WO2023179735A1 - 显示组件及电子设备 - Google Patents

显示组件及电子设备 Download PDF

Info

Publication number
WO2023179735A1
WO2023179735A1 PCT/CN2023/083497 CN2023083497W WO2023179735A1 WO 2023179735 A1 WO2023179735 A1 WO 2023179735A1 CN 2023083497 W CN2023083497 W CN 2023083497W WO 2023179735 A1 WO2023179735 A1 WO 2023179735A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
sub
segment
section
component
Prior art date
Application number
PCT/CN2023/083497
Other languages
English (en)
French (fr)
Inventor
王彦欣
黄波
查鹏
熊宇
于卫东
吕仁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023179735A1 publication Critical patent/WO2023179735A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20954Modifications to facilitate cooling, ventilating, or heating for display panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present application relates to the technical field of foldable devices, and in particular to a display component and an electronic device.
  • This application provides a display component and electronic device with excellent heat dissipation effect.
  • an embodiment of the present application provides a display assembly.
  • the display assembly has a flattened state and a closed state.
  • the display assembly includes a screen and a graphene component.
  • the screen includes a bent portion and a bent portion located on the bent portion.
  • the first sub-portion and the second sub-portion on both sides of the bent portion are in the flattened state, and the first sub-portion, the bent portion and the second sub-portion are coplanar, and in the closed state
  • at least part of the graphene component is located on one side of the bending part, and both ends of the graphene component respectively extend to the third
  • the graphene component has elastic stretchability.
  • the screen is a bendable structure, and during the process of relative folding or relative expansion of the first sub-part and the second sub-part, the bending part deforms.
  • the screen may include a display module and a support plate.
  • the display module is a flexible display screen.
  • the support plate is located below the display module and is used to support the display module and increase the structural rigidity of the display module.
  • the screen includes a display surface and a back surface.
  • the display surface refers to the surface on which the screen displays an operation interface or picture.
  • the back surface refers to the surface of the screen that is opposite to the back surface.
  • the display surface is the surface of the display module away from the support plate, and the back surface refers to the surface of the support plate away from the display module.
  • the graphene component has good thermal conductivity, and the graphene component can quickly transfer heat from high-temperature locations to low-temperature locations in the environment.
  • the graphene component is located on a side of the support plate away from the display module.
  • the graphene component is disposed closely against the support plate in the screen.
  • the display module, the support plate and the graphene component are stacked in sequence along the first direction.
  • At least part of the graphene component is located on one side of the bent portion, and both ends of the graphene component extend to one side of the first sub-portion and the second sub-portion respectively, so that the heat can transmitted in the second direction.
  • the graphene component can be expanded to a flat state, the graphene component can also be folded to a closed state, the graphene component can also be expanded or folded to an intermediate state, and the intermediate state can be between the flat state and the closed state. any state. Since the graphene part has elastic stretchability, the graphene part has a bendable structure, and the graphene part The pieces can move with the screen. When the display component is in a flattened state, the graphene component is in a flattened state; when the display component is in a closed state, the graphene component is in a closed state. When the graphene component is directly switched between the flat state and the closed state, it can be flexibly extended or shortened without breaking.
  • the orthographic projection of the graphene component on the screen covers the entire or most of the screen. In one embodiment, the orthographic projection of the graphene component on the screen covers part of the screen. It can be understood that the larger the orthographic projection area of the graphene component on the screen, the better the heat dissipation effect of the graphene component on the display assembly.
  • the arrangement of the graphene component can not only dissipate heat from the first sub-part and the second sub-part itself, but also achieve heat transfer between the first sub-part and the second sub-part,
  • the heat in the high-heating area in the display assembly is evenly conducted and distributed to every corner of the entire body.
  • the heat in the high-heating area is conducted to the low-heating area to effectively balance the heat of the entire machine.
  • the heat dissipation effect, and the elastic stretch performance of the graphene component ensures that when the graphene component switches between the flat state and the closed state, the graphene component maintains structural integrity and avoids being pulled and broken, resulting in failure of the thermal conductivity function. .
  • the graphene component includes a connected first elastic segment and a first graphene segment, the first elastic segment is located on one side of the first sub-part and can be opposite to the first sub-part.
  • the first sub-portion is stretched, the first graphene segment is located on one side of the bending portion, and both ends of the first graphene segment extend to the first sub-portion and the second sub-portion respectively.
  • On one side of the portion at least part of the first elastic segment is fixed relative to the first sub-portion, and the elongation rate of the first elastic segment is greater than the elongation rate of the first graphene segment.
  • part of the first elastic segment is fixed relative to the first sub-part means that the relative positional relationship between part of the first elastic segment and the first sub-part remains unchanged.
  • Part of the first elastic segment can move accordingly.
  • the first elastic segment when the graphene component is in a flattened state, the first elastic segment is located on a side of the first graphene segment close to the first sub-section along the second direction, and part of The first elastic segment is fixedly connected to the first graphene segment.
  • the length of the graphene component extends from L 1 to L 2 with an elongation amount of ⁇ L, and the graphene component transitions from the flattened state to the closed state.
  • the elongation of the state is:
  • the length L 1 of the graphene component refers to the length of the graphene component in the second direction when the graphene component is in a flat state;
  • the length L 2 of the graphene component refers to When the graphene component is in a closed state, the stretched length of the graphene component is the distance between the two ends of the graphene component away from the bent portion along the plate surface of the graphene component, the The length L 3 of the graphene component refers to the length of the arc-shaped portion of the graphene component located on the side corresponding to the bending portion.
  • the calculation method of the elongation of the first graphene segment is the same as the calculation method of the elongation of the graphene component.
  • the difference is that the length L 1 of the first graphene segment refers to the When the graphene component is in a flat state, the length of the first graphene segment in the second direction; the length L 2 of the first graphene segment refers to the length of the first graphene segment when the graphene component is in a closed state.
  • the distance between the two ends of the first graphene segment away from the bending part along the plate surface of the graphene component; L 3 is the same as the graphene component.
  • the calculation method of the elongation of the first elastic segment is the same as the calculation method of the elongation of the graphene component.
  • the difference is that the length L1 of the first elastic segment refers to the graphene component.
  • the length L 2 of the first elastic segment refers to the length of the first elastic segment when the graphene component is in a closed state.
  • the length of the segment after stretching; L 3 is the same as the graphene part.
  • the elongation rate of the first graphene segment is small, and the first graphene segment alone is not enough to meet the requirements of the graphene component.
  • the requirement for elongation when switching between the flattened state and the closed state, and by setting the first elastic segment with a larger elongation, the graphene component as a whole can meet the requirements when switching between the flattened state and the closed state.
  • elongation requirements When the graphene component changes from a flattened state to a closed state, the overall elongation of the graphene component is mainly achieved by the elongation of the first elastic segment, and the graphene component changes from a closed state to a flattened state. In the state, the overall shortening of the graphene component is mainly achieved through the shortening of the first elastic segment.
  • part of the first elastic segment is fixedly connected to the back side of the screen, so that part of the first elastic segment is fixed relative to the first sub-portion.
  • part of the first elastic segment is bonded to the support plate, and part of the first elastic segment is fixedly connected to the back of the screen.
  • a side of the first graphene segment away from the first elastic segment is fixed relative to the second sub-section.
  • part of the first elastic segment is bonded to the support plate, a side of the first graphene segment away from the first elastic segment is bonded to the support plate, and the graphene segment Both sides of the component are fixedly connected to the support plate, so that the graphene component can move with the screen.
  • the first graphene segment includes a first graphene layer and two first film layers located on two opposite surfaces of the first graphene layer along the first direction, and the first The direction intersects the surface of the first sub-portion facing the first graphene segment, the first graphene layer includes a single layer of graphene arranged in a multi-layer stack, and the edges of the two first film layers are sealed with The first graphene layer is isolated from the outside, part of the first elastic segment is connected to the first film layer, the first graphene layer is located on one side of the bending part, and the first graphene layer is Both ends of the ene layer extend to one side of the first sub-part and the second sub-part respectively.
  • the first film layer is used to provide protective support for the first graphene layer and has elastic stretchability.
  • the first film layer can expand or contract as the first graphene layer stretches or shortens. Elongate or shorten.
  • the material of the first film layer includes but is not limited to natural rubber, polyurethane (PU), thermoplastic polyurethane rubber (TPU), polybutadiene (butadiene rubber), polyisobutadiene Pentylene (isoprene rubber), chloroprene rubber, butyl rubber, aramid paper, etc.
  • the first film layer itself has a strong elastic stretch rate and still has strong elasticity in a thin state. stretch rate, and has the ability to recover and rebound.
  • the first film layer has an elastic structure, and the tensile elongation ability of the first film layer is improved by the stretching ability of the elastic structure.
  • the material of the elastic structure includes but is not limited to titanium alloy, aluminum Alloys etc.
  • the length of the two first film layers along the second direction is greater than the length of the first graphene layer along the second direction.
  • the two ends of the first graphene layer along the second direction are sealed by mutual adhesion of the two first film layers.
  • part of the first elastic segment is connected to the first film layer, and the first elastic segment at least partially overlaps the two first film layers along the first direction.
  • the first elastic segment and the first graphene layer do not overlap along the first direction.
  • the first film layer has good thermal conductivity.
  • the good thermal conductivity allows the first film layer to quickly transfer heat in the environment to the first graphene layer, reducing the The influence of a film layer on the first graphene layer.
  • the first film layer is insulating. Since the first graphene layer is conductive, if the first graphene layer is in direct contact with external components or circuits, it is easy to cause damage to the external components or circuits. short circuit, and wrap the first film layer on the outside of the first graphene layer to insulate and isolate the first graphene layer from the external environment and reduce the risk of short circuit of external components and circuits caused by the first graphene layer. risk.
  • part of the side of the first elastic segment close to the first film layer is connected to the first film layer, and part of the side of the first elastic segment close to the first sub-part Connected to the first sub-section.
  • the elongation of the graphene component is greater than or equal to 5%.
  • the graphene component has sufficient elongation, so that when the graphene component changes from a flattened state to a closed state, the graphene component has a sufficient amount of stretching so that it does not break during the elongation process.
  • the elongation of the graphene component is greater than or equal to 5% and less than or equal to 100%.
  • the elongation of the graphene component is greater than or equal to 10% and less than or equal to 20%.
  • the elongation of the graphene component is greater than or equal to 10% and less than or equal to 30%.
  • the elongation of the graphene component is greater than or equal to 10% and less than or equal to 50%.
  • the elongation of the graphene component is greater than or equal to 10% and less than or equal to 80%.
  • the elongation amount ⁇ L of the graphene component is greater than or equal to 1 mm and less than or equal to 4 mm.
  • the entire graphene component has elastic stretchability, and the overall elongation of the graphene component is greater than or equal to 5%.
  • different parts of the graphene component have different elastic stretch properties.
  • the graphene component When maintaining the elongation of the entire graphene component to a value greater than or equal to 5%, the graphene component The elongation of a part of the component may be less than 5%, and the elongation of another part of the graphene component may be greater than or equal to 5%.
  • the elongation of the graphene component may be set according to the elongation of the display component when it is bent.
  • the elongation of the first graphene layer is greater than or equal to 0.3% and less than 1%; the elongation of the first elastic segment is greater than or equal to equals 10%. In one embodiment, the elongation of the first graphene segment is greater than or equal to 0.3% and less than 1%.
  • the elongation of the first graphene segment is small, and the first graphene segment alone is not enough to meet the elongation requirements of the graphene component when switching between the flat state and the closed state, and by setting The first elastic segment with a larger elongation allows the graphene component as a whole to meet the elongation requirements when switching between the flat state and the closed state.
  • the overall elongation of the graphene component is mainly achieved by the elongation of the first elastic segment, and the graphene component changes from a closed state to a flattened state.
  • the overall shortening of the graphene component is mainly achieved through the shortening of the first elastic segment.
  • the graphene component further includes a second elastic segment located on one side of the second sub-part and capable of stretching relative to the second sub-part, so The second elastic segment is connected to an end of the first graphene segment away from the first elastic segment, and at least part of the second elastic segment is fixed relative to the second sub-section, and the extension of the second elastic segment The length is greater than the elongation of the first graphene segment.
  • Part of the second elastic segment being fixed relative to the second sub-part means that the relative positional relationship between part of the second elastic segment and the second sub-part remains unchanged. When the second sub-part moves, part of the second elastic segment is fixed relative to the second sub-part. The second elastic segment can move accordingly.
  • the second elastic segment when the graphene component is in a flattened state, the second elastic segment is located on a side of the first graphene segment close to the second sub-section along the second direction, partially The second elastic segment is fixedly connected to the first graphene segment.
  • the first elastic segment and the second elastic segment when the graphene component is in a flattened state, are located on both sides of the graphene component along the second direction.
  • the positions of the second elastic section and the first elastic section are interchangeable, the second elastic section is located on one side of the first sub-section, and the first elastic section is located on the Said side of the second subpart.
  • the stretch rates of the second elastic segment and the first elastic segment may be the same or different. to meet the needs of different products.
  • the elongation of the second elastic segment is greater than or equal to 10%.
  • the calculation method of the elongation of the second elastic segment is the same as the calculation method of the elongation of the graphene component.
  • the length L1 of the second elastic segment refers to the graphene component.
  • the length L 2 of the second elastic segment refers to the length of the second elastic segment when the graphene component is in a closed state.
  • the length of the segment after stretching; L 3 is the same as the graphene part.
  • the total elongation of the second elastic segment and the first elastic segment is greater than or equal to 10%.
  • the overall elongation of the graphene component is mainly achieved by the elongation of the second elastic segment and the first elastic segment.
  • the graphene component When transitioning from the closed state to the flattened state, the overall shortening of the graphene component is mainly achieved through the shortening of the second elastic segment and the first elastic segment.
  • part of the second elastic segment is fixedly connected to the back side of the screen, so that part of the second elastic segment is fixed relative to the second sub-portion.
  • part of the second elastic segment is bonded to the support plate and fixedly connected to the back of the screen.
  • part of the first elastic segment is bonded to the support plate
  • part of the second elastic segment is bonded to the support plate on a side away from the first elastic segment
  • the graphene Both sides of the component are fixedly connected to the support plate, so that the graphene component can move with the screen.
  • the second elastic section includes a fourth section, a fifth section and a sixth section connected in sequence, and the fourth section is connected to the back surface of the second sub-portion and to the third section.
  • the two sub-sections are relatively fixed, the fifth section can be stretched relative to the second sub-section, and the sixth section is connected to the first graphene section.
  • the back surface of the second sub-part refers to the surface of the second sub-part close to the graphene component along the first direction.
  • the fourth section and the support The board is connected to the side away from the display module.
  • the fifth section is connected neither to the second sub-section nor to the first graphene section, and when the graphene component switches between a flattened state and a closed state, the fifth section can Free to extend or shorten.
  • the elongation values of the fourth section, the fifth section and the sixth section may be the same or different. In one embodiment, the elongation of the fifth segment is greater than or equal to 10%.
  • the elongation of the fifth segment is mainly caused by the elongation or elongation of the fifth segment. shortening to achieve overall elongation or shortening of the graphene component.
  • the sixth section is connected to the first film layer on a side away from the screen, the fourth section is connected to the screen, and in the first direction, the fifth section
  • the segments form a gap with the screen so that the fifth segment can be freely extended or shortened.
  • This arrangement of the second elastic segments can reduce the thickness of the display component in the first direction.
  • the display assembly further includes a third adhesive layer located between the fourth section and the back surface of the second sub-section to connect the fourth section
  • the first graphene segment is connected to the second sub-section, and the surface of the first graphene segment away from the second sub-section is bonded to the sixth segment.
  • one end of the first graphene segment close to the second elastic segment along the second direction is a bonding structure of two first film layers, and the first graphene segment is formed along the second elastic segment.
  • the thickness of one end close to the second elastic segment along the first direction is smaller than the thickness of other parts of the first graphene segment, the sixth segment is connected to the first film layer, and the The sixth segment at least partially overlaps the two first film layers along the first direction, and the sixth segment does not overlap the first graphene layer along the first direction, so that the sixth segment
  • the thickness of the connection point with the first film layer is basically consistent with the thickness of other parts of the first graphene segment, which can make the entire graphene component uniform and is more conducive to the connection between the graphene component and the screen. and other components fit closely to facilitate heat dissipation.
  • the sixth section is connected to the side of the first film layer away from the screen, and in the first direction, the The fourth section and the fifth section are spaced apart from the second sub-section, and the third adhesive layer is provided in the gap between the fourth section and the second sub-section, and no additional provision is required.
  • the space is used to accommodate the third adhesive layer, so that after the fourth section and the second sub-section are connected through the third adhesive layer, the entire graphene component will be uniform and the surface will be smoother.
  • it is more conducive to the close fit of the graphene component with the screen and other components to facilitate heat dissipation.
  • it can save space and reduce the thickness of the display component, making the display component suitable for miniaturization scenarios. .
  • the first elastic section includes a first section, a second section and a third section connected in sequence, wherein the first sub-section includes a display surface and a back surface arranged oppositely, and the The first section is connected to the back side of the first sub-section and fixed relative to the first sub-section, the second section can be stretched relative to the first sub-section, and the third section is connected to the first sub-section.
  • the graphene segments are connected, and the elongation rate of the second segment is greater than the elongation rate of the first segment, and the elongation rate is greater than the elongation rate of the third segment.
  • the first section is connected to a side of the support plate away from the display module.
  • the second section is connected neither to the first sub-section nor to the first graphene section, and when the graphene component switches between a flattened state and a closed state, the second section can Free to extend or shorten.
  • the elongation values of the first section, the second section and the third section may be the same or different. In one embodiment, the elongation of the second section is greater than or equal to 10%.
  • the calculation method of the elongation of the second section is the same as the calculation method of the elongation of the graphene component.
  • the length L1 of the second section means that the graphene component is in The length of the second section in the second direction when in the flat state; the length L2 of the second section refers to the length of the second section after stretching when the graphene component is in the closed state. Length; L 3 is the same as the graphene part.
  • the first elastic segment is an elastic material, such as thermoplastic polyurethane elastomer rubber, and the elongation and shortening of the first elastic segment is achieved by the elastic stretchability of the elastic material itself.
  • the first elastic section has an elastic structure, and the elastic structure can be extended or shortened along the second direction. The extension and shortening of the first elastic section are achieved through the stretchability of the structure.
  • the second section has an elastic structure, which is formed by etching a metal sheet. It can be understood that the elastic structure is not limited, as long as the elastic structure can meet the requirements of stretching along the second direction. Just make it longer or shorter.
  • the third section is connected to the first film layer on a side away from the screen, the first section is connected to the screen, and in the first direction, the second The segments form a gap with the screen so that the second segment can be freely extended or shortened.
  • This arrangement of the first elastic segments can reduce the thickness of the display component in the first direction.
  • the display component further includes a first adhesive layer located between the first section and the back surface of the first sub-section to connect the The first section is connected to the first sub-section, and a surface of the first graphene section away from the first sub-section is bonded to the third section.
  • one end of the first graphene segment close to the first elastic segment along the second direction is a bonded structure of two first film layers, and the first graphene segment is formed along the second direction.
  • the thickness of the end close to the first elastic segment along the first direction is smaller than the thickness of other parts of the first graphene segment
  • the third segment is connected to the first film layer, and the The third section at least partially overlaps the two first film layers along the first direction, and the third section does not overlap with the first graphene layer along the first direction, so that the graphene component
  • the thickness at the connection between the third section and the first film layer is basically consistent with the thickness of other parts of the first graphene section, which can make the entire graphene component uniform and is more conducive to the graphite
  • the vinyl parts fit closely with the screen and other parts to facilitate heat dissipation.
  • the third section is connected to the side of the first film layer away from the screen, and in the first direction, the The first section and the second section are spaced apart from the first sub-section.
  • the first adhesive layer is provided in the gap between the first section and the first sub-section. No additional provision is required.
  • the space is used to accommodate the first adhesive layer, so that after the first section and the first sub-section are connected through the first adhesive layer, the entire graphene component will be uniform and the surface will be smoother, On the one hand, it is more conducive to the close fit of the graphene component with the screen and other components to facilitate heat dissipation. On the other hand, it can save space and reduce the thickness of the display component, making the display component suitable for miniaturization scenarios. .
  • the display component further includes a middle frame, which is located on a side of the graphene component away from the screen;
  • the first elastic segment includes a first segment, The second section and the third section, the first section is connected to the middle frame and is relatively fixed to the first sub-section, the second section can be stretched relative to the middle frame, and the third section is connected to the middle frame.
  • the first graphene segments are connected.
  • the side of the first section away from the first sub-section is connected to the middle frame, and the side of the first section close to the first sub-section can contact and abut with the first sub-section,
  • the side of the first section close to the first sub-section may also be connected to the first sub-section.
  • an end of the first graphene segment away from the first elastic segment along the second direction is connected to the middle frame.
  • the first segment is connected to the middle frame, and an end of the first graphene segment away from the first elastic segment along the second direction is connected to the first sub-section.
  • the first segment is connected to the first sub-section, and an end of the first graphene segment away from the first elastic segment along the second direction is connected to the middle frame.
  • the middle frame can be unfolded to a flat state, the middle frame can also be folded to a closed state, the middle frame can also be unfolded or folded to an intermediate state, and the intermediate state can be between the flat state and the closed state. Any state.
  • the middle frame can move with the screen. When the display component is in a flattened state, the middle frame is in a flattened state; when the display component is in a closed state, the graphene component is in a closed state.
  • the middle frame can be used to fix the screen and protect the screen.
  • the middle frame can also be used to prevent slipping and enhance the signal and structural strength of the display component.
  • the display assembly further includes a second adhesive layer, the second adhesive layer is located between the first section and the middle frame to connect the first section and the middle frame.
  • the middle frame is connected, and the surface of the first graphene segment away from the middle frame is bonded to the third segment.
  • the third section is connected to a side of the first film layer away from the middle frame, and the third section at least partially overlaps the two first film layers along the first direction, so The third section and the first graphene layer do not overlap along the first direction, so that the thickness of the connection between the third section and the first film layer is the same as the thickness of other parts of the first graphene section.
  • the entire graphene component can be made uniform, which is more conducive to the close fit of the graphene component with the screen and other components, and facilitates heat dissipation.
  • the third section is connected to the side of the first film layer close to the screen, and in the first direction, the first section and the second section are spaced apart from the middle frame,
  • the second adhesive layer is disposed in the gap between the first section and the middle frame, and there is no need to provide additional space for receiving the second adhesive layer, so that the first section and the middle frame
  • the graphene component is overall uniform and the surface is smoother.
  • it is more conducive for the graphene component to be closely connected with the screen, the middle frame and other components.
  • the fit facilitates heat dissipation.
  • it can save space and reduce the thickness of the display component, making the display component suitable for miniaturization scenarios.
  • the graphene component further includes the second elastic segment, which is located at an end of the first graphene segment away from the first elastic segment and connected with the first graphene segment.
  • the olefin segments are connected, and part of the second elastic segment is fixedly connected to the middle frame.
  • the second elastic section is fixedly connected to the middle frame, and the first elastic section is fixedly connected to the screen.
  • the second elastic section includes the fourth section, the fifth section and the sixth section connected in sequence, and the fourth section is connected to a portion of the middle frame close to the screen.
  • One side is connected, the fifth section can be stretched relative to the middle frame, and the sixth section is connected to the first graphene section.
  • the sixth section is connected to the first film layer on a side close to the screen, the fourth section is connected to the middle frame, and in the first direction, the third section is connected to the middle frame.
  • the five segments form a gap with the screen so that the fifth segment can be freely extended or shortened. This arrangement of the second elastic segments can reduce the thickness of the display component in the first direction. .
  • the display assembly further includes a fourth adhesive layer located between the fourth section and the middle frame to connect the fourth section and the middle frame. Connected, the surface of the first graphene segment away from the middle frame is bonded to the sixth segment.
  • the sixth section is connected to a side of the first film layer away from the middle frame, and the sixth section at least partially overlaps the two first film layers along the first direction, so The sixth segment and the first graphene layer do not overlap along the first direction, so that the thickness of the connection between the sixth segment and the first film layer is the same as the thickness of other parts of the first graphene segment.
  • the entire graphene component can be made uniform, which is more conducive to the close fit of the graphene component with the screen, the middle frame and other components, and facilitates heat dissipation.
  • the sixth section is connected to the side of the first film layer away from the middle frame.
  • the fourth section and the fifth section are spaced apart from the middle frame.
  • the fourth adhesive layer is disposed in the gap between the fourth section and the second sub-section, and there is no need to provide additional space for receiving the fourth adhesive layer, so that the fourth section
  • the graphene component is overall uniform and the surface is smoother.
  • space can be saved and the thickness of the display component can be reduced, making the display component suitable for miniaturization scenarios.
  • the graphene component further includes a second graphene segment, the second graphene segment is located on one side of the first sub-part, and the second graphene segment is connected to the The first graphene segments are stacked at least partially along a first direction that intersects the surface of the second graphene segments facing the first sub-portion.
  • the second graphene segment is stacked with the first graphene segment, the first graphene segment can slide relative to the second graphene segment, and the second graphene segment can slide relative to the first graphene segment.
  • the second graphene segment is partially fixed, and the arrangement of the second graphene segment will not affect the free elongation or shortening of the first graphene segment, the first elastic segment or the second elastic segment.
  • the first direction intersects perpendicularly with a surface of the second graphene segment facing the first sub-portion.
  • the position corresponding to the first sub-part has a high-heat-generating component, that is, the position corresponding to the first sub-part is a high-heat-generating area.
  • the second graphene segment can be added to the high-heat-generating area. Improve the heat dissipation capacity of the graphene component.
  • the elongation of the second graphene segment is greater than or equal to 0.3% and less than 1%.
  • the calculation method of the elongation of the second graphene segment is the same as the calculation method of the elongation of the graphene component. The difference is that the length L 1 of the second graphene segment refers to the When the graphene component is in a flat state, the length of the second graphene segment in the second direction; the length L 2 of the second graphene segment refers to the length of the second graphene segment when the graphene component is in a closed state.
  • the stretched length of the second graphene segment; L 3 is the same as the graphene component.
  • the elongation of the second graphene segment can be any value. Since the second graphene segment is only located on one side of the first sub-section, the display component is When switching between the flattened state and the closed state, the elongation and shortening of the second graphene segment is not involved, so there is no requirement for the elongation rate of the second graphene segment.
  • the second graphene segment has the same structure as the first graphene segment, and the second graphene segment also includes a graphene layer and a graphene layer located opposite to the graphene layer along the first direction. There are two film layers on both surfaces, and the edges of the two film layers are sealed to isolate the graphene layer from the outside. In one embodiment, one or both ends of the second graphene segment along the second direction may also be connected to the elastic segment.
  • the orthographic projection of the second graphene segment on the first sub-section covers all or most of the Describe the first subpart. to improve heat dissipation capacity.
  • an orthographic projection of the second graphene segment on the first sub-portion covers a portion of the first sub-portion. It can be understood that the larger the area of the orthographic projection of the second graphene segment on the first sub-part, the better the heat dissipation capability of the graphene component can be exerted.
  • the second graphene segment is located between the first graphene segment and the first sub-section, and the second graphene segment is fixedly connected to the first sub-section. It can be understood that The entire second graphene segment is fixedly connected to the first sub-section, or part of the second graphene segment is fixedly connected to the first sub-section, or the second graphene segment is fixedly connected to the first sub-section.
  • the olefin segment is fixedly connected to the first sub-portion on one side or both sides of the second direction. In one embodiment, the second graphene segment is fixedly connected to a side of the first segment close to the first sub-section.
  • the second graphene segment is located on a side of the first graphene segment away from the first sub-section, and the second graphene segment is fixedly connected to the middle frame. It can be understood that In this case, the entire second graphene segment is fixedly connected to the middle frame, or a part of the second graphene segment is fixedly connected to the middle frame. Alternatively, the second graphene segment is fixedly connected to the middle frame along the entire length of the second graphene segment. One or both sides of the second direction are fixedly connected to the middle frame. In one embodiment, the second graphene segment is fixedly connected to a side of the first segment close to the middle frame.
  • the graphene component further includes a third graphene segment, the third graphene segment is located on one side of the second sub-part, and the third graphene segment is connected to the The first graphene segments are stacked at least partially along the first direction.
  • the third graphene segment is stacked with the first graphene segment, the first graphene segment can slide relative to the third graphene segment, and the third graphene segment can slide relative to the second graphene segment.
  • the third graphene segment is fixed, and the arrangement of the third graphene segment will not affect the free elongation or shortening of the first graphene segment, the first elastic segment or the second elastic segment.
  • the heat is transferred from the side of the graphene component located on the first sub-section to the side of the graphene component located on the second sub-section, and the arrangement of the third graphene segment allows heat to be rapidly diffused,
  • the heat of the display component can be better evenly conducted and distributed to all corners of the entire body, thereby achieving a heat dissipation effect that balances the heat of the entire machine.
  • the second sub-section has high heat-generating components in its corresponding position
  • the first sub-section has low heat-generating components in its corresponding position.
  • the orthographic projection of the third graphene segment on the second sub-section covers the entire or most of the second sub-section. In one embodiment, an orthographic projection of the third graphene segment on the second sub-portion covers a portion of the second sub-portion. It can be understood that the larger the area of the orthographic projection of the third graphene segment on the second sub-section, the better the heat dissipation capability of the graphene component can be exerted.
  • the elongation of the third graphene segment is greater than or equal to 0.3% and less than 1%.
  • the calculation method of the elongation of the third graphene segment is the same as the calculation method of the elongation of the graphene component. The difference is that the length L 1 of the third graphene segment refers to the When the graphene component is in a flat state, the length of the third graphene segment in the second direction; the length L 2 of the third graphene segment refers to the length of the third graphene segment when the graphene component is in a closed state.
  • the stretched length of the third graphene segment; L 3 is the same as the graphene component.
  • the elongation of the third graphene segment can be any value. Since the third graphene segment is only located on one side of the first sub-section, the display component is When switching between the flattened state and the closed state, the elongation and shortening of the third graphene segment is not involved, so there is no requirement for the elongation rate of the third graphene segment.
  • the value of the elongation of the third graphene segment and the value of the elongation of the second graphene segment may be the same or different.
  • the third graphene segment has the same structure as the first graphene segment or the second graphene segment, and the third graphene segment also includes a graphene layer and a graphene layer located on the graphene layer. There are two film layers on two opposite surfaces along the first direction, and the edges of the two film layers are sealed to isolate the graphene layer from the outside. In one embodiment, one or both ends of the third graphene segment along the second direction may also be connected to the elastic segment.
  • the third graphene segment is located between the first graphene segment and the second sub-section, and the third graphene segment is fixedly connected to the second sub-section. It can be understood that The entire third graphene segment is fixedly connected to the second sub-section, or part of the third graphene segment is fixedly connected to the second sub-section, or the third graphene segment is fixedly connected to the second sub-section.
  • the olefin segment is fixedly connected to the second sub-portion on one side or both sides of the second direction.
  • the graphene component further includes the second elastic segment, part of the second elastic segment is connected to an end of the first graphene segment away from the first elastic segment, and the third elastic segment The graphene segment is fixedly connected to a side of the fourth segment close to the second sub-section.
  • the third graphene segment is located between the first graphene segment and the second sub-section, and the second graphene segment is located between the first graphene segment and the second sub-section. Between the first sub-section, the third graphene segment and the second graphene segment are both arranged between the first graphene segment and the screen, which can save the space of the display assembly and reduce the cost. The thickness of the display component.
  • the third graphene segment is located on a side of the first graphene segment away from the second sub-section. In one embodiment, the third graphene segment is located on a side of the first graphene segment away from the second sub-section, and the third graphene segment is fixedly connected to the middle frame. It can be understood that In this case, the entire third graphene segment is fixedly connected to the middle frame, or part of the third graphene segment is fixedly connected to the middle frame. It is also possible that the third graphene segment is fixedly connected along the middle frame. One or both sides of the second direction are fixedly connected to the middle frame.
  • the graphene component further includes the second elastic segment, part of the second elastic segment is connected to an end of the first graphene segment away from the first elastic segment, and the third elastic segment The graphene segment is fixedly connected to a side of the fourth segment close to the middle frame.
  • the third graphene segment and the second graphene segment are both disposed on a side of the first graphene segment away from the screen, which can save the space of the display assembly and reduce the cost of the display assembly. Describes the thickness of the display component.
  • one of the third graphene segment and the second graphene segment is located on a side of the first graphene segment away from the screen, and the third graphene segment and the second graphene segment are located on a side of the first graphene segment away from the screen.
  • the other of the second graphene segments is located between the first graphene segment and the screen.
  • the graphene component includes a second graphene layer and two second film layers located on opposite surfaces of the second graphene layer along a first direction, where the first direction is The first sub-section intersects toward the surface of the graphene component, the second graphene layer includes a single layer of graphene arranged in a multi-layer stack, and the edges of the two second film layers are sealed to isolate the first Two graphene layers and the outside, the second graphene layer is located on one side of the bending part, and both ends of the second graphene layer extend to the first sub-part and the second sub-part respectively. On one side of the portion, the elongation rate of the second graphene layer is greater than or equal to 5%.
  • the calculation method of the elongation of the second graphene layer is the same as the calculation method of the elongation of the graphene component.
  • the difference is that the length L1 of the second graphene layer refers to the When the graphene component is in a flat state, the length of the second graphene layer in the second direction; the length L 2 of the second graphene layer refers to the length of the second graphene layer when the graphene component is in a closed state.
  • the stretched length of the second graphene layer; L3 is the same as the graphene component.
  • the entire graphene component can be freely extended or shortened, and the second graphene layer has a large enough elongation to satisfy the requirements of the graphene component.
  • the requirement for elongation when switching between the flat state and the closed state ensures that the graphene component maintains structural integrity and avoids being pulled apart and causing failure of the thermal conductivity function.
  • the arrangement of the graphene components enables heat to be evenly conducted and distributed to every corner of the entire body of the display assembly.
  • the heat is transferred to the corresponding parts of the first sub-part and the second sub-part. Transfer between corresponding positions to achieve a heat dissipation effect that balances the heat of the entire machine.
  • the thickness of the graphene component is between 0.004 mm and 0.02 mm.
  • the graphene component is fixedly connected to the screen.
  • the graphene component is bonded to the screen, wherein the bonding method may be that one side of the graphene component close to the screen is bonded to the screen, or the graphene component is bonded to the screen. Part of the side surface of the graphene component close to the screen is bonded to the screen, or both ends of the graphene component along the second direction are bonded to the screen.
  • the graphene component is bonded to the middle frame, wherein the bonding method may be that one side of the graphene component close to the middle frame is bonded to the middle frame, or Part of the side surface of the graphene component close to the middle frame is bonded to the middle frame. Alternatively, both ends of the graphene component along the second direction are bonded to the middle frame. In one embodiment, some of the graphene components are connected to the middle frame, and some of the graphene components are connected to the screen.
  • both surfaces of the graphene component in the first direction are flat, and the graphene component is of equal thickness in the first direction. of.
  • the graphene component may also have unequal thicknesses in the first direction, and the two surfaces of the graphene component along the first direction may be set in an uneven state to be as consistent as possible with other surfaces. The components are closely arranged to ensure the heat dissipation ability of the graphene components.
  • the second graphene layer includes first graphene sub-parts, second graphene sub-parts and third graphene sub-parts arranged side by side and connected to each other, and the first graphene sub-part The sub-part, the second graphene sub-part and the third graphene sub-part are respectively located on one side of the first sub-part, the bending part and the second sub-part, and the second graphene sub-part The thickness of the first graphene sub-part and the third graphene sub-part is greater than the thickness of the first graphene sub-part and the third graphene sub-part.
  • the thicknesses of the first graphene sub-section, the second graphene sub-section and the third graphene sub-section all refer to the thickness in the first direction when in a flattened state, and the second graphene sub-section
  • the thickness of the graphene sub-section is greater than the thickness of the first graphene sub-section
  • the thickness of the second graphene sub-section is greater than the thickness of the third graphene sub-section.
  • the thickness of the second graphene layer will become thinner when being stretched.
  • the second graphene sub-section located on the side of the bending part is a region with greater deformation.
  • the thickness of the second graphene sub-portion decreases by a large amount, increasing the thickness of the second graphene sub-portion when it is in a flattened state, and when the second graphene layer is in a closed state, The thickness of the second graphene sub-section is reduced, so that the thickness of the second graphene sub-section in the closed state is substantially equal to the thickness of the first graphene sub-section and the third graphene sub-section.
  • the overall thickness of the second graphene layer tends to be uniform, ensuring that the heat dissipation of the graphene component can be sustained, stable and balanced.
  • the display component further includes a middle frame, the middle frame is located on a side of the graphene component away from the screen, and the middle frame is close to the second graphene sub-part.
  • a groove is provided in the area, and the second graphene sub-section is at least partially received in the groove.
  • the side of the graphene component close to the middle frame is disposed close to the middle frame.
  • the middle frame is close to the middle frame.
  • the side of the graphene component is also flat.
  • the thickness of the second graphene sub-portion is increased when it is in a flat state, the second graphene sub-portion will bulge toward the middle frame.
  • the groove is provided in an area of the middle frame close to the second graphene sub-section, for accommodating the thickened portion of the second graphene sub-section, so that the overall thickness of the display component tends to be uniform.
  • the graphene component further includes a second graphene segment, the second graphene segment is located on one side of the first sub-part, and the second graphene segment is connected to the The second film layer is at least partially laminated along the first direction, and the elongation amount of the graphene layer in the second graphene segment is less than the elongation amount of the second graphene layer.
  • the graphene component further includes the second graphene segment and the third graphene segment, the second graphene segment is located on one side of the first sub-section, and the third graphene segment
  • Two graphene segments and the second film layer are at least partially stacked along the first direction
  • the third graphene segment is located on one side of the second sub-section
  • the third graphene segment is connected to the third graphene segment.
  • Two film layers are laminated at least partially along the first direction.
  • the second graphene segment and the third graphene segment The segments are located on the same side or different sides of the second graphene layer along the first direction.
  • the second graphene segment and the third graphene segment are located on a side of the second graphene layer close to the screen. In one embodiment, the second graphene segment and the third graphene segment are located on a side of the second graphene layer away from the screen.
  • the display assembly further includes a first middle frame sub-part, a second middle frame sub-part and a door panel, the first middle frame sub-part is located away from the graphene component away from the first sub-part.
  • the second middle frame sub-portion is located on the side of the graphene component away from the second sub-portion, and the portion of the graphene component located on the side of the bending portion is provided with an opening, and the opening
  • the hole is filled with adhesive glue, and the adhesive glue connects the door panel and the bent part, so that the door panel and the bent part are fixedly connected.
  • the door panel is located on the side of the graphene component away from the opening.
  • the first middle frame sub-section, the door panel and the second middle frame sub-section when the display assembly is in a flat state, are coplanar and abut in sequence to form a complete panel.
  • the first middle frame sub-section and the second middle frame sub-section are relatively folded.
  • the first middle frame sub-section, the door panel and the second middle frame sub-section may also be arranged at intervals.
  • a portion of the graphene component located on one side of the bent portion is provided with a plurality of openings to enhance the bonding ability between the door panel and the bent portion.
  • the display assembly may include a plurality of door panels. Through the arrangement of a plurality of door panels, the first middle frame sub-section, the second middle frame sub-section and the door panel can be integrated. Bends smoothly.
  • an embodiment of the present application provides an electronic device.
  • the electronic device has a flat state and a closed state, and includes a housing device, a screen, and a graphene component.
  • the housing device includes a first housing, a third housing, and a graphene component.
  • the folding assembly connects the first shell and the second shell, the first shell and the second shell can be relatively unfolded through the movement of the folding assembly or Relatively folded;
  • the screen is installed on the housing device and includes a bending portion and a first sub-portion and a second sub-portion located on both sides of the bending portion, the first sub-portion is located on the first On one side of the housing, the second sub-portion is located on one side of the second housing, and the bending portion is located on one side of the folding assembly. In the flattened state, the first sub-portion is located on one side of the second housing.
  • the graphene component is located on the housing Between the device and the screen, at least part of the graphene component is located on one side of the bending part, and both ends of the graphene component extend to one side of the first sub-part and the second sub-part respectively.
  • the graphene component has elastic stretchability.
  • the electronic device may be a foldable electronic product such as a mobile phone, a tablet computer, a notebook computer, or a wearable device.
  • the housing device is used to carry the screen.
  • the graphene component and the screen can be installed separately on the housing device, or the graphene component and the screen can be assembled as the The display assembly is integrally mounted on the housing device.
  • the housing device can be unfolded to a flattened state; the housing device can also be folded to a closed state; the housing device can also be unfolded or folded to an intermediate state, and the intermediate state can be between the flattened state and the closed state. any state.
  • the screen is a bendable structure, and the screen moves with the housing device.
  • the housing device can drive the screen to be flattened or folded, so that the electronic device can be unfolded or folded to a flattened state. Closed or intermediate state.
  • the screen when the electronic device is in a closed state, the screen is located inside the housing device, and the electronic device is a screen-folding device.
  • the screen when the electronic device is in a closed state, the screen is located outside the housing device, and the electronic device is a fold-out screen device.
  • the electronic device may further include a plurality of components, and the plurality of components may be installed inside the housing device. During the operation of the electronic equipment, different components inside the housing device generate different heat.
  • the screen, the graphene component, the housing device and the housing Each component of the device is in an open state correspondingly; when the electronic device is in a closed state, the screen, the graphene component, the housing device and each component of the housing device are in a closed state correspondingly; When the electronic device is in the intermediate state, the screen, the housing device and each component of the housing device are in the intermediate state accordingly.
  • the arrangement of the graphene component can not only dissipate heat from the first housing, the second housing, the first sub-part, and the second sub-part itself, but also realize the first housing.
  • the heat in the high-heating area is conducted to the low-heating area to achieve a heat dissipation effect that efficiently balances the heat of the entire machine, and the elastic stretch performance of the graphene component ensures that the graphene When the component switches between the flat state and the closed state, the graphene component maintains structural integrity and avoids being pulled apart and causing failure of the thermal conductivity function.
  • the graphene component includes a connected first elastic segment and a first graphene segment, the first elastic segment is located on one side of the first sub-part and can be opposite to the first sub-part.
  • the first sub-portion is stretched, the first graphene segment is located on one side of the bending portion, and both ends of the first graphene segment extend to the first sub-portion and the second sub-portion respectively.
  • On one side of the portion at least part of the first elastic segment is fixed relative to the first sub-portion, and the elongation rate of the first elastic segment is greater than the elongation rate of the first graphene segment.
  • the graphene component further includes a second elastic segment located on one side of the second sub-part and capable of stretching relative to the second sub-part, so The second elastic segment is connected to an end of the first graphene segment away from the first elastic segment, and at least part of the second elastic segment is fixed relative to the second sub-section, and the extension of the second elastic segment The length is greater than the elongation of the first graphene segment.
  • the first elastic section includes a first section, a second section and a third section connected in sequence, wherein the first sub-section includes a display surface and a back surface arranged oppositely, and the The first section is connected to the back side of the first sub-section and fixed relative to the first sub-section, the second section can be stretched relative to the first sub-section, and the third section is connected to the first sub-section.
  • the graphene segments are connected, and the elongation rate of the second segment is greater than the elongation rate of the first segment, and the elongation rate is greater than the elongation rate of the third segment.
  • the electronic device further includes a first adhesive layer located between the first section and the back surface of the first sub-part to connect the third One section is connected to the first sub-section, and a surface of the first graphene section away from the first sub-section is bonded to the third section.
  • the electronic device further includes a middle frame, which is located on a side of the graphene component away from the screen;
  • the first elastic section includes a first section connected in sequence, The second section and the third section, the first section is connected to the middle frame and is relatively fixed to the first sub-section, the second section can be stretched relative to the middle frame, and the third section is connected to the middle frame.
  • the first graphene segments are connected.
  • the graphene component further includes a second graphene segment, the second graphene segment is located on one side of the first sub-part, and the second graphene segment is connected to the The first graphene segments are stacked at least partially along a first direction that intersects the surface of the second graphene segments facing the first sub-portion.
  • the graphene component further includes a third graphene segment, the third graphene segment is located on one side of the second sub-part, and the third graphene segment is connected to the The first graphene segments are stacked at least partially along the first direction.
  • the first graphene segment includes a first graphene layer and two first film layers located on two opposite surfaces of the first graphene layer along the first direction, and the first The direction intersects the surface of the first sub-portion facing the first graphene segment, the first graphene layer includes a single layer of graphene arranged in a multi-layer stack, and the edges of the two first film layers are sealed with
  • the first graphene layer is isolated from the outside, part of the first elastic segment is connected to the first film layer, the first graphene layer is located on one side of the bending part, and the first graphene layer is Both ends of the alkene layer respectively extend to the first sub-part and one side of the second sub-part; the elongation of the first graphene layer is greater than or equal to 0.3% and less than 1%; the elongation of the first elastic segment is Greater than or equal to 10%.
  • the graphene component includes a second graphene layer and two second film layers located on opposite surfaces of the second graphene layer along a first direction, where the first direction is The first sub-section intersects toward the surface of the graphene component, the second graphene layer includes a single layer of graphene arranged in a multi-layer stack, and the edges of the two second film layers are sealed to isolate the first Two graphene layers and the outside, the second graphene layer is located on one side of the bending part, and both ends of the second graphene layer extend to the first sub-part and the second sub-part respectively. On one side of the portion, the elongation rate of the second graphene layer is greater than or equal to 5%.
  • the second graphene layer includes first graphene sub-parts, second graphene sub-parts and third graphene sub-parts arranged side by side and connected to each other, and the first graphene sub-part The sub-part, the second graphene sub-part and the third graphene sub-part are respectively located on one side of the first sub-part, the bending part and the second sub-part, and the second graphene sub-part The thickness of the first graphene sub-part and the third graphene sub-part is greater than the thickness of the first graphene sub-part and the third graphene sub-part.
  • the electronic device further includes a middle frame, the middle frame is located on a side of the graphene component away from the screen, and the middle frame is close to the second graphene sub-part.
  • a groove is provided in the area, and the second graphene sub-section is at least partially received in the groove.
  • the electronic device further includes a first middle frame sub-part, a second middle frame sub-part and a door panel, the first middle frame sub-part is located away from the graphene component away from the first sub-part.
  • the second middle frame sub-portion is located on the side of the graphene component away from the second sub-portion, and the portion of the graphene component located on the side of the bending portion is provided with an opening, and the opening
  • the hole is filled with adhesive glue, and the adhesive glue connects the door panel and the bent part, so that the door panel and the bent part are fixedly connected.
  • the descriptions and modifications about the screen, the graphene component and the middle frame in the display assembly in the previous embodiments may be applied to the screen in the electronic device in this embodiment.
  • the graphene component and the middle frame may be applied to the electronic device in this embodiment.
  • the graphene component extends uninterruptedly from one side of the first sub-part to one side of the second sub-part.
  • the first shell and the second shell be , the first sub-part and the second sub-part perform heat dissipation by themselves, and can also realize heat dissipation between the first housing and the second housing, the first sub-part and the second sub-part.
  • the heat transfer between the display component and the electronic device evenly conducts and distributes the heat in the high-heating area to all corners of the entire body. In particular, the heat in the high-heating area is conducted to the low-heating area.
  • the elastic stretch performance of the graphene component ensures that the graphene component maintains structural integrity when switching between the flat state and the closed state. , to avoid being pulled apart and causing failure of the thermal conductivity function.
  • Figure 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application when it is in a flat state;
  • Figure 2 is a schematic structural diagram of an electronic device provided by an embodiment of the present application when it is in an intermediate state
  • Figure 3 is a schematic structural diagram of an electronic device provided by an embodiment of the present application when it is in a closed state
  • Figure 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 5 is a cross-sectional view of the electronic device provided by an embodiment of the present application when it transitions from a flat state to a closed state;
  • Figure 6 is a partial structural schematic diagram of an electronic device provided by the first embodiment of the present application.
  • Figure 7 is a partial enlarged view of part M in Figure 6;
  • Figure 8 is a top view of the electronic device provided by the first embodiment of the present application.
  • Figure 9 is a schematic structural diagram of the first elastic segment provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of the first elastic segment provided by an embodiment of the present application.
  • Figure 11 is a partial structural schematic diagram of an electronic device provided by the second embodiment of the present application.
  • Figure 12 is a top view of the electronic device provided by the second embodiment of the present application.
  • Figure 13 is a partial structural schematic diagram of an electronic device provided by the third embodiment of the present application.
  • Figure 14 is a partial enlarged view of part N in Figure 13;
  • Figure 15 is a partial structural schematic diagram of an electronic device provided by the third embodiment of the present application.
  • Figure 16 is a partial structural schematic diagram of an electronic device provided by the fourth embodiment of the present application.
  • Figure 17 is a partial structural schematic diagram of an electronic device provided by the fourth embodiment of the present application.
  • Figure 18 is a partial structural schematic diagram of an electronic device provided by the fifth embodiment of the present application.
  • Figure 19 is a partial structural schematic diagram of an electronic device provided by the fifth embodiment of the present application.
  • Figure 20 is a partial structural schematic diagram of an electronic device provided by the sixth embodiment of the present application.
  • Figure 21 is a partial structural schematic diagram of an electronic device provided by the sixth embodiment of the present application.
  • Figure 22 is a top view of the electronic device provided by the sixth embodiment of the present application.
  • Figure 23 is a partial structural schematic diagram of an electronic device provided by the sixth embodiment of the present application.
  • Figure 24 is a partial structural schematic diagram of an electronic device provided by the sixth embodiment of the present application.
  • Figure 25 is a partial structural schematic diagram of an electronic device provided by the sixth embodiment of the present application.
  • Figure 26 is a partial structural schematic diagram of a display component provided by the seventh embodiment of the present application.
  • connection can be detachably connected, or can be detachably connected. It is non-detachably connected; it can be directly connected or indirectly connected through an intermediate medium.
  • fixed connection means that they are connected to each other and their relative positional relationship remains unchanged after connection. It should be understood that when component A is fixedly connected to component C through component B, changes in the relative positional relationship due to deformation of component A, component B and component C itself are allowed.
  • the term “plurality” means at least two.
  • the term “and/or” is an association relationship that describes related objects, indicating that three relationships can exist. For example, A and/or B can mean: A alone exists, A and B exist simultaneously, and B alone exists.
  • the terms “first”, “second” and the like are used for descriptive purposes only and cannot be understood as implying or implying relative importance or implicitly specifying the quantity of the technical features indicated. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • the present application provides a display component.
  • the display component has a flattened state and a closed state.
  • the display component includes a screen and a graphene component.
  • the screen includes a bending part and a first sub-part and a second sub-part located on both sides of the bending part.
  • the first sub-portion is located on one side of the first housing, the second sub-portion is located on one side of the second housing, and the bending portion is located on one side of the folding assembly.
  • the first sub-part, the bending part and the second sub-part are coplanar; in the closed state, the first sub-part and the second sub-part are folded relative to each other; the graphene component is located between the housing device and the screen , at least part of the graphene component is located on one side of the bending part, and both ends of the graphene component extend to one side of the first sub-part and the second sub-part respectively, and the graphene component has elastic stretchability.
  • the graphene component By arranging the graphene component on one side of the first sub-part and the second sub-part at the same time, heat can be transferred between the first sub-part and the second sub-part through the graphene component, and the graphene component is not easily broken when bent.
  • the display component of the present application When the display component of the present application is used in an electronic device, it can improve the heat dissipation effect of the entire electronic device, optimize the user experience of the electronic device, and is more conducive to improving the overall specifications of the electronic device.
  • FIG. 1 is a schematic structural diagram of an electronic device 10 in a flattened state according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of the electronic device 10 shown in FIG. 1 when it is in an intermediate state
  • FIG. 3 is a schematic structural diagram of the electronic device 10 shown in FIG. 1 when it is in a closed state.
  • the electronic device 10 is a foldable device, which has a flat state and a closed state.
  • the electronic device 10 may be a foldable electronic product such as a mobile phone, a tablet computer, a notebook computer, or a wearable device.
  • the electronic device 10 includes a screen 100, a graphene component 200 and a housing device 300.
  • the housing device 300 is used to carry the screen 100.
  • the screen 100 is installed on the housing device 300.
  • the graphene component 200 is installed on the screen 100 and the housing. between the body device 300 (combined with Figure 4).
  • the graphene component 200 and the screen 100 can be installed separately on the housing device 300.
  • the graphene component 200 and the screen 100 can be assembled and integrally installed on the housing device 300 as the display assembly 11 (as shown in Figure 4). .
  • the housing device 300 can be unfolded to a flat state; as shown in Figure 3, the housing device 300 can also be folded to a closed state; as shown in Figure 2, the housing device 300 can also be unfolded or folded to a closed state.
  • the intermediate state can be any state between the flattened state and the closed state.
  • the screen 100 is a bendable structure. The screen 100 moves with the casing device 300. The casing device 300 can drive the screen 100 to flatten or fold, so that the electronic device 10 can be unfolded or folded to a flat state, a closed state or an intermediate state.
  • the screen 100 when the electronic device 10 is in a closed state, the screen 100 is located inside the housing device 300 , and the electronic device 10 is an inward-folding screen device.
  • the screen 100 when the electronic device 10 is in a closed state, the screen 100 is located outside the housing device 300 , and the electronic device 10 is a fold-out screen device.
  • the screen 100 when the electronic device 10 is in a flat state, the screen 100 can be displayed in full screen, so that the electronic device 10 has a larger display area to improve the user's viewing experience and operating experience.
  • the planar size of the electronic device 10 is smaller, which is convenient for the user to carry and store.
  • the electronic device 10 may further include multiple components (not shown in the figure), and the multiple components may be installed inside the housing device 300 .
  • the multiple components may include, for example, a processor, internal memory, external memory interface, universal serial bus (USB) interface, charging management module, power management module, battery, antenna, communication module, camera, audio module, speaker , receiver, microphone, headphone interface, sensor module, button, motor, indicator and subscriber identification module (subscriber identification module, SIM) card interface, etc.
  • the electronic device 10 may have more or fewer components than described above, may combine two or more components, or may have different component configurations.
  • Various components may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • SOC System on Chip
  • the chip area is arranged on one side of the first housing 310, and the battery is arranged on one side of the second housing 320.
  • the part of the electronic device 10 located in the first housing 310 is a high heat generating area, and the electronic device 10 is located in the second housing 320.
  • the parts are high fever areas.
  • the location of the earpiece module of the electronic device 10 can be defined as the top edge of the electronic device 10, and the location of the microphone module of the electronic device 10 can be defined as the bottom edge of the electronic device 10.
  • the two sides of the electronic device 10 held by the user's left and right hands may be defined as the left and right sides of the electronic device 10 .
  • the electronic device 10 can be folded left and right. In some other embodiments, the electronic device 10 can be folded in half from top to bottom.
  • the housing device 300 includes a first housing 310 , a second housing 320 and a folding assembly 330 .
  • the folding component 330 may be connected between the first housing 310 and the second housing 320 .
  • the first housing 310 and the second housing 320 can be relatively unfolded to a flat state or relatively folded to a closed state through the movement of the folding assembly 330, and can also be relatively flattened or relatively folded to an intermediate state.
  • the screen 100, the graphene component 200, the housing device 300 and each component of the housing device 300 are in the open state correspondingly; when the electronic device 10 is in the closed state, the screen 100, graphene The vinyl component 200, the housing device 300, and each component of the housing device 300 are in a closed state correspondingly; when the electronic device 10 is in an intermediate state, the screen 100, the housing device 300, and each component of the housing device 300 are in an intermediate state correspondingly.
  • the angle between the first housing 310 and the second housing 320 may be approximately 180°.
  • the first housing 310, the folding component 330 and the second housing 320 are sequentially arranged along the second direction Y
  • the screen 100 presents a flattened form
  • the first sub-section 110, the bending section 130 and the second sub-section 120 are arranged along the second direction Y.
  • the second direction Y is arranged coplanarly.
  • the two ends of the electronic device 10 along the second direction Y are respectively the first end and the second end. When in the flat state, the first end is arranged away from the second end.
  • the first sub-part 110 , the bending part 130 and the second sub-part 120 are coplanar along the second direction Y, which can be understood as the distance between the first sub-part 110 and the second sub-part 120
  • the included angle can also be coplanar with a slight deviation from 180°, such as 165°, 177° or 185°.
  • the first sub-section 110, the bending section 130 and the second sub-section 120 are flat and coplanar. noodle.
  • the angle between the first sub-part 110 and the second sub-part 120 is defined as the angle between the upper side of the first sub-part 110 and the upper side of the second sub-part 120 .
  • the first housing 310 can be spliced with the second housing 320.
  • the splicing of the first housing 310 and the second housing 320 includes the situation where the two resist each other, and can also include the situation where there is a small gap between the two. .
  • the unfolding action of the housing device 300 can be stopped to prevent the housing device 300 from over-folding when unfolding, thereby lowering the screen 100 force, thereby improving the reliability of the screen 100 and the electronic device 10 .
  • the first direction X is the thickness direction of the electronic device 10
  • the second direction Y is the length direction of the electronic device 10
  • the second direction Y is the width direction of the electronic device 10 .
  • the angle between the first housing 310 and the second housing 320 may also deviate slightly from 180°, such as 165°, 177° or 185°, etc. In this case, it is also considered that the first housing 310 and the second housing 320 are flattened.
  • the angle between the first housing 310 and the second housing 320 is defined as the angle between the upper side of the first housing 310 and the upper side of the second housing 320 .
  • the first end is disposed close to the second end, and the angle between the first housing 310 and the second housing 320 can be approximately 0°.
  • the first housing 310 When the second housing 320 is folded to the closed state, the screen 100 assumes a folded form. For example, when the first housing 310 and the second housing 320 are in a closed state, they may contact each other to achieve positioning. In some other embodiments, when the first housing 310 and the second housing 320 are in a closed state, they can be close to each other, and there is a slight gap between them, which is not strictly limited in this application.
  • first housing 310 and the second housing 320 are housing parts, used for installing and fixing other components of the electronic device 10, and have diversified structures.
  • the embodiment of this application only briefly describes the first housing. Partial structures of the body 310 and the second housing 320 are exemplified and simplified in the drawings. The embodiments of the present application do not strictly limit the specific structures of the first housing 310 and the second housing 320 .
  • the screen 100 includes a first sub-part 110 , a bending part 130 and a second sub-part 120 arranged in sequence.
  • the first sub-part 110 is installed on the first housing 310
  • the second sub-part 120 is installed on the second housing 320
  • the bending part 130 is provided corresponding to the folding assembly 330, between the first housing 310 and the second housing 320
  • the bending portion 130 is deformed.
  • the first housing 310 and the second housing 320 are folded or unfolded relative to each other
  • the first housing 310 drives the first sub-section 110 to move
  • the second housing 320 drives the second sub-section 120 to move.
  • the portion 110 and the second sub-portion 120 are folded or unfolded relative to each other.
  • the first sub-part 110 of the screen 100 may be fixedly connected to the first housing 310.
  • the first sub-part 110 may be bonded to the first housing 310 through an adhesive layer.
  • the second sub-part 120 is fixedly connected to the second housing 320.
  • the second sub-part 120 may be bonded to the second housing 320 through a glue layer.
  • the first housing 310 and the second housing 320 are folded or flattened relative to each other. , can accurately control the relative folding and flattening actions between the first sub-section 110 and the second sub-section 120, making the deformation process and movement form of the screen 100 controllable and highly reliable.
  • the first housing 310 and the second housing 320 when the first housing 310 and the second housing 320 are relatively unfolded to a flat state, the first sub-part 110 , the bending part 130 and the second sub-part 120 of the screen 100 are relatively flat, and the screen 100 In flattened form.
  • FIG. 2 when the first housing 310 and the second housing 320 are in an intermediate state, an included angle is formed between the first sub-section 110 and the second sub-section 120 of the screen 100 , and the bending portion 130 is partially bent. , the screen 100 is in a bent state.
  • FIG. 3 when the first housing 310 and the second housing 320 are relatively folded to a closed state, the screen 100 is located inside the housing device 300 and is in the folded state. In one embodiment, when the first housing 310 and the second housing 320 are relatively folded to a closed state, the screen 100 is located outside the housing device 300 and is in the folded state.
  • the screen 100 may include a display module 140 and a support plate 150.
  • the display module 140 is a flexible display screen.
  • the support plate 150 is located below the display module 140 and is used to support the display module and increase the structural rigidity of the display module.
  • the screen 100 includes a display surface 101 and a back surface 102 .
  • the display surface 101 refers to the surface on which the screen displays an operation interface or picture
  • the back surface 102 refers to the surface of the screen 100 that is opposite to the back surface 102 .
  • the display surface 101 is the surface of the display module 140 away from the support plate 150
  • the back surface 102 refers to the surface of the support plate 150 away from the display module 140 .
  • the stiffness of the portion of the support plate 150 located at the bending portion 130 is smaller than the stiffness of the portions located at the first sub-portion 110 and the second sub-portion 120 , that is, the stiffness of the portion of the support plate 150 located at the bending portion 130
  • the stiffness is small, and the stiffness of the portion of the support plate 150 located at the first sub-section 110 and the second sub-section 120 is relatively large, so that the screen 100 can have both structural rigidity and high flatness, and at the same time, the bending portion of the screen 100 130 can also be bent smoothly.
  • the support plate 150 is in the shape of a bamboo book, and the support plate 150 is composed of multiple slats connected in sequence through flexible materials, so that the screen 100 can have high structural rigidity, and the screen 100 can also be smoothly bent. .
  • first housing 310 and the second housing 320 may be continuous, complete surfaces, or surfaces including multiple recessed areas or hollow areas, which are not strictly limited in the embodiments of the present application.
  • the display module 140 can be integrated with a display function and a touch sensing function.
  • the display function of the display module 140 is used to display images, videos, etc.
  • the touch sensing function of the display module 140 is used to sense the user's touch actions to achieve human-computer interaction.
  • the display module 140 can be a liquid crystal display (LCD), an organic light-emitting diode (OLED) display, an active matrix organic light-emitting diode or an active matrix organic light-emitting diode.
  • AMOLED Active-matrix organic light emitting diode
  • FLED flexible light-emitting diode
  • MiniLED MiniLED display
  • MicroLED display Micro-OLED display
  • quantum dot Light emitting diode quantum dot light emitting diodes, QLED
  • the folding component 330 is exposed in FIGS. 1 to 3.
  • the electronic device 10 can be provided with a shielding member. After the blocking member is set, the folding component 330 is will no longer be exposed.
  • the folding component 330 can be configured as needed.
  • the position of the folding component 300 is only illustrated in FIGS. 1 to 3 .
  • the structure of the folding component 330 is not limited as long as the electronic device 10 can be opened and closed. That’s it.
  • the graphene component 200 has good thermal conductivity, and the graphene component 200 can quickly transfer heat from high-temperature locations to low-temperature locations in the environment.
  • the graphene component 200 is located between the housing device 300 and the screen 100 (as shown in FIG. 4 ). In one embodiment, the graphene component 200 is located on a side of the support plate 150 away from the display module 140 . In one embodiment, the graphene component 200 is disposed closely against the support plate 150 in the screen 100 . In one embodiment, when the electronic device 10 is in a flat state, the display module 140 , the support plate 150 and the graphene component 200 are stacked in sequence along the first direction X.
  • At least part of the graphene component 200 is located on a side of the bending portion 130 close to the folding assembly 330, and both ends of the graphene component 200 respectively extend to the first sub-section 110 and the second sub-section 120 close to the first housing 310 and the second One side of the housing 320 so that heat can be transferred in the second direction Y.
  • the graphene component 200 can be unfolded to a flat state, the graphene component 200 can also be folded to a closed state, the graphene component 200 can also be unfolded or folded to an intermediate state, and the intermediate state can be any state between the flat state and the closed state. . Since the graphene component 200 has elastic stretchability, the graphene component 200 has a bendable structure, and the graphene component 200 can move along with the housing device 300 and the screen 100 . When the electronic device 10 is in a flat state, the graphene component 200 is in a flat state; when the electronic device 10 is in a closed state, the graphene component 200 is in a closed state. When the graphene component 200 is directly switched between the flat state and the closed state, it can be flexibly extended or shortened without breaking.
  • the orthographic projection of the graphene component 200 on the screen 100 covers all or most of the screen 100 . In one embodiment, the orthographic projection of graphene component 200 onto screen 100 covers a portion of screen 100 . It can be understood that the larger the area of the orthographic projection of the graphene component 200 on the screen 100 , the better the heat dissipation effect of the graphene component 200 on the electronic device 10 .
  • the arrangement of the graphene component 200 can not only dissipate heat from the first housing 310 , the second housing 320 , the first sub-section 110 , and the second sub-section 120 themselves, but also realize the integration of the first housing 310 and the second housing
  • the heat transfer between 320 and between the first sub-section 110 and the second sub-section 120 uniformly conducts and distributes the heat of the high-heat-generating area in the electronic device 10 to all corners of the entire body, especially the high-heat-generating area.
  • the heat in the area is conducted to the low-heating area to achieve a heat dissipation effect that efficiently balances the heat of the entire machine.
  • the elastic expansion and contraction performance of the graphene component 200 ensures that when the graphene component 200 switches between the flat state and the closed state, the graphite
  • the vinyl component 200 maintains structural integrity and is prevented from being pulled and broken, resulting in failure of the thermal conductive function.
  • the elongation e of the graphene component 200 from the flat state to the closed state is:
  • the length L 1 of the graphene component 200 refers to the length of the graphene component 200 in the second direction Y when the graphene component 200 is in a flat state; the length L 2 of the graphene component 200 refers to the length of the graphene component 200 in the flat state.
  • the stretched length of the graphene component 200 is the distance between the two ends of the graphene component 200 away from the bending portion 130 along the plate surface of the graphene component 200 , that is, L 3 and L in FIG. 5 The sum of the three parts 4 and L 5 .
  • the length L 3 of the graphene component 200 refers to the arc-shaped portion of the graphene component 200 located on the side corresponding to the bending portion 130 length of points. Specifically, please refer to Figure 5.
  • the cross-section of the graphene component 200 includes a first part 201, a second part 202, and a third part connected between the first part 201 and the second part 202.
  • the first tangent B 1 where the extension direction of the first tangent B 1 is parallel to the first part 201 , the connection point between the second part 202 and the first part 201 is A 2 , and the tangent to the second connection point A 2 is the second tangent.
  • B 2 wherein the extension direction of the second tangent B 2 is parallel to the second part 202 , and the tangent direction from the first connection point A 1 to the second connection point A 2 changes continuously.
  • the length L 3 is the arc length between the first connection point A 1 and the second connection point A 2 .
  • the elongation e of the graphene component 200 is greater than or equal to 5%, ensuring that the graphene component 200 has sufficient elongation e so that the graphene component 200 changes from a flattened state to During the closed state, the graphene component 200 has sufficient stretching amount to prevent breakage during the stretching process.
  • the graphene component 200 can be applied in the electronic device 10 whose elongation e is less than or equal to 5%.
  • the elongation e of the electronic device 10 in the closed state is less than or equal to 5%, and graphite The elongation e of the graphene component 200 is greater than or equal to 5%, so that the graphene component 200 will not break when the electronic device 10 is closed.
  • the elongation e of the graphene component 200 is greater than or equal to 5% and less than or equal to 100%.
  • the elongation e of the graphene component 200 is greater than or equal to 10% and less than or equal to 20%.
  • the elongation e of the graphene component 200 is greater than or equal to 10% and less than or equal to 30%.
  • the elongation e of the graphene component 200 is greater than or equal to 10% and less than or equal to 50%.
  • the elongation e of the graphene component 200 is greater than or equal to 10% and less than or equal to 80%.
  • the elongation amount ⁇ L of the graphene component 200 is greater than or equal to 1 mm and less than or equal to 4 mm.
  • the entire graphene component 200 has elastic stretchability, and the overall elongation e of the graphene component 200 is greater than or equal to 5%.
  • different parts of the graphene component 200 have different elastic stretch properties.
  • the graphene component 200 When maintaining the elongation e of the entire graphene component 200 to be greater than or equal to 5%, the graphene component 200 The elongation e of one part may be less than 5%, and the elongation e of another part of the graphene component 200 may be greater than or equal to 5%.
  • the elongation e of the graphene component 200 may be set according to the elongation e when the electronic device 10 is bent.
  • Figure 6 is a partial structural diagram of the electronic device 10 in the first embodiment.
  • Figure 7 is a partial enlarged view of part M in Figure 6.
  • Figure 8 is a top view of Figure 6.
  • the graphene component 200 includes a connected first elastic segment 211 and a first graphene segment 221 (as shown in FIG. 6 ).
  • the first elastic segment 211 is located on one side of the first sub-part 110 and can Stretched relative to the first sub-part 110, the first graphene segment 221 is located on one side of the bending part 130, and both ends of the first graphene segment 221 extend to one side of the first sub-part 110 and the second sub-part 120 respectively.
  • At least part of the first elastic segment 211 is fixed relative to the first sub-section 110 , and the elongation e of the first elastic segment 211 is greater than the elongation e of the first graphene segment 221 .
  • Part of the first elastic section 211 is fixed relative to the first sub-part 110 , which means that the relative positional relationship between the part of the first elastic section 211 and the first sub-part 110 remains unchanged. When the first sub-part 110 moves, part of the first elastic section 211 can Move with it.
  • the first elastic segment 211 when When the graphene component 200 is in a flat state, the first elastic segment 211 is located on the side of the first graphene segment 221 close to the first sub-section 110 along the second direction Y, and part of the first elastic segment 211 and the first graphene segment 221 Fixed connection.
  • the elongation e of the first graphene segment 221 is greater than or equal to 0.3% and less than 1%; the elongation e of the first elastic segment 211 is greater than or equal to 0.3%. equals 10%.
  • the elongation e of the first graphene segment 221 is small.
  • the first graphene segment 221 alone is not enough to meet the requirements for the elongation e of the graphene component 200 when switching between the flat state and the closed state.
  • the first elastic segment 211 with a larger length e enables the graphene component 200 as a whole to meet the requirement for elongation e when switching between the flattened state and the closed state.
  • the overall elongation of the graphene component 200 is mainly achieved through the elongation of the first elastic segment 211.
  • the overall elongation of the graphene component 200 is mainly achieved by The overall shortening of the graphene component 200 is achieved by shortening the first elastic section 211 .
  • the calculation method of the elongation e of the first graphene segment 221 is the same as the calculation method of the elongation e of the graphene component 200.
  • the difference is that the length L 1 of the first graphene segment 221 refers to the graphene component. 200 is in the flat state, the length of the first graphene segment 221 in the second direction Y; the length L 2 of the first graphene segment 221 refers to when the graphene component 200 is in the closed state, the first graphene segment 221 is far away from
  • the distance L 3 between the two ends of the bent portion 130 along the plate surface of the graphene component 200 is the same as that of the graphene component 200 .
  • the calculation method of the elongation e of the first elastic segment 211 is the same as the calculation method of the elongation e of the graphene component 200.
  • the difference is that the length L 1 of the first elastic segment 211 means that the graphene component 200 is in The length of the first elastic segment 211 in the second direction Y in the flat state; the length L 2 of the first elastic segment 211 refers to the length of the first elastic segment 211 after stretching when the graphene component 200 is in the closed state; L3 is the same as graphene component 200.
  • the first graphene segment 221 includes a first graphene layer 2211 and two first film layers 2212 located on two opposite surfaces of the first graphene layer 2211 along the first direction X.
  • the first direction X intersects the surface of the first sub-section 110 facing the first graphene segment 221.
  • the first graphene layer 2211 includes a single layer of graphene arranged in a multi-layer stack. The edges of the two first film layers 2212 are sealed to isolate the first graphene.
  • the graphene layer 2211 is connected to the outside, and part of the first elastic section 211 is connected to the first film layer 2212.
  • the first graphene layer 2211 is located on one side of the bending part 130, and both ends of the first graphene layer 2211 extend to the first One side of the sub-part 110 and the second sub-part 120; the elongation e of the first graphene layer 2211 is greater than or equal to 0.3% and less than 1%; the elongation e of the first elastic segment 211 is The value is greater than or equal to 10%. In this embodiment, the elongation e of the first graphene layer 2211 is small, and the elongation e is greater than or equal to 0.3% and less than 1%.
  • the first graphene segment 221 alone is not enough to meet the requirements.
  • the requirement for elongation e can be met when switching.
  • the first film layer 2212 is used to provide protective support for the first graphene layer 2211 and has elastic stretchability.
  • the first film layer 2212 can extend or shorten as the first graphene layer 2211 elongates or shortens.
  • the material of the first film layer 2212 includes, but is not limited to, natural rubber, polyurethane (PU), thermoplastic polyurethane rubber (TPU), polybutadiene (butadiene rubber), polyisoprene. Diene (isoprene rubber), chloroprene rubber, butyl rubber, aramid paper, etc.
  • the first film layer 2212 itself has a strong elastic stretch rate and still has strong elastic stretch in a thin state.
  • the first film layer 2212 has an elastic structure, and the tensile elongation ability of the first film layer 2212 is improved by the stretching ability of the elastic structure.
  • the materials of the elastic structure include but are not limited to titanium alloy, aluminum alloy, etc. .
  • the length of the two first film layers 2212 along the second direction Y is greater than the length of the first graphene layer 2211 along the second direction Y.
  • the film layers 2212 are bonded to each other to seal both ends of the first graphene layer 2211 along the second direction Y.
  • part of the first elastic section 211 is connected to the first film layer 2212, and the first elastic section 211 and the two first film layers 2212 at least partially overlap along the first direction X.
  • the first elastic segment 211 and the first graphene layer 2211 do not overlap along the first direction X.
  • the first film layer 2212 has good thermal conductivity.
  • the good thermal conductivity allows the first film layer 2212 to quickly transfer heat in the environment to the first graphene layer 2211, reducing the impact of the first film layer 2212 on Effect of the first graphene layer 2211.
  • the first film layer 2212 is insulating. Since the first graphene layer 2211 is conductive, if the first graphene layer 2211 is in direct contact with external components or circuits, it is easy to cause a short circuit in the external components or circuits. Wrapping the first film layer 2212 on the outside of the first graphene layer 2211 insulates the first graphene layer 2211 from the external environment and reduces the risk of short circuiting external components and circuits caused by the first graphene layer 2211.
  • part of the first elastic segment 211 is fixedly connected to the back 102 of the screen 100 (as shown in FIG. 7 ), so that part of the first elastic segment 211 is fixed relative to the first sub-part 110 .
  • part of the first elastic segment 211 is bonded to the support plate 150 , so that part of the first elastic segment 211 is fixedly connected to the back 102 of the screen 100 .
  • part of the first elastic segment 211 is connected to the first film layer 2212 on one side thereof, and part of the first elastic segment 211 is connected to the first sub-part 110 on one side thereof. 110 connections.
  • the side of the first graphene segment 221 away from the first elastic segment 211 is fixed relative to the second sub-section 120 .
  • part of the first elastic segment 211 is bonded to the support plate 150 , the side of the first graphene segment 221 away from the first elastic segment 211 is bonded to the support plate 150 , and both sides of the graphene component 200 are bonded to the support plate 150 .
  • the support plate 150 is fixedly connected so that the graphene component 200 can move with the housing device 300 and the screen 100 .
  • the first elastic section 211 includes a first section 2111, a second section 2112 and a third section 2113 connected in sequence, wherein the first sub-section 110 includes oppositely arranged
  • the display surface 101 and the back side 102 have the first section 2111 connected to the back side 102 of the first sub-section 110 and relatively fixed to the first sub-section 110 , the second section 2112 can be stretched relative to the first sub-section 110 , and the third section 2113 is connected to the back side 102 of the first sub-section 110 .
  • the first graphene segments 221 are connected, and the elongation rate e of the second segment 2112 is greater than the elongation rate e of the first segment 2111, and is greater than the elongation rate e of the third segment 2113.
  • the back surface 102 of the first sub-part 110 refers to the surface of the first sub-part 110 close to the graphene component 200 along the first direction X.
  • the first section 2111 and the support plate 150 are away from the display module 140 One side connection.
  • the second section 2112 is neither connected to the first sub-section 110 nor to the first graphene section 221. When the graphene component 200 is switched between the flat state and the closed state, the second section 2112 can be freely extended or shortened. .
  • the elongation e of the first section 2111, the second section 2112 and the third section 2113 can have the same value or different values. In one embodiment, the elongation e of the second section 2112 is greater than or equal to 10%.
  • the overall elongation or shortening of the graphene component 200 is achieved.
  • the calculation method of the elongation e of the second section 2112 is the same as the calculation method of the elongation e of the graphene component 200. The difference is that the length L 1 of the second section 2112 means that the graphene component 200 is in a flat state.
  • the length of the second section 2112 in the second direction Y the length of the second section 2112 in the second direction Y; the length L 2 of the second section 2112 refers to the length of the second section 2112 after stretching when the graphene component 200 is in the closed state; L 3 and graphene Part 200 is the same.
  • the calculation method of the elongation e of the first section 2111 and the third section 2113 is the same as that of the second section 2112e, and will not be described again here.
  • the first elastic section 211 is an elastic material, such as thermoplastic polyurethane elastomer rubber, and the elongation and contraction of the first elastic section 211 is achieved through the elastic stretchability of the elastic material itself.
  • the first elastic section 211 has an elastic structure (as shown in Figures 9 and 10). The elastic structure can be extended or shortened along the second direction Y. The first elastic section 211 is realized through the stretchability of the structure. The elongation and shortening.
  • the second section 2112 has an elastic structure, which is formed by etching a metal sheet. It can be understood that the elastic structure is not limited to the structure in Figures 9 and 10, as long as the elastic structure can satisfy It suffices to extend or shorten along the second direction Y.
  • the third section 2113 is connected to the first film layer 2212 on the side away from the screen 100, and the first section 2111 Connected to the screen 100, the second section 2112 forms a gap with the screen 100 in the first direction
  • the arrangement can reduce the thickness of the electronic device 10 in the first direction X.
  • the electronic device 10 further includes a first adhesive layer 410 located between the first section 2111 and the back 102 of the first sub-section 110 to connect the first section 2111 to the back surface 102 of the first sub-section 110 .
  • the first sub-part 110 is connected, and the surface of the first graphene segment 221 away from the first sub-part 110 is bonded to the third segment 2113.
  • one end of the first graphene segment 221 close to the first elastic segment 211 along the second direction Y is a bonded structure of two first film layers 2212 .
  • the thickness of the end of the second direction Y close to the first elastic segment 211 along the first direction The two first film layers 2212 at least partially overlap along the first direction X, and the third section 2113 does not overlap the first graphene layer 2211 along the first direction
  • the thickness of the connection point of layer 2212 is basically the same as the thickness of other parts of the first graphene segment 221, which can make the entire graphene component 200 uniform, which is more conducive to the close fit of the graphene component 200 with the screen 100 and other components, and facilitates heat dissipation. .
  • the third section 2113 is connected to the side of the first film layer 2212 away from the screen 100.
  • the first section 2111 and the second section 2112 are spaced apart from the first sub-section 110.
  • 410 is disposed in the gap between the first section 2111 and the first sub-section 110. There is no need to provide additional space for receiving the first adhesive layer 410, so that the first section 2111 and the first sub-section 110 can pass through the first adhesive layer.
  • the graphene component 200 is overall uniform and the surface is smoother. On the one hand, it is more conducive to the close fit of the graphene component 200 with the screen 100 and other components to facilitate heat dissipation. On the other hand, it can save space and reduce the cost of electrons.
  • the thickness of the device 10 makes the electronic device 10 suitable for miniaturization scenarios.
  • Figure 11 is a partial structural schematic diagram of the electronic device 10 provided by the second embodiment of the present application.
  • Figure 12 is a top view of Figure 11.
  • the second embodiment of the present application provides an electronic device 10, and the first The difference between the embodiments is that the graphene component 200 also includes a second elastic segment 212.
  • the second elastic segment 212 is located on one side of the second sub-part 120 and can be stretched relative to the second sub-part 120.
  • the second elastic segment 212 and The first graphene segment 221 is connected at one end away from the first elastic segment 211, and at least part of the second elastic segment 212 is fixed relative to the second sub-section 120.
  • the elongation e of the second elastic segment 212 is greater than that of the first graphene segment 221.
  • Elongation e Part of the second elastic section 212 is fixed relative to the second sub-section 120 , which means that the relative positional relationship between the part of the second elastic section 212 and the second sub-section 120 remains unchanged.
  • part of the second elastic section 212 can Move with it.
  • the second elastic segment 212 when the graphene component 200 is in a flat state, the second elastic segment 212 is located on a side of the first graphene segment 221 close to the second sub-section 120 along the second direction Y, and part of the second elastic segment 212 Fixedly connected to the first graphene segment 221. In one embodiment, when the graphene component 200 is in a flat state, the first elastic segment 211 and the second elastic segment 212 are located on both sides of the graphene component 200 along the second direction Y.
  • the positions of the second elastic section 212 and the first elastic section 211 are interchangeable.
  • the second elastic section 212 is located on one side of the first sub-portion 110
  • the first elastic section 211 is located on the side of the second sub-portion 120 . one side.
  • the stretch rates of the second elastic segment 212 and the first elastic segment 211 may be the same or different. to meet the needs of different products.
  • the elongation e of the second elastic section 212 is greater than or equal to 10%. So that the graphene component 200 can meet the stretching requirements.
  • the calculation method of the elongation e of the second elastic segment 212 is the same as the calculation method of the elongation e of the graphene component 200. The difference is that the length L 1 of the second elastic segment 212 means that the graphene component 200 is in The length of the second elastic segment 212 in the second direction Y in the flat state; the length L 2 of the second elastic segment 212 refers to the stretched length of the second elastic segment 212 when the graphene component 200 is in the closed state; L3 is the same as graphene component 200.
  • the total elongation e of the second elastic section 212 and the first elastic section 211 is greater than or equal to at 10%.
  • the overall elongation of the graphene component 200 is mainly achieved through the elongation of the second elastic segment 212 and the first elastic segment 211.
  • the graphene component 200 transitions from the closed state to the closed state.
  • the overall shortening of the graphene component 200 is mainly achieved through the shortening of the second elastic section 212 and the first elastic section 211 .
  • part of the second elastic section 212 is fixedly connected to the back 102 of the screen 100 so that part of the second elastic section 212 is fixed relative to the second sub-section 120 .
  • part of the second elastic segment 212 is connected to the first film layer 2212 on one side thereof, and part of the second elastic segment 212 is connected to the second sub-part 120 on one side thereof. 120 connections.
  • part of the second elastic section 212 is bonded to the support plate 150 and fixedly connected to the back 102 of the screen 100 .
  • the support plate 150 is not shown in FIG. 9 , and can be understood by referring to FIG. 4 .
  • part of the first elastic segment 211 is bonded to the support plate 150
  • part of the second elastic segment 212 is bonded to the support plate 150 on a side away from the first elastic segment 211
  • both sides of the graphene component 200 are bonded to the support plate 150 .
  • the support plate 150 is fixedly connected so that the graphene component 200 can move with the housing device 300 and the screen 100 .
  • the second elastic section 212 includes a fourth section 2121, a fifth section 2122 and a sixth section 2123 connected in sequence.
  • the fourth section 2121 is connected to the back 102 of the second sub-section 120 and is connected to the second sub-section 120 .
  • 120 is relatively fixed, the fifth section 2122 can be stretched relative to the second sub-section 120, and the sixth section 2123 is connected to the first graphene section 221.
  • the back surface 102 of the second sub-part 120 refers to the surface of the second sub-part 120 close to the graphene component 200 along the first direction X.
  • the fourth section 2121 and the support plate 150 are away from the display module 140 One side connection.
  • the fifth section 2122 is neither connected to the second sub-section 120 nor to the first graphene section 221. When the graphene component 200 is switched between the flat state and the closed state, the fifth section 2122 can be freely extended or shortened. .
  • the elongation e of the fourth section 2121, the fifth section 2122, and the sixth section 2123 can have the same value or different values. In one embodiment, the elongation e of the fifth section 2122 is greater than or equal to 10%.
  • the graphene component 200 switches between the flattened state and the closed state, it is mainly elongated or shortened by the elongation or shortening of the fifth section 2122. The overall elongation or shortening of the graphene component 200 is achieved.
  • the sixth section 2123 is connected to the first film layer 2212 on the side away from the screen 100, the fourth section 2121 is connected to the screen 100, and in the first direction X, the fifth section 2122 forms a gap with the screen 100. So that the fifth section 2122 can be freely extended or shortened, this arrangement of the second elastic section 212 can reduce the thickness of the electronic device 10 in the first direction X.
  • the electronic device 10 further includes a third adhesive layer 430 (as shown in FIG. 11 ).
  • the third adhesive layer 430 is located between the fourth section 2121 and the back 102 of the second sub-section 120 to connect the The four sections 2121 are connected to the second sub-section 120 , and the surface of the first graphene section 221 away from the second sub-section 120 is bonded to the sixth section 2123 .
  • first, one end of the first graphene segment 221 close to the second elastic segment 212 along the second direction Y is a bonded structure of two first film layers 2212.
  • the first graphene segment 221 moves along the second direction Y.
  • the thickness of the end of Y close to the second elastic segment 212 along the first direction The first film layer 2212 at least partially overlaps along the first direction X, and the sixth segment 2123 and the first graphene layer 2211 do not overlap along the first direction
  • the thickness of other parts of a graphene segment 221 is basically the same, which can make the entire graphene component 200 uniform, which is more conducive to the close fit of the graphene component 200 with the screen 100 and other components, and facilitates heat dissipation.
  • the sixth section 2123 is connected to the side of the first film layer 2212 away from the screen 100.
  • the fourth section 2121 and the fifth section 2122 are spaced apart from the second sub-section 120.
  • 430 is disposed in the gap between the fourth section 2121 and the second sub-section 120, and there is no need to provide additional space for receiving the third adhesive layer 430, so that the fourth section 2121 and the second sub-section 120 can pass through the third adhesive layer.
  • the entire graphene component 200 is uniform and the surface is smoother. On the one hand, it is more conducive for the graphene component 200 to fit closely with the screen 100 and other components to facilitate heat dissipation. On the other hand, it can save space and reduce the thickness of the electronic device 10, making the electronic device 10 suitable for miniaturization scenarios.
  • FIG. 13 is a partial structural diagram of the electronic device 10 in the third embodiment
  • FIG. 14 is a partial enlarged view of the N part in FIG. 13 .
  • the third embodiment of the present application provides an electronic device 10.
  • the electronic device 10 also includes a middle frame 500 (as shown in FIG. 13).
  • the middle frame 500 is located away from the graphene component 200 and the screen. 100 side.
  • the middle frame 500 is located between the graphene component 200 and the housing device 300.
  • the middle frame 500 can be unfolded to a flat state.
  • the middle frame 500 can also be folded to a closed state.
  • the middle frame 500 can also be unfolded or folded to an intermediate state.
  • the intermediate state It can be any state between the flat state and the closed state.
  • the middle frame 500 can move with the housing device 300 and the screen 100.
  • the middle frame 500 can be used to fix the screen 100 and protect the screen 100 .
  • the middle frame 500 can also be used to prevent slipping and enhance the signal and structural strength of the electronic device 10 .
  • the first elastic section 211 includes a first section 2111, a second section 2112 and a third section 2113 connected in sequence.
  • the first section 2111 is connected to the middle frame 500 and is connected to the middle frame 500.
  • the first sub-section 110 is relatively fixed, the second section 2112 can be stretched relative to the middle frame 500 , and the third section 2113 is connected to the first graphene section 221 .
  • the side of the first section 2111 away from the first sub-section 110 is connected to the middle frame 500, and the side of the first section 2111 close to the first sub-section 110 can contact and abut with the first sub-section 110.
  • the first section 2111 The side close to the first sub-part 110 may also be connected to the first sub-part 110 .
  • an end of the first graphene segment 221 away from the first elastic segment 211 along the second direction Y is connected to the middle frame 500 .
  • the first section 2111 is connected to the middle frame 500 , and an end of the first graphene section 221 away from the first elastic section 211 along the second direction Y is connected to the first sub-part 110 .
  • the first section 2111 is connected to the first sub-section 110 , and an end of the first graphene section 221 away from the first elastic section 211 along the second direction Y is connected to the middle frame 500 .
  • the electronic device 10 further includes a second adhesive layer 420 (as shown in FIG. 14 ).
  • the second adhesive layer 420 is located between the first section 2111 and the middle frame 500 to connect the first section 2111 to the middle frame 500 .
  • 2111 is connected to the middle frame 500, and the surface of the first graphene segment 221 away from the middle frame 500 is bonded to the third segment 2113.
  • the third section 2113 is connected to the side of the first film layer 2212 away from the middle frame 500, and the third section 2113 is connected to the two first film layers 2212 at least partially along the first direction X. Overlap, the third section 2113 and the first graphene layer 2211 do not overlap along the first direction
  • the entire graphene component 200 can be made uniform, which is more conducive to the close fit of the graphene component 200 with the screen 100 and other components, and facilitates heat dissipation.
  • the third section 2113 is connected to the side of the first film layer 2212 close to the screen 100.
  • the first section 2111 and the second section 2112 are spaced apart from the middle frame 500, and the second adhesive layer 420 is provided In the gap between the first section 2111 and the middle frame 500, there is no need to provide additional space for receiving the second adhesive layer 420.
  • the graphite The overall uniformity and smoother surface of the graphene component 200 will, on the one hand, facilitate the close fit of the graphene component 200 with the screen 100, middle frame 500 and other components to facilitate heat dissipation. On the other hand, it can save space and reduce the cost of the electronic device 10
  • the thickness makes the electronic device 10 suitable for miniaturization scenarios.
  • the graphene component 200 further includes a second elastic segment 212 (as shown in FIG. 15 ).
  • the second elastic segment 212 is located at an end of the first graphene segment 221 away from the first elastic segment 211 and is connected with the first elastic segment 211 .
  • the first graphene segment 221 is connected, Part of the second elastic section 212 is fixedly connected to the middle frame 500 .
  • the second elastic section 212 is fixedly connected to the middle frame 500
  • the first elastic section 211 is fixedly connected to the screen 100 .
  • the second elastic section 212 includes a fourth section 2121, a fifth section 2122, and a sixth section 2123 connected in sequence.
  • the fourth section 2121 is connected to a side of the middle frame 500 close to the screen 100
  • the fifth section 2121 is connected to a side of the middle frame 500 close to the screen 100.
  • 2122 can be stretched relative to the middle frame 500
  • the sixth section 2123 is connected to the first graphene section 221.
  • the sixth section 2123 is connected to the first film layer 2212 on the side close to the screen 100
  • the fourth section 2121 is connected to the middle frame 500, and in the first direction X
  • the fifth section 2122 forms a gap with the screen 100. , so that the fifth section 2122 can be freely extended or shortened.
  • This arrangement of the second elastic section 212 can reduce the thickness of the electronic device 10 in the first direction X.
  • the electronic device 10 further includes a fourth adhesive layer 440 (as shown in FIG. 15 ).
  • the fourth adhesive layer 440 is located between the fourth section 2121 and the middle frame 500 to connect the fourth section 2121 and the middle frame 500 .
  • the frame 500 is connected, and the surface of the first graphene segment 221 away from the middle frame 500 is bonded to the sixth segment 2123.
  • the sixth section 2123 is connected to the side of the first film layer 2212 away from the middle frame 500, and the sixth section 2123 at least partially overlaps the two first film layers 2212 along the first direction X.
  • the sixth section 2123 is connected to the first film layer 2212.
  • the graphene layers 2211 do not overlap along the first direction ization, it is more conducive for the graphene component 200 to closely fit the screen 100, the middle frame 500 and other components to facilitate heat dissipation.
  • the sixth section 2123 is connected to the side of the first film layer 2212 away from the middle frame 500.
  • the fourth section 2121 and the fifth section 2122 are spaced apart from the middle frame 500.
  • the fourth adhesive layer 440 Disposed in the gap between the fourth section 2121 and the second sub-section 120, there is no need to provide additional space for receiving the fourth adhesive layer 440, so that the fourth section 2121 and the middle frame 500 are connected through the fourth adhesive layer 440
  • the graphene component 200 is overall uniform and the surface is smoother. On the one hand, it is more conducive to the close fit of the graphene component 200 with the screen 100, the middle frame 500 and other components to facilitate heat dissipation. On the other hand, it can save space and reduce the cost.
  • the thickness of the electronic device 10 makes the electronic device 10 suitable for miniaturization scenarios.
  • FIG. 16 and FIG. 17 are partial structural schematic diagrams of an electronic device 10 provided by a fourth embodiment of the present application.
  • the fourth embodiment of the present application provides an electronic device 10 , which is the same as that of the first embodiment.
  • the difference is that the graphene component 200 also includes a second graphene segment 222 located on one side of the first sub-part 110 and at least partially along the edge of the first graphene segment 221
  • the first direction X is stacked, and the first direction X intersects the surface of the second graphene segment 222 facing the first sub-section 110 .
  • the second graphene segment 222 and the first graphene segment 221 are stacked.
  • the first graphene segment 221 can slide relative to the second graphene segment 222.
  • the second graphene segment 222 can be fixed relative to the first sub-section 110.
  • the second graphene segment 222 can slide relative to the second graphene segment 222.
  • the arrangement of the ene segment 222 will not affect the free elongation or shortening of the first graphene segment 221, the first elastic segment 211 or the second elastic segment 212.
  • the first direction X perpendicularly intersects the surface of the second graphene segment 222 facing the first sub-section 110 .
  • the position corresponding to the first sub-part 110 has a high-heat-generating component, that is, the position corresponding to the first sub-part 110 is a high-heat-generating area. Adding a second graphene segment 222 in the high-heat-generating area can improve graphene. The heat dissipation capability of component 200.
  • the elongation e of the second graphene segment 222 is greater than or equal to 0.3% and less than 1%.
  • the calculation method of the elongation e of the second graphene segment 222 is the same as the calculation method of the elongation e of the graphene component 200. The difference is that the length L 1 of the second graphene segment 222 refers to the graphene component. When the graphene component 200 is in the flat state, the length of the second graphene segment 222 in the second direction Y; the length L 2 of the second graphene segment 222 refers to the length L 2 of the second graphene segment 222 when the graphene component 200 is in the closed state.
  • the extended length; L 3 is the same as the graphene component 200 .
  • the elongation e of the second graphene segment 222 can be any value. Since the second graphene segment 222 is only located on one side of the first sub-section 110, the electronic device 10 is in a flat state. When switching between the closed state and the closed state, the elongation and shortening of the second graphene segment 222 is not involved, so there is no requirement for the elongation e of the second graphene segment 222.
  • the second graphene segment 222 has the same structure as the first graphene segment 221, and the second graphene segment 222 has the same structure as the first graphene segment 221.
  • Section 222 also includes a graphene layer and two film layers located on two opposite surfaces of the graphene layer along the first direction X, and the edges of the two film layers are sealed to isolate the graphene layer from the outside.
  • one or both ends of the second graphene segment 222 along the second direction Y may also be connected to the elastic segment.
  • the orthographic projection of the second graphene segment 222 on the first sub-section 110 covers the entire or most of the first sub-section 110 . to improve heat dissipation capacity.
  • the orthographic projection of the second graphene segment 222 on the first sub-section 110 covers a portion of the first sub-section 110 . It can be understood that the larger the area of the orthographic projection of the second graphene segment 222 on the first sub-section 110, the better the heat dissipation capability of the graphene component 200 can be exerted.
  • the second graphene segment 222 is located between the first graphene segment 221 and the first sub-section 110 (as shown in Figure 16), and the second graphene segment 222 is fixedly connected to the first sub-section 110, It can be understood that the entire second graphene segment 222 is fixedly connected to the first sub-section 110, or a part of the second graphene segment 222 is fixedly connected to the first sub-section 110, or the second graphene segment 222 is fixedly connected along the One or both sides of the second direction Y are fixedly connected to the first sub-part 110 . In one embodiment, the second graphene segment 222 is fixedly connected to a side of the first segment 2111 close to the first sub-section 110 .
  • the second graphene segment 222 is located on a side of the first graphene segment 221 away from the first sub-section 110 .
  • the electronic device 10 further includes a middle frame 500 , the middle frame 500 is located on the side of the graphene component 200 away from the screen 100 , and the second graphene segment 222 is located on the side of the first graphene segment 221 away from the first sub-part 110 One side (as shown in FIG. 17 ), and the second graphene segment 222 is fixedly connected to the middle frame 500 .
  • the entire second graphene segment 222 is fixedly connected to the middle frame 500 , or the second graphene segment 222
  • the second graphene segment 222 may be fixedly connected to the middle frame 500 on one side or both sides of the second graphene segment 222 along the second direction Y.
  • the second graphene segment 222 is fixedly connected to the side of the first segment 2111 close to the middle frame 500 .
  • Figure 18 is a partial structural schematic diagram of an electronic device 10 provided in the fifth embodiment of the present application.
  • the fifth embodiment of the present application provides an electronic device 10.
  • the difference from the fourth embodiment is that graphene
  • the component 200 further includes a third graphene segment 223 located on one side of the second sub-section 120 and at least partially stacked with the first graphene segment 221 along the first direction X.
  • the third graphene segment 223 and the first graphene segment 221 are stacked.
  • the first graphene segment 221 can slide relative to the third graphene segment 223.
  • the third graphene segment 223 can be fixed relative to the second sub-section 120.
  • the third graphene segment 223 can slide relative to the third graphene segment 223.
  • the arrangement of the ene segment 223 will not affect the free elongation or shortening of the first graphene segment 221, the first elastic segment 211 or the second elastic segment 212.
  • the second sub-section 120 has low heat-generating components in the corresponding position
  • the first sub-section 110 has high heat-generating components in the corresponding position.
  • the arrangement of the second graphene segment 222 can make the heat transfer from the graphite more quickly.
  • the graphene component 200 located on one side of the first sub-section 110 is transferred to the graphene component 200 located on one side of the second sub-section 120.
  • the arrangement of the third graphene segment 223 allows the heat to be quickly diffused, and the heat of the electronic device 10 can be better It is evenly conducted and distributed to every corner of the entire fuselage to achieve a heat dissipation effect that balances the heat of the entire machine.
  • the second sub-section 120 has high heat-generating components in the corresponding position, and the first sub-section 110 has low heat-generating components in the corresponding position.
  • the graphene component 200 further includes a second elastic segment 212 (as shown in FIG. 19 ).
  • the second elastic segment 212 is located on one side of the second sub-part 120 .
  • the second elastic segment 212 is connected to the first graphene segment 212 .
  • the segment 221 is connected at one end away from the first elastic segment 211 , and part of the second elastic segment 212 is fixed relative to the second sub-section 120 .
  • the orthographic projection of the third graphene segment 223 on the second sub-section 120 covers the entire or most of the second sub-section 120 . In one embodiment, the orthographic projection of the third graphene segment 223 on the second sub-section 120 covers a portion of the second sub-section 120 . It can be understood that the larger the area of the orthographic projection of the third graphene segment 223 on the second sub-section 120, the better Take advantage of the heat dissipation capability of the graphene component 200.
  • the elongation e of the third graphene segment 223 is greater than or equal to 0.3% and less than 1%.
  • the calculation method of the elongation e of the third graphene segment 223 is the same as the calculation method of the elongation e of the graphene component 200. The difference is that the length L 1 of the third graphene segment 223 refers to the graphene component.
  • the extended length; L 3 is the same as the graphene component 200 .
  • the elongation e of the third graphene segment 223 can be any value. Since the third graphene segment 223 is only located on one side of the first sub-section 110, the electronic device 10 is in a flat state. When switching between the closed state and the closed state, the elongation and shortening of the third graphene segment 223 is not involved, so there is no requirement for the elongation e of the third graphene segment 223.
  • the value of the elongation of the third graphene segment 223 and the value of the elongation of the second graphene segment 222 may be the same or different.
  • the third graphene segment 223 has the same structure as the first graphene segment 221 or the second graphene segment 222.
  • the third graphene segment 223 also includes a graphene layer and is located along the first graphene layer. There are two film layers on the two opposite surfaces in the direction X, and the edges of the two film layers are sealed to isolate the graphene layer from the outside. In one embodiment, one or both ends of the third graphene segment 223 along the second direction Y may also be connected to the elastic segment.
  • the third graphene segment 223 is located between the first graphene segment 221 and the second sub-section 120, and the third graphene segment 223 is fixedly connected to the second sub-section 120. It can be understood that the third graphene segment 223 is fixedly connected to the second sub-section 120. The entire graphene segment 223 is fixedly connected to the second sub-section 120, or part of the third graphene segment 223 is fixedly connected to the second sub-section 120. Alternatively, the third graphene segment 223 can be on one side along the second direction Y. Or both sides are fixedly connected to the second sub-part 120 .
  • the graphene component 200 further includes a second elastic segment 212. Part of the second elastic segment 212 is connected to an end of the first graphene segment 221 away from the first elastic segment 211.
  • the third graphene segment 223 is connected to the fourth elastic segment 212.
  • the section 2121 is fixedly connected on one side close to the second sub-section 120 .
  • the third graphene segment 223 is located between the first graphene segment 221 and the second sub-section 120
  • the second graphene segment 222 is located between the first graphene segment 221 and the first sub-section 110 , disposing the third graphene segment 223 and the second graphene segment 222 between the first graphene segment 221 and the screen 100 can save the space of the electronic device 10 and reduce the thickness of the electronic device 10 .
  • the third graphene segment 223 is located on a side of the first graphene segment 221 away from the second sub-section 120 .
  • the electronic device 10 further includes a middle frame 500 , the middle frame 500 is located on the side of the graphene component 200 away from the screen 100 , and the third graphene segment 223 is located on the side of the first graphene segment 221 away from the second sub-part 120 One side, and the third graphene segment 223 is fixedly connected to the middle frame 500. It can be understood that the entire third graphene segment 223 is fixedly connected to the middle frame 500, or part of the third graphene segment 223 is fixed to the middle frame 500.
  • the connection may also be that the third graphene segment 223 is fixedly connected to the middle frame 500 along one side or both sides of the second direction Y.
  • the graphene component 200 further includes a second elastic segment 212. Part of the second elastic segment 212 is connected to an end of the first graphene segment 221 away from the first elastic segment 211.
  • the third graphene segment 223 is connected to the fourth elastic segment 212.
  • the section 2121 is fixedly connected on one side close to the middle frame 500 .
  • the third graphene segment 223 and the second graphene segment 222 are both disposed on the side of the first graphene segment 221 away from the screen 100 , which can save space of the electronic device 10 and reduce the thickness of the electronic device 10 .
  • one of the third graphene segment 223 and the second graphene segment 222 is located on a side of the first graphene segment 221 away from the screen 100 , and the third graphene segment 223 and the second graphene segment 222 The other one is located between the first graphene segment 221 and the screen 100 .
  • Figures 20 and 21 are both partial structural schematic diagrams of the electronic device 10 provided by the sixth embodiment of the present application.
  • Figure 22 is a top view of the electronic device provided by the sixth embodiment of the present application.
  • the sixth embodiment of the present application provides an electronic device 10. The difference from the first embodiment is that the graphene component 200 includes a second graphene layer 230 and two opposite sides of the second graphene layer 230 along the first direction Y.
  • the second graphene layer 230 is located on one side of the bending part, and both ends of the second graphene layer 230 extend to one side of the first sub-part 110 and the second sub-part 120 respectively.
  • the extension of the second graphene layer 230 The length e is greater than or equal to 5%.
  • the calculation method of the elongation e of the second graphene layer 230 is the same as the calculation method of the elongation e of the graphene component 200.
  • the difference is that the length L 1 of the second graphene layer 230 refers to the graphene component.
  • the extended length; L 3 is the same as the graphene component 200 .
  • the entire graphene component 200 can be freely extended or shortened, and the second graphene layer 230 has a large enough elongation e to satisfy the graphene component 200 when it is flattened.
  • the requirement for the elongation e when switching between the open and closed states ensures that the graphene component 200 maintains structural integrity and avoids being pulled apart and causing failure of the thermal conductivity function.
  • the arrangement of the graphene component 200 enables the heat to be evenly conducted and distributed to every corner of the entire body of the electronic device 10 .
  • the heat is between the corresponding position of the first sub-part 110 and the corresponding position of the second sub-part 120 transfer to achieve a heat dissipation effect that balances the heat of the entire machine.
  • the thickness of the graphene component 200 is between 0.004 mm and 0.02 mm.
  • the graphene component 200 is fixedly connected to the screen 100 (as shown in FIG. 20 ).
  • the graphene component 200 is bonded to the screen 100 .
  • the bonding method may be that the side of the graphene component 200 close to the screen 100 is bonded to the screen 100 , or the graphene component 200 is bonded to the screen 100 . Part of the side surface is bonded to the screen 100 , or both ends of the graphene component 200 along the second direction Y are bonded to the screen 100 .
  • the electronic device 10 further includes a middle frame 500 .
  • the middle frame 500 is located on the side of the graphene component 200 away from the screen 100 .
  • the graphene component 200 is fixedly connected to the middle frame 500 (as shown in FIG. 21 ).
  • the graphene component 200 is bonded to the middle frame 500 .
  • the bonding method may be that the side of the graphene component 200 close to the middle frame 500 is bonded to the middle frame 500 , or the graphene component 200 is close to the middle frame 500 .
  • Part of the side surfaces of the middle frame 500 is bonded to the middle frame 500 , or both ends of the graphene component 200 along the second direction Y are bonded to the middle frame 500 .
  • part of the graphene component 200 is connected to the middle frame 500
  • part of the graphene component 200 is connected to the screen 100 .
  • the graphene component 200 when the graphene component 200 is in a flattened state, the two surfaces of the graphene component 200 in the first direction and shown in Figure 21). In one embodiment, the graphene component 200 may also have unequal thicknesses in the first direction settings to ensure the heat dissipation capability of the graphene component 200 .
  • Figure 23 is a partial structural diagram of the electronic device 10 provided by the sixth embodiment of the present application.
  • the second graphene layer 230 includes first graphene layers arranged side by side and connected to each other.
  • the sub-section 231, the second graphene sub-section 232 and the third graphene sub-section 233 are respectively located in the first sub-section 110.
  • the thickness of the second graphene sub-part 232 is greater than the thickness of the first graphene sub-part 231 and the third graphene sub-part 233.
  • the thicknesses of the first graphene sub-section 231 , the second graphene sub-section 232 and the third graphene sub-section 233 all refer to the thickness in the first direction X when in the flattened state.
  • the thickness of the second graphene sub-section 232 is The thickness is greater than the thickness of the first graphene sub-section 231 , and the thickness of the second graphene sub-section 232 is greater than the thickness of the third graphene sub-section 233 .
  • the thickness of the second graphene layer 230 will become thinner when being stretched.
  • the second graphene sub-portion 232 located on the side of the bending part 130 is a region with greater deformation. When the second graphene layer 230 is stretched, the thickness of the second graphene layer 230 will become thinner.
  • the reduction amount of the thickness of the second graphene sub-section 232 is larger, increase the thickness of the second graphene sub-section 232 when it is in the flattened state, and when the second graphene layer 230 is in the closed state, the thickness of the second graphene sub-section 232 is reduced, so that the second graphene sub-section 232 in the closed state
  • the thickness of the graphene sub-section 232, the first graphene sub-section 231 and the third graphene sub-section 233 are substantially equal, and the overall thickness of the second graphene layer 230 tends to be uniform, ensuring that the heat dissipation of the graphene component 200 can be continued. Stable and balanced.
  • the graphene component 200 further includes a second graphene segment 222 , the second graphene segment 222 is located on one side of the first sub-part 110 , and the second graphene segment 222 is connected to the second film layer 240 Stacked at least partially along the first direction X, the elongation of the graphene layer in the second graphene segment 222 is less than the elongation of the second graphene layer 230 .
  • the graphene component 200 further includes a second graphene segment 222 and a third graphene segment 223 (as shown in FIG. 24 ).
  • the second graphene segment 222 is located at a side of the first sub-part 110 . side, the second graphene segment 222 and the second film layer 240 are at least partially stacked along the first direction 240 is stacked at least partially along the first direction X.
  • the second graphene segment 222 and the third graphene segment 223 are located on the same side or different sides of the second graphene layer 230 along the first direction X.
  • the second graphene segment 222 and the third graphene segment 223 are located on a side of the second graphene layer 230 close to the screen 100 . In one embodiment, the second graphene segment 222 and the third graphene segment 223 are located on a side of the second graphene layer 230 away from the screen 100 .
  • the electronic device 10 further includes a middle frame 500 .
  • the middle frame 500 is located on the side of the graphene component 200 away from the screen 100 .
  • the middle frame 500 is provided with a groove in an area close to the second graphene sub-part 232 . 501 (as shown in FIG. 23 ), the second graphene sub-section 232 is at least partially received in the groove 501 .
  • the side of the graphene component 200 close to the middle frame 500 is disposed close to the middle frame 500. When the side of the graphene component 200 close to the middle frame 500 is in a flat state, the side of the middle frame 500 close to the graphene component 200 It is also in a flat state.
  • the second graphene sub-section 232 in the flat state When the thickness of the second graphene sub-section 232 in the flat state is increased, the second graphene sub-section 232 will bulge towards the middle frame 500. At this time, the middle frame 500 is close to the second graphene sub-section.
  • a groove 501 is provided in the area of the portion 232 for accommodating the thickened portion of the second graphene sub-portion 232, so that the overall thickness of the electronic device 10 tends to be uniform.
  • Figure 25 is a partial structural schematic diagram of the electronic device 10 provided by the sixth embodiment of the present application.
  • the electronic device 10 further includes a first middle frame sub-section 510, a second The middle frame sub-part 520 and the door panel 530, the first middle frame sub-part 510 is located on the side of the graphene component 200 away from the first sub-part 110, and the second middle frame sub-part 520 is located on the side of the graphene component 200 away from the second sub-part 120,
  • the graphene component 200 is provided with an opening 250 on one side of the bending part 130.
  • the opening 250 is filled with adhesive glue.
  • the adhesive glue connects the door panel 530 and the bending part 130 so that the door panel 530 and the bending part 130 are adhered to each other. Fixed together.
  • the door panel 530 is located on the side of the graphene component 200 away from the opening 250.
  • the bending portion 130 of the screen 100 is fixedly connected to the door panel 530, which ensures that the screen 100 is in the bent state. movement route.
  • the first middle frame sub-part 510, the door panel 530 and the second middle frame sub-part 520 are coplanar and abut in sequence to form a complete plate, and the electronic device 10 is in the closed state. , the first middle frame sub-section 510 and the second middle frame sub-section 520 are relatively folded. In one embodiment, when the electronic device 10 is in a flat state, the first middle frame sub-part 510 , the door panel 530 and the second middle frame sub-part 520 may also be arranged at intervals.
  • the graphene component 200 is provided with a plurality of openings 250 on the side of the bending portion 130 to enhance the bonding ability between the door panel 530 and the bending portion 130 .
  • the electronic device 10 may include multiple door panels 530 . Through the arrangement of the multiple door panels 530 , the first middle frame sub-section 510 , the second middle frame sub-section 520 and the door panel 530 as a whole can be smoothly bent.
  • Figure 26 is a partial structural schematic diagram of a display component 11 provided by the seventh embodiment of the present application.
  • the seventh embodiment of the present application provides a display component 11.
  • the display component 11 has a flat state and a closed state.
  • the display component including screen Screen 100 and graphene component 200.
  • Screen 100 includes a bending part 130 and first sub-parts 110 and second sub-parts 120 located on both sides of the bending part 130. In a flat state, the first sub-part 110 and the bending part 120 are The first sub-part 110 and the second sub-part 120 are coplanar.
  • the first sub-part 110 and the second sub-part 120 are folded relative to each other; at least part of the graphene component 200 is located on one side of the bent part 130, and the graphene component 200
  • the two ends extend to one side of the first sub-part 110 and the second sub-part 120 respectively, and the graphene component 200 has elastic stretchability.
  • the graphene component 200 is disposed on one side of the first sub-section 110 and the second sub-section 120 at the same time. Heat can be transferred between the first sub-section 110 and the second sub-section 120 through the graphene component 200 to achieve a balanced display. The heat dissipation effect of the entire machine of component 11.
  • the display component 11 also includes a middle frame 500 .
  • the descriptions and modifications about the screen 100, the graphene component 200 and the middle frame 500 in the electronic device 10 in the previous embodiments can be applied to the screen 100, the graphene component 200 and the middle frame in the display assembly 11 in this embodiment.
  • Box 500 The descriptions and modifications of the connection relationship and positional relationship between the graphene component 200 in the electronic device 10 and the screen 100 and the middle frame 500 in the previous embodiments can be applied to the graphene component in the display assembly 11 in this embodiment.
  • the connection relationship and positional relationship between 200, the screen 100 and the middle frame 500. I won’t go into details here.

Abstract

本申请提供一种显示组件及电子设备,显示组件具有展平状态和闭合状态,显示组件包括屏幕和石墨烯部件,屏幕包括折弯部和位于折弯部两侧的第一子部和第二子部,在展平状态时,第一子部、折弯部和第二子部共面,在闭合状态时,第一子部和第二子部相对折叠;石墨烯部件的至少部分位于折弯部的一侧,石墨烯部件的两端分别延伸至第一子部和第二子部的一侧,石墨烯部件具有弹性伸缩性能。通过石墨烯部件的设置,将显示组件及电子设备中的高发热区的热量均匀的传导、分布到整个机身的各个角落,起到高效平衡整机热量的一个散热效果,且石墨烯部件的弹性伸缩性能保证了石墨烯部件在展平状态和闭合状态切换时,石墨烯部件的结构完整性。

Description

显示组件及电子设备
本申请要求于2022年3月25日提交中国专利局、申请号为202210300582.X、申请名称为“显示组件及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及可折叠设备技术领域,特别涉及一种显示组件及电子设备。
背景技术
随着可折叠电子设备的逐步发展,整机厚度逐渐减薄,规格逐步提升,可折叠电子设备产生的热能耗较大,现有散热技术中,包括采用石墨烯材料散热层对整机进行散热,但是,普通石墨烯材料可拉伸性弱,在可折叠电子设备的弯折过程中,石墨烯材料散热层容易发生断裂;如果将石墨烯材料散热层避开弯折区域,仅分布于可折叠电子设备的热量集中区域,通过局部导热进行散热会使得导热效率较低。
发明内容
本申请提供一种具有优良散热效果的显示组件及电子设备。
第一方面,本申请一实施方式提供一种显示组件,所述显示组件具有展平状态和闭合状态,所述显示组件包括屏幕和石墨烯部件,所述屏幕包括折弯部和位于所述折弯部两侧的第一子部和第二子部,在所述展平状态时,所述第一子部、所述折弯部和所述第二子部共面,在所述闭合状态时,所述第一子部和所述第二子部相对折叠;所述石墨烯部件的至少部分位于所述折弯部的一侧,所述石墨烯部件的两端分别延伸至所述第一子部和所述第二子部的一侧,所述石墨烯部件具有弹性伸缩性能。
其中,所述屏幕为可弯折结构,在所述第一子部和所述第二子部相对折叠或相对展开的过程中,所述折弯部发生形变。所述屏幕可以包括显示模组和支撑板,所述显示模组为柔性显示屏,所述支撑板位于所述显示模组的下方,用于支撑显示模组、增加显示模组的结构刚度。所述屏幕包括显示面和背面,所述显示面是指屏幕显示操作界面或者画面的表面,所述背面是指所述屏幕的与所述背面相背设置的表面。具体的,所述显示面为所述显示模组远离所述支撑板的表面,所述背面是指所述支撑板远离所述显示模组的表面。
其中,所述石墨烯部件具有良好的热传导性能,所述石墨烯部件可将环境中高温部位的热量迅速传递至低温部位。在一实施方式中,所述石墨烯部件位于所述支撑板远离所述显示模组的一侧。在一实施方式中,所述石墨烯部件紧贴所述屏幕中的所述支撑板设置。在一实施方式中,所述显示组件处于展平状态时,所述显示模组、所述支撑板和所述石墨烯部件沿所述第一方向依次层叠设置。
所述石墨烯部件的至少部分位于所述折弯部的一侧,所述石墨烯部件的两端分别延伸至所述第一子部和所述第二子部的一侧,以使热量可以沿所述第二方向传递。
所述石墨烯部件可以展开至展平状态,所述石墨烯部件还可以折叠至闭合状态,所述石墨烯部件还可以展开或折叠至中间状态,中间状态可以为展平状态与闭合状态之间的任意状态。由于所述石墨烯部件具有弹性伸缩性能,所述石墨烯部件为可弯折结构,所述石墨烯部 件可随所述屏幕运动。所述显示组件处于展平状态时,所述石墨烯部件处于展平状态;所述显示组件处于闭合状态时,所述石墨烯部件处于闭合状态。所述石墨烯部件在展平状态和闭合状态直接切换时,可灵活的伸长或缩短而不发生断裂。
在一实施方式中,所述石墨烯部件在所述屏幕上的正投影覆盖整个或者大部分所述屏幕。在一实施方式中,所述石墨烯部件在所述屏幕上的正投影覆盖部分所述屏幕。可以理解的是,所述石墨烯部件在所述屏幕上的正投影的面积越大,所述石墨烯部件对所述显示组件的散热效果越好。
所述石墨烯部件的设置,不仅可对所述第一子部、所述第二子部自身进行散热,还可实现所述第一子部和所述第二子部之间的热量传递,将所述显示组件中的高发热区的热量均匀的传导、分布到整个机身的各个角落,特别地,高发热区的热量传导至低发热区中,以起到高效平衡整机热量的一个散热效果,而所述石墨烯部件的弹性伸缩性能则保证了所述石墨烯部件在展平状态和闭合状态切换时,所述石墨烯部件保持结构完整,免于被拉扯断而导致导热功能失效。
在一种可能的实现方式中,所述石墨烯部件包括相连接的第一弹性段和第一石墨烯段,所述第一弹性段位于所述第一子部的一侧且能够相对所述第一子部拉伸,所述第一石墨烯段位于所述折弯部的一侧,且所述第一石墨烯段的两端分别延伸至所述第一子部和所述第二子部的一侧,至少部分所述第一弹性段相对所述第一子部固定,所述第一弹性段的伸长率大于所述第一石墨烯段的伸长率。
其中,部分所述第一弹性段相对所述第一子部固定是指部分所述第一弹性段与所述第一子部的相对位置关系不变,当所述第一子部运动时,部分所述第一弹性段可随之运动。在一实施方式中,当所述石墨烯部件处于展平状态时,所述第一弹性段位于所述第一石墨烯段沿所述第二方向靠近所述第一子部的一侧,部分所述第一弹性段与所述第一石墨烯段固定连接。
所述石墨烯部件从展平状态转变为闭合状态时,所述石墨烯部件的长度从L1伸长至L2,伸长量为△L,所述石墨烯部件从展平状态转变为闭合状态的伸长率为:
其中,所述石墨烯部件的长度L1是指所述石墨烯部件处于展平状态时,所述石墨烯部件在所述第二方向上的长度;所述石墨烯部件的长度L2是指所述石墨烯部件处于闭合状态时,石墨烯部件拉伸后的长度,即所述石墨烯部件远离所述折弯部的两端沿所述石墨烯部件的板面之间的距离,所述石墨烯部件的长度L3是指所述石墨烯部件位于所述折弯部对应侧、呈弧形部分的长度。
其中,所述第一石墨烯段的伸长率的计算方法与所述石墨烯部件的伸长率的计算方法相同,不同的是,所述第一石墨烯段的长度L1是指所述石墨烯部件处于展平状态时,所述第一石墨烯段在所述第二方向上的长度;所述第一石墨烯段的长度L2是指所述石墨烯部件处于闭合状态时,所述第一石墨烯段远离所述折弯部的两端沿所述石墨烯部件的板面之间的距离;L3与所述石墨烯部件相同。
其中,所述第一弹性段的伸长率的计算方法与所述石墨烯部件的伸长率的计算方法相同,不同的是,所述第一弹性段的长度L1是指所述石墨烯部件处于展平状态时,所述第一弹性段在所述第二方向上的长度;所述第一弹性段的长度L2是指所述石墨烯部件处于闭合状态时,所述第一弹性段拉伸后的长度;L3与所述石墨烯部件相同。
所述第一石墨烯段的伸长率较小,单靠所述第一石墨烯段不足以满足所述石墨烯部件在 展平状态和闭合状态切换时对伸长率的要求,而通过设置伸长率较大的所述第一弹性段,使所述石墨烯部件整体在展平状态和闭合状态切换时可满足对伸长率的要求。所述石墨烯部件从展平状态转变为闭合状态时,主要通过所述第一弹性段的伸长来实现所述石墨烯部件的整体伸长,所述石墨烯部件从闭合状态转变为展平状态时,主要通过所述第一弹性段的缩短来实现所述石墨烯部件的整体缩短。
在一种可能的实现方式中,部分所述第一弹性段与所述屏幕的所述背面固定连接,以使部分所述第一弹性段相对所述第一子部固定。示例性的,部分所述第一弹性段与所述支撑板粘接,而使部分所述第一弹性段与所述屏幕的所述背面固定连接。在一实施方式中,所述第一石墨烯段远离所述第一弹性段的一侧相对所述第二子部固定。在一实施方式中,部分所述第一弹性段与所述支撑板粘接,所述第一石墨烯段远离所述第一弹性段的一侧与所述支撑板粘接,所述石墨烯部件的两侧均与所述支撑板固定连接,使所述石墨烯部件可随所述屏幕运动。
在一种可能的实现方式中,所述第一石墨烯段包括第一石墨烯层和位于所述第一石墨烯层沿第一方向相对两表面的两个第一膜层,所述第一方向与所述第一子部朝向所述第一石墨烯段的表面相交,所述第一石墨烯层包括多层堆叠设置的单层石墨烯,所述两个第一膜层的边缘密封以隔绝所述第一石墨烯层与外部,部分所述第一弹性段与所述第一膜层连接,所述第一石墨烯层位于所述折弯部的一侧,且所述第一石墨烯层的两端分别延伸至所述第一子部和所述第二子部的一侧。
其中,所述第一膜层用于为所述第一石墨烯层提供保护支撑,并且具有弹性伸缩性能,所述第一膜层可随着所述第一石墨烯层的伸长或缩短而伸长或缩短。在一实施方式中,所述第一膜层的材质包括但不局限于天然橡胶、聚氨基甲酸酯(PU)、热塑性聚氨酯橡胶(TPU)、聚丁二烯(顺丁橡胶)、聚异戊二烯(异戊橡胶)、氯丁橡胶、丁基橡胶、芳纶纸等,此时,所述第一膜层本身具有较强弹性拉伸率,在较薄状态时仍具有较强弹性拉伸率,并且具有复原回弹能力。在一实施方式中,所述第一膜层具有弹性结构,通过弹性结构的拉伸能力提高所述第一膜层的拉伸伸长能力,弹性结构的材质包括但不局限于钛合金、铝合金等。
在一实施方式中,当所述石墨烯部件处于展平状态时,两个所述第一膜层沿所述第二方向的长度大于所述第一石墨烯层沿所述第二方向的长度,通过两个所述第一膜层的相互粘接而将所述第一石墨烯层沿所述第二方向的两端密封。在一实施方式中,部分所述第一弹性段与所述第一膜层连接,所述第一弹性段与两个所述第一膜层沿所述第一方向至少部分重叠。在一实施方式中,所述第一弹性段与所述第一石墨烯层沿所述第一方向不重叠。
在一实施方式中,所述第一膜层具有良好的导热性,良好的导热性使所述第一膜层可以将环境中的热量快速传递至所述第一石墨烯层,减少所述第一膜层对所述第一石墨烯层的影响。在一实施方式中,所述第一膜层具有绝缘性,由于所述第一石墨烯层具有导电性,若所述第一石墨烯层直接与外部部件或者线路接触,容易造成外部部件或者线路短路,而在所述第一石墨烯层的外部包裹所述第一膜层,使所述第一石墨烯层与外部环境绝缘隔离,降低所述第一石墨烯层造成外部部件、线路短路的风险。
在一实施方式中,部分所述第一弹性段靠近所述第一膜层的一侧与所述第一膜层连接,且部分所述第一弹性段靠近所述第一子部的一侧与所述第一子部连接。
在一种可能的实现方式中,所述石墨烯部件的伸长率的取值大于或者等于5%。
保证所述石墨烯部件具有足够的伸长率,使得所述石墨烯部件从展平状态至闭合状态过程中所述石墨烯部件具有足够的拉伸量,可以在伸长过程中不发生断裂。
在一实施方式中,所述石墨烯部件的伸长率的取值大于或者等于5%,且小于或者等于100%。
在一实施方式中,所述石墨烯部件的伸长率的取值大于或者等于10%,且小于或者等于20%。
在一实施方式中,所述石墨烯部件的伸长率的取值大于或者等于10%,且小于或者等于30%。
在一实施方式中,所述石墨烯部件的伸长率的取值大于或者等于10%,且小于或者等于50%。
在一实施方式中,所述石墨烯部件的伸长率的取值大于或者等于10%,且小于或者等于80%。
在一实施方式中,所述石墨烯部件的伸长量△L的取值大于或者等于1mm,且小于或者等于4mm。
在一实施方式中,所述石墨烯部件整体均具有弹性伸缩性能,所述石墨烯部件的整体的伸长率的取值大于或者等于5%。
在一实施方式中,所述石墨烯部件的不同部分之间的弹性伸缩性能不同,在保持所述石墨烯部件整体的伸长率的取值大于或者等于5%的情况下,所述石墨烯部件中部分的伸长率的取值可以小于5%,且所述石墨烯部件中另一部分的伸长率的取值大于或者等于5%。
在一些实施方式中,所述石墨烯部件的伸长率可根据所述显示组件弯折时的伸长率来设置。
在一种可能的实现方式中,所述第一石墨烯层的伸长率的取值为大于或者等于0.3%,且小于1%;所述第一弹性段的伸长率的取值大于或者等于10%。在一实施方式中,所述第一石墨烯段的伸长率的取值为大于或者等于0.3%,且小于1%。所述第一石墨烯段的伸长率较小,单靠所述第一石墨烯段不足以满足所述石墨烯部件在展平状态和闭合状态切换时对伸长率的要求,而通过设置伸长率较大的所述第一弹性段,使所述石墨烯部件整体在展平状态和闭合状态切换时可满足对伸长率的要求。所述石墨烯部件从展平状态转变为闭合状态时,主要通过所述第一弹性段的伸长来实现所述石墨烯部件的整体伸长,所述石墨烯部件从闭合状态转变为展平状态时,主要通过所述第一弹性段的缩短来实现所述石墨烯部件的整体缩短。
在一种可能的实现方式中,所述石墨烯部件还包括第二弹性段,所述第二弹性段位于所述第二子部的一侧且能够相对所述第二子部拉伸,所述第二弹性段与所述第一石墨烯段远离所述第一弹性段的一端连接,且至少部分所述第二弹性段相对所述第二子部固定,所述第二弹性段的伸长率大于所述第一石墨烯段的伸长率。部分所述第二弹性段相对所述第二子部固定是指部分所述第二弹性段与所述第二子部的相对位置关系不变,当所述第二子部运动时,部分所述第二弹性段可随之运动。
在一实施方式中,当所述石墨烯部件处于展平状态时,所述第二弹性段位于所述第一石墨烯段沿所述第二方向靠近所述第二子部的一侧,部分所述第二弹性段与所述第一石墨烯段固定连接。在一实施方式中,当所述石墨烯部件处于展平状态时,所述第一弹性段和所述第二弹性段位于所述石墨烯部件沿所述第二方向的两侧。在一实施方式中,所述第二弹性段和所述第一弹性段的位置可互换,所述第二弹性段位于所述第一子部的一侧,所述第一弹性段位于所述第二子部的一侧。
在一实施方式中,所述第二弹性段和所述第一弹性段的拉伸率可以相同,也可以不同。以适应不同产品的需求。
在一实施方式中,所述第二弹性段的伸长率的取值大于或者等于10%。以使所述石墨烯部件满足拉伸需求。其中,所述第二弹性段的伸长率的计算方法与所述石墨烯部件的伸长率的计算方法相同,不同的是,所述第二弹性段的长度L1是指所述石墨烯部件处于展平状态时,所述第二弹性段在所述第二方向上的长度;所述第二弹性段的长度L2是指所述石墨烯部件处于闭合状态时,所述第二弹性段拉伸后的长度;L3与所述石墨烯部件相同。
在一实施方式中,所述第二弹性段与所述第一弹性段的总的伸长率的取值大于或者等于10%。所述石墨烯部件从展平状态转变为闭合状态时,主要通过所述第二弹性段和所述第一弹性段的伸长来实现所述石墨烯部件的整体伸长,所述石墨烯部件从闭合状态转变为展平状态时,主要通过所述第二弹性段和所述第一弹性段的缩短来实现所述石墨烯部件的整体缩短。
在一实施方式中,部分所述第二弹性段与所述屏幕的所述背面固定连接,以使部分所述第二弹性段相对所述第二子部固定。
在一实施方式中,部分所述第二弹性段与所述支撑板粘接,而与所述屏幕的所述背面固定连接。
在一实施方式中,部分所述第一弹性段与所述支撑板粘接,部分所述第二弹性段远离所述第一弹性段的一侧与所述支撑板粘接,所述石墨烯部件的两侧均与所述支撑板固定连接,使所述石墨烯部件可随所述屏幕运动。
在一实施方式中,所述第二弹性段包括依次连接的第四段、第五段和第六段,所述第四段与所述第二子部的所述背面连接而与所述第二子部相对固定,所述第五段能够相对所述第二子部拉伸,所述第六段与所述第一石墨烯段连接。其中,所述第二子部的所述背面是指所述第二子部沿所述第一方向靠近所述石墨烯部件的表面,在一实施方式中,所述第四段与所述支撑板远离所述显示模组的一侧连接。所述第五段既不与所述第二子部连接,也不与所述第一石墨烯段连接,当所述石墨烯部件在展平状态和闭合状态切换时,所述第五段可自由伸长或缩短。
在一实施方式中,所述第四段、所述第五段和所述第六段的伸长率的取值可以相同,也可以不同。在一实施方式中,所述第五段的伸长率的取值大于或者等于10%,所述石墨烯部件在展平状态和闭合状态切换时,主要通过所述第五段的伸长或缩短来实现所述石墨烯部件的整体伸长或缩短。
在一实施方式中,所述第六段与远离所述屏幕一侧的所述第一膜层连接,所述第四段与所述屏幕连接,在所述第一方向上,所述第五段与所述屏幕形成间隙,以使所述第五段可自由伸长或缩短,所述第二弹性段的这种排布方式可减少所述显示组件在所述第一方向上的厚度。在一实施方式中,所述显示组件还包括第三粘结层,所述第三粘结层位于所述第四段与所述第二子部的所述背面之间以将所述第四段与所述第二子部连接,所述第一石墨烯段远离所述第二子部的表面与所述第六段粘结。
首先,所述第一石墨烯段沿所述第二方向靠近所述第二弹性段的一端为两个所述第一膜层的粘合结构,所述第一石墨烯段沿所述第二方向靠近所述第二弹性段的一端沿所述第一方向的厚度较所述第一石墨烯段其他部分的厚度小,将所述第六段与所述第一膜层连接,且所述第六段与两个所述第一膜层沿所述第一方向至少部分重叠,所述第六段与所述第一石墨烯层沿所述第一方向不重叠,使所述第六段与所述第一膜层连接处的厚度与所述第一石墨烯段其他部分的厚度基本一致,可使所述石墨烯部件的整体均匀化,更有利于所述石墨烯部件与所述屏幕及其他部件紧密贴合,便于散热。
其次,所述第六段与所述第一膜层远离所述屏幕的一侧连接,在所述第一方向上,所述 第四段和所述第五段与所述第二子部间隔设置,所述第三粘结层设置在所述第四段与所述第二子部之间的间隙中,不需要额外提供空间用于收容所述第三粘结层,使所述第四段与所述第二子部通过所述第三粘结层连接后,所述石墨烯部件的整体均匀化、表面更加平整,一方面更有利于所述石墨烯部件与所述屏幕及其他部件紧密贴合,便于散热,另一方面,可节约空间,降低所述显示组件的厚度,使所述显示组件适合小型化的场景。
在一种可能的实现方式中,所述第一弹性段包括依次连接的第一段、第二段和第三段,其中,所述第一子部包括相对设置的显示面和背面,所述第一段与所述第一子部的背面连接而与所述第一子部相对固定,所述第二段能够相对所述第一子部拉伸,所述第三段与所述第一石墨烯段连接,所述第二段的伸长率大于所述第一段的伸长率,以及大于所述第三段的伸长率。
在一实施方式中,所述第一段与所述支撑板远离所述显示模组的一侧连接。所述第二段既不与所述第一子部连接,也不与所述第一石墨烯段连接,当所述石墨烯部件在展平状态和闭合状态切换时,所述第二段可自由伸长或缩短。
在一实施方式中,所述第一段、所述第二段和所述第三段的伸长率的取值可以相同,也可以不同。在一实施方式中,所述第二段的伸长率的取值大于或者等于10%,所述石墨烯部件在展平状态和闭合状态切换时,主要通过所述第二段的伸长或缩短来实现所述石墨烯部件的整体伸长或缩短。其中,所述第二段的伸长率的计算方法与所述石墨烯部件的伸长率的计算方法相同,不同的是,所述第二段的长度L1是指所述石墨烯部件处于展平状态时,所述第二段在所述第二方向上的长度;所述第二段的长度L2是指所述石墨烯部件处于闭合状态时,所述第二段拉伸后的长度;L3与所述石墨烯部件相同。
在一实施方式中,所述第一弹性段为弹性材料,如热塑性聚氨酯弹性体橡胶,通过弹性材料本身的弹性伸缩性能力实现所述第一弹性段的伸长及缩短。在一实施方式中,所述第一弹性段具有弹性结构,弹性结构可沿所述第二方向伸长或缩短,通过结构的可伸缩性实现所述第一弹性段的伸长及缩短。在一实施方式中,所述第二段具有弹性结构,该弹性结构通过对金属片刻蚀加工而成,可以理解的是,弹性结构不限,只要该弹性结构可以满足沿所述第二方向伸长或缩短即可。
在一实施方式中,所述第三段与远离所述屏幕一侧的所述第一膜层连接,所述第一段与所述屏幕连接,在所述第一方向上,所述第二段与所述屏幕形成间隙,以使所述第二段可自由伸长或缩短,所述第一弹性段的这种排布方式可减少所述显示组件在所述第一方向上的厚度。
在一种可能的实现方式中,所述显示组件还包括第一粘结层,所述第一粘结层位于所述第一段与所述第一子部的所述背面之间以将所述第一段与所述第一子部连接,所述第一石墨烯段远离所述第一子部的表面与所述第三段粘结。
首先,所述第一石墨烯段沿所述第二方向靠近所述第一弹性段的一端为两个所述第一膜层的粘合结构,所述第一石墨烯段沿所述第二方向靠近所述第一弹性段的一端沿所述第一方向的厚度较所述第一石墨烯段其他部分的厚度小,将所述第三段与所述第一膜层连接,且所述第三段与两个所述第一膜层沿所述第一方向至少部分重叠,所述第三段与所述第一石墨烯层沿所述第一方向不重叠,使所述石墨烯部件在所述第三段与所述第一膜层连接处的厚度与所述第一石墨烯段其他部分的厚度基本一致,可使所述石墨烯部件的整体均匀化,更有利于所述石墨烯部件与所述屏幕及其他部件紧密贴合,便于散热。
其次,所述第三段与所述第一膜层远离所述屏幕的一侧连接,在所述第一方向上,所述 第一段和所述第二段与所述第一子部间隔设置,所述第一粘结层设置在所述第一段与所述第一子部之间的间隙中,不需要额外提供空间用于收容所述第一粘结层,使所述第一段与所述第一子部通过所述第一粘结层连接后,所述石墨烯部件的整体均匀化、表面更加平整,一方面更有利于所述石墨烯部件与所述屏幕及其他部件紧密贴合,便于散热,另一方面,可节约空间,降低所述显示组件的厚度,使所述显示组件适合小型化的场景。
在一种可能的实现方式中,所述显示组件还包括中框,所述中框位于所述石墨烯部件远离所述屏幕的一侧;所述第一弹性段包括依次连接的第一段、第二段和第三段,所述第一段与所述中框连接而与所述第一子部相对固定,所述第二段能够相对所述中框拉伸,所述第三段与所述第一石墨烯段连接。所述第一段远离所述第一子部的一侧与所述中框连接,所述第一段靠近所述第一子部的一侧可以与所述第一子部接触、抵接,所述第一段靠近所述第一子部的一侧也可以与所述第一子部连接。
在一实施方式中,所述第一石墨烯段沿所述第二方向远离所述第一弹性段的一端与所述中框连接。
在一实施方式中,所述第一段与所述中框连接,且所述第一石墨烯段沿所述第二方向远离所述第一弹性段的一端与所述第一子部连接。
在一实施方式中,所述第一段与所述第一子部连接,且所述第一石墨烯段沿所述第二方向远离所述第一弹性段的一端与所述中框连接。
其中,所述中框可以展开至展平状态,所述中框还可以折叠至闭合状态,所述中框还可以展开或折叠至中间状态,中间状态可以为展平状态与闭合状态之间的任意状态。所述中框可随所述屏幕运动,所述显示组件处于展平状态时,所述中框处于展平状态;所述显示组件处于闭合状态时,所述石墨烯部件处于闭合状态。
其中,所述中框可用于固定所述屏幕,起到保护所述屏幕的作用,所述中框还可用于防滑、增强所述显示组件的信号、结构强度。
在一种可能的实现方式中,所述显示组件还包括第二粘结层,所述第二粘结层位于所述第一段与所述中框之间以将所述第一段与所述中框连接,所述第一石墨烯段远离所述中框的表面与所述第三段粘结。
首先,所述第三段与所述第一膜层远离所述中框的一侧连接,且所述第三段与两个所述第一膜层沿所述第一方向至少部分重叠,所述第三段与所述第一石墨烯层沿所述第一方向不重叠,使所述第三段与所述第一膜层连接处的厚度与所述第一石墨烯段其他部分的厚度基本一致,可使所述石墨烯部件的整体均匀化,更有利于所述石墨烯部件与所述屏幕及其他部件紧密贴合,便于散热。
其次,所述第三段与所述第一膜层靠近所述屏幕的一侧连接,在所述第一方向上,所述第一段和所述第二段与所述中框间隔设置,所述第二粘结层设置在所述第一段与所述中框之间的间隙中,不需要额外提供空间用于收容所述第二粘结层,使所述第一段与所述中框通过所述第二粘结层连接后,所述石墨烯部件的整体均匀化、表面更加平整,一方面更有利于所述石墨烯部件与所述屏幕、所述中框及其他部件紧密贴合,便于散热,另一方面,可节约空间,降低所述显示组件的厚度,使所述显示组件适合小型化的场景。
在一实施方式中,所述石墨烯部件还包括所述第二弹性段,所述第二弹性段位于所述第一石墨烯段远离所述第一弹性段的一端且与所述第一石墨烯段连接,部分所述第二弹性段与所述中框固定连接。在一实施方式中,所述第二弹性段与所述中框固定连接,且所述第一弹性段与所述屏幕固定连接。
在一实施方式中,所述第二弹性段包括依次连接的所述第四段、所述第五段和所述第六段,所述第四段与所述中框的靠近所述屏幕的一侧连接,所述第五段能够相对所述中框拉伸,所述第六段与所述第一石墨烯段连接。在一实施方式中,所述第六段与靠近所述屏幕一侧的所述第一膜层连接,所述第四段与所述中框连接,在所述第一方向上,所述第五段与所述屏幕形成间隙,以使所述第五段可自由伸长或缩短,所述第二弹性段的这种排布方式可减少所述显示组件在所述第一方向上的厚度。
在一实施方式中,所述显示组件还包括第四粘结层,所述第四粘结层位于所述第四段与所述中框之间以将所述第四段与所述中框连接,所述第一石墨烯段远离所述中框的表面与所述第六段粘结。首先,所述第六段与所述第一膜层远离所述中框的一侧连接,且所述第六段与两个所述第一膜层沿所述第一方向至少部分重叠,所述第六段与所述第一石墨烯层沿所述第一方向不重叠,使所述第六段与所述第一膜层连接处的厚度与所述第一石墨烯段其他部分的厚度基本一致,可使所述石墨烯部件的整体均匀化,更有利于所述石墨烯部件与所述屏幕、所述中框及其他部件紧密贴合,便于散热。
其次,所述第六段与所述第一膜层远离所述中框的一侧连接,在所述第一方向上,所述第四段和所述第五段与所述中框间隔设置,所述第四粘结层设置在所述第四段与所述第二子部之间的间隙中,不需要额外提供空间用于收容所述第四粘结层,使所述第四段与所述中框通过所述第四粘结层连接后,所述石墨烯部件的整体均匀化、表面更加平整,一方面更有利于所述石墨烯部件与所述屏幕、所述中框及其他部件紧密贴合,便于散热,另一方面,可节约空间,降低所述显示组件的厚度,使所述显示组件适合小型化的场景。
在一种可能的实现方式中,所述石墨烯部件还包括第二石墨烯段,所述第二石墨烯段位于所述第一子部的一侧,所述第二石墨烯段与所述第一石墨烯段至少部分沿第一方向层叠,所述第一方向与所述第二石墨烯段朝向所述第一子部的表面相交。所述第二石墨烯段与所述第一石墨烯段层叠设置,所述第一石墨烯段可相对所述第二石墨烯段滑动,所述第二石墨烯段可相对所述第一子部固定,所述第二石墨烯段的设置不会影响到所述第一石墨烯段、所述第一弹性段或所述第二弹性段的自由伸长或缩短。
在一实施方式中,所述第一方向与所述第二石墨烯段朝向所述第一子部的表面垂直相交。在一实施方式中,所述第一子部对应的位置内具有高发热部件,即所述第一子部对应的位置为高发热区,在高发热区增设所述第二石墨烯段,可提升所述石墨烯部件的散热能力。
在一实施方式中,所述第二石墨烯段的伸长率的取值为大于或者等于0.3%,且小于1%。其中,所述第二石墨烯段的伸长率的计算方法与所述石墨烯部件的伸长率的计算方法相同,不同的是,所述第二石墨烯段的长度L1是指所述石墨烯部件处于展平状态时,所述第二石墨烯段在所述第二方向上的长度;所述第二石墨烯段的长度L2是指所述石墨烯部件处于闭合状态时,所述第二石墨烯段拉伸后的长度;L3与所述石墨烯部件相同。
在一实施方式中,所述第二石墨烯段的伸长率的取值可以为任意值,由于所述第二石墨烯段仅位于所述第一子部的一侧,所述显示组件在展平状态和闭合状态之间切换时,不涉及所述第二石墨烯段的伸长与缩短,因此对所述第二石墨烯段的伸长率并无要求。
在一实施方式中,所述第二石墨烯段与所述第一石墨烯段具有相同的结构,所述第二石墨烯段也包括石墨烯层和位于石墨烯层沿所述第一方向相对两表面的两个膜层,两个膜层的边缘密封以隔绝石墨烯层与外部。在一实施方式中,所述第二石墨烯段沿所述第二方向的一端或两端也可与弹性段连接。
在一实施方式中,所述第二石墨烯段在所述第一子部上的正投影覆盖整个或者大部分所 述第一子部。以提升散热能力。
在一实施方式中,所述第二石墨烯段在所述第一子部上的正投影覆盖部分所述第一子部。可以理解的是,所述第二石墨烯段在所述第一子部上的正投影的面积越大,越能发挥所述石墨烯部件散热能力。
在一实施方式中,所述第二石墨烯段位于所述第一石墨烯段与所述第一子部之间,所述第二石墨烯段与所述第一子部固定连接,可以理解为,所述第二石墨烯段整体均与所述第一子部固定连接,或所述第二石墨烯段的部分与所述第一子部固定连接,还可以是,所述第二石墨烯段沿所述第二方向的一侧或者两侧与所述第一子部固定连接。在一实施方式中,所述第二石墨烯段与所述第一段靠近所述第一子部的一侧固定连接。
在一实施方式中,所述第二石墨烯段位于所述第一石墨烯段远离所述第一子部的一侧,且所述第二石墨烯段与所述中框固定连接,可以理解为,所述第二石墨烯段整体均与所述中框固定连接,或所述第二石墨烯段的部分与所述中框固定连接,还可以是,所述第二石墨烯段沿所述第二方向的一侧或者两侧与所述中框固定连接。在一实施方式中,所述第二石墨烯段与所述第一段靠近所述中框的一侧固定连接。
在一种可能的实现方式中,所述石墨烯部件还包括第三石墨烯段,所述第三石墨烯段位于所述第二子部的一侧,所述第三石墨烯段与所述第一石墨烯段至少部分沿所述第一方向层叠。所述第三石墨烯段与所述第一石墨烯段层叠设置,所述第一石墨烯段可相对所述第三石墨烯段滑动,所述第三石墨烯段可相对所述第二子部固定,所述第三石墨烯段的设置不会影响到所述第一石墨烯段、所述第一弹性段或所述第二弹性段的自由伸长或缩短。
在一实施方式中,所述第二子部对应的位置内具有高发热部件,在所述第二子部的一侧增设所述第三石墨烯段,可提升所述石墨烯部件的散热能力。在一实施方式中,所述第二子部对应的位置内具有低发热部件,所述第一子部对应的位置内具有高发热部件,所述第二石墨烯段的设置可以使热量更快地从所述石墨烯部件位于所述第一子部的一侧传递至所述石墨烯部件位于所述第二子部的一侧,所述第三石墨烯段的设置使热量可以迅速扩散,所述显示组件的热量可以更好地均匀传导、分布到整个机身的各个角落,以起到平衡整机热量的一个散热效果。在一实施方式中,所述第二子部对应的位置内具有高发热部件,所述第一子部对应的位置内具有低发热部件。
在一实施方式中,所述第三石墨烯段在所述第二子部上的正投影覆盖整个或者大部分所述第二子部。在一实施方式中,所述第三石墨烯段在所述第二子部上的正投影覆盖部分所述第二子部。可以理解的是,所述第三石墨烯段在所述第二子部上的正投影的面积越大,越能发挥所述石墨烯部件散热能力。
在一实施方式中,所述第三石墨烯段的伸长率的取值为大于或者等于0.3%,且小于1%。其中,所述第三石墨烯段的伸长率的计算方法与所述石墨烯部件的伸长率的计算方法相同,不同的是,所述第三石墨烯段的长度L1是指所述石墨烯部件处于展平状态时,所述第三石墨烯段在所述第二方向上的长度;所述第三石墨烯段的长度L2是指所述石墨烯部件处于闭合状态时,所述第三石墨烯段拉伸后的长度;L3与所述石墨烯部件相同。
在一实施方式中,所述第三石墨烯段的伸长率的取值可以为任意值,由于所述第三石墨烯段仅位于所述第一子部的一侧,所述显示组件在展平状态和闭合状态之间切换时,不涉及所述第三石墨烯段的伸长与缩短,因此对所述第三石墨烯段的伸长率并无要求。
在一实施方式中,所述第三石墨烯段的伸长率的取值与所述第二石墨烯段的伸长率的取值可以相同也可以不同。
在一实施方式中,所述第三石墨烯段与所述第一石墨烯段或所述第二石墨烯段具有相同的结构,所述第三石墨烯段也包括石墨烯层和位于石墨烯层沿所述第一方向相对两表面的两个膜层,两个膜层的边缘密封以隔绝石墨烯层与外部。在一实施方式中,所述第三石墨烯段沿所述第二方向的一端或两端也可与弹性段连接。
在一实施方式中,所述第三石墨烯段位于所述第一石墨烯段与所述第二子部之间,所述第三石墨烯段与所述第二子部固定连接,可以理解为,所述第三石墨烯段整体均与所述第二子部固定连接,或所述第三石墨烯段的部分与所述第二子部固定连接,还可以是,所述第三石墨烯段沿所述第二方向的一侧或者两侧与所述第二子部固定连接。
在一实施方式中,所述石墨烯部件还包括所述第二弹性段,部分所述第二弹性段与所述第一石墨烯段远离所述第一弹性段的一端连接,所述第三石墨烯段与所述第四段靠近所述第二子部的一侧固定连接。在一实施方式中,所述第三石墨烯段位于所述第一石墨烯段与所述第二子部之间,且所述第二石墨烯段位于所述第一石墨烯段与所述第一子部之间,将所述第三石墨烯段和所述第二石墨烯段均设置在所述第一石墨烯段与所述屏幕之间,可节约所述显示组件的空间,降低所述显示组件的厚度。
在一实施方式中,所述第三石墨烯段位于所述第一石墨烯段远离所述第二子部的一侧。在一实施方式中,所述第三石墨烯段位于所述第一石墨烯段远离所述第二子部的一侧,且所述第三石墨烯段与所述中框固定连接,可以理解为,所述第三石墨烯段整体均与所述中框固定连接,或所述第三石墨烯段的部分与所述中框固定连接,还可以是,所述第三石墨烯段沿所述第二方向的一侧或者两侧与所述中框固定连接。在一实施方式中,所述石墨烯部件还包括所述第二弹性段,部分所述第二弹性段与所述第一石墨烯段远离所述第一弹性段的一端连接,所述第三石墨烯段与所述第四段靠近所述中框的一侧固定连接。在一实施方式中,所述第三石墨烯段和所述第二石墨烯段均设置在所述第一石墨烯段远离所述屏幕的一侧,可节约所述显示组件的空间,降低所述显示组件的厚度。在一实施方式中,所述第三石墨烯段和所述第二石墨烯段的其中之一位于所述第一石墨烯段远离所述屏幕的一侧,所述第三石墨烯段和所述第二石墨烯段的另一个位于所述第一石墨烯段与所述屏幕之间。
在一种可能的实现方式中,所述石墨烯部件包括第二石墨烯层和位于所述第二石墨烯层沿第一方向相对两表面的两个第二膜层,所述第一方向与所述第一子部朝向所述石墨烯部件的表面相交,所述第二石墨烯层包括多层堆叠设置的单层石墨烯,所述两个第二膜层的边缘密封以隔绝所述第二石墨烯层与外部,所述第二石墨烯层位于所述折弯部的一侧,且所述第二石墨烯层的两端分别延伸至所述第一子部和所述第二子部的一侧,所述第二石墨烯层的伸长率大于或者等于5%。其中,所述第二石墨烯层的伸长率的计算方法与所述石墨烯部件的伸长率的计算方法相同,不同的是,所述第二石墨烯层的长度L1是指所述石墨烯部件处于展平状态时,所述第二石墨烯层在所述第二方向上的长度;所述第二石墨烯层的长度L2是指所述石墨烯部件处于闭合状态时,所述第二石墨烯层拉伸后的长度;L3与所述石墨烯部件相同。
所述石墨烯部件在展平状态和闭合状态切换时,所述石墨烯部件的整体可自由伸长或缩短,所述第二石墨烯层具有足够大的伸长率以满足所述石墨烯部件在展平状态和闭合状态切换时对伸长率的要求,保证所述石墨烯部件保持结构完整,免于被拉扯断而导致导热功能失效。
所述石墨烯部件的设置,使热量均匀的传导、分布到所述显示组件的整个机身的各个角落,特别地,热量在所述第一子部的对应部位和所述第二子部的对应位置之间传递,以起到平衡整机热量的一个散热效果。
在一实施方式中,所述石墨烯部件的厚度为0.004毫米至0.02毫米之间。在一实施方式中,所述石墨烯部件与所述屏幕固定连接。在一实施方式中,所述石墨烯部件与所述屏幕粘接,其中,粘接的方式可以为所述石墨烯部件靠近所述屏幕的一侧面均与所述屏幕粘接,或所述石墨烯部件靠近所述屏幕的部分侧面与所述屏幕粘接,还可以为所述石墨烯部件沿所述第二方向的两端与所述屏幕粘接。
在一实施方式中,所述石墨烯部件与所述中框粘接,其中,粘接的方式可以为所述石墨烯部件靠近所述中框的一侧面均与所述中框粘接,或所述石墨烯部件靠近所述中框的部分侧面与所述中框粘接,还可以为所述石墨烯部件沿所述第二方向的两端与所述中框粘接。在一实施方式中,部分所述石墨烯部件与所述中框连接,部分所述石墨烯部件与所述屏幕连接。
在一实施方式中,所述石墨烯部件处于展平状态时,所述石墨烯部件在所述第一方向上的两个表面平整,所述石墨烯部件在所述第一方向上是等厚的。在一实施方式中,所述石墨烯部件在所述第一方向上也可以是不等厚的,所述石墨烯部件沿第一方向的两个表面可设置为凹凸不平状态,以尽量与其他部件贴合设置,保证所述石墨烯部件的散热能力。
在一种可能的实现方式中,所述第二石墨烯层包括并排设置且相互连接的第一石墨烯子部、第二石墨烯子部和第三石墨烯子部,所述第一石墨烯子部、所述第二石墨烯子部和所述第三石墨烯子部分别位于所述第一子部、折弯部和所述第二子部的一侧,所述第二石墨烯子部的厚度大于所述第一石墨烯子部和所述第三石墨烯子部的厚度。
所述第一石墨烯子部、所述第二石墨烯子部和所述第三石墨烯子部的厚度均是指处于展平状态时在所述第一方向上的厚度,所述第二石墨烯子部的厚度大于所述第一石墨烯子部的厚度,且所述第二石墨烯子部的厚度大于所述第三石墨烯子部的厚度。
所述第二石墨烯层在被拉伸时厚度会变薄,位于所述折弯部一侧的所述第二石墨烯子部是形变较大的区域,在所述第二石墨烯层在被拉伸时,所述第二石墨烯子部的厚度的减少量较大,增加所述第二石墨烯子部处于展平状态时的厚度,所述第二石墨烯层处于闭合状态时,所述第二石墨烯子部的厚度减小,以使闭合状态下的所述第二石墨烯子部与所述第一石墨烯子部和所述第三石墨烯子部的厚度基本上相等,所述第二石墨烯层的整体厚度趋于均一,保证所述石墨烯部件的散热可以持续、稳定和均衡。
在一种可能的实现方式中,所述显示组件还包括中框,所述中框位于所述石墨烯部件远离所述屏幕的一侧,所述中框靠近所述第二石墨烯子部的区域设有凹槽,所述第二石墨烯子部至少部分收容于所述凹槽。
在一实施方式中,所述石墨烯部件靠近所述中框的一侧紧贴所述中框设置,当所述石墨烯部件靠近所述中框的侧面为平整状态时,所述中框靠近所述石墨烯部件的侧面也呈平整态,当增加所述第二石墨烯子部处于展平状态时的厚度时,所述第二石墨烯子部会朝向所述中框凸起,此时在所述中框靠近所述第二石墨烯子部的区域设置所述凹槽,用于收容增厚的部分所述第二石墨烯子部,使所述显示组件的整体厚度趋于均匀化。
在一种可能的实现方式中,所述石墨烯部件还包括第二石墨烯段,所述第二石墨烯段位于所述第一子部的一侧,所述第二石墨烯段与所述第二膜层至少部分沿所述第一方向层叠,所述第二石墨烯段中的石墨烯层的伸长量小于所述第二石墨烯层的伸长量。
在一实施方式中,所述石墨烯部件还包括所述第二石墨烯段和所述第三石墨烯段,所述第二石墨烯段位于所述第一子部的一侧,所述第二石墨烯段与所述第二膜层至少部分沿所述第一方向层叠,所述第三石墨烯段位于所述第二子部的一侧,所述第三石墨烯段与所述第二膜层至少部分沿所述第一方向层叠。在一实施方式中,所述第二石墨烯段和所述第三石墨烯 段位于所述第二石墨烯层沿所述第一方向的同一侧或不同侧。在一实施方式中,所述第二石墨烯段和所述第三石墨烯段位于所述第二石墨烯层靠近所述屏幕的一侧。在一实施方式中,所述第二石墨烯段和所述第三石墨烯段位于所述第二石墨烯层远离所述屏幕的一侧。
在一种可能的实现方式中,所述显示组件还包括第一中框子部、第二中框子部和门板,所述第一中框子部位于所述石墨烯部件远离所述第一子部的一侧,所述第二中框子部位于所述石墨烯部件远离所述第二子部的一侧,所述石墨烯部件位于所述折弯部一侧的部分设有开孔,所述开孔填充有粘结胶,所述粘结胶连接所述门板和所述折弯部,以使所述门板与所述折弯部固定连接。所述门板位于所述石墨烯部件远离所述开孔的一侧,所述显示组件在展平状态切换为闭合状态时,所述屏幕的所述折弯部与所述门板固定连接,可保证所述屏幕在弯折状态下的移动路线。
在一实施方式中,所述显示组件处于展平状态时,所述第一中框子部、所述门板和所述第二中框子部共面且依次抵接,以形成完整的板块,所述显示组件处于闭合状态时,所述第一中框子部和所述第二中框子部相对折叠。在一实施方式中,所述显示组件处于展平状态时,所述第一中框子部、所述门板和所述第二中框子部也可间隔设置。
在一实施方式中,所述石墨烯部件位于所述折弯部一侧的部分设有多个所述开孔,以增强所述门板与所述折弯部的粘合能力。在一实施方式中,所述显示组件可包括多个所述门板,通过多个所述门板的设置,可实现所述第一中框子部、所述第二中框子部和所述门板整体的顺利弯折。
第二方面,本申请一实施方式提供一种电子设备,所述电子设备具有展平状态和闭合状态,包括壳体装置、屏幕和石墨烯部件,所述壳体装置包括第一壳体、第二壳体及折叠组件,所述折叠组件连接所述第一壳体与所述第二壳体,所述第一壳体与所述第二壳体能够通过所述折叠组件的运动相对展开或者相对折叠;所述屏幕安装在所述壳体装置上,包括折弯部和位于所述折弯部两侧的第一子部和第二子部,所述第一子部位于所述第一壳体的一侧,所述第二子部位于所述第二壳体的一侧,所述折弯部位于所述折叠组件的一侧,在所述展平状态时,所述第一子部、所述折弯部和所述第二子部共面,在所述闭合状态时,所述第一子部和所述第二子部相对折叠;所述石墨烯部件位于所述壳体装置与屏幕之间,所述石墨烯部件的至少部分位于所述折弯部的一侧,所述石墨烯部件的两端分别延伸至所述第一子部和所述第二子部的一侧,所述石墨烯部件具有弹性伸缩性能。
所述电子设备可以是手机、平板电脑、笔记本电脑、可穿戴设备等可折叠的电子产品。所述壳体装置用于承载所述屏幕,所述石墨烯部件和所述屏幕可分开安装在所述壳体装置上,也可以将所述石墨烯部件和所述屏幕组装好后作为所述显示组件一体安装在所述壳体装置上。
所述壳体装置可以展开至展平状态;所述壳体装置还可以折叠至闭合状态;所述壳体装置还可以展开或折叠至中间状态,中间状态可以为展平状态与闭合状态之间的任意状态。所述屏幕为可弯折结构,所述屏幕随所述壳体装置运动,所述壳体装置可以带动所述屏幕展平或折叠,以使所述电子设备能够展开或折叠至展平状态、闭合状态或中间状态。在一实施方式中,所述电子设备处于闭合状态时,所述屏幕位于所述壳体装置内侧,所述电子设备为屏幕内折式设备。在一实施方式中,所述电子设备处于闭合状态时,所述屏幕位于所述壳体装置外侧,所述电子设备为屏幕外折式设备。在一实施方式中,所述电子设备还可以包括多个部件,多个部件可以安装于所述壳体装置内部。在所述电子设备运行过程中,所述壳体装置内部的不同部件发热情况不同。
所述电子设备处于展平状态时,所述屏幕、所述石墨烯部件、所述壳体装置及所述壳体 装置的各部件对应地处于打开状态;所述电子设备处于闭合状态时,所述屏幕、所述石墨烯部件、所述壳体装置及所述壳体装置的各部件对应地处于闭合状态;所述电子设备处于中间状态时,所述屏幕、所述壳体装置及所述壳体装置的各部件对应地处于中间状态。
所述石墨烯部件的设置,不仅可对所述第一壳体、所述第二壳体、所述第一子部、所述第二子部自身进行散热,还可实现所述第一壳体和所述第二壳体之间、所述第一子部和所述第二子部之间的热量传递,将所述电子设备中的高发热区的热量均匀的传导、分布到整个机身的各个角落,特别地,高发热区的热量传导至低发热区中,以起到高效平衡整机热量的一个散热效果,而所述石墨烯部件的弹性伸缩性能则保证了所述石墨烯部件在展平状态和闭合状态切换时,所述石墨烯部件保持结构完整,免于被拉扯断而导致导热功能失效。
在一种可能的实现方式中,所述石墨烯部件包括相连接的第一弹性段和第一石墨烯段,所述第一弹性段位于所述第一子部的一侧且能够相对所述第一子部拉伸,所述第一石墨烯段位于所述折弯部的一侧,且所述第一石墨烯段的两端分别延伸至所述第一子部和所述第二子部的一侧,至少部分所述第一弹性段相对所述第一子部固定,所述第一弹性段的伸长率大于所述第一石墨烯段的伸长率。
在一种可能的实现方式中,所述石墨烯部件还包括第二弹性段,所述第二弹性段位于所述第二子部的一侧且能够相对所述第二子部拉伸,所述第二弹性段与所述第一石墨烯段远离所述第一弹性段的一端连接,且至少部分所述第二弹性段相对所述第二子部固定,所述第二弹性段的伸长率大于所述第一石墨烯段的伸长率。
在一种可能的实现方式中,所述第一弹性段包括依次连接的第一段、第二段和第三段,其中,所述第一子部包括相对设置的显示面和背面,所述第一段与所述第一子部的背面连接而与所述第一子部相对固定,所述第二段能够相对所述第一子部拉伸,所述第三段与所述第一石墨烯段连接,所述第二段的伸长率大于所述第一段的伸长率,以及大于所述第三段的伸长率。
在一种可能的实现方式中,所述电子设备还包括第一粘结层,所述第一粘结层位于所述第一段与所述第一子部的背面之间以将所述第一段与所述第一子部连接,所述第一石墨烯段远离所述第一子部的表面与所述第三段粘结。
在一种可能的实现方式中,所述电子设备还包括中框,所述中框位于所述石墨烯部件远离所述屏幕的一侧;所述第一弹性段包括依次连接的第一段、第二段和第三段,所述第一段与所述中框连接而与所述第一子部相对固定,所述第二段能够相对所述中框拉伸,所述第三段与所述第一石墨烯段连接。
在一种可能的实现方式中,所述石墨烯部件还包括第二石墨烯段,所述第二石墨烯段位于所述第一子部的一侧,所述第二石墨烯段与所述第一石墨烯段至少部分沿第一方向层叠,所述第一方向与所述第二石墨烯段朝向所述第一子部的表面相交。
在一种可能的实现方式中,所述石墨烯部件还包括第三石墨烯段,所述第三石墨烯段位于所述第二子部的一侧,所述第三石墨烯段与所述第一石墨烯段至少部分沿所述第一方向层叠。
在一种可能的实现方式中,所述第一石墨烯段包括第一石墨烯层和位于所述第一石墨烯层沿第一方向相对两表面的两个第一膜层,所述第一方向与所述第一子部朝向所述第一石墨烯段的表面相交,所述第一石墨烯层包括多层堆叠设置的单层石墨烯,所述两个第一膜层的边缘密封以隔绝所述第一石墨烯层与外部,部分所述第一弹性段与所述第一膜层连接,所述第一石墨烯层位于所述折弯部的一侧,且所述第一石墨烯层的两端分别延伸至所述第一子部 和所述第二子部的一侧;所述第一石墨烯层的伸长率的取值为大于或者等于0.3%,且小于1%;所述第一弹性段的伸长率的取值大于或者等于10%。
在一种可能的实现方式中,所述石墨烯部件包括第二石墨烯层和位于所述第二石墨烯层沿第一方向相对两表面的两个第二膜层,所述第一方向与所述第一子部朝向所述石墨烯部件的表面相交,所述第二石墨烯层包括多层堆叠设置的单层石墨烯,所述两个第二膜层的边缘密封以隔绝所述第二石墨烯层与外部,所述第二石墨烯层位于所述折弯部的一侧,且所述第二石墨烯层的两端分别延伸至所述第一子部和所述第二子部的一侧,所述第二石墨烯层的伸长率大于或者等于5%。
在一种可能的实现方式中,所述第二石墨烯层包括并排设置且相互连接的第一石墨烯子部、第二石墨烯子部和第三石墨烯子部,所述第一石墨烯子部、所述第二石墨烯子部和所述第三石墨烯子部分别位于所述第一子部、折弯部和所述第二子部的一侧,所述第二石墨烯子部的厚度大于所述第一石墨烯子部和所述第三石墨烯子部的厚度。
在一种可能的实现方式中,所述电子设备还包括中框,所述中框位于所述石墨烯部件远离所述屏幕的一侧,所述中框靠近所述第二石墨烯子部的区域设有凹槽,所述第二石墨烯子部至少部分收容于所述凹槽。
在一种可能的实现方式中,所述电子设备还包括第一中框子部、第二中框子部和门板,所述第一中框子部位于所述石墨烯部件远离所述第一子部的一侧,所述第二中框子部位于所述石墨烯部件远离所述第二子部的一侧,所述石墨烯部件位于所述折弯部一侧的部分设有开孔,所述开孔填充有粘结胶,所述粘结胶连接所述门板和所述折弯部,以使所述门板与所述折弯部固定连接。
在前述各实施例中关于所述显示组件中的所述屏幕、所述石墨烯部件和所述中框的描述及变形方案可适用于本实施例中的所述电子设备中的所述屏幕、所述石墨烯部件和所述中框。在前述各实施例中关于所述显示组件中的所述石墨烯部件与所述屏幕、所述中框的连接关系、位置关系的描述及变形方案可适用于本实施例中的所述电子设备中的所述石墨烯部件与所述屏幕、所述中框的连接关系、位置关系。在此不再赘述。
本申请中,所述石墨烯部件自所述第一子部的一侧不间断地延伸至所述第二子部的一侧,不仅可对所述第一壳体、所述第二壳体、所述第一子部、所述第二子部自身进行散热,还可实现所述第一壳体和所述第二壳体之间、所述第一子部和所述第二子部之间的热量传递,将所述显示组件及所述电子设备中的高发热区的热量均匀的传导、分布到整个机身的各个角落,特别地,高发热区的热量传导至低发热区中,以起到高效平衡整机热量的一个散热效果,而所述石墨烯部件的弹性伸缩性能则保证了所述石墨烯部件在展平状态和闭合状态切换时,所述石墨烯部件保持结构完整,免于被拉扯断而导致导热功能失效。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例中所需要使用的附图进行说明。
图1是本申请一实施方式提供的电子设备处于展平状态时的结构示意图;
图2是本申请一实施方式提供的电子设备处于中间状态时的结构示意图;
图3是本申请一实施方式提供的电子设备处于闭合状态时的结构示意图;
图4是本申请一实施方式提供的电子设备的结构示意图;
图5是本申请一实施方式提供的电子设备从展平状态转变为闭合状态时的剖面图;
图6是本申请第一实施例提供的电子设备的部分结构示意图;
图7是图6中M部分的局部放大图;
图8是本申请第一实施例提供的电子设备的俯视图;
图9是本申请一实施方式提供的第一弹性段的结构示意图;
图10是本申请一实施方式提供的第一弹性段的结构示意图;
图11是本申请第二实施例提供的电子设备的部分结构示意图;
图12是本申请第二实施例提供的电子设备的俯视图;
图13是本申请第三实施例提供的电子设备的部分结构示意图;
图14是图13中N部分的局部放大图;
图15是本申请第三实施例提供的电子设备的部分结构示意图;
图16是本申请第四实施例提供的电子设备的部分结构示意图;
图17是本申请第四实施例提供的电子设备的部分结构示意图;
图18是本申请第五实施例提供的电子设备的部分结构示意图;
图19是本申请第五实施例提供的电子设备的部分结构示意图;
图20是本申请第六实施例提供的电子设备的部分结构示意图;
图21是本申请第六实施例提供的电子设备的部分结构示意图;
图22是本申请第六实施例提供的电子设备的俯视图;
图23是本申请第六实施例提供的电子设备的部分结构示意图;
图24是本申请第六实施例提供的电子设备的部分结构示意图;
图25是本申请第六实施例提供的电子设备的部分结构示意图;
图26是本申请第七实施例提供的显示组件的部分结构示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行描述。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,“连接”可以是可拆卸地连接,也可以是不可拆卸地连接;可以是直接连接,也可以通过中间媒介间接连接。其中,“固定连接”是指彼此连接且连接后的相对位置关系不变。应理解,当部件A通过部件B与部件C固定连接时,允许由于部件A、部件B及部件C本身的形变而产生的相对位置关系变化。
本申请实施例中所提到的方位用语,例如,“上”、“下”、“侧”、“顶”、“底”等,仅是参考附图的方向,因此,使用的方位用语是为了更好、更清楚地说明及理解本申请实施例,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
术语“多个”是指至少两个。术语“和/或”是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。术语“第一”、“第二”等用词仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
本申请提供一种显示组件,显示组件具有展平状态和闭合状态,显示组件包括屏幕和石墨烯部件,屏幕包括折弯部和位于折弯部两侧的第一子部和第二子部,第一子部位于第一壳体的一侧,第二子部位于第二壳体的一侧,折弯部位于折叠组件的一侧。在展平状态时,第一子部、折弯部和第二子部共面,在闭合状态时,第一子部和第二子部相对折叠;石墨烯部件位于壳体装置与屏幕之间,石墨烯部件的至少部分位于折弯部的一侧,石墨烯部件的两端分别延伸至第一子部和第二子部的一侧,石墨烯部件具有弹性伸缩性能。
通过将石墨烯部件同时设置在第一子部和第二子部的一侧,第一子部和第二子部之间可通过石墨烯部件进行热量传递,且在弯折时不易断裂。本申请的显示组件应用在电子设备中时,可提升电子设备整机的散热效果,优化电子设备的用户体验,同时更有利于电子设备的整机规格的提升。
请结合参阅图1、图2和图3,图1至图3中未示出石墨烯部件200,图1是本申请一实施方式提供的一种电子设备10处于展平状态时的结构示意图,图2是图1所示电子设备10处于中间状态时的结构示意图,图3是图1所示电子设备10处于闭合状态时的结构示意图。
一些实施例中,电子设备10为可折叠的设备,具有展平状态和闭合状态,电子设备10可以是手机、平板电脑、笔记本电脑、可穿戴设备等可折叠的电子产品。示例性的,电子设备10包括屏幕100、石墨烯部件200和壳体装置300,壳体装置300用于承载屏幕100,屏幕100安装于壳体装置300,石墨烯部件200安装在屏幕100和壳体装置300之间(结合图4)。其中,石墨烯部件200和屏幕100可分开安装在壳体装置300上,可以将石墨烯部件200和屏幕100组装好后作为显示组件11(如图4所示)一体安装在壳体装置300上。
如图1所示,壳体装置300可以展开至展平状态;如图3所示,壳体装置300还可以折叠至闭合状态;如图2所示,壳体装置300还可以展开或折叠至中间状态,中间状态可以为展平状态与闭合状态之间的任意状态。屏幕100为可弯折结构,屏幕100随壳体装置300运动,壳体装置300可以带动屏幕100展平或折叠,以使电子设备10能够展开或折叠至展平状态、闭合状态或中间状态。在一实施方式中,电子设备10处于闭合状态时,屏幕100位于壳体装置300内侧,电子设备10为屏幕内折式设备。在一实施方式中,电子设备10处于闭合状态时,屏幕100位于壳体装置300外侧,电子设备10为屏幕外折式设备。
在本实施例中,当电子设备10处于展平状态时,屏幕100能够进行全屏显示,使得电子设备10具有较大的显示面积,以提高用户的观看体验和操作体验。当电子设备10处于闭合状态时,电子设备10的平面尺寸较小,便于用户携带和收纳。
一些实施例中,电子设备10还可以包括多个部件(图中未示出),多个部件可以安装于壳体装置300内部。多个部件例如可以包括处理器、内部存储器、外部存储器接口、通用串行总线(universal serial bus,USB)接口、充电管理模块、电源管理模块、电池、天线、通信模块、摄像头、音频模块、扬声器、受话器、麦克风、耳机接口、传感器模块、按键、马达、指示器以及用户标识模块(subscriber identification module,SIM)卡接口等。其中,电子设备10可以具有比上文描述的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
在电子设备10运行过程中,壳体装置300内部的不同部件发热情况不同,如SOC(System on Chip)芯片区、摄像头部分发热明显,而电池部分则发热不明显。不同部件发热情况不同使电子设备10运行过程中出现高发热区和低发热区,在一实施方式中,SOC(System on Chip) 芯片区设置在第一壳体310的一侧,电池设置在第二壳体320的一侧,电子设备10位于第一壳体310的部分为高发热区,电子设备10位于第二壳体320的部分为高发热区。
可以理解的是,用户手持电子设备10时,电子设备10的听筒模组所在位置可以定义为电子设备10的顶边,电子设备10的麦克风模组所在位置可以定义为电子设备10的底边,电子设备10的被用户的左右手握持的两侧可以定义为电子设备10的左右两边。在一些实施例中,电子设备10能够实现左右对折。在其他一些实施例中,电子设备10能够实现顶底对折。
一些实施例中,如图1所示,壳体装置300包括第一壳体310、第二壳体320及折叠组件330。其中,折叠组件330可以连接在第一壳体310与第二壳体320之间。第一壳体310与第二壳体320能够通过折叠组件330的运动相对展开至展平状态或相对折叠至闭合状态,还能够相对展平或相对折叠至中间状态。应理解,电子设备10处于展平状态时,屏幕100、石墨烯部件200、壳体装置300及壳体装置300的各部件对应地处于打开状态;电子设备10处于闭合状态时,屏幕100、石墨烯部件200、壳体装置300及壳体装置300的各部件对应地处于闭合状态;电子设备10处于中间状态时,屏幕100、壳体装置300及壳体装置300的各部件对应地处于中间状态。
其中,如图1所示,电子设备10处于展平状态时,第一壳体310与第二壳体320之间的夹角可以大致呈180°,第一壳体310与第二壳体320展平,第一壳体310、折叠组件330和第二壳体320沿第二方向Y依次设置,屏幕100呈现展平形态,第一子部110、折弯部130和第二子部120沿第二方向Y共面依次设置,电子设备10沿第二方向Y的两端分别为第一端和第二端,在展平状态时第一端远离第二端设置。其中,屏幕100处于展开状态时,第一子部110、折弯部130和第二子部120沿第二方向Y共面,可以理解为第一子部110与第二子部120之间的夹角也可以相对180°存在少许偏差而共面,例如165°、177°或者185°等,这种情况也认为第一子部110、折弯部130和第二子部120展平且共面。其中,第一子部110与第二子部120之间的夹角,定义为第一子部110的上侧与第二子部120的上侧之间的夹角。其中,第一壳体310可以与第二壳体320拼接,第一壳体310与第二壳体320拼接包括了两者相互抵持的情况,也可以包括两者之间有小缝隙的情况。在本实施例中,通过第一壳体310与第二壳体320的拼接,能够实现对壳体装置300展开动作的止位,以防止壳体装置300在展开时过折,从而降低屏幕100的受力,提高屏幕100和电子设备10的可靠性。在图1所示的实施例中,第一方向X为电子设备10的厚度方向,第二方向Y为电子设备10的长度方向。在其他一些实施例中,第二方向Y为电子设备10的宽度方向。
在其他一些实施例中,电子设备10处于展开状态时,第一壳体310与第二壳体320之间的角度也可以相对180°存在少许偏差,例如165°、177°或者185°等,这种情况也认为第一壳体310与第二壳体320展平。其中,第一壳体310与第二壳体320的夹角,定义为第一壳体310的上侧与第二壳体320的上侧之间的夹角。
如图3所示,电子设备10处于闭合状态时,第一端靠近第二端设置,第一壳体310与第二壳体320之间的夹角可以大致呈0°,第一壳体310与第二壳体320折叠至合拢状态,屏幕100呈现折叠形态。示例性的,第一壳体310与第二壳体320呈合拢状态时,两者可以相互接触,以实现定位。在其他一些实施例中,第一壳体310与第二壳体320呈合拢状态时,两者也可以相互靠近,且两者之间存在微小缝隙,本申请对此不作严格限定。当第一壳体310与第二壳体320存在微小缝隙时,电子设备10外部的一些异物(例如钉子、曲别针、玻璃渣等)也不会通过该缝隙进入第一壳体310与第二壳体320之间,以避免异物损伤屏幕100,从而提高了电子设备10的可靠性。
可以理解的是,第一壳体310和第二壳体320为壳体件,用于安装和固定电子设备10的其他部件,具有多样化的结构,本申请实施例只简要地对第一壳体310和第二壳体320的部分结构做示例性说明,附图中也进行简化示意,本申请实施例不对第一壳体310和第二壳体320具体结构作严格限定。
一些实施例中,请结合参阅图1和图4,屏幕100包括依次排列的第一子部110、折弯部130以及第二子部120。第一子部110安装在第一壳体310上,第二子部120安装在第二壳体320上,折弯部130对应折叠组件330设置,在第一壳体310与第二壳体320相对折叠或相对展开的过程中,折弯部130发生形变。在第一壳体310与第二壳体320相对折叠或相对展开的过程中,第一壳体310带动第一子部110活动,第二壳体320带动第二子部120活动,第一子部110与第二子部120相对折叠或展开。
一些实施例中,屏幕100的第一子部110可以固定连接至第一壳体310,例如,第一子部110可以通过胶层粘接于第一壳体310。第二子部120固定连接至第二壳体320,例如,第二子部120可以通过胶层粘接于第二壳体320。
在本实施例中,由于第一子部110固定连接第一壳体310、第二子部120固定连接第二壳体320,因此第一壳体310与第二壳体320相对折叠或展平时,能够准确地控制第一子部110与第二子部120之间的相对折叠和展平的动作,使得屏幕100的变形过程和运动形态可控,可靠性较高。
如图1所示,第一壳体310与第二壳体320相对展开至展平状态时,屏幕100的第一子部110、折弯部130及第二子部120相对展平,屏幕100处于展平形态。如图2所示,第一壳体310与第二壳体320处于中间状态时,屏幕100的第一子部110与第二子部120之间形成夹角,折弯部130发生部分弯折,屏幕100处于弯折形态。如图3所示,第一壳体310与第二壳体320相对折叠至闭合状态时,屏幕100位于壳体装置300的内侧,处于折叠形态。在一实施方式中,第一壳体310与第二壳体320相对折叠至闭合状态时,屏幕100位于壳体装置300的外侧,处于折叠形态。
其中,屏幕100可以包括显示模组140和支撑板150,显示模组140为柔性显示屏,支撑板150位于显示模组140的下方,用于支撑显示模组、增加显示模组的结构刚度。如图4所示,屏幕100包括显示面101和背面102,显示面101是指屏幕显示操作界面或者画面的表面,背面102是指屏幕100的与背面102相背设置的表面。具体的,显示面101为显示模组140远离支撑板150的表面,背面102是指支撑板150远离显示模组140的表面。
在一实施方式中,支撑板150位于折弯部130的部分的刚度小于位于第一子部110和第二子部120的部分的刚度,也即,支撑板150位于折弯部130的部分的刚度较小,支撑板150位于第一子部110和第二子部120的部分的刚度较大,使得屏幕100既可以兼顾结构刚度、以具有较高的平整度,同时屏幕100的折弯部130也可以顺利弯折。在一实施方式中,支撑板150呈竹书状,支撑板150由多条板条通过柔性材料依次连接而成,使得屏幕100既可以具有较高的结构刚度,且屏幕100也可以顺利弯折。
可以理解的是,第一壳体310和第二壳体320可以是连续的、完整的表面,也可以是包括有多个凹陷区域或镂空区域的表面,本申请实施例对此不作严格限定。
其中,显示模组140可以集成有显示功能和触摸感测功能。显示模组140的显示功能用于显示图像、视频等,显示模组140的触摸感测功能用于感测用户的触摸动作,以实现人机交互。其中,显示模组140可以采用液晶显示屏(liquid crystal display,LCD)、有机发光二极管(organic light-emitting diode,OLED)显示屏、有源矩阵有机发光二极体或主动矩阵有 机发光二极体(active-matrix organic light emitting diode,AMOLED)显示屏、柔性发光二极管(flex light-emitting diode,FLED)显示屏、MiniLED显示屏、MicroLED显示屏、Micro-OLED显示屏、量子点发光二极管(quantum dot light emitting diodes,QLED)显示屏等。
可以理解的是,为了更好地展示电子设备10的结构,在图1至图3中折叠组件330外露,在实际的产品形态中电子设备10可以设置遮挡件,在设置遮挡件之后折叠组件330将不再外露。其中,折叠组件330可根据需要来设置,在图1至图3中仅用示意折叠组件300的位置,在本申请中,折叠组件330的结构不做限制,只要能够实现电子设备10打开和闭合即可。
其中,石墨烯部件200具有良好的热传导性能,石墨烯部件200可将环境中高温部位的热量迅速传递至低温部位。石墨烯部件200位于壳体装置300与屏幕100之间(如图4所示),在一实施方式中,石墨烯部件200位于支撑板150远离显示模组140的一侧。在一实施方式中,石墨烯部件200紧贴屏幕100中的支撑板150设置。在一实施方式中,电子设备10处于展平状态时,显示模组140、支撑板150和石墨烯部件200沿第一方向X依次层叠设置。
石墨烯部件200的至少部分位于折弯部130靠近折叠组件330的一侧,石墨烯部件200的两端分别延伸至第一子部110和第二子部120靠近第一壳体310和第二壳体320的一侧,以使热量可以沿第二方向Y传递。
石墨烯部件200可以展开至展平状态,石墨烯部件200还可以折叠至闭合状态,石墨烯部件200还可以展开或折叠至中间状态,中间状态可以为展平状态与闭合状态之间的任意状态。由于石墨烯部件200具有弹性伸缩性能,石墨烯部件200为可弯折结构,石墨烯部件200可随壳体装置300和屏幕100运动。电子设备10处于展平状态时,石墨烯部件200处于展平状态;电子设备10处于闭合状态时,石墨烯部件200处于闭合状态。石墨烯部件200在展平状态和闭合状态直接切换时,可灵活的伸长或缩短而不发生断裂。
在一实施方式中,石墨烯部件200在屏幕100上的正投影覆盖整个或者大部分屏幕100。在一实施方式中,石墨烯部件200在屏幕100上的正投影覆盖部分屏幕100。可以理解的是,石墨烯部件200在屏幕100上的正投影的面积越大,石墨烯部件200对电子设备10的散热效果越好。
石墨烯部件200的设置,不仅可对第一壳体310、第二壳体320、第一子部110、第二子部120自身进行散热,还可实现第一壳体310和第二壳体320之间、第一子部110和第二子部120之间的热量传递,将电子设备10中的高发热区的热量均匀的传导、分布到整个机身的各个角落,特别地,高发热区的热量传导至低发热区中,以起到高效平衡整机热量的一个散热效果,而石墨烯部件200的弹性伸缩性能则保证了石墨烯部件200在展平状态和闭合状态切换时,石墨烯部件200保持结构完整,免于被拉扯断而导致导热功能失效。
石墨烯部件200从展平状态转变为闭合状态时(如图5所示),石墨烯部件200的长度从L1伸长至L2(L2=L3+L4+L5),伸长量为△L(△L=L2-L1),石墨烯部件200从展平状态转变为闭合状态的伸长率e为:
其中,石墨烯部件200的长度L1是指石墨烯部件200处于展平状态时,石墨烯部件200在第二方向Y上的长度;石墨烯部件200的长度L2是指石墨烯部件200处于闭合状态时,石墨烯部件200拉伸后的长度,即为石墨烯部件200远离折弯部130的两端沿石墨烯部件200的板面之间的距离,即图5中的L3、L4与L5三部分之和。
其中,石墨烯部件200的长度L3是指石墨烯部件200位于折弯部130对应侧、呈弧形部 分的长度。具体的,请参阅图5,石墨烯部件200在闭合状态时,石墨烯部件200的剖切面包括第一部分201、第二部分202和连接在第一部分201和第二部分202之间的第三部分203,其中第一部分201和第二部分202平行,第三部分203为弯曲形变部分,第三部分203与第一部分201的连接点为第一连接点A1,第一连接点A1的切线为第一切线B1,其中第一切线B1的延伸方向与第一部分201平行,第二部分202与第一部分201的连接点为A2,第二连接点A2的切线为第二切线B2,其中第二切线B2的延伸方向与第二部分202平行,并且第一连接点A1到第二连接点A2的切线方向是连续变化的。其中,长度L3即为第一连接点A1与第二连接点A2之间的弧形长度。
在一种可能的实施方式中,石墨烯部件200的伸长率e的取值大于或者等于5%,保证石墨烯部件200具有足够的伸长率e,使得石墨烯部件200从展平状态至闭合状态过程中石墨烯部件200具有足够的拉伸量,可以在伸长过程中不发生断裂。在本实施例中石墨烯部件200可应用在伸长率e小于或者等于5%的电子设备10中,也就是说电子设备10在闭合状态时的伸长率e小于或者等于5%,而石墨烯部件200的伸长率e的取值大于或者等于5%,使得石墨烯部件200在电子设备10闭合时不会发生断裂。
在一实施方式中,石墨烯部件200的伸长率e的取值大于或者等于5%,且小于或者等于100%。
在一实施方式中,石墨烯部件200的伸长率e的取值大于或者等于10%,且小于或者等于20%。
在一实施方式中,石墨烯部件200的伸长率e的取值大于或者等于10%,且小于或者等于30%。
在一实施方式中,石墨烯部件200的伸长率e的取值大于或者等于10%,且小于或者等于50%。
在一实施方式中,石墨烯部件200的伸长率e的取值大于或者等于10%,且小于或者等于80%。
在一实施方式中,石墨烯部件200的伸长量△L的取值大于或者等于1mm,且小于或者等于4mm。
在一实施方式中,石墨烯部件200整体均具有弹性伸缩性能,石墨烯部件200的整体的伸长率e的取值大于或者等于5%。
在一实施方式中,石墨烯部件200的不同部分之间的弹性伸缩性能不同,在保持石墨烯部件200整体的伸长率e的取值大于或者等于5%的情况下,石墨烯部件200中部分的伸长率e的取值可以小于5%,且石墨烯部件200中另一部分的伸长率e的取值大于或者等于5%。
在一些实施方式中,石墨烯部件200的伸长率e可根据电子设备10弯折时的伸长率e来设置。
请参阅图6、图7和图8,图6为第一实施例中电子设备10的部分结构示意图,图7为图6中M部分的局部放大图,图8为图6的俯视图。在本实施例中,石墨烯部件200包括相连接的第一弹性段211和第一石墨烯段221(如图6所示),第一弹性段211位于第一子部110的一侧且能够相对第一子部110拉伸,第一石墨烯段221位于折弯部130的一侧,且第一石墨烯段221的两端分别延伸至第一子部110和第二子部120的一侧,至少部分第一弹性段211相对第一子部110固定,第一弹性段211的伸长率e大于第一石墨烯段221的伸长率e。部分第一弹性段211相对第一子部110固定是指部分第一弹性段211与第一子部110的相对位置关系不变,当第一子部110运动时,部分第一弹性段211可随之运动。在一实施方式中,当 石墨烯部件200处于展平状态时,第一弹性段211位于第一石墨烯段221沿第二方向Y靠近第一子部110的一侧,部分第一弹性段211与第一石墨烯段221固定连接。
在一种可能的实施方式中,第一石墨烯段221的伸长率e的取值为大于或者等于0.3%,且小于1%;第一弹性段211的伸长率e的取值大于或者等于10%。第一石墨烯段221的伸长率e较小,单靠第一石墨烯段221不足以满足石墨烯部件200在展平状态和闭合状态切换时对伸长率e的要求,而通过设置伸长率e较大的第一弹性段211,使石墨烯部件200整体在展平状态和闭合状态切换时可满足对伸长率e的要求。石墨烯部件200从展平状态转变为闭合状态时,主要通过第一弹性段211的伸长来实现石墨烯部件200的整体伸长,石墨烯部件200从闭合状态转变为展平状态时,主要通过第一弹性段211的缩短来实现石墨烯部件200的整体缩短。
其中,第一石墨烯段221的伸长率e的计算方法与石墨烯部件200的伸长率e的计算方法相同,不同的是,第一石墨烯段221的长度L1是指石墨烯部件200处于展平状态时,第一石墨烯段221在第二方向Y上的长度;第一石墨烯段221的长度L2是指石墨烯部件200处于闭合状态时,第一石墨烯段221远离折弯部130的两端沿石墨烯部件200的板面之间的距离;L3与石墨烯部件200相同。
其中,第一弹性段211的伸长率e的计算方法与石墨烯部件200的伸长率e的计算方法相同,不同的是,第一弹性段211的长度L1是指石墨烯部件200处于展平状态时,第一弹性段211在第二方向Y上的长度;第一弹性段211的长度L2是指石墨烯部件200处于闭合状态时,第一弹性段211拉伸后的长度;L3与石墨烯部件200相同。
在一种可能的实施方式中,第一石墨烯段221包括第一石墨烯层2211和位于第一石墨烯层2211沿第一方向X相对两表面的两个第一膜层2212,第一方向X与第一子部110朝向第一石墨烯段221的表面相交,第一石墨烯层2211包括多层堆叠设置的单层石墨烯,两个第一膜层2212的边缘密封以隔绝第一石墨烯层2211与外部,部分第一弹性段211与第一膜层2212连接,第一石墨烯层2211位于折弯部130的一侧,且第一石墨烯层2211的两端分别延伸至第一子部110和第二子部120的一侧;第一石墨烯层2211的伸长率e的取值为大于或者等于0.3%,且小于1%;第一弹性段211的伸长率e的取值大于或者等于10%。在本实施方式中,第一石墨烯层2211的伸长率e较小,伸长率e的取值为大于或者等于0.3%,且小于1%,单靠第一石墨烯段221不足以满足石墨烯部件200在展平状态和闭合状态切换时对伸长率e的要求,而通过设置伸长率e较大的第一弹性段211,使石墨烯部件200整体在展平状态和闭合状态切换时可满足对伸长率e的要求。
其中,第一膜层2212用于为第一石墨烯层2211提供保护支撑,并且具有弹性伸缩性能,第一膜层2212可随着第一石墨烯层2211的伸长或缩短而伸长或缩短。在一实施方式中,第一膜层2212的材质包括但不局限于天然橡胶、聚氨基甲酸酯(PU)、热塑性聚氨酯橡胶(TPU)、聚丁二烯(顺丁橡胶)、聚异戊二烯(异戊橡胶)、氯丁橡胶、丁基橡胶、芳纶纸等,此时,第一膜层2212本身具有较强弹性拉伸率,在较薄状态时仍具有较强弹性拉伸率,并且具有复原回弹能力。在一实施方式中,第一膜层2212具有弹性结构,通过弹性结构的拉伸能力提高第一膜层2212的拉伸伸长能力,弹性结构的材质包括但不局限于钛合金、铝合金等。
在一实施方式中,当石墨烯部件200处于展平状态时,两个第一膜层2212沿第二方向Y的长度大于第一石墨烯层2211沿第二方向Y的长度,通过两个第一膜层2212的相互粘接而将第一石墨烯层2211沿第二方向Y的两端密封。在一实施方式中,部分第一弹性段211与第一膜层2212连接,第一弹性段211与两个第一膜层2212沿第一方向X至少部分重叠。在一 实施方式中,第一弹性段211与第一石墨烯层2211沿第一方向X不重叠。
在一实施方式中,第一膜层2212具有良好的导热性,良好的导热性使第一膜层2212可以将环境中的热量快速传递至第一石墨烯层2211,减少第一膜层2212对第一石墨烯层2211的影响。在一实施方式中,第一膜层2212具有绝缘性,由于第一石墨烯层2211具有导电性,若第一石墨烯层2211直接与外部部件或者线路接触,容易造成外部部件或者线路短路,而在第一石墨烯层2211的外部包裹第一膜层2212,使第一石墨烯层2211与外部环境绝缘隔离,降低第一石墨烯层2211造成外部部件、线路短路的风险。
在一种可能的实施方式中,部分第一弹性段211与屏幕100的背面102固定连接(如图7所示),以使部分第一弹性段211相对第一子部110固定。
示例性的,部分第一弹性段211与支撑板150粘接,而使部分第一弹性段211与屏幕100的背面102固定连接。
在一实施方式中,部分第一弹性段211靠近第一膜层2212的一侧与第一膜层2212连接,且部分第一弹性段211靠近第一子部110的一侧与第一子部110连接。
在一实施方式中,第一石墨烯段221远离第一弹性段211的一侧相对第二子部120固定。
在一实施方式中,部分第一弹性段211与支撑板150粘接,第一石墨烯段221远离第一弹性段211的一侧与支撑板150粘接,石墨烯部件200的两侧均与支撑板150固定连接,使石墨烯部件200可随壳体装置300和屏幕100运动。
请继续参阅图7,在一种可能的实施方式中,第一弹性段211包括依次连接的第一段2111、第二段2112和第三段2113,其中,第一子部110包括相对设置的显示面101和背面102,第一段2111与第一子部110的背面102连接而与第一子部110相对固定,第二段2112能够相对第一子部110拉伸,第三段2113与第一石墨烯段221连接,第二段2112的伸长率e大于第一段2111的伸长率e,以及大于第三段2113的伸长率e。其中,第一子部110的背面102是指第一子部110沿第一方向X靠近石墨烯部件200的表面,在一实施方式中,第一段2111与支撑板150远离显示模组140的一侧连接。第二段2112既不与第一子部110连接,也不与第一石墨烯段221连接,当石墨烯部件200在展平状态和闭合状态切换时,第二段2112可自由伸长或缩短。
在一实施方式中,第一段2111、第二段2112和第三段2113的伸长率e的取值可以相同,也可以不同。在一实施方式中,第二段2112的伸长率e的取值大于或者等于10%,石墨烯部件200在展平状态和闭合状态切换时,主要通过第二段2112的伸长或缩短来实现石墨烯部件200的整体伸长或缩短。其中,第二段2112的伸长率e的计算方法与石墨烯部件200的伸长率e的计算方法相同,不同的是,第二段2112的长度L1是指石墨烯部件200处于展平状态时,第二段2112在第二方向Y上的长度;第二段2112的长度L2是指石墨烯部件200处于闭合状态时,第二段2112拉伸后的长度;L3与石墨烯部件200相同。其中第一段2111和第三段2113的伸长率e与第二段2112e的计算方法雷同,在此不再赘述。
在一实施方式中,第一弹性段211为弹性材料,如热塑性聚氨酯弹性体橡胶,通过弹性材料本身的弹性伸缩性能力实现第一弹性段211的伸长及缩短。在一实施方式中,第一弹性段211具有弹性结构(如图9和图10所示),弹性结构可沿第二方向Y伸长或缩短,通过结构的可伸缩性实现第一弹性段211的伸长及缩短。在一实施方式中,第二段2112具有弹性结构,该弹性结构通过对金属片刻蚀加工而成,可以理解的是,弹性结构不限于图9和图10中的结构,只要该弹性结构可以满足沿第二方向Y伸长或缩短即可。
在一实施方式中,第三段2113与远离屏幕100一侧的第一膜层2212连接,第一段2111 与屏幕100连接,在第一方向X上,第二段2112与屏幕100形成间隙(如图7所示),以使第二段2112可自由伸长或缩短,第一弹性段211的这种排布方式可减少电子设备10在第一方向X上的厚度。
在一种可能的实施方式中,电子设备10还包括第一粘结层410,第一粘结层410位于第一段2111与第一子部110的背面102之间以将第一段2111与第一子部110连接,第一石墨烯段221远离第一子部110的表面与第三段2113粘结。
如图6和图7所示,首先,第一石墨烯段221沿第二方向Y靠近第一弹性段211的一端为两个第一膜层2212的粘合结构,第一石墨烯段221沿第二方向Y靠近第一弹性段211的一端沿第一方向X的厚度较第一石墨烯段221其他部分的厚度小,将第三段2113与第一膜层2212连接,且第三段2113与两个第一膜层2212沿第一方向X至少部分重叠,第三段2113与第一石墨烯层2211沿第一方向X不重叠,使石墨烯部件200在第三段2113与第一膜层2212连接处的厚度与第一石墨烯段221其他部分的厚度基本一致,可使石墨烯部件200的整体均匀化,更有利于石墨烯部件200与屏幕100及其他部件紧密贴合,便于散热。
其次,第三段2113与第一膜层2212远离屏幕100的一侧连接,在第一方向X上,第一段2111和第二段2112与第一子部110间隔设置,第一粘结层410设置在第一段2111与第一子部110之间的间隙中,不需要额外提供空间用于收容第一粘结层410,使第一段2111与第一子部110通过第一粘结层410连接后,石墨烯部件200的整体均匀化、表面更加平整,一方面更有利于石墨烯部件200与屏幕100及其他部件紧密贴合,便于散热,另一方面,可节约空间,降低电子设备10的厚度,使电子设备10适合小型化的场景。
请参阅图11和图12,图11是本申请第二实施例提供的电子设备10的部分结构示意图,图12图11的俯视图,本申请第二实施例提供一种电子设备10,与第一实施例不同之处在于,石墨烯部件200还包括第二弹性段212,第二弹性段212位于第二子部120的一侧且能够相对第二子部120拉伸,第二弹性段212与第一石墨烯段221远离第一弹性段211的一端连接,且至少部分第二弹性段212相对第二子部120固定,第二弹性段212的伸长率e大于第一石墨烯段221的伸长率e。部分第二弹性段212相对第二子部120固定是指部分第二弹性段212与第二子部120的相对位置关系不变,当第二子部120运动时,部分第二弹性段212可随之运动。
在一实施方式中,当石墨烯部件200处于展平状态时,第二弹性段212位于第一石墨烯段221沿第二方向Y靠近第二子部120的一侧,部分第二弹性段212与第一石墨烯段221固定连接。在一实施方式中,当石墨烯部件200处于展平状态时,第一弹性段211和第二弹性段212位于石墨烯部件200沿第二方向Y的两侧。
在一实施方式中,第二弹性段212和第一弹性段211的位置可互换,第二弹性段212位于第一子部110的一侧,第一弹性段211位于第二子部120的一侧。
在一实施方式中,第二弹性段212和第一弹性段211的拉伸率可以相同,也可以不同。以适应不同产品的需求。
在一实施方式中,第二弹性段212的伸长率e的取值大于或者等于10%。以使石墨烯部件200满足拉伸需求。其中,第二弹性段212的伸长率e的计算方法与石墨烯部件200的伸长率e的计算方法相同,不同的是,第二弹性段212的长度L1是指石墨烯部件200处于展平状态时,第二弹性段212在第二方向Y上的长度;第二弹性段212的长度L2是指石墨烯部件200处于闭合状态时,第二弹性段212拉伸后的长度;L3与石墨烯部件200相同。
在一实施方式中,第二弹性段212与第一弹性段211的总的伸长率e的取值大于或者等 于10%。石墨烯部件200从展平状态转变为闭合状态时,主要通过第二弹性段212和第一弹性段211的伸长来实现石墨烯部件200的整体伸长,石墨烯部件200从闭合状态转变为展平状态时,主要通过第二弹性段212和第一弹性段211的缩短来实现石墨烯部件200的整体缩短。
在一实施方式中,部分第二弹性段212与屏幕100的背面102固定连接,以使部分第二弹性段212相对第二子部120固定。
在一实施方式中,部分第二弹性段212靠近第一膜层2212的一侧与第一膜层2212连接,且部分第二弹性段212靠近第二子部120的一侧与第二子部120连接。
在一实施方式中,部分第二弹性段212与支撑板150粘接,而与屏幕100的背面102固定连接。其中图9中未示出支撑板150,可参阅图4理解。
在一实施方式中,部分第一弹性段211与支撑板150粘接,部分第二弹性段212远离第一弹性段211的一侧与支撑板150粘接,石墨烯部件200的两侧均与支撑板150固定连接,使石墨烯部件200可随壳体装置300和屏幕100运动。
在一实施方式中,第二弹性段212包括依次连接的第四段2121、第五段2122和第六段2123,第四段2121与第二子部120的背面102连接而与第二子部120相对固定,第五段2122能够相对第二子部120拉伸,第六段2123与第一石墨烯段221连接。其中,第二子部120的背面102是指第二子部120沿第一方向X靠近石墨烯部件200的表面,在一实施方式中,第四段2121与支撑板150远离显示模组140的一侧连接。第五段2122既不与第二子部120连接,也不与第一石墨烯段221连接,当石墨烯部件200在展平状态和闭合状态切换时,第五段2122可自由伸长或缩短。
在一实施方式中,第四段2121、第五段2122和第六段2123的伸长率e的取值可以相同,也可以不同。在一实施方式中,第五段2122的伸长率e的取值大于或者等于10%,石墨烯部件200在展平状态和闭合状态切换时,主要通过第五段2122的伸长或缩短来实现石墨烯部件200的整体伸长或缩短。
在一实施方式中,第六段2123与远离屏幕100一侧的第一膜层2212连接,第四段2121与屏幕100连接,在第一方向X上,第五段2122与屏幕100形成间隙,以使第五段2122可自由伸长或缩短,第二弹性段212的这种排布方式可减少电子设备10在第一方向X上的厚度。在一实施方式中,电子设备10还包括第三粘结层430(如图11所示),第三粘结层430位于第四段2121与第二子部120的背面102之间以将第四段2121与第二子部120连接,第一石墨烯段221远离第二子部120的表面与第六段2123粘结。
如图11所示,首先,第一石墨烯段221沿第二方向Y靠近第二弹性段212的一端为两个第一膜层2212的粘合结构,第一石墨烯段221沿第二方向Y靠近第二弹性段212的一端沿第一方向X的厚度较第一石墨烯段221其他部分的厚度小,将第六段2123与第一膜层2212连接,且第六段2123与两个第一膜层2212沿第一方向X至少部分重叠,第六段2123与第一石墨烯层2211沿第一方向X不重叠,使第六段2123与第一膜层2212连接处的厚度与第一石墨烯段221其他部分的厚度基本一致,可使石墨烯部件200的整体均匀化,更有利于石墨烯部件200与屏幕100及其他部件紧密贴合,便于散热。
其次,第六段2123与第一膜层2212远离屏幕100的一侧连接,在第一方向X上,第四段2121和第五段2122与第二子部120间隔设置,第三粘结层430设置在第四段2121与第二子部120之间的间隙中,不需要额外提供空间用于收容第三粘结层430,使第四段2121与第二子部120通过第三粘结层430连接后,石墨烯部件200的整体均匀化、表面更加平整,一 方面更有利于石墨烯部件200与屏幕100及其他部件紧密贴合,便于散热,另一方面,可节约空间,降低电子设备10的厚度,使电子设备10适合小型化的场景。
请参阅图13和图14,图13为第三实施例中电子设备10的部分结构示意图,图14为图13中N部分的局部放大图。
本申请第三实施例提供一种电子设备10,与第一实施例的不同之处在于,电子设备10还包括中框500(如图13所示),中框500位于石墨烯部件200远离屏幕100的一侧。中框500位于石墨烯部件200与壳体装置300之间,中框500可以展开至展平状态,中框500还可以折叠至闭合状态,中框500还可以展开或折叠至中间状态,中间状态可以为展平状态与闭合状态之间的任意状态。中框500可随壳体装置300和屏幕100运动,电子设备10处于展平状态时,中框500处于展平状态;电子设备10处于闭合状态时,石墨烯部件200处于闭合状态。
其中,中框500可用于固定屏幕100,起到保护屏幕100的作用,中框500还可用于防滑、增强电子设备10的信号、结构强度。
请继续参阅图14,在一种可能的实现方式中,第一弹性段211包括依次连接的第一段2111、第二段2112和第三段2113,第一段2111与中框500连接而与第一子部110相对固定,第二段2112能够相对中框500拉伸,第三段2113与第一石墨烯段221连接。
其中,第一段2111远离第一子部110的一侧与中框500连接,第一段2111靠近第一子部110的一侧可以与第一子部110接触、抵接,第一段2111靠近第一子部110的一侧也可以与第一子部110连接。
在一实施方式中,第一石墨烯段221沿第二方向Y远离第一弹性段211的一端与中框500连接。
在一实施方式中,第一段2111与中框500连接,且第一石墨烯段221沿第二方向Y远离第一弹性段211的一端与第一子部110连接。
在一实施方式中,第一段2111与第一子部110连接,且第一石墨烯段221沿第二方向Y远离第一弹性段211的一端与中框500连接。
在一种可能的实现方式中,电子设备10还包括第二粘结层420(如图14所示),第二粘结层420位于第一段2111与中框500之间以将第一段2111与中框500连接,第一石墨烯段221远离中框500的表面与第三段2113粘结。
如图13和图14所示,首先,第三段2113与第一膜层2212远离中框500的一侧连接,且第三段2113与两个第一膜层2212沿第一方向X至少部分重叠,第三段2113与第一石墨烯层2211沿第一方向X不重叠,使第三段2113与第一膜层2212连接处的厚度与第一石墨烯段221其他部分的厚度基本一致,可使石墨烯部件200的整体均匀化,更有利于石墨烯部件200与屏幕100及其他部件紧密贴合,便于散热。
其次,第三段2113与第一膜层2212靠近屏幕100的一侧连接,在第一方向X上,第一段2111和第二段2112与中框500间隔设置,第二粘结层420设置在第一段2111与中框500之间的间隙中,不需要额外提供空间用于收容第二粘结层420,使第一段2111与中框500通过第二粘结层420连接后,石墨烯部件200的整体均匀化、表面更加平整,一方面更有利于石墨烯部件200与屏幕100、中框500及其他部件紧密贴合,便于散热,另一方面,可节约空间,降低电子设备10的厚度,使电子设备10适合小型化的场景。
在一种可能的实现方式中,石墨烯部件200还包括第二弹性段212(如图15所示),第二弹性段212位于第一石墨烯段221远离第一弹性段211的一端且与第一石墨烯段221连接, 部分第二弹性段212与中框500固定连接。在一实施方式中,第二弹性段212与中框500固定连接,且第一弹性段211与屏幕100固定连接。
在一实施方式中,第二弹性段212包括依次连接的第四段2121、第五段2122和第六段2123,第四段2121与中框500的靠近屏幕100的一侧连接,第五段2122能够相对中框500拉伸,第六段2123与第一石墨烯段221连接。在一实施方式中,第六段2123与靠近屏幕100一侧的第一膜层2212连接,第四段2121与中框500连接,在第一方向X上,第五段2122与屏幕100形成间隙,以使第五段2122可自由伸长或缩短,第二弹性段212的这种排布方式可减少电子设备10在第一方向X上的厚度。
在一实施方式中,电子设备10还包括第四粘结层440(如图15所示),第四粘结层440位于第四段2121与中框500之间以将第四段2121与中框500连接,第一石墨烯段221远离中框500的表面与第六段2123粘结。首先,第六段2123与第一膜层2212远离中框500的一侧连接,且第六段2123与两个第一膜层2212沿第一方向X至少部分重叠,第六段2123与第一石墨烯层2211沿第一方向X不重叠,使第六段2123与第一膜层2212连接处的厚度与第一石墨烯段221其他部分的厚度基本一致,可使石墨烯部件200的整体均匀化,更有利于石墨烯部件200与屏幕100、中框500及其他部件紧密贴合,便于散热。
其次,第六段2123与第一膜层2212远离中框500的一侧连接,在第一方向X上,第四段2121和第五段2122与中框500间隔设置,第四粘结层440设置在第四段2121与第二子部120之间的间隙中,不需要额外提供空间用于收容第四粘结层440,使第四段2121与中框500通过第四粘结层440连接后,石墨烯部件200的整体均匀化、表面更加平整,一方面更有利于石墨烯部件200与屏幕100、中框500及其他部件紧密贴合,便于散热,另一方面,可节约空间,降低电子设备10的厚度,使电子设备10适合小型化的场景。
请参阅图16和图17,图16和图17均是本申请第四实施例提供的电子设备10的部分结构示意图,本申请第四实施例提供一种电子设备10,与第一实施例的不同之处在于,石墨烯部件200还包括第二石墨烯段222,第二石墨烯段222位于第一子部110的一侧,第二石墨烯段222与第一石墨烯段221至少部分沿第一方向X层叠,第一方向X与第二石墨烯段222朝向第一子部110的表面相交。第二石墨烯段222与第一石墨烯段221层叠设置,第一石墨烯段221可相对第二石墨烯段222滑动,第二石墨烯段222可相对第一子部110固定,第二石墨烯段222的设置不会影响到第一石墨烯段221、第一弹性段211或第二弹性段212的自由伸长或缩短。
在本实施方式中,第一方向X与第二石墨烯段222朝向第一子部110的表面垂直相交。在一实施方式中,第一子部110对应的位置内具有高发热部件,即第一子部110对应的位置为高发热区,在高发热区增设第二石墨烯段222,可提升石墨烯部件200的散热能力。
在一实施方式中,第二石墨烯段222的伸长率e的取值为大于或者等于0.3%,且小于1%。其中,第二石墨烯段222的伸长率e的计算方法与石墨烯部件200的伸长率e的计算方法相同,不同的是,第二石墨烯段222的长度L1是指石墨烯部件200处于展平状态时,第二石墨烯段222在第二方向Y上的长度;第二石墨烯段222的长度L2是指石墨烯部件200处于闭合状态时,第二石墨烯段222拉伸后的长度;L3与石墨烯部件200相同。
在一实施方式中,第二石墨烯段222的伸长率e的取值可以为任意值,由于第二石墨烯段222仅位于第一子部110的一侧,电子设备10在展平状态和闭合状态之间切换时,不涉及第二石墨烯段222的伸长与缩短,因此对第二石墨烯段222的伸长率e并无要求。
在一实施方式中,第二石墨烯段222与第一石墨烯段221具有相同的结构,第二石墨烯 段222也包括石墨烯层和位于石墨烯层沿第一方向X相对两表面的两个膜层,两个膜层的边缘密封以隔绝石墨烯层与外部。在一实施方式中,第二石墨烯段222沿第二方向Y的一端或两端也可与弹性段连接。
在一实施方式中,第二石墨烯段222在第一子部110上的正投影覆盖整个或者大部分第一子部110。以提升散热能力。
在一实施方式中,第二石墨烯段222在第一子部110上的正投影覆盖部分第一子部110。可以理解的是,第二石墨烯段222在第一子部110上的正投影的面积越大,越能发挥石墨烯部件200散热能力。
在一实施方式中,第二石墨烯段222位于第一石墨烯段221与第一子部110之间(如图16所示),第二石墨烯段222与第一子部110固定连接,可以理解为,第二石墨烯段222整体均与第一子部110固定连接,或第二石墨烯段222的部分与第一子部110固定连接,还可以是,第二石墨烯段222沿第二方向Y的一侧或者两侧与第一子部110固定连接。在一实施方式中,第二石墨烯段222与第一段2111靠近第一子部110的一侧固定连接。
在一实施方式中,第二石墨烯段222位于第一石墨烯段221远离第一子部110的一侧。在一实施方式中,电子设备10还包括中框500,中框500位于石墨烯部件200远离屏幕100的一侧,第二石墨烯段222位于第一石墨烯段221远离第一子部110的一侧(如图17所示),且第二石墨烯段222与中框500固定连接,可以理解为,第二石墨烯段222整体均与中框500固定连接,或第二石墨烯段222的部分与中框500固定连接,还可以是,第二石墨烯段222沿第二方向Y的一侧或者两侧与中框500固定连接。在一实施方式中,第二石墨烯段222与第一段2111靠近中框500的一侧固定连接。
请参阅图18,图18是本申请第五实施例提供的电子设备10的部分结构示意图,本申请第五实施例提供一种电子设备10,与第四实施例的不同之处在于,石墨烯部件200还包括第三石墨烯段223,第三石墨烯段223位于第二子部120的一侧,第三石墨烯段223与第一石墨烯段221至少部分沿第一方向X层叠。第三石墨烯段223与第一石墨烯段221层叠设置,第一石墨烯段221可相对第三石墨烯段223滑动,第三石墨烯段223可相对第二子部120固定,第三石墨烯段223的设置不会影响到第一石墨烯段221、第一弹性段211或第二弹性段212的自由伸长或缩短。
在一实施方式中,第二子部120对应的位置内具有高发热部件,在第二子部120的一侧增设第三石墨烯段223,可提升石墨烯部件200的散热能力。在一实施方式中,第二子部120对应的位置内具有低发热部件,第一子部110对应的位置内具有高发热部件,第二石墨烯段222的设置可以使热量更快地从石墨烯部件200位于第一子部110的一侧传递至石墨烯部件200位于第二子部120的一侧,第三石墨烯段223的设置使热量可以迅速扩散,电子设备10的热量可以更好地均匀传导、分布到整个机身的各个角落,以起到平衡整机热量的一个散热效果。在一实施方式中,第二子部120对应的位置内具有高发热部件,第一子部110对应的位置内具有低发热部件。
在一实施方式中,石墨烯部件200还包括第二弹性段212(如图19所示),第二弹性段212位于第二子部120的一侧,第二弹性段212与第一石墨烯段221远离第一弹性段211的一端连接,且部分第二弹性段212相对第二子部120固定。
在一实施方式中,第三石墨烯段223在第二子部120上的正投影覆盖整个或者大部分第二子部120。在一实施方式中,第三石墨烯段223在第二子部120上的正投影覆盖部分第二子部120。可以理解的是,第三石墨烯段223在第二子部120上的正投影的面积越大,越能 发挥石墨烯部件200散热能力。
在一实施方式中,第三石墨烯段223的伸长率e的取值为大于或者等于0.3%,且小于1%。其中,第三石墨烯段223的伸长率e的计算方法与石墨烯部件200的伸长率e的计算方法相同,不同的是,第三石墨烯段223的长度L1是指石墨烯部件200处于展平状态时,第三石墨烯段223在第二方向Y上的长度;第三石墨烯段223的长度L2是指石墨烯部件200处于闭合状态时,第三石墨烯段223拉伸后的长度;L3与石墨烯部件200相同。
在一实施方式中,第三石墨烯段223的伸长率e的取值可以为任意值,由于第三石墨烯段223仅位于第一子部110的一侧,电子设备10在展平状态和闭合状态之间切换时,不涉及第三石墨烯段223的伸长与缩短,因此对第三石墨烯段223的伸长率e并无要求。
在一实施方式中,第三石墨烯段223的伸长率的取值与第二石墨烯段222的伸长率e的取值可以相同也可以不同。
在一实施方式中,第三石墨烯段223与第一石墨烯段221或第二石墨烯段222具有相同的结构,第三石墨烯段223也包括石墨烯层和位于石墨烯层沿第一方向X相对两表面的两个膜层,两个膜层的边缘密封以隔绝石墨烯层与外部。在一实施方式中,第三石墨烯段223沿第二方向Y的一端或两端也可与弹性段连接。
在一实施方式中,第三石墨烯段223位于第一石墨烯段221与第二子部120之间,第三石墨烯段223与第二子部120固定连接,可以理解为,第三石墨烯段223整体均与第二子部120固定连接,或第三石墨烯段223的部分与第二子部120固定连接,还可以是,第三石墨烯段223沿第二方向Y的一侧或者两侧与第二子部120固定连接。
在一实施方式中,石墨烯部件200还包括第二弹性段212,部分第二弹性段212与第一石墨烯段221远离第一弹性段211的一端连接,第三石墨烯段223与第四段2121靠近第二子部120的一侧固定连接。在一实施方式中,第三石墨烯段223位于第一石墨烯段221与第二子部120之间,且第二石墨烯段222位于第一石墨烯段221与第一子部110之间,将第三石墨烯段223和第二石墨烯段222均设置在第一石墨烯段221与屏幕100之间,可节约电子设备10的空间,降低电子设备10的厚度。
在一实施方式中,第三石墨烯段223位于第一石墨烯段221远离第二子部120的一侧。在一实施方式中,电子设备10还包括中框500,中框500位于石墨烯部件200远离屏幕100的一侧,第三石墨烯段223位于第一石墨烯段221远离第二子部120的一侧,且第三石墨烯段223与中框500固定连接,可以理解为,第三石墨烯段223整体均与中框500固定连接,或第三石墨烯段223的部分与中框500固定连接,还可以是,第三石墨烯段223沿第二方向Y的一侧或者两侧与中框500固定连接。在一实施方式中,石墨烯部件200还包括第二弹性段212,部分第二弹性段212与第一石墨烯段221远离第一弹性段211的一端连接,第三石墨烯段223与第四段2121靠近中框500的一侧固定连接。在一实施方式中,第三石墨烯段223和第二石墨烯段222均设置在第一石墨烯段221远离屏幕100的一侧,可节约电子设备10的空间,降低电子设备10的厚度。在一实施方式中,第三石墨烯段223和第二石墨烯段222的其中之一位于第一石墨烯段221远离屏幕100的一侧,第三石墨烯段223和第二石墨烯段222的另一个位于第一石墨烯段221与屏幕100之间。
请参阅图20、图21和图22,图20和图21均是本申请第六实施例提供的电子设备10的部分结构示意图,图22是本申请第六实施例提供的电子设备的俯视图,本申请第六实施例提供一种电子设备10,与第一实施例的不同之处在于,石墨烯部件200包括第二石墨烯层230和位于第二石墨烯层230沿第一方向Y相对两表面的两个第二膜层240,第一方向Y与第一 子部110朝向石墨烯部件200的表面相交,第二石墨烯层230包括多层堆叠设置的单层石墨烯,两个第二膜层240的边缘密封以隔绝第二石墨烯层230与外部,第二石墨烯层230位于折弯部的一侧,且第二石墨烯层230的两端分别延伸至第一子部110和第二子部120的一侧,第二石墨烯层230的伸长率e大于或者等于5%。其中,第二石墨烯层230的伸长率e的计算方法与石墨烯部件200的伸长率e的计算方法相同,不同的是,第二石墨烯层230的长度L1是指石墨烯部件200处于展平状态时,第二石墨烯层230在第二方向Y上的长度;第二石墨烯层230的长度L2是指石墨烯部件200处于闭合状态时,第二石墨烯层230拉伸后的长度;L3与石墨烯部件200相同。
石墨烯部件200在展平状态和闭合状态切换时,石墨烯部件200的整体可自由伸长或缩短,第二石墨烯层230具有足够大的伸长率e以满足石墨烯部件200在展平状态和闭合状态切换时对伸长率e的要求,保证石墨烯部件200保持结构完整,免于被拉扯断而导致导热功能失效。
石墨烯部件200的设置,使热量均匀的传导、分布到电子设备10的整个机身的各个角落,特别地,热量在第一子部110的对应部位和第二子部120的对应位置之间传递,以起到平衡整机热量的一个散热效果。
在一实施方式中,石墨烯部件200的厚度为0.004毫米至0.02毫米之间。在一实施方式中,石墨烯部件200与屏幕100固定连接(如图20所示)。在一实施方式中,石墨烯部件200与屏幕100粘接,其中,粘接的方式可以为石墨烯部件200靠近屏幕100的一侧面均与屏幕100粘接,或石墨烯部件200靠近屏幕100的部分侧面与屏幕100粘接,还可以为石墨烯部件200沿第二方向Y的两端与屏幕100粘接。
在一实施方式中,电子设备10还包括中框500,中框500位于石墨烯部件200远离屏幕100的一侧,石墨烯部件200与中框500固定连接(如图21所示)。在一实施方式中,石墨烯部件200与中框500粘接,其中,粘接的方式可以为石墨烯部件200靠近中框500的一侧面均与中框500粘接,或石墨烯部件200靠近中框500的部分侧面与中框500粘接,还可以为石墨烯部件200沿第二方向Y的两端与中框500粘接。在一实施方式中,部分石墨烯部件200与中框500连接,部分石墨烯部件200与屏幕100连接。
在一实施方式中,石墨烯部件200处于展平状态时,石墨烯部件200在第一方向X上的两个表面平整,石墨烯部件200在第一方向X上是等厚的(如图20和图21所示)。在一实施方式中,石墨烯部件200在第一方向X上也可以是不等厚的,石墨烯部件200沿第一方向的两个表面可设置为凹凸不平状态,以尽量与其他部件贴合设置,保证石墨烯部件200的散热能力。
请参阅图23,图23是本申请第六实施例提供的电子设备10的部分结构示意图,在一种可能的实现方式中,第二石墨烯层230包括并排设置且相互连接的第一石墨烯子部231、第二石墨烯子部232和第三石墨烯子部233,第一石墨烯子部231、第二石墨烯子部232和第三石墨烯子部233分别位于第一子部110、折弯部130和第二子部120的一侧,第二石墨烯子部232的厚度大于第一石墨烯子部231和第三石墨烯子部233的厚度。第一石墨烯子部231、第二石墨烯子部232和第三石墨烯子部233的厚度均是指处于展平状态时在第一方向X上的厚度,第二石墨烯子部232的厚度大于第一石墨烯子部231的厚度,且第二石墨烯子部232的厚度大于第三石墨烯子部233的厚度。
第二石墨烯层230在被拉伸时厚度会变薄,位于折弯部130一侧的第二石墨烯子部232是形变较大的区域,在第二石墨烯层230在被拉伸时,第二石墨烯子部232的厚度的减少量 较大,增加第二石墨烯子部232处于展平状态时的厚度,第二石墨烯层230处于闭合状态时,第二石墨烯子部232的厚度减小,以使闭合状态下的第二石墨烯子部232与第一石墨烯子部231和第三石墨烯子部233的厚度基本上相等,第二石墨烯层230的整体厚度趋于均一,保证石墨烯部件200的散热可以持续、稳定和均衡。
在一种可能的实现方式中,石墨烯部件200还包括第二石墨烯段222,第二石墨烯段222位于第一子部110的一侧,第二石墨烯段222与第二膜层240至少部分沿第一方向X层叠,第二石墨烯段222中的石墨烯层的伸长量小于第二石墨烯层230的伸长量。
在一种可能的实现方式中,石墨烯部件200还包括第二石墨烯段222和第三石墨烯段223(如图24所示),第二石墨烯段222位于第一子部110的一侧,第二石墨烯段222与第二膜层240至少部分沿第一方向X层叠,第三石墨烯段223位于第二子部120的一侧,第三石墨烯段223与第二膜层240至少部分沿第一方向X层叠。在一实施方式中,第二石墨烯段222和第三石墨烯段223位于第二石墨烯层230沿第一方向X的同一侧或不同侧。在一实施方式中,第二石墨烯段222和第三石墨烯段223位于第二石墨烯层230靠近屏幕100的一侧。在一实施方式中,第二石墨烯段222和第三石墨烯段223位于第二石墨烯层230远离屏幕100的一侧。
在一种可能的实现方式中,电子设备10还包括中框500,中框500位于石墨烯部件200远离屏幕100的一侧,中框500靠近第二石墨烯子部232的区域设有凹槽501(如图23所示),第二石墨烯子部232至少部分收容于凹槽501。在一实施方式中,石墨烯部件200靠近中框500的一侧紧贴中框500设置,当石墨烯部件200靠近中框500的侧面为平整状态时,中框500靠近石墨烯部件200的侧面也呈平整态,当增加第二石墨烯子部232处于展平状态时的厚度时,第二石墨烯子部232会朝向中框500凸起,此时在中框500靠近第二石墨烯子部232的区域设置凹槽501,用于收容增厚的部分第二石墨烯子部232,使电子设备10的整体厚度趋于均匀化。
请参阅图8和图25,图25是本申请第六实施例提供的电子设备10的部分结构示意图,在一种可能的实现方式中,电子设备10还包括第一中框子部510、第二中框子部520和门板530,第一中框子部510位于石墨烯部件200远离第一子部110的一侧,第二中框子部520位于石墨烯部件200远离第二子部120的一侧,石墨烯部件200位于折弯部130一侧的部分设有开孔250,开孔250填充有粘结胶,粘结胶连接门板530和折弯部130,以使门板530与折弯部130粘合固定。门板530位于石墨烯部件200远离开孔250的一侧,电子设备10在展平状态切换为闭合状态时,屏幕100的折弯部130与门板530固定连接,可保证屏幕100在弯折状态下的移动路线。
在一实施方式中,电子设备10处于展平状态时,第一中框子部510、门板530和第二中框子部520共面且依次抵接,以形成完整的板块,电子设备10处于闭合状态时,第一中框子部510和第二中框子部520相对折叠。在一实施方式中,电子设备10处于展平状态时,第一中框子部510、门板530和第二中框子部520也可间隔设置。
在一实施方式中,石墨烯部件200位于折弯部130一侧的部分设有多个开孔250,以增强门板530与折弯部130的粘合能力。在一实施方式中,电子设备10可包括多个门板530,通过多个门板530的设置,可实现第一中框子部510、第二中框子部520和门板530整体的顺利弯折。
请参阅图26,图26是本申请第七实施例提供的显示组件11的部分结构示意图,本申请第七实施例提供一种显示组件11,显示组件11具有展平状态和闭合状态,显示组件包括屏 幕100和石墨烯部件200,屏幕100包括折弯部130和位于折弯部130两侧的第一子部110和第二子部120,在展平状态时,第一子部110、折弯部130和第二子部120共面,在闭合状态时,第一子部110和第二子部120相对折叠;石墨烯部件200的至少部分位于折弯部130的一侧,石墨烯部件200的两端分别延伸至第一子部110和第二子部120的一侧,石墨烯部件200具有弹性伸缩性能。将石墨烯部件200同时设置在第一子部110和第二子部120的一侧,第一子部110和第二子部120之间可通过石墨烯部件200进行热量传递,以达到平衡显示组件11的整机热量的散热效果。
在一些实施例中,显示组件11还包括中框500。在前述各实施例中关于电子设备10中的屏幕100、石墨烯部件200和中框500的描述及变形方案可适用于本实施例中的显示组件11中的屏幕100、石墨烯部件200和中框500。在前述各实施例中关于电子设备10中的石墨烯部件200与屏幕100、中框500的连接关系、位置关系的描述及变形方案可适用于本实施例中的显示组件11中的石墨烯部件200与屏幕100、中框500的连接关系、位置关系。在此不再赘述。
以上对本申请实施例所提供的显示组件及电子设备进行了详细介绍,本文中应用了具体个例对本申请的原理及实施例进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施例及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (30)

  1. 一种显示组件(11),其特征在于,具有展平状态和闭合状态,包括:
    屏幕(100),包括折弯部(130)和位于所述折弯部(130)两侧的第一子部(110)和第二子部(120),在所述展平状态时,所述第一子部(110)、所述折弯部(130)和所述第二子部(120)共面,在所述闭合状态时,所述第一子部(110)和所述第二子部(120)相对折叠;
    石墨烯部件(200),所述石墨烯部件(200)的至少部分位于所述折弯部(130)的一侧,所述石墨烯部件(200)的两端分别延伸至所述第一子部(110)和所述第二子部(120)的一侧,所述石墨烯部件(200)具有弹性伸缩性能。
  2. 根据权利要求1所述的显示组件(11),其特征在于,所述石墨烯部件(200)包括相连接的第一弹性段(211)和第一石墨烯段(221),所述第一弹性段(211)位于所述第一子部(110)的一侧且能够相对所述第一子部(110)拉伸,所述第一石墨烯段(221)位于所述折弯部(130)的一侧,且所述第一石墨烯段(221)的两端分别延伸至所述第一子部(110)和所述第二子部(120)的一侧,至少部分所述第一弹性段(211)相对所述第一子部(110)固定,所述第一弹性段(211)的伸长率大于所述第一石墨烯段(211)的伸长率。
  3. 根据权利要求2所述的显示组件(11),其特征在于,所述石墨烯部件(200)还包括第二弹性段(212),所述第二弹性段(212)位于所述第二子部(120)的一侧且能够相对所述第二子部(120)拉伸,所述第二弹性段(212)与所述第一石墨烯段(221)远离所述第一弹性段(211)的一端连接,且至少部分所述第二弹性段(212)相对所述第二子部(120)固定,所述第二弹性段(212)的伸长率大于所述第一石墨烯段(211)的伸长率。
  4. 根据权利要求2所述的显示组件(11),其特征在于,所述第一弹性段(211)包括依次连接的第一段(2111)、第二段(2112)和第三段(2113),其中,所述第一子部(110)包括相对设置的显示面(101)和背面(102),所述第一段(2111)与所述第一子部(110)的背面(102)连接而与所述第一子部(110)相对固定,所述第二段(2112)能够相对所述第一子部(110)拉伸,所述第三段(2113)与所述第一石墨烯段(221)连接,所述第二段(2112)的伸长率大于所述第一段(2111)的伸长率,以及大于所述第三段(2113)的伸长率。
  5. 根据权利要求4所述的显示组件(11),其特征在于,所述显示组件(11)还包括第一粘结层(410),所述第一粘结层(410)位于所述第一段(2111)与所述第一子部(110)的背面(102)之间以将所述第一段(2111)与所述第一子部(110)连接,所述第一石墨烯段(221)远离所述第一子部(110)的表面与所述第三段(2113)粘结。
  6. 根据权利要求2所述的显示组件(11),其特征在于,所述显示组件(11)还包括中框(500),所述中框(500)位于所述石墨烯部件(200)远离所述屏幕(100)的一侧;所述第一弹性段(211)包括依次连接的第一段(2111)、第二段(2112)和第三段(2113),所述第一段(2111)与所述中框(500)连接而与所述第一子部(110)相对固定,所述第二段(2112)能够相对所述中框(500)拉伸,所述第三段(2113)与所述第一石墨烯段(221)连接。
  7. 根据权利要求6所述的显示组件(11),其特征在于,所述显示组件(11)还包括第二 粘结层(420),所述第二粘结层(420)位于所述第一段(2111)与所述中框(500)之间以将所述第一段(2111)与所述中框(500)连接,所述第一石墨烯段(221)远离所述中框(500)的表面与所述第三段(2113)粘结。
  8. 根据权利要求2所述的显示组件(11),其特征在于,所述石墨烯部件(200)还包括第二石墨烯段(222),所述第二石墨烯段(222)位于所述第一子部(110)的一侧,所述第二石墨烯段(222)与所述第一石墨烯段(221)至少部分沿第一方向(X)层叠,所述第一方向(X)与所述第二石墨烯段(222)朝向所述第一子部(110)的表面相交。
  9. 根据权利要求8所述的显示组件(11),其特征在于,所述石墨烯部件(200)还包括第三石墨烯段(223),所述第三石墨烯段(223)位于所述第二子部(120)的一侧,所述第三石墨烯段(223)与所述第一石墨烯段(221)至少部分沿所述第一方向(X)层叠。
  10. 根据权利要求2-9任一项所述的显示组件(11),其特征在于,所述第一石墨烯段(221)包括第一石墨烯层(2211)和位于所述第一石墨烯层(2211)沿第一方向(X)相对两表面的两个第一膜层(2212),所述第一方向(X)与所述第一子部(110)朝向所述第一石墨烯段(221)的表面相交,所述第一石墨烯层(2211)包括多层堆叠设置的单层石墨烯,所述两个第一膜层(2212)的边缘密封以隔绝所述第一石墨烯层(2211)与外部,部分所述第一弹性段(211)与所述第一膜层(2212)连接,所述第一石墨烯层(2211)位于所述折弯部(130)的一侧,且所述第一石墨烯层(2211)的两端分别延伸至所述第一子部(110)和所述第二子部(120)的一侧。
  11. 根据权利要求1-9任一项所述的显示组件(11),其特征在于,所述石墨烯部件(200)的伸长率的取值大于或者等于5%。
  12. 根据权利要求10所述的显示组件(11),其特征在于,所述第一石墨烯层(2211)的伸长率的取值为大于或者等于0.3%,且小于1%;所述第一弹性段(211)的伸长率的取值大于或者等于10%。
  13. 根据权利要求1所述的显示组件(11),其特征在于,所述石墨烯部件(200)包括第二石墨烯层(230)和位于所述第二石墨烯层(230)沿第一方向(X)相对两表面的两个第二膜层(240),所述第一方向(X)与所述第一子部(110)朝向所述石墨烯部件(200)的表面相交,所述第二石墨烯层(230)包括多层堆叠设置的单层石墨烯,所述两个第二膜层(240)的边缘密封以隔绝所述第二石墨烯层(230)与外部,所述第二石墨烯层(230)位于所述折弯部(130)的一侧,且所述第二石墨烯层(230)的两端分别延伸至所述第一子部(110)和所述第二子部(120)的一侧,所述第二石墨烯层(230)的伸长率大于或者等于5%。
  14. 根据权利要求13所述的显示组件(11),其特征在于,所述第二石墨烯层(230)包括并排设置且相互连接的第一石墨烯子部(231)、第二石墨烯子部(232)和第三石墨烯子部(233),所述第一石墨烯子部(231)、所述第二石墨烯子部(232)和所述第三石墨烯子部(233)分别位于所述第一子部(110)、折弯部(130)和所述第二子部(120)的一侧,所述第二石 墨烯子部(232)的厚度大于所述第一石墨烯子部(231)和所述第三石墨烯子部(233)的厚度。
  15. 根据权利要求14所述的显示组件(11),其特征在于,所述显示组件(11)还包括中框(500),所述中框(500)位于所述石墨烯部件(200)远离所述屏幕(100)的一侧,所述中框(500)靠近所述第二石墨烯子部(232)的区域设有凹槽(501),所述第二石墨烯子部(232)至少部分收容于所述凹槽(501)。
  16. 根据权利要求13所述的显示组件(11),其特征在于,所述石墨烯部件(200)还包括第二石墨烯段(222),所述第二石墨烯段(222)位于所述第一子部(110)的一侧,所述第二石墨烯段(222)与所述第二膜层(240)至少部分沿所述第一方向(X)层叠,所述第二石墨烯段(222)中的石墨烯层的伸长量小于所述第二石墨烯层(230)的伸长量。
  17. 根据权利要求1所述的显示组件(11),其特征在于,所述显示组件(11)还包括第一中框子部(510)、第二中框子部(520)和门板(530),所述第一中框子部(510)位于所述石墨烯部件(200)远离所述第一子部(110)的一侧,所述第二中框子部(520)位于所述石墨烯部件(200)远离所述第二子部(120)的一侧,所述石墨烯部件(200)位于所述折弯部(130)一侧的部分设有开孔(250),所述开孔(250)填充有粘结胶,所述粘结胶连接所述门板(530)和所述折弯部(130),以使所述门板(530)与所述折弯部(130)固定连接。
  18. 一种电子设备(10),其特征在于,具有展平状态和闭合状态,包括:
    壳体装置(300),包括第一壳体(310)、第二壳体(320)及折叠组件(330),所述折叠组件(330)连接所述第一壳体(310)与所述第二壳体(320),所述第一壳体(310)与所述第二壳体(320)能够通过所述折叠组件(330)的运动相对展开或者相对折叠;
    屏幕(100),安装在所述壳体装置(300)上,包括折弯部(130)和位于所述折弯部(130)两侧的第一子部(110)和第二子部(120),所述第一子部(110)位于所述第一壳体(310)的一侧,所述第二子部(120)位于所述第二壳体(320)的一侧,所述折弯部(130)位于所述折叠组件(330)的一侧,在所述展平状态时,所述第一子部(110)、所述折弯部(130)和所述第二子部(120)共面,在所述闭合状态时,所述第一子部(110)和所述第二子部(120)相对折叠;
    石墨烯部件(200),位于所述壳体装置(300)与屏幕(100)之间,所述石墨烯部件(200)的至少部分位于所述折弯部(130)的一侧,所述石墨烯部件(200)的两端分别延伸至所述第一子部(110)和所述第二子部(120)的一侧,所述石墨烯部件(200)具有弹性伸缩性能。
  19. 根据权利要求18所述的电子设备(10),其特征在于,所述石墨烯部件(200)包括相连接的第一弹性段(211)和第一石墨烯段(221),所述第一弹性段(211)位于所述第一子部(110)的一侧且能够相对所述第一子部(110)拉伸,所述第一石墨烯段(221)位于所述折弯部(130)的一侧,且所述第一石墨烯段(221)的两端分别延伸至所述第一子部(110)和所述第二子部(120)的一侧,至少部分所述第一弹性段(211)相对所述第一子部(110)固定,所述第一弹性段(211)的伸长率大于所述第一石墨烯段(211)的伸长率。
  20. 根据权利要求19所述的电子设备(10),其特征在于,所述石墨烯部件(200)还包括第二弹性段(212),所述第二弹性段(212)位于所述第二子部(120)的一侧且能够相对所述第二子部(120)拉伸,所述第二弹性段(212)与所述第一石墨烯段(221)远离所述第一弹性段(211)的一端连接,且至少部分所述第二弹性段(212)相对所述第二子部(120)固定,所述第二弹性段(212)的伸长率大于所述第一石墨烯段(211)的伸长率。
  21. 根据权利要求19所述的电子设备(10),其特征在于,所述第一弹性段(211)包括依次连接的第一段(2111)、第二段(2112)和第三段(2113),其中,所述第一子部(110)包括相对设置的显示面(101)和背面(102),所述第一段(2111)与所述第一子部(110)的背面(102)连接而与所述第一子部(110)相对固定,所述第二段(2112)能够相对所述第一子部(110)拉伸,所述第三段(2113)与所述第一石墨烯段(221)连接,所述第二段(2112)的伸长率大于所述第一段(2111)的伸长率,以及大于所述第三段(2113)的伸长率。
  22. 根据权利要求21所述的电子设备(10),其特征在于,所述电子设备(10)还包括第一粘结层(410),所述第一粘结层(410)位于所述第一段(2111)与所述第一子部(110)的背面(102)之间以将所述第一段(2111)与所述第一子部(110)连接,所述第一石墨烯段(221)远离所述第一子部(110)的表面与所述第三段(2113)粘结。
  23. 根据权利要求19所述的电子设备(10),其特征在于,所述电子设备(10)还包括中框(500),所述中框(500)位于所述石墨烯部件(200)远离所述屏幕(100)的一侧;所述第一弹性段(211)包括依次连接的第一段(2111)、第二段(2112)和第三段(2113),所述第一段(2111)与所述中框(500)连接而与所述第一子部(110)相对固定,所述第二段(2112)能够相对所述中框(500)拉伸,所述第三段(2113)与所述第一石墨烯段(221)连接。
  24. 根据权利要求19所述的电子设备(10),其特征在于,所述石墨烯部件(200)还包括第二石墨烯段(222),所述第二石墨烯段(222)位于所述第一子部(110)的一侧,所述第二石墨烯段(222)与所述第一石墨烯段(221)至少部分沿第一方向(X)层叠,所述第一方向(X)与所述第二石墨烯段(222)朝向所述第一子部(110)的表面相交。
  25. 根据权利要求24所述的电子设备(10),其特征在于,所述石墨烯部件(200)还包括第三石墨烯段(223),所述第三石墨烯段(223)位于所述第二子部(120)的一侧,所述第三石墨烯段(223)与所述第一石墨烯段(221)至少部分沿所述第一方向(X)层叠。
  26. 根据权利要求19-25任一项所述的电子设备(10),其特征在于,所述第一石墨烯段(221)包括第一石墨烯层(2211)和位于所述第一石墨烯层(2211)沿第一方向(X)相对两表面的两个第一膜层(2212),所述第一方向(X)与所述第一子部(110)朝向所述第一石墨烯段(221)的表面相交,所述第一石墨烯层(2211)包括多层堆叠设置的单层石墨烯,所述两个第一膜层(2212)的边缘密封以隔绝所述第一石墨烯层(2211)与外部,部分所述第一弹性 段(211)与所述第一膜层(2212)连接,所述第一石墨烯层(2211)位于所述折弯部(130)的一侧,且所述第一石墨烯层(2211)的两端分别延伸至所述第一子部(110)和所述第二子部(120)的一侧;所述第一石墨烯层(2211)的伸长率的取值为大于或者等于0.3%,且小于1%;所述第一弹性段(211)的伸长率的取值大于或者等于10%。
  27. 根据权利要求18所述的电子设备(10),其特征在于,所述石墨烯部件(200)包括第二石墨烯层(230)和位于所述第二石墨烯层(230)沿第一方向(X)相对两表面的两个第二膜层(240),所述第一方向(X)与所述第一子部(110)朝向所述石墨烯部件(200)的表面相交,所述第二石墨烯层(230)包括多层堆叠设置的单层石墨烯,所述两个第二膜层(240)的边缘密封以隔绝所述第二石墨烯层(230)与外部,所述第二石墨烯层(230)位于所述折弯部(130)的一侧,且所述第二石墨烯层(230)的两端分别延伸至所述第一子部(110)和所述第二子部(120)的一侧,所述第二石墨烯层(230)的伸长率大于或者等于5%。
  28. 根据权利要求27所述的电子设备(10),其特征在于,所述第二石墨烯层(230)包括并排设置且相互连接的第一石墨烯子部(231)、第二石墨烯子部(232)和第三石墨烯子部(233),所述第一石墨烯子部(231)、所述第二石墨烯子部(232)和所述第三石墨烯子部(233)分别位于所述第一子部(110)、折弯部(130)和所述第二子部(120)的一侧,所述第二石墨烯子部(232)的厚度大于所述第一石墨烯子部(231)和所述第三石墨烯子部(233)的厚度。
  29. 根据权利要求28所述的电子设备(10),其特征在于,所述电子设备(10)还包括中框(500),所述中框(500)位于所述石墨烯部件(200)远离所述屏幕(100)的一侧,所述中框(500)靠近所述第二石墨烯子部(232)的区域设有凹槽(501),所述第二石墨烯子部(232)至少部分收容于所述凹槽(501)。
  30. 根据权利要求18所述的电子设备(10),其特征在于,所述电子设备(10)还包括第一中框子部(510)、第二中框子部(520)和门板(530),所述第一中框子部(510)位于所述石墨烯部件(200)远离所述第一子部(110)的一侧,所述第二中框子部(520)位于所述石墨烯部件(200)远离所述第二子部(120)的一侧,所述石墨烯部件(200)位于所述折弯部(130)一侧的部分设有开孔(250),所述开孔(250)填充有粘结胶,所述粘结胶连接所述门板(530)和所述折弯部(130),以使所述门板(530)与所述折弯部(130)固定连接。
PCT/CN2023/083497 2022-03-25 2023-03-23 显示组件及电子设备 WO2023179735A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210300582.X 2022-03-25
CN202210300582.XA CN116847619A (zh) 2022-03-25 2022-03-25 显示组件及电子设备

Publications (1)

Publication Number Publication Date
WO2023179735A1 true WO2023179735A1 (zh) 2023-09-28

Family

ID=88100068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083497 WO2023179735A1 (zh) 2022-03-25 2023-03-23 显示组件及电子设备

Country Status (2)

Country Link
CN (1) CN116847619A (zh)
WO (1) WO2023179735A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106855764A (zh) * 2015-12-09 2017-06-16 南昌欧菲光科技有限公司 触摸显示装置
US20190373743A1 (en) * 2018-05-31 2019-12-05 Boe Technology Group Co., Ltd. Foldable display and foldable display device
CN110675755A (zh) * 2019-10-12 2020-01-10 武汉天马微电子有限公司 可折叠显示装置
CN113852704A (zh) * 2020-06-28 2021-12-28 华为技术有限公司 转轴组件及折叠屏设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106855764A (zh) * 2015-12-09 2017-06-16 南昌欧菲光科技有限公司 触摸显示装置
US20190373743A1 (en) * 2018-05-31 2019-12-05 Boe Technology Group Co., Ltd. Foldable display and foldable display device
CN110675755A (zh) * 2019-10-12 2020-01-10 武汉天马微电子有限公司 可折叠显示装置
CN113852704A (zh) * 2020-06-28 2021-12-28 华为技术有限公司 转轴组件及折叠屏设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAI QINGSHUN, SHEN RONG-QI, HE XIN, LIU SHUN, ZHANG FEI-HU, GUO YONG-BO: "Interface Adhesion Property between Graphene Film and Surface of Nanometric Microstructure", ACTA PHYSICA SINICA, vol. 67, no. 3, pages 030201, XP093094511, DOI: 10.7498/aps.67.20172153 *

Also Published As

Publication number Publication date
CN116847619A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
US11096274B2 (en) Flexible display device
US10228722B2 (en) Portable information device
US11586251B2 (en) Electronic device with flexible display structures
US20220256020A1 (en) Battery module, flexible display apparatus, and mobile terminal
EP3697184A1 (en) Film-shaped heat dissipation member, bendable display device, and terminal equipmentapparatus
US20160212890A1 (en) Foldable display
WO2020216090A1 (zh) 支撑结构及其制造方法、显示装置及其装配方法
WO2021103195A1 (zh) 柔性显示屏及显示装置
US10001811B1 (en) Portable information device
WO2021043159A1 (zh) 一种柔性显示屏及其制备方法和电子设备
US10788863B1 (en) Flexible display device
TWI785364B (zh) 顯示裝置
EP4080493A1 (en) Electronic device
WO2021082557A1 (zh) 一种显示装置及终端设备
CN111816074A (zh) 一种柔性显示屏及显示装置
US20210405781A1 (en) Foldable display screen and assembling method thereof, and display apparatus
WO2022262373A1 (zh) 折叠屏设备
WO2022036834A1 (zh) 柔性显示面板及柔性显示设备
CN117765815A (zh) 显示器用基板
WO2023231116A1 (zh) 一种显示装置
JP2000356961A (ja) 携帯型情報機器
WO2023179735A1 (zh) 显示组件及电子设备
GB2617457A (en) Sliding electronic devices with translating flexible displays having rigidly coupled foldable substrates and corresponding methods
WO2011061858A1 (ja) 表示装置および電子機器
CN115135093A (zh) 电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773980

Country of ref document: EP

Kind code of ref document: A1