WO2023179242A1 - 电子器件的恒功率控制装置、方法、设备及存储介质 - Google Patents

电子器件的恒功率控制装置、方法、设备及存储介质 Download PDF

Info

Publication number
WO2023179242A1
WO2023179242A1 PCT/CN2023/075826 CN2023075826W WO2023179242A1 WO 2023179242 A1 WO2023179242 A1 WO 2023179242A1 CN 2023075826 W CN2023075826 W CN 2023075826W WO 2023179242 A1 WO2023179242 A1 WO 2023179242A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
sampling
supply
voltage
power control
Prior art date
Application number
PCT/CN2023/075826
Other languages
English (en)
French (fr)
Inventor
胡顺林
Original Assignee
追觅创新科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 追觅创新科技(苏州)有限公司 filed Critical 追觅创新科技(苏州)有限公司
Publication of WO2023179242A1 publication Critical patent/WO2023179242A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell

Definitions

  • the present application belongs to the field of computer technology, and specifically relates to a constant power control device, method, equipment and storage medium for electronic devices.
  • motors in home appliances are often powered by battery packs.
  • the motor in a vacuum cleaner is powered by a battery pack composed of lithium batteries.
  • the output power of the motor will decrease as the voltage decreases, and constant power operation cannot be achieved.
  • the technical problems to be solved by this application include the problem that electronic devices cannot operate at constant power.
  • the constant power control device includes:
  • a voltage collection structure used to collect the power supply voltage of the electronic device
  • a current acquisition structure connected to the voltage acquisition structure, including a filter unit and a sampling unit; the current acquisition structure is used to filter the current through the filter unit, and obtain the current sampling current after current sampling through the sampling unit;
  • a control structure connected to the current acquisition module and the voltage acquisition structure, is used to obtain a current correspondence relationship, and the current correspondence relationship is used to represent the correspondence relationship between different sampling currents and the power supply current corresponding to each sampling current; Determine the current supply current corresponding to the current sampling current in the current correspondence relationship; determine the target supply current based on the target power and the supply voltage; and adjust the current supply current to the target supply current.
  • the voltage acquisition structure is connected to the sampling unit through the filter unit;
  • the voltage acquisition structure is connected to the filtering unit through the sampling unit.
  • the filtering unit includes a resistor and a capacitor connected in series.
  • the voltage collection structure includes a sampling resistor, and the voltage value of the sampling resistor is the supply voltage.
  • the current corresponding relationship is a linear corresponding relationship.
  • this application provides a constant power control method for electronic devices, including:
  • the current supply current corresponding to the current sampling current is determined in the current correspondence relationship; the current sampling current is collected by a current collection structure, and the current collection structure includes a filter unit and a sampling unit; the current collection structure is After the current is filtered through the filter unit and the current is sampled through the sampling unit, the current sampling current is obtained;
  • the supply voltage is collected by a voltage acquisition structure, and the voltage acquisition structure is used to collect the supply voltage of the electronic device;
  • adjusting the current supply current to the target supply current includes:
  • a PID control algorithm is used based on the error value to adjust the current supply current to the target supply current.
  • adjusting the current supply current to the target supply current includes:
  • the present application also provides an electronic device, which includes: a processor and a memory; a program is stored in the memory, and the program is loaded and executed by the processor to implement the electronic device provided by the above aspect. Constant power control method of the device.
  • the present application also provides a computer-readable storage medium, characterized in that a program is stored in the storage medium, and when the program is executed by a processor, the constant power control method of an electronic device provided in the above aspect is implemented.
  • the technical solution provided by this application has the following advantages: by obtaining the current correspondence, the current correspondence is used to represent the correspondence between different sampling currents and the power supply current corresponding to each sampling current; the current sampling current is determined in the current correspondence.
  • the corresponding current supply current determine the target supply current based on the target power and supply voltage; adjust the current supply current to the target supply current; can solve the problem of being unable to achieve constant power control of electronic devices; because it can be determined based on the current correspondence relationship
  • the current supply current, and the target supply current of the electronic device can be determined according to the target power and the current supply voltage. By adjusting the current supply current to the target supply current, the constant power output of the electronic device can be achieved.
  • the power is adjusted by calculating the voltage of the DQ axis of the motor.
  • the current sampling current is obtained by deeply filtering the power supply voltage collected by the current acquisition structure. The current sampling current is not affected by the load of the motor. Therefore, the power value under different load conditions can be guaranteed to reach Constant power control under different load conditions.
  • Figure 1 is the structure of a constant power control device for electronic devices provided by an embodiment of the present application. schematic diagram;
  • Figure 2 is a flow chart of a constant power control method for electronic devices provided by an embodiment of the present application
  • Figure 3 is a flow chart of a constant power control method for an electronic device provided by another embodiment of the present application.
  • Figure 4 is a block diagram of a constant power control device for an electronic device provided by an embodiment of the present application.
  • FIG. 5 is a block diagram of an electronic device provided by an embodiment of the present application.
  • the directional words used such as “upper, lower, top, and bottom” usually refer to the direction shown in the drawings, or to the vertical or vertical position of the component itself. Vertically or in the direction of gravity; similarly, for ease of understanding and description, “inside and outside” refers to the inside and outside relative to the outline of each component itself, but the above directional terms are not used to limit this application.
  • FIG. 1 is a schematic structural diagram of a constant power control device for an electronic device provided by one embodiment of the present application.
  • the electronic device refers to a device in which the output power of the electronic device decreases as the supply voltage decreases without constant power adjustment.
  • This electronic device is typically powered by a battery pack.
  • the electronic device may be a motor in a cordless vacuum cleaner, a motor in a hair dryer, a pumping motor and a water suction motor in a floor washing machine, etc. This embodiment does not limit the implementation of the electronic device.
  • the constant power control device can be disposed in the same electronic device as the electronic device, or the constant power control device can be communicatively connected to the electronic device to which the electronic device belongs to realize remote adjustment of the electronic device.
  • This embodiment does not apply to the constant power control device.
  • the implementation of the control device is limited.
  • the constant power control device at least includes: a voltage collection structure 110, a current collection structure 120 connected to the voltage collection structure, and a control structure 130 connected to both the current collection module and the voltage collection structure.
  • the voltage collection structure 110 is used to collect the power supply voltage of the electronic device.
  • the voltage collection structure 110 is connected to the supply voltage terminal of the electronic device to collect the supply voltage of the electronic device.
  • the power supply voltage of the electronic device may be the power supply voltage or the processed power supply voltage. This embodiment does not limit the type of the power supply voltage of the electronic device.
  • the voltage acquisition structure includes a sampling resistor, and the voltage value of the sampling resistor is the supply voltage.
  • the current collection structure 120 is used to deeply filter the voltage at the beginning of the supply voltage reaction, thereby obtaining a DC voltage.
  • the current corresponding to this voltage satisfies a certain relationship with the supply current corresponding to the supply voltage.
  • the current collection structure 120 includes a filtering unit 121 and a sampling unit 122.
  • the current acquisition structure 120 is used to filter the current through the filtering unit 121 and perform current sampling through the sampling unit 122 to obtain the current sampling current.
  • the voltage acquisition structure 110 is connected to the sampling unit 122 through the filtering unit 121. At this time, the power supply voltage collected by the voltage acquisition structure 110 is first filtered by the filtering unit 121 to obtain the filtered voltage; then, the sampling unit 122 performs current sampling on the filtered voltage to obtain the current sampling current.
  • the voltage acquisition structure 110 is connected to the filtering unit 121 through the sampling unit 122 .
  • the power supply voltage collected by the voltage acquisition structure 110 first undergoes current sampling through the sampling unit 122 to obtain the sampling current; then, the filtering unit 121 filters the sampling current to obtain the current sampling current.
  • the filter unit 121 includes a resistor and a capacitor connected in series.
  • the sampling unit 122 includes an Analog-to-Digital Converter (ADC).
  • ADC Analog-to-Digital Converter
  • the supply voltage collected by the voltage collection structure 110 is amplified by the operational amplifier circuit and then input into the current collection structure 120. In this way, the supply voltage can be adjusted through the feedback network.
  • the control structure 130 is used to obtain the current correspondence; determine the current supply current corresponding to the current sampling current in the current correspondence; determine the target supply current based on the target power and supply voltage. current; and, adjust the current supply current to the target supply current.
  • the current correspondence relationship is used to represent the correspondence between different sampling currents and the supply current corresponding to each sampling current.
  • the current corresponding relationship is pre-stored in the constant power control device. In this way, the current supply current can be determined based on the current correspondence, and the target supply current of the electronic device can be determined based on the target power and the current supply voltage. Adjusting the current supply current to the target supply current can achieve constant power output of the electronic device.
  • the current correspondence is a linear correspondence. In this way, it can be ensured that each current sampling current can determine the unique corresponding current supply current.
  • the target power is the constant power that the electronic device is expected to achieve.
  • the target power is pre-stored in the constant power control device.
  • different working gears correspond to different target powers. This embodiment does not limit the setting method of the target power.
  • the constant power control method of this electronic device is introduced below.
  • the following embodiments take the method as being used in the constant power control device shown in Figure 1 as an example. In actual implementation, it can also be used in other devices that are connected to the constant power control device, such as mobile phones and computers. , wearable devices, tablet computers and other devices, this embodiment does not limit the application scenarios of the constant power control method.
  • Figure 2 is a flow chart of a constant power control method for electronic devices provided by an embodiment of the present application. The method at least includes the following steps:
  • Step 201 Obtain the current correspondence relationship.
  • the current correspondence relationship is used to represent the correspondence relationship between different sampling currents and the power supply current corresponding to each sampling current.
  • the current correspondence is pre-stored in the constant power control device, or is sent to the constant power control device by other devices.
  • the method of obtaining the current corresponding relationship includes: obtaining the current supply of the electronic device.
  • the method of generating the current correspondence relationship based on multiple sets of sample data may be: curve fitting or generation using a preset linear model. This embodiment does not limit the method of generating the current correspondence relationship.
  • the current corresponding relationship is a linear corresponding relationship, that is, multiplying the current sampling current by a certain coefficient and adding a constant can obtain the corresponding current power supply current.
  • Step 202 Determine the current supply current corresponding to the current sampling current in the current correspondence relationship.
  • the current sampling current is collected by the current acquisition structure, which includes a filter unit and a sampling unit; the current acquisition structure is used to filter the current through the filter unit, and obtain the current sampling current after current sampling by the sampling unit.
  • Step 203 Determine the target supply current based on the target power and supply voltage.
  • the power supply voltage is collected by a voltage acquisition structure, and the voltage acquisition structure is used to collect the power supply voltage of electronic devices.
  • the target power divided by the supply voltage is the target supply current.
  • step 203 can be executed after steps 201 and 202; or it can be executed before steps 201 and 202; or it can also be executed simultaneously with steps 201 and 202.
  • This embodiment does not limit the execution timing of step 203.
  • Step 204 Adjust the current power supply current to the target power supply current.
  • adjusting the current supply current to the target supply current includes: determining the error value between the current supply current and the target supply current; using the proportional, integral and differential (Proportion Integral Differential, PID) control algorithm based on the error value, Adjust the current supply current to the target supply current.
  • PID Proportion Integral Differential
  • the constant power control device adjusts the supply current every preset time threshold.
  • the current power supply current is adjusted to the target power supply current, including: determining whether the time interval between the current time and the last current adjustment end time is greater than the preset time threshold; when the time interval is greater than or equal to the preset time threshold , adjust the current supply current to the target supply current flow; when the time interval is less than the preset time threshold, trigger execution to determine the current supply current corresponding to the current sampling current in the current correspondence relationship; determine the target supply current based on the target power and supply voltage; determine the current time and the last current adjustment Steps that determine whether the time interval between end times is greater than a preset time threshold.
  • the constant power control method of electronic devices obtains the current correspondence relationship.
  • the current correspondence relationship is used to represent the correspondence relationship between different sampling currents and the power supply current corresponding to each sampling current; in the current
  • the current supply current corresponding to the current sampling current is determined in the corresponding relationship;
  • the target supply current is determined based on the target power and supply voltage;
  • the current supply current is adjusted to the target supply current; the problem of being unable to achieve constant power control of electronic devices can be solved; because it can
  • the current power supply current can be determined based on the current corresponding relationship, and the target power supply current of the electronic device can be determined based on the target power and current power supply voltage. Adjusting the current power supply current to the target power supply current can achieve constant power output of the electronic device.
  • the power is adjusted by calculating the voltage of the DQ axis of the motor.
  • the current sampling current is obtained by deeply filtering the power supply voltage collected by the current acquisition structure. The current sampling current is not affected by the load of the motor. Therefore, the power value under different load conditions can be guaranteed to reach Constant power control under different load conditions.
  • the method at least includes the following steps:
  • Step 31 Determine the target supply current based on the target power and supply voltage
  • Step 32 Determine the current supply current corresponding to the current sampling current in the current correspondence relationship
  • Step 33 determine whether the current adjustment time is reached; if so, execute step 34; if not, execute step 31 again;
  • Step 34 Determine the error value between the target power supply current and the current power supply current
  • Step 35 Use the PID algorithm to adjust the error value to obtain the adjusted duty cycle
  • Step 36 adjust the current power supply current according to the adjusted duty cycle, and perform step 31 again until until the electronic device stops working.
  • the current sampling current is not affected by the load of the motor, which can ensure continuous power values under different load conditions and achieve constant power control under different load conditions.
  • Figure 4 is a block diagram of a constant power control device for an electronic device provided by an embodiment of the present application.
  • the device includes at least the following modules: a relationship acquisition module 410, a first determination module 420, a second determination module 430 and a current adjustment module 440.
  • the relationship acquisition module 410 is used to obtain the current correspondence relationship, which is used to represent the correspondence relationship between different sampling currents and the power supply current corresponding to each sampling current;
  • the first determination module 420 is used to determine the current power supply current corresponding to the current sampling current in the current correspondence relationship; the current sampling current is collected by a current acquisition structure, and the current acquisition structure includes a filter unit and a sampling unit. Unit; the current acquisition structure is used to filter the current through the filter unit, and obtain the current sampling current after current sampling through the sampling unit;
  • the second determination module 430 is used to determine the target power supply current based on the target power and the power supply voltage.
  • the power supply voltage is collected by a voltage acquisition structure, and the voltage acquisition structure is used to collect the power supply voltage of the electronic device;
  • the current adjustment module 440 is used to adjust the current supply current to the target supply current.
  • the constant power control device of electronic devices provided in the above embodiments performs constant power control of electronic devices
  • only the division of the above functional modules is used as an example. In practical applications, the above mentioned functions can be used as needed. Function distribution is completed by different functional modules, that is, the internal structure of the constant power control device of the electronic device is divided into different functional modules to complete all or part of the functions described above.
  • the constant power control device for electronic devices provided in the above embodiments and the constant power control method embodiments for electronic devices belong to the same concept. The specific implementation process can be found in the method embodiments and will not be described again here.
  • FIG. 5 is a block diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device may be the constant power control device described in FIG. 1 , and the device at least includes a processor 501 and a memory 502 .
  • the processor 501 may include one or more processing cores, such as a 5-core processor, an 8-core processor, etc.
  • the processor 501 can adopt at least one hardware form among DSP (Digital Signal Processing, digital signal processing), FPGA (Field-Programmable Gate Array, field programmable gate array), and PLA (Programmable Logic Array, programmable logic array).
  • the processor 501 may also include a main processor and a co-processor.
  • the main processor is a processor used to process data in the wake-up state, also called CPU (Central Processing Unit, central processing unit); the co-processor is A low-power processor used to process data in standby mode.
  • the processor 501 may be integrated with a GPU (Graphics Processing Unit, image processor), and the GPU is responsible for rendering and drawing the content that needs to be displayed on the display screen.
  • the processor 501 may also include an AI (Artificial Intelligence, artificial intelligence) processor, which is used to process computing operations related to machine learning.
  • AI Artificial Intelligence, artificial intelligence
  • Memory 502 may include one or more computer-readable storage media, which may be non-transitory. Memory 502 may also include high-speed random access memory, and non-volatile memory, such as one or more magnetic disk storage devices, flash memory storage devices. In some embodiments, the non-transitory computer-readable storage medium in the memory 502 is used to store at least one instruction, and the at least one instruction is used to be executed by the processor 501 to implement the electronic device provided by the method embodiment in this application. constant power control method.
  • the external parameter calibration device may optionally include: a peripheral device interface and at least one peripheral device.
  • the processor 501, the memory 502 and the peripheral device interface may be connected through a bus or a signal line.
  • Each peripheral device can be connected to the peripheral device interface through a bus, a signal line or a circuit board.
  • peripheral devices include but are not limited to: radio frequency circuits, touch display screens, audio circuits, power supplies, etc.
  • the external parameter calibration device may also include fewer or more components, which is not limited in this embodiment.
  • this application also provides a computer-readable storage medium, the computer can
  • the read storage medium stores a program, and the program is loaded and executed by the processor to implement the constant power control method of the electronic device in the above method embodiment.
  • this application also provides a computer product.
  • the computer product includes a computer-readable storage medium.
  • a program is stored in the computer-readable storage medium. The program is loaded and executed by a processor to implement the above method embodiments. Constant power control method of electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Power Sources (AREA)

Abstract

提供了一种电子器件的恒功率控制装置、方法、设备及存储介质,属于计算机技术领域。包括:电压采集结构(110)采集电子器件的供电电压;电流采集结构(120)包括滤波单元(121)和采样单元(122);电流采集结构(120)通过滤波单元(121)进行电流过滤,并经过采样单元(122)进行电流采样后,得到当前采样电流;控制结构(130)与电流采集模块(120)和电压采集结构(110)相连,用于获取电流对应关系,电流对应关系用于表示不同采样电流与每个采样电流对应的供电电流之间的对应关系(201);在电流对应关系中确定当前采样电流对应的当前供电电流(202);基于目标功率和供电电压确定目标供电电流(203);以及,将当前供电电流调节至目标供电电流(204)。可以解决无法实现对电子器件的恒功率控制的问题,实现电子器件的恒功率输出。

Description

电子器件的恒功率控制装置、方法、设备及存储介质
本申请要求于2022年3月25日提交中国专利局、申请号为202210299612.X、申请名称为“电子器件的恒功率控制装置、方法、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于计算机技术领域,具体涉及一种电子器件的恒功率控制装置、方法、设备及存储介质。
背景技术
目前,家用设备中的电机通常通过电池包供电。比如:吸尘器中的电机采用锂电池组成的电池包供电。然而,电机在采用电流环控制的情况下电机的输出功率会随着电压的下降而下降,无法实现恒功率运行。
发明内容
本申请所要解决的技术问题包括电子器件无法恒功率运行的问题。
为解决上述技术问题,本申请提供一种电子器件的恒功率控制装置,所述恒功率控制装置包括:
电压采集结构,用于采集所述电子器件的供电电压;
与所述电压采集结构相连的电流采集结构,包括滤波单元和采样单元;所述电流采集结构用于通过滤波单元进行电流过滤,并经过所述采样单元进行电流采样后,得到当前采样电流;以及
控制结构,与所述电流采集模块和所述电压采集结构相连,用于获取电流对应关系,所述电流对应关系用于表示不同采样电流与每个采样电流对应的供电电流之间的对应关系;在所述电流对应关系中确定所述当前采样电流对应的当前供电电流;基于目标功率和所述供电电压确定目标供电电流;以及,将所述当前供电电流调节至所述目标供电电流。
可选地,所述电压采集结构通过所述滤波单元与所述采样单元相连;
或者,
所述电压采集结构通过所述采样单元与所述滤波单元相连。
可选地,所述滤波单元包括串联的电阻和电容。
可选地,所述电压采集结构包括采样电阻,所述采样电阻的电压值为所述供电电压。
可选地,所述电流对应关系为线性对应关系。
另一方面,本申请提供一种电子器件的恒功率控制方法,包括:
获取电流对应关系,所述电流对应关系用于表示不同采样电流与每个采样电流对应的供电电流之间的对应关系;
在所述电流对应关系中确定所述当前采样电流对应的当前供电电流;所述当前采样电流是电流采集结构采集到的,所述电流采集结构包括滤波单元和采样单元;所述电流采集结构用于通过滤波单元进行电流过滤,并经过所述采样单元进行电流采样后,得到所述当前采样电流;
基于目标功率和供电电压确定目标供电电流,所述供电电压由电压采集结构采集,所述电压采集结构用于采集所述电子器件的供电电压;
将所述当前供电电流调节至所述目标供电电流。
可选地,所述将所述当前供电电流调节至所述目标供电电流,包括:
确定所述当前供电电流与所述目标供电电流之间的误差值;
基于所述误差值使用PID控制算法,将所述当前供电电流调节至所述目标供电电流。
可选地,所述将所述当前供电电流调节至所述目标供电电流,包括:
确定当前时间与上次电流调节结束时间之间的时间间隔是否大于预设时间阈值;
在时间间隔大于或等于预设时间阈值的情况下,将所述当前供电电流调节至所述目标供电电流;
在时间间隔小于预设时间阈值的情况下,触发执行所述在所述电流对应关系中确定所述当前采样电流对应的当前供电电流;基于目标功率和供电电压确定目标供电电流;确定当前时间与上次电流调节结束时间之间的时间间隔是否大于预设时间阈值的步骤。
又一方面,本申请还提供一种电子设备,所述电子设备包括:处理器和存储器;所述存储器中存储有程序,所述程序由所述处理器加载并执行以实现上述方面提供的电子器件的恒功率控制方法。
再一方面,本申请还提供一种计算机可读存储介质,其特征在于,所述存储介质中存储有程序,所述程序被处理器执行时实现上述方面提供的电子器件的恒功率控制方法。
本申请提供的技术方案,具有以下优点:通过获取电流对应关系,电流对应关系用于表示不同采样电流与每个采样电流对应的供电电流之间的对应关系;在电流对应关系中确定当前采样电流对应的当前供电电流;基于目标功率和供电电压确定目标供电电流;将当前供电电流调节至目标供电电流;可以解决无法实现对电子器件的恒功率控制的问题;由于可以基于电流对应关系可以确定出当前供电电流,而根据目标功率和当前供电电压可以确定出电子器件的目标供电电流,将当前供电电流调整至目标供电电流即可实现电子器件的恒功率输出。
另外,传统的电机的恒功率控制方式中,通过对电机的DQ轴的电压进行计算来调节功率。但是,在电机负载变化时,会发生功率偏移,依然无法做到真正的恒功率。基于此,本实施例中,通过对电流采集结构采集的供电电压进行深度滤波得到当前采样电流,该当前采样电流不随电机的负载的影响,因此,可以保证持续不同负载状态下的功率值,达到不同负载状态下的恒功率控制。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的电子器件的恒功率控制装置的结构 示意图;
图2是本申请一个实施例提供的电子器件的恒功率控制方法的流程图;
图3是本申请另一个实施例提供的电子器件的恒功率控制方法的流程图;
图4是本申请一个实施例提供的电子器件的恒功率控制装置的框图;
图5是本申请一个实施例提供的电子设备的框图。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本申请中,在未作相反说明的情况下,使用的方位词如“上、下、顶、底”通常是针对附图所示的方向而言的,或者是针对部件本身在竖直、垂直或重力方向上而言的;同样地,为便于理解和描述,“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本申请。
图1是本申请一个实施例提供的电子器件的恒功率控制装置的结构示意图,该电子器件是指在不进行恒功率调节的情况下,电子设备中输出功率随供电电压下降而下降的器件,该电子器件一般通过电池包供电。电子器件可以为无线吸尘器中的电机、吹风机中的电机、洗地机中的抽水电机和吸水电机等,本实施例不对电子器件的实现方式作限定。
可选地,恒功率控制装置可以与电子器件设置在同一电子设备中,或者,恒功率控制装置与电子器件所属的电子设备通信相连,以实现对电子器件的远程调节,本实施例不对恒功率控制装置的实现方式作限定。
如图1所示,恒功率控制装置至少包括:电压采集结构110、与所述电压采集结构相连的电流采集结构120、以及与电流采集模块和电压采集结构均相连的控制结构130。
电压采集结构110用于采集电子器件的供电电压。
示意性地,电压采集结构110连接至电子器件的供电电压端,以采集电子器件的供电电压。电子器件的供电电压可以为供电电压,或者为处理后的供电电压,本实施例不对电子器件的供电电压的类型作限定。
比如:电压采集结构包括采样电阻,采样电阻的电压值为供电电压。
电流采集结构120用于将供电电压反应初的电压进行深度滤波,从而得到直流的电压,该电压对应的电流与供电电压对应的供电电流满足一定关系。
具体地,电流采集结构120包括滤波单元121和采样单元122。相应地,电流采集结构120用于通过滤波单元121进行电流过滤,并经过采样单元122进行电流采样后,得到当前采样电流。
在一个示例中,电压采集结构110通过滤波单元121与采样单元122相连。此时,电压采集结构110采集到的供电电压先经过滤波单元121过滤,得到过滤后的电压;然后,采样单元122对过滤后的电压进行电流采样,得到当前采样电流。
在另一个示例中,电压采集结构110通过采样单元122与滤波单元121相连。此时,电压采集结构110采集到的供电电压先经过采样单元122进行电流采样,得到采样电流;然后,滤波单元121对采样电流进行滤波,得到当前采样电流。
示意性地,滤波单元121包括串联的电阻和电容。采样单元122包括模数转换器(Analog-to-Digital Converter,ADC)。
可选地,电压采集结构110采集的供电电压经过运放电路放大后输入电流采集结构120,这样,可以通过反馈网络调整供电电压。
控制结构130用于获取电流对应关系;在电流对应关系中确定当前采样电流对应的当前供电电流;基于目标功率和供电电压确定目标供电电 流;以及,将当前供电电流调节至目标供电电流。
根据上述结构可知,电流采集结构120将供电电压反应初的电压进行深度滤波后,得到当前采样电流与当前供电电压对应的当前供电电流存在一定关系,这种一定关系即为电流对应关系。换言之,电流对应关系用于表示不同采样电流与每个采样电流对应的供电电流之间的对应关系。电流对应关系预存在恒功率控制装置中。这样,基于电流对应关系可以确定出当前供电电流,而根据目标功率和当前供电电压可以确定出电子器件的目标供电电流,将当前供电电流调整至目标供电电流即可实现电子器件的恒功率输出。
示意性地,电流对应关系为线性对应关系。这样,可以保证每个当前采样电流可以确定出唯一对应的当前供电电流。
其中,目标功率为期望电子器件所能达到的恒定功率。可选地,目标功率预存在恒功率控制装置中。在电子器件包括至少两种工作档位的情况下,不同工作档位对应不同的目标功率,本实施例不对目标功率的设置方式作限定。
下面对该电子器件的恒功率控制方法进行介绍。下述实施例以该方法用于图1所示的恒功率控制装置中为例进行说明,在实际实现时,也可以用于与该恒功率控制装置通信相连的其它设备中,比如手机、计算机、可穿戴式设备、或者平板电脑等设备中,本实施例不对该恒功率控制方法的应用场景作限定。
图2是本申请一个实施例提供的电子器件的恒功率控制方法的流程图,该方法至少包括以下几个步骤:
步骤201,获取电流对应关系,电流对应关系用于表示不同采样电流与每个采样电流对应的供电电流之间的对应关系。
可选地,电流对应关系预存在恒功率控制装置中,或者由其它设备发送至恒功率控制装置。
示意性地,电流对应关系的获取方式包括:获取电子器件的当前供 电电流和该当前供电电流对应的当前采样电流;基于当前供电电流和当前采样电流构成的多组样本数据,生成电流对应关系。
具体地,基于多组样本数据生成电流对应关系的方式可以为:曲线拟合方式、或者使用预设线性模型生成,本实施例不对电流对应关系的生成方式作限定。
可选地,电流对应关系为线性对应关系,即将当前采样电流乘以某个系数再加上一个常数即可得到对应的当前供电电流。
步骤202,在电流对应关系中确定当前采样电流对应的当前供电电流。
其中,当前采样电流是电流采集结构采集到的,电流采集结构包括滤波单元和采样单元;电流采集结构用于通过滤波单元进行电流过滤,并经过采样单元进行电流采样后,得到当前采样电流。
步骤203,基于目标功率和供电电压确定目标供电电流。
其中,供电电压由电压采集结构采集,电压采集结构用于采集电子器件的供电电压。
具体地,目标功率除以供电电压即为目标供电电流。
可选地,步骤203可以在步骤201和202之后执行;或者,可以在步骤201和202之前执行;或者,还可以与步骤201和202同时执行,本实施例不对步骤203的执行时机作限定。
步骤204,将当前供电电流调节至目标供电电流。
示意性地,将当前供电电流调节至目标供电电流,包括:确定当前供电电流与目标供电电流之间的误差值;基于该误差值使用比例、积分和微分(Proportion Integral Differential,PID)控制算法,将当前供电电流调节至目标供电电流。
可选地,恒功率控制装置每隔预设时间阈值调节一次供电电流。此时,将当前供电电流调节至目标供电电流,包括:确定当前时间与上次电流调节结束时间之间的时间间隔是否大于预设时间阈值;在时间间隔大于或等于预设时间阈值的情况下,将当前供电电流调节至目标供电电 流;在时间间隔小于预设时间阈值的情况下,触发执行在电流对应关系中确定当前采样电流对应的当前供电电流;基于目标功率和供电电压确定目标供电电流;确定当前时间与上次电流调节结束时间之间的时间间隔是否大于预设时间阈值的步骤。
综上所述,本实施例提供的电子器件的恒功率控制方法,通过获取电流对应关系,电流对应关系用于表示不同采样电流与每个采样电流对应的供电电流之间的对应关系;在电流对应关系中确定当前采样电流对应的当前供电电流;基于目标功率和供电电压确定目标供电电流;将当前供电电流调节至目标供电电流;可以解决无法实现对电子器件的恒功率控制的问题;由于可以基于电流对应关系可以确定出当前供电电流,而根据目标功率和当前供电电压可以确定出电子器件的目标供电电流,将当前供电电流调整至目标供电电流即可实现电子器件的恒功率输出。
另外,传统的电机的恒功率控制方式中,通过对电机的DQ轴的电压进行计算来调节功率。但是,在电机负载变化时,会发生功率偏移,依然无法做到真正的恒功率。基于此,本实施例中,通过对电流采集结构采集的供电电压进行深度滤波得到当前采样电流,该当前采样电流不随电机的负载的影响,因此,可以保证持续不同负载状态下的功率值,达到不同负载状态下的恒功率控制。
为了更清楚地理解本申请提供的电子器件的恒功率控制方法,下面对该方法举一个实例进行说明,参考图3,该方法至少包括以下几个步骤:
步骤31,基于目标功率和供电电压确定目标供电电流;
步骤32,在电流对应关系中确定当前采样电流对应的当前供电电流;
步骤33,确定是否到达电流调节时间;若是,则执行步骤34;若否,则再次执行步骤31;
步骤34,确定目标供电电流与当前供电电流之间的误差值;
步骤35,将误差值使用PID算法调节得到调节占空比;
步骤36,按照调节占空比调节当前供电电流,再次执行步骤31,直 至电子器件停止工作。
根据上述过程可知,当前采样电流不随电机的负载的影响,可以保证持续不同负载状态下的功率值,达到不同负载状态下的恒功率控制。
图4是本申请一个实施例提供的电子器件的恒功率控制装置的框图。该装置至少包括以下几个模块:关系获取模块410、第一确定模块420、第二确定模块430和电流调节模块440。
关系获取模块410,用于获取电流对应关系,所述电流对应关系用于表示不同采样电流与每个采样电流对应的供电电流之间的对应关系;
第一确定模块420,用于在所述电流对应关系中确定所述当前采样电流对应的当前供电电流;所述当前采样电流是电流采集结构采集到的,所述电流采集结构包括滤波单元和采样单元;所述电流采集结构用于通过滤波单元进行电流过滤,并经过所述采样单元进行电流采样后,得到所述当前采样电流;
第二确定模块430,用于基于目标功率和供电电压确定目标供电电流,所述供电电压由电压采集结构采集,所述电压采集结构用于采集所述电子器件的供电电压;
电流调节模块440,用于将所述当前供电电流调节至所述目标供电电流。
相关细节参考上述实施例。
需要说明的是:上述实施例中提供的电子器件的恒功率控制装置在进行电子器件的恒功率控制时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将电子器件的恒功率控制装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的电子器件的恒功率控制装置与电子器件的恒功率控制方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图5是本申请一个实施例提供的电子设备的框图。该电子设备可以是图1所述的恒功率控制装置,该设备至少包括处理器501和存储器502。
处理器501可以包括一个或多个处理核心,比如:5核心处理器、8核心处理器等。处理器501可以采用DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、PLA(Programmable Logic Array,可编程逻辑阵列)中的至少一种硬件形式来实现。处理器501也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称CPU(Central Processing Unit,中央处理器);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器501可以在集成有GPU(Graphics Processing Unit,图像处理器),GPU用于负责显示屏所需要显示的内容的渲染和绘制。一些实施例中,处理器501还可以包括AI(Artificial Intelligence,人工智能)处理器,该AI处理器用于处理有关机器学习的计算操作。
存储器502可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器502还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。在一些实施例中,存储器502中的非暂态的计算机可读存储介质用于存储至少一个指令,该至少一个指令用于被处理器501所执行以实现本申请中方法实施例提供的电子器件的恒功率控制方法。
在一些实施例中,外参标定设备还可选包括有:外围设备接口和至少一个外围设备。处理器501、存储器502和外围设备接口之间可以通过总线或信号线相连。各个外围设备可以通过总线、信号线或电路板与外围设备接口相连。示意性地,外围设备包括但不限于:射频电路、触摸显示屏、音频电路、和电源等。
当然,外参标定设备还可以包括更少或更多的组件,本实施例对此不作限定。
可选地,本申请还提供有一种计算机可读存储介质,所述计算机可 读存储介质中存储有程序,所述程序由处理器加载并执行以实现上述方法实施例的电子器件的恒功率控制方法。
可选地,本申请还提供有一种计算机产品,该计算机产品包括计算机可读存储介质,所述计算机可读存储介质中存储有程序,所述程序由处理器加载并执行以实现上述方法实施例的电子器件的恒功率控制方法。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
显然,上述所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下,可以做出其它不同形式的变化或变动,都应当属于本申请保护的范围。

Claims (10)

  1. 一种电子器件的恒功率控制装置,其特征在于,所述恒功率控制装置包括:
    电压采集结构,用于采集所述电子器件的供电电压;
    与所述电压采集结构相连的电流采集结构,包括滤波单元和采样单元;所述电流采集结构用于通过滤波单元进行电流过滤,并经过所述采样单元进行电流采样后,得到当前采样电流;以及
    控制结构,与所述电流采集模块和所述电压采集结构相连,用于获取电流对应关系,所述电流对应关系用于表示不同采样电流与每个采样电流对应的供电电流之间的对应关系;在所述电流对应关系中确定所述当前采样电流对应的当前供电电流;基于目标功率和所述供电电压确定目标供电电流;以及,将所述当前供电电流调节至所述目标供电电流。
  2. 根据权利要求1所述的恒功率控制装置,其特征在于,
    所述电压采集结构通过所述滤波单元与所述采样单元相连;
    或者,
    所述电压采集结构通过所述采样单元与所述滤波单元相连。
  3. 根据权利要求1所述的恒功率控制装置,其特征在于,所述滤波单元包括串联的电阻和电容。
  4. 根据权利要求1所述的恒功率控制装置,其特征在于,所述电压采集结构包括采样电阻,所述采样电阻的电压值为所述供电电压。
  5. 根据权利要求1所述的恒功率控制装置,其特征在于,所述电流对应关系为线性对应关系。
  6. 一种电子器件的恒功率控制方法,其特征在于,所述方法包括:
    获取电流对应关系,所述电流对应关系用于表示不同采样电流与每个采样电流对应的供电电流之间的对应关系;
    在所述电流对应关系中确定所述当前采样电流对应的当前供电电流;所述当前采样电流是电流采集结构采集到的,所述电流采集结构包括滤波单元和采样单元;所述电流采集结构用于通过滤波单元进行电流过滤,并经过所述采样单元进行电流采样后,得到所述当前采样电流;
    基于目标功率和供电电压确定目标供电电流,所述供电电压由电压采集结构采集,所述电压采集结构用于采集所述电子器件的供电电压;
    将所述当前供电电流调节至所述目标供电电流。
  7. 根据权利要求6所述的恒功率控制方法,其特征在于,所述将所述当前供电电流调节至所述目标供电电流,包括:
    确定所述当前供电电流与所述目标供电电流之间的误差值;
    基于所述误差值使用PID控制算法,将所述当前供电电流调节至所述目标供电电流。
  8. 根据权利要求6所述的恒功率控制方法,其特征在于,所述将所述当前供电电流调节至所述目标供电电流,包括:
    确定当前时间与上次电流调节结束时间之间的时间间隔是否大于预设时间阈值;
    在时间间隔大于或等于预设时间阈值的情况下,将所述当前供电电流调节至所述目标供电电流;
    在时间间隔小于预设时间阈值的情况下,触发执行所述在所述电流对应关系中确定所述当前采样电流对应的当前供电电流;基于目标功率和供电电压确定目标供电电流;确定当前时间与上次电流调节结束时间之间的时间间隔是否大于预设时间阈值的步骤。
  9. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有程序,所述程序被处理器执行时用于实现如权利要求6至8任一所述的电子器件的恒功率控制方法。
  10. 一种电子设备,其特征在于,所述电子设备包括处理器和与所述处理器相连的存储器,所述存储器中存储有程序,所述处理器执行所述程序时用于实现如权利要求6至8任一所述的电子器件的恒功率控制方法。
PCT/CN2023/075826 2022-03-25 2023-02-14 电子器件的恒功率控制装置、方法、设备及存储介质 WO2023179242A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210299612.XA CN116841343A (zh) 2022-03-25 2022-03-25 电子器件的恒功率控制装置、方法、设备及存储介质
CN202210299612.X 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023179242A1 true WO2023179242A1 (zh) 2023-09-28

Family

ID=88099827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075826 WO2023179242A1 (zh) 2022-03-25 2023-02-14 电子器件的恒功率控制装置、方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN116841343A (zh)
WO (1) WO2023179242A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080290847A1 (en) * 2007-05-25 2008-11-27 Peter Mahrla Method and apparatus for controlling a supply current for a circuit or a plurality of circuit blocks
US20160363981A1 (en) * 2015-06-10 2016-12-15 Denso Corporation Electronic control apparatus
CN106410886A (zh) * 2016-06-29 2017-02-15 无锡中感微电子股份有限公司 一种电源提供电路、被供电设备和电源管理系统
CN108964641A (zh) * 2018-06-27 2018-12-07 珠海格力电器股份有限公司 一种电机恒功率控制方法、系统、存储介质及吸尘器
CN109655763A (zh) * 2018-12-07 2019-04-19 武汉精能电子技术有限公司 恒压模式直流电子负载的控制方法和电路
CN109842182A (zh) * 2019-01-08 2019-06-04 上海瞻芯电子科技有限公司 供电系统
CN111313679A (zh) * 2020-03-02 2020-06-19 上海瞻芯电子科技有限公司 供电系统及充电设备
CN111934395A (zh) * 2020-09-15 2020-11-13 深圳英集芯科技有限公司 切换控制电路、充电芯片及电子装置
CN212649103U (zh) * 2020-05-29 2021-03-02 合肥联宝信息技术有限公司 一种多电源供电装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080290847A1 (en) * 2007-05-25 2008-11-27 Peter Mahrla Method and apparatus for controlling a supply current for a circuit or a plurality of circuit blocks
US20160363981A1 (en) * 2015-06-10 2016-12-15 Denso Corporation Electronic control apparatus
CN106410886A (zh) * 2016-06-29 2017-02-15 无锡中感微电子股份有限公司 一种电源提供电路、被供电设备和电源管理系统
CN108964641A (zh) * 2018-06-27 2018-12-07 珠海格力电器股份有限公司 一种电机恒功率控制方法、系统、存储介质及吸尘器
CN109655763A (zh) * 2018-12-07 2019-04-19 武汉精能电子技术有限公司 恒压模式直流电子负载的控制方法和电路
CN109842182A (zh) * 2019-01-08 2019-06-04 上海瞻芯电子科技有限公司 供电系统
CN111313679A (zh) * 2020-03-02 2020-06-19 上海瞻芯电子科技有限公司 供电系统及充电设备
CN212649103U (zh) * 2020-05-29 2021-03-02 合肥联宝信息技术有限公司 一种多电源供电装置
CN111934395A (zh) * 2020-09-15 2020-11-13 深圳英集芯科技有限公司 切换控制电路、充电芯片及电子装置
CN114189002A (zh) * 2020-09-15 2022-03-15 深圳英集芯科技股份有限公司 一种切换控制电路、充电芯片及电子装置和相关方法

Also Published As

Publication number Publication date
CN116841343A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
CN112540304B (zh) 电池电量管理方法、电子设备及计算机存储介质
TW201644143A (zh) 對於多電池裝置的負載分配
CN103901352B (zh) 显示移动终端电池剩余电量的方法及装置
US20160091960A1 (en) Control systems for reducing current transients
CN114661407B (zh) 一种界面配置的方法、bms和存储介质
WO2023179242A1 (zh) 电子器件的恒功率控制装置、方法、设备及存储介质
CN112769201A (zh) 充电方法、充电装置、电子设备和可读存储介质
CN108181590A (zh) 一种电池电量显示电路及其方法、芯片、遥控器及空调
US20180080992A1 (en) Determination of a battery-model parameter
CN112014749A (zh) 电池显示电量的确定方法、装置、芯片及存储介质
CN105490270A (zh) 智能配电系统的监控界面生成方法、装置
CN105573458B (zh) 一种信息处理方法及电子设备
CN113612272A (zh) 针对新能源发电系统的不间断电源的充电控制方法及装置
WO2021185262A1 (zh) 计算装置、方法、板卡和计算机可读存储介质
CN111064174A (zh) 电压适配方法、装置及存储介质
CN111523653B (zh) 运算装置及方法
CN110061663B (zh) 一种电机的电流限制方法、系统及终端设备
CN203954469U (zh) 一种心脏起搏器集成电路
WO2023197456A1 (zh) 一种调节功耗的系统、方法、装置、设备及介质
CN113452066B (zh) 柔性互联装置控制策略的优化方法
CN115347650A (zh) 基于检测设备电压调整的供电方法、装置、设备及介质
CN104377975A (zh) 一种基于模型预测控制的三相逆变器装置
US10847975B2 (en) Conservation voltage reduction system and methods using constant impedance load and constant power load technique
CN113448718A (zh) 用于对芯片进行调频的方法、设备及计算机可读存储介质
CN114461003B (zh) 输出功率调整方法、装置和插座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773493

Country of ref document: EP

Kind code of ref document: A1