WO2023179204A1 - 电极组件、电池单体、电池、用电装置 - Google Patents

电极组件、电池单体、电池、用电装置 Download PDF

Info

Publication number
WO2023179204A1
WO2023179204A1 PCT/CN2023/073970 CN2023073970W WO2023179204A1 WO 2023179204 A1 WO2023179204 A1 WO 2023179204A1 CN 2023073970 W CN2023073970 W CN 2023073970W WO 2023179204 A1 WO2023179204 A1 WO 2023179204A1
Authority
WO
WIPO (PCT)
Prior art keywords
tab
pole
battery
electrode assembly
battery cell
Prior art date
Application number
PCT/CN2023/073970
Other languages
English (en)
French (fr)
Inventor
魏楷宁
王巧阁
陈文伟
李晓伟
宋爱利
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023179204A1 publication Critical patent/WO2023179204A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of batteries, and in particular to an electrode assembly, a battery cell, a battery, and an electrical device.
  • the electrode assembly of the battery includes a body and tabs connected to the body.
  • the body is usually a laminated electrochemical structure, with tabs corresponding to the positive and negative electrodes respectively serving as contact points during charging and discharging.
  • the pole lug has structural reliability issues.
  • the purpose of this application is to provide an electrode assembly, a battery cell, a battery, and an electrical device to improve the structural reliability and service life of the tab, so as to improve the battery cells, batteries, and their use. reliability and service life of electrical devices.
  • the present application provides an electrode assembly, including at least one body for forming a stacked electrochemical structure; and tabs extending outward from edges of each body, each of the The pole tabs of the body with the same polarity include a first pole tab and a second pole tab. The positions of the first pole tab and the second pole tab are respectively located on both sides of the center line in the thickness direction of the body.
  • the tabs with the same polarity are arranged as the first tab and the second tab on both sides in the thickness direction, so that on the premise of ensuring the battery capacity performance, the number of tabs in the battery is reduced.
  • the risk of fracture caused by extrusion in the structure improves the structural reliability and service life of the tabs to improve the reliability and service life of the battery cells, batteries and electrical devices.
  • the risk of fracture due to extrusion can also reduce the requirements for manufacturing accuracy and assembly accuracy in the battery manufacturing process, reducing manufacturing costs.
  • the number of layers of the first pole is n
  • the number of layers of the second pole is m, where n is not equal to m, so that the first pole and the second pole of the same polarity The ears are spaced on either side of the center line.
  • the minimum distance between the second tab and the centerline is greater than the minimum distance between the first tab and the centerline, so that the Overflow is more uniform.
  • m is smaller than n, which can minimize changes to the existing tab structure and make the manufacturing process of the electrode assembly simpler.
  • the tabs with opposite polarities are arranged symmetrically along the width direction of the body, which makes the electrode assembly easy to process and assemble.
  • the extension length of the second tab extending from the top of the body satisfies:
  • a is the extension length of the second tab from the top of the body
  • D is the thickness of the body
  • H is the length from the top of the body to the first tab and the second tab.
  • the length of the second pole in this range can not only avoid tearing in a vibration environment due to insufficient space for the pole to move due to too short length, but also avoid high economic costs and extra trouble due to excessive length.
  • the parts are prone to redundant tabs, which can cause short circuits when inserted inside the tabs.
  • first and second tabs are aligned in the width direction of the body, and the widths of the first and second tabs satisfy:
  • b is the width of the first pole and the second pole; B is the width of the body. This can facilitate subsequent assembly of the electrode assembly.
  • the present application provides a battery cell, including a top cover and at least one electrode assembly as described in the first aspect; wherein the body passes through a first pole piece, a second pole piece and is located on the first pole piece.
  • the separator between the pole piece and the second pole piece is rolled together.
  • the battery cell formed by winding has a high battery capacity, is easy to mass-produce, and has low cost.
  • the top cover has a step structure in the height direction.
  • the step structure includes a platform part and a step part. This can make the top cover occupy less space, thereby improving the structural compactness of the battery cell and improving the efficiency of the battery cell. Battery energy density.
  • the number of layers forming the first tab and the number of layers forming the second tab satisfy:
  • 0.2mm ⁇ C ⁇ 2/3h so that the gap is within a more appropriate range, which not only ensures sufficient space between the tab and the top cover, prevents the tab from being squeezed by the top cover, and also prevents the tab from being squeezed by the top cover.
  • the compact structure of the battery cell is ensured.
  • a support member is provided between the second tab and the top of the body to support the third The second pole lug is used to prevent the second pole lug from collapsing after it is formed.
  • the support member is cylindrical, so that it is easy to install between the second tab and the top of the electrode, and has a better supporting effect on the second tab.
  • the present application provides a battery, including the battery cell as described in the second aspect.
  • the present application provides an electrical device, which includes the battery as described in the third aspect.
  • Figure 1 is a schematic structural diagram of an electrical device according to some embodiments of the present application.
  • Figure 2 is a schematic diagram of the exploded structure of a battery according to some embodiments of the present application.
  • Figure 3 is a schematic diagram of the exploded structure of a battery cell according to some embodiments of the present application.
  • Figure 4 is a schematic diagram of the assembly structure of battery cells according to some embodiments of the present application.
  • Figure 5 is a schematic cross-sectional structural diagram of a battery cell along the X-Z direction in some embodiments of the present application.
  • Figure 6 is a schematic cross-sectional structural diagram of a battery cell along the Y-Z direction according to some embodiments of the present application.
  • Figure 7 is a partial enlarged structural view of Figure 6.
  • 8A to 8D are schematic structural diagrams of electrode assemblies according to some embodiments of the present application.
  • Figure 9 is a schematic diagram of the winding structure of the battery assembly according to some embodiments of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • the electrode assembly of the battery includes a body and tabs connected to the body.
  • the body is usually a laminated electrochemical structure, with tabs corresponding to the positive and negative electrodes respectively serving as contact points during charging and discharging.
  • the pole lug has structural reliability issues.
  • the inventor designed an electrode assembly after in-depth research.
  • the invention ensures Under the premise of battery capacity and performance, some layers of the tabs originally arranged on one side in the thickness direction are transferred to the other side of the center line, so that the overall height of the bent tabs is reduced, thereby adapting to the limited space in the height direction.
  • Conditions reduce the risk of the tabs being squeezed and broken in the battery structure, improve the structural reliability and service life of the tabs, and improve the reliability and service life of the battery cells, batteries and electrical devices.
  • due to the reduction This eliminates the risk of the tabs being squeezed in the battery structure and causing breakage. It also reduces the requirements for manufacturing accuracy and assembly accuracy during the battery manufacturing process and reduces manufacturing costs.
  • the electrode assemblies and battery cells disclosed in the embodiments of the present application can be used in, but are not limited to, batteries and electrical equipment containing batteries.
  • the electrical equipment can be, but is not limited to, mobile phones, tablets, laptops, electric toys, electric tools, and battery cars. , electric vehicles, trains, ships, spacecraft, etc.
  • electric vehicles can include pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf carts, electric trucks, etc.
  • Electric toys can include fixed or mobile electric vehicles. Toys, for example, game consoles, electric car toys, electric ship toys, electric airplane toys, etc., and spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • Electrical devices can also be energy storage systems, such as large commercial energy storage, microgrid energy storage, base station products, household uninterruptible power supply energy storage, etc.
  • the following embodiments take the electrical device as a vehicle as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the battery 100 is disposed inside the vehicle I.
  • the battery 100 can be disposed at the bottom, head or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of the battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a case 10 and battery cells 20 , and the battery cells 20 are accommodated in the case 10 .
  • the box 10 is used to provide an accommodation space for the battery cells 20, and the box 10 can adopt a variety of structures.
  • the box 10 may include a first part 11 and a second part 12 , the first part 11 and the second part 12 cover each other, and the first part 11 and the second part 12 jointly define a space for accommodating the battery cells 20 of accommodation space.
  • the second part 12 may be a hollow structure with one end open, and the first part 12 may be a hollow structure with one end open.
  • the first part 11 can be a plate-like structure, and the first part 11 covers the opening side of the second part 12, so that the first part 11 and the second part 12 jointly define a receiving space; the first part 11 and the second part 12 can also be both It is a hollow structure with one side open, and the open side of the first part 11 is covered with the open side of the second part 12 .
  • the box 10 formed by the first part 11 and the second part 12 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the battery 100 there may be a plurality of battery cells 20, and the plurality of battery cells 20 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the box 10 ; of course, the battery 100 can also be a plurality of battery cells 20 First, the battery modules are connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 10 .
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component for realizing electrical connections between multiple battery cells 20 .
  • Each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes.
  • FIG. 3 is an exploded structural diagram of a battery cell 20 provided in some embodiments of the present application.
  • the battery cell 20 refers to the smallest unit that constitutes the battery.
  • the battery cell 20 may include a top cover 21 , a case 22 , an electrode assembly 23 , a connector 24 and other functional components.
  • the top cover 21 refers to a component that covers the opening of the case 22 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the top cover 21 can be adapted to the shape of the housing 22 to fit the housing 22 .
  • the top cover 21 can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the top cover 21 is less likely to deform when subjected to extrusion and collision, so that the battery cell 20 can have higher durability. Structural strength and safety performance can also be improved.
  • the top cover 21 may be provided with functional components such as pole posts 21a. The pole 21a can be used to electrically connect with the electrode assembly 23 for outputting or inputting electrical energy of the battery cell 20 .
  • the top cover 21 may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the top cover 21 can also be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiment of the present application.
  • an insulating member may also be provided inside the top cover 21 , and the insulating member may be used to isolate the electrical connection components in the housing 22 from the top cover 21 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber, etc.
  • the case 22 is a component used to cooperate with the top cover 21 to form an internal environment of the battery cell 20 , wherein the formed internal environment can be used to accommodate the electrode assembly 23 , electrolyte, and other components.
  • the housing 22 and the top cover 21 may be independent components, and an opening may be provided on the housing 22.
  • the top cover 21 covers the opening at the opening to form an internal environment of the battery cell 20.
  • the top cover 21 and the housing 22 can also be integrated. Specifically, the top cover 21 and the housing 22 can form a common connection surface before other components are put into the housing. When it is necessary to encapsulate the inside of the housing 22 When, the top cover 21 covers the housing 22 again.
  • the housing 22 can be of various shapes and sizes, such as rectangular parallelepiped, cylinder, hexagonal prism. wait. Specifically, the shape of the housing 22 can be determined according to the specific shape and size of the electrode assembly 23 .
  • the housing 22 may be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiments of the present application.
  • the electrode assembly 23 is a component in the battery cell 100 where electrochemical reactions occur.
  • One or more electrode assemblies 23 may be contained within the housing 22 .
  • the electrode assembly 23 is mainly formed by winding or stacking positive electrode sheets and negative electrode sheets, and a separator is usually provided between the positive electrode sheets and the negative electrode sheets.
  • the parts of the positive electrode sheet and the negative electrode sheet containing active material constitute the body 231 of the electrode assembly, and the parts of the positive electrode sheet and the negative electrode sheet without active material respectively constitute the tabs 23a, which can be realized by a die-cutting process.
  • the tab 23a generally includes a positive tab 23a1 and a negative tab 23a2. During the charging and discharging process of the battery, the positive active material and the negative active material react with the electrolyte.
  • the connector 24 electrically connects the tab 23a to the pole 21a, and the tab connects the pole 21a to form a current loop.
  • the present application provides an electrode assembly 23, including at least one body 231 and tabs 23a.
  • the body 231 is used to form a stacked electrochemical structure.
  • the tabs 23a extend outward from the edge of each body 231.
  • the tabs 23a of each body 231 with the same polarity include a first tab 2321 and a second tab 2322.
  • the first tab 2321 and the second tab 2322 are respectively located on both sides of the centerline A1 in the thickness direction of the body 231.
  • Electrochemical structure refers to the structure of components where electrochemical reactions occur, while “lamination” refers to the structure being a stack of components layer by layer. “Lamination” here is a concept of structure, not The process concept does not limit the manufacturing process to be laminated.
  • the electrode assembly 23 is mainly formed by winding or stacking positive electrode sheets and negative electrode sheets. That is, the "laminated” structure can be formed by winding or stacking. Craft formation.
  • the positive electrode sheet and the negative electrode sheet have active material portions, and the separator forms the body 231 of the electrode assembly.
  • At least one body 231 means that an electrode assembly 231 may include one or more bodies 231.
  • the electrode assembly 231 has two bodies 2301 and 2302 facing each other in the thickness direction.
  • the second tabs 2322 of the bodies 2301 and 2302 are adjacently connected in the Y direction, but are not limited to this.
  • the number of the bodies 231 can be one, three or even more.
  • the thickness direction for example, as shown in Figure 3, the thickness direction is the Y direction.
  • the height direction and the width direction will also be described in the following content.
  • the height direction is the Z direction and the width direction is the X direction.
  • the tabs 23a extend outward from the edge of the body 231, for example, from the edge of the body 231 in the height direction.
  • the specific extension form for example, as described above, can be integrally extended.
  • the positive electrode piece and the negative electrode piece are not
  • the parts with active material each constitute the tab 23a, which can be realized through a die-cutting process.
  • the body 231 has a stacked structure, and the corresponding tab 23 a can also have a stacked structure.
  • the poles with the same polarity that is, the positive pole 23a1 includes the first pole 2321 and the second pole 2322, and the negative pole
  • the tab 23a2 includes a first tab 2321 and a second tab 2322.
  • the thickness direction centerline A1 of the body 231 can bisect the size of the body 231 in the Y direction.
  • the first pole tab 2321 and the second pole tab 2322 are respectively located in the positive and negative directions of the center line A1 in the Y direction.
  • One side of the direction is respectively located on the Y1 direction side and Y2 direction side.
  • the original tabs 23a1 and 23a2 are arranged on the center line A1 in the thickness direction. Some layers of the tabs on one side are transferred to the other side of the center line A1, so that the overall height of the bent tabs 23a is reduced, thereby adapting to the condition of limited space in the height direction and reducing the height of the tabs 23a in the battery cell 20.
  • the risk of fracture caused by extrusion in the structure improves the structural reliability and service life of the tab 23a to improve the reliability and service life of the battery cell 20, the battery 100 and the electrical device.
  • the risk of 23a being squeezed and broken in the structure of the battery cell 20 can also reduce the requirements for manufacturing accuracy and assembly accuracy in the battery manufacturing process and reduce manufacturing costs.
  • the number of layers of the first tab 2321 is n
  • the number of layers of the second tab 2322 is m, where n is not equal to m.
  • one pole tab is die-cut when the pole piece is rolled one week; for a general lamination structure, one pole tab is die-cut after one layer of pole pieces is stacked; of course, one pole tab is die-cut for each week or layer.
  • the number of pole tabs can be adjusted according to the situation.
  • the meaning of the number of layers here is that the number of pole tab layers is related to the number of stacked pole piece layers.
  • the number of pole tab layers can be The portions of the stacked positive electrode sheets and negative electrode sheets that form the electrode assembly 23 without active material constitute the layers of the first tab 2321 and the second tab 2322 respectively.
  • the specific number of layers of n and m is not limited to the specific number of layers shown in Figure 8A.
  • the beneficial effect of adopting the above embodiment is that the first tab 2321 and the second tab 2322 of the positive tab 23a1 and the negative tab 23a2 are spaced on both sides of the center line A1, and the first tab 2321 can be further reduced.
  • the second tab 2322 is connected to form the height of the tab 23a behind the tab 23a, further reducing the risk of interference between the tab 23a and the top cover 21.
  • the minimum distance between the second tab 2322 and the center line A1 is greater than the minimum distance between the first tab 2321 and the center line A1 .
  • the second tab 2322 is closer to the edge of the body 231 in the thickness direction than the first tab 2321 .
  • the second tab 2322 is the layer closest to the edge in the thickness direction of the body 231 and is also the outermost layer of the body 231 in the thickness direction.
  • the beneficial effect of adopting the above embodiment is that it can ensure that the pole piece layer close to the edge has corresponding tabs, making the overcurrent of the tabs more uniform and further ensuring the performance of the battery cells and batteries.
  • the number of layers of the first tab 2321 is n
  • the number of layers of the second tab 2322 is m
  • m is less than n
  • the effect of adopting the above embodiment is that the manufacturing process of the electrode assembly can be simplified.
  • the principle is that for the existing tab structure, the structure can be considered to have only tabs located on one side of the center line A1.
  • the number of layers is m+n.
  • the use of the tab structure of the above embodiment essentially means that the existing tab structure is located on the side of the center line A1 and has a number of m+n layers, and transfers the m-layer tab to the center line A1.
  • the other side forms the second tab 2322, while the n-layer tab is retained to form the first tab 2321. Therefore, if m is smaller than n, the number of layers of the first tab 2321 can be changed as little as possible based on the existing manufacturing process, making the manufacturing process of the electrode assembly simpler.
  • pole tabs 23a1 and 23a2 with opposite polarities are arranged symmetrically along the width direction of the body 231.
  • the width direction is, for example, the X direction shown in the figure. That is, the positions of the positive electrode tab 23a1 and the negative electrode tab 23a2 in the X direction of the body 231 are symmetrical with respect to the center line A2 of the body 231 in the X direction.
  • the beneficial effect of adopting the above embodiment is that the positive electrode tab 23a1 and the negative electrode tab 23a2 can be easily processed and formed, and can be easily matched with the structure of the connector 24, the top cover 21 and the pole 21a of the battery cell 20, so that the battery cell can be easily formed.
  • the overall structure of the body 20 is symmetrical.
  • the extension length of the second tab 2322 extending from the top of the body 231 satisfies:
  • a is the extension length of the second tab 2322 from the top of the body 231
  • D is the thickness of the body 231
  • H is the height from the top of the body 231 to the point where the first tab 2321 and the second tab 2322 intersect.
  • the meaning of "the point where the first tab 2321 and the second tab 2322 intersect” here is the intersection position 233 of the first tab 2321 and the second tab 2322 after forming.
  • the formed electrode assembly 23, refer to Figure 6. What is shown in Figure 7 is different from the pre-molding electrode assembly 23 shown in Figures 8B to 8D.
  • the first tab 2321 and the second tab 2322 are both vertical in the height direction.
  • the formed electrode assembly The first tab 2321 and the second tab 2322 of 23 are bent.
  • the specific process can be obtained through an ultrasonic welding process.
  • the structure of the formed pole tab 23a is shown in Figures 6 and 7.
  • the first pole tab 2321 includes a body connecting portion 23211 connected to the body 231, an extension portion 23212 connected to the connector 24, and a body connecting portion 23211 and
  • the bending portion 23213 between the extension portions 23212 extends along the thickness direction, that is, the Y direction.
  • the bending portion 23213 is bent relative to the extension portion 23212, and the second tab 2322 is obliquely connected to the first tab 2321.
  • the intersection position 233 is the point where the first pole 2321 and the second pole 2322 intersect.
  • the first tab 2321 and the second tab 2322 are aligned in the width direction of the body 231, and the widths of the first tab 2321 and the second tab 2322 satisfy:
  • b is the width of the first tab 2321 and the second tab 2322; B is the width of the body 2322.
  • the first tab 2321 and the second tab 2322 have the same size in the X direction and are aligned. In this way, the width size of the pole lug is easily adapted to the connector 24 and the top cover 21 , so that the electrode assembly 23 is easy to assemble in the battery cell 20 .
  • the present application also provides a battery cell, including at least one of the above-described electrode components 23 and a top cover 21.
  • the body 231 of the electrode component 23 passes through the first pole piece 2311 and the second pole piece 2312. And the separator 2313 located between the first pole piece and the second pole piece is rolled together.
  • the first pole piece 2311 and the second pole piece 2312 may be positive pole pieces and negative pole pieces respectively.
  • the structure of the body 231 formed by winding may be that the body 231 has a winding starting layer 2310 located at At the winding starting end of the innermost pole piece, the first pole piece 2311, the second pole piece 2312 and the diaphragm 2313 are stacked and wound.
  • the first pole piece 2311 extends without The active material is partially stacked to form the positive electrode tab 23a1
  • the portion of the second pole piece 2312 that does not contain active material is stacked to form the negative electrode tab 23a2
  • each positive electrode tab 23a1 and each negative electrode tab 23a2 include a first tab. 2321 and the second tab 2322.
  • the positions of the first tab 2321 and the second tab 2322 are respectively located on both sides of the center line A1 of the body 231 in the Y direction.
  • the top cover 21 and the connector 24 electrically connect the tab 23a to the pole 21a, and the tab connects the pole 21a to form a current loop.
  • Top cover 21 refers to a cover structure, which is generally located on the top of the battery cell 20, but does not mean that it is located at the top of the battery cell 20 in the Z direction under any conditions.
  • the battery structure can use a module with a flat structure.
  • the battery cells 20 are placed flat, that is, compared to the vertical structure of Figure 3, the position of the "top cover 21" is no longer as shown in the figure.
  • the top end shown in 3 is located in the Z direction, but is located at the end in the Y direction or the X direction.
  • the beneficial effects of using the above embodiments are that the battery cells formed by winding have a higher battery capacity, are easy to mass-produce, and are low-cost.
  • the top cover 21 has a step structure 210 in the height direction, and the step structure 210 includes a platform portion 2101 and a step portion 2102.
  • the top cover 21 has a step structure 210 in the Z direction.
  • the meaning of the step structure is similar to the usual meaning in this field, that is, a structure with a step height difference.
  • the step structure 210 includes a platform portion. 2101 and level The step portion 2102 extends in the height direction from the connection position 2103 with the platform portion 2101 .
  • the top cover 21 has two step structures 210 symmetrically arranged in the Y direction, forming a top cover 21 with a "J"-shaped structure.
  • the beneficial effect of adopting the above embodiment is that the top cover 21 has a compact structure, which is beneficial to improving the energy density, is easy to assemble, and has a better ability to withstand external forces.
  • the number of layers forming the first tab 2321 and the number of layers forming the second tab 2322 satisfy:
  • x is the sum of the number of layers forming the first tab 2321 and the second tab 2322.
  • x is equal to 2 *(n+m);
  • y is the number of layers forming the second tab 2322, y is equal to 2*m, where 1 ⁇ m ⁇ n; refer to Figures 6 and 7, h is the top to bottom of the body 231
  • the height of the connection position 2103 between the platform portion 2101 and the step portion 2302; d is the thickness of the tab, that is, the thickness of each layer of base material stacked to form the first tab 2321 and the second tab 2322;
  • C is the first tab 2321
  • the gap in the height direction that is, the Z direction, to the connection position 2103 of the platform portion 2101 and the step portion 2102, C>0 mm.
  • the gap C between the first tab 2321 in the height direction, that is, the Z direction, and the connection position 2103 between the platform portion 2101 and the step portion 2102 satisfies 0.2mm ⁇ C ⁇ 2/3h.
  • the beneficial effect of using the numerical range of the above embodiment is to ensure that there is sufficient processing error and assembly error margin, so that the top cover 21 is easy to process and the battery cell 20 is easy to assemble, and it also ensures that the gap is not too large, thereby Occupying too much height space may affect the compactness of the structure, thereby affecting the overall energy density of the battery cell.
  • a support 234 is provided between the second tab 2322 and the top of the body 231 to support the second tab 2322.
  • the support member 234 is located in the space between the second tab 2322 and the body 231 in the Z direction.
  • the bottom of the support member 234 is supported by the top of the body 231 .
  • the top provides support for the second tab 2322.
  • the material of the support member 234 is an insulating material, which may be polypropylene plastic (Polypropylene, PP), polyethylene glycol terephthalate (PET), or a ceramic coating on the outer surface of the support member. wait.
  • the beneficial effect of adopting the above embodiment is that by providing the support member 234 , even if the first pole tab 2321 droops and bends under the action of gravity, or is bent due to external vibration and impact, the second pole tab 2322 will then bend downward. In the event of collapse, the support member 234 will also be supported to prevent contact with the first pole piece 2311 and the second pole piece 2312 , thereby preventing short circuit within the electrode assembly 23 .
  • the support member 234 is cylindrical.
  • the cylindrical shape here includes hollow cylinders and solid cylinder structures.
  • the structure of the second pole tab 2322 can fit with the arc surface of the cylindrical support member 234 and be supported smoothly.
  • the stress concentration that may be caused by the support member 234 itself can be reduced, thereby further improving the reliability of the second tab 2322.
  • the present application also provides a battery 100, including the battery cell 20 introduced above.
  • the present application also provides an electrical device, including the battery 100 introduced above.
  • the electrical device can be any of the aforementioned devices or systems that apply the battery 100 .
  • the present application provides a battery cell 20 including an electrode assembly 23 and a top cover 21 .
  • the electrode assembly 23 includes two bodies 231 and tabs 23a arranged side by side in the Y direction.
  • the tabs 23a corresponding to each body 231 include a positive tab 23a1 and a negative tab 23a2.
  • the tabs 23a extend from the edge of each body 231 to External extension.
  • the positive tab 23a1 and the negative tab 23a2 each include a first tab 2321 and a second tab 2322.
  • the first tab 2321 and the second tab 2322 are respectively located on both sides of the center line A1 in the thickness direction of the body 231.
  • the top cover 21 has a step structure 210 in the Z direction.
  • the step structure 210 includes a platform portion 2101 and a step portion 2102.
  • the step portion 2102 extends in the height direction from its connection position 2103 with the platform portion 2101.
  • the top cover 21 has two symmetrically arranged step structures 210 in the Y direction, forming the top cover 21 with a "J"-shaped structure.
  • the number of layers forming the first tab 2321 and the number of layers forming the second tab 2322 satisfy:
  • x is the sum of the number of layers forming the first tab 2321 and the second tab 2322.
  • x is equal to 2 *(n+m);
  • y is the number of layers forming the second tab 2322, y is equal to 2*m, where 1 ⁇ m ⁇ n; refer to Figures 6 and 7, h is the top to bottom of the body 231
  • the height of the connection position 2103 between the platform portion 2101 and the step portion 2302; d is the thickness of the tab, that is, the thickness of each layer of base material stacked to form the first tab 2321 and the second tab 2322;
  • C is the first tab 2321
  • the gap in the height direction that is, the Z direction, to the connection position 2103 of the platform portion 2101 and the step portion 2102, C>0 mm.
  • the impact of the tab 23a in the battery cell 20 is reduced while ensuring the battery capacity performance.
  • the risk of fracture caused by extrusion of the connection position 2103 of the stepped structure 210 of the cover 21 improves the structural reliability and service life of the tabs, thereby improving the battery cells, batteries and users.
  • the reliability and service life of the electrical device allow the electrode assembly 23 to be reliably installed into a "J"-shaped top cover structure with high energy density, easy assembly, and strong load-bearing capacity, forming a safe and reliable battery cell 20 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

涉及一种电极组件(23)、电池单体(20)、电池(100)、用电装置。电极组件(23)包括:至少一个本体(231),用于形成层叠的电化学结构;以及极耳(23a),极耳(23a)从每个本体(231)的边缘向外延伸,每个本体(231)的极性相同的极耳(23a)包括第一极耳(2321)以及第二极耳(2322),第一极耳(2321)与第二极耳(2322)的位置分别位于本体(231)的厚度方向中心线(A1)的两侧。

Description

电极组件、电池单体、电池、用电装置
本申请要求于2022年03月24日在中国专利局提交的,申请号为202220667185.1,发明名称为“电极组件、电池单体、电池、用电装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池领域,特别涉及一种电极组件、电池单体、电池、用电装置。
背景技术
电池的电极组件包括本体和连接于本体的极耳,本体通常为层叠的电化学结构,设置分别对应正极、负极的极耳,以作为进行充放电时的接触点。
然而,极耳存在结构可靠性的问题。
技术问题
鉴于背景技术中存在的问题,本申请的目的在于提供一种电极组件、电池单体、电池、用电装置,以提升极耳的结构可靠性以及使用寿命,以提升电池单体、电池以及用电装置的可靠性以及使用寿命。
技术解决方案
第一方面,本申请提供一种电极组件,包括至少一个本体,用于形成层叠的电化学结构;以及极耳,所述极耳从每个所述本体的边缘向外延伸,每个所述本体的极性相同的极耳包括第一极耳以及第二极耳,所述第一极耳与所述第二极耳的位置分别位于所述本体的厚度方向中心线的两侧。
本申请实施例的技术方案中,通过将极性相同的极耳设置为在厚度方向两侧的第一极耳、第二极耳,使得在保证电池容量性能的前提下,降低极耳在电池结构中受到挤压导致断裂的风险,提升极耳的结构可靠性以及使用寿命,以提升电池单体、电池以及用电装置的可靠性以及使用寿命,同时,由于降低了极耳在电池结构中受到挤压导致断裂的风险,也可以降低对电池制造过程中的制造精度以及装配精度的要求,降低制造成本。
在一些实施例中,所述第一极耳的层数为n,所述第二极耳的层数为m,其中n不等于m,如此使得极性相同的第一极耳、第二极耳在中心线的两侧隔开。
在一些实施例中,沿所述本体的厚度方向,所述第二极耳与所述中心线的最小距离大于所述第一极耳与所述中心线的最小距离,如此可以使得极耳的过流更为均匀。
在一些实施例中,m小于n,如此可以尽量减少对现有的极耳结构的改动,使得电极组件的制造工艺较为简单。
在一些实施例中,沿所述本体的宽度方向,极性相反的所述极耳对称布置,如此使得电极组件易于加工装配。
在一些实施例中,所述第二极耳从所述本体的顶部延伸的延伸长度满足:
{(1/2D)2+H2}1/2<a<1/2D+H;
其中,a为所述第二极耳从所述本体的顶部延伸的延伸长度,D为所述本体的厚度,H为所述本体的顶部至所述第一极耳与所述第二极耳相交的点的高度。如此范围的第二极耳的长度,既可以避免由于长度过短导致的在振动环境中,极耳活动空间不够会发生撕裂,也可以避免由于长度过长导致的经济成本高,且多出的部分容易发生极耳冗余,插入极耳内部造成短路。
在一些实施例中,所述第一极耳、第二极耳在所述本体的宽度方向对齐,且所述第一极耳、第二极耳的宽度满足:
0<b<1/2B;
其中,b为所述第一极耳、第二极耳的宽度;B为所述本体的宽度。如此可以便于电极组件后续的装配。
第二方面,本申请提供一种电池单体,包括顶盖和至少一个如第一方面所述的电极组件;其中,所述本体通过第一极片、第二极片以及位于所述第一极片和所述第二极片之间的隔膜共同卷绕形成。通过卷绕形成的电池单体,其电池容量较高,且易于大规模生产,成本低。
在一些实施例中,所述顶盖在高度方向具有台阶结构,所述台阶结构包括平台部以及阶跃部,如此可以使得顶盖占用的空间少,从而提高电池单体的结构紧凑性,提升电池的能量密度。
在一些实施例中,形成所述第一极耳的层数与形成所述第二极耳的层数满足:
(x-y)*d*2+C<h;
其中,x为形成所述第一极耳、第二极耳的所述的层数之和,x则等于2*(n+m);y为形成所述第二极耳的层数,y等于2*m,其中,1≤m≤n;h为所述本体的顶部至所述平台部与所述阶跃部的连接位置的高度;d为所述极耳的厚度;C为所述第一极耳在高度方向至所述平台部与所述阶跃部的连接位置的间隙,C>0mm,如此使得顶盖与极耳之间在高度方向具有足够的空间,可以避免顶盖对极耳的挤压,提升电池单体的可靠性以及使用寿命。
在一些实施例中,0.2mm≤C≤2/3h,如此使得间隙在较为合适的范围内,既保证了极耳与顶盖之间的足够空间,防止极耳受到顶盖的挤压,也保证了电池单体的结构紧凑。
在一些实施例中,所述第二极耳至所述本体的顶部之间设置有支撑件,以支撑所述第 二极耳,以防止第二极耳成型后发生坍塌。
在一些实施例中,所述支撑件为圆筒状,如此易于安装至第二极耳至电极的顶部之间,并且对第二极耳具有较好的支撑作用。
第三方面,本申请提供一种电池,包括如第二方面所述的电池单体。
第四方面,本申请提供一种用电装置,所述用电装置包括如第三方面所述的电池。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一些实施例的用电装置的结构示意图。
图2位本申请一些实施例的电池的分解结构示意图。
图3为本申请一些实施例的电池单体的分解结构示意图。
图4为本申请一些实施例的电池单体的组装结构示意图。
图5为本申请一些实施例的电池单体沿X-Z方向的剖面结构示意图。
图6为本申请一些实施例的电池单体沿Y-Z方向的剖面结构示意图。
图7为图6的局部放大结构图。
图8A至图8D为本申请一些实施例的电极组件的结构示意图。
图9为本申请一些实施例的电池组件的卷绕结构的示意图。
附图标记:
1000-车辆,100-电池,200-控制器,300-马达;
10-箱体,11-第一部分,12-第二部分,20-电池单体;
21-顶盖,22-壳体,23-电极组件,24-连接件;
231、2301、2302-本体,23a-极耳,23a1-正极极耳,23a2-负极极耳,2321-第一极耳,23211-本体连接部,23212-延伸部,23213-弯折部,2322-第二极耳,233-相交位置,A1-厚度方向中心线,2311-第一极片,2312-第二极片,2313-隔膜,2310-卷绕起始层,21a-极柱,210-台阶结构,2101-平台部,2102-阶跃部,2103-连接位置,234-支撑件;
X-宽度方向,Y-厚度方向,Z-高度方向。
本发明的实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
电池的电极组件包括本体和连接于本体的极耳,本体通常为层叠的电化学结构,设置分别对应正极、负极的极耳,以作为进行充放电时的接触点。然而,极耳存在结构可靠性的问题。
发明人发现,极耳存在可靠性问题的主要原因之一在于,在电池单体中,极耳在高度方向弯折连接到连接件时,由于高度方向的空间有限,使得极耳容易与顶盖发生干涉,对极耳造成挤压,造成极耳断裂的风险。
为了提升极耳的可靠性,发明人经过深入研究,设计了一种电极组件,通过将极性相同的极耳设置为在厚度方向两侧的第一极耳、第二极耳,使得在保证电池容量性能的前提下,将原本设置于厚度方向一侧的极耳的部分层数转移至中心线的另一侧,使得弯折形成的极耳的整体高度降低,从而适应高度方向空间有限的条件,降低极耳在电池结构中受到挤压导致断裂的风险,提升极耳的结构可靠性以及使用寿命,以提升电池单体、电池以及用电装置的可靠性以及使用寿命,同时,由于降低了极耳在电池结构中受到挤压导致断裂的风险,也可以降低对电池制造过程中的制造精度以及装配精度的要求,降低制造成本。
本申请实施例公开的电极组件、电池单体可以但不限用于电池以及包含电池的用电设备中,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动车辆、列车、轮船、航天器等等。其中,电动车辆可以包括纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。用电装置还可以是储能系统,例如大型商业储能、微网储能、基站产品、家用不间断电源储能等等。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
请参阅图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆Ⅰ的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。
车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的爆炸图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分 11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
请参照图3,图3为本申请一些实施例提供的电池单体20的分解结构示意图。电池单体20是指组成电池的最小单元。如图3,电池单体20可以包括有顶盖21、壳体22、电极组件23、连接件24以及其他的功能性部件。
顶盖21是指盖合于壳体22的开口处以将电池单体20的内部环境隔绝于外部环境的部件。不限地,顶盖21的形状可以与壳体22的形状相适应以配合壳体22。可选地,顶盖21可以由具有一定硬度和强度的材质(如铝合金)制成,这样,顶盖21在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。顶盖21上可以设置有如极柱21a等的功能性部件。极柱21a可以用于与电极组件23电连接,以用于输出或输入电池单体20的电能。在一些实施例中,顶盖21上还可以设置有用于在电池单体20的内部压力或温度达到阈值时泄放内部压力的泄压机构。顶盖21的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在顶盖21的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体22内的电连接部件与顶盖21,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体22是用于配合顶盖21以形成电池单体20的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件23、电解液以及其他部件。壳体22和顶盖21可以是独立的部件,可以于壳体22上设置开口,通过在开口处使顶盖21盖合开口以形成电池单体20的内部环境。不限地,也可以使顶盖21和壳体22一体化,具体地,顶盖21和壳体22可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体22的内部时,再使顶盖21盖合壳体22。壳体22可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形 等。具体地,壳体22的形状可以根据电极组件23的具体形状和尺寸大小来确定。壳体22的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电极组件23是电池单体100中发生电化学反应的部件。壳体22内可以包含一个或更多个电极组件23。电极组件23主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电极组件的本体231,正极片和负极片不具有活性物质的部分各自构成极耳23a,可以通过模切工艺实现。极耳23a一般包括正极极耳23a1和负极极耳23a2。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,连接件24将极耳23a电连接到极柱21a,极耳连接极柱21a以形成电流回路。
根据本申请的一些实施例,参照图3至图9,本申请提供了一种电极组件23,包括至少一个本体231以及极耳23a。本体231用于形成层叠的电化学结构。极耳23a从每个本体231的边缘向外延伸,每个本体231的极性相同的极耳23a包括第一极耳2321以及第二极耳2322,第一极耳2321与第二极耳2322的位置分别位于本体231的厚度方向中心线A1的两侧。
“电化学结构”指的是发生电化学反应的部件结构,而“层叠”指的是该结构为一层一层的部件堆叠的,“层叠”在此处是一种结构的概念,而非工艺概念,并非限制制造工艺必须是层叠的,例如承上所记载的,电极组件23主要由正极片和负极片卷绕或层叠放置形成,即“层叠”的结构可以通过卷绕或者层叠放置的工艺形成。正极片和负极片具有活性物质的部分,以及隔膜构成电极组件的本体231。
“至少一个本体231”,对于一个电极组件231而言可以包括一个或多个本体231,例如图3、图6、图7所示的,电极组件231具有两个本体2301、2302在厚度方向相邻的设置,本体2301、2302的第二极耳2322在Y方向上相邻连接,但不以此为限,本体231的数量可以是一个,也可以是三个甚至更多。
厚度方向,例如图3所示的,厚度方向为Y方向,以下内容中还将出现高度方向、宽度方向的描述,例如图3所示的,高度方向为Z方向,宽度方向为X方向。
极耳23a从本体231的边缘向外部延伸,例如从本体231在高度方向的边缘向外延伸,具体的延伸形式,例如承上所述的,可以是一体地延伸,正极极片和负极片不具有活性物质的部分各自构成极耳23a,可以通过模切工艺实现。如图8A所示的,本体231为层叠的结构,对应的极耳23a也可以是层叠的结构。
极性相同的极耳,即正极极耳23a1包括第一极耳2321以及第二极耳2322,以及负极 极耳23a2包括第一极耳2321以及第二极耳2322。本体231的厚度方向中心线A1,可以平分本体231在Y方向的尺寸,如图8A所示的,第一极耳2321、第二极耳2322分别位于中心线A1在Y方向的正方向、负方向的一侧,即分别位于Y1方向侧、Y2方向侧。
通过将极性相同的极耳23a1、23a2设置为在厚度方向两侧的第一极耳2321、第二极耳2322,使得在保证电池容量性能的前提下,将原本设置于厚度方向中心线A1一侧的极耳的部分层数转移至中心线A1的另一侧,使得弯折形成的极耳23a的整体高度降低,从而适应高度方向空间有限的条件,降低极耳23a在电池单体20的结构中受到挤压导致断裂的风险,提升极耳23a的结构可靠性以及使用寿命,以提升电池单体20、电池100以及用电装置的可靠性以及使用寿命,同时,由于降低了极耳23a在电池单体20的结构中受到挤压导致断裂的风险,也可以降低对电池制造过程中的制造精度以及装配精度的要求,降低制造成本。
根据本申请的一些实施例,可选地,请继续参考图8A,第一极耳2321的层数为n,第二极耳2322的层数为m,其中n不等于m。
对于一般的卷绕结构来说,极片卷绕一周模切一个极耳;对于一般的叠片结构来说,极片叠一层模切一个极耳;当然,每一周或者每一层模切极耳的个数可以视情况调整,此处的层数的含义,也就是极耳的层数与层叠的极片层数相关,在本申请的一些实施例中,极耳的层数可以为形成电极组件23的层叠的正极片和负极片不具有活性物质的部分分别构成第一极耳2321、第二极耳2322的层数。n,m的具体层数不以图8A中所示的具体层数为限。
采用以上实施例的有益效果在于,如此使得正极极耳23a1、负极极耳23a2的第一极耳2321、第二极耳2322在中心线A1的两侧隔开,可以进一步降低第一极耳2321、第二极耳2322连接形成极耳23a后极耳23a的高度,进一步降低极耳23a与顶盖21发生干涉的风险。
根据本申请的一些实施例,可选地,请继续参考图8A,沿本体231的厚度方向,第二极耳2322与中心线A1的最小距离大于第一极耳2321与中心线A1的最小距离。
如图8A所示的,第二极耳2322相比于第一极耳2321而言,更为靠近本体231在厚度方向的边缘。例如图8A所示的,第二极耳2322在本体231的厚度方向最靠近边缘的一层同时也是本体231的在厚度方向的最外层。
采用以上实施例的有益效果在于,可以保证靠近边缘的极片层具有对应的极耳,使得极耳的过流更为均匀,进一步保证电池单体、电池的性能。
根据本申请的一些实施例,可选地,第一极耳2321的层数为n,第二极耳2322的层数为m,m小于n。
采用以上实施例的效果在于可以使得电极组件的制造工艺较为简单,其原理在于,对于现有的极耳结构而言,其结构可以认为是仅具有位于中心线A1一侧的极耳,极耳的层数为m+n。而采用以上实施例的极耳结构,实质上是将现有的极耳结构中为位于中心线A1一侧、层数为m+n的极耳,将m层的极耳转移至中心线A1的另一侧形成第二极耳2322,而保留n层的极耳形成第一极耳2321。因此,m小于n的设置,在现有的制造工艺的基础上,可以尽量少地改变第一极耳2321具有的层数,使得电极组件的制造工艺较为简单。
根据本申请的一些实施例,可选地,沿本体231的宽度方向,极性相反的极耳23a1、23a2对称布置。
参考图3、图5以及图8A所示的。宽度方向,例如为图中所示的X方向。即正极极耳23a1、负极极耳23a2位于本体231的X方向的位置相对于本体231在X方向的中心线A2是对称的。采用以上实施例的有益效果在于,可以使得正极极耳23a1、负极极耳23a2易于加工成形,并且易于与电池单体20的连接件24、顶盖21以及极柱21a的结构匹配,使得电池单体20的整体结构对称。
根据本申请的一些实施例,可选地,参考图6、图8A所示的,第二极耳2322从本体231的顶部延伸的延伸长度满足:
{(1/2D)2+H2}1/2<a<1/2D+H;
其中,a为第二极耳2322从本体231的顶部延伸的延伸长度,D为本体231的厚度,H为本体231的顶部至第一极耳2321与第二极耳2322相交的点的高度。
此处“第一极耳2321与第二极耳2322相交的点”的含义,即第一极耳2321与第二极耳2322在成型后的相交位置233,成型后的电极组件23,参考图6、图7所示的,不同于图8B至图8D所示的成型前的电极组件23,第一极耳2321与第二极耳2322均是在高度方向竖直的,成型后的电极组件23的第一极耳2321、第二极耳2322是弯折的。具体工艺可以是通过超声波焊接工艺得到,例如在超声波焊接极耳23a与连接件24的工艺,捋齐第一极耳2321所具有的n层极耳后,在极耳根部至第二极耳2322的位置贴蓝胶,再捋齐第二极耳2322极所具有的m层极耳并贴蓝膜后,与第一极耳2321所具有的n层极耳一同进行超声波焊接。形成的极耳23a的结构如图6、图7所示的,第一极耳2321包括与本体231连接的本体连接部23211、与连接件24连接的延伸部23212以及连接于本体连接部23211和延伸部23212之间的弯折部23213,延伸部23212沿厚度方向即Y方向延伸,弯折部23213相对于延伸部23212弯折,而第二极耳2322倾斜地连接至第一极耳2321于相交位置233,即为第一极耳2321与第二极耳2322相交的点。
采用以上实施例的第二极耳2322从本体231的顶部延伸的延伸长度范围,既可以避免 由于长度过短导致的在振动环境中,极耳的活动空间不够,极耳会发生撕裂,也可以避免由于长度过长导致的经济成本高,且多出的部分容易发生极耳冗余,插入极耳内部造成短路。
根据本申请的一些实施例,可选地,第一极耳2321、第二极耳2322在本体231的宽度方向对齐,且第一极耳2321、第二极耳2322的宽度满足:
0<b<1/2B;
其中,b为第一极耳2321、第二极耳2322的宽度;B为本体2322的宽度。
如图3、图8A所示的,第一极耳2321、第二极耳2322的在X方向的尺寸相同并且对齐。如此使得极耳的宽度尺寸易于与连接件24以及顶盖21适配,使得电极组件23在电池单体20中易于装配。
根据本申请的一些实施例,本申请还提供一种电池单体,包括至少一个以上介绍的电极组件23以及顶盖21,电极组件23的本体231通过第一极片2311、第二极片2312以及位于第一极片和所述第二极片之间的隔膜2313共同卷绕形成。
第一极片2311、第二极片2312可以是分别为正极片、负极片,参考图9所示的,卷绕形成的本体231的结构可以是,本体231具有卷绕起始层2310,位于最内圈的极片的卷绕起始端部分,第一极片2311、第二极片2312和隔膜2313层叠卷绕,具体地,各卷绕层中,第一极片2311延伸出的不具有活性物质的部分层叠形成正极极耳23a1,第二极片2312延伸出的不具有活性物质的部分层叠形成负极极耳23a2,且各正极极耳23a1和各负极极耳23a2均包括第一极耳2321以及第二极耳2322,第一极耳2321与第二极耳2322的位置分别位于本体231的Y方向的中心线A1的两侧。
顶盖21与连接件24将极耳23a电连接到极柱21a,极耳连接极柱21a以形成电流回路。
“顶盖21”指的是一种盖体结构,一般位于电池单体20的顶部,但并不意味着其在任何条件下均是位于电池单体20在Z方向的顶端部,例如在一些电池结构中可以采用平躺结构的模组,电池单体20是平躺放置的,即相对于图3的竖直放置的结构而言,此时“顶盖21”的位置便不再如图3所示的位于Z方向的顶端部,而是位于Y方向或者X方向的端部。
采用以上实施例的有益效果在于,通过卷绕形成的电池单体,其电池容量较高,且易于大规模生产,成本低。
根据本申请的一些实施例,可选地,顶盖21在高度方向具有台阶结构210,台阶结构210包括平台部2101以及阶跃部2102。
参考图3、图6所示的,顶盖21在Z方向具有台阶结构210,台阶结构的含义与本领域的通常含义类似地,即具有阶跃的高度差的结构,台阶结构210包括平台部2101以及阶 跃部2102,阶跃部2102从其与平台部2101的连接位置2103起向高度方向延伸形成。如图7所示的,在顶盖21在Y方向具有对称布置的两个台阶结构210,形成了具有“几”字型结构的顶盖21。采用以上实施例的有益效果在于,顶盖21的结构紧凑,有利于能量密度的提高,并且易于装配,且具有较好地承受外力的能力。
根据本申请的一些实施例,可选地,形成第一极耳2321的层数与形成第二极耳2322的层数满足:
(x-y)*d*2+C<h;
其中,x为形成第一极耳2321、第二极耳2322的层数之和,对于单个本体231对应的极耳23a,由于具有正极极耳23a1、以及负极极耳23a2,因此x则等于2*(n+m);y为形成第二极耳2322的层数,y等于2*m,其中,1≤m≤n;参考图6、图7所示的,h为本体231的顶部至平台部2101与阶跃部2302的连接位置2103的高度;d为极耳的厚度,即层叠形成第一极耳2321、第二极耳2322的每层基材的厚度;C为第一极耳2321在高度方向即Z方向至平台部2101与阶跃部2102的连接位置2103的间隙,C>0mm。
如此使得顶盖21与极耳23a之间在高度方向Z方向具有足够的空间,可以避免顶盖21对极耳23a的挤压,提升电池单体20的可靠性以及使用寿命。
根据本申请的一些实施例,可选地,对于第一极耳2321在高度方向即Z方向至平台部2101与阶跃部2102的连接位置2103的间隙C,满足0.2mm≤C≤2/3h,采用以上实施例数值范围的有益效果在于,既保证了具有足够的加工误差以及装配误差余量,使得顶盖21易于加工,电池单体20易于装配,也保证了间隙不至于过大,从而占用过多的高度空间或影响结构的紧凑性,进而影响电池单体的总体能量密度。
根据本申请的一些实施例,可选地,第二极耳2322至本体231的顶部之间设置有支撑件234,以支撑第二极耳2322。
如图6、图7所示的,支撑件234的设置位置,位于第二极耳2322与本体231在Z方向的空间中,支撑件234的底部受到本体231的顶部的支撑,支撑件234的顶部对第二极耳2322提供支撑。
如图7所示的,由于受重力的影响,第一极耳2321存在向本体231下垂弯折的趋势,可能导致第二极耳2322向下发生坍塌,导致第二极耳2322刺入本体231,与本体231的第一极片2311、第二极片2312接触,造成电极组件23内短路,尤其当受到外界的振动和冲击时,可能会导致严重的安全事故。支撑件234的材料为绝缘材料,可以是聚丙烯塑料(Polypropylene,PP)、聚对苯二甲酸乙二醇酯(Polyethylene glycol terephthalate,PET)、或是在支撑件的外表面具有陶瓷涂层等等。
采用以上实施例的有益效果在于,通过设置支撑件234,即使第一极耳2321在重力的作用下下垂弯折,或者受到外界的振动和冲击导致弯折,进而导致第二极耳2322向下发生坍塌,也会受到支撑件234的支撑作用而阻止与第一极片2311、第二极片2312的接触,避免电极组件23内短路。
根据本申请的一些实施例,可选地,支撑件234为圆筒状。此处的圆筒状,包括了空心的圆柱,以及实心的圆柱的结构。采用圆筒状的结构,当受到外界的振动和冲击时,第二极耳2322的结构可以与圆筒状的支撑件234的圆弧面贴合被平滑地支撑,相比于棱柱状的支撑件而言,可以减少支撑件234本身可能导致的应力集中,而进一步提高第二极耳2322的可靠性。
根据本申请的一些实施例,本申请还提供一种电池100,包括以上介绍的电池单体20。
根据本申请的一些实施例,本申请还提供一种用电装置,包括以上介绍的电池100,用电装置可以是前述任一应用电池100的设备或系统。
根据本申请的实施例,参见图3至图9的,本申请提供了一种电池单体20,包括电极组件23以及顶盖21。电极组件23包括在Y方向并排设置的两个本体231以及极耳23a,每个本体231对应的极耳23a包括正极极耳23a1以及负极极耳23a2,极耳23a从每个本体231的边缘向外延伸。正极极耳23a1以及负极极耳23a2均包括第一极耳2321以及第二极耳2322,第一极耳2321与第二极耳2322的位置分别位于本体231的厚度方向中心线A1的两侧。顶盖21在Z方向具有台阶结构210,台阶结构210包括平台部2101以及阶跃部2102,阶跃部2102从其与平台部2101的连接位置2103起向高度方向延伸形成。在顶盖21在Y方向具有对称布置的两个台阶结构210,形成了具有“几”字型结构的顶盖21。形成第一极耳2321的层数与形成第二极耳2322的层数满足:
(x-y)*d*2+C<h;
其中,x为形成第一极耳2321、第二极耳2322的层数之和,对于单个本体231对应的极耳23a,由于具有正极极耳23a1、以及负极极耳23a2,因此x则等于2*(n+m);y为形成第二极耳2322的层数,y等于2*m,其中,1≤m≤n;参考图6、图7所示的,h为本体231的顶部至平台部2101与阶跃部2302的连接位置2103的高度;d为极耳的厚度,即层叠形成第一极耳2321、第二极耳2322的每层基材的厚度;C为第一极耳2321在高度方向即Z方向至平台部2101与阶跃部2102的连接位置2103的间隙,C>0mm。通过将极性相同的极耳设置为在厚度方向两侧的第一极耳2321、第二极耳2322,使得在保证电池容量性能的前提下,降低极耳23a在电池单体20中受到顶盖21的台阶结构210的连接位置2103的挤压导致断裂的风险,提升极耳的结构可靠性以及使用寿命,以提升电池单体、电池以及用 电装置的可靠性以及使用寿命,使得电极组件23可以可靠地安装至能量密度高,易于装配,且承载能力强的“几”字型顶盖结构,形成安全可靠的电池单体20。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种电极组件,其特征在于,包括:
    至少一个本体,用于形成层叠的电化学结构;以及
    极耳,所述极耳从每个所述本体的边缘向外延伸,每个所述本体的极性相同的极耳包括第一极耳以及第二极耳,所述第一极耳与所述第二极耳的位置分别位于所述本体的厚度方向中心线的两侧。
  2. 根据权利要求1所述的电极组件,其特征在于,所述第一极耳的层数为n,所述第二极耳的层数为m,其中n不等于m。
  3. 根据权利要求2所述的电极组件,其特征在于,沿所述本体的厚度方向,所述第二极耳与所述中心线的最小距离大于所述第一极耳与所述中心线的最小距离。
  4. 根据权利要求2-3任一项所述的电极组件,其特征在于,m小于n。
  5. 根据权利要求1-4任一项所述的电极组件,其特征在于,沿所述本体的宽度方向,极性相反的所述极耳对称布置。
  6. 根据权利要求1-4任一项所述的电极组件,其特征在于,所述第二极耳从所述本体的顶部延伸的延伸长度满足:
    {(1/2D)2+H2}1/2<a<1/2D+H;
    其中,a为所述第二极耳从所述本体的顶部延伸的延伸长度,D为所述本体的厚度,H为所述本体的顶部至所述第一极耳与所述第二极耳相交的点的高度。
  7. 根据权利要求1-4任一项所述的电极组件,其特征在于,所述第一极耳、第二极耳在所述本体的宽度方向对齐,且所述第一极耳、第二极耳的宽度满足:0<b<1/2B;
    其中,b为所述第一极耳、第二极耳的宽度;B为所述本体的宽度。
  8. 一种电池单体,其特征在于,所述电池单体包括顶盖和至少一个如权利要求1-7任意一项所述的电极组件;其中,所述本体通过第一极片、第二极片以及位于所述第一极片和所述第二极片之间的隔膜共同卷绕形成。
  9. 根据权利要求8所述的电池单体,其特征在于,所述顶盖在高度方向具有台阶结构,所述台阶结构包括平台部以及阶跃部。
  10. 根据权利要求9所述的电池单体,其特征在于,形成所述第一极耳的层数与形成所述第二极耳的层数满足:
    (x-y)*d*2+C<h;
    其中,x为形成所述第一极耳、第二极耳的所述的层数之和,x则等于2*(n+m);y为形成所述第二极耳的层数,y等于2*m,其中,1≤m≤n;h为所述本体的顶部至所述平台 部与所述阶跃部的连接位置的高度;d为所述极耳的厚度;C为所述第一极耳在高度方向至所述平台部与所述阶跃部的连接位置的间隙,C>0mm。
  11. 根据权利要求10所述的电池单体,其特征在于,0.2mm≤C≤2/3h。
  12. 根据权利要求8-11任一项所述的电池单体,其特征在于,所述第二极耳至所述本体的顶部之间设置有支撑件,以支撑所述第二极耳。
  13. 根据权利要求12所述的电池单体,其特征在于,所述支撑件为圆筒状。
  14. 一种电池,其特征在于,包括根据权利要求8-13任一项所述的电池单体。
  15. 一种用电装置,其特征在于,包括根据权利要求14所述的电池。
PCT/CN2023/073970 2022-03-24 2023-01-31 电极组件、电池单体、电池、用电装置 WO2023179204A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220667185.1 2022-03-24
CN202220667185.1U CN217641684U (zh) 2022-03-24 2022-03-24 电极组件、电池单体、电池、用电装置

Publications (1)

Publication Number Publication Date
WO2023179204A1 true WO2023179204A1 (zh) 2023-09-28

Family

ID=83646399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073970 WO2023179204A1 (zh) 2022-03-24 2023-01-31 电极组件、电池单体、电池、用电装置

Country Status (2)

Country Link
CN (1) CN217641684U (zh)
WO (1) WO2023179204A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217641684U (zh) * 2022-03-24 2022-10-21 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池、用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006114A (ja) * 2016-06-30 2018-01-11 株式会社豊田自動織機 蓄電装置
JP2018107030A (ja) * 2016-12-27 2018-07-05 株式会社豊田自動織機 蓄電装置及び蓄電装置の製造方法
JP2020004643A (ja) * 2018-06-29 2020-01-09 株式会社豊田自動織機 蓄電装置
CN212676424U (zh) * 2020-08-21 2021-03-09 东莞新能德科技有限公司 电池和使用电池的装置
CN215989120U (zh) * 2021-07-29 2022-03-08 宁德时代新能源科技股份有限公司 方形电池单体、电池及用电设备
CN217641684U (zh) * 2022-03-24 2022-10-21 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池、用电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006114A (ja) * 2016-06-30 2018-01-11 株式会社豊田自動織機 蓄電装置
JP2018107030A (ja) * 2016-12-27 2018-07-05 株式会社豊田自動織機 蓄電装置及び蓄電装置の製造方法
JP2020004643A (ja) * 2018-06-29 2020-01-09 株式会社豊田自動織機 蓄電装置
CN212676424U (zh) * 2020-08-21 2021-03-09 东莞新能德科技有限公司 电池和使用电池的装置
CN215989120U (zh) * 2021-07-29 2022-03-08 宁德时代新能源科技股份有限公司 方形电池单体、电池及用电设备
CN217641684U (zh) * 2022-03-24 2022-10-21 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池、用电装置

Also Published As

Publication number Publication date
CN217641684U (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
EP3872893B1 (en) Secondary battery and battery module
CN216251029U (zh) 一种电芯、电池及用电装置
WO2023179204A1 (zh) 电极组件、电池单体、电池、用电装置
CN218939957U (zh) 极片、电池单体、电极组件、电池及用电设备
JP2023502115A (ja) 二次電池、電池モジュール及び電池を電源として用いた装置
WO2023236309A1 (zh) 电池箱体、电池以及用电装置
WO2023207402A1 (zh) 顶盖组件、电池单体、电池及用电设备
CN115275092B (zh) 电极组件、电池单体、电池及用电设备
WO2024041234A1 (zh) 分隔件、电池及用电装置
CN216720098U (zh) 电池盖板、电池单体、电池及用电设备
WO2023221703A1 (zh) 集流体、极片、电池单体、电池及用电装置
WO2023143059A1 (zh) 电池单体、电池以及用电装置
WO2023236346A1 (zh) 电极组件、电池单体、电池及用电装置
WO2023029795A1 (zh) 电极组件、电池单体、电池及用电设备
CN114188673B (zh) 电芯及电子设备
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
CN216015476U (zh) 电池单体及与其相关的电池、用电装置和制备装置
WO2023097441A1 (zh) 电池单体、电池、用电装置及电池单体的制造方法
WO2024016491A1 (zh) 极片、电极组件、电池单体、电池及用电装置
WO2023206083A1 (zh) 电池单体、电池及用电装置
WO2024055144A1 (zh) 转接部件、电池单体、电池及用电装置
CN218957977U (zh) 电芯、电池及用电装置
WO2024026829A1 (zh) 电池单体、电池以及用电装置
CN219144436U (zh) 电池、电池模组和电子设备
CN220710577U (zh) 电池单体、电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773456

Country of ref document: EP

Kind code of ref document: A1