WO2023179326A1 - 电阻抗成像方法、装置、存储介质及电子设备 - Google Patents

电阻抗成像方法、装置、存储介质及电子设备 Download PDF

Info

Publication number
WO2023179326A1
WO2023179326A1 PCT/CN2023/079241 CN2023079241W WO2023179326A1 WO 2023179326 A1 WO2023179326 A1 WO 2023179326A1 CN 2023079241 W CN2023079241 W CN 2023079241W WO 2023179326 A1 WO2023179326 A1 WO 2023179326A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode group
excitation
electrode
electrical impedance
measurement
Prior art date
Application number
PCT/CN2023/079241
Other languages
English (en)
French (fr)
Inventor
管明涛
Original Assignee
北京华睿博视医学影像技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京华睿博视医学影像技术有限公司 filed Critical 北京华睿博视医学影像技术有限公司
Publication of WO2023179326A1 publication Critical patent/WO2023179326A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0536Impedance imaging, e.g. by tomography

Definitions

  • the present disclosure relates to the technical field of electrical impedance imaging, and in particular to an electrical impedance imaging method, device, storage medium and electronic equipment.
  • EIT Electrical Impedance Tomography
  • the basic principle of electrical impedance imaging is to use various excitation methods to apply a safe current lower than the cell excitation threshold to the area to be measured according to different electrode arrangements, and then measure the voltage distribution data on the body surface by scanning the array electrodes, and then Based on the voltage distribution data, an image of the area of the human body to be measured is obtained.
  • bioelectrical impedance The impedance changes exhibited by living organisms, biological tissues, biological organs, and biological cells under the action of safe currents below the excitation threshold are called bioelectrical impedance.
  • the impedances of various tissues in the human body vary greatly; when the physiological and pathological conditions change, the conductivity values of each tissue also change; moreover, the impedance values of diseased tissues and normal tissues differ even further. Therefore, the distribution and changes of conductivity in the body can reflect the physiological state of the human body to a certain extent and have important clinical value.
  • the present disclosure proposes an electrical impedance imaging method, device, storage medium and electronic equipment, which can still obtain more accurate electrical impedance imaging results in the presence of disabled electrodes.
  • an embodiment of the present disclosure provides an electrical impedance imaging method, which is applied to an electrical impedance imaging system.
  • the electrical impedance imaging system includes a plurality of electrodes disposed in an area to be measured; the method includes: When there is a disabled electrode among the plurality of electrodes, the electrodes other than the disabled electrode among the plurality of electrodes are grouped using a preset electrode grouping interval to obtain a first electrode group set; An electrode group set is used as the first excitation electrode group; the first electrode group set is used as the first measurement electrode group; and the area to be measured is measured based on the first excitation electrode group and the first measurement electrode group. Electrical impedance imaging.
  • the plurality of electrodes are arranged in a circular array in the area to be measured.
  • the method further includes: based on the relationship between the disabled electrode and the electrode group.
  • the adjacent electrodes and the electrodes next to the disabled electrode are used to obtain a second excitation electrode group; the resistance of the area to be measured is performed based on the first excitation electrode group and the first measurement electrode group.
  • Anti-imaging includes: performing electrical impedance imaging on the area to be measured based on the first excitation electrode group, the second excitation electrode group and the first measurement electrode group.
  • obtaining a second excitation electrode group based on electrodes adjacent to the incapacitated electrode and electrodes next to the incapacitated electrode includes: The electrodes and the electrodes next to the disabled electrode are combined according to a preset combination method to obtain a second electrode group set; any subset of the second electrode group set is used as the second excitation electrode group .
  • performing electrical impedance imaging on the area to be measured based on the first excitation electrode group, the second excitation electrode group and the first measurement electrode group includes: from the first excitation electrode group An excitation signal is input to each electrode group in the excitation electrode group as a first excitation signal, and an output signal corresponding to the first excitation signal is collected from each electrode group of the first measurement electrode group; The excitation signal is input to each of the two excitation electrode groups as a second excitation signal, and an output signal corresponding to the second excitation signal is collected from each electrode group of the first measurement electrode group; Exclude signals that do not participate in imaging from the output signal corresponding to the first excitation signal and the output signal corresponding to the second excitation signal to obtain an effective imaging signal; use an image reconstruction algorithm to perform the effective imaging The signal is inverted to obtain the electrical impedance imaging result of the area to be measured.
  • the signals that do not participate in imaging among the output signal corresponding to the first excitation signal and the output signal corresponding to the second excitation signal include: self-excitation self-measurement signals, reciprocity, etc.
  • the valence measurement signal and excitation measurement electrode set contains the measurement signal of a common electrode.
  • the method further includes: based on the relationship between the disabled electrode and the electrode group.
  • the adjacent electrodes and the electrodes next to the disabled electrode are used to obtain a second measurement electrode group; the resistance of the area to be measured is performed based on the first excitation electrode group and the first measurement electrode group.
  • Anti-imaging includes: performing electrical impedance imaging on the area to be measured based on the first excitation electrode group, the first measurement electrode group and the second measurement electrode group.
  • inventions of the present disclosure provide an electrical impedance imaging device, which is applied to an electrical impedance imaging system.
  • the electrical impedance imaging system includes a plurality of electrodes disposed in an area to be measured; the device includes: a grouping unit, Configured to group electrodes other than the disabled electrode among the plurality of electrodes using a preset electrode grouping interval to obtain a first electrode group when a disabled electrode is detected among the plurality of electrodes.
  • a first excitation electrode group acquisition unit configured to use the first electrode group set as a first excitation electrode group
  • a first measurement electrode group acquisition unit configured to use the first electrode group set as a first a measurement electrode group
  • an electrical impedance imaging unit configured to perform electrical impedance imaging on the area to be measured based on the first excitation electrode group and the first measurement electrode group.
  • embodiments of the present disclosure provide a storage medium with program code stored on the storage medium.
  • the program code is executed by a processor, the electrical impedance imaging as described in any one of the above embodiments is implemented. method.
  • inventions of the present disclosure provide an electronic device.
  • the electronic device includes a memory and a processor.
  • the memory stores program code that can run on the processor.
  • the program code is configured by the program code.
  • the electrical impedance imaging method described in any one of the above embodiments is implemented.
  • the electrical impedance imaging method, device, storage medium and electronic device when detecting the presence of disabled electrodes in multiple electrodes in the area to be measured, uses the preset electrode grouping interval to remove the multiple electrodes.
  • the electrodes other than the disabled electrodes are grouped to obtain a first electrode group set, and the first electrode group set is simultaneously used as the first excitation electrode group and the first measurement electrode group, and then based on the first excitation electrode group and the first measurement electrode group
  • the measurement electrode group performs electrical impedance imaging on the area to be measured, so that in the presence of disabled electrodes, the system can automatically group the remaining electrodes and perform new electrical impedance imaging based on the excitation measurement plan obtained after grouping.
  • the new electrical impedance imaging process excludes disabled electrodes, more accurate imaging results can be obtained, effectively overcoming the technical problems existing in related technologies. That is, the technical solution provided by the embodiments of the present disclosure can still obtain more accurate electrical impedance imaging results in the presence of disabled electrodes.
  • Figure 1 is a method flow chart of an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of one measurement in the 1/16 excitation measurement scheme in the embodiment of the present disclosure
  • Figure 3 is an excitation measurement table of the 1/16 excitation measurement scheme in the embodiment of the present disclosure.
  • Figure 4 is an excitation measurement table of the overall compensation scheme when electrode F is disabled in the embodiment of the present disclosure
  • Figure 5 is an excitation measurement table of the additional compensation scheme when electrode F is disabled in the embodiment of the present disclosure
  • Figure 6 is the normal electrical impedance imaging result of the 1/16 excitation measurement scheme in the embodiment of the present disclosure
  • Figure 7 is the electrical impedance imaging result when there is a disabled electrode (numbered F) in the 1/16 excitation measurement scheme in the embodiment of the present disclosure
  • Figure 8 is the electrical impedance imaging result of the overall compensation scheme of the 1/16 excitation measurement scheme in the embodiment of the present disclosure
  • Figure 9 is the electrical impedance imaging result of the additional compensation scheme of the 1/16 excitation measurement scheme in the embodiment of the present disclosure.
  • Figure 10 is a device structure diagram of an embodiment of the present disclosure.
  • electrodes may have poor contact due to physical detachment, insufficient matching medium, excessive use, hardware device failure, etc., causing the effective measurement signal to be overwhelmed by noise, seriously affecting the reliability of data collection and interfering with imaging results.
  • Such electrodes that have lost their normal functions are called disabled electrodes.
  • disabled electrodes In the presence of disabled electrodes, related technologies cannot obtain accurate and reliable electrical impedance imaging results.
  • the present disclosure uses other normal electrodes to perform compensation measurements on the area near the disabled electrode, and provides an electrical impedance imaging method that can improve imaging quality.
  • This disclosure determines a new compensation excitation measurement scheme based on the position and serial number of the disabled electrode, compensates the sensitivity of the electrical impedance imaging system to the area near the disabled electrode, and obtains an inversion result that is basically close to the normal imaging situation.
  • the electrode group that applies excitation is the excitation electrode group, and all the excitation electrode groups of a group of plans constitute the excitation electrode group set E;
  • the electrode group for measurement is the measurement electrode group, and all the measurement electrode groups of a group of plans
  • the measurement electrode group set M is constituted;
  • 3 The adjacent electrode AE of the disabled electrode and the next adjacent electrode SE; 4
  • the subscripts 1 and 2 respectively represent the counterclockwise and clockwise directions of the disabled electrode; 5
  • a specific excitation and its All corresponding measurements are called a set of measurements; and 6
  • the original excitation measurement scheme groups all electrodes according to a certain electrode interval to obtain an electrode group set R.
  • a stimulus measurement scheme can be viewed as a collection of multiple sets of measurements.
  • the electrode group set E and the electrode group set M are exactly the same; excluding (1) self-excitation and self-measurement, (2) reciprocity equivalent measurement, (3) excitation measurement electrode group including common After these three situations of the electrode, a set of excitation measurement solutions that can work normally are obtained.
  • the steps to generate the compensation scheme after knowing the disabled electrode serial number are as follows:
  • Electrode group set C usually including [AE 1 , AE 2 ], [AE 1 , SE 2 ], [SE 1 , AE 2 ] .
  • Additional compensation refers to the addition of one or more sets of measurements based on the overall compensation plan or the original incentive measurement plan.
  • the additionally compensated excitation electrode group set is electrode group set C.
  • the measurement electrode group set is usually selected from electrode group set N or electrode group set R, which is obtained by excluding the disabled electrode group (electrode group containing disabled electrodes).
  • the electrode group set C can also be equivalently selected as the additionally compensated measurement electrode group set, and the electrode group set N or the electrode group set R excludes the disabled electrode group (the electrode containing the disabled electrode The electrode group set obtained after grouping) is used as an additional compensation excitation electrode group set.
  • the capacity of the electrode group set C can be flexibly adjusted and can be any subset of the electrode group set C.
  • the electrode group set C can also include the electrode group [SE 1 , SE 2 ] or the electrode group composed of the third adjacent electrode. However, since the latter has a low correlation with the desensitized area, the compensation effect is not significant. .
  • embodiments of the present disclosure provide an electrical impedance imaging method, which is applied to an electrical impedance imaging system.
  • the electrical impedance imaging system includes a plurality of electrodes arranged in an area to be measured.
  • the method of this embodiment includes step S101, step S102, step S103 and step S104. The content of these steps is described in detail below.
  • Step S101 When it is detected that a disabled electrode exists in a plurality of electrodes, the electrodes other than the disabled electrode among the plurality of electrodes are grouped using a preset electrode grouping interval to obtain a first electrode group set.
  • Step S102 Assemble the first electrode group as the first excitation electrode group.
  • Step S103 Assemble the first electrode group as the first measurement electrode group.
  • the disabled electrode When a disabled electrode exists, the disabled electrode is excluded and the remaining normal electrodes are regrouped.
  • the electrodes can be divided into groups of two according to the spacing size.
  • a plurality of electrodes 12 are arranged in an annular array in the area to be measured 11, as shown in Figure 2.
  • the excitation current 13 is used for current excitation
  • the measurement voltage 14 is used for voltage measurement.
  • Combining this grouping method with the sequence of excitation measurements is called an excitation measurement scheme.
  • the electrode group used as an excitation can also be used as a measurement electrode group, so in the end only 104 of the measured values can be used to perform electrical impedance imaging.
  • Figure 6 shows the normal electrical impedance imaging results of the 1/16 excitation measurement scheme in the embodiment of the present disclosure.
  • the electrodes are usually numbered in hexadecimal (0,1,2,...,F) and grouped according to different serial number intervals.
  • the electrode grouping results obtained at the same serial number interval are generally selected as the excitation and measurement electrode group sets at the same time.
  • group electrodes with a serial number interval of 1 and use the grouped electrode groups as both an excitation electrode group and a measurement electrode group.
  • This excitation measurement scheme is called a 1/16 excitation measurement scheme.
  • Figure 2 is a schematic diagram of a certain measurement (excitation electrode group [4,3], measurement electrode group [2,1]) in the 1/16 excitation measurement scheme.
  • Figure 3 is the excitation measurement table of the 1/16 excitation measurement plan, which contains all the contents of the 1/16 excitation measurement plan, including 104 measurement values.
  • the system When the system detects the disabled electrode F, it will automatically regroup the electrode F after excluding it. That is, the system will group the remaining normal electrodes (0,1,2,...,E) according to the grouping interval of the original plan (here 1 ) are grouped to obtain the first electrode group set [10, 21, 32, 43, 54, 65, 76, 87, 98, a9, ba, cb, dc, ed, 0e].
  • the first electrode group set [10, 21, 32, 43, 54, 65, 76, 87, 98, a9, ba, cb, dc, ed, 0e] is used as the first excitation electrode group and the first measurement at the same time
  • the electrode set is shown in Figure 4.
  • the method of using the above method to regain the first excitation electrode group and the first measurement electrode group is called an overall compensation scheme.
  • Figure 4 is the incentive measurement table for this overall compensation scheme. As can be seen from Figure 4, there are a total of 90 measurement signals obtained by excitation measurement through the overall compensation scheme.
  • Step S104 Perform electrical impedance imaging on the area to be measured based on the first excitation electrode group and the first measurement electrode group.
  • electrical impedance imaging is performed on the area to be measured based on the first excitation electrode group and the first measurement electrode group, that is, the above-mentioned overall compensation scheme is used to perform electrical impedance imaging to obtain corresponding electrical impedance imaging results.
  • electrical impedance imaging of the area to be measured based on the first excitation electrode group and the first measurement electrode group includes: inputting an excitation signal from each electrode group in the first excitation electrode group, and inputting an excitation signal from the first measurement electrode group. Collect the output signal corresponding to the excitation signal at each electrode group, and exclude signals that do not participate in imaging in the output signal to obtain an effective imaging signal; use an image reconstruction algorithm to invert the effective imaging signal to obtain the area to be measured electrical impedance imaging results.
  • Figure 8 shows the electrical impedance imaging results using the overall compensation scheme.
  • An image reconstruction algorithm based on solving the electromagnetic field inverse problem is used to invert the effective imaging signal, and finally the two-dimensional or three-dimensional image of the conductivity distribution or change state in the body is obtained as the electrical impedance imaging result of the area to be measured.
  • the obtained first electrode group set can also be [10, 21, 32, 43, 54, 65, 76, 87, 98, a9, ba, cb,dc,ed], that is, in this embodiment, the first obtained by regrouping
  • the electrode group may include the electrode group [0,e] composed of two adjacent electrodes of the disabled electrode, or may not include the electrode group [0,e].
  • the first electrode group set does not include the disabled electrode
  • the electrode group [0,e] consists of two adjacent electrodes, in order to obtain more accurate electrical impedance imaging results, the following additional compensation scheme is performed.
  • the method of this embodiment further includes: based on the electrode adjacent to the disabled electrode and the second adjacent electrode to the disabled electrode electrodes to obtain the second excitation electrode group, then the electrical impedance imaging of the area to be measured based on the first excitation electrode group and the first measurement electrode group in this embodiment includes: based on the first excitation electrode group, the second excitation electrode group and the first measurement electrode group to perform electrical impedance imaging on the area to be measured.
  • the second excitation electrode group is obtained based on the electrodes adjacent to the incapacitated electrode and the electrodes sub-adjacent to the incapacitated electrode, including: combining the electrodes adjacent to the incapacitated electrode and the electrodes sub-adjacent to the incapacitated electrode. Adjacent electrodes are combined according to a preset combination method to obtain a second electrode group set; any subset of the second electrode group set is used as the second excitation electrode group.
  • the additional compensation scheme combines the adjacent electrodes (electrode E and electrode 0) and sub-adjacent electrodes (electrode D and electrode 1) of the disabled electrode F to obtain a second electrode group set [e0, e1, d0]. At this time, any subset of the second electrode group set can be used as the excitation electrode group of the additional compensation scheme, that is, the above-mentioned second excitation electrode group.
  • the measurement electrode group of the additional compensation scheme usually selects the electrode group set obtained after excluding the disabled electrode group. In this embodiment, the first electrode group set obtained in the above overall compensation scheme is directly used as the measurement electrode group of the additional compensation scheme.
  • the excitation measurement table obtained by the above method is shown in Figure 5.
  • the electrode group set [10, 21, 32, 43, 54, 65, 76, 87, 98, a9, ba, cb, dc, ed] serves as the first excitation electrode group and the first measurement electrode group at the same time ;
  • the electrode group set [e0, e1, d0] serves as the second excitation electrode group.
  • the electrode group set [e0, e1, d0] is added to the excitation electrode group of the original measurement plan (or overall compensation plan), correspondingly adding 34 measurement groups (serial number 79-112).
  • the electrode group set [e0, e1, d0] can also be equivalently selected as the additional compensation measurement electrode group, and the electrode group set obtained after excluding the disabled electrode group can be used as the additional compensation excitation Electrode set collection.
  • the method further includes: based on the electrode adjacent to the disabled electrode and the electrode group adjacent to the disabled electrode The second adjacent electrode is used to obtain the second measurement electrode group.
  • the electrical impedance imaging of the area to be measured based on the first excitation electrode group and the first measurement electrode group includes: based on the first excitation electrode group, the first The measuring electrode group and the second measuring electrode group perform electrical impedance imaging on the area to be measured.
  • electrical impedance imaging of the area to be measured based on the first excitation electrode group, the second excitation electrode group and the first measurement electrode group includes: inputting an excitation signal from each electrode group in the first excitation electrode group as The first excitation signal is to collect an output signal corresponding to the first excitation signal from each electrode group of the first measurement electrode group; and input the excitation signal from each electrode group of the second excitation electrode group as the second excitation signal, Collect the output signal corresponding to the second excitation signal from each electrode group of the first measurement electrode group; collect the output signal corresponding to the first excitation signal and the second excitation signal from The output signal corresponding to the excitation signal excludes signals that do not participate in imaging to obtain an effective imaging signal; an image reconstruction algorithm is used to invert the effective imaging signal to obtain the electrical impedance imaging result of the area to be measured.
  • the signals that do not participate in imaging include: self-excitation self-measurement signal, reciprocity equivalent measurement signal and excitation measurement electrode group including Measurement signal of the common electrode.
  • the self-excitation and self-measurement signals are used to detect the working status of the electrode.
  • the self-excitation and self-measurement signal 16 is the black box in the figure, that is, the same part of the excitation electrode group and the measurement electrode group; the reciprocity equivalent measurement signal is the black box in the figure
  • the measurement signal 15 of the excitation measurement electrode group including the common electrode is the right side of the inclined line composed of the black box in the figure white box part.
  • the above three measurement signals need to be excluded because they do not participate in imaging.
  • electrical impedance imaging of the area to be measured based on the first excitation electrode group, the first measurement electrode group and the second measurement electrode group includes: inputting an excitation signal from each electrode group in the first excitation electrode group, The output signal corresponding to the excitation signal is collected from each electrode group of the first measurement electrode group as the first output signal; the excitation signal is input from each electrode group of the first excitation electrode group, and the excitation signal is input from each electrode group of the second measurement electrode group.
  • the output signal corresponding to the excitation signal is collected at each electrode group as the second output signal; signals that do not participate in imaging are excluded from the first output signal and the second output signal to obtain effective imaging signals; an image reconstruction algorithm is used to The effective imaging signal is inverted to obtain the electrical impedance imaging result of the area to be measured.
  • Figure 9 shows the electrical impedance imaging results using an additional compensation scheme.
  • the present disclosure proposes two compensation schemes for electrical impedance imaging: an overall compensation scheme and an additional compensation scheme.
  • the overall compensation plan is a replacement for the original measurement plan
  • the additional compensation plan is a supplement to the original measurement plan or the overall compensation plan.
  • the overall compensation plan is a reorganization of the original measurement plan after discarding the disabled electrodes. It is actually a generalization of the original measurement plan when the number of electrodes is reduced. Therefore, the overall compensation scheme can be changed accordingly according to the electrode grouping rules and disabled electrode serial numbers of the original measurement scheme, with high flexibility.
  • An additional compensation solution is targeted compensation of the area near the disabled electrode.
  • the additional compensation plan can be split into several sub-plans, and different sub-plans can be used alone or in combination with each other.
  • the electrodes other than the disabled electrode among the multiple electrodes are grouped using a preset electrode grouping interval. , obtain the first electrode group set, and use the first electrode group set as the first excitation electrode group and the first measurement electrode group at the same time, and then perform resistance measurement on the area to be measured based on the first excitation electrode group and the first measurement electrode group anti-imaging, making incapacitating electrical
  • the system can automatically group the remaining electrodes and perform new electrical impedance imaging based on the excitation measurement plan obtained after grouping.
  • the new electrical impedance imaging process excludes disabled electrodes, more accurate imaging results can be obtained, effectively overcoming the technical problems existing in related technologies. That is, the technical solution provided by the embodiments of the present disclosure can still obtain more accurate electrical impedance imaging results in the presence of disabled electrodes.
  • the present disclosure also provides an electrical impedance imaging device, which is applied to an electrical impedance imaging system.
  • the electrical impedance imaging system includes a plurality of electrodes disposed in the area to be measured; as shown in Figure 10, the device includes Grouping unit 201, first excitation electrode group acquisition unit 202, first measurement electrode group acquisition unit 203, and electrical impedance imaging unit 204.
  • the grouping unit 201 is configured to, when detecting the presence of a disabled electrode among multiple electrodes, group the electrodes among the plurality of electrodes except the disabled electrode using a preset electrode grouping interval to obtain a first electrode group set.
  • the first excitation electrode group acquisition unit 202 is configured to collect the first electrode group as the first excitation electrode group.
  • the first measurement electrode group acquisition unit 203 is configured to collect the first electrode group as the first measurement electrode group.
  • the electrical impedance imaging unit 204 is configured to perform electrical impedance imaging on the area to be measured based on the first excitation electrode group and the first measurement electrode group.
  • multiple electrodes are arranged in a circular array in the area to be measured.
  • the device of this embodiment further includes: a second excitation electrode group acquisition unit configured to when the first electrode group set does not include an electrode group composed of two adjacent electrodes of the disabled electrode, A second excitation electrode group is obtained based on the electrodes adjacent to the deactivated electrode and the electrodes next to the deactivated electrode.
  • the electrical impedance imaging unit 204 of this embodiment is further configured to perform electrical impedance imaging of the area to be measured based on the first excitation electrode group, the second excitation electrode group and the first measurement electrode group.
  • the second excitation electrode group acquisition unit obtains the second excitation electrode group in the following manner: the electrodes adjacent to the incapacitated electrode and the electrodes next to the incapacitated electrode are combined according to a preset combination method to obtain The second electrode group set; any subset of the second electrode group set is used as the second excitation electrode group.
  • the electrical impedance imaging unit 204 includes a first excitation measurement unit, a second excitation measurement unit, a signal elimination unit and an inversion unit.
  • the first excitation measurement unit is configured to input an excitation signal as a first excitation signal from each electrode group in the first excitation electrode group, and collect a signal corresponding to the first excitation signal from each electrode group of the first measurement electrode group. output signal.
  • the second excitation measurement unit is configured to input an excitation signal as a second excitation signal from each electrode group in the second excitation electrode group, and collect a signal corresponding to the second excitation signal from each electrode group of the first measurement electrode group. output signal.
  • the signal elimination unit is configured to exclude signals that do not participate in imaging from the output signal corresponding to the first excitation signal and the output signal corresponding to the second excitation signal to obtain an effective imaging signal.
  • the inversion unit is configured to use an image reconstruction algorithm to invert the effective imaging signal to obtain the electrical impedance imaging result of the area to be measured.
  • the signals that do not participate in imaging include: self-excitation self-measurement signal, reciprocity equivalent measurement signal and excitation measurement electrode group including Measurement signal of the common electrode.
  • the device of this embodiment further includes: a second measurement electrode group acquisition unit configured to when the first electrode group set does not include an electrode group composed of two adjacent electrodes of the disabled electrode, A second measurement electrode group is obtained based on the electrodes adjacent to the deactivated electrode and the electrodes next to the deactivated electrode. Then, the electrical impedance imaging unit 204 of this embodiment is further configured to perform electrical impedance imaging of the area to be measured based on the first excitation electrode group, the first measurement electrode group, and the second measurement electrode group.
  • the electrical impedance imaging device when detecting the presence of a disabled electrode among multiple electrodes in the area to be measured, uses a preset electrode grouping interval to group the electrodes among the plurality of electrodes except the disabled electrode. , obtain the first electrode group set, and use the first electrode group set as the first excitation electrode group and the first measurement electrode group at the same time, and then perform resistance measurement on the area to be measured based on the first excitation electrode group and the first measurement electrode group Anti-imaging enables the system to automatically group the remaining electrodes in the presence of disabled electrodes and perform new electrical impedance imaging based on the excitation measurement scheme obtained after grouping.
  • the new electrical impedance imaging process excludes disabled electrodes, more accurate imaging results can be obtained, effectively overcoming the technical problems existing in related technologies. That is, the technical solution provided by the embodiments of the present disclosure can still obtain more accurate electrical impedance imaging results in the presence of disabled electrodes.
  • a storage medium is also provided.
  • Program code is stored on the storage medium.
  • the program code is executed by a processor, the electrical impedance imaging method as described in any of the above embodiments is implemented.
  • an electronic device includes a memory and a processor.
  • the memory stores program code that can be run on the processor.
  • the program code is executed by the processor, the above embodiments are implemented.
  • the electrical impedance imaging method according to any one of the above.
  • the electrical impedance imaging method, device, storage medium and electronic device when detecting the presence of disabled electrodes in multiple electrodes in the area to be measured, uses the preset electrode grouping interval to remove the multiple electrodes.
  • the electrodes other than the disabled electrodes are grouped to obtain a first electrode group set, and the first electrode group set is simultaneously used as the first excitation electrode group and the first measurement electrode group, and then based on the first excitation electrode group and the first measurement electrode group
  • the measurement electrode group performs electrical impedance imaging of the area to be measured, so that in the presence of disabled electrodes, the system can automatically group the remaining electrodes and perform analysis based on the analysis.
  • the excitation measurement scheme obtained after the set was used for new electrical impedance imaging.
  • the new electrical impedance imaging process excludes disabled electrodes, more accurate imaging results can be obtained, effectively overcoming the technical problems existing in related technologies. That is, the technical solution provided by the embodiments of the present disclosure can still obtain more accurate electrical impedance imaging results in the presence of disabled electrodes.
  • the present disclosure discloses an electrical impedance imaging method that can compensate for images damaged due to electrode failure during the electrical impedance imaging process.
  • two methods the overall compensation scheme and the additional compensation scheme, were proposed.
  • This solution has the following advantages: (1) It can output EIT images of close to normal quality even when the electrodes are disabled, improving the robustness of the EIT system; (2) It has good scalability and combinability, and can be flexibly adjusted according to actual conditions. , in different application backgrounds, several corresponding solutions can be obtained based on two compensation ideas to compensate for damaged images.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the embodiments of the present disclosure.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • Integrated units may be stored in a computer-readable storage medium if they are implemented in the form of software functional units and sold or used as independent products.
  • the technical solution of the present disclosure is essentially or contributes to the relevant technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause an electronic device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods of various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

提供了一种电阻抗成像方法、装置、存储介质及电子设备。该电阻抗成像方法包括:当检测到待测区域(11)的多个电极(12)中存在失能电极时,采用预设的电极分组间隔对该多个电极中除失能电极以外的电极进行分组,获得第一电极组集合(S101);将第一电极组集合作为第一激励电极组(S102);将第一电极组集合作为第一测量电极组(S103);基于第一激励电极组和第一测量电极组对该待测区域(11)进行电阻抗成像(S104)。该电阻抗成像方法能够在存在失能电极的情况下,仍然获得较准确的电阻抗成像结果。

Description

电阻抗成像方法、装置、存储介质及电子设备
相关申请的交叉引用
本公开要求享有2022年3月24日提交的名称为“电阻抗成像方法、装置、存储介质及电子设备”的中国专利申请CN202210300467.2的优先权,其全部内容通过引用并入本公开中。
技术领域
本公开涉及电阻抗成像技术领域,特别地涉及一种电阻抗成像方法、装置、存储介质及电子设备。
背景技术
电阻抗成像(Electrical Impedance Tomography,EIT)是一种无辐射、非侵入、低成本、可功能成像的技术。电阻抗成像的基本原理是,按照不同的电极排布方案,采用多种激励方式对人体待测区域施加低于细胞兴奋阈值的安全电流,然后通过扫描阵列电极测得体表的电压分布数据,进而基于该电压分布数据获得人体待测区域的图像。
生物体或生物组织、生物器官、生物细胞在低于兴奋阈值的安全电流作用下所表现出的阻抗变化称为生物电阻抗。正常状态下,人体各组织的阻抗差异较大;当生理病理状态发生变化时,各组织的电导率值也随之改变;而且,病变组织与正常组织的阻抗值差异更大。因此,体内电导率分布及变化能在一定程度上反映人体生理状态,具有重要的临床价值。
发明内容
本公开提出了一种电阻抗成像方法、装置、存储介质及电子设备,能够在存在失能电极的情况下,仍然获得较准确的电阻抗成像结果。
第一方面,本公开实施例提供了一种电阻抗成像方法,应用于电阻抗成像系统,所述电阻抗成像系统包括设置于待测区域的多个电极;所述方法包括:在检测到所述多个电极中存在失能电极的情况下,采用预设的电极分组间隔对所述多个电极中除所述失能电极以外的电极进行分组,获得第一电极组集合;将所述第一电极组集合作为第一激励电极组;将所述第一电极组集合作为第一测量电极组;以及基于所述第一激励电极组和所述第一测量电极组对所述待测区域进行电阻抗成像。
在一些实施例中,所述多个电极在所述待测区域呈环形阵列排列。
在一些实施例中,在所述第一电极组集合中不包括由所述失能电极的两个相邻电极组成的电极组的情况下,所述方法还包括:基于与所述失能电极相邻的电极和与所述失能电极次相邻的电极,获得第二激励电极组;所述基于所述第一激励电极组和所述第一测量电极组对所述待测区域进行电阻抗成像,包括:基于所述第一激励电极组、所述第二激励电极组和所述第一测量电极组对所述待测区域进行电阻抗成像。
在一些实施例中,所述基于与所述失能电极相邻的电极和与所述失能电极次相邻的电极,获得第二激励电极组,包括:将与所述失能电极相邻的电极和与所述失能电极次相邻的电极按照预设组合方式进行组合,获得第二电极组集合;将所述第二电极组集合的任一子集作为所述第二激励电极组。
在一些实施例中,所述基于所述第一激励电极组、所述第二激励电极组和所述第一测量电极组对所述待测区域进行电阻抗成像,包括:从所述第一激励电极组中的每一电极组处输入激励信号作为第一激励信号,从所述第一测量电极组的每一电极组处采集与所述第一激励信号对应的输出信号;从所述第二激励电极组中的每一电极组处输入所述激励信号作为第二激励信号,从所述第一测量电极组的每一电极组处采集与所述第二激励信号对应的输出信号;从所述与所述第一激励信号对应的输出信号和所述与所述第二激励信号对应的输出信号中排除不参与成像的信号,获得有效成像信号;采用图像重构算法对所述有效成像信号进行反演,获得所述待测区域的电阻抗成像结果。
在一些实施例中,所述与所述第一激励信号对应的输出信号和所述与所述第二激励信号对应的输出信号中不参与成像的信号包括:自激励自测量信号、互易等价测量信号和激励测量电极组包含共同电极的测量信号。
在一些实施例中,在所述第一电极组集合中不包括由所述失能电极的两个相邻电极组成的电极组的情况下,所述方法还包括:基于与所述失能电极相邻的电极和与所述失能电极次相邻的电极,获得第二测量电极组;所述基于所述第一激励电极组和所述第一测量电极组对所述待测区域进行电阻抗成像,包括:基于所述第一激励电极组、所述第一测量电极组和所述第二测量电极组对所述待测区域进行电阻抗成像。
第二方面,本公开实施例提供了一种电阻抗成像装置,应用于电阻抗成像系统,所述电阻抗成像系统包括设置于待测区域的多个电极;所述装置包括:分组单元,被配置为在检测到所述多个电极中存在失能电极的情况下,采用预设的电极分组间隔对所述多个电极中除所述失能电极以外的电极进行分组,获得第一电极组集合;第一激励电极组获取单元,被配置为将所述第一电极组集合作为第一激励电极组;第一测量电极组获取单元,被配置为将所述第一电极组集合作为第一测量电极组;以及电阻抗成像单元,被配置为基于所述第一激励电极组和所述第一测量电极组对所述待测区域进行电阻抗成像。
第三方面,本公开实施例提供了一种存储介质,所述存储介质上存储有程序代码,所述程序代码被处理器执行时,实现如上述实施例中任一项所述的电阻抗成像方法。
第四方面,本公开实施例提供了一种电子设备,所述电子设备包括存储器、处理器,所述存储器上存储有可在所述处理器上运行的程序代码,所述程序代码被所述处理器执行时,实现如上述实施例中任一项所述的电阻抗成像方法。
本公开实施例提供的电阻抗成像方法、装置、存储介质及电子设备,当检测到待测区域的多个电极中存在失能电极时,采用预设的电极分组间隔对该多个电极中除失能电极以外的电极进行分组,获得第一电极组集合,并将该第一电极组集合同时作为第一激励电极组和第一测量电极组,进而基于该第一激励电极组和该第一测量电极组对待测区域进行电阻抗成像,使得在存在失能电极的情况下,系统能够自动对剩余电极进行分组,并基于分组后获得的激励测量方案进行新的电阻抗成像。由于新的电阻抗成像过程排除了失能电极,因此能够获得较准确的成像结果,有效克服了相关技术存在的技术问题。即,本公开实施例提供的技术方案,能够在存在失能电极的情况下,仍然获得较准确的电阻抗成像结果。
附图说明
通过结合附图阅读下文示例性实施例的详细描述可更好地理解本公开公开的范围。其中所包括的附图是:
图1为本公开实施例的方法流程图;
图2为本公开实施例中1/16激励测量方案中一次测量的示意图;
图3为本公开实施例中1/16激励测量方案的激励测量表;
图4为本公开实施例中电极F失能时的整体补偿方案激励测量表;
图5为本公开实施例中电极F失能时的额外补偿方案激励测量表;
图6为本公开实施例中1/16激励测量方案的正常电阻抗成像结果;
图7为本公开实施例中1/16激励测量方案中存在一个失能电极(序号为F)时的电阻抗成像结果;
图8为本公开实施例中1/16激励测量方案的整体补偿方案的电阻抗成像结果;
图9为本公开实施例中1/16激励测量方案的额外补偿方案的电阻抗成像结果;以及
图10为本公开实施例的装置结构图。
附图标记说明
11-待测区域   12-电极   13-激励电流   14-测量电压
15-激励测量电极组包含共同电极的测量信号
16-自激励自测量信号
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,以下将结合附图及实施例来详细说明本公开的实施方法,借此对本公开如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但是,本公开还可以采用其他不同于在此描述的其他方式来实施,因此,本公开的保护范围并不受下面公开的具体实施例的限制。
为了进行生物医学电阻抗成像,需要在待测区域(如人体胸腔)四周布置一定数量的电极(常见如8,16或32个),并按照一定的规律对电极进行分组,并按照分组施加激励、进行测量。
在实际测量中,电极可能会由于物理脱落、匹配介质不足、使用次数过多、硬件设备故障等原因出现接触不良,导致有效测量信号被噪声淹没,严重影响数据采集的可靠性,干扰成像结果。这种失去正常功能的电极称失能电极。在存在失能电极的情况下,相关技术无法获得准确、可靠的电阻抗成像结果。
实施例一
本公开利用其他正常电极对失能电极附近区域进行补偿测量,提供一种能够提高成像质量的电阻抗成像方法。本公开根据失能电极的位置与序号确定新的补偿激励测量方案,补偿电阻抗成像系统对失能电极附近区域的敏感度,获得与正常成像情况基本接近的反演结果。
补偿思路如下。
首先定义或简称:①施加激励的电极组为激励电极组,一组方案的全部激励电极组构成激励电极组集合E;②进行测量的电极组为测量电极组,一组方案的全部测量电极组构成测量电极组集合M;③失能电极的相邻电极AE,次相邻电极SE;④下标1、2分别表示失能电极的逆时针方向与顺时针方向;⑤一个特定的激励及其对应的全部测量称为一组测量;以及⑥原有激励测量方案按照一定的电极间隔对全部电极分组得到电极组集合R。
一个激励测量方案可以看作是多组测量的集合。一般来讲,在所有电极正常工作时,电极组集合E与电极组集合M完全相同;排除(1)自激励自测量、(2)互易等价测量、(3)激励测量电极组包含共同电极这三种情形后,得到一组能够正常工作的激励测量方案。
如果出现失能电极,则需要排除失能电极后重新构建电极组集合E与电极组集合M。对于任意一种激励测量方案(即原有激励测量方案),已知失能电极序号后的补偿方案生成步骤如下:
①整体补偿:舍弃失能电极,沿用原有激励测量方案的电极分组间隔对剩余正常电极重新分组得到电极组集合N。电极组集合E与电极组集合M均选用电极组集合N,并排除三种情形后所组成的激励测量方案称整体补偿方案。整体补偿方案可独立进行补偿成像。
②额外补偿:将失能电极的相邻电极和次相邻电极相互组合得到电极组集合C,通常包括[AE1,AE2],[AE1,SE2],[SE1,AE2]。额外补偿是指在整体补偿方案或原有激励测量方案的基础上额外补充一组或多组测量。额外补偿的激励电极组集合为电极组集合C,测量电极组集合通常选择电极组集合N或电极组集合R排除失能电极组(含有失能电极的电极组)后得到的电极组集合。由于激励测量的互易性,也可以等效地选择将电极组集合C作为额外补偿的测量电极组集合,将电极组集合N或电极组集合R排除失能电极组(含有失能电极的电极组)后得到的电极组集合作为额外补偿的激励电极组集合。
电极组集合C的容量可以灵活调整,可以是电极组集合C的任一子集。当然,电极组集合C也可以包括电极组[SE1,SE2]或是第三临近电极参与构成的电极组,但是由于后者与失敏区域的关联程度较低,所以补偿效果并不显著。
基于上述思路,本公开实施例提供了一种电阻抗成像方法,应用于电阻抗成像系统,电阻抗成像系统包括设置于待测区域的多个电极。如图1所示,本实施例的方法包括步骤S101、步骤S102、步骤S103和步骤S104,以下详细描述这些步骤的内容。
步骤S101,当检测到多个电极中存在失能电极时,采用预设的电极分组间隔对多个电极中除失能电极以外的电极进行分组,获得第一电极组集合。
步骤S102,将第一电极组集合作为第一激励电极组。
步骤S103,将第一电极组集合作为第一测量电极组。
由于数据丢失与数据干扰主要发生在失能电极附近,电阻抗成像结果在相应位置的失真尤为严重,因此,可基于实际的电阻抗成像结果判断多个电极中是否存在失能电极。
当存在失能电极时,排除该失能电极,对剩余的正常电极进行重新分组。例如,可将电极按照间距大小每两个分为一组。
本实施例中,多个电极12在待测区域11呈环形阵列排列,如图2所示。在图2中,使用激励电流13进行电流激励、使用测量电压14进行电压测量,并将这种分组方法与激励测量的先后顺序合并称为激励测量方案。本实施例按照图2的方式将电极依照间距大小每两个分为一组,以一组电极施加激励,其他电极组进行测量。16电极全部正常工作时,共有电极16组。对于每一组电极施加的激励,由剩余13组电极进行测量,因此总共有16×13=208个测量值。由于激励和测量的互易性,即作为激励的电极组也可作为测量的电极组,因此最终仅需利用其中104个测量值即可进行电阻抗成像。图6为本公开实施例中1/16激励测量方案的正常电阻抗成像结果。
参照图2,以16电极电阻抗成像系统为例,通常将电极以16进制编号(0,1,2,…,F)并按照不同序号间隔分组。在全部电极均正常工作时,一般选择相同序号间隔下得到的电极分组结果同时作为激励和测量电极组集合。例如,将电极以序号间隔为1进行分组,并将分组后获得的电极组同时作为激励电极组和测量电极组,这种激励测量方案称为1/16激励测量方案。相同地,还有2/16、3/16激励测量方案。图2是1/16激励测量方案中某次测量(激励电极组[4,3],测量电极组[2,1])的示意图。图3为1/16激励测量方案的激励测量表,其包含1/16激励测量方案全部内容,包含104个测量值。
假定16电极电阻抗成像系统中存在一个失能电极,失能电极的序号不同,所对应的补偿方案也不同。但是由于各电极间的等效性,失能电极的序号对于补偿方案的组织不会产生实质影响。为了方便表示,这里假定其序号为F。电极F在分组间隔为1时参与组成了[F,E],[0,F]两个电极组,故与此相关的全部测量(序号79-104,占全部测量数目的25%)均受到干扰,无法继续使用。图7为本公开实施例中1/16激励测量方案中存在一个失能电极时的电阻抗成像结果。
系统在检测到失能电极F时,将电极F排除后,自动进行重新分组,即系统将剩余的正常电极(0,1,2,…,E)按照原方案的分组间隔(此处为1)进行分组得到第一电极组集合[10,21,32,43,54,65,76,87,98,a9,ba,cb,dc,ed,0e]。将该第一电极组集合[10,21,32,43,54,65,76,87,98,a9,ba,cb,dc,ed,0e]同时用作第一激励电极组和第一测量电极组,如图4所示。本实施例中,将采用上述方法重新获得第一激励电极组和第一测量电极组的方式称为整体补偿方案。图4即为该整体补偿方案的激励测量表。从图4中可看出,通过整体补偿方案进行激励测量所获得的测量信号共有90个。
步骤S104,基于第一激励电极组和第一测量电极组对待测区域进行电阻抗成像。
本实施例中,基于第一激励电极组和第一测量电极组对待测区域进行电阻抗成像,即采用上述的整体补偿方案进行电阻抗成像,以获得相应的电阻抗成像结果。
本实施例中,基于第一激励电极组和第一测量电极组对待测区域进行电阻抗成像,包括:从第一激励电极组中的每一电极组处输入激励信号,从第一测量电极组的每一电极组处采集与该激励信号对应的输出信号,并排除该输出信号中不参与成像的信号,获得有效成像信号;采用图像重构算法对有效成像信号进行反演,获得待测区域的电阻抗成像结果。图8为采用整体补偿方案的电阻抗成像结果。
采用基于电磁场逆问题求解的图像重构算法对有效成像信号进行反演,最终反演得到体内电导率分布状态或变化状态的二维或三维图像作为待测区域的电阻抗成像结果。
此外,在步骤S103中系统对剩余的正常电极进行分组时,所获得的第一电极组集合也可以为[10,21,32,43,54,65,76,87,98,a9,ba,cb,dc,ed],即在本实施例中,重新分组所获得的第一 电极组可以包括由失能电极的两个相邻电极组成的电极组[0,e],也可以不包括该电极组[0,e],当第一电极组集合中不包括由失能电极的两个相邻电极组成的电极组[0,e]时,为了获得更加准确的电阻抗成像结果,执行以下的额外补偿方案。
当第一电极组集合中不包括由失能电极的两个相邻电极组成的电极组时,本实施例的方法还包括:基于与失能电极相邻的电极和与失能电极次相邻的电极,获得第二激励电极组,则,本实施例的基于第一激励电极组和第一测量电极组对待测区域进行电阻抗成像,包括:基于第一激励电极组、第二激励电极组和第一测量电极组对待测区域进行电阻抗成像。
本实施例中,基于与失能电极相邻的电极和与失能电极次相邻的电极,获得第二激励电极组,包括:将与失能电极相邻的电极和与失能电极次相邻的电极按照预设组合方式进行组合,获得第二电极组集合;将第二电极组集合的任一子集作为第二激励电极组。
额外补偿方案将失能电极F的相邻电极(电极E和电极0)和次相邻电极(电极D和电极1)进行组合,得到第二电极组集合[e0,e1,d0]。此时,可以将该第二电极组集合的任一子集作为额外补偿方案的激励电极组,即上述第二激励电极组。额外补偿方案的测量电极组通常选择排除失能电极组后得到的电极组集合,本实施例直接将上述整体补偿方案中所获得的第一电极组集合作为额外补偿方案的测量电极组。通过上述方法所获得的激励测量表如图5所示。在图5中,电极组集合[10,21,32,43,54,65,76,87,98,a9,ba,cb,dc,ed]同时作为第一激励电极组和第一测量电极组;电极组集合[e0,e1,d0]作为第二激励电极组。电极组集合[e0,e1,d0]作为一种额外补偿方式,添加进原有测量方案(或整体补偿方案)的激励电极组中,相应增加了测量34组(序号79-112)。
由于激励测量的互易性,也可以等效地选择将电极组集合[e0,e1,d0]作为额外补偿的测量电极组,将排除失能电极组后得到的电极组集合作为额外补偿的激励电极组集合。
即在本实施例中,当第一电极组集合中不包括由失能电极的两个相邻电极组成的电极组时,方法还包括:基于与失能电极相邻的电极和与失能电极次相邻的电极,获得第二测量电极组,则,本实施例的基于第一激励电极组和第一测量电极组对待测区域进行电阻抗成像,包括:基于第一激励电极组、第一测量电极组和第二测量电极组对待测区域进行电阻抗成像。
本实施例中,基于第一激励电极组、第二激励电极组和第一测量电极组对待测区域进行电阻抗成像,包括:从第一激励电极组中的每一电极组处输入激励信号作为第一激励信号,从第一测量电极组的每一电极组处采集与第一激励信号对应的输出信号;从第二激励电极组中的每一电极组处输入激励信号作为第二激励信号,从第一测量电极组的每一电极组处采集与第二激励信号对应的输出信号;从与第一激励信号对应的输出信号和与第二激 励信号对应的输出信号中排除不参与成像的信号,获得有效成像信号;采用图像重构算法对有效成像信号进行反演,获得待测区域的电阻抗成像结果。
本实施例中,与第一激励信号对应的输出信号和与第二激励信号对应的输出信号中不参与成像的信号包括:自激励自测量信号、互易等价测量信号和激励测量电极组包含共同电极的测量信号。其中,自激励自测量信号用于对电极工作状态的检测。
如图3、图4和图5所示,自激励自测量信号16为图中黑色方框部分,即激励电极组与测量电极组相同的部分;互易等价测量信号为图中黑色方框所组成的斜线的两侧对称部分,实际应用中,只取其中一侧的测量信号即可;激励测量电极组包含共同电极的测量信号15为图中黑色方框所组成的斜线右方的白色方框部分。上述三种测量信号由于不参与成像,因此需要将其排除。
本实施例中,基于第一激励电极组、第一测量电极组和第二测量电极组对待测区域进行电阻抗成像,包括:从第一激励电极组中的每一电极组处输入激励信号,从第一测量电极组的每一电极组处采集与该激励信号对应的输出信号作为第一输出信号;从第一激励电极组中的每一电极组处输入激励信号,从第二测量电极组的每一电极组处采集与该激励信号对应的输出信号作为第二输出信号;从第一输出信号和第二输出信号中排除不参与成像的信号,获得有效成像信号;采用图像重构算法对有效成像信号进行反演,获得待测区域的电阻抗成像结果。
图9为采用额外补偿方案的电阻抗成像结果。
需要说明的是,本实施例所提供的技术方案,并不限制于16电极电阻抗成像系统或某种激励测量方式,在无需创造性劳动的前提下即可获得的不同的电极数目系统、不同激励测量方式下的补偿方案均在本公开的保护范围内。
针对相关技术中存在失能电极而导致的电阻抗成像结果失真的技术问题,本公开提出了针对电阻抗成像的两种补偿方案:整体补偿方案和额外补偿方案。其中,整体补偿方案是对原有测量方案的替代,额外补偿方案是对原有测量方案或整体补偿方案的补充。整体补偿方案是原有测量方案舍弃失能电极后的再组织,实际上是原有测量方案在电极数目减少时的推广。因此,整体补偿方案可以根据原有测量方案的电极分组规则与失能电极序号做出相应改变,灵活性高。额外补偿方案是对失能电极附近区域的针对性补偿。额外补偿方案可以拆分为若干子方案,不同的子方案既可以单独使用,也可以相互组合使用。
本公开实施例提供的电阻抗成像方法,当检测到待测区域的多个电极中存在失能电极时,采用预设的电极分组间隔对该多个电极中除失能电极以外的电极进行分组,获得第一电极组集合,并将该第一电极组集合同时作为第一激励电极组和第一测量电极组,进而基于该第一激励电极组和该第一测量电极组对待测区域进行电阻抗成像,使得在存在失能电 极的情况下,系统能够自动对剩余电极进行分组,并基于分组后获得的激励测量方案进行新的电阻抗成像。由于新的电阻抗成像过程排除了失能电极,因此能够获得较准确的成像结果,有效克服了相关技术存在的技术问题。即,本公开实施例提供的技术方案,能够在存在失能电极的情况下,仍然获得较准确的电阻抗成像结果。
实施例二
与上述方法实施例相对应地,本公开还提供一种电阻抗成像装置,应用于电阻抗成像系统,电阻抗成像系统包括设置于待测区域的多个电极;如图10所示,装置包括分组单元201、第一激励电极组获取单元202、第一测量电极组获取单元203、以及电阻抗成像单元204。
分组单元201,被配置为当检测到多个电极中存在失能电极时,采用预设的电极分组间隔对多个电极中除失能电极以外的电极进行分组,获得第一电极组集合。
第一激励电极组获取单元202,被配置为将第一电极组集合作为第一激励电极组。
第一测量电极组获取单元203,被配置为将第一电极组集合作为第一测量电极组。
电阻抗成像单元204,被配置为基于第一激励电极组和第一测量电极组对待测区域进行电阻抗成像。
本实施例中,多个电极在待测区域呈环形阵列排列。
在一些实施例中,本实施例的装置还包括:第二激励电极组获取单元,被配置为在第一电极组集合中不包括由失能电极的两个相邻电极组成的电极组时,基于与失能电极相邻的电极和与失能电极次相邻的电极,获得第二激励电极组。那么,本实施例的电阻抗成像单元204还被配置为基于第一激励电极组、第二激励电极组和第一测量电极组对待测区域进行电阻抗成像。
本实施例中,第二激励电极组获取单元采用以下方式获得第二激励电极组:将与失能电极相邻的电极和与失能电极次相邻的电极按照预设组合方式进行组合,获得第二电极组集合;将第二电极组集合的任一子集作为第二激励电极组。
本实施例中,电阻抗成像单元204包括第一激励测量单元、第二激励测量单元、信号排除单元以及反演单元。
第一激励测量单元,被配置为从第一激励电极组中的每一电极组处输入激励信号作为第一激励信号,从第一测量电极组的每一电极组处采集与第一激励信号对应的输出信号。
第二激励测量单元,被配置为从第二激励电极组中的每一电极组处输入激励信号作为第二激励信号,从第一测量电极组的每一电极组处采集与第二激励信号对应的输出信号。
信号排除单元,被配置为从与第一激励信号对应的输出信号和与第二激励信号对应的输出信号中排除不参与成像的信号,获得有效成像信号。
反演单元,被配置为采用图像重构算法对有效成像信号进行反演,获得待测区域的电阻抗成像结果。
本实施例中,与第一激励信号对应的输出信号和与第二激励信号对应的输出信号中不参与成像的信号包括:自激励自测量信号、互易等价测量信号和激励测量电极组包含共同电极的测量信号。
在一些实施例中,本实施例的装置还包括:第二测量电极组获取单元,被配置为在第一电极组集合中不包括由失能电极的两个相邻电极组成的电极组时,基于与失能电极相邻的电极和与失能电极次相邻的电极,获得第二测量电极组。那么,本实施例的电阻抗成像单元204还被配置为基于第一激励电极组、第一测量电极组和第二测量电极组对待测区域进行电阻抗成像。
上述装置的工作原理、工作流程等涉及具体实施方式的内容可参见本公开所提供的电阻抗成像方法的具体实施方式,此处不再对相同的技术内容进行详细描述。
本公开实施例提供的电阻抗成像装置,当检测到待测区域的多个电极中存在失能电极时,采用预设的电极分组间隔对该多个电极中除失能电极以外的电极进行分组,获得第一电极组集合,并将该第一电极组集合同时作为第一激励电极组和第一测量电极组,进而基于该第一激励电极组和该第一测量电极组对待测区域进行电阻抗成像,使得在存在失能电极的情况下,系统能够自动对剩余电极进行分组,并基于分组后获得的激励测量方案进行新的电阻抗成像。由于新的电阻抗成像过程排除了失能电极,因此能够获得较准确的成像结果,有效克服了相关技术存在的技术问题。即,本公开实施例提供的技术方案,能够在存在失能电极的情况下,仍然获得较准确的电阻抗成像结果。
实施例三
根据本公开的实施例,还提供了一种存储介质,存储介质上存储有程序代码,程序代码被处理器执行时,实现如上述实施例任一项所述的电阻抗成像方法。
实施例四
根据本公开的实施例,还提供了一种电子设备,电子设备包括存储器、处理器,存储器上存储有可在处理器上运行的程序代码,程序代码被处理器执行时,实现如上述实施例任一项所述的电阻抗成像方法。
本公开实施例提供的电阻抗成像方法、装置、存储介质及电子设备,当检测到待测区域的多个电极中存在失能电极时,采用预设的电极分组间隔对该多个电极中除失能电极以外的电极进行分组,获得第一电极组集合,并将该第一电极组集合同时作为第一激励电极组和第一测量电极组,进而基于该第一激励电极组和该第一测量电极组对待测区域进行电阻抗成像,使得在存在失能电极的情况下,系统能够自动对剩余电极进行分组,并基于分 组后获得的激励测量方案进行新的电阻抗成像。由于新的电阻抗成像过程排除了失能电极,因此能够获得较准确的成像结果,有效克服了相关技术存在的技术问题。即,本公开实施例提供的技术方案,能够在存在失能电极的情况下,仍然获得较准确的电阻抗成像结果。
本公开公开了一种电阻抗成像方法,能够在电阻抗成像过程中对因电极失能而受损的图像进行补偿。针对电阻抗成像系统存在失能电极而导致图像失真的现象,提出了整体补偿方案和额外补偿方案两种方法。
本方案具有如下优点:(1)能够在电极失能的情况下输出接近正常质量的EIT图像,提高EIT系统的稳健性;(2)具有良好的扩展性与组合性,可根据实际情况灵活调整,在不同应用背景下均能基于两种补偿思路获得对应的方案若干,补偿受损图像。
在本公开所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本公开实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台电子设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
虽然本公开所公开的实施方式如上,但所述的内容只是为了便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属技术领域内的技术人员,在不脱离本公开所公开的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本公开的保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (10)

  1. 一种电阻抗成像方法,应用于电阻抗成像系统,所述电阻抗成像系统包括设置于待测区域的多个电极;其中,所述电阻抗成像方法包括:
    在检测到所述多个电极中存在失能电极的情况下,采用预设的电极分组间隔对所述多个电极中除所述失能电极以外的电极进行分组,获得第一电极组集合;
    将所述第一电极组集合作为第一激励电极组;
    将所述第一电极组集合作为第一测量电极组;以及
    基于所述第一激励电极组和所述第一测量电极组对所述待测区域进行电阻抗成像。
  2. 根据权利要求1所述的电阻抗成像方法,其中,所述多个电极在所述待测区域呈环形阵列排列。
  3. 根据权利要求2所述的电阻抗成像方法,其中,在所述第一电极组集合中不包括由所述失能电极的两个相邻电极组成的电极组的情况下,所述方法还包括:
    基于与所述失能电极相邻的电极和与所述失能电极次相邻的电极,获得第二激励电极组;
    所述基于所述第一激励电极组和所述第一测量电极组对所述待测区域进行电阻抗成像,包括:
    基于所述第一激励电极组、所述第二激励电极组和所述第一测量电极组对所述待测区域进行电阻抗成像。
  4. 根据权利要求3所述的电阻抗成像方法,其中,所述基于与所述失能电极相邻的电极和与所述失能电极次相邻的电极,获得第二激励电极组,包括:
    将与所述失能电极相邻的电极和与所述失能电极次相邻的电极按照预设组合方式进行组合,获得第二电极组集合;以及
    将所述第二电极组集合的任一子集作为所述第二激励电极组。
  5. 根据权利要求3所述的电阻抗成像方法,其中,所述基于所述第一激励电极组、所述第二激励电极组和所述第一测量电极组对所述待测区域进行电阻抗成像,包括:
    从所述第一激励电极组中的每一电极组处输入激励信号作为第一激励信号,从所述第一测量电极组的每一电极组处采集与所述第一激励信号对应的输出信号;
    从所述第二激励电极组中的每一电极组处输入所述激励信号作为第二激励信号, 从所述第一测量电极组的每一电极组处采集与所述第二激励信号对应的输出信号;
    从所述与所述第一激励信号对应的输出信号和所述与所述第二激励信号对应的输出信号中排除不参与成像的信号,获得有效成像信号;以及
    采用图像重构算法对所述有效成像信号进行反演,获得所述待测区域的电阻抗成像结果。
  6. 根据权利要求5所述的电阻抗成像方法,其中,所述与所述第一激励信号对应的输出信号和所述与所述第二激励信号对应的输出信号中不参与成像的信号包括:自激励自测量信号、互易等价测量信号和激励测量电极组包含共同电极的测量信号。
  7. 根据权利要求2所述的电阻抗成像方法,其中,在所述第一电极组集合中不包括由所述失能电极的两个相邻电极组成的电极组的情况下,所述电阻抗成像方法还包括:
    基于与所述失能电极相邻的电极和与所述失能电极次相邻的电极,获得第二测量电极组;
    所述基于所述第一激励电极组和所述第一测量电极组对所述待测区域进行电阻抗成像,包括:
    基于所述第一激励电极组、所述第一测量电极组和所述第二测量电极组对所述待测区域进行电阻抗成像。
  8. 一种电阻抗成像装置,应用于电阻抗成像系统,所述电阻抗成像系统包括设置于待测区域的多个电极;其中,所述电阻抗成像装置包括:
    分组单元,被配置为在检测到所述多个电极中存在失能电极的情况下,采用预设的电极分组间隔对所述多个电极中除所述失能电极以外的电极进行分组,获得第一电极组集合;
    第一激励电极组获取单元,被配置为将所述第一电极组集合作为第一激励电极组;
    第一测量电极组获取单元,被配置为将所述第一电极组集合作为第一测量电极组;以及
    电阻抗成像单元,被配置为基于所述第一激励电极组和所述第一测量电极组对所述待测区域进行电阻抗成像。
  9. 一种存储介质,所述存储介质上存储有程序代码,其中,所述程序代码被处理 器执行时,实现如权利要求1至7中任一项所述的电阻抗成像方法。
  10. 一种电子设备,其中,所述电子设备包括存储器、处理器,所述存储器上存储有可在所述处理器上运行的程序代码,所述程序代码被所述处理器执行时,实现如权利要求1至7中任一项所述的电阻抗成像方法。
PCT/CN2023/079241 2022-03-24 2023-03-02 电阻抗成像方法、装置、存储介质及电子设备 WO2023179326A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210300467.2A CN114711746A (zh) 2022-03-24 2022-03-24 电阻抗成像方法、装置、存储介质及电子设备
CN202210300467.2 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023179326A1 true WO2023179326A1 (zh) 2023-09-28

Family

ID=82240741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079241 WO2023179326A1 (zh) 2022-03-24 2023-03-02 电阻抗成像方法、装置、存储介质及电子设备

Country Status (2)

Country Link
CN (1) CN114711746A (zh)
WO (1) WO2023179326A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114711746A (zh) * 2022-03-24 2022-07-08 北京华睿博视医学影像技术有限公司 电阻抗成像方法、装置、存储介质及电子设备
CN117617938A (zh) * 2022-08-11 2024-03-01 芯海科技(深圳)股份有限公司 接触阻抗测量电路、方法、检测装置、芯片及电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626146A (en) * 1992-12-18 1997-05-06 British Technology Group Limited Electrical impedance tomography
CN102670198A (zh) * 2011-03-16 2012-09-19 德尔格医疗有限责任公司 用于电阻抗断层成像的方法
CN102755163A (zh) * 2011-04-23 2012-10-31 德尔格医疗有限责任公司 用于电阻抗断层成像的方法和装置
CN103040466A (zh) * 2013-01-08 2013-04-17 中国人民解放军第四军医大学 一种电阻抗检测用电极连接异常的检测方法
CN108113674A (zh) * 2016-11-30 2018-06-05 德尔格制造股份两合公司 确定电阻抗断层成像的电极装置的轴向位置的设备和方法
CN109864712A (zh) * 2019-04-02 2019-06-11 北京华睿博视医学影像技术有限公司 电阻抗成像设备和方法
JP2020051821A (ja) * 2018-09-26 2020-04-02 日置電機株式会社 処理装置および処理方法
CN112043271A (zh) * 2020-09-21 2020-12-08 北京华睿博视医学影像技术有限公司 电阻抗测量数据修正方法及设备
CN113533439A (zh) * 2021-06-25 2021-10-22 中国农业大学 玉米穗水分分布的电阻抗成像方法、系统及电子设备
CN114711746A (zh) * 2022-03-24 2022-07-08 北京华睿博视医学影像技术有限公司 电阻抗成像方法、装置、存储介质及电子设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626146A (en) * 1992-12-18 1997-05-06 British Technology Group Limited Electrical impedance tomography
CN102670198A (zh) * 2011-03-16 2012-09-19 德尔格医疗有限责任公司 用于电阻抗断层成像的方法
CN102755163A (zh) * 2011-04-23 2012-10-31 德尔格医疗有限责任公司 用于电阻抗断层成像的方法和装置
CN103040466A (zh) * 2013-01-08 2013-04-17 中国人民解放军第四军医大学 一种电阻抗检测用电极连接异常的检测方法
CN108113674A (zh) * 2016-11-30 2018-06-05 德尔格制造股份两合公司 确定电阻抗断层成像的电极装置的轴向位置的设备和方法
JP2020051821A (ja) * 2018-09-26 2020-04-02 日置電機株式会社 処理装置および処理方法
CN109864712A (zh) * 2019-04-02 2019-06-11 北京华睿博视医学影像技术有限公司 电阻抗成像设备和方法
CN112043271A (zh) * 2020-09-21 2020-12-08 北京华睿博视医学影像技术有限公司 电阻抗测量数据修正方法及设备
CN113533439A (zh) * 2021-06-25 2021-10-22 中国农业大学 玉米穗水分分布的电阻抗成像方法、系统及电子设备
CN114711746A (zh) * 2022-03-24 2022-07-08 北京华睿博视医学影像技术有限公司 电阻抗成像方法、装置、存储介质及电子设备

Also Published As

Publication number Publication date
CN114711746A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2023179326A1 (zh) 电阻抗成像方法、装置、存储介质及电子设备
JP7244136B2 (ja) 電気インピーダンス断層撮影装置及び方法
EP2073702B2 (en) Data collection for electrical impedance tomography
US8977334B2 (en) Catheter systems for measuring electrical properties of tissue and methods of use
CN106373194B (zh) 一种人体肺部电阻层析成像有限元模型设计方法
CN104605851A (zh) 一种电阻抗层析成像系统的数据采集方法
RU2732344C2 (ru) Система, регистратор и способ поверхностной электромиографии
Rabbani et al. A new four-electrode Focused Impedance Measurement (FIM) system for physiological study
Tehrani et al. Evaluation of different stimulation and measurement patterns based on internal electrode: application in cardiac impedance tomography
CN107788968A (zh) 一种基于阵列式电容电极的非接触式多导联心电监护系统
Li et al. Optimized method for electrical impedance tomography to image large area conductive perturbation
WO2024007877A1 (zh) 用于呈现呼吸阻抗与呼吸阻抗变化率关系的方法及装置
Gao et al. Comparison of electrohysterogram signal measured by surface electrodes with different designs: A computational study with dipole band and abdomen models
CN116869504A (zh) 一种用于脑缺血电导率分布重建的数据补偿方法
Misra et al. Field of view of mapping catheters quantified by electrogram associations with radius of myocardial attenuation on contrast-enhanced cardiac computed tomography
CN114073511B (zh) 激励响应测量方法、电阻抗成像方法及存储介质
CN115736877A (zh) 聚焦式心脏电阻抗成像方法
Sica et al. Evaluation of an automated method for analysing the electromyogram
CN106618568A (zh) 一种应用于乳腺癌检测的快速eis混频测量装置
Doussan et al. Towards intraoperative surgical margin assessment: Validation of an electrical impedance-based probe with ex vivo bovine tissue
Haberman et al. Capacitive driven–right–leg circuit design
Abrams et al. Sixth report on the standardisation of terminology of lower urinary tract function: Procedures related to neurophysiological investigations: Electromyography, nerve conduction studies, reflex latencies, evoked potentials and sensory testing
CN112617847A (zh) 一种生命体征监测床垫及其心电信号获取方法
Purohit et al. Capacitive Electrode Based Single Lead ECG Detection
RU2790406C1 (ru) Способ диагностики и контроля лечения сердечных патологий

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773577

Country of ref document: EP

Kind code of ref document: A1