压负载分级控制系统的结构示意图。
图3是滞回比较控制器的控制逻辑图。
图4是本发明实施例2公开的间接式波浪能装置液压负载分级控制系统在小浪况下的运行示意图。
图5是本发明实施例2公开的间接式波浪能装置液压负载分级控制系统在小浪况转中浪况下的运行示意图。
图6是本发明实施例2公开的间接式波浪能装置液压负载分级控制系统在中浪况转较大浪况的运行示意图。
图7是本发明实施例2公开的间接式波浪能装置液压负载分级控制系统在较大浪况下的运行示意图。
其中:1-第一液压缸组,2-第二液压缸组,3-第三液压缸组,4-高压蓄能器组,5-压力检测控制模块,6-第一液压发电机组,7-第二液压发电机组,8-第三液压发电机组,101-第一液压缸,102-第一单向阀,103-第二单向阀,201-第二液压缸,202-第三单向阀,203-第四单向阀,204-第一二位三通换向阀,301-第三液压缸,302-第五单向阀,303-第六单向阀,304-第 二二位三通换向阀,501-压力传感器,502-第一滞回比较器,503-第二滞回比较器,504-第三滞回比较器,505-第四滞回比较器,506-第五滞回比较器,601-第一二位二通电磁阀,602-第一液压马达,603-第一发电机,701-第二二位二通电磁阀,702-第二液压马达,703-第二发电机,801-第三二位二通电磁阀,802-第三液压马达,803-第三发电机。
具体实施方式:
为使本发明的目的、技术方案及优点更加清楚、明确,下面结合附图和具体实施方式对本发明的内容做进一步详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部内容。
实施例1
本实施例提出了一种间接式波浪能装置液压负载分级控制系统,本实施例以三级负载,即3根液压缸加减负载调节为例,如图1所示,包括第一液压缸组1、第二液压缸组2、第三液压缸组3、高压蓄能器组4、压力检测控制模块5、第一液压发电机组6、第二液压发电机组7和第三液压发电机组8;
第一液压缸组1的输出端与高压蓄能器组4的输入端直连,第二液压缸组2和第三液压缸组3的输出端均分别通过独立的换向阀与高压蓄能器组4的输入端以及回油箱连接,高压蓄能器组4的输出端分别通过独立的电磁阀与第一液压发电机组6、第二液压发电机组7和第三液压发电机组8连接,压力检测控制模块5的检测端用于获取高压蓄能器组4的内部压力,并将内部压力与预先设定的压力级别进行比较,根据比较结果分别控制换向阀和电磁阀的通断,换向阀用于控制第二液压缸组2和第三液压缸组3进入/退出有效做工状态,电磁阀用于控制第一液压发电机组6、第二液压发电机组7和第三液压发电机组8进入/退出发电状态。
在本实施例中,不对原有的液压能量转换系统进行大的变动,只增加换向阀和压力检测控制模块5,逻辑控制策略简单,易于实现,在进行设计时,可根据来波工况计算好发电机功率和液压马达排量,并为压力检测控制模块5设置好合适的起闭压力即可,实现波浪能装置液压负载级数间接自动测量波浪的大小,并根据波浪的大小自主调节液压负载的大小,能够提高波浪能装置的一级能量转换效率。
实施例2
本实施例提供又一种间接式波浪能装置液压负载分级控制系统,在实施例一的基础上,以下对第一液压缸组1、第二液压缸组2、第三液压缸组3、高压蓄能器组4、压力检测控制 模块5、第一液压发电机组6、第二液压发电机组7和第三液压发电机组8的连接关系进行进一步的说明。
如图2所示,第一液压缸组1包括第一液压缸101,第一液压缸101的输入端通过第一单向阀102与回油箱连接,第一液压缸101的输出端通过第二单向阀103与高压蓄能器组4的输出端连接,第二液压缸组2包括第二液压缸201,第二液压缸201的输入端通过第三单向阀202与回油箱连接,第二液压缸201的输出端通过第四单向阀203与第一二位三通换向阀204的A端连接,第一二位三通换向阀204的B端与回油箱连接,第一二位三通换向阀204的C端与高压蓄能器组4的输入端连接,第三液压缸组3包括第三液压缸301,第三液压缸301的输入端通过第五单向阀302与回油箱连接,第三液压缸301的输出端通过第六单向阀303与第二二位三通换向阀304的D端连接,第二二位三通换向阀304的E端与回油箱连接,第二二位三通换向阀304的F端与高压蓄能器组4的输入端连接。
第一液压发电机组6包括第一二位二通电磁阀601,第一二位二通电磁阀601的G端与高压蓄能器组4的输出端连接,第一二位二通电磁阀601的H端与第一液压马达602的输入端连接,第一二位二通电磁阀601的受控端与压力检测控制模块5的控制端连接,第一液压马达602的输出端与回油箱连接,第一液压马达602的输出轴与第一发电机603的输入轴连接。
第二液压发电机组7包括第二二位二通电磁阀701,第二二位二通电磁阀701的I端与高压蓄能器组4的输出端连接,第二二位二通电磁阀701的J端与第二液压马达702的输入端连接,第二二位二通电磁阀701的受控端与压力检测控制模块5的控制端连接,第二液压马达702的输出端与回油箱连接,第二液压马达702的输出轴与第二发电机703的输入轴连接。
第三液压发电机组8包括第三二位二通电磁阀801,第三二位二通电磁阀801的K端与高压蓄能器组4的输出端连接,第三二位二通电磁阀801的L端与第三液压马达802的输入端连接,第三二位二通电磁阀801的受控端与压力检测控制模块5的控制端连接,第三液压马达802的输出端与回油箱连接,第三液压马达802的输出轴与第三发电机803的输入轴连接。
压力检测控制模块5包括压力传感器501,压力传感器501的检测端安装在高压蓄能器组4的输出端,压力传感器501的控制端分别与第一滞回比较器502、第二滞回比较器503、第三滞回比较器504、第四滞回比较器505和第五滞回比较器506的输入端连接,第一滞回比较器502、第二滞回比较器503、第三滞回比较器504、第四滞回比较器505和第五滞回比较器506的输出端分别与第一二位二通电磁阀601、第一二位三通换向阀204、第二二位三通 换向阀304、第三二位二通电磁阀801和第二二位二通电磁阀701的受控端连接。
具体的,滞回比较控制器的控制逻辑图如图3所示。滞回比较控制器的控制逻辑图接收压力传感器的压力信号,初始状态下,处于0状态,没有电压信号输出,当压力逐渐上升至po时,输出电压信号,是为状态1,如果压力继续上升,将持续1状态;当压力下降但未至pc时,依然处于1状态;当压力下降至pc时,电压信号输出停止,处于0状态,并开始下一个循环。
实施例3
本实施例提供一种间接式波浪能装置液压负载分级控制方法,用于实施例一所述的间接式波浪能装置液压负载分级控制系统,其特征在于,包括:实时获取高压蓄能器组4的内部压力P,设定逐渐增加的压力值P1、P2、P3、P4、P5和P6,以及逐渐增加的压力值P21、P22、P31和P32,其中,还需要满足如下的压力关系P1<P21<P3<P31<P5,P2<P22<P4<P32<P6。
控制方法包括第一模式、第二模式、第三模式、第四模式和第五模式,每个模式每次只能向相邻的模式进行变换;
第一模式,若P2≤P<P22,则触发第二液压缸组2和第三液压缸组3通过对应的换向阀连接到回油箱,连通第一液压发电机组6对应的电磁阀,断开第二液压发电机组7和第三液压发电机组8对应的电磁阀,在P2≤P<P22触发后,有且仅有在P≤P1条件下,才允许断开第一液压发电机组6对应的电磁阀;
第二模式,若P22≤P<P4,则触发第二液压缸组2通过对应的换向阀连接到高压蓄能器组4的输入端,第三液压缸组3通过对应的换向阀连接到回油箱,连通第一液压发电机组6对应的电磁阀,断开第二液压发电机组7和第三液压发电机组8对应的电磁阀,在P22≤P<P4触发后,有且仅有在P≤P21条件下,才允许控制第二液压缸组2通过对应的换向阀连接到回油箱;
第三模式,若P4≤P<P32,则触发第二液压缸组2通过对应的换向阀连接到高压蓄能器组4的输入端,第三液压缸组3通过对应的换向阀连接到回油箱,连通第一液压发电机组6和第二液压发电机组7对应的电磁阀,断开第三液压发电机组8对应的电磁阀,在P4≤P<P32触发后,有且仅有在P≤P3条件下,才允许断开第二液压发电机组7对应的电磁阀;
第四模式,若P32≤P<P6,则触发第二液压缸组2和第三液压缸组3通过对应的换向阀连接到高压蓄能器组4的输入端,连通第一液压发电机组6和第二液压发电机组7对应的电磁阀,断开第三液压发电机组8对应的电磁阀,在P32≤P<P6触发后,有且仅有在P≤P31条件下,才允许控制第三液压缸组3通过对应的换向阀连接到回油箱;
第五模式,若P≥P6,则触发第二液压缸组2和第三液压缸组3对应的换向阀连接到高压蓄能器组4的输入端,连通第一液压发电机组6、第二液压发电机组7和第三液压发电机组8对应的电磁阀,在P≥P6触发后,有且仅有在P≤P5条件下,才允许断开第三液压发电机组8对应的电磁阀。
在本实施例中,通过测量压蓄能器组4的内部压力P,间接测量了波浪的大小,并根据波浪的大小自主调节液压负载的大小,能够提高波浪能装置的一级能量转换效率。并且,调节过程不频繁开启关闭阀门。
在本实施例中,在波浪冲击瞬时变化过程中,可以进行自动加载全部液压负载,或者自动减载全部液压负载,使波浪能装置在全负载状态或在能量转换效率最优状态下运行,能够减小吸波浮体的运动幅度,从而降低吸波浮体与装置基体之间的碰撞概率,对波浪能装置进行保护。
另外,根据本实施例所描述的方法可推广至进行更多液压缸加减负载的控制,将液压负载分为更多级数,从而自适应多中海洋中的波况。
实施例4
本实施例提供又一种间接式波浪能装置液压负载分级控制方法,用于实施例二所述的间接式波浪能装置液压负载分级控制系统,包括:通过压力传感器501实时获取高压蓄能器组4的内部压力P,设定逐渐增加的压力值P1、P2、P3、P4、P5和P6,以及逐渐增加的压力值P21、P22、P31和P32,其中,还需要满足如下的压力关系P1<P21<P3<P31<P5,P2<P22<P4<P32<P6;P1和P2分别为第一滞回比较器502的下限阈值和上限阈值,P21和P22分别为第二滞回比较器503的下限阈值和上限阈值,P31和P32分别为第三滞回比较器504的下限阈值和上限阈值,P5和P6分别为第四滞回比较器505的下限阈值和上限阈值,P3和P4分别为第五滞回比较器506的下限阈值和上限阈值;
控制方法包括第一模式、第二模式、第三模式、第四模式和第五模式,每个模式每次只能向相邻的模式进行变换;
第一模式,若P2≤P<P22,则触发第一滞回比较器502控制第一二位二通电磁阀601的G端和H端进行连通,在P2≤P<P22触发后,有且仅有在P≤P1条件下,才允许第一滞回比较器502断开第一二位二通电磁阀601G端和H端间的连接;
第二模式,若P22≤P<P4,则触发第二滞回比较器503控制第一二位三通换向阀204的A端和C端进行连通,在P22≤P<P4触发后,有且仅有在P≤P21条件下,才允许第二滞回比较器503断开第一二位三通换向阀204A端和C端间的连接;
第三模式,若P4≤P<P32,则触发第五滞回比较器506控制第二二位二通电磁阀701的I端和J端进行连通,在P4≤P<P32触发后,有且仅有在P≤P3条件下,才允许第五滞回比较器506断开第二二位二通电磁阀701I端和J端间的连接;
第四模式,若P32≤P<P6,则触发第三滞回比较器504控制第二二位三通换向阀304的E端和F进行连通,在P32≤P<P6触发后,有且仅有在P≤P31条件下,才允许控制第三滞回比较器504断开第二二位三通换向阀304E端和F间的连接;
第五模式,若P≥P6,则触发第四滞回比较器505控制第三二位二通电磁阀801的K端和L端进行连通,在P≥P6触发后,有且仅有在P≤P5条件下,才允许第四滞回比较器505断开第三二位二通电磁阀801K端和L端间的连接。
在断开第一二位二通电磁阀601后,系统中仅有第一液压缸组1参与运行,此时系统以初始模式运行。初始模式下,设置第一液压缸101的出油口直接连接高压蓄能器组4,进行正常的蓄能稳压过程,处于有效做功的加载状态。第二液压缸201和第三液压缸301的出油口连接分别联通第一二位三通换向阀204的A端和第二二位三通换向阀304的D端,第一二位三通换向阀204和第二二位三通换向阀304阀芯均处于右位,A、B连通,D、E连通,第二液压缸201和第三液压缸301的出油口连接回油箱的低压油路,处于无效做功的随动状态。同时,在全模式下第一液压缸组1始终处于运行,即不受控。
具体的,在小波浪情况,第一液压缸101处于加载状态,第二液压缸组2、第三液压缸组3处于随动状态,由于受小波浪驱动,第一液压缸101运动的行程和速度相对较小,第一液压缸101输入到高压蓄能器组4的流量较小,高压蓄能器组4的压力逐渐增大,利用压力传感器501测量到压力信号,当高压蓄能器组4的压力上升至P2时,第一滞回比较器502开始处于状态1,因此有电压信号输入到第一二位二通电磁阀601,使阀芯左移,G端和H端处于连通状态,高压蓄能器组4中的高压液压缸释放冲击第一液压马达602带动第一发电机603工作,如图4所示。由于在小浪情况下,第一液压缸101的流量小于第一液压马达602的流量,即高压蓄能器组4输入的流量小于输出的流量,高压蓄能器组4的压力会立即下降,当压力下降至P1时,第一滞回比较器502恢复至状态0,没有电压信号输入到第一二位二通电磁阀601,在复位弹簧的作用下,使阀芯恢复至右位,G端和H端处于断开状态,第一液压马达602和第一发电机603停止工作,蓄能器开始下一个循环的蓄能过程。因此在小浪情况下,高压蓄能器组4的压力始终不会高于P2,并只有第一液压缸101处于加载状态。
具体的,在波浪逐渐加大,属于中浪状态时,第一液压缸101的行程和速度也相应加大,第一液压缸101输入到高压蓄能器组4的流量加大,第一液压缸101输入到蓄能器的流量大 于第一液压马达602的流量,第一液压马达602将会连续工作,此时尽管第一液压马达602一直处于开启状态,但高压蓄能器组4的压力还会继续升高。当高压蓄能器组4的压力上升至P22,第二滞回比较器503开始处于状态1,因此有电压信号输入到第一二位三通换向阀204,使阀芯左移,A端和C端处于连通状态,B端断开,第二液压缸201的出油口将连通到高压蓄能器组4,处于有效做功的加载状态,至此,第二液压缸201实现了自主加载,如图5所示。
具体的,此时第一液压缸101和第二液压缸201都处于加载状态,第一液压缸101和第二液压缸201流入到高压蓄能器组4的流量之和大于第一液压马达602的流量,高压蓄能器组4的压力会继续上升,当压力达到P4时,第五滞回比较器506开始处于状态1,因此有电压信号输入到第二二位二通电磁阀701,使阀芯左移,I端和J端处于连通状态,高压蓄能器组4中的高压液压缸释放冲击第二液压马达702带动第二发电机703工作。中浪情况时,第一液压缸101和第二液压缸201都处于了有效做功状态,两个液压缸输入高压蓄能器组4的流量之和小于第一液压马达602和第二液压马达702的流量之和。因此,当第二液压马达702开启后,高压蓄能器组4的压力将会下降,下降到P3时,第五滞回比较器506恢复至状态0,没有电压信号输入到第二二位二通电磁阀701,在复位弹簧的作用下,使阀芯恢复至右位,I端和J端处于断开状态,第二液压马达702和第二发电机703停止工作,高压蓄能器组4的压力又开始从P3往上升。在此过程中,高压蓄能器组4的压力将会在P3和P4的范围内波动,表现为第一液压马达602连续工作,第二液压马达702间断工作。其中,P22值的设定需满足P2<P22<P4的条件。
具体的,当来波继续增大时,处于较大浪况时,第一液压缸101和第二液压缸201的运动行程和速度相应加大,输入到高压蓄能器组4的流量也相应变得更大,第一液压缸101和第二液压缸201的流量之和大于了第一液压马达602和第二液压马达702的流量之和,第一液压马达602和第二液压马达702都将会连续工作。此时尽管第一液压马达602和第二液压马达702一直处于开启状态,但高压蓄能器组4的压力还会继续升高,当高压蓄能器组4的压力上升至P32时,第三滞回比较器504开始处于状态1,因此有电压信号输入到第二二位三通换向阀304,使阀芯左移,D端和F端处于连通状态,E端断开,第三液压缸301的出油口将连通到高压蓄能器组,处于有效做功的加载状态,至此,第三液压缸301也实现了自主加载,如图6所示。
具体的,第一液压缸101、第二液压缸201和第三液压缸301都处于加载状态时,第一液压缸101、第二液压缸201和第三液压缸301流入到高压蓄能器组4的流量之和大于第一 液压马达602和第二液压马达702的流量之和,高压蓄能器组4的压力还会继续上升,当压力达到P6时,第四滞回比较器505开始处于状态1,因此有电压信号输入到第三二位二通电磁阀801,使阀芯左移,K端和L端处于连通状态,高压蓄能器组4的高压液压缸释放冲击第三液压马达802带动第三发电机803工作,如图7所示。较大浪情况时,第一液压缸101、第二液压缸201和第三液压缸301全都处于了有效做功状态,第一液压缸101、第二液压缸201和第三液压缸301输入蓄能器的流量之和小于第一液压马达602、第二液压马达702和第三液压马达802的流量之和。因此,当第三液压马达802开启后,高压蓄能器组4的压力将会下降,下降到P5时,第四滞回比较器505恢复至状态0,没有电压信号输入到第三二位二通电磁阀801,在复位弹簧的作用下,使阀芯恢复至右位,K端和L端处于断开状态,第三液压马达802和第三发电机803停止工作,高压蓄能器组4的压力又开始从P5往上升。在此过程中,高压蓄能器组4的压力将会在P5和P6的范围内波动,表现为第一液压马达602和第二液压马达702连续工作,第三液压马达802间断工作。其中,P32值的设定需满足P4<P32<P6的条件。
上述从小浪到中浪到较大浪过程中,实现了液压负载逐级自动加载。
从较大浪况转至中浪时,第一液压缸101、第二液压缸201和第三液压缸301的运动行程和速度将会减小,当三个液压缸输入到蓄能器的流量之和小于第一液压马达602和第二液压马达702的流量之和时,高压蓄能器组4的压力将不能维持在P5和P6之间,在第三液压缸301停止工作后高压蓄能器组4压力将会继续降低,当压力降至P31时,第三滞回比较器504开始处于状态0,因此没有电压信号输入到第二二位三通换向阀304,在复位弹簧的作用下,使阀芯恢复至右位,D端和E端处于连通状态,F端断开,第三液压缸301的出油口恢复至连通回油箱的低压油路,处于无效做功的随动状态。实现了由3级负载自主减至2级负载。蓄能器的压力将维持在P3和P4之间波动,表现为第一液压马达602连续工作,第二液压马达702间断工作,第三液压马达802不工作。其中,P31值的设定需满足P3<P31<P5的条件。
从中浪转至小浪时,第一液压缸101和第二液压缸201的运动行程和速度将会继续减小,第一液压缸101和第二液压缸201输入到高压蓄能器组4的流量之和小于第一液压马达602流量时,高压蓄能器组4的压力将不能维持在P3和P4之间,在第二液压马达702停止工作后,蓄能器的压力还会持续降低,当压力下降至P21,此时滞回比较控制器2开始处于状态0,因此没有电压信号输入到第一二位三通换向阀204,在复位弹簧的作用下,使阀芯恢复至右位,A端和B端处于连通状态,C端断开,第二液压缸201的出油口也恢复至连通回油箱的 低压油路,处于无效做功的随动状态。实现了由2级负载自主减至1级负载。高压蓄能器组4的压力将维持在P1和P2之间波动,表现为第一液压马达602间断工作,第二液压马达702和第三液压马达802不工作。其中,P21值的设定需满足P1<P21<P3的条件。
上述从较大浪到中浪到小浪过程中,实现了液压负载逐级自动减载。
上述实施例描述了各液压缸和液压马达从小浪到中浪到较大浪过程中,实现了液压负载逐级自动加载,同时也描述了从较大浪到中浪到小浪过程中,实现了液压负载逐级自动减载,每次切换只能向相邻的模式切换,并且每个滞回比较器均设置有一个下限阈值和一个上限阈值,令到滞回比较器不会马上切换换向阀或电磁阀,保证模式的切换平顺,能量转换效率高。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (8)

  1. 一种间接式波浪能装置液压负载分级控制系统,其特征在于,包括第一液压缸组、第二液压缸组、第三液压缸组、高压蓄能器组、压力检测控制模块、第一液压发电机组、第二液压发电机组和第三液压发电机组;
    所述第一液压缸组的输出端与所述高压蓄能器组的输入端直连,所述第二液压缸组和所述第三液压缸组的输出端均分别通过独立的换向阀与所述高压蓄能器组的输入端以及回油箱连接,所述高压蓄能器组的输出端分别通过独立的电磁阀与所述第一液压发电机组、所述第二液压发电机组和所述第三液压发电机组连接,所述压力检测控制模块的检测端用于获取所述高压蓄能器组的内部压力,并将所述内部压力与预先设定的压力级别进行比较,根据比较结果分别控制所述换向阀和所述电磁阀的通断,所述换向阀用于控制所述第二液压缸组和所述第三液压缸组进入/退出有效做工状态,所述电磁阀用于控制所述第一液压发电机组、所述第二液压发电机组和所述第三液压发电机组进入/退出发电状态。
  2. 如权利要求1所述的间接式波浪能装置液压负载分级控制系统,其特征在于,所述第一液压缸组包括第一液压缸,所述第一液压缸的输入端通过第一单向阀与回油箱连接,所述第一液压缸的输出端通过第二单向阀与所述高压蓄能器组的输出端连接,所述第二液压缸组包括第二液压缸,所述第二液压缸的输入端通过第三单向阀与回油箱连接,所述第二液压缸的输出端通过第四单向阀与第一二位三通换向阀的A端连接,所述第一二位三通换向阀的B端与回油箱连接,所述第一二位三通换向阀的C端与所述高压蓄能器组的输入端连接,所述第三液压缸组包括第三液压缸,所述第三液压缸的输入端通过第五单向阀与回油箱连接,所述第三液压缸的输出端通过第六单向阀与第二二位三通换向阀的D端连接,所述第二二位三通换向阀的E端与回油箱连接,所述第二二位三通换向阀的F端与所述高压蓄能器组的输入端连接。
  3. 如权利要求2所述的间接式波浪能装置液压负载分级控制系统,其特征在于,所述第一液压发电机组包括第一二位二通电磁阀,所述第一二位二通电磁阀的G端与所述高压蓄能器组的输出端连接,所述第一二位二通电磁阀的H端与第一液压马达的输入端连接,所述第一二位二通电磁阀的受控端与所述压力检测控制模块的控制端连接,所述第一液压马达的输出端与回油箱连接,所述第一液压马达的输出轴与第一发电机的输入轴连接。
  4. 如权利要求3所述的间接式波浪能装置液压负载分级控制系统,其特征在于,所述第二液压发电机组包括第二二位二通电磁阀,所述第二二位二通电磁阀的I端与所述高压蓄能器组的输出端连接,所述第二二位二通电磁阀的J端与第二液压马达的输入端连接,所述第二二 位二通电磁阀的受控端与所述压力检测控制模块的控制端连接,所述第二液压马达的输出端与回油箱连接,所述第二液压马达的输出轴与第二发电机的输入轴连接。
  5. 如权利要求4所述的间接式波浪能装置液压负载分级控制系统,其特征在于,所述第三液压发电机组包括第三二位二通电磁阀,所述第三二位二通电磁阀的K端与所述高压蓄能器组的输出端连接,所述第三二位二通电磁阀的L端与第三液压马达的输入端连接,所述第三二位二通电磁阀的受控端与所述压力检测控制模块的控制端连接,所述第三液压马达的输出端与回油箱连接,所述第三液压马达的输出轴与第三发电机的输入轴连接。
  6. 如权利要求5所述的间接式波浪能装置液压负载分级控制系统,其特征在于,所述压力检测控制模块包括压力传感器,所述压力传感器的检测端安装在所述高压蓄能器组的输出端,所述压力传感器的控制端分别与第一滞回比较器、第二滞回比较器、第三滞回比较器、第四滞回比较器和第五滞回比较器的输入端连接,所述第一滞回比较器、所述第二滞回比较器、所述第三滞回比较器、所述第四滞回比较器和所述第五滞回比较器的输出端分别与所述第一二位二通电磁阀、所述第一二位三通换向阀、所述第二二位三通换向阀、所述第三二位二通电磁阀和所述第二二位二通电磁阀的受控端连接。
  7. 一种间接式波浪能装置液压负载分级控制方法,用于权利要求1所述的间接式波浪能装置液压负载分级控制系统,其特征在于,包括:实时获取所述高压蓄能器组的内部压力P,设定逐渐增加的压力值P1、P2、P3、P4、P5和P6,以及逐渐增加的压力值P21、P22、P31和P32,其中,还需要满足如下的压力关系P1<P21<P3<P31<P5,P2<P22<P4<P32<P6;
    所述控制方法包括第一模式、第二模式、第三模式、第四模式和第五模式,每个模式每次只能向相邻的模式进行变换;
    第一模式,若P2≤P<P22,则触发所述第二液压缸组和所述第三液压缸组通过对应的所述换向阀连接到回油箱,连通所述第一液压发电机组对应的所述电磁阀,断开所述第二液压发电机组和所述第三液压发电机组对应的所述电磁阀,在P2≤P<P22触发后,有且仅有在P≤P1条件下,才允许断开所述第一液压发电机组对应的所述电磁阀;
    第二模式,若P22≤P<P4,则触发所述第二液压缸组通过对应的所述换向阀连接到所述高压蓄能器组的输入端,所述第三液压缸组通过对应的所述换向阀连接到回油箱,连通所述第一液压发电机组对应的所述电磁阀,断开所述第二液压发电机组和所述第三液压发电机组对应的所述电磁阀,在P22≤P<P4触发后,有且仅有在P≤P21条件下,才允许控制所述第二液压缸组通过对应的所述换向阀连接到回油箱;
    第三模式,若P4≤P<P32,则触发所述第二液压缸组通过对应的所述换向阀连接到所述高压 蓄能器组的输入端,所述第三液压缸组通过对应的所述换向阀连接到回油箱,连通所述第一液压发电机组和所述第二液压发电机组对应的所述电磁阀,断开所述第三液压发电机组对应的所述电磁阀,在P4≤P<P32触发后,有且仅有在P≤P3条件下,才允许断开所述第二液压发电机组对应的所述电磁阀;
    第四模式,若P32≤P<P6,则触发所述第二液压缸组和所述第三液压缸组通过对应的所述换向阀连接到所述高压蓄能器组的输入端,连通所述第一液压发电机组和所述第二液压发电机组对应的所述电磁阀,断开所述第三液压发电机组对应的所述电磁阀,在P32≤P<P6触发后,有且仅有在P≤P31条件下,才允许控制所述第三液压缸组通过对应的所述换向阀连接到回油箱;
    第五模式,若P≥P6,则触发所述第二液压缸组和所述第三液压缸组对应的所述换向阀连接到所述高压蓄能器组的输入端,连通所述第一液压发电机组、所述第二液压发电机组和所述第三液压发电机组对应的所述电磁阀,在P≥P6触发后,有且仅有在P≤P5条件下,才允许断开所述第三液压发电机组对应的所述电磁阀。
  8. 一种间接式波浪能装置液压负载分级控制方法,用于权利要求6所述的间接式波浪能装置液压负载分级控制系统,其特征在于,包括:通过所述压力传感器实时获取所述高压蓄能器组的内部压力P,设定逐渐增加的压力值P1、P2、P3、P4、P5和P6,以及逐渐增加的压力值P21、P22、P31和P32,其中,还需要满足如下的压力关系P1<P21<P3<P31<P5,P2<P22<P4<P32<P6;P1和P2分别为所述第一滞回比较器的下限阈值和上限阈值,P21和P22分别为所述第二滞回比较器的下限阈值和上限阈值,P31和P32分别为所述第三滞回比较器的下限阈值和上限阈值,P5和P6分别为所述第四滞回比较器的下限阈值和上限阈值,P3和P4分别为所述第五滞回比较器的下限阈值和上限阈值;
    所述控制方法包括第一模式、第二模式、第三模式、第四模式和第五模式,每个模式每次只能向相邻的模式进行变换;
    第一模式,若P2≤P<P22,则触发所述第一滞回比较器控制所述第一二位二通电磁阀的G端和H端进行连通,在P2≤P<P22触发后,有且仅有在P≤P1条件下,才允许所述第一滞回比较器断开所述第一二位二通电磁阀G端和H端间的连接;
    第二模式,若P22≤P<P4,则触发所述第二滞回比较器控制所述第一二位三通换向阀的A端和C端进行连通,在P22≤P<P4触发后,有且仅有在P≤P21条件下,才允许所述第二滞回比较器断开所述第一二位三通换向阀A端和C端间的连接;
    第三模式,若P4≤P<P32,则触发所述第五滞回比较器控制所述第二二位二通电磁阀的I端 和J端进行连通,在P4≤P<P32触发后,有且仅有在P≤P3条件下,才允许所述第五滞回比较器断开所述第二二位二通电磁阀I端和J端间的连接;
    第四模式,若P32≤P<P6,则触发所述第三滞回比较器控制所述第二二位三通换向阀的E端和F进行连通,在P32≤P<P6触发后,有且仅有在P≤P31条件下,才允许控制所述第三滞回比较器断开所述第二二位三通换向阀E端和F间的连接;
    第五模式,若P≥P6,则触发所述第四滞回比较器控制所述第三二位二通电磁阀的K端和L端进行连通,在P≥P6触发后,有且仅有在P≤P5条件下,才允许所述第四滞回比较器断开所述第三二位二通电磁阀K端和L端间的连接。
PCT/CN2023/091531 2022-06-06 2023-04-28 一种间接式波浪能装置液压负载分级控制系统及方法 WO2023179803A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2023238513A AU2023238513B2 (en) 2022-06-06 2023-04-28 Indirect hydraulic load hierarchical control system and method for wave energy device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210634972.0A CN115095557A (zh) 2022-06-06 2022-06-06 一种间接式波浪能装置液压负载分级控制系统及方法
CN202210634972.0 2022-06-06

Publications (1)

Publication Number Publication Date
WO2023179803A1 true WO2023179803A1 (zh) 2023-09-28

Family

ID=83288014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091531 WO2023179803A1 (zh) 2022-06-06 2023-04-28 一种间接式波浪能装置液压负载分级控制系统及方法

Country Status (3)

Country Link
CN (1) CN115095557A (zh)
AU (1) AU2023238513B2 (zh)
WO (1) WO2023179803A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115095557A (zh) * 2022-06-06 2022-09-23 中国科学院广州能源研究所 一种间接式波浪能装置液压负载分级控制系统及方法
CN116292486B (zh) * 2023-05-16 2024-04-02 国家海洋技术中心 波浪能装置液压回路及波浪能发电液压系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588378A (zh) * 2012-02-22 2012-07-18 浙江大学 一种用于波浪能发电的液压缸
WO2015163641A1 (ko) * 2014-04-24 2015-10-29 울산대학교 산학협력단 슬라이딩 방식의 파력발전기
CN106194858A (zh) * 2016-07-28 2016-12-07 中国科学院广州能源研究所 一种波浪能装置液压自动分级加载控制器
CN106321334A (zh) * 2016-06-16 2017-01-11 浙江大学 液压驱动波浪能发电装置
CN206159140U (zh) * 2016-10-19 2017-05-10 山东大学 一种用于波浪能发电装置的液压控制系统
CN115095557A (zh) * 2022-06-06 2022-09-23 中国科学院广州能源研究所 一种间接式波浪能装置液压负载分级控制系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588378A (zh) * 2012-02-22 2012-07-18 浙江大学 一种用于波浪能发电的液压缸
WO2015163641A1 (ko) * 2014-04-24 2015-10-29 울산대학교 산학협력단 슬라이딩 방식의 파력발전기
CN106321334A (zh) * 2016-06-16 2017-01-11 浙江大学 液压驱动波浪能发电装置
CN106194858A (zh) * 2016-07-28 2016-12-07 中国科学院广州能源研究所 一种波浪能装置液压自动分级加载控制器
CN206159140U (zh) * 2016-10-19 2017-05-10 山东大学 一种用于波浪能发电装置的液压控制系统
CN115095557A (zh) * 2022-06-06 2022-09-23 中国科学院广州能源研究所 一种间接式波浪能装置液压负载分级控制系统及方法

Also Published As

Publication number Publication date
AU2023238513B2 (en) 2024-06-20
AU2023238513A1 (en) 2024-03-14
CN115095557A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2023179803A1 (zh) 一种间接式波浪能装置液压负载分级控制系统及方法
CN108425893B (zh) 一种伺服电机驱动双变量泵的分布式直驱挖掘机液压系统
CN101435451B (zh) 一种液压挖掘机动臂势能回收方法及装置
CN102296665B (zh) 一种搭载负载敏感主阀与正流量泵的挖掘机液压系统
CN109980934A (zh) 基于耦合电感的高频高变比双向dc/dc变换器
CN102518609B (zh) 高速冲床液压系统
CN103089527B (zh) 波浪能发电系统和控制方法
CN112682561B (zh) 高速开关电磁阀的驱动控制系统及控制方法
CN101713372B (zh) 基于液压传动双行程做功的波浪能量吸收装置
CN108506251A (zh) 非对称泵控非对称液压缸的电动静液作动器
CN202131631U (zh) 一种液压挖掘机发动机的节能控制装置
CN108488120B (zh) 一种伺服电机驱动单变量泵的分布式直驱挖掘机液压系统
EP3420237A1 (en) Hydraulic fluid power transmission
CN103397677B (zh) 基于液压变压器的液压挖掘机动臂回路及其控制方法
CN208330867U (zh) 一种伺服电机驱动双变量泵的分布式直驱挖掘机液压系统
CN103850286B (zh) 一种基于定量泵的电驱动液压挖掘机负流量系统
CN114458663B (zh) 基于液压打桩锤的能量控制方法
CN103851037A (zh) 一种多压力源节能液压站
CN214743136U (zh) 一种超级电容储能型二次调节流量耦联系统
CN203430757U (zh) 一种恒压力数字变量泵
CN209892555U (zh) 一种基于液压缸负负载回油腔的双向调速液压控制系统
CN202381245U (zh) 一种连续提供动力的波浪发电储能机构
CN102635491B (zh) 水轮机协联调节方法
CN208330872U (zh) 一种伺服电机驱动单变量泵的分布式直驱挖掘机液压系统
Gaspar et al. Pump and gas accumulator based phase control of wave energy converters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024505591

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18685233

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023238513

Country of ref document: AU

Ref document number: AU2023238513

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2023238513

Country of ref document: AU

Date of ref document: 20230428

Kind code of ref document: A