WO2023179306A1 - 超表面单元及其基站 - Google Patents

超表面单元及其基站 Download PDF

Info

Publication number
WO2023179306A1
WO2023179306A1 PCT/CN2023/078163 CN2023078163W WO2023179306A1 WO 2023179306 A1 WO2023179306 A1 WO 2023179306A1 CN 2023078163 W CN2023078163 W CN 2023078163W WO 2023179306 A1 WO2023179306 A1 WO 2023179306A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shifter
radio frequency
transmission line
port
frequency switch
Prior art date
Application number
PCT/CN2023/078163
Other languages
English (en)
French (fr)
Inventor
桑联佳
吴建军
崔亦军
尹卫爽
沈楠
毛胤电
李名定
汤剑
陈烈强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023179306A1 publication Critical patent/WO2023179306A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures

Definitions

  • This application relates to but is not limited to the field of communications, and in particular, to a metasurface unit and its base station.
  • Artificial electromagnetic metasurface is a periodically arranged unit array that can change the propagation characteristics of electromagnetic waves and achieve certain special functions. For example, designing a specific phase difference between the reflected wave and incident wave of each unit, the unit array can Achieve electromagnetic beam forming function at a specific angle.
  • Traditional artificial electromagnetic metasurfaces are static structures whose electromagnetic properties cannot be changed and cannot meet today's communication needs.
  • the concept of programmable metasurface has been proposed. A radio frequency switch is loaded into the resonant unit of the metasurface unit. The resonant frequency of the signal is adjusted through different states of the radio frequency switch, and the reflection phase is controlled, so that the metasurface presents a dynamic electromagnetic response. features, enabling programmable multi-beamforming functionality.
  • Parameter fluctuations of RF switches can easily cause the resonant frequency of the resonant unit to shift, affecting the phase modulation accuracy of the metasurface unit.
  • a combination of a resonant unit and a phase shifter is usually used, and the radio frequency switch is set in the phase shifter.
  • the separation of the resonant unit and the radio frequency switch is achieved, a phase shifter needs to be configured for each polarized signal. The hardware cost is higher.
  • Embodiments of the present application provide a metasurface unit and its base station.
  • a metasurface unit including: a resonant unit configured to receive two polarized incident signals, or to radiate two polarized reflected signals; a power splitter, The power splitter is connected to the resonant unit, and the power splitter is configured to combine the two polarized incident signals input by the resonant unit into a combined signal, and/or to combine the input reflected signals.
  • the signal is split into two polarized reflection signals and output to the resonant unit; a phase shifter, the phase shifter is connected to the power splitter, and the phase shifter is configured to The combined signal input to the splitter is phase modulated, and the reflected signal obtained by phase modulation is output to the power splitter.
  • embodiments of the present application provide a base station, including: a metasurface unit as described in the first aspect.
  • Figure 1 is a schematic diagram of a metasurface unit provided in Embodiment 1 of the present application.
  • FIG. 2 is a front view of the power splitter provided in Embodiment 1 of the present application.
  • FIG. 3 is an internal structural diagram of a phase shifter provided in Embodiment 1 of the present application.
  • Figure 4 is an internal structural diagram of a phase shifter provided in Embodiment 2 of the present application.
  • Figure 5 is an internal structural diagram of a phase shifter provided in Embodiment 3 of the present application.
  • Figure 6 is a schematic diagram of the 2-bit reflection amplitude of the metasurface unit under the infinite period boundary according to the embodiment of the present application.
  • Figure 7 is a schematic diagram of the 2-bit reflection phase of the metasurface unit under the infinite period boundary according to the embodiment of the present application.
  • the metasurface unit includes: a resonance unit, which is configured to receive two polarized incident signals, or radiate two polarized reflected signals; a power splitter, The power splitter is connected to the resonant unit, and the power splitter is configured to combine the two polarized incident signals input by the resonant unit into a combined signal, and/or to combine the input reflected signals.
  • the signal is split into two polarized reflection signals and output to the resonant unit; a phase shifter, the phase shifter is connected to the power splitter, and the phase shifter is configured to The combined signal input to the splitter is phase modulated, and the reflected signal obtained by phase modulation is output to the power splitter.
  • the combining and splitting of two polarized signals are realized through a power splitter, so that the two polarized signals can share the same phase shifter, effectively reducing the number of phase shifters in the metasurface unit. quantity, reducing hardware costs.
  • this application provides a metasurface unit, including:
  • the resonant unit 100 is configured to receive two polarized incident signals, or to radiate two polarized reflected signals;
  • Power splitter 200 The power splitter 200 is connected to the resonant unit 100.
  • the power splitter 200 is configured to combine the two polarized incident signals input by the resonant unit 100 into a combined signal, and/or to combine the input reflected signals. Split into two polarized reflection signals and output to the resonant unit 100;
  • Phase shifter 300 the phase shifter 300 is connected to the power divider 200, the phase shifter 300 is configured to phase modulate the combined signal input by the power divider 200, and output the reflected signal obtained by the phase modulation to the power divider. Device 200.
  • the resonant unit 100 can achieve a dual-polarization operating mode, that is, the resonant unit 100 can receive incident electromagnetic wave signals of two polarizations in space through resonance, and then pass the power splitter 200 synthesizes two polarized incident signals into a combined signal. After the combined signal is input to the phase shifter 300 for phase modulation, the signal is reflected back to the power divider 200. In the power divider 200, the reflected signal is divided into two poles. The reflected signal is radiated in the form of electromagnetic waves through the resonant unit 100 to form a reflected wave.
  • the phase shifter 300 and the resonant unit 100 are independent devices, and the device parameters of the phase shifter 300 will not affect the resonant frequency of the resonant unit 100, effectively ensuring The phase modulation accuracy is improved, making the metasurface unit applicable to all frequency bands.
  • the resonant unit 100 adopts a dual-polarization design. Two polarized signals with different polarizations are combined through the power splitter 200 and then connected to the phase shifter 300. The two polarized signals share a shifter.
  • the phase shifter 300 performs phase modulation, and when supporting the dual polarization mode, the effect of the phase shifter 300 in the metasurface unit is halved, effectively reducing hardware costs.
  • metasurface unit Various embodiments of the metasurface unit are described below through several embodiments.
  • the resonant unit 100 includes a first polarization port 101 and a second polarization port 102 .
  • the power splitter 200 It includes a first power splitter port 205 and a second power splitter port 204.
  • the first polarization port 101 is connected to the first power splitter port 205, and the second polarization port 102 is connected to the second power splitter port 204.
  • the power divider 200 also includes a third power divider port 203, the phase shifter 300 includes a phase shifter port 311, and the third power divider port 203 is connected to the phase shifter port 311;
  • the resonant unit 100 is configured to receive a first polarization incident signal and a second polarization incident signal, and input the first polarization incident signal to the first power splitter port 205 through the first polarization port 101, and to input the first polarization incident signal to the first power divider port 205 through the second polarization port 101.
  • the polarization port 102 inputs the second polarization incident signal to the second power splitter port 204, where the polarization directions of the first polarization incident signal and the second polarization incident signal are orthogonal to each other; the resonance unit 100 is also configured to The first polarization reflection signal and the second polarization reflection signal are radiated, wherein the polarization directions of the first polarization reflection signal and the second polarization reflection signal are orthogonal to each other, and the first polarization reflection signal passes through the power divider 200
  • the first power splitter port 205 is input, and the second polarization reflection signal is input from the power splitter 200 through the second power splitter port 204;
  • the power splitter 200 is configured to combine the first polarization incident signal and the second polarization incident signal into a combined signal, and input the combined signal to the phase shifter 300 through the third power divider port 203, so that the shifted signal is
  • the phaser 300 performs phase modulation on the combined signal to obtain a reflected signal;
  • the power splitter 200 is also configured to obtain the reflected signal input by the phase shifter 300 through the phase shifter port 311, and split the reflected signal into the first polarization reflected signal and second polarization reflected signal.
  • the resonant unit 100 may be a microstrip antenna unit, a dipole antenna unit, or other radiating unit with a resonant function. This embodiment does not place too many restrictions on the device selection of the resonant unit 100.
  • the polarized incident signal received by the resonant unit 100 and the radiated polarized outgoing signal may be two polarized signals whose polarization directions are orthogonal to each other, for example, the first polarization
  • the incident signal can be an electromagnetic wave signal with a polarization direction of 45 degrees in space.
  • the second polarization incident signal can be an electromagnetic wave signal with a polarization direction of negative 45 degrees in space.
  • the combined signal is obtained through the power divider 200 and then input.
  • Phase modulation is performed on the phase shifter 300, and the obtained reflected signal is divided into a first polarized reflected signal with a polarization direction of 45 degrees and a second polarized reflected signal with a polarization direction of negative 45 degrees in the power divider 200.
  • the resonant unit 100 radiates the electromagnetic wave to form a reflected wave.
  • the polarization directions described in the above examples do not limit the technical solution of this embodiment, and it is sufficient to ensure that the polarization directions of the two polarized signals of the input and output are orthogonal to each other.
  • the reflected signal in this embodiment may be a signal obtained by phase modulating the first polarized incident signal, or may be a signal obtained by phase modulating the second polarized incident signal.
  • the metasurface unit uses a power splitter 200 to split the reflected signal, so that the first polarized incident signal with a polarization direction of 45 degrees can be phase modulated to obtain a first polarized reflection signal with a polarization direction of 45 degrees.
  • the second polarization reflection signal with a polarization direction of negative 45 degrees effectively enriches the types of signal polarization.
  • the processing process for the second polarization incident signal whose polarization direction is negative 45 degrees is the same and will not be repeated here.
  • the power splitter 200 can be a Wilkinson power splitter, a 3dB bridge, a T-junction, or an integrated component with a power distribution function. This embodiment does not place too many restrictions on the component selection of the power splitter 200. .
  • phase shifter 300 may be a device composed of multiple sections of transmission lines and radio frequency switches. Each section of the transmission line They are connected by radio frequency switches, so that multiple sections of transmission lines form a series or parallel relationship, and different phase shifting effects are achieved through the combination of the states of the radio frequency switches. Of course, they can also be integrated components with phase shifting functions. This embodiment is suitable for The structure of the phase shifter 300 is not too limited.
  • the power splitter 200 also includes a power splitter transmission line 201 and an isolation resistor 202.
  • the power splitter transmission line 201 is connected to the first power splitter port 205, the second power splitter port 204 and the third power splitter respectively. Connected to port 203;
  • the isolation resistor 202 is disposed between the first segment line and the second segment line of the power splitter transmission line 201, wherein the first segment line is configured to connect the first power splitter port 205, and the second segment line is Set to connect to the second power splitter port 204.
  • the structure of the power divider 200 shown in FIG. 2 is a Wilkinson power divider.
  • the resonant unit 100 When receiving electromagnetic waves, the resonant unit 100 inputs signals through the first power divider port 205 and the second power divider port 204 respectively. The two polarized incident signals are combined through the power splitter 200.
  • the phase shifter 300 when transmitting electromagnetic waves, the phase shifter 300 will input the reflected signal through the third power splitter port 203, and the power splitter 200 will reflect the signal. Assigned to the two polarizations of the resonant unit, the radiation of the two-way polarized signals is achieved.
  • the power splitter transmission line 201 may be a strip line structure as shown in Figure 2, connecting the first power splitter port 205, the second power splitter port 204 and the third power splitter port 203 respectively, and, An isolation resistor 202 is provided between the first segmented line connected to the first power splitter port 205 and the second segmented line connected to the second power splitter port 204, in order to achieve isolation of the two polarized signals,
  • the isolation resistor 202 can be a surface-mounted resistor, and the resistance value can be adjusted according to actual needs.
  • the phase shifter 300 also includes a DC blocking capacitor 302, a radio frequency switch module and an AC blocking inductor 308 connected in series.
  • the DC blocking capacitor 302 is connected to the phase shifter port 311; the phase shifter 300 includes a first shifter.
  • the radio frequency switch module includes a first radio frequency switch 310, a second radio frequency switch 309 and a third radio frequency switch 306 ;
  • the DC blocking capacitor 302 and the first radio frequency switch 310 are connected through the first phase shifter transmission line 301, the first radio frequency switch 310 and the second radio frequency switch 309 are connected in series through the second phase shifter transmission line 304, the second radio frequency switch 309 and the third radio frequency switch 309 are connected in series.
  • the radio frequency switch 306 is connected in series through the third phase shifter transmission line 305, and the third radio frequency switch 306 and the AC isolation inductor 308 are connected through the fourth phase shifter transmission line 307; the first phase shifter transmission line 301, the second phase shifter transmission line 304 and the third phase shifter transmission line 307.
  • the three phase shifter transmission lines 305 are respectively connected to DC bias lines 303.
  • the first phase shifter transmission line 301, the second phase shifter transmission line 304, the third phase shifter transmission line 305 and the fourth phase shifter transmission line 307 are connected in series through three radio frequency switches to form
  • the above-mentioned transmission line can adopt a microstrip or stripline structure, which can be selected according to actual needs.
  • the DC blocking capacitor 302 can isolate the DC current and prevent the bias current from entering the power divider 200
  • the AC blocking inductor 308 can isolate the radio frequency signal and prevent the radio frequency signal from entering the bias circuit 303 .
  • the DC blocking capacitor 302 and the AC blocking inductor 308 can be chip devices, or distributed capacitors and distributed inductors. The type and parameters can be selected according to actual needs.
  • the three radio frequency switches in this embodiment can use PIN tubes, or they can be varactor diodes, transistors, field effect transistors, single pole single throw/single pole multithrow switches, etc. This embodiment does not make any selection of radio frequency switches. Too restrictive.
  • phase shifter 300 of this embodiment three radio frequency switches are connected through the first phase shifter transmission line 301, the second phase shifter transmission line 304 and the third phase shifter transmission line 305 to realize the phase shifter transmission line.
  • the series connection can realize 4 phases through different states of 3 RF switches, that is, 2-bit phase state, which can effectively improve the phase quantization accuracy and has good scalability.
  • the combined signal is input through the phase shifter port 311, passes through the DC blocking capacitor 302, and then enters the RF switch module.
  • the combined signal passes through the RF switch that is opened once until it reaches an open circuit or short circuit terminal and is reflected.
  • Different combinations of the open states of the three radio frequency switches can achieve four states.
  • the combined state The state is "00”, the corresponding reflection phase is 0 degrees; the first radio frequency switch 310 is turned on, the combined state is "01”, the corresponding reflection phase is negative 90 degrees; the first radio frequency switch 310 and the second radio frequency switch 309 are turned on, The combination state is "10”, and the corresponding reflection phase is negative 180 degrees; when the first RF switch 310, the second RF switch 309 and the third RF switch 306 are turned on, the combination state is "11", and the corresponding reflection phase is negative 270 degrees.
  • the schematic diagram of the reflection amplitude obtained by using the metasurface unit of this embodiment can be referred to as shown in Figure 6.
  • the four curves correspond to the combined states “00", “01”, and “11” from top to bottom. " and “10”; for a schematic diagram of the reflection phase, please refer to Figure 7.
  • the four curves correspond from top to bottom to the combined states “00", “01”, “10” and “11”; It can be seen from Figure 6 and Figure 7 that the reflection phase and reflection amplitude are different in different combination states.
  • the metasurface unit has strong scalability and high phase quantization accuracy.
  • the metasurface unit of this embodiment is similar to Embodiment 1, with the following main differences:
  • the phase shifter 300 includes a first phase shifter transmission line 301, a second phase shifter transmission line 304, a third phase shifter transmission line 305, a fourth phase shifter transmission line 307 and a fifth phase shifter transmission line 313, radio frequency
  • the switch module includes a third radio frequency switch 306 and a radio frequency switch group 312.
  • the radio frequency switch group 312 includes a first radio frequency switch 310 and a second radio frequency switch 309;
  • the DC blocking capacitor 302 and the first radio frequency switch 310 are connected through the first phase shifter transmission line 301.
  • the first radio frequency switch 310 and the second radio frequency switch 309 are connected in parallel through the second phase shifter transmission line 304 and the fifth phase shifter transmission line 313.
  • the second radio frequency switch 309 and the third radio frequency switch 306 are connected in series through the third phase shifter transmission line 305 , and the third radio frequency switch 306 and the AC isolation inductor 308 are connected through the fourth phase shifter transmission line 307 .
  • the second phase shifter transmission line 304 and the fifth phase shifter transmission line 313 form a parallel connection, and the 2-bit phase response can also be achieved through different states of the three radio frequency switches.
  • the difference is that the setting direction of the second radio frequency switch 309 in this embodiment is different from the setting direction of the second radio frequency switch 309 in the first embodiment, and the adaptability is to set two DC blocking capacitors 302 and bias at the fifth phase shifter transmission line 313.
  • Set up circuit 303 The difference between this embodiment and Embodiment 1 lies in the different connection methods of the radio frequency switch and the transmission line. Otherwise, the principles are roughly the same and will not be repeated here.
  • the metasurface unit of this embodiment is similar to that of Embodiment 2, with the following main differences:
  • the radio frequency switch module includes at least two radio frequency switch groups 312 connected in series.
  • this embodiment adds a radio frequency switch group 312 on the basis of the second embodiment, so that the phase shifter 300 can realize an 8-bit phase state through five radio frequency switches, further improving the accuracy of phase adjustment.
  • Five radio frequency switches The principle that the switching state of the switch determines the reflection phase is similar to the second embodiment. Only one bit is added to describe the 8-bit state. For example, the combined state is "000" in the fully closed state and "111" in the fully open state. For simplicity of description, This will not be repeated.
  • this application also provides a base station, including the metasurface unit as described in any of the above embodiments.
  • Embodiments of the present application include: a resonant unit, which is configured to receive two polarized incident signals, or to radiate two polarized reflected signals; and a power splitter, which is connected to the resonant unit.
  • the power divider is set to combine the two polarized incident signals input to the resonant unit into a combined signal, and/or split the input reflected signal into two polarized reflection signals and output them to the resonant unit; shift a phase shifter, the phase shifter is connected to the power divider, the phase shifter is configured to phase modulate the combined signal input by the power divider, and phase modulate the obtained The reflected signal is output to the power splitter.
  • the combining and splitting of two polarized signals are realized through a power splitter, so that the two polarized signals can share the same phase shifter, effectively reducing the number of phase shifters in the metasurface unit. quantity, reducing hardware costs.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Transmitters (AREA)

Abstract

本申请提供了一种超表面单元及其基站,超表面单元包括:谐振单元(100),所述谐振单元(100)被设置为接收两路极化入射信号,或者,辐射两路极化反射信号;功分器(200),所述功分器(200)与所述谐振单元(100)相连接,所述功分器(200)被设置为将所述谐振单元(100)输入的两路所述极化入射信号合路成合路信号,和/或,将输入的反射信号分路成两路所述极化反射信号并输出至所述谐振单元(100);移相器(300),所述移相器(300)与所述功分器相连接,所述移相器被设置为对所述功分器(200)输入的所述合路信号进行相位调制,并将相位调制得到的所述反射信号输出至所述功分器(200)。

Description

超表面单元及其基站
相关申请的交叉引用
本申请基于申请号为202210275987.2、申请日为2022年03月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及但不限于通信领域,尤其涉及一种超表面单元及其基站。
背景技术
人工电磁超表面是一种周期排布的单元阵列,可以改变电磁波传播特性,实现某些特殊的功能,比如每个单元的反射波与入射波之间设计一个特定的相位差,单元阵列即可达到特定角度的电磁波束赋形功能。传统的人工电磁超表面是一种静态的结构,其电磁特性无法改变,无法满足当今的通信需求。近年来提出了可编程超表面的概念,在超表面单元的谐振单元加载射频开关,通过射频开关的不同状态实现信号的谐振频率的调整,实现反射相位的调控,使得超表面呈现出动态的电磁特性,从而实现可编程的多波束赋形功能。
射频开关的参数波动很容易造成谐振单元的谐振频率偏移,影响超表面单元的调相精度。为了解决这个问题,通常会采用谐振单元与移相器的组合,将射频开关设置在移相器中,虽然实现了谐振单元与射频开关的分离,但需要为每一路极化信号配置一个移相器,硬件成本较高。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种超表面单元及其基站。
第一方面,本申请实施例提供了一种超表面单元,包括:谐振单元,所述谐振单元被设置为接收两路极化入射信号,或者,辐射两路极化反射信号;功分器,所述功分器与所述谐振单元相连接,所述功分器被设置为将所述谐振单元输入的两路所述极化入射信号合路成合路信号,和/或,将输入的反射信号分路成两路所述极化反射信号并输出至所述谐振单元;移相器,所述移相器与所述功分器相连接,所述移相器被设置为对所述功分器输入的所述合路信号进行相位调制,并将相位调制得到的所述反射信号输出至所述功分器。
第二方面,本申请实施例提供了一种基站,包括:如第一方面所述的超表面单元。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请实施例一提供的超表面单元的示意图;
图2是本申请实施例一提供的功分器的主视图;
图3是本申请实施例一提供的移相器的内部结构图;
图4是本申请实施例二提供的移相器的内部结构图;
图5是本申请实施例三提供的移相器的内部结构图;
图6是本申请实施例的超表面单元在无限周期边界下的2bit反射幅度示意图;
图7是本申请实施例的超表面单元在无限周期边界下的2bit反射相位示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书、权利要求书或上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请提供了一种超表面单元及其基站,超表面单元包括:谐振单元,所述谐振单元被设置为接收两路极化入射信号,或者,辐射两路极化反射信号;功分器,所述功分器与所述谐振单元相连接,所述功分器被设置为将所述谐振单元输入的两路所述极化入射信号合路成合路信号,和/或,将输入的反射信号分路成两路所述极化反射信号并输出至所述谐振单元;移相器,所述移相器与所述功分器相连接,所述移相器被设置为对所述功分器输入的所述合路信号进行相位调制,并将相位调制得到的所述反射信号输出至所述功分器。根据本实施例的技术方案,通过功分器实现两路极化信号的合路和分路,使得两路极化信号可以共享同一个移相器,有效减少了超表面单元中移相器的数量,降低了硬件成本。
下面结合附图,对本申请实施例作进一步阐述。
参照图1,本申请提供了一种超表面单元,包括:
谐振单元100,谐振单元100被设置为接收两路极化入射信号,或者,辐射两路极化反射信号;
功分器200,功分器200与谐振单元100相连接,功分器200被设置为将谐振单元100输入的两路极化入射信号合路成合路信号,和/或,将输入的反射信号分路成两路极化反射信号并输出至谐振单元100;
移相器300,移相器300与功分器200相连接,移相器300被设置为对功分器200输入的合路信号进行相位调制,并将相位调制得到的反射信号输出至功分器200。
需要说明的是,在超表面单元的工作频段,谐振单元100能够实现双极化工作模式,即谐振单元100能够通过谐振,接收空间中的两种极化入射的电磁波信号,再通过功分器200将两路极化入射信号合成一路合路信号,将合路信号输入至移相器300进行相位调制后,信号反射回功分器200,在功分器200中将反射信号分成两路极化反射信号,通过谐振单元100以电磁波的形式辐射出去,形成反射波。
需要说明的是,通过本实施例的超表面单元的结构,移相器300与谐振单元100为独立的器件,移相器300的器件参数不会对谐振单元100的谐振频率产生影响,有效确保了调相精度,使得超表面单元能够适用于所有频段。另外,谐振单元100采用双极化设计,不同极化的两路极化信号通过功分器200合路之后再连接到移相器300,两路极化信号共用一个移 相器300进行相位调制,在支持双极化模式的情况下,实现了超表面单元中移相器300减半的效果,有效降低硬件成本。
下面通过几个实施例对超表面单元的各种实施例进行说明。
实施例一:
在本实施例中,参照图1,谐振单元100、功分器200和移相器300均为独立器件,谐振单元100包括第一极化端口101和第二极化端口102,功分器200包括第一功分器端口205和第二功分器端口204,第一极化端口101与第一功分器端口205相连接,第二极化端口102与第二功分器端口204相连接;功分器200还包括第三功分器端口203,移相器300包括移相器端口311,第三功分器端口203与移相器端口311相连接;
谐振单元100被设置为接收第一极化入射信号和第二极化入射信号,并通过第一极化端口101将第一极化入射信号输入至第一功分器端口205,通过第二极化端口102将第二极化入射信号输入至第二功分器端口204,其中,第一极化入射信号和第二极化入射信号的极化方向相互正交;谐振单元100还被设置为辐射第一极化反射信号和第二极化反射信号,其中,第一极化反射信号和第二极化反射信号的极化方向相互正交,第一极化反射信号由功分器200通过第一功分器端口205输入,第二极化反射信号由功分器200通过第二功分器端口204输入;
功分器200被设置为将第一极化入射信号和第二极化入射信号合路成合路信号,并通过第三功分器端口203将合路信号输入至移相器300,以使移相器300对合路信号进行相位调制,得到反射信号;功分器200还被设置为获取移相器300通过移相器端口311输入的反射信号,并将反射信号分路成第一极化反射信号和第二极化反射信号。
需要说明的是,谐振单元100可以是微带天线单元或者偶极子天线单元,也可以是其他具备谐振功能的辐射单元,本实施例对谐振单元100的器件选取不作过多限定。
值得注意的是,为了实现双极化工作模型,谐振单元100接收的极化入射信号和辐射的极化出射信号可以是两路极化方向相互正交的极化信号,例如,第一极化入射信号可以是空间中极化方向为45度的电磁波信号,第二极化入射信号可以是空间中极化方向为负45度的电磁波信号,通过功分器200合路得到合路信号后输入至移相器300进行相位调制,得到的反射信号在功分器200中分成极化方向为45度的第一极化反射信号和极化方向为负45度的第二极化反射信号,再通过谐振单元100以电磁波的形式辐射出去形成反射波。上述示例所述的极化方向并非对本实施例技术方案做出的限定,能够确保输入和输出的两路极化信号的极化方向相互正交即可。
值得注意的是,本实施例的反射信号可以是针对第一极化入射信号进行相位调制后得到的信号,也可以是针对第二极化入射信号进行相位调制后得到的信号,在本实施例的超表面单元采用功分器200对反射信号进行分路,能够使得极化方向为45度的第一极化入射信号通过相位调制后,得到极化方向为45度的第一极化反射信号和极化方向为负45度的第二极化反射信号,有效丰富了信号极化的类型。当然,针对极化方向为负45度的第二极化入射信号的处理过程同理,在此不重复赘述。
需要说明的是,功分器200可以是威尔金森功分器、3dB电桥、T型结或者具备功率分配功能的集成元器件,本实施例对功分器200的器件选取不作过多限定。
需要说明的是,移相器300可以是具有多段传输线和射频开关组成的器件,每段传输线 之间以射频开关连接,使得多段传输线之间形成串联或者并联的关系,通过射频开关的状态组合实现不同的移相效果,当然,也可以是具备移相功能的集成元器件,本实施例对移相器300的结构不作过多限定。
另外,参照图2,功分器200还包括功分器传输线201和隔离电阻202,功分器传输线201分别与第一功分器端口205、第二功分器端口204和第三功分器端口203相连接;
隔离电阻202设置于功分器传输线201的第一分段线和第二分段线之间,其中,第一分段线被设置为连接第一功分器端口205,第二分段线被设置为连接第二功分器端口204。
需要说明的是,图2所示的功分器200的结构为威尔金森功分器,在接收电磁波时,谐振单元100通过第一功分器端口205和第二功分器端口204分别输入两个极化的入射信号,通过功分器200实现信号合路,同样的,在发射电磁波时,移相器300将反射信号通过第三功分器端口203输入,功分器200将反射信号分配到谐振单元的两个极化,从而实现两路极化信号的辐射。
需要说明的是,功分器传输线201可以是图2所示的带状线结构,分别连接第一功分器端口205、第二功分器端口204和第三功分器端口203,并且,在与第一功分器端口205连接的第一分段线和与第二功分器端口204连接的第二分段线之间设置隔离电阻202,为从而实现两路极化信号的隔离,隔离电阻202可以采用表贴电阻,阻值根据实际需求调整即可。
另外,参照图3,移相器300还包括依次串联的隔直电容302、射频开关模块和隔交流电感308,隔直电容302与移相器端口311相连接;移相器300包括第一移相器传输线301、第二移相器传输线304、第三移相器传输线305和第四移相器传输线307,射频开关模块包括第一射频开关310、第二射频开关309和第三射频开关306;隔直电容302和第一射频开关310通过第一移相器传输线301连接,第一射频开关310和第二射频开关309通过第二移相器传输线304串联,第二射频开关309和第三射频开关306通过第三移相器传输线305串联,第三射频开关306和隔交流电感308通过第四移相器传输线307连接;第一移相器传输线301、第二移相器传输线304和第三移相器传输线305分别连接有直流偏置线303。
需要说明的是,在本实施例中,第一移相器传输线301、第二移相器传输线304、第三移相器传输线305和第四移相器传输线307通过3个射频开关串联,形成完整的传输线,上述的传输线可以采用微带线或者带状线结构,根据实际需求选取即可。
值得注意的是,隔直电容302能够隔离直流电流,防止偏置电流进入功分器200,隔交流电感308能够隔离射频信号,防止射频信号进入偏置电路303。隔直电容302和隔交流电感308可以采用贴片器件,也可以是分布式电容和分布式电感,类型和参数根据实际需求选取即可。
需要说明的是,本实施例的3个射频开关可以采用PIN管,也可以是变容二极管、三极管、场效应管、单刀单掷/单刀多掷开关等,本实施例对射频开关的选取不作过多限定。
需要说明的是,本实施例的移相器300中,通过第一移相器传输线301、第二移相器传输线304和第三移相器传输线305连接3个射频开关,实现移相器传输线的串联,能够通过3个射频开关的不同状态实现4种相位,即2bit相位状态,能够有效提高相位量化精度,可扩展性好。例如,合路信号通过移相器端口311输入,通过隔直电容302之后进入射频开关模块,合路信号通过一次打开的射频开关,直到某个开路或者短路终端并反射。3个射频开关的打开状态的不同组合能够实现4种状态,其中,3个射频开关均关闭的情况下,组合状 态为“00”,对应的反射相位为0度;打开第一射频开关310,组合状态为“01”,对应的反射相位为负90度;打开第一射频开关310和第二射频开关309,组合状态为“10”,对应的反射相位为负180度;打开第一射频开关310、第二射频开关309和第三射频开关306,组合状态为“11”,对应的反射相位为负270度,采用本实施例超表面单元得到的反射幅度示意图可以参考图6所示,在横坐标为2.5GHz处,4条曲线由上至下依次对应的组合状态“00”、“01”、“11”和“10”;反射相位的示意图可以参考图7所示,在横坐标为2.5GHz处,4条曲线由上至下依次对应的组合状态“00”、“01”、“10”和“11”;从图6和图7中可以看出,不同组合状态下反射相位和反射幅度互不相同,超表面单元的扩展性强,相位量化精度较高。
实施例二:
本实施例的超表面单元与实施例一相类似,主要具有以下区别:
参照图4,移相器300包括第一移相器传输线301、第二移相器传输线304、第三移相器传输线305、第四移相器传输线307和第五移相器传输线313,射频开关模块包括第三射频开关306和射频开关组312,射频开关组312包括第一射频开关310和第二射频开关309;
隔直电容302和第一射频开关310通过第一移相器传输线301连接,第一射频开关310和第二射频开关309通过第二移相器传输线304和第五移相器传输线313并联,第二射频开关309和第三射频开关306通过第三移相器传输线305串联,第三射频开关306和隔交流电感308通过第四移相器传输线307连接。
需要说明的是,本实施例的射频开关模块中,第二移相器传输线304和第五移相器传输线313形成并联的形式,也可以通过3个射频开关的不同状态实现2bit相位响应,区别在于本实施例的第二射频开关309的设置方向与实施例一种的第二射频开关309的设置方向不同,并且适应性在第五移相器传输线313处设置两个隔直电容302和偏置电路303,本实施例与实施例一的区别在于射频开关和传输线的连接方式不同,除此以外原理大致相同,在此不重复赘述。
实施例三:
本实施例的超表面单元与实施例二相类似,主要具有以下区别:
参照图5,射频开关模块包括至少两个相互串联的射频开关组312。
需要说明的是,本实施例在实施例二的基础上增加了一个射频开关组312,使得移相器300中能够通过5个射频开关实现8bit相位状态,进一步提高相位调整的精度,5个射频开关的开关状态决定反射相位的原理与实施例二相似,仅增加一位用于描述8bit状态,例如全关状态下组合状态为“000”,全开状态下为“111”,为了叙述简便在此不重复赘述。
除了上述区别以外,本实施例的超表面单元的其他部分可以参考实施例二的描述,为了叙述简便在此不重复赘述。
另外,本申请还提供了一种基站,包括如上任一实施例所述的超表面单元。
需要说明的是,将上述实施例中任意一种超表面单元应用至基站之后,由于超表面单元中设置了功分器,在双极化模式下,两路极化信号共享一个移相器,有效减少了移相器的数量,降低了硬件成本。
本申请实施例包括:谐振单元,所述谐振单元被设置为接收两路极化入射信号,或者,辐射两路极化反射信号;功分器,所述功分器与所述谐振单元相连接,所述功分器被设置为 将所述谐振单元输入的两路所述极化入射信号合路成合路信号,和/或,将输入的反射信号分路成两路所述极化反射信号并输出至所述谐振单元;移相器,所述移相器与所述功分器相连接,所述移相器被设置为对所述功分器输入的所述合路信号进行相位调制,并将相位调制得到的所述反射信号输出至所述功分器。根据本实施例的技术方案,通过功分器实现两路极化信号的合路和分路,使得两路极化信号可以共享同一个移相器,有效减少了超表面单元中移相器的数量,降低了硬件成本。
以上是对本申请的若干实施方式进行了说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请范围的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (11)

  1. 一种超表面单元,其特征在于,包括:
    谐振单元,所述谐振单元被设置为接收两路极化入射信号,或者,辐射两路极化反射信号;
    功分器,所述功分器与所述谐振单元相连接,所述功分器被设置为将所述谐振单元输入的两路所述极化入射信号合路成合路信号,和/或,将输入的反射信号分路成两路所述极化反射信号并输出至所述谐振单元;
    移相器,所述移相器与所述功分器相连接,所述移相器被设置为对所述功分器输入的所述合路信号进行相位调制,并将相位调制得到的所述反射信号输出至所述功分器。
  2. 根据权利要求1所述的超表面单元,其中:
    所述谐振单元包括第一极化端口和第二极化端口,所述功分器包括第一功分器端口和第二功分器端口,所述第一极化端口与所述第一功分器端口相连接,所述第二极化端口与所述第二功分器端口相连接;
    所述谐振单元被设置为接收第一极化入射信号和第二极化入射信号,并通过所述第一极化端口将所述第一极化入射信号输入至所述第一功分器端口,通过所述第二极化端口将所述第二极化入射信号输入至所述第二功分器端口,其中,所述第一极化入射信号和所述第二极化入射信号的极化方向相互正交;
    所述谐振单元还被设置为辐射第一极化反射信号和第二极化反射信号,其中,所述第一极化反射信号和所述第二极化反射信号的极化方向相互正交,所述第一极化反射信号由所述功分器通过所述第一功分器端口输入,所述第二极化反射信号由所述功分器通过所述第二功分器端口输入。
  3. 根据权利要求2所述的超表面单元,其中:
    所述功分器还包括第三功分器端口,所述移相器包括移相器端口,所述第三功分器端口与所述移相器端口相连接;
    所述功分器被设置为将所述第一极化入射信号和所述第二极化入射信号合路成所述合路信号,并通过所述第三功分器端口将所述合路信号输入至所述移相器,以使所述移相器对所述合路信号进行相位调制,得到所述反射信号;
    所述功分器还被设置为获取所述移相器通过所述移相器端口输入的所述反射信号,并将所述反射信号分路成所述第一极化反射信号和所述第二极化反射信号。
  4. 根据权利要求3所述的超表面单元,其中:
    所述功分器还包括功分器传输线和隔离电阻,所述功分器传输线分别与所述第一功分器端口、所述第二功分器端口和所述第三功分器端口相连接;
    所述隔离电阻设置于所述功分器传输线的第一分段线和第二分段线之间,其中,所述第一分段线被设置为连接所述第一功分器端口,所述第二分段线被设置为连接所述第二功分器端口。
  5. 根据权利要求3所述的超表面单元,其中:
    所述移相器还包括依次串联的隔直电容、射频开关模块和隔交流电感,所述隔直电容与所述移相器端口相连接,所述射频开关模块被设置为对所述合路信号进行相位调制,以得到 所述反射信号。
  6. 根据权利要求5所述的超表面单元,其中:
    所述移相器包括第一移相器传输线、第二移相器传输线、第三移相器传输线和第四移相器传输线,所述射频开关模块包括第一射频开关、第二射频开关和第三射频开关;
    所述隔直电容和所述第一射频开关通过所述第一移相器传输线连接,所述第一射频开关和所述第二射频开关通过所述第二移相器传输线串联,所述第二射频开关和所述第三射频开关通过所述第三移相器传输线串联,所述第三射频开关和所述隔交流电感通过所述第四移相器传输线连接。
  7. 根据权利要求6所述的超表面单元,其中:
    所述第一移相器传输线、所述第二移相器传输线和所述第三移相器传输线分别连接有直流偏置线。
  8. 根据权利要求5所述的超表面单元,其中:
    所述移相器包括第一移相器传输线、第二移相器传输线、第三移相器传输线、第四移相器传输线和第五移相器传输线,所述射频开关模块包括第三射频开关和射频开关组,所述射频开关组包括第一射频开关和第二射频开关;
    所述隔直电容和所述第一射频开关通过所述第一移相器传输线连接,所述第一射频开关和所述第二射频开关通过所述第二移相器传输线和所述第五移相器传输线并联,所述第二射频开关和所述第三射频开关通过所述第三移相器传输线串联,所述第三射频开关和所述隔交流电感通过所述第四移相器传输线连接。
  9. 根据权利要求8所述的超表面单元,其中:
    所述第所述第二移相器传输线和所述第五移相器传输线分别连接有直流偏置线。
  10. 根据权利要求8所述的超表面单元,其中,所述射频开关模块包括至少两个相互串联的所述射频开关组。
  11. 一种基站,包括如权利要求1至10任意一项所述的超表面单元。
PCT/CN2023/078163 2022-03-21 2023-02-24 超表面单元及其基站 WO2023179306A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210275987.2 2022-03-21
CN202210275987.2A CN116826384A (zh) 2022-03-21 2022-03-21 超表面单元及其基站

Publications (1)

Publication Number Publication Date
WO2023179306A1 true WO2023179306A1 (zh) 2023-09-28

Family

ID=88099854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078163 WO2023179306A1 (zh) 2022-03-21 2023-02-24 超表面单元及其基站

Country Status (2)

Country Link
CN (1) CN116826384A (zh)
WO (1) WO2023179306A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180109002A1 (en) * 2016-10-18 2018-04-19 Senglee Foo Liquid-crystal reconfigurable metasurface reflector antenna
US10218426B1 (en) * 2017-09-11 2019-02-26 Kabushiki Kaisha Toshiba Antenna device, wireless communication device and signal transmission method
CN110911845A (zh) * 2019-12-06 2020-03-24 北京大学 一种宽带零交叉极化时空编码数字超表面单元及控制方法
CN111063994A (zh) * 2019-12-06 2020-04-24 西安电子科技大学 基于超表面子阵列的基站天线及其电调方法
CN113764900A (zh) * 2021-08-23 2021-12-07 西安电子科技大学 一种集成有太阳能电池的混合可重构智能反射表面
CN113871861A (zh) * 2021-09-29 2021-12-31 东南大学 一种4比特电子波束扫描平面天线阵列
CN113890578A (zh) * 2021-09-29 2022-01-04 浙大城市学院 基于ris和相关信道无蜂窝系统功率设计方法
CN113991312A (zh) * 2021-10-26 2022-01-28 东南大学 双极化3bit相位独立可调的可重构智能超表面单元
KR102374150B1 (ko) * 2021-10-13 2022-03-11 국방과학연구소 능동형 메타표면을 이용한 배열 안테나
CN114188726A (zh) * 2021-10-29 2022-03-15 电子科技大学长三角研究院(湖州) 一种有源智能反射表面

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180109002A1 (en) * 2016-10-18 2018-04-19 Senglee Foo Liquid-crystal reconfigurable metasurface reflector antenna
US10218426B1 (en) * 2017-09-11 2019-02-26 Kabushiki Kaisha Toshiba Antenna device, wireless communication device and signal transmission method
CN110911845A (zh) * 2019-12-06 2020-03-24 北京大学 一种宽带零交叉极化时空编码数字超表面单元及控制方法
CN111063994A (zh) * 2019-12-06 2020-04-24 西安电子科技大学 基于超表面子阵列的基站天线及其电调方法
CN113764900A (zh) * 2021-08-23 2021-12-07 西安电子科技大学 一种集成有太阳能电池的混合可重构智能反射表面
CN113871861A (zh) * 2021-09-29 2021-12-31 东南大学 一种4比特电子波束扫描平面天线阵列
CN113890578A (zh) * 2021-09-29 2022-01-04 浙大城市学院 基于ris和相关信道无蜂窝系统功率设计方法
KR102374150B1 (ko) * 2021-10-13 2022-03-11 국방과학연구소 능동형 메타표면을 이용한 배열 안테나
CN113991312A (zh) * 2021-10-26 2022-01-28 东南大学 双极化3bit相位独立可调的可重构智能超表面单元
CN114188726A (zh) * 2021-10-29 2022-03-15 电子科技大学长三角研究院(湖州) 一种有源智能反射表面

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KRISHNA KUMAR KISHOR ; SEAN VICTOR HUM: "An Amplifying Reconfigurable Reflectarray Antenna", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 60, no. 1, 1 January 2012 (2012-01-01), USA, pages 197 - 205, XP011391359, ISSN: 0018-926X, DOI: 10.1109/TAP.2011.2167939 *

Also Published As

Publication number Publication date
CN116826384A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
CN111052603B (zh) 可配置功率组合器和分配器
KR101392073B1 (ko) 안테나, 기지국 및 빔 프로세싱 방법
CN110212887A (zh) 一种射频有源移相器结构
CN110808458A (zh) 一种双极化多层贴片滤波天线及通信设备
CN109638476A (zh) 馈电网络和双波束天线
CN113594704B (zh) 宽带三极化可重构的高增益微带天线
Afroz et al. 90° hybrid-coupler based phase-interpolation phase-shifter for phased-array applications at W-band and beyond
Theofanopoulos et al. A novel 2-bit graphene reconfigurable reflectarray
CN107508040B (zh) 一种极化旋转方向回溯阵列
CN111293394A (zh) 超宽带正交可切换等功分电桥
CN209119368U (zh) 微波与毫米波超宽带多模极化快速切换天线
Toyoda et al. Polarization agile self‐oscillating active integrated antenna for spatial modulation wireless communications
US5247269A (en) Two-way duplexer for polarized microwaves
CN105186143B (zh) 三频三功能时间调制和非时间调制可重构共孔径天线阵
CN109755746A (zh) 馈电网络和三波束天线
WO2023179306A1 (zh) 超表面单元及其基站
Fan et al. Theory analysis and realization of single-/dual-port excitation in beam-forming network
CN211126042U (zh) 一种双极化多层贴片滤波天线及通信设备
CN110943294A (zh) 宽带低剖面双圆极化平板天线
CN217036007U (zh) 宽带三极化可重构的高增益微带天线
CN106711554B (zh) 一种集成式360°反射型模拟移相器
Al Abbas et al. Millimeter wave tunable power divider using modified Wilkinson design
Deng et al. Designs of branch-line couplers by considering the parasitic effects of pin diodes
Tolin et al. Phase shifters design for scan range extension of Rotman lens beamforming based antenna arrays
CN111562555B (zh) 用于极化有源定标器的四通模块装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773557

Country of ref document: EP

Kind code of ref document: A1