WO2023179639A1 - 超宽带信号同步的方法和通信装置 - Google Patents

超宽带信号同步的方法和通信装置 Download PDF

Info

Publication number
WO2023179639A1
WO2023179639A1 PCT/CN2023/082960 CN2023082960W WO2023179639A1 WO 2023179639 A1 WO2023179639 A1 WO 2023179639A1 CN 2023082960 W CN2023082960 W CN 2023082960W WO 2023179639 A1 WO2023179639 A1 WO 2023179639A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
uwb
time
narrowband
synchronization information
Prior art date
Application number
PCT/CN2023/082960
Other languages
English (en)
French (fr)
Inventor
王伟
于茜
王康
梁芳丽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210761590.4A external-priority patent/CN116846427A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023179639A1 publication Critical patent/WO2023179639A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the embodiments of the present application relate to the field of ultra-wideband technology, and more specifically, to an ultra-wideband signal synchronization method and communication device.
  • ultra-wideband (UWB) wireless technology has been widely used. Because its signal is a very narrow (nanosecond level) pulse signal and the radiation spectrum density is extremely low, it has good multipath resolution capabilities, which can ensure centimeter-level ranging accuracy in complex indoor multipath environments.
  • UWB ultra-wideband
  • one of the disadvantages of ultra-wideband wireless technology is that it requires a high signal sampling rate (GHz level) to achieve signal reception and processing. That is, the clock of the ultra-wideband signal processing chip needs to work at a very high frequency, which makes ultra-wideband signal processing The area, power consumption and cost of broadband signal processing chips are relatively high.
  • an ultra-wide and low ranging method based on narrowband assistance is proposed.
  • the positioning device sends a narrowband signal so that the mobile tag obtains the time-frequency synchronization of the signal.
  • the mobile tag receives the ranging signal for ranging.
  • the time-frequency synchronization mechanism of narrowband signals is relatively simple to implement, its time-frequency synchronization accuracy is not very high due to limitations of the bandwidth and clock frequency of the narrowband signal itself.
  • ultra-wideband ranging accuracy requires high time-frequency synchronization accuracy. If low-precision time-frequency synchronization information is used, ranging performance will be seriously affected.
  • Embodiments of the present application provide an ultra-wideband signal synchronization method and communication device, which can reduce the complexity of time-frequency synchronization of UWB signals without affecting the ultra-wideband ranging performance, thereby reducing the complexity of UWB signal receiving equipment. Area, power consumption and cost of ultra-wideband signal processing chips.
  • the first aspect provides a signal synchronization method, which includes:
  • the receiving device processes the narrowband signal and obtains the time-frequency synchronization information of the narrowband signal
  • the receiving device processes the synchronization signal of the ultra-wideband UWB signal according to the time-frequency synchronization information of the narrowband signal, and obtains the time-frequency synchronization information of the UWB signal, where the UWB signal includes the synchronization signal and the ranging signal;
  • the receiving device receives the ranging signal according to the time-frequency synchronization information of the UWB signal.
  • the sending device sends a narrowband signal and a UWB signal to the receiving device.
  • the UWB signal includes a synchronization signal and a ranging signal located after the synchronization signal.
  • the receiving device obtains rough time-frequency synchronization information (or time-frequency synchronization information of the narrowband signal) by receiving and processing the narrowband signal, and receives the synchronization signal of the UWB signal based on the rough time-frequency synchronization information.
  • the receiving device obtains more accurate time-frequency synchronization information (or time-frequency synchronization information of UWB signals).
  • the time-frequency synchronization information of the narrowband signal is used to assist the time-frequency synchronization of the UWB signal. Without affecting the UWB ranging performance, the complexity of synchronizing the UWB signal of the receiving device can be reduced, thereby reducing the cost of the receiving device.
  • the implementation cost, power consumption and area of UWB signal processing chips are examples of the UWB signal processing chips.
  • narrowband signal is relative to “ultra-wideband signal”.
  • the bandwidth of an ultra-wideband signal is generally at least 500Mhz.
  • a signal with a bandwidth smaller than the bandwidth of an ultra-wideband signal is a narrowband signal.
  • narrowband signals include but are not limited to signals provided by the following wireless technologies: Bluetooth (blue tooth, BT) technology, Zigbee technology, technology based on the 802.15.4 standard (such as Thread technology), WiFi technology (including Various standards of 802.11), etc.
  • wireless technologies such as narrowband internet of things (NB-LoT), long term evolution-machine to machine (LTE-M), LoRa and Sigfox of cellular systems can also be included, as well as Other wireless technologies that can provide narrowband signals in the future are not limited.
  • the receiving device processes the synchronization signal of the UWB signal according to the time-frequency synchronization information of the narrowband signal, and obtains the time-frequency synchronization information of the UWB signal, including:
  • the receiving device receives the synchronization signal of the UWB signal according to the time-frequency synchronization information of the narrowband signal, and the synchronization signal of the UWB signal and the narrowband signal are at a set time interval in the time domain;
  • the receiving device detects the synchronization signal of the UWB signal and obtains the time-frequency synchronization information of the UWB signal.
  • the synchronization signal of the UWB signal and the narrowband signal are at a set time interval in the time domain. Therefore, the receiving device can receive the UWB signal after a set time interval after receiving the narrowband signal, which can reduce the reception The complexity of the device receiving UWB signals.
  • the receiving device detects the synchronization signal of the UWB signal and obtains the time-frequency synchronization information of the UWB signal, including:
  • the receiving device detects the synchronization signal of the UWB signal and determines the main propagation path of the synchronization signal between the sending device and the receiving device to obtain the time domain synchronization information of the UWB signal;
  • the receiving device performs frequency offset estimation based on the main propagation path to obtain frequency domain synchronization information of the UWB signal.
  • the receiving device obtains the precise time domain synchronization signal of the UWB signal based on the assistance of the narrowband signal, and then performs frequency offset estimation based on the precise time domain synchronization information to obtain more accurate frequency domain synchronization information of the UWB signal. , improving the accuracy of time-frequency synchronization information of UWB signals.
  • the method further includes:
  • the receiving device performs channel impulse response CIR estimation based on the ranging signal and obtains the estimation result;
  • the receiving device determines the propagation first path of the ranging signal between the sending device and the receiving device based on the estimation result
  • the receiving device performs ranging calculation based on the propagation first path.
  • the receiving device obtains accurate time-frequency synchronization information of the UWB signal based on the assistance of the narrowband signal. On this basis, it receives the UWB signal and performs ranging calculations based on the ranging signal in the UWB signal, which can improve Ranging accuracy.
  • a method for signal synchronization which method includes:
  • the sending device sends a narrowband signal, and the narrowband signal is used by the receiving device to obtain the time-frequency synchronization information of the narrowband signal;
  • the sending device sends a UWB signal.
  • the UWB signal includes a synchronization signal and a ranging signal, where the time-frequency synchronization information of the synchronization signal and the narrowband signal is used by the receiving device to obtain the time-frequency synchronization information of the UWB signal. .
  • the synchronization signal and the narrowband signal of the UWB signal are at a set time interval in the time domain.
  • a third aspect provides a communication device, which has the function of implementing the method in the first aspect, or any possible implementation of the first aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • a fourth aspect provides a communication device, which has the function of implementing the method in the second aspect, or any possible implementation of the second aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • a communication device including a processor and a memory.
  • a transceiver may also be included.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, and control the transceiver to send and receive signals, so that the communication device performs the first aspect, or any possible implementation of the first aspect. method in.
  • a communication device including a processor and a memory.
  • a transceiver may also be included.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, and control the transceiver to send and receive signals, so that the communication device performs the second aspect, or any possible implementation of the second aspect. method in.
  • a communication device including a processor and a communication interface.
  • the communication interface is used to receive data and/or information and transmit the received data and/or information to the processor.
  • the processing processes the data and/or information, and the communication interface is also used to output the data and/or information processed by the processor, so that as in the first aspect, or any possible implementation of the first aspect The method is executed.
  • a communication device including a processor and a communication interface.
  • the communication interface is used to receive (or input) data and/or information, and transmit the received data and/or information to the processor.
  • the processor processes the data and/or information, and the communication interface is also used to output the data and/or information processed by the processor, so as to achieve the second aspect, or any possibility of the second aspect
  • the method in the implementation is executed.
  • a communication device including at least one processor coupled to at least one memory, and the at least one processor is configured to execute a computer program or instructions stored in the at least one memory to The communication device is caused to perform the method in the first aspect, or any possible implementation of the first aspect.
  • a communication device including at least one processor coupled to at least one memory, and the at least one processor is configured to execute a computer program or instructions stored in the at least one memory to The communication device is caused to perform the method in the second aspect, or any possible implementation manner of the second aspect.
  • a computer-readable storage medium is provided.
  • Computer instructions are stored in the computer-readable storage medium.
  • the computer instructions are run on a computer, the first aspect, or any possibility of the first aspect, is achieved.
  • the method in the implementation is executed.
  • a computer-readable storage medium is provided.
  • Computer instructions are stored in the computer-readable storage medium.
  • the second aspect, or any possibility of the second aspect is achieved.
  • the method in the implementation is executed.
  • a computer program product includes computer program code.
  • the computer program code When the computer program code is run on a computer, it enables the implementation of the first aspect, or any possible implementation of the first aspect. The method in the method is executed.
  • a computer program product includes computer program code.
  • the computer program product includes computer program code.
  • the computer program code is run on a computer, the second aspect, or any possible implementation of the second aspect, is achieved.
  • the method in the method is executed.
  • a fifteenth aspect provides a wireless communication system, including the communication device as described in the third aspect, and the communication device as described in the fourth aspect.
  • Figure 1 is a schematic diagram of a PPDU structure of the UWB system defined by the standard.
  • Figure 2 is a schematic diagram of the UWB ranging process assisted by narrowband protocols.
  • Figure 3 is an architectural diagram of a communication system suitable for embodiments of the present application.
  • Figure 4 is a schematic flow chart of the UWB signal synchronization method provided by this application.
  • FIG. 5 is a schematic diagram of the UWB signal synchronization method provided by this application.
  • Figure 6 is another schematic diagram of the UWB signal synchronization method provided by this application.
  • FIG. 7 is a schematic diagram of the internal structure of the transmitting device/receiving device.
  • Figure 8 is a schematic workflow diagram of the UWB signal processing module of the receiving device.
  • Figure 9 is a schematic block diagram of a communication device provided by this application.
  • Figure 10 is a schematic structural diagram of a communication device provided by this application.
  • WPAN wireless personal area network
  • IEEE Institute of Electrical and Electronics Engineers 802.15 series.
  • WPAN can be used for communication between a small range of digital auxiliary devices such as phones, computers, and accessory devices.
  • Technologies supporting wireless personal area networks include bluetooth, zigBee, ultra wideband (UWB), infrared data association (IrDA) connection technology, home radio frequency (HomeRF), etc. .
  • WPAN is located at the bottom of the entire network architecture and is used for wireless connections between devices within a small range, that is, point-to-point short-distance connections, which can be regarded as short-distance wireless communication networks.
  • WPAN is divided into high rate (HR)-WPAN and low rate (LR)-WPAN.
  • HR-WPAN can be used to support various high-rate multimedia applications, including high-speed multimedia applications.
  • LR-WPAN Can be used for general business in daily life.
  • WPAN In WPAN, according to the communication capabilities of the device, it can be divided into full-function device (FFD) and reduced-function device (RFD). Communication is possible between FFDs and between FFDs and RFDs. RFDs cannot communicate directly with each other and can only communicate with FFDs or forward data through an FFD.
  • the FFD associated with the RFD is called the coordinator of the RFD.
  • RFD equipment is mainly used for simple control applications, such as light switches, passive infrared sensors, etc.
  • the amount of data transmitted is small, and it does not occupy much transmission resources and communication resources.
  • the cost of RFD is low.
  • the coordinator can also be called a personal area network (personal area network, PAN) coordinator or central control node.
  • PAN coordinator personal area network
  • the PAN coordinator is the master control node of the entire network, and there is generally only one PAN coordinator in each ad hoc network, which has membership management, link information management, and packet forwarding functions.
  • the device for example, a sending device or a receiving device
  • the device may be a device that supports the 802.15 series, for example, supports 802.15.4a and 802.15.4z, as well as those currently under discussion or subsequent versions, etc.
  • a WPAN standard device for example, supports 802.15.4a and 802.15.4z, as well as those currently under discussion or subsequent versions, etc.
  • the above-mentioned devices may be communication servers, routers, switches, network bridges, computers or mobile phones, home smart devices, vehicle-mounted communication devices, etc.
  • the above-mentioned device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU) and memory (also called main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system or windows operating system, etc.
  • This application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide according to the embodiment of the present application. It suffices to communicate using a method.
  • the execution subject of the method provided by the embodiment of the present application may be FFD or RFD, or a functional module in FFD or RFD that can call a program and execute the program.
  • various aspects or features of the present application may be implemented as methods, apparatus, or articles of manufacture using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer-readable device, carrier or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks, tapes, etc.), optical disks (e.g., compact discs (CD), digital versatile discs (DVD)) etc.), smart cards and flash memory devices (e.g. erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • the technical solution of this application can also be applied to wireless local area network systems such as the Internet of Things (IoT) network or Vehicle to X (V2X).
  • IoT Internet of Things
  • V2X Vehicle to X
  • the embodiments of the present application can also be applied to other possible communication systems, such as long term evolution (LTE) systems, LTE frequency division duplex (FDD) systems, LTE time division duplex (time division) systems. duplex (TDD), universal mobile telecommunication system (UMTS), global interoperability for microwave access (WiMAX) communication system, fifth generation (5th generation, 5G) communication system, and the future The sixth generation (6G) communication system, etc.
  • LTE long term evolution
  • FDD frequency division duplex
  • time division time division duplex
  • duplex duplex
  • UMTS universal mobile telecommunication system
  • WiMAX global interoperability for microwave access
  • 5G fifth generation
  • 5G fifth generation
  • 6G sixth generation
  • UWB technology uses nanosecond-level non-sinusoidal narrow pulses to transmit data, which occupies a wide spectrum range. Because its pulses are very narrow and the radiation spectrum density is extremely low, UWB technology has the advantages of strong multipath resolution, low power consumption, and strong confidentiality.
  • UWB technology has been written into the IEEE 802 series of wireless standards, and the WPAN standard IEEE 802.15.4a based on UWB technology has been released, as well as its evolved version IEEE 802.15.4z.
  • the next generation WPAN standard 802.15.4ab of UWB technology is being formulated. It has also been put on the agenda.
  • UWB technology transmits data by sending and receiving extremely narrow pulses with nanoseconds or less
  • the synchronization of the UWB signal on the receiving device side is crucial in UWB technology.
  • the so-called synchronization of UWB signals on the receiving device side can be understood as the PPDU on the sending device side is sent in the form of pulse signals, and the receiving device determines which pulse signal among the multiple received pulse signals starts with the PPDU it wants to receive.
  • the synchronization of UWB signals on the receiving device side is mainly achieved through the synchronization header (SHR) in the physical layer protocol data unit (PPDU).
  • the receiving device can synchronize the synchronization header Perform correlation detection to determine the starting position of the PPDU to be received.
  • FIG. 1 is a schematic diagram of a PPDU structure of the UWB system defined by the standard.
  • PPDU includes SHR, physical header (physical header, PHR) and physical layer (physical layer, PHY) bearer field (payload field).
  • SHR is used by the receiving device for PPDU detection and synchronization. Specifically, the receiving device can detect whether the sending device has sent a PPDU and the starting position of the PPDU based on the SHR; the PHR carries physical layer indication information, such as modulation and coding information, PPDU length, and the recipient of the PPDU, etc., to assist in reception.
  • the device correctly demodulates the data; the physical layer bearer field carries the transmitted data.
  • the signals in the UWB system are called UWB signals.
  • the UWB signal is a nanosecond-level pulse signal, which makes the UWB signal have good multipath resolution capabilities, thereby ensuring centimeter-level ranging accuracy in complex indoor multipath environments.
  • One of the shortcomings of UWB technology is that it requires a very high sampling rate (GHz level) to realize UWB signal reception and processing, that is, the clock of the UWB signal processing chip of the receiving device (such as the UWB signal synchronization module of the chip) needs to work at Very high frequency, which makes the area, power consumption and cost of UWB signal processing chips relatively high.
  • the time-frequency synchronization of the UWB signal is a key module of the UWB signal receiver.
  • the accuracy of the time-frequency synchronization of the UWB signal directly affects the performance of ranging. Since the UWB signal is a very narrow pulse signal, specifically, the pulse signal is at the nanosecond level in the time domain, the UWB signal synchronization module needs to directly estimate the time-frequency information of the UWB signal to achieve time-frequency synchronization with the UWB signal.
  • the design of signal synchronization module is very complex.
  • FIG 2 is a schematic diagram of the UWB ranging process assisted by the narrowband protocol.
  • the initiating site and responding site of the UWB signal use the UWB signal to complete the calculation of the flight time of the UWB signal, thereby achieving high-precision ranging.
  • the negotiation of ranging tasks and the feedback of ranging results are completed using narrowband protocols.
  • the initiating station and the responding station perform narrowband-assisted UWB ranging once in each ranging time block (ranging block).
  • ranging block ranging block
  • the narrowband system works on the same channel.
  • the narrowband system can use frequency hopping to change a working channel to avoid complex channel access solutions.
  • the initiating site sends a test signal to the responding site, and the responding site replies with a response signal after receiving it.
  • both the test signal and the response signal are narrowband signals.
  • the narrowband signal processing module of the response site obtains the time-frequency synchronization information of the narrowband signal by receiving and processing the test signal.
  • the narrowband signal processing module of the responding site provides the time-frequency synchronization information of the narrowband signal to the UWB signal processing module of the responding site, for the UWB signal processing module to process the UWB signal after the narrowband signal.
  • the UWB signal processing module directly uses the time-frequency synchronization information of the narrowband signal for the reception and processing of the UWB signal.
  • the UWB signal processing module of the responding site no longer performs any time-frequency synchronization, or in other words, the direct UWB signal processing module directly uses the time-frequency synchronization information of the narrowband signal as the time-frequency synchronization information of the UWB signal for use with the UWB signal. synchronization.
  • the narrowband signal processing module of the initiating site receives and processes the response signal for the test signal from the responding site, obtains the time-frequency synchronization information of the narrowband signal, and provides the time-frequency synchronization information to the UWB signal processing module of the initiating site. Similar to the responding site, the UWB signal processing module of the initiating site no longer performs any time-frequency synchronization.
  • the time-frequency synchronization mechanism of the narrowband signal is much simpler to implement than the synchronization of the UWB signal
  • the time-frequency synchronization of the narrowband signal is The accuracy is far from enough for the synchronization accuracy of UWB signals. It is known that when UWB signals are used for ranging, the ranging accuracy almost depends on the time-frequency synchronization accuracy of the UWB signal. Specifically, if the time-frequency synchronization accuracy of the UWB signal is high, correspondingly, the ranging accuracy will be high. On the contrary, if the time-frequency synchronization accuracy of the UWB signal is not high, it is difficult to ensure the accurate correlation accumulation and first path detection of the channel impulse response (channel impulse response, CIR) in ranging.
  • channel impulse response channel impulse response
  • this application provides a UWB signal synchronization method.
  • the design complexity of the UWB signal processing module can be reduced, and the UWB signal processing can be reduced. Chip power consumption, area and cost.
  • the synchronization method of UWB signals provided by this application can improve the time-frequency synchronization accuracy of UWB signals, and thus can be applied to high-precision ranging of UWB signals. in the scene.
  • Figure 3 is an architectural diagram of a communication system suitable for embodiments of the present application.
  • the communication system includes at least one sending device and one receiving device, the sending device 110 and the receiving device 120 shown in Figure 3 respectively.
  • the sending device 110 and the receiving device 120 may communicate through UWB technology, and optionally, may also communicate through narrowband technology.
  • the transmitting device 110 and the receiving device 120 may include a UWB signal processing module and an NB signal processing module.
  • the sending device 110 includes a UWB signal sending module and an NB signal sending module, such as the Tx UWB module and the TxNB module in Figure 3 .
  • the receiving device 120 includes a UWB signal receiving module and an NB signal receiving module, such as an Rx UWB module and an Rx NB module as shown in FIG. 3 .
  • FIG. 3 only takes the communication system including one sending device and one receiving device as an example for illustration.
  • the communication system is not limited to include more other devices. For example, it may also include more receiving devices.
  • the sending device refers to the device that sends UWB signals
  • the receiving device refers to the device that receives UWB signals
  • the sending device and receiving device can have multiple possible application scenarios.
  • the sending device mentioned in the following embodiments may be the initiating site in UWB ranging, and the receiving device may be the responding site; or, the sending device may be the responding site, and the receiving device may be the initiating site.
  • the sending device may also be a positioning device in a UWB positioning scenario, and the second device may be a mobile tag; or the sending device may be a mobile tag, and the receiving device may be a positioning device.
  • the UWB signal synchronization method provided by this application is not only suitable for the initiating station (or positioning device) to respond to the responding station (or Mobile tag) sends a UWB signal, and the responding site (or mobile tag) synchronizes the UWB signal. It is also applicable to the scenario where the responding site (or mobile tag) sends a UWB signal to the initiating site (or positioning device), and the initiating site or (positioning device)
  • the scenarios for UWB signal synchronization are not limited.
  • the UWB signal synchronization method provided in this application is also applicable to any scenario where UWB signal synchronization may be required, without limitation.
  • the application of the UWB signal synchronization method provided by this application in a UWB ranging scenario is used as an example.
  • Figure 4 is a schematic flow chart of the UWB signal synchronization method provided by this application.
  • the method flow in Figure 4 can be executed by the sending device/receiving device, or by modules and/or devices (for example, chips or integrated circuits, etc.) with corresponding functions installed in the sending device/receiving device, Not limited.
  • the following embodiments take the sending device/receiving device as an example for description.
  • the sending device sends narrowband signals.
  • the receiving device receives narrowband signals.
  • the sending device may be the sending device 110 shown in FIG. 3
  • the receiving device may be the receiving device 120 shown in FIG. 3
  • the sending device can send the narrowband signal through the TxNB module, and accordingly, the receiving device can receive the narrowband signal through the RxNB module.
  • the receiving device processes the narrowband signal and obtains the time-frequency synchronization information of the narrowband signal.
  • the receiving device obtains the time-frequency synchronization information of the narrowband signal by receiving and processing the narrowband signal. In other words, the receiving equipment achieves time-frequency synchronization with the narrowband signal.
  • the receiving device can process the narrowband signal through a narrowband signal processing module to obtain the time-frequency synchronization information of the narrowband signal. Further, the narrowband signal processing module of the receiving device provides the obtained time-frequency synchronization information of the narrowband signal to the UWB signal processing module of the receiving device.
  • the receiving device receives and processes the narrowband signal from the sending device, and achieves time-frequency synchronization of the narrowband signal. It can be considered that the narrowband signal provides rough time-frequency synchronization information to the receiving device. Based on the rough time-frequency synchronization information, the receiving device then estimates the time-frequency synchronization information of the UWB signal from the sending device.
  • the sending device sends UWB signals.
  • UWB signals include synchronization signals and ranging signals.
  • the sending device may send the UWB signal through the Tx UWB module.
  • the receiving device processes the synchronization signal of the UWB signal according to the time-frequency synchronization information of the narrowband signal, and obtains the time-frequency synchronization information of the UWB signal.
  • step 440 the receiving device processes the synchronization signal of the UWB signal according to the time-frequency synchronization information of the narrowband signal to obtain the time-frequency synchronization information of the UWB signal. That is to say, the receiving device can obtain more accurate time-frequency synchronization information by processing the synchronization signal of the UWB signal based on the rough time-frequency synchronization information provided by the narrowband signal.
  • the narrowband signal processing module of the receiving device provides the obtained time-frequency synchronization information of the narrowband signal to the UWB signal processing module of the receiving device.
  • the UWB signal processing module of the receiving device processes the synchronization signal from the sending device based on the time-frequency synchronization information of the narrowband signal provided by the narrowband signal processing module, thereby obtaining more accurate time-frequency synchronization information.
  • Step 1 The sending device first sends a narrowband signal so that the receiving device obtains rough initial time-frequency synchronization information.
  • the rough initial time-frequency synchronization information mentioned here is relative to the time-frequency synchronization of the UWB signal.
  • the receiving device has achieved time-frequency synchronization with the narrowband signal by processing the narrowband signal, but the time-frequency synchronization accuracy at this time is relatively low for the reception of UWB signals, so it is considered to be rough time-frequency synchronization information;
  • Step 2 After the sending device sends the narrowband signal, it sends the UWB signal.
  • the UWB signal includes the synchronization signal and the ranging signal.
  • the synchronization signal is used by the receiving device to obtain higher-precision time-frequency synchronization with the UWB signal, and then process subsequent ranging signals.
  • the time-frequency synchronization information obtained by the receiving device after processing the synchronization signal is higher-precision time-frequency synchronization information of the UWB signal than the rough time-frequency synchronization information provided by the narrowband signal.
  • the receiving device receives the ranging signal of the UWB signal according to the time-frequency synchronization information of the UWB signal.
  • the initiating station sends a narrowband signal
  • the responding station receives and processes the narrowband signal, and obtains the time-frequency synchronization information of the narrowband signal, and then , the initiating station sends the ranging signal, and the responding station receives the ranging signal based on the time-frequency synchronization information of the narrowband signal.
  • the responding station obtains time-frequency synchronization with the narrowband signal, it does not perform further time-frequency synchronization, that is, it receives the ranging signal of the UWB signal.
  • the time-frequency synchronization accuracy of narrowband signals is not enough for receiving UWB signals.
  • the response station (such as a receiving device) obtains time-frequency synchronization with the narrowband signal, it obtains a higher precision by processing (for example, processing by a UWB signal processing module) the synchronization signal of the UWB signal. Time and frequency synchronization information. Processing the ranging signal of the UWB signal based on this more accurate time-frequency synchronization information can improve the ranging accuracy.
  • the receiving device directly estimates the time-frequency synchronization information of the UWB signal
  • the narrowband signal provides rough time-frequency synchronization information
  • this rough time-frequency synchronization information Based on the information, the receiving device further estimates the time-frequency synchronization information of the UWB signal, and the complexity is greatly reduced.
  • the power consumption and area of the UWB signal processing module of the receiving device are reduced.
  • FIG. 5 is a schematic diagram of the UWB signal synchronization method provided by this application.
  • the sending device sends an NB signal. After a set time interval, the sending device sends a UWB signal.
  • UWB signals include synchronization signals and ranging signals.
  • the receiving device receives and processes the NB signal to obtain rough time-frequency synchronization information. Based on the rough time-frequency synchronization information, after a set time interval, the receiving device receives and processes the synchronization signal of the UWB signal to obtain more accurate time-frequency synchronization information, and based on the more accurate time-frequency synchronization information, the receiving device receives and processes the synchronization signal of the UWB signal. Process the ranging signal after the synchronization signal.
  • the time-frequency synchronization information of the narrowband signal may include time synchronization information and carrier frequency offset (CFO) synchronization information.
  • CFO carrier frequency offset
  • the time interval between the narrowband signal and the UWB signal may be negotiated in advance by the sending device and the receiving device. Can also be preconfigured or preset. Illustratively, the time interval may be negotiated via narrowband signals.
  • this article does not limit the specific form of the narrowband signal.
  • the narrowband signal can be a Zigbee signal or a Bluetooth signal, using a frequency point in the 2.4GHz ISM band, using a bandwidth of 1MHz or 2MHz, and using offset quadrature phase-shift keying. O-QPSK) modulation method, etc.
  • the narrowband signal is not limited to including one or more narrowband frames.
  • the receiving device obtains the time synchronization information of the narrowband signal based on part of the narrowband frames among the multiple narrowband frames, and obtains the CFO synchronization information of the narrowband signal based on another part of the narrowband frames, such as As shown in Figure 6, Figure 6 is another schematic diagram of the UWB signal synchronization method provided by the present application.
  • the internal structure of the receiving device can be shown in Figure 7.
  • Figure 7 shows the internal structure of the sending device/receiving device. Schematic diagram of the structure.
  • the receiving device can include a narrowband signal processing module and a UWB signal processing module.
  • the narrowband signal processing module can process the narrowband signal from the sending device received through the radio frequency module; UWB signal processing The module can process the UWB signal received from the sending device through the radio frequency module.
  • the narrowband signal processing module and the UWB signal processing module can exchange data and/or information.
  • the narrowband signal processing module sends rough time-frequency synchronization information obtained by processing the received narrowband signal from the sending device to the UWB Signal processing module.
  • the sending device is also similar and will not be described again.
  • FIG 8 is a schematic workflow diagram of the UWB signal processing module of the receiving device.
  • the workflow of the UWB signal processing module can be as follows:
  • the initialized T NB and frequency synchronization information F NB are respectively the rough time synchronization information and frequency synchronization information sent by the narrowband signal processing module;
  • the UWB signal propagates from the sending device to the receiving device, where the propagation path of the direct wave is called the direct path, and the other propagation paths are called reflection paths. Since the direct path has the shortest propagation distance and the fastest propagation, detecting the arrival time of the first path signal can determine the round-trip time of the UWB signal when it is transmitted between the sending device and the receiving device, also known as the flight time.
  • the measurement information report mainly includes the above-mentioned flight time.
  • the sending device After the sending device obtains the flight time, it calculates the distance between the sending device and the receiving device based on the flight time and the propagation speed of electromagnetic waves to complete the ranging.
  • this application can reduce the implementation complexity of the UWB signal processing module by adopting a two-step narrowband signal-assisted time-frequency synchronization scheme for UWB signals.
  • the combination of narrowband signal synchronization and UWB signal synchronization can ensure higher time-frequency synchronization accuracy of UWB signals, thereby ensuring higher ranging accuracy.
  • the technical solution of this application can reduce the design complexity, area and power consumption of the UWB signal processing chip implementation of the receiving device without affecting the UWB signal ranging performance (or accuracy).
  • the communication device provided by this application is introduced below.
  • Figure 9 is a schematic block diagram of a communication device provided by this application.
  • the communication device 1000 includes a processing unit 1100 , a receiving unit 1200 and a sending unit 1300 .
  • the communication device 1000 may correspond to the receiving device in the embodiment of the present application.
  • each unit of the communication device 1000 is used to implement the following functions:
  • Processing unit 1100 for:
  • the time-frequency synchronization information of the narrowband signal process the synchronization signal of the ultra-wideband UWB signal to obtain the time-frequency synchronization information of the UWB signal, where the UWB signal includes the synchronization signal and the ranging signal;
  • the receiving unit 1200 is configured to receive the ranging signal according to the time-frequency synchronization information of the UWB signal.
  • the receiving unit 1200 is configured to receive the synchronization signal of the UWB signal, the synchronization signal of the UWB signal and the synchronization signal of the UWB signal according to the time-frequency synchronization information of the narrowband signal.
  • the narrowband signal is a set time interval in the time domain;
  • the processing unit 1100 is configured to detect the synchronization signal of the UWB signal and obtain the time-frequency synchronization information of the UWB signal.
  • the processing unit 1100 is used for:
  • frequency offset estimation is performed to obtain frequency domain synchronization information of the UWB signal.
  • processing unit 1100 is also used to:
  • the ranging signal perform channel impulse response CIR estimation to obtain an estimation result
  • the processing unit 1100 is configured to perform processing and/or operations implemented internally by the receiving device in addition to the actions of sending and receiving.
  • the receiving unit 1200 is configured to perform a receiving action by the receiving device, and the sending unit 1300 is configured to perform a sending action by the receiving device.
  • the receiving unit 1200 is configured to perform the receiving actions in steps 410 and 430 .
  • the processing unit 1300 is used to execute step 420, step 440 or step 450.
  • the communication device 1000 may correspond to the sending device in the embodiment of the present application.
  • each unit of the communication device 1000 is used to implement the following functions:
  • Processing unit 1100 used to generate narrowband signals and UWB signals
  • Send a narrowband signal which is used by the receiving device to obtain the time-frequency synchronization information of the narrowband signal
  • the UWB signal includes a synchronization signal and a ranging signal, wherein the synchronization signal and the time-frequency synchronization information of the narrowband signal are used by the receiving device to obtain the time-frequency synchronization information of the UWB signal.
  • the synchronization signal and the narrowband signal of the UWB signal are at a set time interval in the time domain.
  • the processing unit 1100 is configured to perform processing and/or operations implemented internally by the sending device in addition to actions of sending and receiving.
  • the receiving unit 1200 is configured to perform a receiving action by the sending device, and the sending unit 1300 is configured to perform a sending action by the sending device.
  • the sending unit 1300 is configured to perform the sending actions in steps 410 and 430 .
  • the receiving unit 1200 and the sending unit 1300 can also be integrated into a transceiver unit, which has the functions of receiving and sending at the same time, which is not limited here.
  • Figure 10 is a schematic structural diagram of a communication device provided by this application.
  • the communication device 10 includes: one or more processors 11 , one or more memories 12 and one or more communication interfaces 13 .
  • the processor 11 is used to control the communication interface 13 to send and receive signals
  • the memory 12 is used to store a computer program
  • the processor 11 is used to call and run the computer program from the memory 12, so that the communication device 10 executes the method described in the embodiments of the present application. Processing performed by a receiving device or a sending device.
  • the processor 11 may have the functions of the processing unit 1100 shown in FIG. 9
  • the communication interface 13 may have the functions of the receiving unit 1200 and/or the sending unit 1300 shown in FIG. 9 .
  • the processor 11 may be used to perform processing or operations performed internally by the communication device
  • the communication interface 13 may be used to perform operations of sending and/or receiving of the communication device.
  • the communication device 10 may be a receiving device in the method embodiment.
  • the communication interface 13 may be a transceiver of the receiving device.
  • a transceiver may include a receiver and/or a transmitter.
  • the processor 11 may be a baseband device of the receiving device, and the communication interface 13 may be a radio frequency device.
  • the communication device 10 may be a chip (or chip system) installed in the receiving device.
  • communication interface 13 may be an interface circuit or an input/output interface.
  • the communication device 10 may be a sending device in the method embodiment.
  • the communication interface 13 may be a transceiver of the sending device.
  • a transceiver may include a receiver and/or a transmitter.
  • the processor 11 may be a baseband device of the sending device, and the communication interface 13 may be a radio frequency device.
  • the communication device 10 may be a chip (or chip system) installed in the sending device.
  • communication interface 13 may be an interface circuit or an input/output interface.
  • the dotted box behind the device indicates that there can be more than one device.
  • the present application also provides a computer-readable storage medium.
  • Computer instructions are stored in the computer-readable storage medium. When the computer instructions are run on the computer, the operations performed by the receiving device in each method embodiment of the present application are performed. and/or processing is performed.
  • This application also provides a computer-readable storage medium.
  • Computer instructions are stored in the computer-readable storage medium. When the computer instructions are run on the computer, the operations performed by the sending device in each method embodiment of the application and/or or processing is performed.
  • the computer program product includes computer program code or instructions.
  • the operations and/or processes performed by the receiving device in each method embodiment of the application are performed. be executed.
  • the computer program product includes computer program code or instructions.
  • the operations and/or processes performed by the sending device in each method embodiment of the application are performed. be executed.
  • the application also provides a chip.
  • the chip includes a processor.
  • a memory used to store computer programs is provided independently of the chip.
  • the processor is used to execute the computer program stored in the memory, so that the communication device installed with the chip executes any arbitrary operation. Operations and/or processes performed by a receiving device in one method embodiment.
  • the application also provides a chip.
  • the chip includes a processor.
  • a memory used to store computer programs is provided independently of the chip.
  • the processor is used to execute the computer program stored in the memory, so that the communication device installed with the chip executes any arbitrary operation. Operations and/or processes performed by a sending device in a method embodiment.
  • the chip may also include a communication interface.
  • the communication interface may be an input/output interface, or an interface circuit, etc.
  • the chip may further include the memory.
  • processors there may be one or more processors, one or more memories, and one or more memories.
  • the application also provides a communication device (for example, it can be a chip or a chip system), including a processor and a communication interface port, the communication interface is used to receive (or input) data and/or information, and transmit the received data and/or information to the processor, and the processor processes the data and/or information , and the communication interface is also used to output (or output) data and/or information processed by the processor, so that the operations and/or processing performed by the receiving device in any method embodiment are performed.
  • a communication device for example, it can be a chip or a chip system
  • the communication interface is used to receive (or input) data and/or information, and transmit the received data and/or information to the processor, and the processor processes the data and/or information
  • the communication interface is also used to output (or output) data and/or information processed by the processor, so that the operations and/or processing performed by the receiving device in any method embodiment are performed.
  • the present application also provides a communication device (for example, it can be a chip or a chip system), including a processor and a communication interface.
  • the communication interface is used to receive (or input) data and/or information, and transfer the received Data and/or information are transmitted to the processor, the processor processes the data and/or information, and the communication interface is also used to output (or referred to as output) the data and/or information processed by the processor. , so that the operations and/or processing performed by the sending device in any method embodiment are performed.
  • the present application also provides a communication device, including at least one processor, the at least one processor is coupled to at least one memory, and the at least one processor is used to execute a computer program or instructions stored in the at least one memory, so that the The communication device performs the operations and/or processing performed by the receiving device in any method embodiment.
  • the present application also provides a communication device, including at least one processor, the at least one processor is coupled to at least one memory, and the at least one processor is used to execute a computer program or instructions stored in the at least one memory, so that the The communication device performs the operations and/or processing performed by the sending device in any method embodiment.
  • This application also provides a wireless communication system, including the receiving device in the method embodiment of this application.
  • the sending device in the method embodiment may also be included.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has the ability to process signals. During the implementation process, each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the processor can be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable Logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the methods disclosed in the embodiments of the present application can be directly implemented by a hardware encoding processor, or executed by a combination of hardware and software modules in the encoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the methods provided by the above embodiments can be implemented in whole or in part through software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product may include one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供超宽带信号同步的方法和通信装置,可以应用于超宽带UWB信号的同步和高定位精度的测距场景中。在该方法中,发送设备向接收设备发送窄带信号和UWB信号,UWB信号包括同步信号和位于同步信号之后的测距信号。接收设备通过接收和处理窄带信号,获得粗略的时频同步信息(或者说窄带信号的时频同步信息),并根据该粗略的时频同步信息接收UWB信号的同步信号,通过处理该同步信号,接收设备获得更精确的时频同步信息(或者说UWB信号的时频同步信息)。该方法通过窄带信号的时频同步信息来辅助UWB信号的时频同步,在保证不影响UWB测距性能的前提下,可以降低接收设备同步UWB信号的复杂度,从而降低接收设备的UWB信号处理芯片的实现成本、功耗和面积等。

Description

超宽带信号同步的方法和通信装置
本申请要求于2022年03月25日提交中国专利局、申请号为202210300261.X、申请名称为“一种窄带辅助的超宽带信号时频同步方法”的中国专利申请的优先权,以及于2022年6月30日提交中国专利局、申请号为202210761590.4、申请名称为“超宽带信号同步的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及超宽带技术领域,更具体地,涉及一种超宽带信号同步的方法和通信装置。
背景技术
目前,超宽带(Ultra Wideband,UWB)无线技术获得了广泛应用。由于其信号为很窄(纳秒级别)的脉冲信号,且辐射谱密度极低,使其具有很好的多径解析能力,从而可以在室内复杂的多径环境保证厘米级别的测距精度。但是,超宽带无线技术的缺点之一是它需要很高的信号采样率(GHz级别)才可以实现信号的接收处理,即超宽带信号处理芯片的时钟需要工作在很高的频率,这使得超宽带信号处理芯片的面积,功耗和成本相对都比较高。
为了降低超宽带信号处理芯片的面积,功耗和成本,一种基于窄带辅助的超宽低测距方法被提出。在该测距方法中,定位设备通过发送窄带信号,让移动标签获得信号的时频同步,在此基础上,移动标签接收测距信号进行测距。虽然窄带信号的时频同步机制在实现上比较简单,但是由于受窄带信号本身的带宽和时钟频率所限,它的时频同步的精度不是很高。然而超宽带测距精度对时频同步精度的需求很高,如果使用精度不高的时频同步信息,会严重影响测距性能。
而在不影响超宽带信号测距性能的前提下,想要降低超宽带芯片的面积,功耗和成本,降低UWB信号的时频同步的复杂度成为关键因素。
发明内容
本申请实施例提供一种超宽带信号同步的方法和通信装置,可以在不影响超宽带测距性能的前提下,降低UWB信号的时频同步的复杂度,从而能够降低UWB信号的接收设备的超宽带信号处理芯片的面积,功耗和成本。
第一方面,提供了一种信号同步的方法,该方法包括:
接收设备处理窄带信号,获得所述窄带信号的时频同步信息;
接收设备根据所述窄带信号的时频同步信息,处理超宽带UWB信号的同步信号,获得所述UWB信号的时频同步信息,所述UWB信号包括所述同步信号和测距信号;
接收设备根据所述UWB信号的时频同步信息,接收所述测距信号。
在该技术方案中,发送设备向接收设备发送窄带信号和UWB信号,UWB信号包括同步信号和位于同步信号之后的测距信号。接收设备通过接收和处理窄带信号,获得粗略的时频同步信息(或者说窄带信号的时频同步信息),并根据该粗略的时频同步信息接收UWB信号的同步信号,通过处理该同步信号,接收设备获得更精确的时频同步信息(或者说UWB信号的时频同步信息)。基于该技术方案,通过窄带信号的时频同步信息来辅助UWB信号的时频同步,在保证不影响UWB测距性能的前提下,可以降低接收设备同步UWB信号的复杂度,从而降低接收设备的UWB信号处理芯片的实现成本、功耗和面积等。
应理解,在本申请中,“窄带信号”是相对于“超宽带信号”而言的,超宽带信号的带宽一般至少为500Mhz,带宽小于超宽带信号的带宽的信号即为窄带信号。
可选地,窄带信号包括但不限于如下无线技术提供的信号:蓝牙(blue tooth,BT)技术、紫蜂(Zigbee)技术、基于802.15.4标准的技术(例如Thread技术)、WiFi技术(包括802.11的各种标准)等。此外还可以包括蜂窝系统的窄带物联网(narrow band internet of things,NB-LoT)、长期演进-机器对机器(long term evolution-machine to machine,LTE-M)、LoRa和Sigfox等无线技术,以及未来其它可以提供窄带信号的无线技术等,不作限定。
结合第一方面,在第一方面的某些实现方式中,接收设备根据所述窄带信号的时频同步信息,处理UWB信号的同步信号,获得UWB信号的时频同步信息,包括:
接收设备根据所述窄带信号的时频同步信息,接收所述UWB信号的所述同步信号,所述UWB信号的所述同步信号和所述窄带信号在时域上为设定的时间间隔;
接收设备对所述UWB信号的所述同步信号进行检测,获得所述UWB信号的时频同步信息。
在该实现方式中,UWB信号的同步信号与窄带信号在时域上为设定的时间间隔,由此接收设备可以在接收窄带信号之后,经过设定的时间间隔之后接收UWB信号,可以降低接收设备接收UWB信号的复杂度。
结合第一方面,在第一方面的某些实现方式中,接收设备对所述UWB信号的所述同步信号进行检测,获得所述UWB信号的时频同步信息,包括:
接收设备对所述UWB信号的所述同步信号进行检测,确定所述同步信号在发送设备和接收设备之间传播主径,以获得所述UWB信号的时域同步信息;
接收设备根据所述传播主径,进行频偏估计,以获得所述UWB信号的频域同步信息。
在该实现方式中,接收设备基于窄带信号的辅助,获得UWB信号的精确时域同步信号,再根据该精确时域同步信息进行频偏估计,可以获得UWB信号的更为精确的频域同步信息,提高了UWB信号的时频同步信息的精度。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:
接收设备根据所述测距信号,进行信道冲击响应CIR估计,获得估计结果;
接收设备根据所述估计结果,确定所述测距信号在所述发送设备和所述接收设备之间的传播首径;
接收设备根据所述传播首径,进行测距计算。
在该实现方式中,接收设备基于窄带信号的辅助获得UWB信号的精确时频同步信息,在此基础上来接收UWB信号,并根据UWB信号中的测距信号进行测距计算,可以提高 测距精度。
第二方面,提供了一种用于信号同步的方法,该方法包括:
发送设备发送窄带信号,所述窄带信号用于接收设备获得所述窄带信号的时频同步信息;
发送设备发送UWB信号,所述UWB信号包括同步信号和测距信号,其中,所述同步信号和所述窄带信号的时频同步信息用于所述接收设备获得所述UWB信号的时频同步信息。
结合第二方面,在第二方面的某些实现方式中,所述UWB信号的所述同步信号和所述窄带信号在时域上为设定的时间间隔。
第二方面的方法或其某种具体实现方式的有益技术效果,可以参考第一方面相关方案的技术效果的说明,不予赘述。
第三方面,提供一种通信装置,所述通信装置具有实现第一方面,或第一方面的任一可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第四方面,提供一种通信装置,所述通信装置具有实现第二方面,或第二方面的任一可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第五方面,提供一种通信装置,包括处理器和存储器。可选地,还可以包括收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信装置执行如第一方面,或者第一方面的任一可能的实现方式中的方法。
第六方面,提供一种通信装置,包括处理器和存储器。可选地,还可以包括收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信装置执行如第二方面,或第二方面的任一可能的实现方式中的方法。
第七方面,提供一种通信装置,包括处理器和通信接口,所述通信接口用于接收数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以及,通信接口还用于输出经处理器处理之后的数据和/或信息,以使得如第一方面,或第一方面的任一可能的实现方式中的方法被执行。
第八方面,提供一种通信装置,包括处理器和通信接口,所述通信接口用于接收(或称输入)数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以及,通信接口还用于输出经处理器处理之后的数据和/或信息,以使得如第二方面,或第二方面的任一可能的实现方式中的方法被执行。
第九方面,提供一种通信装置,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使所述通信装置执行如第一方面,或第一方面的任一可能的实现方式中的方法。
第十方面,提供一种通信装置,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使所述通信装置执行如第二方面,或第二方面的任一可能的实现方式中的方法。
第十一方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第一方面,或第一方面的任一可能的实现方式中的方法被执行。
第十二方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第二方面,或第二方面的任一可能的实现方式中的方法被执行。
第十三方面,提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如第一方面,或第一方面的任一可能的实现方式中的方法被执行。
第十四方面,提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如第二方面,或第二方面的任一可能的实现方式中的方法被执行。
第十五方面,提供一种无线通信系统,包括如第三方面所述的通信装置,以及如第四方面所述的通信装置。
附图说明
图1为标准定义的UWB系统的一种PPDU结构示意图。
图2为窄带协议辅助下的UWB测距流程的示意图。
图3为适用于本申请实施例的通信系统的架构图。
图4为本申请提供的UWB信号同步的方法的示意性流程图。
图5为本申请提供的UWB信号同步的方法的一个示意图。
图6为本申请提供的UWB信号同步的方法的另一个示意图。
图7为发送设备/接收设备的内部结构的示意图。
图8为接收设备的UWB信号处理模块的工作流程示意图。
图9为本申请提供的通信装置的示意性框图。
图10为本申请提供的通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请的技术方案可以应用于无线个人局域网(wireless personal area network,WPAN),目前WPAN采用的标准为电气和电子工程协会(institute of electrical and electronics engineer,IEEE)802.15系列。WPAN可以用于电话、计算机、附属设备等小范围内的数字辅助设备之间的通信。支持无线个人局域网的技术包括蓝牙(bluetooth)、紫蜂(zigBee)、超宽带(ultra wideband,UWB)、红外数据协会(infrared data association,IrDA)连接技术、家庭射频(home radio frequency,HomeRF)等。从网络构成上来看,WPAN位于整个网络架构的底层,用于小范围内的设备之间的无线连接,即点到点的短距离连接,可以视为短距离无线通信网络。根据不同的应用场景,WPAN又分为高速率(high rate,HR)-WPAN和低速率(low rate,LR)-WPAN,其中,HR-WPAN可用于支持各种高速率的多媒体应用,包括高质量声像配送、多兆字节音乐和图像文档传送等。LR-WPAN 可用于日常生活的一般业务。
在WPAN中,根据设备所具有的通信能力,可以分为全功能设备(full-function device,FFD)和精简功能设备(reduced-function device,RFD)。FFD之间以及FFD与RFD之间都可以通信。RFD之间不能直接通信,只能与FFD通信,或者通过一个FFD向外转发数据。这个与RFD相关联的FFD称为该RFD的协调器(coordinator)。RFD设备主要用于简单的控制应用,例如灯的开关、被动式红外线传感器等,传输的数据量较少,对传输资源和通信资源占用不多,RFD的成本较低。其中,协调器也可以称为个人局域网(personal area network,PAN)协调器或中心控制节点等。PAN协调器为整个网络的主控节点,并且每个自组网中一般只有一个PAN协调器,具有成员身份管理、链路信息管理、分组转发功能。
可选地,本申请实施例中的设备(例如,发送设备或接收设备)可以为支持802.15系列的设备,例如,支持802.15.4a和802.15.4z,以及现在正在讨论中的或后续版本等多种WPAN制式的设备。
本申请实施例中,上述设备可以是通信服务器、路由器、交换机、网桥、计算机或者手机,家居智能设备,车载通信设备等。
在本申请实施例中,上述设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是FFD或RFD,或者,是FFD或RFD中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
本申请的技术方案还可以适用于物联网(internet of things,IoT)网络或车联网(Vehicle to X,V2X)等无线局域网系统中。当然,本申请实施例还可以适用于其他可能的通信系统,例如,长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)通信系统,以及未来 的第六代(6th generation,6G)通信系统等。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。
在WPAN中,UWB技术利用纳秒级的非正弦波窄脉冲传输数据,其所占的频谱范围很宽。由于其脉冲很窄,且辐射谱密度极低,UWB技术具有多径分辨能力强、功耗低、保密性强等优点。当前,在IEEE 802系列无线标准已经写入了UWB技术,发布了基于UWB技术的WPAN标准IEEE 802.15.4a,以及其演进版本IEEE 802.15.4z,目前UWB技术的下一代WPAN标准802.15.4ab的制定也已经提上日程。
由于UWB技术是通过发送和接收具有纳秒或纳秒以下的极窄脉冲来传输数据,因此,UWB信号在接收设备侧的同步在UWB技术中至关重要。所谓UWB信号在接收设备侧的同步,可以理解为发送设备侧的PPDU以脉冲信号的形式进行发送,接收设备确定接收到的多个脉冲信号中从哪个脉冲信号开始是其要接收的PPDU。当前,接收设备侧对UWB信号的同步主要通过物理层协议数据单元(physical layer protocol data unit,PPDU)中的同步头(synchronization header,SHR)来实现,具体来说,接收设备可以通过对同步头进行相关性检测,从而确定要接收的PPDU的起始位置。
图1为标准定义的UWB系统的一种PPDU结构示意图。如图1所示,PPDU包括SHR、物理头(physical header,PHR)和物理层(physical layer,PHY)承载字段(payload field)。其中,SHR用于接收设备进行PPDU检测和同步。具体而言,接收设备可以根据SHR检测到发送设备是否发送了PPDU以及PPDU的起始位置;PHR携带物理层的指示信息,例如,调制编码信息、PPDU长度以及该PPDU的接收者等,协助接收设备正确解调数据;物理层承载字段携带传输数据。
在本文中,UWB系统中的信号称为UWB信号。如上文所述,UWB信号为纳秒级别的脉冲信号,这使得UWB信号具有很好的多径解析能力,从而可以在室内复杂的多径环境中保证厘米级别的测距精度。而UWB技术的缺点之一是需要很高的采样率(GHz级别)才能实现UWB信号的接收处理,也即接收设备的UWB信号处理芯片(例如该芯片的UWB信号同步模块)的时钟需要工作在很高的频率,这使得UWB信号处理芯片的面积、功耗以及成本都相对较高。而UWB信号的时频同步,是UWB信号接收机的关键模块,同时UWB信号的时频同步的精度,又直接影响了测距的性能。由于UWB信号为很窄的脉冲信号,具体地,脉冲信号在时域上是纳秒级别的,UWB信号同步模块要直接估计UWB信号的时频信息,实现和UWB信号的时频同步,该UWB信号同步模块的设计是非常复杂的。
基于上述原因,人们提出一种窄带信号辅助下的采用UWB信号进行测距的方法,如图2所示。
参见图2,图2为窄带协议辅助下的UWB测距流程的示意图。UWB信号的发起站点和响应站点利用UWB信号,完成UWB信号的飞行时间的计算,进而实现高精度的测距。同时测距任务的协商和测距结果的反馈采用窄带协议来完成。具体地,发起站点和响应站点在每个测距时间块(ranging block)内进行一次窄带辅助的UWB测距。在每个测距时间块内,窄带系统工作在同一个信道上,在不同的测距时间块内,窄带系统可以采用跳频的方式,更换一个工作信道,以避免复杂的信道接入方案。其中,在每个测距时间块内的 测距流程中,发起站点发送测验信号给响应站点,响应站点接收到后回复响应信号。如图2,测验信号和响应信号均为窄带信号。响应站点的窄带信号处理模块通过接收并处理测验信号,获得窄带信号的时频同步信息。进一步地,响应站点的窄带信号处理模块将窄带信号的时频同步信息提供给响应站点的UWB信号处理模块,用于UWB信号处理模块对窄带信号之后的UWB信号的处理。而UWB信号处理模块直接将窄带信号的时频同步信息用于UWB信号的接收处理。换句话说,响应站点的UWB信号处理模块不再作任何时频同步,或者说,直接UWB信号处理模块直接将窄带信号的时频同步信息作为UWB信号的时频同步信息,用于和UWB信号的同步。发起站点的窄带信号处理模块接收并处理来自于响应站点的针对测验信号的响应信号,获得窄带信号的时频同步信息,并将该时频同步信息提供给发起站点的UWB信号处理模块。与响应站点类似,发起站点的UWB信号处理模块也不再作任何时频同步。
在图2所示的窄带辅助下的利用UWB信号测距的方法中,虽然窄带信号的时频同步机制在实现上,相对于UWB信号的同步要简单的多,但是窄带信号的时频同步的精度对于UWB信号的同步精度来说是远远不够的。而已知UWB信号在用于测距时,测距精度几乎取决于UWB信号的时频同步精度。具体地,如果UWB信号的时频同步精度较高,相应地,测距精度就高。反之,如果UWB信号的时频同步精度不高,很难保证测距中信道冲击响应(channel impulse response,CIR)的准确相关累加以及首径检测。
在此现状之下,本申请提供一种UWB信号的同步方法,相比于UWB信号处理模块直接估计UWB信号的时频同步信息,可以降低UWB信号处理模块的设计复杂度,可以降低UWB信号处理芯片的功耗、面积和成本。同时,和图2所示的窄带辅助下的UWB测距方法相比,本申请提供的UWB信号的同步方法,可以提高UWB信号的时频同步精度,从而可以应用于UWB信号的高精度测距场景中。
下面介绍本申请提供的技术方案。
参见图3,图3为适用于本申请实施例的通信系统的架构图。如图3,该通信系统中至少包括一个发送设备和一个接收设备,分别如图3中所示的发送设备110和接收设备120。发送设备110和接收设备120之间可以通过UWB技术进行通信,可选地,还可以通过窄带技术进行通信。发送设备110和接收设备120可以包括UWB信号处理模块和NB信号处理模块。例如,发送设备110包括UWB信号发送模块和NB信号发送模块,如图3中的Tx UWB模块和TxNB模块。接收设备120包括UWB信号接收模块和NB信号接收模块,如图3中所示的Rx UWB模块和Rx NB模块。应理解,图3中仅以通信系统中包括一个发送设备和一个接收设备作为示例进行说明,该通信系统不限于包括更多的其它设备,例如,还可以包括更多的接收设备。
在本申请实施例中,发送设备是指发送UWB信号的设备,接收设备是指接收UWB信号的设备。
可选地,发送设备和接收设备可以有多种可能的应用场景。示例性地,以下实施例中提及的发送设备可以为UWB测距中的发起站点,接收设备为响应站点;或者,发送设备为响应站点,接收设备为发起站点。可选地,发送设备也可以是UWB定位场景中的定位设备,第二设备为移动标签;或者,发送设备为移动标签,接收设备为定位设备。也即,本申请提供的UWB信号同步的方法,不仅适用于发起站点(或定位设备)向响应站点(或 移动标签)发送UWB信号,响应站点(或移动标签)进行UWB信号同步的场景,也适用于响应站点(或移动标签)向发起站点(或定位设备)发送UWB信号,发起站点或(定位设备)进行UWB信号同步的场景,不作限定。
此外,本申请提供的UWB信号同步的方法还适用于任何可能需要进行UWB信号同步的场景中,不作限定。
下文实施例中以本申请提供的UWB信号同步的方法在UWB测距场景中的应用作为示例说明。
参见图4,图4为本申请提供的UWB信号同步的方法的示意性流程图。可选地,图4中的方法流程可以由发送设备/接收设备执行,或者由安装于发送设备/接收设备中的具有相应功能的模块和/或器件(例如,芯片或集成电路等)执行,不作限定。下文实施例以发送设备/接收设备为例进行说明。
410、发送设备发送窄带信号。
接收设备接收窄带信号。
示例性地,发送设备可以为图3中所示的发送设备110,接收设备可以为图3中所示的接收设备120。具体地,发送设备可以通过TxNB模块发送窄带信号,相应地,接收设备可以通过Rx NB模块接收该窄带信号。
420、接收设备处理窄带信号,获得窄带信号的时频同步信息。
接收设备通过接收并处理窄带信号,获得窄带信号的时频同步信息。或者说,接收设备实现和窄带信号的时频同步。
示例性地,接收设备可以通过窄带信号处理模块处理该窄带信号,获得窄带信号的时频同步信息。进一步地,接收设备的窄带信号处理模块将获得的窄带信号的时频同步信息提供给接收设备的UWB信号处理模块。
在本申请的技术方案中,接收设备接收并处理来自于发送设备的窄带信号,到达窄带信号的时频同步,可以认为窄带信号向接收设备提供了粗略的时频同步信息。在该粗略的时频同步信息的基础上,接收设备再去估计来自于发送设备的UWB信号的时频同步信息。
430、发送设备发送UWB信号。其中,UWB信号包括同步信号和测距信号。
示例性地,发送设备可以通过Tx UWB模块发送UWB信号。
440、接收设备根据窄带信号的时频同步信息,处理UWB信号的同步信号,获得UWB信号的时频同步信息。
在步骤440中,接收设备根据窄带信号的时频同步信息,处理UWB信号的同步信号,以获得UWB信号的时频同步信息。也即,接收设备在窄带信号提供的粗略的时频同步信息的基础上,通过处理UWB信号的同步信号,可以获得更精准的时频同步信息。
具体地,如步骤420中所示,接收设备的窄带信号处理模块将获得的窄带信号的时频同步信息提供给接收设备的UWB信号处理模块。在此基础上,接收设备的UWB信号处理模块根据窄带信号处理模块提供的窄带信号的时频同步信息,处理来自于发送设备的同步信号,从而获得更精准的时频同步信息。
可见,本申请提出了一个“两步走的UWB信号的时频同步”方案:
第一步:发送设备先通过发送窄带信号,使得接收设备获得粗略的初始时频同步信息,当然,这里所说的粗略的初始时频同步信息是相对于UWB信号的时频同步而言的,而实 际上,接收设备通过处理窄带信号,已经和窄带信号达到时频同步,只是此时的时频同步精度对于UWB信号的接收而言是比较低的,因此认为是粗略的时频同步信息;
第二步:发送设备在窄带信号之后,再发送UWB信号,该UWB信号包括同步信号和测距信号。其中,同步信号用于接收设备获得更高精度的和UWB信号的时频同步,进而处理后续的测距信号。接收设备处理同步信号之后获得的时频同步信息,相对于窄带信号提供的粗略的时频同步信息而言,是更高精度的UWB信号的时频同步信息。
450、接收设备根据UWB信号的时频同步信息,接收UWB信号的测距信号。
需要说明的是,上文图2中介绍的窄带辅助下的UWB信号的测距流程中,发起站点发送窄带信号,响应站点接收并处理窄带信号,获得窄带信号的时频同步信息之后,紧接着,发起站点发送了测距信号,响应站点基于窄带信号的时频同步信息接收测距信号。或者说,响应站点在获得和窄带信号的时频同步之后,没有再作进一步的时频同步,即去接收UWB信号的测距信号。而窄带信号的时频同步精度对于接收UWB信号而言,是不够的。而在本申请的技术方案中,响应站点(如接收设备)获得和窄带信号的时频同步之后,通过处理(例如,由UWB信号处理模块处理)UWB信号的同步信号,获得了更高精度的时频同步信息。基于该更精准的时频同步信息去处理UWB信号的测距信号,可以提高测距精度。
另外,本申请的技术方案与接收设备直接估计UWB信号的时频同步信息的技术方案相比,本申请提供方案中,由于窄带信号提供了粗略的时频同步信息,在该粗略的时频同步信息的基础上,接收设备再进一步估计UWB信号的时频同步信息,复杂度大幅度降低。同时,接收设备的UWB信号处理模块的功耗、面积均降低。
参见图5,图5为本申请提供的UWB信号同步的方法的一个示意图。如图5,发送设备发送NB信号,经过设定的时间间隔之后,发送设备发送UWB信号。UWB信号包括同步信号和测距信号。在接收设备侧,接收设备接收并处理NB信号,获得粗略的时频同步信息。基于该粗略的时频同步信息,经过设定的时间间隔之后,接收设备接收并处理UWB信号的同步信号,获得更准确的时频同步信息,并基于该更精准的时频同步信息,接收并处理同步信号之后的测距信号。
可选地,窄带信号的时频同步信息可以包括时间的同步信息和载波频率偏移(carrier frequency offset,CFO)的同步信息。
可选地,窄带信号和UWB信号之间的时间间隔可以是发送设备和接收设备提前协商好的。也可以预配置或预先设定的。示例性地,时间间隔可以通过窄带信号来协商。
可选地,本文对于窄带信号的具体形式不作任何限定。例如,对窄带信号的频点、带宽、帧格式以及调制方式等均不作限定。示例性地,该窄带信号可以为Zigbee信号或蓝牙信号,在2.4GHz的ISM频段中的频点,使用1MHz或2MHz的带宽,采用偏移正交相移键控(offset quadrature phase-shift keying,O-QPSK)的调制方式等。
此外,可选地,窄带信号不限于包括一个或多个窄带帧。在窄带信号包括多个窄带帧的情况下,接收设备根据该多个窄带帧中的部分窄带帧获得窄带信号的时间的同步信息,并根据另外一部分窄带帧获得窄带信号的CFO的同步信息,如图6中所示,图6为本申请提供的UWB信号同步的方法的另一个示意图。
示例性地,接收设备内部结构可以如图7所示,图7为发送设备/接收设备的内部结 构的示意图。如图7,以接收设备为例,接收设备可以包括一个窄带信号处理模块和UWB信号处理模块,其中,窄带信号处理模块可以处理通过射频模块接收到的来自于发送设备的窄带信号;UWB信号处理模块可以处理通过射频模块接收到的来自于发送设备的UWB信号。此外,窄带信号处理模块和UWB信号处理模块可以交互数据和/或信息,例如,窄带信号处理模块将通过处理接收到的来自于发送设备的窄带信号获得的粗略的时频同步信息,发送给UWB信号处理模块。发送设备也是类似的,不再赘述。
参见图8,图8为接收设备的UWB信号处理模块的工作流程示意图。如图8,UWB信号处理模块的工作流程可以如下:
(1)初始化窄带信号的时间同步信息TNB和频率同步信息FNB
这里,初始化的TNB和频率同步信息FNB分别为由窄带信号处理模块发送的粗略的时间同步信息和频率同步信息;
(2)使能时间和频率的校正;
(3)获得主径,从而确定更精准的时间;
(4)根据主径,进行频偏估计,获得更精准的频率;
(5)进行CIR估计;
(6)首径检测;
应理解,UWB信号由发送设备传播到接收设备,其中直达波的传播路径被称为直达经,其它传播路径被称为反射径。由于直达径传播距离最短、传播最快,因此,检测首径信号的到达时间即可确定UWB信号在发送设备和接收设备之间传输时的往返时间,也称为飞行时间。
(7)获得测量信息报告。
具体地,测量信息报告中主要包括上述飞行时间。
发送设备获得飞行时间之后,根据飞行时间以及电磁波的传播速度来计算发送设备和接收设备之间的距离,完成测距。
以上对本申请提供的UWB信号的同步的方法进行了详细的说明。
可见,本申请通过采用两步走的窄带信号辅助的UWB信号的时频同步方案,可以降低UWB信号处理模块在实现上的复杂度。同时,窄带信号同步和UWB信号同步相结合,可以确保UWB信号的较高的时频同步精度,从而保证较高的测距精度。本申请的技术方案,在不影响UWB信号测距性能(或精度)的前提下,可以降低接收设备的UWB信号处理芯片实现的设计复杂度、面积以及功耗。
下面介绍本申请提供的通信装置。
参见图9,图9为本申请提供的通信装置的示意性框图。如图9,通信装置1000包括处理单元1100、接收单元1200和发送单元1300。
可选地,通信装置1000可以对应本申请实施例中的接收设备。
此时,通信装置1000的各单元用于实现如下功能:
处理单元1100,用于:
处理窄带信号,获得所述窄带信号的时频同步信息;
以及,根据所述窄带信号的时频同步信息,处理超宽带UWB信号的同步信号,获得所述UWB信号的时频同步信息,所述UWB信号包括所述同步信号和测距信号;
接收单元1200,用于根据所述UWB信号的时频同步信息,接收所述测距信号。
可选地,在一个实施例中,接收单元1200,用于根据所述窄带信号的时频同步信息,接收所述UWB信号的所述同步信号,所述UWB信号的所述同步信号和所述窄带信号在时域上为设定的时间间隔;
以及,处理单元1100,用于对所述UWB信号的同步信号进行检测,获得所述UWB信号的时频同步信息。
可选地,在一个实施例中,处理单元1100,用于:
对所述UWB信号的所述同步信号进行检测,确定所述同步信号在发送设备和接收设备之间的传播主径,以获得所述UWB信号的时域同步信息;
根据所述传播主径,进行频偏估计,以获得所述UWB信号的频域同步信息。
可选地,在一个实施例中,处理单元1100,还用于:
根据所述测距信号,进行信道冲击响应CIR估计,获得估计结果;
根据所述估计结果,确定所述UWB信号在发送设备和接收设备之间的传播首径;
根据所述传播首径,进行测距计算。
在通信装置1000对应接收设备的各实施例中,处理单元1100用于执行除了发送和接收的动作之外由接收设备内部实现的处理和/或操作。接收单元1200用于执行接收设备的接收的动作,发送单元1300用于执行接收设备的发送的动作。
例如,在图4中,接收单元1200用于执行步骤410、步骤430中的接收的动作。处理单元1300,用于执行步骤420、步骤440或步骤450。
可选地,通信装置1000可以对应本申请实施例中的发送设备。
此时,通信装置1000的各单元用于实现如下功能:
处理单元1100,用于生成窄带信号和UWB信号;
发送单元1300,用于:
发送窄带信号,所述窄带信号用于接收设备获得所述窄带信号的时频同步信息;
发送UWB信号,所述UWB信号包括同步信号和测距信号,其中,所述同步信号和所述窄带信号的时频同步信息用于所述接收设备获得所述UWB信号的时频同步信息。
可选地,在一个实施例中,所述UWB信号的所述同步信号和所述窄带信号在时域上为设定的时间间隔。
在通信装置1000对应发送设备的各实施例中,处理单元1100用于执行除了发送和接收的动作之外由发送设备内部实现的处理和/或操作。接收单元1200用于执行发送设备的接收的动作,发送单元1300用于执行发送设备的发送的动作。
例如,在图4中,发送单元1300用于执行步骤410、步骤430中的发送的动作。
在以上各实现方式中,接收单元1200和发送单元1300也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
参见图10,图10为本申请提供的通信装置的示意性结构图。如图10,通信装置10包括:一个或多个处理器11,一个或多个存储器12以及一个或多个通信接口13。处理器11用于控制通信接口13收发信号,存储器12用于存储计算机程序,处理器11用于从存储器12中调用并运行该计算机程序,以使得通信装置10执行本申请各方法实施例中由接收设备或发送设备执行的处理。
例如,处理器11可以具有图9中所示的处理单元1100的功能,通信接口13可以具有图9中所示的接收单元1200和/或发送单元1300的功能。具体地,处理器11可以用于执行由通信装置内部执行的处理或操作,通信接口13用于执行通信装置的发送和/或接收的操作。
可选地,在一种实现方式中,通信装置10可以为方法实施例中的接收设备。在这种实现方式中,通信接口13可以为接收设备的收发器。收发器可以包括接收器和/或发射器。可选地,处理器11可以为接收设备的基带装置,通信接口13可以为射频装置。
在另一种实现中,通信装置10可以为安装在接收设备中的芯片(或芯片系统)。在这种实现方式中,通信接口13可以为接口电路或者输入/输出接口。
可选地,在一种实现方式中,通信装置10可以为方法实施例中的发送设备。在这种实现方式中,通信接口13可以为发送设备的收发器。收发器可以包括接收器和/或发射器。可选地,处理器11可以为发送设备的基带装置,通信接口13可以为射频装置。
在另一种实现中,通信装置10可以为安装在发送设备中的芯片(或芯片系统)。在这种实现方式中,通信接口13可以为接口电路或者输入/输出接口。
其中,图10中器件(例如,处理器、存储器或通信接口)后面的虚线框表示该器件可以为一个以上。
此外,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由接收设备执行的操作和/或处理被执行。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由发送设备执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由接收设备执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由发送设备执行的操作和/或处理被执行。
本申请还提供一种芯片,所述芯片包括处理器,用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,使得安装有所述芯片的通信装置执行任意一个方法实施例中由接收设备执行的操作和/或处理。
本申请还提供一种芯片,所述芯片包括处理器,用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,使得安装有所述芯片的通信装置执行任意一个方法实施例中由发送设备执行的操作和/或处理。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括所述存储器。
可选地,上述处理器可以为一个或多个,所述存储器可以为一个或多个,所述存储器可以为一个或多个。
本申请还提供一种通信装置(例如,可以为芯片或芯片系统),包括处理器和通信接 口,所述通信接口用于接收(或称为输入)数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以及,通信接口还用于输出(或称为输出)经处理器处理之后的数据和/或信息,以使得任意一个方法实施例中由接收设备执行的操作和/或处理被执行。
本申请还提供一种通信装置(例如,可以为芯片或芯片系统),包括处理器和通信接口,所述通信接口用于接收(或称为输入)数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以及,通信接口还用于输出(或称为输出)经处理器处理之后的数据和/或信息,以使得任意一个方法实施例中由发送设备执行的操作和/或处理被执行。
本申请还提供一种通信装置,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,使得所述通信装置执行任意一个方法实施例中由接收设备执行的操作和/或处理。
本申请还提供一种通信装置,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,使得所述通信装置执行任意一个方法实施例中由发送设备执行的操作和/或处理。
本申请还提供一种无线通信系统,包括本申请方法实施例中的接收设备。可选地,还可以包括方法实施例中的发送设备。
本申请实施例中的处理器可以是集成电路芯片,具有处理信号的能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
上述实施例所提供的方法,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品可以包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如,红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖 在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种超宽带信号同步的方法,其特征在于,包括:
    处理窄带信号,获得所述窄带信号的时频同步信息;
    根据所述窄带信号的时频同步信息,处理超宽带UWB信号的同步信号,获得所述UWB信号的时频同步信息,所述UWB信号包括所述同步信号和测距信号;
    根据所述UWB信号的时频同步信息,接收所述测距信号。
  2. 如权利要求1所述的方法,其特征在于,所述根据所述窄带信号的时频同步信息,处理UWB信号的同步信号,获得UWB信号的时频同步信息,包括:
    根据所述窄带信号的时频同步信息,接收所述UWB信号的所述同步信号,所述UWB信号的所述同步信号和所述窄带信号在时域上为设定的时间间隔;
    对所述UWB信号的所述同步信号进行检测,获得所述UWB信号的时频同步信息。
  3. 如权利要求2所述的方法,其特征在于,所述对所述UWB信号的所述同步信号进行检测,获得所述UWB信号的时频同步信息,包括:
    对所述UWB信号的所述同步信号进行检测,确定所述同步信号在发送设备和接收设备之间的传播主径,以获得所述UWB信号的时域同步信息;
    根据所述传播主径,进行频偏估计,以获得所述UWB信号的频域同步信息。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述测距信号,进行信道冲击响应CIR估计,获得估计结果;
    根据所述估计结果,确定所述UWB信号在发送设备和接收设备之间的传播首径;
    根据所述传播首径,进行测距计算。
  5. 一种用于超宽带信号同步的方法,其特征在于,包括:
    发送窄带信号,所述窄带信号用于接收设备获得所述窄带信号的时频同步信息;
    发送UWB信号,所述UWB信号包括同步信号和测距信号,其中,所述同步信号和所述窄带信号的时频同步信息用于所述接收设备获得所述UWB信号的时频同步信息。
  6. 如权利要求5所述的方法,其特征在于,所述UWB信号的所述同步信号和所述窄带信号在时域上为设定的时间间隔。
  7. 一种通信装置,其特征在于,包括:
    处理单元,用于处理窄带信号,获得所述窄带信号的时频同步信息;
    以及,根据所述窄带信号的时频同步信息,处理超宽带UWB信号的同步信号,获得所述UWB信号的时频同步信息,所述UWB信号包括所述同步信号和测距信号;
    接收单元,用于根据所述UWB信号的时频同步信息,接收所述测距信号。
  8. 如权利要求7所述的通信装置,其特征在于,所述处理单元,用于:
    根据所述窄带信号的时频同步信息,接收所述UWB信号的所述同步信号,所述UWB信号的所述同步信号和所述窄带信号在时域上为设定的时间间隔;
    对所述UWB信号的所述同步信号进行检测,获得所述UWB信号的时频同步信息。
  9. 如权利要求8所述的通信装置,其特征在于,所述处理单元,用于:
    对所述UWB信号的所述同步信号进行检测,确定所述同步信号在发送设备和所述通 信装置之间的传播主径,以获得所述UWB信号的时域同步信息;
    根据所述传播主径,进行频偏估计,以获得所述UWB信号的频域同步信息。
  10. 如权利要求7-9中任一项所述的通信装置,其特征在于,所述处理单元,用于:
    根据所述测距信号,进行信道冲击响应CIR估计,获得估计结果;
    根据所述估计结果,确定所述UWB信号在发送设备和所述通信装置之间的传播首径;
    根据所述传播首径,进行测距计算。
  11. 一种通信装置,其特征在于,包括:
    发送单元,用于:
    发送窄带信号,所述窄带信号用于接收设备获得所述窄带信号的时频同步信息;
    发送UWB信号,所述UWB信号包括同步信号和测距信号,其中,所述同步信号和所述窄带信号的时频同步信息用于所述接收设备获得所述UWB信号的时频同步信息。
  12. 如权利要求7-9中任一项所述的通信装置,其特征在于,所述UWB信号的所述同步信号和所述窄带信号在时域上为设定的时间间隔。
  13. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使所述通信装置执行如权利要求1-4中任一项所述的方法。
  14. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使所述通信装置执行如权利要求5或6所述的方法。
  15. 一种芯片,其特征在于,包括处理器和通信接口,所述通信接口用于接收数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以执行如权利要求1-4中任一项所述的方法,或者执行如权利要求5或6所述的方法。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如权利要求1-4中任一项所述的方法,或如权利要求5或6所述的方法被实现。
  17. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如权利要求1-4中任一项所述的方法,或如权利要求5或6所述的方法被实现。
  18. 一种无线通信系统,包括如权利要求13所述的通信装置和如权利要求14所述的通信装置。
PCT/CN2023/082960 2022-03-25 2023-03-22 超宽带信号同步的方法和通信装置 WO2023179639A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210300261 2022-03-25
CN202210300261.X 2022-03-25
CN202210761590.4A CN116846427A (zh) 2022-03-25 2022-06-30 超宽带信号同步的方法和通信装置
CN202210761590.4 2022-06-30

Publications (1)

Publication Number Publication Date
WO2023179639A1 true WO2023179639A1 (zh) 2023-09-28

Family

ID=88100017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082960 WO2023179639A1 (zh) 2022-03-25 2023-03-22 超宽带信号同步的方法和通信装置

Country Status (1)

Country Link
WO (1) WO2023179639A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180249433A1 (en) * 2015-09-03 2018-08-30 Lg Electronics Inc. Method for transmitting and receiving synchronization signal in wireless communication system and apparatus therefor
CN108964867A (zh) * 2018-09-28 2018-12-07 四川中电昆辰科技有限公司 一种测距方法及测距系统
CN109845358A (zh) * 2016-10-17 2019-06-04 高通股份有限公司 下一代无线网络中的可配置同步
US20210105736A1 (en) * 2017-03-24 2021-04-08 Maple High Tech Uwb locating method with auxiliary channel synchronisation
CN114449660A (zh) * 2020-11-02 2022-05-06 苹果公司 用于混合的超宽带和窄带信令的技术

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180249433A1 (en) * 2015-09-03 2018-08-30 Lg Electronics Inc. Method for transmitting and receiving synchronization signal in wireless communication system and apparatus therefor
CN109845358A (zh) * 2016-10-17 2019-06-04 高通股份有限公司 下一代无线网络中的可配置同步
US20210105736A1 (en) * 2017-03-24 2021-04-08 Maple High Tech Uwb locating method with auxiliary channel synchronisation
CN108964867A (zh) * 2018-09-28 2018-12-07 四川中电昆辰科技有限公司 一种测距方法及测距系统
CN114449660A (zh) * 2020-11-02 2022-05-06 苹果公司 用于混合的超宽带和窄带信令的技术

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.S. HAMMERSCHMIDT, E. EKREM, E. SASOGLU, X. LUO (APPLE INC.): "Narrowband assisted multi-millisecond UWB", IEEE DRAFT; 15-21-0409-00-04AB-NARROWBAND-ASSISTED-MULTI-MILLISECOND-UWB, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.15.4ab, no. 0, 20 July 2021 (2021-07-20), Piscataway, NJ USA , pages 1 - 10, XP068182680 *

Similar Documents

Publication Publication Date Title
US10122504B2 (en) Device, system and method of transferring a wireless communication session between wireless communication frequency bands
WO2021115217A1 (zh) 一种测距的方法和装置
WO2018102247A2 (en) Apparatus, system and method of ranging measurement
WO2021046823A1 (zh) 一种参考信号处理方法、装置及系统
CN113093101A (zh) 一种测距方法及装置、设备、存储介质
WO2021056587A1 (zh) 一种通信方法及装置
WO2023179639A1 (zh) 超宽带信号同步的方法和通信装置
WO2022000354A1 (zh) 用于测距的方法和终端设备
WO2022237694A1 (zh) 一种通信方法及装置
WO2023246579A1 (zh) 一种应用于超宽带系统的信号同步的方法和通信装置
CN116846427A (zh) 超宽带信号同步的方法和通信装置
WO2023198098A1 (zh) 传输信令的方法和装置
WO2023179585A1 (zh) 时钟同步的方法和装置
WO2023207593A1 (zh) 应用于超带宽uwb系统感知测量的方法和装置
WO2024051318A1 (zh) 通信方法及装置
WO2023179430A1 (zh) 通信方法、装置和系统
WO2023165454A1 (zh) 通信方法和装置
WO2024007477A1 (zh) 测距方法与装置
WO2024012259A1 (zh) 通信方法及装置
WO2023160314A1 (zh) 传输物理层协议数据单元的方法和装置
WO2023236721A1 (zh) 传输信令的方法和装置
WO2023169247A1 (zh) 一种测距或感知的方法和装置
WO2023061011A1 (zh) 一种测距方法和装置
WO2023061311A1 (zh) 一种传输物理层协议数据单元的方法和装置
JP2021514556A (ja) 測定用方法、ネットワーク装置及び端末装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773886

Country of ref document: EP

Kind code of ref document: A1