WO2023179421A1 - 头戴式设备的手柄以及头戴式设备 - Google Patents

头戴式设备的手柄以及头戴式设备 Download PDF

Info

Publication number
WO2023179421A1
WO2023179421A1 PCT/CN2023/081584 CN2023081584W WO2023179421A1 WO 2023179421 A1 WO2023179421 A1 WO 2023179421A1 CN 2023081584 W CN2023081584 W CN 2023081584W WO 2023179421 A1 WO2023179421 A1 WO 2023179421A1
Authority
WO
WIPO (PCT)
Prior art keywords
handle
processor
head
button
vibration
Prior art date
Application number
PCT/CN2023/081584
Other languages
English (en)
French (fr)
Inventor
邓雪冰
马晓卫
高学彬
刘兆猛
Original Assignee
北京字跳网络技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210303366.0A external-priority patent/CN116832429A/zh
Priority claimed from CN202210302826.8A external-priority patent/CN116832428A/zh
Application filed by 北京字跳网络技术有限公司 filed Critical 北京字跳网络技术有限公司
Publication of WO2023179421A1 publication Critical patent/WO2023179421A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/24Constructional details thereof, e.g. game controllers with detachable joystick handles

Definitions

  • the present application relates to the technical field of game controllers, and in particular, to a controller for a head-mounted device and a head-mounted device having the controller for the head-mounted device.
  • head-mounted devices such as VR glasses
  • game controllers work together.
  • the existing game controller is equipped with a vibration device.
  • the vibration device can only vibrate simply according to the switch command.
  • the vibration device cannot adjust the vibration frequency according to changes in the game scene, making the game controller user experience poor and affecting the user's gaming experience.
  • This application aims to solve at least one of the technical problems existing in the prior art. To this end, this application proposes a handle for a head-mounted device.
  • the handle of the head-mounted device can adjust the vibration frequency of the vibration device as the game scene changes, thereby improving the use experience of the handle and thereby improving the user's gaming experience.
  • This application further proposes a head-mounted device.
  • the handle includes: a shell, a processor, the processor is arranged in the shell, and the processor communicates with the host of the head-mounted device; a driving device , the driving device is located in the housing, and the driving device is electrically connected to the processor to receive the command signal transmitted by the processor; a vibration device, the vibration device is located in the housing, the The vibration device has multiple different vibration frequencies, and the driving device is connected to the vibration device to control the vibration device to vibrate at the corresponding vibration frequency according to the received instruction signal.
  • the vibration frequency of the vibration device can be adjusted as the game scene changes, allowing the user to obtain game scene information.
  • the user Being able to grasp game scenes in a timely manner allows users to make quick and accurate judgments and reaction operations, thus improving the experience of using the controller and thereby improving the user's gaming experience.
  • Figure 1 is a schematic diagram of a handle according to an embodiment of the present application.
  • Figure 2 is a cross-sectional view of a handle according to an embodiment of the present application.
  • FIG. 3 is a working principle diagram of the processor, driving device and vibration device according to the embodiment of the present application;
  • Figure 4 is a working principle diagram of a processor, a driving device, a force feedback component and an angle sensor according to an embodiment of the present application;
  • Figure 5 is a schematic assembly diagram of a button, motor and push rod assembly according to an embodiment of the present application
  • Figure 6 is a schematic diagram of the internal structure of the handle according to an embodiment of the present application.
  • Figure 7 is a working principle diagram of a processor, a driving device, a force feedback component and a Hall sensor according to an embodiment of the present application;
  • FIG. 8 is a block diagram of the working principle of the handle according to an embodiment of the present application.
  • Figure 9 is a schematic diagram of a left handle according to an embodiment of the present application.
  • Figure 10 is a schematic diagram of a right handle according to an embodiment of the present application.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection or integral connection
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two components.
  • specific meanings of the above terms in this application can be understood on a case-by-case basis.
  • the handle 100 of the head-mounted device is described below with reference to Figures 1-10.
  • the head-mounted device can For VR glasses, a head-mounted device is worn on the user's head, and the head-mounted device includes a host.
  • the handle 100 includes: a housing 10 , a processor 11 , a driving device 20 and a vibration device 30 .
  • the processor 11 is disposed in the housing 10, and the processor 11 communicates with the host of the head-mounted device.
  • the driving device 20 is arranged in the housing 10.
  • the driving device 20 is electrically connected to the processor 11.
  • the driving device 20 can receive the command signal transmitted by the processor 11.
  • the driving device 20 can be an audio device with IIS (Internet Information Services-Internet Information Services) Driver chip for input interface.
  • the vibration device 30 is arranged in the housing 10.
  • the vibration device 30 can be set as a motor.
  • the motor is a broadband linear motor with a wide frequency response range.
  • the vibration device 30 has a variety of different vibration frequencies.
  • the driving device 20 is connected to the vibration device 30.
  • the driving device 20 is connected to the vibration device 30.
  • the device 20 can control the vibration device 30 to vibrate at a corresponding vibration frequency according to the received instruction signal.
  • one kind of command signal can correspond to one kind of game scene, and the host generates different command signals according to different game scenes.
  • the handle 100 is connected to the head-mounted device to connect the processor 11 with the host signal.
  • the host When the game is When there is a vibration scene in the game, the host generates a command signal that matches the vibration frequency of the vibration device 30 in the current game scene, and then the host transmits the generated command signal to the processor 11, and the processor 11 transmits the command signal to the driving device 20, and the driving device 20
  • the vibration device 30 is controlled to vibrate at a corresponding vibration frequency according to the received command signal.
  • the vibration frequency of the vibration device 30 is different, so that the user feels different when holding the handle 100 and can simulate different hand feelings.
  • the lower the vibration frequency of the vibration device 30, the smaller the vibration feeling of the handle 100. the higher the vibration frequency of the vibration device 30 , the greater the vibration feeling of the handle 100 .
  • the lower the vibration frequency of the vibration device 30 the stronger the stickiness of the handle 100 .
  • the higher the vibration frequency of the vibration device 30 the greater the vibration feeling of the handle 100
  • the sticky feeling is weaker. Therefore, through the cooperative work of the processor 11, the driving device 20 and the vibration device 30, the effect of adjusting the vibration frequency of the vibration device 30 as the game scene changes can be achieved.
  • the user holding the handle 100 can obtain the game scene information, and the user can obtain the game scene information during the game.
  • the game scene can be grasped in time, and the user can make judgments and reaction operations quickly and accurately, thereby improving the experience of using the handle 100 and thereby improving the user's gaming experience.
  • the vibration frequency of the vibration device 30 can be adjusted as the game scene changes, allowing the user to obtain game scene information, and the user can grasp the game in time during the game.
  • Scenarios allow users to make quick and accurate judgments and reaction operations, thereby improving the experience of using the controller 100 and thereby improving the user's gaming experience.
  • the handle 100 may also include a hanging ring 90.
  • the hanging ring 90 is installed on the housing 10. When the user holds the handle 100, the hanging ring 90 is hung on the user's neck. The handle 100 can be prevented from falling from the user's hand.
  • the instruction signal may be set as an audio signal, and the driving device 20 controls the vibration device 30 to vibrate according to the different audio signals received.
  • one audio signal can correspond to one game scene.
  • the host will extract the sound effect track content in the game scene and perform algorithm optimization processing to generate a sound that matches the current game scene.
  • the audio file of the vibration frequency of the vibrating device 30 in the scene and then the host wirelessly transmits the generated audio file to the processor 11.
  • the processor 11 transmits the audio file to the driving device 20 through the IIS audio signal, and then the driving device 20 transmits the audio file to the driving device 20 according to the received
  • the audio signal controls the vibration device 30 to vibrate at a corresponding vibration frequency.
  • Such an arrangement can achieve the effect of controlling the vibration frequency of the vibration device 30 according to the sound effects in the game scene, and can better realize the adjustment of the vibration frequency of the vibration device 30 as the game scene changes.
  • the user can grasp the game scene in a more timely manner during the game. Users can make judgments and reaction operations more quickly and accurately, thereby further improving the experience of using the handle 100 and further improving the user's gaming experience.
  • the processor 11 may be provided with a wireless transmission module, which transmits wireless signals with the host.
  • the wireless transmission module can be Bluetooth and/or wifi, and the processor 11 can transmit signals with the host through Bluetooth and/or wifi, but the application is not limited thereto.
  • the processor 11 can also function through Bluetooth and/or wifi. Other wireless transmission methods with the same function transmit signals with the host. This arrangement can prevent the processor 11 from being connected to the host through a wire harness, and can prevent the wire harness from pulling the handle 100 and the head-mounted device, thus avoiding the restriction of the movement position of the handle 100, thereby further improving the use experience of the handle 100 and improving user satisfaction.
  • a buffer member 40 is provided between the vibration device 30 and the inner peripheral wall of the housing 10, and the buffer member 40 is sandwiched between the vibration device 30 and the inner peripheral wall of the housing 10,
  • the buffer member 40 has a buffering effect.
  • the buffer member 40 can buffer the vibration of the vibration device 30 and make the handle 100 vibrate more gently, thereby improving the user's feeling of holding the handle 100.
  • the buffer member 40 can be configured as foam, which has a good buffering effect. Such an arrangement can ensure the buffering effect of the buffer member 40 and make the handle 100 vibrate more gently, thereby further improving the user's feeling of holding the handle 100. Moreover, the price of foam is cheap, which can reduce the manufacturing cost of the handle 100 .
  • the handle 100 also includes a mounting bracket 50.
  • the mounting bracket 50 is provided in the housing 10, and the mounting bracket 50 is wrapped around the vibration device 30. Further, as shown in Figure 2
  • the mounting bracket 50 defines an installation space with an open lower end.
  • the vibration device 30 is installed in the mounting bracket 50 through the open end of the installation space.
  • a buffer 40 is provided between the lower surface of the vibration device 30 and the inner peripheral wall of the housing 10.
  • the mounting bracket 50 is fixed to the inner wall of the housing 10 to position the vibration device 30 within the housing 10 .
  • the mounting bracket 50 can be installed on the housing 10 through bolts or screws.
  • Such an arrangement can securely install the mounting bracket 50 in the housing 10 , enable the vibration device 30 to be reliably positioned in the housing 10 , and facilitate the installation of the bracket.
  • the disassembly and assembly of 50 facilitates the replacement and maintenance of the vibration device 30.
  • the application is not limited to this, and the mounting bracket 50 can also be snap-connected to the housing 10 .
  • the handle 100 is also provided with a button 60, which is electrically connected to the processor 11.
  • the processor 11 receives a signal and transmits the signal with the host.
  • the button 60 has control functions, such as: confirmation control function, shooting control function, return control function, etc.
  • the button 60 will transmit the function signal corresponding to the button 60 to the processor 11, and the processor 11 Transmit the function signal corresponding to the button 60 to the main
  • the host computer controls the head-mounted device to perform corresponding work after receiving the function signal corresponding to the button 60.
  • the handle 100 may further include: a force feedback component 70 and a detector 80 for detecting the position of the button 60 .
  • the detector 80 is electrically connected to the processor 11.
  • the detector 80 can detect the position of the button 60 relative to the housing 10 in real time. After the detector 80 detects the position of the button 60 relative to the shell 10, the detector 80 will detect The information is transmitted to the processor 11, and the processor 11 determines the position of the button 60 based on the received detection information.
  • the force feedback component 70 is electrically connected to the processor 11 .
  • the force feedback component 70 cooperates with the button 60 to apply a feedback force toward the button 60 .
  • the force feedback component 70 controls the magnitude and direction of the feedback force according to the signal transmitted by the processor 11 . It should be noted that a game scene can correspond to the size and direction of a feedback force.
  • the button 60 plays a very important role in the game experience. The existing button can only make the user's fingers feel pressure when pressed. The button 60 Unable to push back on fingers.
  • the host determines the force feedback mode as needed, for example, determines the size and direction of the feedback force, and then the host processes and optimizes the algorithm to become a control signal, and the host will
  • the control signal is transmitted to the processor 11 through wireless.
  • the processor 11 After receiving the control signal, the processor 11 transmits the control signal to the driving device 20.
  • the driving device 20 drives the force feedback component 70 to work, causing the force feedback component 70 to apply feedback force on the button 60.
  • the button 60 can push back the finger, so that the finger is pushed, and can realize the effect of adjusting the size and direction of the feedback force exerted by the force feedback component 70 to the button 60 as the game scene changes, and the user can feel the change of force feedback, that is, The tactile sensation changes and the user will have a richer tactile experience when operating the handle 100, thereby improving the use experience of the handle 100 and further improving the user's gaming experience.
  • the user presses the button 60.
  • the driving device 20 drives the force feedback component 70 to work so that the force feedback component 70 applies feedback force to the button 60.
  • the user presses the button 60.
  • the feedback force is received, so that the user has a tactile sensation and has a better use experience.
  • the size and direction of the feedback force are controlled through the force feedback component 70.
  • the feedback force felt by the user changes, that is, the tactile sensation changes, in the game scene , can provide users with multi-scene tactile sensations. For example: in a game scene with a strike force, after the existing button 60 is pressed, the strike function is triggered in the game scene.
  • the strike force button 60 As for whether the strike force button 60 is 6N or 8N, there is no feedback. In this application, through the force The feedback component 70 controls the size and direction of the feedback force. Under different impact forces, the button 60 can obtain different feedback forces. Furthermore, if the impact force is 6N, the button 60 will be subject to a feedback force of 2N. If the impact force is The force is 8N, and the button 60 is acted upon by a feedback force of 3N. In this way, when the user operates the handle 100, a rich tactile experience will be added and the gaming experience will be improved.
  • the force feedback component 70 includes: a motor 71 and a push rod component 72.
  • the push rod assembly 72 cooperates with the button 60 and the motor 71 respectively.
  • the push rod assembly 72 converts the rotation of the motor 71 into movement to exert feedback force on the button 60 .
  • the push rod assembly 72 can be connected between the button 60 and the output shaft of the motor 71.
  • the motor 71 works, the output shaft of the motor 71 rotates, and the push rod assembly 72 converts the rotation of the output shaft into movement.
  • the push rod assembly 72 moves toward or away from the button 60, the push rod assembly 72 can exert a feedback force on the button 60, so that the user can feel the feedback force, thereby increasing a rich tactile experience.
  • the push rod assembly 72 converts the rotation of the output shaft into movement, and the push rod assembly 72 moves toward the button 60 , and the push rod assembly 72 can The feedback force exerts thrust on the button 60.
  • the push rod assembly 72 converts the rotation of the output shaft into movement, and the push rod assembly 72 carries the button. 60 moves in a direction away from the key 60 , and the push rod assembly 72 can exert a pulling force feedback force on the key 60 .
  • the button 60 is configured as a rotationally configured trigger.
  • the trigger can be installed on the housing 10 through a pivot axis.
  • the trigger can rotate around the pivot axis.
  • the detector 80 is configured as Angle sensor 82.
  • the user presses and rotates the trigger to trigger the strike function in the game scene, and controls the size and direction of the feedback force through the force feedback component 70. Under different strike forces, the button 60 can obtain different feedback forces.
  • the angle sensor 82 detects the rotation angle of the trigger relative to the housing 10 in real time, and the detector 80 transmits the detection information to the processor 11 , and the processor 11 determines the position of the button 60 based on the received detection information.
  • the force feedback component 70 includes: an energized coil and a magnetic component.
  • the energized coil is arranged in the housing 10, and is electrically connected to the processor 11.
  • the processor 11 controls the current magnitude and direction of the energized coil.
  • the magnetic component is disposed at the key 60 . Further, the magnetic component is installed on the key 60 .
  • the magnetic component may be disposed between the energized coil and the key 60 .
  • the processor 11 changes the direction and magnitude of the current of the energized coil, thereby changing the direction and intensity of the magnetic field generated by the energized coil, thereby changing the direction and magnitude of the force on the magnetic component.
  • the button 60 drives the magnetic component to move in a direction close to the energized coil.
  • the processor 11 controls the energized coil to generate a current in the first direction.
  • the processor 11 controls the energized coil to generate a magnetic field.
  • the magnetic field generated by the energized coil is generated by the magnetic component.
  • the magnetic fields repel each other, and the magnetic parts are subjected to the repulsive force, which is fed back to the button 60.
  • the processor 11 controls the energized coil to generate a current in a second direction.
  • the second direction is opposite to the first direction.
  • the processor 11 controls the energized coil to generate a magnetic field.
  • the magnetic field generated by the energized coil and the magnetic field generated by the magnetic component attract each other, and the magnetic component is affected by
  • the suction force is fed back to the button 60.
  • the button 60 is fed back by the force generated by the suction, so that the handle 100 has a better use experience.
  • the current of the energized coil changes, the intensity of the generated magnetic field changes, and the force feedback received by the user changes, that is, the touch sensation changes.
  • the processor 11 controls the current magnitude and direction of the energized coil, thereby controlling the energization.
  • the intensity of the magnetic field generated by the coil controls the force exerted by the magnetic component in the magnetic field.
  • the force exerted by the magnetic component in the magnetic field is fed back to the button 60 and then fed back to the user to improve the user experience.
  • multi-scenario tactile sensations can be provided for game users.
  • the strike function is triggered in the game scene.
  • the strike force button 60 is 6N or 8N
  • the controller 11 controls the current size and direction of the energized coil.
  • the button 60 can obtain different feedback forces.
  • the impact force is 6N
  • the button 60 will be subject to a feedback force of 2N.
  • the impact force is 6N
  • the button 60 will receive a feedback force of 2N.
  • the force is 8N, and the button 60 is acted upon by a feedback force of 3N. In this way, the user will have a rich tactile experience when operating the handle 100 and enhance the gaming experience.
  • the user presses the button 60.
  • the host determines the force feedback mode as needed.
  • the host optimizes and processes the data to become a control signal.
  • the host transmits the control signal to the processor 11 for processing.
  • the processor 11 transmits the control signal to the driving device 20.
  • the processor 11 controls the current size and direction of the energized coil through the driving device 20.
  • the magnetic field generated by the energized coil and the magnetic field generated by the magnetic component repel each other, and the magnetic component is affected by The repulsive force is fed back to the button 60.
  • the user receives the feedback force, which gives the user a tactile sensation and provides a better user experience.
  • the detector 80 can be configured as a Hall sensor 81 , and the Hall sensor 81 cooperates with the magnetic component to sense the position of the key 60 .
  • the Hall sensor 81 can detect the position of the magnetic part. After the Hall sensor 81 detects the position of the magnetic part, the Hall sensor 81 transmits the position information of the magnetic part to the processor 11. The processor 11 makes a judgment based on the received position information of the magnetic part. Out of the button 60 position.
  • the handle 100 includes: a housing 10 , a sensor 66 , a vibration device 30 and a plurality of positioning light sources 64 .
  • the shell 10 is provided with a button 60, and the shell 10 is provided with a processor 11 for signal transmission with the head-mounted device.
  • the button 60 is electrically connected to the processor 11. When the user operates the button 60, the button 60 will perform the function corresponding to the button 60.
  • the signal is transmitted to the processor 11.
  • the processor 11 transmits the received function signal corresponding to the button 60 to the head-mounted device.
  • the head-mounted device controls the game scene in the head-mounted device according to the function signal corresponding to the button 60.
  • the button 60 may include a rocker 61 and a side button 62.
  • the rocker 61 can rock in multiple directions. Preferably, the rocker 61 can rock in four directions.
  • the rocker 61 can flip.
  • the page function signal is transmitted to the processor 11, and the processor 11 transmits the received page turning function signal to the head-mounted device.
  • the head-mounted device controls the page turning of the game scene in the head-mounted device according to the page turning function signal, and the joystick 61 can be pressed and clicked.
  • the rocker 61 can transmit the press and click function signal to the processor 11, and the processor 11 transmits the received press and click function signal to the head-mounted device.
  • the headset controls switching game scenes within the headset.
  • the side button 62 can control the grabbing operation.
  • the side button 62 can transmit the grabbing function signal to the processor 11, and the processor 11 transmits the received grabbing function signal to the head-mounted device.
  • the wearable device controls the game scene in the head-mounted device to display the grabbing operation according to the grabbing function signal.
  • a plurality of positioning light sources 64 are provided on the housing 10.
  • the positioning light sources 64 can be set as infrared lamps.
  • the plurality of positioning light sources 64 are electrically connected to the processor 11.
  • the plurality of positioning light sources 64 are used to be identified to determine the position of the handle 100.
  • the head mounted device identifies the positions of multiple positioning light sources 64 to determine the position of the handle 100 . Specifically, after multiple positioning light sources 64 light up at the same time, the processor 11 obtains the shape formed by the lighting of the multiple positioning light sources 64 , and the processor 11 transmits the shape information formed by the lighting of the multiple positioning light sources 64 to the headset.
  • the head-mounted device determines the spatial position of the handle 100 based on the shape information formed by the multiple positioning light sources 64.
  • the head-mounted device can track and identify the position of the handle 100, so that the handle 100 has a high-precision positioning function.
  • the user moves the handle 100 to change the positions of the multiple positioning light sources 64 and can point to the content to be browsed in the game scene of the head-mounted device.
  • the sensor 66 is disposed on the housing 10, the sensor 66 is electrically connected to the processor 11, and the sensor 66 identifies the user's finger state and position.
  • the sensor 66 can identify the user's finger movement and position.
  • the sensor 66 will identify the user's finger state (finger movement) and transmit the position information to the processor 11, and the processor 11 will identify
  • the user's finger status and position information is transmitted to the head-mounted device.
  • the head-mounted device can identify the status and position of the user's fingers, thereby determining how many fingers of the user touch the sensor 66, thereby identifying the user during the game. The status and position of the fingers. It should be noted that when the sensor 66 is not in contact with the user's finger, the sensor 66 can sense the approach of the user's finger.
  • the vibration device 30 is arranged in the housing 10 and is electrically connected to the processor 11.
  • the vibration device 30 can be set as a motor.
  • the motor is a broadband linear motor with a wide frequency response range.
  • the vibration device 30 generates vibration according to the received signal.
  • the head-mounted device When there is a vibration scene in the game, the head-mounted device generates a vibration frequency signal that matches the vibration device 30 in the current game scene, and then the head-mounted device transmits the generated vibration frequency signal to the processor 11, and the processor 11 controls the vibration.
  • the device 30 generates vibration, thereby enabling the handle 100 to have a vibration function.
  • the handle 100 can take into account high-precision positioning, finger touch and vibration functions, which can greatly increase the game and scene experience, thereby improving the use experience of the handle 100. Thereby improving the user’s gaming experience.
  • the vibration device 30 has multiple vibration frequencies, and the vibration frequency of the vibration device 30 can be adjusted.
  • the handle 100 also includes a driving device 20 , and the driving device 20 is connected to the vibration device 30 and the vibration device 30 respectively.
  • the processor 11 is electrically connected, and the driving device 20 controls the vibration device 30 to vibrate at a corresponding vibration frequency according to the instruction signal transmitted by the processor 11 .
  • the driving device 20 is disposed in the housing 10.
  • the driving device 20 can receive the command signal transmitted by the processor 11.
  • the driving device 20 can be a driving chip with an IIS (Internet Information Services-Internet Information Services) audio input interface.
  • IIS Internet Information Services-Internet Information Services
  • one kind of command signal can correspond to one kind of game scene, and the head-mounted device generates different command signals according to different game scenes.
  • the handle 100 is connected to the head-mounted device so that the processor 11 communicates with the head-mounted device.
  • the head-mounted device When there is a vibration scene in the game, the head-mounted device generates a vibration frequency that matches the vibration frequency of the vibration device 30 in the current game scene.
  • the head-mounted device then transmits the generated command signal to the processor 11.
  • the processor 11 transmits the command signal to the driving device 20.
  • the driving device 20 controls the vibration device 30 to vibrate at the corresponding vibration frequency according to the received command signal. .
  • the vibration frequency of the vibration device 30 is different, so that the user feels different when holding the handle 100 and can simulate different hand feelings.
  • the lower the vibration frequency of the vibration device 30, the smaller the vibration feeling of the handle 100. the higher the vibration frequency of the vibration device 30 , the greater the vibration feeling of the handle 100 .
  • the lower the vibration frequency of the vibration device 30 the stronger the stickiness of the handle 100 .
  • the higher the vibration frequency of the vibration device 30 the greater the vibration feeling of the handle 100
  • the sticky feeling is weaker. Therefore, through the cooperative work of the processor 11, the driving device 20 and the vibration device 30, the effect of adjusting the vibration frequency of the vibration device 30 as the game scene changes can be achieved.
  • the user holding the handle 100 can obtain the game scene information, and the user can obtain the game scene information during the game.
  • the game scene can be grasped in time, and the user can make judgments and reaction operations quickly and accurately, thereby improving the experience of using the handle 100 and thereby improving the user's gaming experience.
  • the instruction signal may be set as an audio signal, and the driving device 20 controls the vibration device 30 to vibrate according to the different audio signals received.
  • one audio signal can correspond to one game scene.
  • the head-mounted device will extract the sound effect track content in the game scene and perform algorithm optimization processing to generate a sound that matches the vibration frequency of the vibration device 30 in the current game scene.
  • the head mounted device then wirelessly transmits the generated audio file to the processor 11, the processor 11 transmits the audio file to the driving device 20 through the IIS audio signal, and then the driving device 20 controls the vibration device 30 according to the received audio signal. Vibrate at the corresponding vibration frequency.
  • Such an arrangement can achieve the effect of controlling the vibration frequency of the vibration device 30 according to the sound effects in the game scene, and can better realize the adjustment of the vibration frequency of the vibration device 30 as the game scene changes.
  • the user can grasp the game scene in a more timely manner during the game. Users can make judgments and reaction operations more quickly and accurately, thereby further improving the experience of using the handle 100 and further improving the user's gaming experience.
  • the handle 100 may also include a hanging ring.
  • the hanging ring is installed on the housing 10. When the user holds the handle 100, the hanging ring is hung on the user's neck to prevent the handle 100 from falling off the user's hand. fall.
  • the processor 11 is provided with a wireless transmission module, and the handle 100 communicates with the head-mounted device through the wireless transmission module.
  • the wireless transmission module can be Bluetooth and/or wifi, and the processor 11 can communicate with the head-mounted device via Bluetooth and/or wifi.
  • the processor 11 can also communicate with the head-mounted device via Bluetooth and/or wifi.
  • WiFi plays the same role as other wireless transmission methods for signal transmission with head-mounted devices.
  • buttons 60 there are multiple buttons 60 , and at least one button 60 is provided with a force detector 80 and a force feedback component 70 .
  • the multiple buttons 60 include a trigger button 63 , and the trigger button 63 can be a confirmation function and a force feedback component 70 .
  • the detector 80 is used to detect the position of the button 60.
  • the detector 80 is electrically connected to the processor 11.
  • the detector 80 can detect the position of the key 60 relative to the housing 10 in real time. After the detector 80 detects the position of the key 60 relative to the housing 10, the detector 80 transmits the detection information to the processor 11, and the processor 11 makes a judgment based on the received detection information. Out of the button 60 position.
  • the force feedback component 70 is electrically connected to the processor 11 .
  • the force feedback component 70 cooperates with the button 60 to apply a feedback force toward the button 60 .
  • the force feedback component 70 controls the magnitude and direction of the feedback force according to the signal transmitted by the processor 11 . It should be noted that a game scene can correspond to the size and direction of a feedback force.
  • the button 60 plays a very important role in the game experience. The existing button can only make the user's fingers feel pressure when pressed, and the button cannot Push back against your fingers.
  • the head mounted device determines the force feedback mode according to the needs, for example: determines the size and direction of the feedback force, and then the head mounted device is optimized through algorithm processing Becomes a control signal, and the head-mounted device transmits the control signal to the processor 11 through wireless. After receiving the control signal, the processor 11 transmits the control signal to the driving device 20.
  • the driving device 20 drives the force feedback component 70 to work, causing the force feedback component to work.
  • the feedback force 70 is applied to the button 60, and the button 60 can push back the finger, so that the finger is pushed, and the effect of adjusting the size and direction of the feedback force applied by the force feedback component 70 to the button 60 according to changes in the game scene can be achieved.
  • the user You can feel the change in force feedback, that is, the change in touch. The user will add a lot of rich tactile experience during the operation of the handle 100, thereby improving the use experience of the handle 100 and further improving the user's gaming experience.
  • the user presses the button 60.
  • the driving device 20 drives the force feedback component 70 to work so that the force feedback component 70 applies feedback force to the button 60.
  • the user presses the button 60.
  • the feedback force is received, so that the user has a tactile sensation and has a better use experience.
  • the size and direction of the feedback force are controlled through the force feedback component 70.
  • the feedback force felt by the user changes, that is, the tactile sensation changes, in the game scene , can provide users with multi-scene tactile sensations. For example: in a game scene with a strike force, after the existing button 60 is pressed, the strike function is triggered in the game scene.
  • the strike force button 60 As for whether the strike force button 60 is 6N or 8N, there is no feedback. In this application, through the force The feedback component 70 controls the size and direction of the feedback force. Under different impact forces, the button 60 can obtain different feedback forces. Furthermore, if the impact force is 6N, the button 60 will be subject to a feedback force of 2N. If the impact force is The force is 8N, and the button 60 is acted upon by a feedback force of 3N. In this way, when the user operates the handle 100, a rich tactile experience will be added and the gaming experience will be improved.
  • the force feedback assembly 70 includes: a motor 71 and a push rod assembly 72 .
  • the push rod assembly 72 cooperates with the button 60 and the motor 71 respectively.
  • the push rod assembly 72 converts the rotation of the motor 71 into movement to exert feedback force on the button 60 .
  • the push rod assembly 72 can be connected between the button 60 and the output shaft of the motor 71.
  • the motor 71 works, the output shaft of the motor 71 rotates, and the push rod assembly 72 converts the rotation of the output shaft into movement.
  • the push rod assembly 72 When moving toward or away from the button 60 , the push rod assembly 72 can exert a feedback force on the button 60 , so that the user can feel the feedback force, thereby adding a rich tactile experience.
  • the push rod assembly 72 converts the rotation of the output shaft into movement, and the push rod assembly 72 The member 72 moves toward the button 60, and the push rod assembly 72 can exert a thrust feedback force on the button 60.
  • the push rod assembly 72 rotates the output shaft. The rotation is converted into movement, and the push rod assembly 72 carries the button 60 to move in a direction away from the button 60 .
  • the push rod assembly 72 can exert a pulling feedback force on the button 60 .
  • the button 60 is configured as a trigger button 63 that is rotated.
  • the trigger button 63 can be installed on the housing 10 through a pivot axis, and the trigger button 63 can rotate around the pivot axis.
  • the detector 80 is configured as an angle sensor. Among them, in the game scene of strike force, the user presses and rotates the trigger button 63 to trigger the strike function in the game scene, and controls the size and direction of the feedback force through the force feedback component 70. Under different strike forces, the trigger button 63 can obtain Different feedback forces.
  • the angle sensor detects the rotation angle of the trigger key 63 relative to the housing 10 in real time, and the detector 80 transmits the detection information to the processor 11. The processor 11 determines the position of the trigger key 63 based on the received detection information.
  • the force feedback component 70 includes: an energized coil and a magnetic component.
  • the energized coil is arranged in the housing 10, and is electrically connected to the processor 11.
  • the processor 11 controls the current magnitude and direction of the energized coil.
  • the magnetic component is disposed at the key 60 . Further, the magnetic component is installed on the key 60 .
  • the magnetic component may be disposed between the energized coil and the key 60 .
  • the processor 11 changes the direction and magnitude of the current of the energized coil, thereby changing the direction and intensity of the magnetic field generated by the energized coil, thereby changing the direction and magnitude of the force on the magnetic component.
  • the button 60 drives the magnetic component to move in a direction close to the energized coil.
  • the processor 11 controls the energized coil to generate a current in the first direction.
  • the processor 11 controls the energized coil to generate a magnetic field.
  • the magnetic field generated by the energized coil is generated by the magnetic component.
  • the magnetic fields repel each other, and the magnetic parts are subjected to the repulsive force, which is fed back to the button 60.
  • the processor 11 controls the energized coil to generate a current in a second direction.
  • the second direction is opposite to the first direction.
  • the processor 11 controls the energized coil to generate a magnetic field.
  • the magnetic field generated by the energized coil and the magnetic field generated by the magnetic component attract each other, and the magnetic component is affected by
  • the suction force is fed back to the button 60.
  • the button 60 is fed back by the force generated by the suction, so that the handle 100 has a better use experience.
  • the current of the energized coil changes, the intensity of the generated magnetic field changes, and the force feedback received by the user changes, that is, the touch sensation changes.
  • the processor 11 controls the current magnitude and direction of the energized coil, thereby controlling the energization.
  • the intensity of the magnetic field generated by the coil controls the force exerted by the magnetic component in the magnetic field.
  • the force exerted by the magnetic component in the magnetic field is fed back to the button 60 and then fed back to the user to improve the user experience.
  • multi-scene tactile sensations can be provided for game users.
  • the strike function is triggered in the game scene.
  • the button 60 cannot provide feedback.
  • the processor 11 controls the current size and direction of the energized coil.
  • the button 60 can obtain different feedback forces. , further, if the striking force is 6N, the button 60 is acted upon by a feedback force of 2N, and if the striking force is 8N, the button 60 is acted upon by a feedback force of 3N, so that when the user operates the handle 100 , will add a rich tactile experience and enhance the gaming experience.
  • the head-mounted device determines the force feedback mode as needed.
  • the head-mounted device optimizes and processes the data to become a control signal, and the head-mounted device will
  • the control signal is transmitted to the processor 11.
  • the processor 11 transmits the control signal to the driving device 20.
  • the processor 11 controls the current size and current direction of the energized coil through the driving device 20.
  • the magnetic field generated by the energized coil and the magnetic components The generated magnetic fields repel each other, and the magnetic parts are subject to a repulsive force.
  • the repulsive force is fed back to the button 60.
  • the user presses the button 60 the user receives a feedback force, giving the user a tactile sensation and a better user experience.
  • the detector 80 may be configured as a Hall sensor, which cooperates with the magnetic component to sense the position of the key 60 .
  • the Hall sensor can detect the position of the magnetic part. After the Hall sensor detects the position of the magnetic part, the Hall sensor transmits the position information of the magnetic part to the processor 11. The processor 11 determines the button 60 based on the received position information of the magnetic part. Location.
  • the handle 100 may also include an external connection port 98 , which is provided at the housing 10 .
  • the external connection port 98 is suitable for plug-fitting with external devices to transmit signals.
  • the external port 98 is a communication and expansion interface. After the external port 98 is plugged and connected with an external device, the function of the handle 100 can be expanded, and the use experience of the handle 100 can be further improved.
  • the handle 100 may also include a power source.
  • the power source may be a rechargeable battery 91.
  • the rechargeable battery 91 is provided in the housing 10.
  • the rechargeable battery 91 is electrically connected to the processor 11 to provide power to the handle. 100 supplies power.
  • the processor 11 can control the rechargeable battery 91 to supply power to the components in the handle 100 that need power, thereby ensuring the normal operation of the handle 100.
  • the handle 100 also includes a charging chip 92 and a power chip 93.
  • the charging chip 92 is connected to the rechargeable battery 91 and the power chip 93.
  • the power chip 93 is also connected to a plurality of positioning light sources 64, thereby realizing charging.
  • the battery 91 needs to supply power to the multiple positioning light sources 64 to ensure the normal operation of the multiple positioning light sources 64 .
  • a lighting control chip 65 is connected between the processor 11 and the plurality of positioning light sources 64 .
  • the lighting control chip 65 is used to control the lighting of the plurality of positioning light sources 64 .
  • the handle 100 further includes a status indicator light 94.
  • the status indicator light 94 is provided on the housing 10.
  • the status indicator light 94 can be configured as a three-color light. When the status indicator light 94 turns off, it indicates that the handle 100 has been connected to the headset or the handle 100 is powered off. When the status indicator light 94 flashes blue, it indicates that the handle 100 is connected to the head-mounted device. When the status indicator light 94 is always blue, it indicates the handle 100 firmware upgrade mode. When the status indicator light When the red and blue lights 94 flash alternately at a slow speed (0.5 seconds), it indicates that the handle 100 and the head-mounted device are waiting for pairing.
  • the housing 10 includes: a main body 12 and a collar 13 .
  • the buttons 60 , the sensor 66 and the vibration device 30 are respectively arranged on the main body 12 .
  • the collar 13 is arranged on the main body 12 .
  • the collar 13 is formed into a hollow ring shape.
  • a plurality of positioning light sources 64 are arranged on the collar 13 .
  • multiple positioning light sources 64 are provided in the collar 13. When the user moves the handle 100, the multiple positioning light sources 64 can be driven to move together, which facilitates the head-mounted device to track and identify the position of the handle 100.
  • the collar 13 can protect the plurality of positioning light sources 64 and prevent the plurality of positioning light sources 64 from being damaged by external objects, thereby extending the service life of the plurality of positioning light sources 64 . It should be noted that during the use of the handle 100, the multiple positioning light sources 64 cannot be blocked.
  • the handle 100 may also include: an inertial measurement unit 95 , which is disposed in the housing 10 , and is electrically connected to the processor 11 .
  • the inertial measurement unit 95 is electrically connected to the processor 11 .
  • 95 can measure the three-axis attitude angle (or angular rate) and acceleration of the handle 100.
  • the inertial measurement unit 95 transmits the three-axis attitude angle (or angular rate) and acceleration information of the handle 100 to the processor 11.
  • the processor 11 The three-axis attitude angle (or angular rate) and acceleration information of the handle 100 are transmitted to the head-mounted device.
  • the head-mounted device determines the attitude of the handle 100 based on the three-axis attitude angle (or angular rate) and acceleration information of the handle 100, that is, the handle 100 action.
  • the handle 100 includes: a HOME key 96 and a return key 97.
  • the HOME key 96 and the return key 97 can both be connected to the processor 11. Short press HOME when starting up. key 96, press and hold the HOME key 96 for 6 seconds when shutting down, short press the HOME key 96 to return to the main section, press and hold the HOME key 96 for 1 second for screen center correction.
  • the return key 97 within a specific application may be configured for other functions.
  • a buffer 40 is provided between the vibration device 30 and the inner peripheral wall of the housing 10, and the buffer 40 is sandwiched between the vibration device 30 and the inner peripheral wall of the housing 10,
  • the buffer member 40 has a buffering effect.
  • the buffer member 40 can buffer the vibration of the vibration device 30 and make the handle 100 vibrate more gently, thereby improving the user's feeling of holding the handle 100.
  • the buffer member 40 can be configured as foam, which has a good buffering effect. Such an arrangement can ensure the buffering effect of the buffer member 40 and make the handle 100 vibrate more gently, thereby further improving the user's feeling of holding the handle 100. Moreover, the price of foam is cheap, which can reduce the manufacturing cost of the handle 100 .
  • the handle 100 also includes a mounting bracket 50.
  • the mounting bracket 50 is provided in the housing 10, and the mounting bracket 50 is wrapped around the vibration device 30. Further, as shown in Figure 4
  • the mounting bracket 50 defines an installation space with an open lower end.
  • the vibration device 30 is installed in the mounting bracket 50 through the open end of the installation space.
  • a buffer 40 is provided between the lower surface of the vibration device 30 and the inner peripheral wall of the housing 10.
  • the mounting bracket 50 is fixed to the inner wall of the housing 10 to position the vibration device 30 within the housing 10 .
  • the mounting bracket 50 can be installed on the housing 10 through bolts or screws.
  • Such an arrangement can securely install the mounting bracket 50 in the housing 10 , enable the vibration device 30 to be reliably positioned in the housing 10 , and facilitate the installation of the bracket.
  • the disassembly and assembly of the vibration device 30 facilitates the replacement and maintenance of the vibration device 30. build.
  • the application is not limited to this, and the mounting bracket 50 can also be snap-connected to the housing 10 .
  • a head-mounted device includes: a host computer and a handle 100 .
  • the handle 100 is the handle 100 of the above embodiment, and the processor 11 transmits signals with the host.
  • the host generates different command signals according to different game scenarios.
  • the handle 100 is connected to the head-mounted device to connect the processor 11 with the host signal.
  • the host When there is a vibration scene in the game, the host generates signals that match the current game scenario.
  • the command signal of the vibration frequency of the vibration device 30 is then transmitted by the host to the processor 11.
  • the processor 11 transmits the command signal to the driving device 20.
  • the driving device 20 controls the vibration device 30 to respond accordingly based on the received command signal. Vibration frequency vibration.
  • the vibration frequency of the vibration device 30 is different, so that the user feels different when holding the handle 100 and can simulate different hand feelings, thereby enabling the adjustment of the vibration frequency of the vibration device 30 as the game scene changes.
  • the user can obtain the game scene information by holding the handle 100.
  • the user can grasp the game scene in time during the game.
  • the user can make judgments and reaction operations quickly and accurately, thereby improving the user experience of the head-mounted device and thereby improving the user experience.
  • the handle 100 combines high-precision positioning, finger touch and vibration functions. By cooperating with the host, the game and scene experience can be greatly increased, thereby improving the experience of using the head-mounted device and thereby improving the user's gaming experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种头戴式设备的手柄(100)以及头戴式设备,手柄(100)包括:外壳(10),处理器(11),处理器(11)设置在外壳(10)内,处理器(11)与头戴式设备的主机信号传输;驱动装置(20),驱动装置(20)设在外壳(10)内,驱动装置(20)与处理器(11)电连接以接收处理器(11)传输的指令信号;振动装置(30),振动装置(30)设在外壳(10)内,振动装置(30)具有多种不同的振动频率,驱动装置(20)与振动装置(30)相连以根据接收的指令信号控制振动装置(30)以相对应的振动频率振动。

Description

头戴式设备的手柄以及头戴式设备
相关申请的交叉引用
本申请基于申请号为202210302826.8、申请日为2022年03月24日的中国专利申请以及申请号为202210303366.0、申请日为2022年03月24日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及游戏手柄技术领域,尤其是涉及一种头戴式设备的手柄以及具有该头戴式设备的手柄的头戴式设备。
背景技术
相关技术中,头戴式设备(例如:VR眼镜)和游戏手柄配合工作,随着VR行业的发展,消费者对游戏体验的需求越来越高。现有游戏手柄内设置有振动装置,振动装置只能根据开关命令做简单的震动,振动装置不能根据游戏场景的变化调整振动频率,使游戏手柄的使用体验不好,影响用户游戏体验。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种头戴式设备的手柄,该头戴式设备的手柄能够实现随游戏场景的变化调整振动装置的振动频率,从而提升手柄的使用体验,进而提升用户游戏体验。
本申请进一步地提出了一种头戴式设备。
根据本申请的头戴式设备的手柄,所述手柄包括:外壳,处理器,所述处理器设置在所述外壳内,所述处理器与所述头戴式设备的主机信号传输;驱动装置,所述驱动装置设在所述外壳内,所述驱动装置与所述处理器电连接以接收所述处理器传输的指令信号;振动装置,所述振动装置设在所述外壳内,所述振动装置具有多种不同的振动频率,所述驱动装置与所述振动装置相连以根据接收的指令信号控制所述振动装置以相对应的所述振动频率振动。
根据本申请的头戴式设备的手柄,通过处理器、驱动装置和振动装置配合,能够实现随游戏场景的变化调整振动装置的振动频率,可以使用户获取游戏场景信息,用户在游戏过程中,能及时掌握游戏场景,用户可以快速、准确地作出判断及反应操作,从而提升手柄的使用体验,进而提升用户游戏体验。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是根据本申请实施例的手柄的示意图;
图2是根据本申请实施例的手柄的剖视图;
图3是根据本申请实施例的处理器、驱动装置和振动装置的工作原理图;
图4是根据本申请实施例的处理器、驱动装置、力反馈组件和角度传感器的工作原理图;
图5是根据本申请实施例的按键、电机和推杆组件的装配示意图;
图6是根据本申请实施例的手柄的内部结构示意图;
图7是根据本申请实施例的处理器、驱动装置、力反馈组件和霍尔传感器的工作原理图;
图8是根据本申请实施例的手柄的工作原理框图;
图9是根据本申请实施例的左手柄的示意图;
图10是根据本申请实施例的右手柄的示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
下面参考图1-图10描述根据本申请实施例的头戴式设备的手柄100,头戴式设备可以 为VR眼镜,头戴式设备戴在用户头上,头戴式设备包括主机。
如图1-图3所示,根据本申请实施例的手柄100包括:外壳10、处理器11、驱动装置20和振动装置30。处理器11设置在外壳10内,处理器11与头戴式设备的主机信号传输。驱动装置20设置在外壳10内,驱动装置20与处理器11电连接,驱动装置20可以接收处理器11传输的指令信号,驱动装置20可以为带有IIS(Internet Information Services-互联网信息服务)音频输入接口的驱动芯片。振动装置30设置在外壳10内,振动装置30可以设置为马达,马达为频率响应范围很宽的宽频线性马达,振动装置30具有多种不同的振动频率,驱动装置20与振动装置30相连,驱动装置20可以根据接收的指令信号控制振动装置30以相对应的振动频率振动。
其中,一种指令信号可以对应一种游戏场景,主机根据不同的游戏场景生成不同的指令信号,用户在游戏时,将手柄100连接至头戴式设备使处理器11与主机信号连接,当游戏内有振动场景时,主机生成符合当前游戏场景下振动装置30振动频率的指令信号,然后主机将生成的指令信号传输到处理器11,处理器11将指令信号传输至驱动装置20,驱动装置20根据接收的指令信号控制振动装置30以相对应的振动频率振动。并且,在不同游戏场景下,振动装置30的振动频率不同,从而使用户手握手柄100感受不同,可以模拟出不同的手感,例如:振动装置30的振动频率越低,手柄100振感越小,振动装置30的振动频率越高,手柄100振感越大,也可以理解为,振动装置30的振动频率越低,手柄100的粘手感越强,振动装置30的振动频率越高,手柄100的粘手感越弱。由此,通过处理器11、驱动装置20和振动装置30配合工作,能够实现随游戏场景的变化调整振动装置30的振动频率的效果,用户手握手柄100可以获取游戏场景信息,用户在游戏过程中,能及时掌握游戏场景,用户可以快速、准确地作出判断及反应操作,从而提升手柄100的使用体验,进而提升用户游戏体验。
由此,通过处理器11、驱动装置20和振动装置30配合,能够实现随游戏场景的变化调整振动装置30的振动频率,可以使用户获取游戏场景信息,用户在游戏过程中,能及时掌握游戏场景,用户可以快速、准确地作出判断及反应操作,从而提升手柄100的使用体验,进而提升用户游戏体验。
在本申请的一些实施例中,如图1所示,手柄100还可以包括挂环90,挂环90安装于外壳10上,用户手握手柄100时,挂环90挂在用户手脖上,可以防止手柄100从用户手上掉落。
在本申请的一些实施例中,指令信号可以设置为音频信号,驱动装置20根据接收的不同音频信号控制振动装置30振动。其中,一种音频信号可以对应一种游戏场景,当游戏内有振动场景时,主机会提取游戏场景内音效轨道内容进行算法优化处理以生成符合当前游 戏场景下振动装置30振动频率的音频文件,然后主机将生成的音频文件通过无线传输到处理器11,处理器11将音频文件通过IIS音频信号传输到驱动装置20,然后驱动装置20根据接收的音频信号控制振动装置30以相对应的振动频率振动。如此设置能够实现根据游戏场景内音效控制振动装置30的振动频率的效果,可以更好地实现随游戏场景的变化调整振动装置30的振动频率,用户在游戏过程中,能更加及时掌握游戏场景,用户可以更加快速、准确地作出判断及反应操作,从而进一步提升手柄100的使用体验,进而进一步提升用户游戏体验。
在本申请的一些实施例中,处理器11可以设置有无线传输模块,无线传输模块与主机无线信号传输。进一步地,无线传输模块可以为蓝牙和/或wifi,处理器11可以通过蓝牙和/或wifi与主机信号传输,但本申请不限于此,处理器11也可以通过与蓝牙和/或wifi起到相同作用的其他无线传输方式与主机进行信号传输。这样设置能够避免处理器11与主机通过线束连接,可以防止线束拉扯手柄100和头戴式设备,从而可以避免手柄100移动位置受限,进而可以进一步提升手柄100的使用体验,提升用户满意度。
在本申请的一些实施例中,如图2所示,振动装置30和外壳10的内周壁之间设置有缓冲件40,缓冲件40夹设在振动装置30和外壳10的内周壁之间,缓冲件40具有缓冲作用,当振动装置30振动时,缓冲件40能够缓冲振动装置30的振动,可以使手柄100振动的更加平缓,从而可以提升用户手握手柄100感受。
进一步地,缓冲件40可以设置为泡棉,泡棉的缓冲效果好,如此设置能够保证缓冲件40的缓冲效果,可以使手柄100振动的更加平缓,从而可以进一步提升用户手握手柄100感受,并且,泡棉的价格便宜,可以降低手柄100的制造成本。
在本申请的一些实施例中,如图2所示,手柄100还包括安装支架50,安装支架50设置在外壳10内,安装支架50外套在振动装置30上,进一步地,如图2所示,安装支架50限定出下端敞开的安装空间,振动装置30通过安装空间的敞开端安装于安装支架50内,振动装置30的下表面和外壳10的内周壁之间设有缓冲件40,安装支架50固定至外壳10的内壁以将振动装置30定位在外壳10内。其中,安装支架50可以通过螺栓或者螺钉安装于外壳10,这样设置能够将安装支架50稳固地安装在外壳10内,可以使振动装置30可靠地定位在外壳10内,并且,也能够便于安装支架50的拆装,便于振动装置30的更换和维修。但本申请不限于此,安装支架50也可以卡接于外壳10上。
在本申请的一些实施例中,手柄100还设置有按键60,按键60与处理器11电连接,按键60被触发时处理器11接收信号并与主机信号传输。其中,按键60具有控制功能,例如:确认控制功能、射击控制功能、返回控制功能等等,按动按键60时,按键60会将与按键60对应的功能信号传输至处理器11,处理器11将与按键60对应的功能信号传输至主 机,主机接收到与按键60对应的功能信号后控制头戴式设备执行相应工作。
在本申请的一些实施例中,如图4-图7所示,手柄100还可以包括:力反馈组件70和用于检测按键60的位置的检测器80。检测器80与处理器11电连接,在用户按压按键60时,检测器80能够实时检测按键60相对外壳10的位置,检测器80检测出按键60相对外壳10的位置后,检测器80将检测信息传输至处理器11,处理器11根据接收到的检测信息判断出按键60位置。力反馈组件70与处理器11电连接,力反馈组件70与按键60配合以朝向按键60施加反馈力,力反馈组件70根据处理器11传输的信号控制反馈力的大小和方向。需要说明的是,一种游戏场景可以对应一种反馈力的大小和方向,按键60在游戏体验环节提供了非常重要的作用,现有按键只能在按压时使用户手指有压力感,按键60无法对手指进行反推。
而在本申请中,当游戏内有需要对按键60进行力反馈场景时,主机根据需要决定力反馈模式,例如:决定反馈力的大小和方向,然后主机经过算法处理优化成为控制信号,主机将控制信号通过无线传输至处理器11,处理器11接收到控制信号后将控制信号传输至驱动装置20,驱动装置20驱动力反馈组件70工作,使力反馈组件70将反馈力施加在按键60上,按键60可以对手指进行反推,使手指受到推力,能够实现随游戏场景的变化调节力反馈组件70向按键60施加反馈力的大小和方向的效果,用户可以感受到力的反馈改变,即触感改变,用户在操作手柄100过程中会增加很多丰富的触感体验,从而提升手柄100的使用体验,进而进一步提升用户游戏体验。
具体地,用户按压按键60,当游戏内有需要对按键60进行力反馈场景时,驱动装置20驱动力反馈组件70工作,使力反馈组件70将反馈力施加在按键60上,用户在按压按键60的过程中,受到反馈力,使用户有触感产生,具有较好的使用体验,通过力反馈组件70控制反馈力的大小和方向,用户感受到的反馈力改变,即触感改变,在游戏场景中,可以为用户提供多场景触感。例如:在打击力的游戏场景中,现有的按键60按下去后,触发游戏场景中实现打击功能,至于是6N还是8N的打击力按键60是反馈不出来的,在本申请中,通过力反馈组件70控制反馈力的大小和方向,在不同打击力下,按键60能得到不同反馈力,进一步地,如果打击力是6N的力,按键60受到一个大小2N的反馈力作用,如果打击力是8N的力,按键60受到一个大小3N的反馈力作用,这样用户在操作手柄100过程中,会增加丰富的触感体验,提升游戏体验。
在本申请的一些实施例中,如图4-图6所示,力反馈组件70包括:电机71和推杆组件72。推杆组件72分别与按键60和电机71配合,推杆组件72将电机71的转动转换成移动以对按键60施加反馈力。其中,推杆组件72可以连接在按键60和电机71的输出轴之间,当电机71工作时,电机71的输出轴转动,推杆组件72将输出轴转动转换成移动,在 推杆组件72朝向或者远离按键60移动过程中,推杆组件72可以对按键60施加反馈力,从而使用户感受到反馈力,进而增加丰富的触感体验。具体地,当电机71的输出轴朝顺时针方向和逆时针方向中的一个方向转动时,推杆组件72将输出轴转动转换成移动,推杆组件72朝向按键60移动,推杆组件72可以对按键60施加推力的反馈力,当电机71的输出轴朝顺时针方向和逆时针方向中的另一个方向转动时,推杆组件72将输出轴转动转换成移动,推杆组件72带着按键60朝向远离按键60方向移动,推杆组件72可以对按键60施加拉力的反馈力。
在本申请的一些实施例中,如图5和图6所示,按键60设置为转动设置的扳机,扳机可以通过枢转轴安装于外壳10,扳机可以绕着枢转轴转动,检测器80设置为角度传感器82。其中,在打击力的游戏场景中,用户按动扳机转动,触发游戏场景中实现打击功能,通过力反馈组件70控制反馈力的大小和方向,在不同打击力下,按键60能得到不同反馈力。并且,通过角度传感器82实时检测扳机相对外壳10的转动角度,检测器80将检测信息传输至处理器11,处理器11根据接收到的检测信息判断出按键60位置。
在本申请的一些实施例中,力反馈组件70包括:通电线圈和磁性件。通电线圈设置在外壳10内,通电线圈与处理器11电连接,处理器11控制通电线圈的电流大小和电流方向。磁性件设置在按键60处,进一步地,磁性件安装于按键60上,磁性件可以设置在通电线圈和按键60之间。其中,通过处理器11改变通电线圈的电流方向和大小,从而改变通电线圈产生的磁场的方向和强度,进而改变磁性件受力的方向和大小。用户按压按键60时,按键60带动磁性件向靠近通电线圈的方向运动,处理器11控制通电线圈产生第一方向的电流,处理器11控制通电线圈产生磁场,通电线圈产生的磁场与磁性件产生的磁场相互排斥,磁性件受到排斥力,排斥力反馈至按键60,用户在按压按键60过程中,受到排斥力产生的力的反馈,进而有触感产生,使手柄100具有较好的使用体验。另外,处理器11控制通电线圈产生第二方向的电流,第二方向和第一方向相反,处理器11控制通电线圈产生磁场,通电线圈产生的磁场与磁性件产生的磁场相互吸引,磁性件受到吸力,吸力反馈至按键60,用户在按压按键60过程中,按键60受到吸力产生的力的反馈,使手柄100具有较好的使用体验。通电线圈的电流大小改变,产生的磁场强度大小改变,用户受到的力的反馈改变,即触感改变。
并且,通过在按键60上安装磁性件,磁性件的其中一个磁极端朝向通电线圈,磁性件和通电线圈之间具有设定距离,处理器11控制通电线圈的电流大小和电流方向,从而控制通电线圈产生的磁场强度大小,进而控制磁性件在磁场中的受力大小,磁性件在磁场中受到的力反馈至按键60上,进而反馈给用户,提高用户的使用体验。在游戏场景中,可以为游戏用户提供多场景触感,通过改变通电线圈的电流大小,可以在按键60按压过程中得到 不同的反馈感,而且在按键60按压过程中,反馈感是可以变化的,如反馈力增大或减小。
例如:在打击力的游戏场景中,现有的按键60按下去后,触发游戏场景中实现打击功能,至于是6N还是8N的打击力按键60是反馈不出来的,在本申请中,通过处理器11控制通电线圈的电流大小和电流方向,在不同打击力下,按键60能得到不同反馈力,进一步地,如果打击力是6N的力,按键60受到一个大小2N的反馈力作用,如果打击力是8N的力,按键60受到一个大小3N的反馈力作用,这样用户在操作手柄100过程中,会增加丰富的触感体验,提升游戏体验。
具体地,用户按压按键60,当游戏内有需要对按键60进行力反馈场景时,主机根据需要决定力反馈模式,主机经过优化处理数据成为控制信号,主机将控制信号传输至处理器11,处理器11接收到控制信号后将控制信号传输至驱动装置20,处理器11通过驱动装置20控制通电线圈的电流大小和电流方向,通电线圈产生的磁场与磁性件产生的磁场相互排斥,磁性件受到排斥力,排斥力反馈至按键60,用户在按压按键60的过程中,受到反馈力,使用户有触感产生,具有较好的使用体验。
进一步地,如图7所示,检测器80可以设置为霍尔传感器81,霍尔传感器81与磁性件配合以感应按键60的位置。其中,霍尔传感器81能够检测磁性件位置,霍尔传感器81检测出磁性件位置后,霍尔传感器81将磁性件位置信息传输至处理器11,处理器11根据接收到的磁性件位置信息判断出按键60位置。
如图7-图10所示,根据本申请实施例的手柄100包括:外壳10、传感器66、振动装置30和多个定位光源64。外壳10上设置有按键60,外壳10内设置有与头戴式设备信号传输的处理器11,按键60与处理器11电连接,用户操作按键60时,按键60将与该按键60对应的功能信号传输至处理器11,处理器11将接收的与按键60对应的功能信号传输至头戴式设备,头戴式设备根据与按键60对应的功能信号控制头戴设备内的游戏场景。例如:按键60可以包括摇杆61和侧按键62,摇杆61在多个方向可摇动,优选地,摇杆61在四个方向可摇动,用户摇动摇杆61时,摇杆61可以将翻页功能信号传输至处理器11,处理器11将接收的翻页功能信号传输至头戴式设备,头戴式设备根据翻页功能信号控制头戴设备内的游戏场景翻页,并且,摇杆61可以下按点击操作,用户下按点击摇杆61时,摇杆61可以将下按点击功能信号传输至处理器11,处理器11将接收的下按点击功能信号传输至头戴式设备,头戴式设备控制切换头戴设备内的游戏场景。侧按键62可以控制抓取操作,用户按动侧按键62时,侧按键62可以将抓取功能信号传输至处理器11,处理器11将接收的抓取功能信号传输至头戴式设备,头戴式设备根据抓取功能信号控制头戴设备内的游戏场景显示抓取操作。这样设置能够使用户通过手柄100的按键60控制游戏场景,可以提升用户游戏体验。
进一步地,多个定位光源64设置在外壳10,定位光源64可以设置为红外灯,多个定位光源64与处理器11电连接,多个定位光源64用于被识别以判定手柄100的位置,进一步地,头戴式设备识别多个定位光源64的位置以判定手柄100的位置。具体地,多个定位光源64同时亮起后,处理器11获取多个定位光源64的亮起形成的形状,处理器11将多个定位光源64的亮起形成的形状信息传输至头戴式设备,头戴式设备根据多个定位光源64形成的形状信息判断出手柄100的空间位置,头戴式设备可以追踪识别出手柄100的位置,从而使手柄100具有高精度定位功能。在游戏过程中,用户通过移动手柄100,使多个定位光源64位置发生变化,可以指向头戴设备的游戏场景中要浏览的内容。
进一步地,传感器66设置于外壳10,传感器66与处理器11电连接,传感器66识别用户的手指状态及位置。其中,用户手指触碰到传感器66时,传感器66可以识别出用户的手指动作及位置,传感器66将识别出用户的手指状态(手指动作)及位置信息传输至处理器11,处理器11将识别出用户的手指状态及位置信息传输至头戴式设备,头戴式设备可以识别出用户手指的状态及位置,从而可以判断出用户几个手指触碰传感器66,从而在游戏过程中识别出用户的手指状态及位置。需要说明的是,传感器66与用户手指未接触时,传感器66可以感受到用户手指靠近。
振动装置30设置在外壳10内,振动装置30与处理器11电相连,振动装置30可以设置为马达,马达为频率响应范围很宽的宽频线性马达,振动装置30根据接收信号产生振动。其中,当游戏内有振动场景时,头戴式设备生成符合当前游戏场景下振动装置30的振动频率信号,然后头戴式设备将生成的振动频率信号传输到处理器11,处理器11控制振动装置30产生振动,从而可以使手柄100具备振动功能。
由此,通过传感器66、振动装置30和多个定位光源64配合,能够使手柄100兼顾高精度定位、手指触摸和振动功能,可以大幅度增加游戏和场景体验,从而可以提升手柄100使用体验,进而提升用户游戏体验。
在本申请的一些实施例中,如图8所示,振动装置30具有多种振动频率,振动装置30的振动频率可以调整,手柄100还包括驱动装置20,驱动装置20分别与振动装置30和处理器11电连接,驱动装置20根据处理器11传输的指令信号控制振动装置30以相应的振动频率振动。进一步地,驱动装置20设置在外壳10内,驱动装置20可以接收处理器11传输的指令信号,驱动装置20可以为带有IIS(Internet Information Services-互联网信息服务)音频输入接口的驱动芯片。
其中,一种指令信号可以对应一种游戏场景,头戴式设备根据不同的游戏场景生成不同的指令信号,用户在游戏时,将手柄100连接至头戴设备使处理器11与头戴式设备信号连接,当游戏内有振动场景时,头戴式设备生成符合当前游戏场景下振动装置30振动频率的 指令信号,然后头戴式设备将生成的指令信号传输到处理器11,处理器11将指令信号传输至驱动装置20,驱动装置20根据接收的指令信号控制振动装置30以相对应的振动频率振动。并且,在不同游戏场景下,振动装置30的振动频率不同,从而使用户手握手柄100感受不同,可以模拟出不同的手感,例如:振动装置30的振动频率越低,手柄100振感越小,振动装置30的振动频率越高,手柄100振感越大,也可以理解为,振动装置30的振动频率越低,手柄100的粘手感越强,振动装置30的振动频率越高,手柄100的粘手感越弱。由此,通过处理器11、驱动装置20和振动装置30配合工作,能够实现随游戏场景的变化调整振动装置30的振动频率的效果,用户手握手柄100可以获取游戏场景信息,用户在游戏过程中,能及时掌握游戏场景,用户可以快速、准确地作出判断及反应操作,从而提升手柄100的使用体验,进而提升用户游戏体验。
在本申请的一些实施例中,指令信号可以设置为音频信号,驱动装置20根据接收的不同音频信号控制振动装置30振动。其中,一种音频信号可以对应一种游戏场景,当游戏内有振动场景时,头戴式设备会提取游戏场景内音效轨道内容进行算法优化处理以生成符合当前游戏场景下振动装置30振动频率的音频文件,然后头戴式设备将生成的音频文件通过无线传输到处理器11,处理器11将音频文件通过IIS音频信号传输到驱动装置20,然后驱动装置20根据接收的音频信号控制振动装置30以相对应的振动频率振动。如此设置能够实现根据游戏场景内音效控制振动装置30的振动频率的效果,可以更好地实现随游戏场景的变化调整振动装置30的振动频率,用户在游戏过程中,能更加及时掌握游戏场景,用户可以更加快速、准确地作出判断及反应操作,从而进一步提升手柄100的使用体验,进而进一步提升用户游戏体验。
在本申请的一些实施例中,手柄100还可以包括挂环,挂环安装于外壳10上,用户手握手柄100时,挂环挂在用户手脖上,可以防止手柄100从用户手上掉落。
在本申请的一些实施例中,处理器11设置有无线传输模块,手柄100通过无线传输模块与头戴式设备通信。进一步地,无线传输模块可以为蓝牙和/或wifi,处理器11可以通过蓝牙和/或wifi与头戴式设备信号传输,但本申请不限于此,处理器11也可以通过与蓝牙和/或wifi起到相同作用的其他无线传输方式与头戴式设备进行信号传输。这样设置能够避免处理器11与头戴式设备通过线束连接,可以防止线束拉扯手柄100和头戴设备,从而可以避免手柄100移动位置受限,进而可以进一步提升手柄100的使用体验,提升用户满意度。
在本申请的一些实施例中,按键60为多个,至少一个按键60设置有力检测器80和力反馈组件70,例如:多个按键60中包括扳机键63,扳机键63可以为确认功能及射击功能。检测器80用于检测按键60的位置,检测器80与处理器11电连接,在用户按压按键60时, 检测器80能够实时检测按键60相对外壳10的位置,检测器80检测出按键60相对外壳10的位置后,检测器80将检测信息传输至处理器11,处理器11根据接收到的检测信息判断出按键60位置。力反馈组件70与处理器11电连接,力反馈组件70与按键60配合以朝向按键60施加反馈力,力反馈组件70根据处理器11传输的信号控制反馈力的大小和方向。需要说明的是,一种游戏场景可以对应一种反馈力的大小和方向,按键60在游戏体验环节提供了非常重要的作用,现有按键只能在按压时使用户手指有压力感,按键无法对手指进行反推。
而在本申请中,当游戏内有需要对按键60进行力反馈场景时,头戴式设备根据需要决定力反馈模式,例如:决定反馈力的大小和方向,然后头戴式设备经过算法处理优化成为控制信号,头戴式设备将控制信号通过无线传输至处理器11,处理器11接收到控制信号后将控制信号传输至驱动装置20,驱动装置20驱动力反馈组件70工作,使力反馈组件70将反馈力施加在按键60上,按键60可以对手指进行反推,使手指受到推力,能够实现随游戏场景的变化调节力反馈组件70向按键60施加反馈力的大小和方向的效果,用户可以感受到力的反馈改变,即触感改变,用户在操作手柄100过程中会增加很多丰富的触感体验,从而提升手柄100的使用体验,进而进一步提升用户游戏体验。
具体地,用户按压按键60,当游戏内有需要对按键60进行力反馈场景时,驱动装置20驱动力反馈组件70工作,使力反馈组件70将反馈力施加在按键60上,用户在按压按键60的过程中,受到反馈力,使用户有触感产生,具有较好的使用体验,通过力反馈组件70控制反馈力的大小和方向,用户感受到的反馈力改变,即触感改变,在游戏场景中,可以为用户提供多场景触感。例如:在打击力的游戏场景中,现有的按键60按下去后,触发游戏场景中实现打击功能,至于是6N还是8N的打击力按键60是反馈不出来的,在本申请中,通过力反馈组件70控制反馈力的大小和方向,在不同打击力下,按键60能得到不同反馈力,进一步地,如果打击力是6N的力,按键60受到一个大小2N的反馈力作用,如果打击力是8N的力,按键60受到一个大小3N的反馈力作用,这样用户在操作手柄100过程中,会增加丰富的触感体验,提升游戏体验。
在本申请的一些实施例中,如图5和图6所示,力反馈组件70包括:电机71和推杆组件72。推杆组件72分别与按键60和电机71配合,推杆组件72将电机71的转动转换成移动以对按键60施加反馈力。其中,推杆组件72可以连接在按键60和电机71的输出轴之间,当电机71工作时,电机71的输出轴转动,推杆组件72将输出轴转动转换成移动,在推杆组件72朝向或者远离按键60移动过程中,推杆组件72可以对按键60施加反馈力,从而使用户感受到反馈力,进而增加丰富的触感体验。具体地,当电机71的输出轴朝顺时针方向和逆时针方向中的一个方向转动时,推杆组件72将输出轴转动转换成移动,推杆组 件72朝向按键60移动,推杆组件72可以对按键60施加推力的反馈力,当电机71的输出轴朝顺时针方向和逆时针方向中的另一个方向转动时,推杆组件72将输出轴转动转换成移动,推杆组件72带着按键60朝向远离按键60方向移动,推杆组件72可以对按键60施加拉力的反馈力。
在本申请的一些实施例中,如图4-图6所示,按键60设置为转动设置的扳机键63,扳机键63可以通过枢转轴安装于外壳10,扳机键63可以绕着枢转轴转动,检测器80设置为角度传感器。其中,在打击力的游戏场景中,用户按动扳机键63转动,触发游戏场景中实现打击功能,通过力反馈组件70控制反馈力的大小和方向,在不同打击力下,扳机键63能得到不同反馈力。并且,通过角度传感器实时检测扳机键63相对外壳10的转动角度,检测器80将检测信息传输至处理器11,处理器11根据接收到的检测信息判断出扳机键63位置。
在本申请的一些实施例中,力反馈组件70包括:通电线圈和磁性件。通电线圈设置在外壳10内,通电线圈与处理器11电连接,处理器11控制通电线圈的电流大小和电流方向。磁性件设置在按键60处,进一步地,磁性件安装于按键60上,磁性件可以设置在通电线圈和按键60之间。其中,通过处理器11改变通电线圈的电流方向和大小,从而改变通电线圈产生的磁场的方向和强度,进而改变磁性件受力的方向和大小。用户按压按键60时,按键60带动磁性件向靠近通电线圈的方向运动,处理器11控制通电线圈产生第一方向的电流,处理器11控制通电线圈产生磁场,通电线圈产生的磁场与磁性件产生的磁场相互排斥,磁性件受到排斥力,排斥力反馈至按键60,用户在按压按键60过程中,受到排斥力产生的力的反馈,进而有触感产生,使手柄100具有较好的使用体验。另外,处理器11控制通电线圈产生第二方向的电流,第二方向和第一方向相反,处理器11控制通电线圈产生磁场,通电线圈产生的磁场与磁性件产生的磁场相互吸引,磁性件受到吸力,吸力反馈至按键60,用户在按压按键60过程中,按键60受到吸力产生的力的反馈,使手柄100具有较好的使用体验。通电线圈的电流大小改变,产生的磁场强度大小改变,用户受到的力的反馈改变,即触感改变。
并且,通过在按键60上安装磁性件,磁性件的其中一个磁极端朝向通电线圈,磁性件和通电线圈之间具有设定距离,处理器11控制通电线圈的电流大小和电流方向,从而控制通电线圈产生的磁场强度大小,进而控制磁性件在磁场中的受力大小,磁性件在磁场中受到的力反馈至按键60上,进而反馈给用户,提高用户的使用体验。在游戏场景中,可以为游戏用户提供多场景触感,通过改变通电线圈的电流大小,可以在按键60按压过程中得到不同的反馈感,而且在按键60按压过程中,反馈感是可以变化的,如反馈力增大或减小。
例如:在打击力的游戏场景中,现有的按键60按下去后,触发游戏场景中实现打击功 能,至于是6N还是8N的打击力按键60是反馈不出来的,在本申请中,通过处理器11控制通电线圈的电流大小和电流方向,在不同打击力下,按键60能得到不同反馈力,进一步地,如果打击力是6N的力,按键60受到一个大小2N的反馈力作用,如果打击力是8N的力,按键60受到一个大小3N的反馈力作用,这样用户在操作手柄100过程中,会增加丰富的触感体验,提升游戏体验。
具体地,用户按压按键60,当游戏内有需要对按键60进行力反馈场景时,头戴式设备根据需要决定力反馈模式,头戴式设备经过优化处理数据成为控制信号,头戴式设备将控制信号传输至处理器11,处理器11接收到控制信号后将控制信号传输至驱动装置20,处理器11通过驱动装置20控制通电线圈的电流大小和电流方向,通电线圈产生的磁场与磁性件产生的磁场相互排斥,磁性件受到排斥力,排斥力反馈至按键60,用户在按压按键60的过程中,受到反馈力,使用户有触感产生,具有较好的使用体验。
进一步地,检测器80可以设置为霍尔传感器,霍尔传感器与磁性件配合以感应按键60的位置。其中,霍尔传感器能够检测磁性件位置,霍尔传感器检测出磁性件位置后,霍尔传感器将磁性件位置信息传输至处理器11,处理器11根据接收到的磁性件位置信息判断出按键60位置。
在本申请的一些实施例中,如图8所示,手柄100还可以包括外接端口98,外接端口98设置在外壳10处,外接端口98适于与外部设备插接配合以传输信号。其中,外接端口98为通讯和扩展接口,外接端口98与外部设备插接连接后,能够拓展手柄100功能,可以进一步提升手柄100使用体验。
在本申请的一些实施例中,如图8所示,手柄100还可以包括电源,电源可以为充电电池91,充电电池91设在外壳10内,充电电池91与处理器11电连接以给手柄100供电,其中,手柄100工作时,处理器11可以控制充电电池91向手柄100内需要供电的零部件供电,从而保证手柄100正常工作。
进一步地,如图8所示,手柄100还包括充电芯片92和电源芯片93,充电芯片92与充电电池91、电源芯片93均连接,电源芯片93还与多个定位光源64连接,从而实现充电电池91向多个定位光源64供电的需求,保证多个定位光源64正常工作。
进一步地,如图8所示,处理器11和多个定位光源64之间连接有灯亮控制芯片65,灯亮控制芯片65用于控制多个定位光源64亮起。
进一步地,手柄100还包括状态指示灯94,状态指示灯94设于外壳10,状态指示灯94可以设置为三色灯。当状态指示灯94熄灭时,表示手柄100已经与头戴设备的头戴式设备连接或者手柄100关机。当状态指示灯94蓝灯闪烁时,表示手柄100与头戴设备的头戴式设备连接中。当状态指示灯94蓝灯常亮时,表示手柄100固件升级模式。当状态指示灯 94红蓝灯交替慢速(0.5秒)闪烁时,表示手柄100与头戴设备的头戴式设备等待配对。
在本申请的一些实施例中,如图9和图10所示,外壳10包括:主体部12和套环13。按键60、传感器66和振动装置30分别设置于主体部12,套环13设置在主体部12,套环13形成为中空的环状,多个定位光源64设置于套环13。进一步地,多个定位光源64设置于套环13内,当用户移动手柄100时,能够带动多个定位光源64一起移动,便于头戴式设备追踪识别出手柄100的位置。并且,套环13可以对多个定位光源64起到保护作用,可以避免多个定位光源64被外界物体损坏,从而可以延长多个定位光源64使用寿命。需要说明的是,使用手柄100过程中,多个定位光源64不能被遮挡。
在本申请的一些实施例中,如图8所示,手柄100还可以包括:惯性测量单元95,惯性测量单元95设置于外壳10内,惯性测量单元95与处理器11电连接,惯性测量单元95可以测量手柄100的三轴姿态角(或角速率)以及加速度,惯性测量单元95将手柄100的三轴姿态角(或角速率)以及加速度信息传输至处理器11,处理器11将手柄100的三轴姿态角(或角速率)以及加速度信息传输至头戴式设备,头戴式设备根据手柄100的三轴姿态角(或角速率)以及加速度信息判断出手柄100的姿态,即手柄100动作。
在本申请的一些实施例中,如图9和图10所示,手柄100包括:HOME键96和返回键97,HOME键96和返回键97可以均与处理器11连接,开机时短按HOME键96,关机时长按6秒HOME键96,返回主截面短按HOME键96,屏幕中心校正按住1秒HOME键96。特定应用内返回键97可被置为其他功能。
在本申请的一些实施例中,如图4所示,振动装置30和外壳10的内周壁之间设置有缓冲件40,缓冲件40夹设在振动装置30和外壳10的内周壁之间,缓冲件40具有缓冲作用,当振动装置30振动时,缓冲件40能够缓冲振动装置30的振动,可以使手柄100振动的更加平缓,从而可以提升用户手握手柄100感受。
进一步地,缓冲件40可以设置为泡棉,泡棉的缓冲效果好,如此设置能够保证缓冲件40的缓冲效果,可以使手柄100振动的更加平缓,从而可以进一步提升用户手握手柄100感受,并且,泡棉的价格便宜,可以降低手柄100的制造成本。
在本申请的一些实施例中,如图4所示,手柄100还包括安装支架50,安装支架50设置在外壳10内,安装支架50外套在振动装置30上,进一步地,如图4所示,安装支架50限定出下端敞开的安装空间,振动装置30通过安装空间的敞开端安装于安装支架50内,振动装置30的下表面和外壳10的内周壁之间设有缓冲件40,安装支架50固定至外壳10的内壁以将振动装置30定位在外壳10内。其中,安装支架50可以通过螺栓或者螺钉安装于外壳10,这样设置能够将安装支架50稳固地安装在外壳10内,可以使振动装置30可靠地定位在外壳10内,并且,也能够便于安装支架50的拆装,便于振动装置30的更换和维 修。但本申请不限于此,安装支架50也可以卡接于外壳10上。
根据本申请实施例的头戴式设备包括:主机和手柄100。手柄100为上述实施例的手柄100,处理器11与主机信号传输。主机根据不同的游戏场景生成不同的指令信号,用户在游戏时,将手柄100连接至头戴式设备使处理器11与主机信号连接,当游戏内有振动场景时,主机生成符合当前游戏场景下振动装置30振动频率的指令信号,然后主机将生成的指令信号传输到处理器11,处理器11将指令信号传输至驱动装置20,驱动装置20根据接收的指令信号控制振动装置30以相对应的振动频率振动。并且,在不同游戏场景下,振动装置30的振动频率不同,从而使用户手握手柄100感受不同,可以模拟出不同的手感,由此能够实现随游戏场景的变化调整振动装置30的振动频率的效果,用户手握手柄100可以获取游戏场景信息,用户在游戏过程中,能及时掌握游戏场景,用户可以快速、准确地作出判断及反应操作,从而提升头戴式设备的使用体验,进而提升用户游戏体验。手柄100兼顾高精度定位、手指触摸和振动功能,通过手柄100与主机配合,可以大幅度增加游戏和场景体验,从而可以提升头戴设备使用体验,进而提升用户游戏体验。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (16)

  1. 一种头戴式设备的手柄,其中,所述手柄包括:
    外壳,
    处理器,所述处理器设置在所述外壳内,所述处理器与所述头戴式设备的主机信号传输;
    驱动装置,所述驱动装置设在所述外壳内,所述驱动装置与所述处理器电连接以接收所述处理器传输的指令信号;
    振动装置,所述振动装置设在所述外壳内,所述振动装置具有多种不同的振动频率,所述驱动装置与所述振动装置相连以根据接收的指令信号控制所述振动装置以相对应的所述振动频率振动。
  2. 根据权利要求1所述的头戴式设备的手柄,其中,所述指令信号为音频信号,所述驱动装置根据接收的音频信号控制所述振动装置振动。
  3. 根据权利要求1或2所述的头戴式设备的手柄,其中,所述处理器设有无线传输模块,所述无线传输模块与所述主机无线信号传输。
  4. 根据权利要求1-3中任一项所述的头戴式设备的手柄,其中,所述振动装置和所述外壳的内周壁之间设有缓冲件。
  5. 根据权利要求1-4中任一项所述的头戴式设备的手柄,其中,所述手柄还包括安装支架,所述安装支架外套在所述振动装置上,所述安装支架固定至所述外壳的内壁以将所述振动装置定位在所述外壳内。
  6. 根据权利要求1-5中任一项所述的头戴式设备的手柄,其中,所述手柄还设有按键,所述按键与所述处理器电连接,所述按键被触发时所述处理器接收信号并与所述主机信号传输。
  7. 根据权利要求6所述的头戴式设备的手柄,其中,还包括:
    多个定位光源,所述多个定位光源设在所述外壳,所述多个定位光源与所述处理器电连接,所述多个定位光源用于被识别以判定所述手柄的位置;
    传感器,所述传感器设置于所述外壳,所述传感器与所述处理器电连接,所述传感器识别用户的手指状态及位置,所述外壳上设有所述按键。
  8. 根据权利要求6所述的头戴式设备的手柄,其中,还包括:
    用于检测所述按键的位置的检测器,所述检测器与所述处理器电连接;
    力反馈组件,所述力反馈组件与所述处理器电连接,所述力反馈组件与所述按键配合以朝向所述按键施加反馈力,所述力反馈组件根据所述处理器传输的信号控制所述反馈力的大小和方向。
  9. 根据权利要求8所述的头戴式设备的手柄,其中,所述按键为多个,至少一个所述按键设有所述检测器和所述力反馈组件。
  10. 根据权利要求8所述的头戴式设备的手柄,其中,所述力反馈组件包括:
    电机;
    推杆组件,所述推杆组件分别与所述按键和所述电机配合,所述推杆组件将所述电机的转动转换成移动以对所述按键施加所述反馈力。
  11. 根据权利要求10所述的头戴式设备的手柄,其中,所述按键为转动设置的扳机,所述检测器为角度传感器。
  12. 根据权利要求8所述的头戴式设备的手柄,其中,所述力反馈组件包括:
    通电线圈,所述通电线圈设在所述外壳内,所述通电线圈与所述处理器电连接,所述处理器控制所述通电线圈的电流大小和电流方向;
    磁性件,所述磁性件设在所述按键处。
  13. 根据权利要求12所述的头戴式设备的手柄,其中,所述检测器为霍尔传感器,所述霍尔传感器与所述磁性件配合以感应所述按键的位置。
  14. 根据权利要求1-13中任一项所述的头戴式设备的手柄,其中,还包括外接端口,所述外接端口设在所述外壳处,所述外接端口适于与外部设备插接配合以传输信号。
  15. 根据权利要求7所述的头戴式设备的手柄,其中,所述外壳包括:
    主体部,所述按键、所述传感器和所述振动装置分别设置于所述主体部;
    套环,所述套环设在主体部,所述套环形成为中空的环状,所述多个定位光源设置于所述套环。
  16. 一种头戴式设备,其中,包括:
    主机;
    手柄,所述手柄为根据权利要求1-15中任一项所述的手柄,所述处理器与所述主机信号传输。
PCT/CN2023/081584 2022-03-24 2023-03-15 头戴式设备的手柄以及头戴式设备 WO2023179421A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210302826.8 2022-03-24
CN202210303366.0A CN116832429A (zh) 2022-03-24 2022-03-24 用于操控电子设备的手柄以及头戴设备
CN202210302826.8A CN116832428A (zh) 2022-03-24 2022-03-24 头戴式设备的手柄以及头戴式设备
CN202210303366.0 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023179421A1 true WO2023179421A1 (zh) 2023-09-28

Family

ID=88099843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081584 WO2023179421A1 (zh) 2022-03-24 2023-03-15 头戴式设备的手柄以及头戴式设备

Country Status (1)

Country Link
WO (1) WO2023179421A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013354A1 (en) * 1999-08-18 2001-02-22 Immersion Corporation Vibrotactile haptic feedback devices
WO2016153618A1 (en) * 2015-03-20 2016-09-29 Sony Computer Entertainment Inc. Dynamic gloves to convey sense of touch and movement for virtual objects in hmd rendered environments
CN106535046A (zh) * 2016-12-15 2017-03-22 北京小鸟看看科技有限公司 一种手柄
US20190224565A1 (en) * 2016-07-26 2019-07-25 Sony Interactive Entertainment Inc. Information processing system, operation device, and operation device control method
CN114100110A (zh) * 2021-10-29 2022-03-01 歌尔股份有限公司 操作装置及游戏手柄

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013354A1 (en) * 1999-08-18 2001-02-22 Immersion Corporation Vibrotactile haptic feedback devices
WO2016153618A1 (en) * 2015-03-20 2016-09-29 Sony Computer Entertainment Inc. Dynamic gloves to convey sense of touch and movement for virtual objects in hmd rendered environments
US20190224565A1 (en) * 2016-07-26 2019-07-25 Sony Interactive Entertainment Inc. Information processing system, operation device, and operation device control method
CN106535046A (zh) * 2016-12-15 2017-03-22 北京小鸟看看科技有限公司 一种手柄
CN114100110A (zh) * 2021-10-29 2022-03-01 歌尔股份有限公司 操作装置及游戏手柄

Similar Documents

Publication Publication Date Title
JP6626576B2 (ja) 操作デバイス、及び制御システム
JP3215393U (ja) リアルタイム振動フィードバックを提供する携帯端末用保護ケース
JP2023040129A (ja) 情報処理システム、情報処理装置、操作装置、および、付属機器
JP3197920U (ja) ポータブルメディア装置のためのワイヤレスリモートコントロール装置
US9501084B1 (en) Wearable electronic device with force feedback
JP4142061B2 (ja) ゲームコントローラ
JP2018176387A (ja) ロボット装置及びプログラム
US20060241864A1 (en) Method and apparatus for point-and-send data transfer within an ubiquitous computing environment
JP2007299706A (ja) 操作装置およびゲームコントローラ
JP7124616B2 (ja) 誘導装置、制御システム、および制御プログラム
WO2015024252A1 (zh) 一种遥控器、信息处理方法及系统
JP2009043217A (ja) 入力制御装置及び該入力制御装置を有するインタラクティブシステム
US10890977B2 (en) Haptic feedback device and program for virtual objects
CN105975082B (zh) 一种应用于虚拟现实头戴设备的手柄控制器
WO2019195300A2 (en) Input device for an electronic system
WO2018003161A1 (ja) 利用状態判定装置、利用状態判定方法及びプログラム
TW201117048A (en) Assembly of keyboard and mouse and computer system thereof
JP2018176386A (ja) 情報処理装置及びプログラム
WO2023179421A1 (zh) 头戴式设备的手柄以及头戴式设备
JP6726560B2 (ja) 空気調和システム
US11872476B2 (en) Input device for an electronic system
JP2010041477A (ja) 電子機器、固定制御方法
WO2019043787A1 (ja) 振動制御装置
CN116832429A (zh) 用于操控电子设备的手柄以及头戴设备
CN116832428A (zh) 头戴式设备的手柄以及头戴式设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773669

Country of ref document: EP

Kind code of ref document: A1