WO2023179354A1 - 一种用于叶绿素荧光监测的叶片原位暗适应装置及方法 - Google Patents

一种用于叶绿素荧光监测的叶片原位暗适应装置及方法 Download PDF

Info

Publication number
WO2023179354A1
WO2023179354A1 PCT/CN2023/080034 CN2023080034W WO2023179354A1 WO 2023179354 A1 WO2023179354 A1 WO 2023179354A1 CN 2023080034 W CN2023080034 W CN 2023080034W WO 2023179354 A1 WO2023179354 A1 WO 2023179354A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
inner box
humidity
box
situ
Prior art date
Application number
PCT/CN2023/080034
Other languages
English (en)
French (fr)
Inventor
张川
薛�润
闫浩芳
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2023179354A1 publication Critical patent/WO2023179354A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Definitions

  • the invention relates to the field of monitoring technology, and in particular to a device and method for in-situ dark adaptation of leaves for chlorophyll fluorescence monitoring.
  • Photosynthesis is the most important chemical reaction on earth. Photosynthetic organisms provide energy sources for all life activities on earth through photosynthesis. As an effective probe for photosynthesis research, chlorophyll fluorescence plays a great role in promoting photosynthesis research. However, the maximum and minimum fluorescence required for the maximum photosynthetic rate of plant dark adaptation samples are generally measured in a dark environment.
  • the main existing measurement methods are: one is to use external means to block the sun with a blackout curtain for dark adaptation; the other is to move the measured plant into a dark environment indoors for dark adaptation.
  • the present invention provides a leaf in-situ dark adaptation device for chlorophyll fluorescence monitoring, which can perform in-situ dark adaptation of plant leaves without changing the plant growth environment, and obtain necessary Chlorophyll fluorescence parameters.
  • the present invention achieves the above technical objectives through the following technical means.
  • An in-situ dark adaptation device for leaves suitable for monitoring chlorophyll fluorescence including an outer box, an inner box and a chlorophyll fluorescence meter; the inner box is arranged inside the outer box, and the outer box and the inner box are respectively provided with outer holes and inner holes.
  • the inner box has a built-in temperature control heating device and a measurement and control module; the temperature control heating device is used to adjust the temperature of the gas in the inner box, and the measurement and control
  • the module is used to detect the temperature and humidity in the inner box, monitor and collect the temperature and humidity data in the inner box in real time, convert the temperature signal into an electrical signal form, and output the electrical signal to the computer terminal through the USB interface; one end of the chlorophyll fluorometer is placed inside In the box, the chlorophyll fluorometer is connected with a clamp through a support rod, and the clamp is used to clamp the leaves.
  • a ventilator is also included.
  • the inner box is supported in the outer box through the ventilator.
  • the ventilator has a built-in fan. When the fan is working, the air is blown into the inner box through the ventilator.
  • the outer box can be opened through the front door, outer cover or side door.
  • the main door is provided with a circular stem hole. After the main door is opened, the blades are clamped in the inner box through the clips. The main door is closed and the stem is clamped through the circular stem hole.
  • a bracket is provided on the outer wall of the bottom of the outer box, and the angle and height of the bracket can be adjusted.
  • the top of the outer box is provided with a groove, and the outer cover can slide along the groove.
  • the measurement and control module includes a temperature sensor and a humidity sensor.
  • Applying the test method for leaf in-situ dark adaptation devices suitable for chlorophyll fluorescence monitoring includes the following steps:
  • the temperature and humidity sensor in the measurement and control module starts to work automatically for sampling and real-time monitoring. It collects the temperature and humidity data in the inner box and converts the temperature signal into an electrical signal form.
  • the usb interface outputs electrical signals to the computer terminal;
  • the computer terminal collects the temperature and humidity conditions in the inner box to determine whether the predetermined requirements are met; if the predetermined requirements are met, the chlorophyll fluorescence meter is turned on after dark adaptation for measurement;
  • the computer terminal transmits an electrical signal through the USB interface through the preset PWM line in the measurement and control module, turns on the fan, adjusts and increases the speed until the temperature inside the box reaches the preset temperature, and passes the TACH line Output electrical signals to display the fan operating speed and ensure that the temperature inside the box reaches the predetermined temperature;
  • the computer inputs an electrical signal to turn on the temperature control heating device.
  • the electronic temperature controller connected to the computer controls the relay through the microcontroller, PLC and circuit to make the temperature control heating device work. When the temperature reaches the preset The temperature and temperature and humidity sensors send out electrical signals to turn off the temperature control heating device;
  • the temperature and humidity sensor transmits the electrical signal to the computer, and the computer then transmits the electrical signal to the automatic spray device to control the peripheral spray.
  • the humidity in the inner box reaches the preset humidity, the temperature and humidity sensor transmits the electrical signal. Go to the computer to turn off the automatic spray device;
  • the temperature and humidity sensor transmits the electrical signal to the computer.
  • the computer transmits the signal through the above method to turn on the fan and temperature control heating device to reduce the humidity by accelerating air circulation and evaporation in the inner box to reach the preset value.
  • the temperature and humidity sensor transmits the electrical signal to the computer, and the computer terminal controls the electronic temperature controller to turn off the fan and temperature control heating device;
  • the automatic spraying device is installed in the field where the plants are located.
  • a dark environment monitoring fluorescence device includes an in-situ dark adaptation device for leaf chlorophyll fluorescence monitoring.
  • the present invention connects the outer cover and the outer box by providing a groove on the upper part of the outer box.
  • the outer plate is provided with a lock to accurately limit the position, avoiding direct sunlight and angle adjustment during experimental measurements. This causes the outer cover to slide, making it easy to disassemble and clean, making it convenient to measure chlorophyll fluorescence, and the operation is simple and convenient.
  • an opening is provided on the side of the outer box to facilitate the installation and disassembly of the side door.
  • a temperature-controlled heating device is provided in the inner box, which can adjust the temperature in the box at different ambient temperatures to avoid inaccurate experimental data caused by temperature suppression and affect the final results.
  • the surface of the temperature-controlled heating device is equipped with a waterproof insulation layer to prevent moisture from affecting the temperature-controlled heating device during sprinkler irrigation, causing short circuits, leakage, etc., and improving the safety of the experimental device.
  • the present invention enables plant chlorophyll fluorescence measurement experiments to be carried out through a movable portable chlorophyll fluorescence meter installed on the top of the outer box.
  • a movable clip which is connected by a spring to the upper and lower clips to clamp fluorescent leaves that need to be measured, and the damage to the clamped leaves is negligible
  • a measuring head which is used to emit measurement light, actinic light and saturation pulses, and return chlorophyll fluorescence and photosynthetically active radiation, the measured data can be directly output to computer processing software to facilitate recording and subsequent experiments
  • the transparent optical window can transmit measurement light, actinic light and saturation pulses, and is also a protection mechanism for the leaves
  • Stainless steel shell protects the internal structure and prevents moisture from affecting the machine.
  • the present invention uses the temperature and humidity measurement and control module provided at the bottom of the inner box to perform data detection on the measurement environment of the inner box, so that the staff can truly and accurately understand the measurement environment of the inner box.
  • the temperature and humidity measurement and control module collects the temperature and humidity data, it passes The data line is transmitted to the connected computer processor, and the computer processor performs preliminary processing on the collected data. If the temperature and humidity are suitable within the control range of the experiment, the temperature control heating device and sprinkler irrigation device will not be turned on and will be in a standby state. If the temperature and humidity do not meet the experimental requirements, the computer processor will turn on the temperature-controlled heating device and spray device according to the actual situation.
  • the specific turning on power is determined by the computer algorithm to control the temperature and humidity within the experimental range, without the need for human real-time monitoring to facilitate subsequent measurements. As well as experimental development, it effectively improves the efficiency of experimental development and avoids experimental differences caused by differences in temperature and humidity.
  • the present invention enables the experimental device to adapt to most experimental environments through the detachable angle adjustment bracket provided at the bottom of the outer box.
  • detachable angle adjustment brackets There are two types of detachable angle adjustment brackets.
  • One is a flat-type detachable angle adjustment bracket, which is suitable for flat areas such as greenhouse laboratories where the ground is relatively level. It can effectively fix the experimental device to facilitate subsequent measurements.
  • the other is an insertable angle adjustment bracket.
  • the detachable angle-adjustable bracket is suitable for soil cultivation and other fields in fields.
  • the support shaft can be inserted into the soil to fix the experimental device to avoid shaking of the experimental device.
  • Both sides of the outer box of the device of the present invention are designed with push-pull movable doors.
  • the center of the door is provided with a round hole through which plant leaves and stems can pass.
  • the bottom of the outer box is connected to the inner box through a ventilator, and an exhaust fan is provided in the ventilator. , air enters the inner box from the air holes around the outer box and is drawn out by the fan to form air circulation in the device.
  • the inner box is also equipped with a detachable sliding door, temperature module and humidity module.
  • the height of the bracket and the position of the angle adjustment device are set to adapt to the growth angle of the plant leaves.
  • the sliding doors of the inner and outer boxes of the device are connected through built-in grooves, which are easy to install and disassemble, making it easy to put in and take out the leaves and easy to disassemble and clean without damaging the normal life activities of the plants.
  • the device of the present invention can perform in-situ darkening treatment on plant leaves at any height and angle, so as to facilitate in-situ acquisition of leaf chlorophyll fluorescence parameters.
  • Figure 1 is a schematic structural diagram of a leaf in-situ dark adaptation device suitable for chlorophyll fluorescence monitoring according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of the split structure of the horizontal version of the present invention.
  • Figure 3 is a schematic diagram of the specific structure of the outer box and ventilation duct
  • Figure 4 is a schematic diagram of the specific structure of the outer box fan
  • Figure 5 is a front cross-sectional view of a leaf in-situ dark adaptation device suitable for chlorophyll fluorescence monitoring
  • Figure 6 is a top cross-sectional view of a leaf in-situ dark adaptation device suitable for chlorophyll fluorescence monitoring
  • Figure 7 is a side cross-sectional view of a leaf in-situ dark adaptation device suitable for chlorophyll fluorescence monitoring
  • Figure 8 is a schematic diagram of the maximum range of sunlight passing through the outer hole and illuminating the inner box
  • Figure 9 is a flow chart of the steps for using the leaf in-situ dark adaptation device suitable for chlorophyll fluorescence monitoring.
  • the reference numbers are as follows: 1-outer box; 2-ventilator, 3-inner box, 4-outer cover, 5-chlorophyll fluorometer, 6-inner cover, 7-side door, 8-front door, 9-fan, 10-temperature control heating device, 11-measurement and control module, 12-detachable angle adjustment bracket, 13-line hole, 14-detachable fixing device, 15-usb interface, 17-adjustable azimuth pole, 18-height adjustment device , 19-groove, 20-sliding door lock, 21-opening, 22-buckle, 23-outer hole, 24-inner hole, 25-door handle, 26-circular stem hole.
  • An in-situ dark adaptation device for leaves suitable for chlorophyll fluorescence monitoring including an outer box 1, an inner box 3 and a chlorophyll fluorescence meter 5; the inner box 3 is arranged in the outer box 1, and the outer box 1 and the inner box 3 are There are outer holes 23 and inner holes 24 respectively; the outer holes 23 and the inner holes 24 are arranged in a staggered manner so that light cannot enter the inner box 3; the inner box 3 has a built-in temperature control heating device 10 and a measurement and control module 11; the temperature control The heating device 10 is used to adjust the temperature of the gas in the inner box 3.
  • the measurement and control module 11 is used to detect the temperature and humidity in the inner box 3, monitor and collect the temperature and humidity data in the inner box 3 in real time, and convert the temperature signal into an electrical signal form.
  • the electrical signal is output to the computer terminal through the USB interface 15; one end of the chlorophyll fluorometer 5 is placed in the inner box 3, and a clip is connected to the chlorophyll fluorometer 5 through a support rod, and the clip is used to clamp the leaves.
  • the above solution also includes a ventilator 2.
  • the inner box 3 is supported in the outer box 1 through the ventilator 2.
  • the ventilator 2 has a built-in fan 9. When the fan 9 is working, the air is blown into the inner box 3 through the ventilator 2. Inside.
  • the outer box 1 can be opened through the main door 8 , the outer cover 4 or the side door 7 .
  • the main door 8 is provided with a circular stem hole 26. After the main door 8 is opened, the blades are clamped in the inner box 3 through the clips. When the main door 8 is closed, the stem is clamped through the circular stem hole 26.
  • a bracket 12 is provided on the bottom outer wall of the outer box 1, and the angle and height of the bracket 12 can be adjusted.
  • the top of the outer box 1 is provided with a groove 19, and the outer cover 3 can slide along the groove 19.
  • the measurement and control module 11 includes a temperature sensor and a humidity sensor.
  • Applying the test method for leaf in-situ dark adaptation devices suitable for chlorophyll fluorescence monitoring includes the following steps:
  • the chlorophyll fluorometer 5 start the measurement and control module 11, and connect to the computer through the USB interface 15.
  • the temperature and humidity sensor in the measurement and control module 11 starts to work, automatically performs sampling and real-time monitoring, collects the temperature and humidity data in the inner box 3, and converts the temperature signal into In the form of electrical signals, the electrical signals are output to the computer terminal through the USB interface 15;
  • the computer terminal collects the temperature and humidity conditions in the inner box 3 to determine whether the predetermined requirements are met; if the predetermined requirements are met, the chlorophyll fluorometer 5 is turned on for measurement after dark adaptation;
  • the computer terminal transmits an electrical signal through the USB interface 15 through the preset PWM line in the measurement and control module 11, turns on the fan 9, adjusts and increases the speed until the temperature inside the box reaches the preset temperature. , output an electrical signal through the TACH line to display the working speed of fan 9 to ensure that the temperature inside the box reaches the predetermined temperature;
  • the computer inputs an electrical signal to turn on the temperature control heating device 10.
  • the electronic temperature controller connected to the computer controls the relay through the microcontroller, PLC and circuit to make the temperature control heating device 10 work.
  • the temperature and humidity sensor sends out an electrical signal to turn off the temperature control heating device 10;
  • the temperature and humidity sensor transmits the electrical signal to the computer, and the computer then transmits the electrical signal to the automatic spray device to control the peripheral spray.
  • the humidity in the inner box 3 reaches the preset humidity, the temperature and humidity sensor transmits the electrical signal to the computer. The signal is transmitted to the computer to turn off the automatic spray device;
  • the temperature and humidity sensor transmits an electrical signal to the computer.
  • the computer transmits the signal in the above manner to turn on the fan 9 and the temperature control heating device 10 to reduce the humidity by accelerating air circulation and evaporation in the inner box 3 , after reaching the preset humidity, the temperature and humidity sensor transmits the electrical signal to the computer, and the computer terminal controls the electronic temperature controller to turn off the fan 9 and the temperature control heating device 10;
  • the automatic spraying device is installed in the field where the plants are located.
  • a dark environment monitoring fluorescence device includes an in-situ dark adaptation device for leaf chlorophyll fluorescence monitoring.
  • a leaf in-situ dark adaptation device suitable for monitoring chlorophyll fluorescence is provided with a side door 7 of the same size and symmetrical position with reference to the chlorophyll fluorescence meter 5 on the upper surface of the outer box 1.
  • the side door 7 and the inner box 3 Together, a closed dark space is constructed.
  • the bottom of the outer box 1 is connected to the main door 8 through a groove, and together with the outer cover 4, a first external closed body is constructed. Small holes are arranged on the main door 8 to facilitate the discharge of air from the outside to the inside from the fan 9 to form a convection cycle.
  • the outer cover 4 is closed from both sides to fix the chlorophyll fluorometer 5.
  • a limit bolt is provided on the top of the chlorophyll fluorometer 5 to limit the position of the chlorophyll fluorometer 5 so that the chlorophyll fluorometer 5 can be moved up and down in the vertical direction for adjustment. Specific experiments position.
  • a fixed temperature control heating device 10 is provided at the bottom of the inner box 3.
  • the temperature control heating device 10 cooperates with the fan 9 to regulate the temperature when the temperature is too low or too high.
  • a measurement and control device is also provided at the bottom of the inner box 3.
  • the module 11 transmits the measured data signal to the storage device through the wire, and the storage device transmits the signal to the data processor through the USB interface 15, and controls the temperature control heating device 10 and the ventilation device through the control module.
  • the outer box 1 and the inner box 3 are connected through a ventilator 2.
  • a fan 9 is installed in the ventilator 2. There are wired holes on the outer wall. The fan power is controlled to achieve better temperature control effect.
  • outer holes 23 and inner holes 24 are provided on the side walls of the outer box 1 and the inner box 3 to better allow sprinkler irrigation or external natural moisture to enter the inner box 3 and to ensure that the object to be measured in the inner box 3 is not exposed to sunlight.
  • the same sliding door lock 20 is provided on the outer cover 4 at the top of the outer box 1 and the inner cover 6 at the top of the inner box 3, which plays a role in limiting and fixing the outer cover 4 and the inner cover 6.
  • the outer box 1 has a semi-enclosed structure and is symmetrical relative to the ventilator 2.
  • the measurement and control module 11 and the detachable fixing device 14 of the fan 9 circuit are internally connected, and a USB interface 15 is provided at the end.
  • the chlorophyll fluorescence meter 5 is supported by the chlorophyll fluorescence meter bracket to adjust the height. This article will not describe it too much.
  • the clip is controlled by a built-in spring to clamp the blade to prevent the blade from falling.
  • the height can be adjusted by the chlorophyll fluorescence meter bracket.
  • the instrument bracket is adjusted to reach the preset height.
  • the side wall of the ventilator 2 is non-porous to prevent air from directly passing through the outer box 1 and affecting the subsequent cooling efficiency.
  • the fan inside the ventilator 2 is adhered to the wall of the ventilation pipe 2 with a plastic shell to prevent If the fan extends beyond the box, there is a safety hazard.
  • the outer holes 23 and the inner holes 24 are arranged in a staggered manner.
  • the wall thickness of the inner box and the outer box is 6mm.
  • the radius of the inner hole 23 is 1mm and the interval is 30mm.
  • the radius of the outer hole is 1mm and the interval is 30mm.
  • the shortest vertical distance between holes 23 is 40mm, the diameter of the maximum light circle generated by sunlight passing through the outer hole 23 and shining on the outer wall of the inner box is about 25mm.
  • the distance between the outer hole 23 and the inner hole 24 is set to 30mm, which can ensure that no matter what kind of sunlight comes from Angle illumination cannot affect the dark environment of the inner box 3. Therefore, the positions of the inner holes 24 and the outer holes 23 are arranged at intervals as shown in Figure 8.
  • the outer holes 23 can allow the water vapor generated by the external spray to enter the inner box 3 to regulate the humidity inside the box.
  • the inner hole 24 cooperates with the outer hole 23 to prevent direct sunlight from entering the box, and provides a dark environment without light for subsequent experiments.
  • the fan 9 controls the power through the computer so that the environmental temperature and humidity of the plant are consistent with the external environment.
  • the temperature of the inner box 3 is higher than the external temperature, the fan 9 starts to work. It forms air circulation and reduces the indoor temperature while avoiding sunlight. The degree of temperature reduction is controlled by the power of the fan 9.
  • the computer will automatically detect the external temperature change. , stop the operation of the fan 9 and turn on the temperature control heating device 10 to heat the room, ensuring that the inside and outside of the dark adaptation device are in the same environmental requirement.
  • a dark environment monitoring fluorescence equipment including the leaf in-situ dark adaptation device for chlorophyll fluorescence monitoring described in Example 1, has the beneficial effects described in Example 1, which will not be described again here.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种用于叶绿素荧光监测的叶片原位暗适应装置及方法,包括外盒和内盒,该装置的外盒与内盒四周设有交错布置的通风孔;外盒两侧设计可推拉活动门,门中心处设有可使植物叶茎通过的圆孔,外盒底部通过换气筒与内盒相连,换气筒内设有抽气风扇,空气从外盒四周气孔进入内盒从风扇抽出形成装置内空气循环。内盒也设有可拆卸式推拉门及温度模块和湿度模块,通过设置支架高度和角度调节装置位置来适应植株叶片的生长角度。装置内、外盒滑门通过内设凹槽相连,安装拆卸方便,在不破坏植株正常生命活动情况下便于叶片放入取出、容易拆卸清理。该装置可对任何高度和角度植株叶片进行原位暗处理,便于原位获取叶片叶绿素荧光参数。

Description

一种用于叶绿素荧光监测的叶片原位暗适应装置及方法 技术领域
本发明涉及监测技术领域,尤其涉及到一种用于叶绿素荧光监测的叶片原位暗适应装置及方法。
背景技术
光合作用是地球上最重要的化学反应,光合生物通过光合作用为地球上所有生命活动提供能量来源。叶绿素荧光作为光合作用研究的有效探针,对光合作用研究起到很大推动作用,然而植株暗适应样品的最大光合速率所需的最大最小荧光一般在暗环境进行测量。现有测量主要方法,一是采用外界手段用遮光帘遮挡住阳光进行暗适应,二是采用把被测植物移动到黑暗环境的室内进行暗适应。但是,这两种方法在避免外界光照影响的同时也改变了植株原始生长环境的参数,如温度、湿度等,导致叶绿素荧光数据采集时不仅受到时空影响,而且还会受到温度、湿度变化的影响,使得所测植株叶绿素荧光数据的准确性降低,因此,在不改变植株生长环境的条件下,对植株叶片进行原位暗适应,获取必要的叶绿素荧光参数,为了解环境因子变化下植物的生理响应具有非常重要的实际意义。
发明内容
针对现有技术中存在不足,本发明提供了一种用于叶绿素荧光监测的叶片原位暗适应装置,能够在不改变植株生长环境的条件下,对植株叶片进行原位暗适应,获取必要的叶绿素荧光参数。
本发明是通过以下技术手段实现上述技术目的的。
一种适用于叶绿素荧光监测的叶片原位暗适应装置,包括外盒、内盒和叶绿素荧光仪;所述内盒设置在外盒内,所述外盒和内盒上分别开设有外孔和内孔;所述外孔和内孔交错布置,光不能进入内盒;所述内盒内置温控发热装置和测控模块;所述温控发热装置用来调节内盒内气体的温度,所述测控模块用于检测内盒中的温度和湿度,即时监控收集内盒内温度湿度数据将温度信号转换成电信号形式,通过usb接口输出电信号至电脑总端;所述叶绿素荧光仪一端置于内盒中,所述叶绿素荧光仪上通过支撑杆连接有夹片,夹片用来夹持叶片。
上述方案中,还包括换气筒,所述内盒通过换气筒支撑在外盒内,且换气筒内置有风扇,所述风扇工作时将空气通过换气筒吹入内盒内。
上述方案中,所述外盒能够通过正门、外盖或者侧门打开。
上述方案中,所述正门上开设有圆形茎孔,打开正门后,叶片通过夹片夹持在内盒内, 关闭正门,茎通过圆形茎孔夹持。
上述方案中,所述外盒底部外侧壁上设置有支架,所述支架角度和高度均能够调节。
上述方案中,所述外盒顶设有凹槽,外盖能够沿凹槽滑动。
上述方案中,所述测控模块包括温度传感器和湿度传感器。
应用适用于叶绿素荧光监测的叶片原位暗适应装置的测试方法,包括如下步骤:
选取待测量叶片;
调整暗盒角度及叶绿素荧光仪位置;
打开正门以及侧门,将所测植株叶片放入内盒,用夹片夹紧所测植株所需监测的叶片,关闭侧门以及正门,所测植株叶茎穿过圆形茎孔,用柔软棉花塞包裹叶茎从而填充圆形茎孔;
开启叶绿素荧光仪,启动测控模块,通过usb接口连接电脑,此时测控模块内的温湿度传感器开始工作自动进行采样、即时监控,收集内盒内温度湿度数据将温度信号转换成电信号形式,通过usb接口输出电信号至电脑总端;
电脑总端采集内盒内温度和湿度情况判断是否达到预定要求;若达到预定要求,暗适应后开启叶绿素荧光仪测量;
其中,若内盒内温度高于预设温度,电脑总端通过usb接口经过测控模块内预设PWM线传递电信号,开启风扇,调节并增加转速直至盒内温度达到预设温度,经过TACH线输出电信号,显示风扇工作转速,保证盒内温度到达预定温度;
若内盒内温度低于预定温度,则电脑输入电信号,开启温控发热装置,电脑相连的电子式温度控制器通过单片机、PLC及电路控制继电器使得温控发热装置工作,当温度达到预设温度,温湿度传感器传出电信号关闭温控发热装置;
若内盒内湿度低于预定湿度,温湿度传感器将电信号传递至电脑,电脑再传递电信号至自动喷雾装置控制外设喷雾,当内盒湿度达到预设湿度,温湿度传感器将电信号传递至电脑关闭自动喷雾装置;
若内盒内湿度高于预定湿度,温湿度传感器将电信号传递至电脑,电脑通过上述方式传递信号开启风扇与温控发热装置通过加速内盒内空气循环、蒸发的形式降低湿度,到达预设湿度后温湿度传感器将电信号传递至电脑,电脑总端控制电子式温度控制器关闭风扇及温控发热装置;
测量后得到叶绿素荧光结果,输出数据。
上述方案中,所述自动喷雾装置设置在植株所在田地。
一种暗环境监测荧光设备,包括叶绿素荧光监测的叶片原位暗适应装置。
有益效果:
1.本发明通过外盒上部设置有凹槽的方式来进行外盖和外盒的连接,外板设置有锁扣可以对位置进行精准限定,避免阳光的直接照射以及在实验测量中因为角度调整导致外盖滑动,方便拆卸清洗便于叶绿素荧光的测量,操作简单方便。
2.本发明通过外盒侧面设有开口,便于侧门的安装拆卸,开口两侧设置有卡扣对侧门进行位置限定,避免实验时因侧门松动导致阳光进入影响实验数据,在使用后拆卸清洗时,打开卡扣将限位球推入开放侧,限位杆便可开启,这时便可移动侧门。
3.本发明通过内盒设置温控发热装置,可在不同的环境温度内调节盒内气温,避免温度抑制导致实验数据不精准,影响最终结果。温控发热装置表面设置有防水绝缘层,避免在喷灌时水分影响温控发热装置从而造成短路、漏电等现象,提升实验装置安全性。
4.本发明通过设置在外盒顶部的可移动便携式叶绿素荧光仪,使得植株叶绿素荧光测量实验可以开展。其中包括可移动夹片,通过弹簧连接上下夹片夹取需要测量荧光叶片,对于夹取叶片的伤害可以忽略不计;测量头,用于发出测量光、光化光和饱和脉冲,以及返回叶绿素荧光和光合有效辐射,所测数据可直接输出至电脑处理软件,方便记录与后续实验的开展;透明光学窗,可透过测量光、光化光和饱和脉冲,同时对叶片也是一种保护机制;不锈钢外壳,保护内部结构,防止水分对于机器的影响。
5.本发明通过设置在内盒底部的温湿测控模块,对于内盒测量环境进行数据检测,使得工作人员能够切实准确了解内盒测量环境情况,温湿测控模块将温度湿度数据采集后,通过数据线传递至相连的电脑处理器中,电脑处理器对于采集的数据进行初步的处理,如果温度湿度适宜在实验开展控制范围内,温控发热装置以及喷灌装置便不会开启,处于待机状态,如果温度湿度不符合实验要求,计算机处理器便会根据实际情况,开启温控发热装置以及喷雾装置,具体开启功率由计算机算法确定,将温度湿度控制在实验范围内,不用人为实时监测方便后续测量以及实验开展,有效提高了实验开展效率,避免因温湿度不同造成的实验差异。
6.本发明通过设置在外盒底部的可拆卸角度调节支架,使得实验装置可以适应绝大多数实验环境。可拆卸角度调节支架分为两种,一种是平板式可拆卸角度调节支架,适用于平坦地区如温室实验室内地面较为水平,可以有效固定住实验装置方便后续测量开展,另一种是插入式可拆卸角度调节支架,适用于田地内如有土栽培等场地,可将支撑轴插入土壤中固定实验装置,避免实验装置的晃动。
7.该装置的外盒与内盒四周设有交错布置的通风孔,能够保证装置内盒的空气流动,使内盒中的温度和湿度与外部环境保持一致,同时阻断了环境中的光线进入内盒,避免了因光线照射到置于内盒叶片上所引起的光抑制。
8.本发明装置的外盒两侧设计可推拉活动门,门中心处设有可使植物叶茎通过的圆孔,外盒底部通过换气筒与内盒相连,换气筒内设有抽气风扇,空气从外盒四周气孔进入内盒从风扇抽出形成装置内空气循环。内盒也设有可拆卸式推拉门及温度模块和湿度模块,通过设置支架高度和角度调节装置位置来适应植株叶片的生长角度。装置内、外盒滑门通过内设凹槽相连,安装拆卸方便,在不破坏植株正常生命活动情况下便于叶片放入取出、容易拆卸清理。
9.本发明装置可对任何高度和角度植株叶片进行原位暗处理,便于原位获取叶片叶绿素荧光参数。
附图说明
图1为本发明实施例涉及到的适用于叶绿素荧光监测的叶片原位暗适应装置的结构示意图;
图2为本发明横版拆分结构示意图;
图3为外盒及通风管具体构造示意图;
图4为外盒风扇具体构造示意图;
图5为适用于叶绿素荧光监测的叶片原位暗适应装置的正视剖面图;
图6为适用于叶绿素荧光监测的叶片原位暗适应装置的俯视剖面图;
图7为适用于叶绿素荧光监测的叶片原位暗适应装置的侧视剖面图;
图8为太阳光穿过外孔照射到内盒上最大范围示意图;
图9为适用于叶绿素荧光监测的叶片原位暗适应装置的使用步骤流程图。
附图标记如下:
1-外盒;2-换气筒、3-内盒、4-外盖、5-叶绿素荧光仪、6-内盖、7-侧门、8-正门、9-风扇、
10-温控发热装置、11-测控模块、12-可拆卸角度调节支架、13-线路孔、14-可拆卸固定装置、15-usb接口、17-可调节方位支杆、18-高度调节装置、19-凹槽、20-推拉门锁扣、21-开口、22-卡扣、23-外孔、24-内孔、25-门把手、26-圆形茎孔。
具体实施方式
一种适用于叶绿素荧光监测的叶片原位暗适应装置,包括外盒1、内盒3和叶绿素荧光仪5;所述内盒3设置在外盒1内,所述外盒1和内盒3上分别开设有外孔23和内孔24;所述外孔23和内孔24交错布置,光不能进入内盒3;所述内盒3内置温控发热装置10和测控模块11;所述温控发热装置10用来调节内盒3内气体的温度,所述测控模块11用于检测内盒3中的温度和湿度,即时监控收集内盒3内温度湿度数据将温度信号转换成电信号形式, 通过usb接口15输出电信号至电脑总端;所述叶绿素荧光仪5一端置于内盒3中,所述叶绿素荧光仪5上通过支撑杆连接有夹片,夹片用来夹持叶片。
上述方案中,还包括换气筒2,所述内盒3通过换气筒2支撑在外盒1内,且换气筒2内置有风扇9,所述风扇9工作时将空气通过换气筒2吹入内盒3内。
上述方案中,所述外盒1能够通过正门8、外盖4或者侧门7打开。
上述方案中,所述正门8上开设有圆形茎孔26,打开正门8后,叶片通过夹片夹持在内盒3内,关闭正门8,茎通过圆形茎孔26夹持。
上述方案中,所述外盒1底部外侧壁上设置有支架12,所述支架12角度和高度均能够调节。
上述方案中,所述外盒1顶设有凹槽19,外盖3能够沿凹槽19滑动。
上述方案中,所述测控模块11包括温度传感器和湿度传感器。
应用适用于叶绿素荧光监测的叶片原位暗适应装置的测试方法,包括如下步骤:
选取待测量叶片;
调整暗盒角度及叶绿素荧光仪5位置;
打开正门8以及侧门7,将所测植株叶片放入内盒3,用夹片夹紧所测植株所需监测的叶片,关闭侧门7以及正门8,所测植株叶茎穿过圆形茎孔26,用柔软棉花塞包裹叶茎从而填充圆形茎孔26;
开启叶绿素荧光仪5,启动测控模块11,通过usb接口15连接电脑,此时测控模块11内的温湿度传感器开始工作自动进行采样、即时监控,收集内盒3内温度湿度数据将温度信号转换成电信号形式,通过usb接口15输出电信号至电脑总端;
电脑总端采集内盒3内温度和湿度情况判断是否达到预定要求;若达到预定要求,暗适应后开启叶绿素荧光仪5测量;
其中,若内盒3内温度高于预设温度,电脑总端通过usb接口15经过测控模块11内预设PWM线传递电信号,开启风扇9,调节并增加转速直至盒内温度达到预设温度,经过TACH线输出电信号,显示风扇9工作转速,保证盒内温度到达预定温度;
若内盒3内温度低于预定温度,则电脑输入电信号,开启温控发热装置10,电脑相连的电子式温度控制器通过单片机、PLC及电路控制继电器使得温控发热装置10工作,当温度达到预设温度,温湿度传感器传出电信号关闭温控发热装置10;
若内盒3内湿度低于预定湿度,温湿度传感器将电信号传递至电脑,电脑再传递电信号至自动喷雾装置控制外设喷雾,当内盒3湿度达到预设湿度,温湿度传感器将电信号传递至电脑关闭自动喷雾装置;
若内盒3内湿度高于预定湿度,温湿度传感器将电信号传递至电脑,电脑通过上述方式传递信号开启风扇9与温控发热装置10通过加速内盒3内空气循环、蒸发的形式降低湿度,到达预设湿度后温湿度传感器将电信号传递至电脑,电脑总端控制电子式温度控制器关闭风扇9及温控发热装置10;
测量后得到叶绿素荧光结果,输出数据。
上述方案中,所述自动喷雾装置设置在植株所在田地。
一种暗环境监测荧光设备,包括叶绿素荧光监测的叶片原位暗适应装置。
实施例
结合附图1所示,一种适用于叶绿素荧光监测的叶片原位暗适应装置,在外盒1的上表面设置有大小相同,位置参照叶绿素荧光仪5对称的侧门7,侧门7与内盒3共同构造了封闭黑暗空间,外盒1底部通过凹槽与正门8相连同外盖4一起构造外部第一封闭体,正门8上布置有小孔便于空气由外至内从风扇9排出构成对流循环,外盖4从两侧合拢将叶绿素荧光仪5固定,叶绿素荧光仪5顶部设置有限位螺栓,对叶绿素荧光仪5进行位置限定,使得叶绿素荧光仪5可以在竖直方向进行上下移动调整具体实验方位。
结合附图2,内盒3底部设置有固定温控发热装置10,温控发热装置10配合风扇9,在温度过低或过高时对其进行温度调控,在内盒3底部同样设置有测控模块11,将所测得数据信号通过导线传递给储存装置,储存装置经usb接口15再将信号传递至数据处理器,通过控制模块控制温控发热装置10和换气装置。外盒1与内盒3通过换气筒2相连,换气筒2中设置有风扇9,外侧壁开有线孔,控制风扇功率来达到更好的控温效果,外盒1与内盒3侧壁上设置有不同大小的交叉布置的外孔23、内孔24,从而更好的使喷灌或者外界自然水分进入内盒3且能确保内盒3中的待测对象不受到阳光照射。外盒1顶部外盖4及内盒3顶部内盖6上设置有相同的推拉门锁扣20,对于外盖4以及内盖6起到限位固定的作用。
结合附图3、图4,外盒1呈半包围结构,相对换气筒2呈左右对称,内部连接有测控模块11以及风扇9线路的可拆卸固定装置14,末端设有usb接口15。
结合附图5、图6和图7,叶绿素荧光仪5由叶绿素荧光仪支架支撑调整高度,文中不再过多叙述,夹片由内设弹簧控制,夹紧叶片防止叶片滑落,高度可由叶绿素荧光仪支架进行调解,达到预设高度,换气筒2侧壁无孔防止空气直接从外盒1中穿出影响后续降温效率,换气筒2内设风扇采用塑料外壳粘连在通风管2壁内,防止风扇超出盒体留有安全隐患。
结合附图8,外孔23和内孔24交错布置,内盒、外盒板壁厚均为6mm,内孔23半径为1mm间隔30mm,外孔半径为1mm,间隔为30mm,内孔24和外孔23之间最短垂直距离为 40mm,阳光照射穿过外孔23后照射在内盒外壁上生成的最大光照直径圆直径约为25mm,所设置的外孔23、内孔24的间隔都为30mm,可以保证无论阳光从何种角度照射,都无法对内盒3暗环境产生影响,故内孔24外孔23位置设置如图8所示间隔布置,外孔23可以使外部喷雾所产生的水汽进入内盒3调控盒内湿度,内孔24配合外孔23避免阳光直射入盒内,对后续实验提供一个无光的暗环境。
结合附图9,在使用本发明时,将外盒1底部usb接口15插入电脑,打开相应控制程序进行温湿监控及调节,移动叶绿素荧光仪5并调节至指定位置,将所测植物叶茎放入内盒2用夹片夹住,将侧门7四个依次插入直至侧门挡板无法推动,叶茎从内盒侧门7所留孔洞穿出,内盒侧门7外所设卡扣22依次扣紧避免测量时留有缝隙,内盖3以及外盖4顺着所设凹槽19合拢,将内盖6、外盖4外侧所设锁扣20开关关闭,使得盖板固定,将正门8依次关闭,叶茎从所设圆形茎孔26中穿出,将锁扣开关关闭,便可开始荧光暗适应准备及测量。当本发明开始工作监测植株荧光变化时,风扇9通过电脑控制功率,使得植株所处环境温度及湿度与外界环境一致,当内盒3温度较高,高于外界温度时,风扇9便开始工作在避免阳光照射的情况下形成空气循环,降低室内温度,温度降低的程度由风扇9功率所控制,如果外界处于太阳直射温度较高,室内温度较室外低的情况,电脑会自动检测外部温度变换,停止风扇9工作并打开温控发热装置10对室内进行加温,保证暗适应装置内、外处于同一环境要求。
实施例2
一种暗环境监测荧光设备,包括实施例1所述的叶绿素荧光监测的叶片原位暗适应装置,具有实施例1所述的有益效果,此处不再赘述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (8)

  1. 一种适用于叶绿素荧光监测的叶片原位暗适应装置,其特征在于,包括外盒(1)、内盒(3)和叶绿素荧光仪(5);所述内盒(3)设置在外盒(1)内,所述外盒(1)和内盒(3)上分别开设有外孔(23)和内孔(24);所述外孔(23)和内孔(24)交错布置,光不能进入内盒(3);所述内盒(3)内置温控发热装置(10)和测控模块(11);所述温控发热装置(10)用来调节内盒(3)内气体的温度,所述测控模块(11)用于检测内盒(3)中的温度和湿度,即时监控收集内盒(3)内温度湿度数据将温度湿度信号转换成电信号形式,通过usb接口(15)输出电信号至电脑总端;所述叶绿素荧光仪(5)一端置于内盒(3)中,所述叶绿素荧光仪(5)上通过支撑杆连接有夹片,夹片用来夹持叶片;所述外盒(1)能够通过正门(8)、外盖(4)或者侧门(7)打开;所述正门(8)上开设有圆形茎孔(26),打开正门(8)后,叶片通过夹片夹持在内盒(3)内,关闭正门(8),茎通过圆形茎孔(26)夹持。
  2. 根据权利要求1所述的适用于叶绿素荧光监测的叶片原位暗适应装置,其特征在于,还包括换气筒(2),所述内盒(3)通过换气筒(2)支撑在外盒(1)内,且换气筒(2)内置有风扇(9),所述风扇(9)工作时将空气通过外孔(23)、内孔(24)吸入内盒(3),从换气筒(2)排出。
  3. 根据权利要求1所述的适用于叶绿素荧光监测的叶片原位暗适应装置,其特征在于,所述外盒(1)底部外侧壁上设置有支架(12),所述支架(12)角度和高度均能够调节。
  4. 根据权利要求1所述的适用于叶绿素荧光监测的叶片原位暗适应装置,其特征在于,所述外盒(1)顶设有凹槽(19),外盖(3)能够沿凹槽(19)滑动。
  5. 根据权利要求1所述的适用于叶绿素荧光监测的叶片原位暗适应装置,其特征在于,所述测控模块(11)包括温度传感器和湿度传感器。
  6. 应用权利要求1至5任一项所述的适用于叶绿素荧光监测的叶片原位暗适应装置的测试方法,其特征在于,包括如下步骤:
    选取待测量叶片;
    调整暗盒角度及叶绿素荧光仪(5)位置;
    打开正门(8)以及侧门(7),将所测植株叶片放入内盒(3),用夹片夹紧所测植株所需监测的叶片,关闭侧门(7)以及正门(8),所测植株叶茎穿过圆形茎孔(26),用柔软棉花塞包裹叶茎从而填充圆形茎孔(26);
    开启叶绿素荧光仪(5),启动测控模块(11),通过usb接口(15)连接电脑,此时测控模块(11)内的温湿度传感器开始工作自动进行采样、即时监控,收集内盒(3)内温度湿度数据将温度湿度信号转换成电信号形式,通过usb接口(15)输出电信号至电脑总端;
    电脑总端采集内盒(3)内温度和湿度情况判断是否达到预定要求;若达到预定要求,暗 适应后开启叶绿素荧光仪(5)测量;
    其中,若内盒(3)内温度高于预设温度,电脑总端通过usb接口(15)经过测控模块(11)内预设PWM线传递电信号,开启风扇(9),调节并增加转速直至盒内温度达到预设温度,经过TACH线输出电信号,显示风扇(9)工作转速,保证盒内温度到达预定温度;
    若内盒(3)内温度低于预定温度,则电脑输入电信号,开启温控发热装置(10),电脑相连的电子式温度控制器通过单片机、PLC及电路控制继电器使得温控发热装置(10)工作,当温度达到预设温度,温湿度传感器传出电信号关闭温控发热装置(10);
    若内盒(3)内湿度低于预定湿度,温湿度传感器将电信号传递至电脑,电脑再传递电信号至自动喷雾装置控制外设喷雾,当内盒(3)湿度达到预设湿度,温湿度传感器将电信号传递至电脑关闭自动喷雾装置;
    若内盒(3)内湿度高于预定湿度,温湿度传感器将电信号传递至电脑,电脑通过上述方式传递信号开启风扇(9)与温控发热装置(10)通过加速内盒(3)内空气循环、蒸发的形式降低湿度,到达预设湿度后温湿度传感器将电信号传递至电脑,电脑总端控制电子式温度控制器关闭风扇(9)及温控发热装置(10);
    测量后得到叶绿素荧光结果,输出数据。
  7. 根据权利要求6所述的测试方法,其特征在于,所述自动喷雾装置设置在植株所在田地。
  8. 一种暗环境监测荧光设备,其特征在于,包括权利要求1-5任一项所述的叶绿素荧光监测的叶片原位暗适应装置。
PCT/CN2023/080034 2022-03-21 2023-03-07 一种用于叶绿素荧光监测的叶片原位暗适应装置及方法 WO2023179354A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210275625.3A CN114646621B (zh) 2022-03-21 2022-03-21 一种用于叶绿素荧光监测的叶片原位暗适应装置及方法
CN202210275625.3 2022-03-21

Publications (1)

Publication Number Publication Date
WO2023179354A1 true WO2023179354A1 (zh) 2023-09-28

Family

ID=81995612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080034 WO2023179354A1 (zh) 2022-03-21 2023-03-07 一种用于叶绿素荧光监测的叶片原位暗适应装置及方法

Country Status (2)

Country Link
CN (1) CN114646621B (zh)
WO (1) WO2023179354A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646621B (zh) * 2022-03-21 2023-04-11 江苏大学 一种用于叶绿素荧光监测的叶片原位暗适应装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1483951A1 (de) * 2003-06-04 2004-12-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Einrichtung zum Bestimmen des Düngebedarfs in Gärten
CN206879374U (zh) * 2017-05-10 2018-01-16 福建省农业科学院果树研究所 杨梅种子沙藏促芽装置
CN207408306U (zh) * 2017-10-19 2018-05-25 中国科学院植物研究所 一种用于测定叶片横截面叶绿素荧光的叶室
CN207923716U (zh) * 2018-03-21 2018-09-28 成都大学 一种测定植物叶片叶绿素荧光参数的装置
CN110806404A (zh) * 2019-12-03 2020-02-18 杭州麦乐克科技股份有限公司 一种叶绿素荧光检测的改良方法及装置
CN113358826A (zh) * 2021-06-10 2021-09-07 北京林业大学 一种测定林木树枝和叶片呼吸的装置及测定方法
CN113945681A (zh) * 2020-07-17 2022-01-18 中国科学院沈阳应用生态研究所 一种测定森林生态系统组分呼吸δ13C的装置和方法
CN114646621A (zh) * 2022-03-21 2022-06-21 江苏大学 一种用于叶绿素荧光监测的叶片原位暗适应装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2129212T3 (en) * 2007-03-23 2016-03-29 Heliospectra Aktiebolag A system for modulating plant growth or attributes
WO2013126023A1 (en) * 2012-02-21 2013-08-29 Vendeka Bilgi Teknolojileri Ticaret Limited Şirketi A plant growth system and monitoring method
KR101326269B1 (ko) * 2012-08-14 2013-11-11 사단법인대기환경모델링센터 식물의 줄기 호흡속도 측정용 자동 공기 수집 챔버장치
US11287381B2 (en) * 2017-06-30 2022-03-29 Ut-Battelle, Llc System and method for measuring sun-induced chlorophyll fluorescence
CN209542452U (zh) * 2019-01-15 2019-10-25 云南农业大学 一种用于测定三七光合生理特征的移动式实验平台

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1483951A1 (de) * 2003-06-04 2004-12-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Einrichtung zum Bestimmen des Düngebedarfs in Gärten
CN206879374U (zh) * 2017-05-10 2018-01-16 福建省农业科学院果树研究所 杨梅种子沙藏促芽装置
CN207408306U (zh) * 2017-10-19 2018-05-25 中国科学院植物研究所 一种用于测定叶片横截面叶绿素荧光的叶室
CN207923716U (zh) * 2018-03-21 2018-09-28 成都大学 一种测定植物叶片叶绿素荧光参数的装置
CN110806404A (zh) * 2019-12-03 2020-02-18 杭州麦乐克科技股份有限公司 一种叶绿素荧光检测的改良方法及装置
CN113945681A (zh) * 2020-07-17 2022-01-18 中国科学院沈阳应用生态研究所 一种测定森林生态系统组分呼吸δ13C的装置和方法
CN113358826A (zh) * 2021-06-10 2021-09-07 北京林业大学 一种测定林木树枝和叶片呼吸的装置及测定方法
CN114646621A (zh) * 2022-03-21 2022-06-21 江苏大学 一种用于叶绿素荧光监测的叶片原位暗适应装置及方法

Also Published As

Publication number Publication date
CN114646621A (zh) 2022-06-21
CN114646621B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2021151287A1 (zh) 一种用于田间作物表型获取与分析的移动表型舱
WO2023179354A1 (zh) 一种用于叶绿素荧光监测的叶片原位暗适应装置及方法
JP6327560B2 (ja) 水耕栽培方法および水耕栽培装置
CN103250588A (zh) 智能花盆及智能化植物养殖方法
CN211576907U (zh) 一种涂料氙灯老化试验箱
JP5984075B1 (ja) 水分量観察装置、水分量観察方法及び栽培装置
WO2017130249A1 (ja) 水分量観察装置、水分量観察方法及び栽培装置
CN108522091A (zh) 一种家用植物生长箱及其多目标优化控制方法
CN206431134U (zh) 一种用于棉花检测的快速平衡通道
Zhou et al. Multi-objective environment chamber system for studying plant responses to climate change
Takakura Research exploring greenhouse environment control over the last 50 years
CN214278765U (zh) 一种种植用的恒温控制装置
CN212083224U (zh) 一种otc自动开启式光合-呼吸监测系统
CN214482568U (zh) 一种食用菌菇房空气检测预警装置
CN206254302U (zh) 一种土建工程专用的混凝土试块养护设备
CN109673336A (zh) 一种运用信息系统集成服务的全周期植物生长室
Mashonjowa et al. Measurement and simulation of the ventilation rates in a naturally ventilated Azrom-type greenhouse in Zimbabwe
CN207802956U (zh) 作物幼苗生长培育箱
CN217389535U (zh) 一种自动化供暖玻璃温室大棚
CN221128147U (zh) 一种种植底盘自动升降的植物实验箱
CN213881086U (zh) 一种智慧农业大棚
CN212693592U (zh) 一种自动开闭式生物呼吸与能量代谢测量系统
CN216254224U (zh) 一种草珊瑚种植用扦插培育装置
CN116242504B (zh) 一种智慧农业种殖大棚用测温仪
CN204705922U (zh) 一种大棚室内温度远程控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773605

Country of ref document: EP

Kind code of ref document: A1