WO2023179145A1 - 载波生成方法、脉宽调制方法以及逆变系统 - Google Patents

载波生成方法、脉宽调制方法以及逆变系统 Download PDF

Info

Publication number
WO2023179145A1
WO2023179145A1 PCT/CN2022/142590 CN2022142590W WO2023179145A1 WO 2023179145 A1 WO2023179145 A1 WO 2023179145A1 CN 2022142590 W CN2022142590 W CN 2022142590W WO 2023179145 A1 WO2023179145 A1 WO 2023179145A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
interval
reference wave
switching
wave
Prior art date
Application number
PCT/CN2022/142590
Other languages
English (en)
French (fr)
Inventor
张宸珲
张宏韬
陈熙
王雷
Original Assignee
深圳市正浩创新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市正浩创新科技股份有限公司 filed Critical 深圳市正浩创新科技股份有限公司
Publication of WO2023179145A1 publication Critical patent/WO2023179145A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current

Definitions

  • the present application belongs to the field of inverter technology, and in particular relates to a carrier generation method, a pulse width modulation method and an inverter system.
  • a carrier generation method a pulse width modulation method and an inverter system are provided.
  • a first aspect of the embodiments of the present application provides a carrier generation method.
  • the carrier generation method includes:
  • the waveform of the switching carrier is obtained, and when the switching carrier reaches the first wave peak, the waveform is switched to the second carrier, where the amplitudes of the first carrier, the second carrier and the switching carrier are the same.
  • a second aspect of the embodiments of the present application provides a carrier generation device, where the carrier generation device includes:
  • Carrier acquisition module used to acquire the waveform of the first carrier when a change in the output value of the area detector is detected
  • a first switching module configured to switch to a switching carrier of a preset frequency when the first carrier reaches the first trough;
  • the second switching module is used to obtain the waveform of the switched carrier, and when the switched carrier reaches the first wave peak, switch to the second carrier, wherein the first carrier, the second carrier and the switched carrier The amplitude of the carrier wave is the same.
  • the third aspect of the embodiment of the present application provides a pulse width modulation method applied to a multi-arm inverter, which is characterized in that the pulse width modulation method includes:
  • Each carrier wave is compared with the corresponding reference wave, and a corresponding modulation signal is generated according to the comparison result and sent to the multi-arm inverter.
  • the fourth aspect of the embodiment of the present application provides an inverter system, the inverter system includes:
  • Carrier generator used to send the first carrier, the second carrier and the switching carrier
  • Reference wave generator used to send reference waves
  • Area detector used to detect the position of the reference wave
  • the controller is also configured to execute the carrier generation method as described in any one of the above to generate at least one carrier, compare each carrier with a corresponding reference wave, and generate a corresponding modulated signal to send based on the comparison result. to the multi-leg inverter.
  • Figure 1 is a schematic structural diagram of a carrier generation method provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of the division of reference wave intervals provided by an embodiment of the present application.
  • Figure 3 is a specific schematic diagram of a carrier generation method provided by an embodiment of the present application.
  • Figure 4 is a specific schematic diagram of a carrier generation method provided by another embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a carrier generation device provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a carrier generation device provided by another embodiment of the present application.
  • Figure 7 is a schematic diagram of a simulation of an inverter system provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of applying an inverter system to a three-leg inverter according to an embodiment of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this application, “plurality” means one or more than one, unless otherwise explicitly and specifically limited.
  • PWM Pulse Width Modulation
  • the carrier generation method includes steps S10-S30.
  • Step S10 When a change in the output value of the area detector is detected, obtain the waveform of the first carrier.
  • Step S20 When the first carrier reaches the first valley, switch to the switching carrier of the preset frequency.
  • Step S30 Obtain the waveform of the switched carrier, and when the switched carrier reaches the first peak, switch to the second carrier, where the amplitudes of the first carrier, the second carrier and the switched carrier are the same.
  • the carrier generation device executes the above carrier generation method.
  • the area detector is used to detect the position of the reference wave, generate an output value according to the detected position of the reference wave, and output it to the carrier wave generating device.
  • the carrier generating device acquires the waveform of the first carrier when detecting a change in the output value of the area monitor.
  • the area detector can detect the position of the reference wave in real time. For example, the area detector can detect the position of the reference wave at a certain frequency or regularly detect the position of the reference wave, and output according to the position of the reference wave. Corresponding output values, different output values represent that the reference wave is in different positions. When the output value of the area detector changes, it indicates that the position of the reference wave has changed. At this time, the carrier generation device obtains the waveform of the first carrier to prepare for subsequent carrier switching.
  • step S20 when the area detector detects a change in the position of the reference wave, the output value is changed.
  • the carrier generating device obtains the waveform of the first carrier, and when the first carrier reaches the first wave valley, switches to the switching carrier of the preset frequency. For example, when a change in the output value of the area detector is detected, the waveform of the first carrier is obtained. If the first carrier is not in the valley at this time, switching will not be performed and the wait will continue until the first carrier runs closest to the switching time. When the first wave trough is reached, the first carrier is switched to the switching carrier of the preset frequency. When a change in the output value of the area detector is detected, the waveform of the first carrier is obtained. If the first carrier is in the valley at this time, the first carrier is directly switched to a switching carrier of a preset frequency.
  • step S30 when a change in the output value of the area detector is detected, the waveform of the first carrier is obtained, and when the first carrier reaches the first wave valley, the switching carrier is switched to the preset frequency.
  • the switched carrier of the preset frequency replaces the first carrier.
  • the switched carrier of the preset frequency reaches the first peak, it is switched to the second carrier.
  • the amplitudes of the first carrier, the second carrier and the switched carrier are the same. It can be understood that when the first carrier reaches the trough and is switched, the switching carrier of the preset frequency also starts from the trough. When the switching carrier of the preset frequency reaches the first peak and switches to the second carrier, the second carrier also starts from the trough. The crest begins. It can be understood that the switching carrier of the preset frequency only starts to connect at the trough of the first carrier, and then switches to the second carrier when it reaches the first peak of the switching carrier.
  • switching carrier By using the switching carrier to connect the trough of the first carrier and the crest of the second carrier, switching is completed, which solves the problems of magnetic flux jumps and large magnetic flux peaks existing in the traditional carrier generation method. It should be further explained that in the embodiment of the present application, when a change in the output value of the area detector is detected and the waveform of the first carrier happens to be in a valley, the switching carrier is directly switched.
  • the switching carrier When it is detected that the value of the area detector changes and the waveform of the first carrier has just passed through the trough and is in the rising stage, it is necessary to wait until the first carrier reaches the next trough before switching to the switching carrier. That is to say, in the carrier generation method provided by the embodiment of the present application, after obtaining the time point when the output value of the area detector changes, the output waveform of the first carrier is detected, and only when the first carrier is away from the first carrier at that time Click the nearest first wave valley to switch to the switched carrier. When the waveform of the switched carrier reaches the first peak, it is switched to the second carrier. That is, the switched carrier is directly switched to the second carrier after running for only half a cycle. In the above embodiment provided by the application of this application, in the process of switching the first carrier to the switching carrier, and then switching the switching carrier to the second carrier, the switching carrier only runs for half a cycle.
  • the carrier generation method further includes: dividing the peak-to-peak intervals of the reference wave into a first interval (Region1), a second interval (Region2), in order from large to small.
  • the third interval (Region3) A mapping relationship is established based on the output value of the area detector and the interval of the reference wave. Among them, when the reference wave is located in the first interval (Region1) or the third interval (Region3), the output value of the region detector is the first threshold; when the reference wave is located in the second interval (Region2), the output value of the region detector is the second threshold.
  • a mapping relationship is established based on the output value of the area detector and the interval of the reference wave.
  • the output value of each area detector corresponds to an interval of the reference wave.
  • the area detector is used to detect in real time which interval the reference wave is in, and output the corresponding output value according to the detection result.
  • the waveform in the figure is a reference wave.
  • the peak-to-peak intervals of the reference wave are divided into a first interval (Region1) and a second interval (Region2) in order from large to small. ), the third interval (Region3).
  • the first interval (Region1) is [1/3A,A]
  • the second interval (Region2) is [-1/3A,1/3A]
  • the third interval (Region3) is [-A,-1/ 3A], where A is the amplitude of the reference wave.
  • the reference wave when the peak-to-peak value of the reference wave is 1, correspondingly, the reference wave is divided into three intervals in equal proportions, then the first interval (Region1) is [1/3,1], and the second interval The interval (Region2) is [-1/3,1/3], and the third interval (Region3) is [-1,-1/3].
  • the area detector to accurately monitor the position changes of the reference wave, so that when the reference wave enters three different intervals, its corresponding carrier can be accurately switched, solving the traditional carrier generation method There are problems with magnetic flux jumps and large magnetic flux peaks.
  • the peak-to-peak intervals of the reference wave are divided into N intervals in order from large to small.
  • the number of divided intervals is the same as the number of bridge arms of the multi-arm inverter. If the multi-arm inverter has If the bridge-arm inverter is a three-arm inverter, the peak-to-peak value of the reference wave is divided into three intervals, as shown in Figure 2 for details.
  • the first threshold is set to 0 and the second threshold is set to 1.
  • the output value of the region detector is 0.
  • the output value of the region detector is 1.
  • the obtained output value of the first carrier and the area detector changes from 1 to 1.
  • the first carrier obtained is not the same carrier. It can be understood that when the output value of the region detector changes from 0 to 1, the first carrier obtained is the carrier operating when the reference wave is located in the first interval (Region1) or the third interval (Region3). When the output value of the region detector changes from 1 to 0, the first carrier obtained is the carrier operating when the reference wave is located in the second interval (Region2).
  • step S10 when it is detected that the output value of the area detector changes, acquiring the waveform of the first carrier includes: when it is detected that the output value of the area detector changes from the first threshold to the second threshold when the first carrier reaches the first wave valley, switching to the switching carrier of the preset frequency includes: when the first carrier reaches the first wave valley, switching to the switching carrier of the first frequency, The first frequency is 1.5 times the carrier frequency of the first carrier.
  • the waveform of the first carrier is obtained.
  • the first carrier is the reference wave located in the first interval (Region1) or The corresponding carrier in the third interval (Region 3) is switched to the switched carrier of the first frequency when the first carrier at this time reaches the first trough.
  • setting the first frequency to 1.5 times the carrier frequency of the first carrier can enable seamless switching of the first carrier from the first wave valley to the second carrier wave peak. docking. That is, when the first carrier is at the trough, after half a cycle of switching carriers, it is connected to the peak of the second carrier. This can solve the problems of magnetic flux jumps and large magnetic flux peaks existing in the traditional carrier generation method.
  • the first carrier 11 is a 60° carrier and the second carrier 12 is a 0° carrier.
  • the waveforms of the first carrier 11 and the second carrier 12 refer to the first row in FIG. 3 shown.
  • the reference wave 14 the horizontal waveform in Figure 3
  • its carrier uses the first carrier 11, and the output value of its region detector 13 corresponds to 0, when the base wave 14 enters the second interval (Region2) from the third interval (Region3) (see the interval division of the base wave shown in Figure 2, the base wave 14 moves upward slowly from the third interval (Region3) change, from the third interval (Region3) to the second interval (Region2)), the output value of the region detector changes from 0 to 1, there is no immediate handover, but enters handover preparation.
  • the peak value of the magnetic flux density waveform of the solid line 17 after conversion using the switching carrier 15 of the first frequency is limited and returns to the original magnetic flux density (about 250mT) in the next carrier cycle.
  • This embodiment solves the problems of magnetic flux jump and large magnetic flux peak value existing in the traditional carrier generation method.
  • the waveform between ab is the waveform of the first carrier 11
  • the waveform between bc is the waveform of the switching carrier 15
  • the waveform between cd is the waveform of the second carrier 12.
  • the abscissa is time and the ordinate is the amplitude of the carrier wave; in the second row, the abscissa is time and the ordinate is the amplitude of the carrier wave, the reference wave amplitude and the output of the area detector. value; in the third row, the abscissa is time and the ordinate is magnetic flux density.
  • the frequency of the first carrier is 20KHZ
  • the frequency of the switching carrier of the first frequency is 30KHZ
  • the frequency of the switching carrier of the first frequency is 1.5 times the carrier frequency of the first carrier.
  • the switching carrier can be The trough of the first carrier wave and the crest of the second carrier wave are connected together.
  • obtaining the waveform of the first carrier includes: when it is detected that the output value of the area detector changes from the second threshold to the first threshold, obtaining the first The waveform of the carrier; when the first carrier reaches the first trough, switching to the switching carrier of the preset frequency includes: when the first carrier reaches the first trough, switching to the switching carrier of the second frequency, where the second frequency is 0.75 times the carrier frequency of the first carrier.
  • the waveform of the first carrier is acquired.
  • the first carrier at this time is the corresponding carrier when the reference wave is located in the second interval (Region 2).
  • the first carrier at this time reaches the first valley, it is switched to the switching carrier of the second frequency.
  • setting the second frequency to 0.75 times the frequency of the first carrier can enable seamless connection when the first carrier switches to the second carrier in the first wave valley, that is, , when the first carrier is in the first wave trough, after half a cycle of switching carriers, it is connected to the wave peak of the second carrier, which can solve the problems of magnetic flux jumps and large magnetic flux peaks existing in the traditional carrier generation method.
  • the first carrier 21 is a 0° carrier and the second carrier 22 is a 60° carrier.
  • the waveforms of the second carrier 22 and the first carrier 21 refer to the first row in FIG. 4 shown.
  • its corresponding carrier is the first carrier 21 (ie, the 0° carrier)
  • the output value 23 of its region detector corresponds to 1.
  • the dotted line 17 magnetic flux waveform that originally did not use the second frequency switching carrier 25 conversion has jumped
  • the solid line 16 magnetic flux density waveform that used the second frequency switching carrier conversion technique has The peak value is limited and returns to the original magnetic flux density in the next carrier cycle.
  • This embodiment solves the problems of magnetic flux jump and large magnetic flux peak value existing in the traditional carrier generation method.
  • the waveform between ab is the waveform of the first carrier
  • the waveform between bc is the waveform of the switching carrier
  • the waveform between cd is the waveform of the second carrier.
  • the abscissa is time and the ordinate is the amplitude of the carrier wave; in the second row, the abscissa is time and the ordinate is the amplitude of the carrier wave, the reference wave amplitude and the output of the area detector. value; in the third row, the abscissa is time and the ordinate is magnetic flux density.
  • the frequency of the first carrier is 20KHZ
  • the frequency of the switching carrier of the second frequency is 15KHZ
  • the frequency of the switching carrier of the second frequency is 0.75 times the carrier frequency of the first carrier.
  • the switching carrier can be used The trough of the first carrier is connected to the crest of the second carrier.
  • the phase difference between the first carrier and the second carrier is 60°.
  • the phases of the first carrier and the second carrier are 0° and 60° respectively.
  • its corresponding carrier is a 60° carrier.
  • its corresponding carrier is 0°. carrier.
  • the waveform of the first carrier is obtained.
  • the first carrier at this time is the 60° carrier.
  • phase difference between the 60° carrier and the 0° carrier is 60°
  • setting the first frequency to 1.5 times the carrier frequency of the 60° carrier can make the 60° carrier switch to the 0° carrier seamlessly in the first wave valley. Docking, that is, when the 60° carrier wave is in the trough, after half a cycle of switching carriers, the peak of the 0° carrier wave is connected, which can solve the problems of magnetic flux jump and large magnetic flux peak value existing in the traditional carrier generation method.
  • the waveform of the first carrier is obtained.
  • the first carrier at this time is the 0° carrier.
  • the 0° carrier reaches the first wave valley , switch to the switching carrier of the second frequency. Because the phase difference between the 0° carrier and the 60° carrier is 60°, setting the second frequency to 0.75 times the frequency of the 0° carrier can enable seamless connection when the 0° carrier switches to the 60° carrier in the first wave valley. . That is, the 0° carrier wave is connected to the crest of the 60° carrier wave when it is at the trough, which can solve the problems of magnetic flux jump and large magnetic flux peak value that exist in the traditional carrier generation method.
  • the carrier generation method is applied to a multi-leg inverter
  • phase angle calculation formula of the second carrier waveform is:
  • n is the number of bridge arms of the multi-arm inverter.
  • setting the phase angle calculation formula of the first carrier and the second carrier allows the switching method to be applied to interleaved inverters on different bridge arms, increasing the application scenarios of the carrier generation method.
  • the phase angles of the first carrier are: 0°, 120°, and 240°.
  • the corresponding phase angles of the second carrier are: 0°, 60°, 180°, and 300°.
  • the reference wave signal is a fixed (0°, 120°, 240°) sine wave.
  • the waveform of the initial carrier is switched from the first carrier 11 (60° carrier) after the first buffering stage. is the second carrier 12 (0° carrier). If the reference wave enters the third interval from the second interval, the waveform of the initial carrier is switched from the first carrier 21 (0° carrier) to the second carrier after the second buffering stage.
  • the waveform of the initial carrier is switched from the first carrier 11 (60° carrier) to the second carrier 12 (0° carrier), if the reference wave enters the first interval from the second interval, then after the second buffering stage, the waveform of the initial carrier is switched from the first carrier 21 (0° carrier) to the second carrier 22 (60° carrier), where , the phase angle difference between the first carrier wave and the second carrier wave is 60°.
  • switching the waveform of the initial carrier wave from the first carrier waveform to the second carrier waveform after the first buffering stage includes: changing the voltage value of the reference wave Detection is performed to obtain a reference wave voltage detection signal. If the voltage value of the reference wave voltage detection signal switches from the first voltage threshold interval to the second voltage threshold interval, the waveform of the initial carrier wave is changed from the first carrier waveform after the first buffering stage. Switch to the second carrier waveform.
  • switching the waveform of the initial carrier waveform from the first carrier waveform to the second carrier waveform after the first buffering stage includes: adjusting the initial carrier waveform when the voltage value of the reference wave reaches the first preset threshold voltage.
  • the frequency is the first frequency, so that the voltage value of the initial carrier wave in the first buffering stage reaches the first peak value (ie, wave peak) of the second carrier waveform.
  • the waveform of the initial carrier is switched from the first carrier 21 (0° carrier) to the second carrier 22 (60° carrier) after the second buffering stage. ), including: detecting the voltage value of the reference wave to obtain a reference wave voltage detection signal; if the voltage value of the reference wave voltage detection signal switches from the second voltage threshold interval to the third voltage threshold interval, after the second buffering stage The waveform of the initial carrier is switched from the first carrier 21 (0° carrier) to the second carrier 22 (60° carrier).
  • switching the waveform of the initial carrier from the first carrier 21 (0° carrier) to the second carrier 22 (60° carrier) after the second buffering stage includes: if the voltage value of the reference wave reaches the second When the threshold voltage is preset, the frequency of the initial carrier wave is adjusted to the second frequency, so that the voltage value of the initial carrier wave in the second buffering stage reaches the first peak value (ie, the wave peak) of the second carrier waveform.
  • the carrier generation device includes: a carrier acquisition module 10 , a first switching module 20 and a second switching module 30 .
  • the carrier acquisition module 10 is configured to acquire the waveform of the first carrier when a change in the output value of the area detector is detected, and the first switching module 20 is configured to switch when the first carrier reaches the first wave valley.
  • the second switching module 30 is configured to obtain the waveform of the switching carrier, and when the switching carrier reaches the first wave peak, switch to the second carrier, where the first carrier, the second carrier and the switching carrier have the same amplitude.
  • the carrier wave generation device further includes: a reference wave dividing module 40.
  • the reference wave dividing module 40 is configured to divide the peak-to-peak intervals of the reference wave into a first interval (Region1), a second interval (Region2), and a third interval (Region3) in descending order; and according to the region
  • the output value of the detector establishes a mapping relationship with the interval of the reference wave.
  • the output value of the regional detector is the first threshold.
  • the output value of the region detector is the second threshold.
  • the embodiment of the present application also provides a pulse width modulation method, which is applied to a multi-arm inverter.
  • the pulse width modulation method includes: using any of the above carrier generation methods to generate at least one carrier; and combining each carrier with the corresponding The reference wave is compared, and the corresponding modulation signal is generated according to the comparison result and sent to the multi-arm inverter.
  • At least one carrier is generated using any of the above carrier generation methods and compared with the corresponding reference wave, and a corresponding modulation signal is generated according to the comparison result and sent to the multi-arm inverter.
  • This further makes the output modulation signal more accurate and improves the quality of the output waveform. It solves the problem of overlapping parts of traditional output waveforms.
  • Embodiments of the present application also provide an inverter system.
  • the inverter system includes: a first carrier generator, a second carrier generator, a switching carrier generator, a reference wave generator, an area detector, a controller, and a multi-bridge arm. inverter.
  • the first carrier generator is configured to transmit the first carrier.
  • the second carrier generator is configured to transmit a second carrier.
  • the switched carrier generator is configured to transmit the switched carrier
  • the reference wave generator is configured to transmit the reference wave.
  • the area detector is configured to detect the position of the reference wave.
  • the controller is configured to detect the carrier wave output by each generator and control the corresponding generator to emit waves.
  • the controller is also configured to perform any of the above carrier generation methods to generate at least one carrier, compare each carrier with a corresponding reference wave, and generate a corresponding modulation signal based on the comparison result to send to the multi-bridge arm inverter device. It should be noted that in the embodiments of this application, the first carrier generator, the second carrier generator and the switching carrier generator may be the same carrier generator or different carrier generators.
  • the carrier generator When it is the same carrier generator, the carrier generator outputs different carrier waves at different time points according to the above-mentioned embodiments provided by the embodiments of this application. When there are different carrier wave generators, each carrier wave generator outputs corresponding carrier waves at different time points under the control of the controller.
  • a simulation experiment is conducted on an inverter system applying the above carrier generation method, in which the multi-arm inverter is a three-arm inverter, and the power supply voltage is 300V.
  • the carrier frequency is 20kHz
  • the reference wave frequency 60Hz
  • the coupling inductor inductance 0.2mH
  • the filter inductor 30uH
  • the power 10.9kW
  • the above carrier wave generation method is used to conduct simulation experiments.
  • the three-phase interleaved simulation waveform of the three-leg inverter is shown in Figure 7.
  • the inverter system is applied to a three-leg inverter.
  • a1, a2, and a3 are each of the three-leg inverters.
  • the signal node in the bridge arm is connected to the output inductor.
  • Each bridge arm is composed of two switch tubes connected in series.
  • V is the DC power supply.
  • the number of carriers depends on the number of bridge arms of the multi-bridge arm inverter. , for a three-leg inverter, each group of carriers has three carriers with different phases, and each carrier drives one bridge arm. If the three-arm inverter is used in three-phase power, three groups of carriers are needed. Each group of carriers corresponds to one phase of the three-phase electricity.
  • Figure 8 shows a schematic diagram of a three-leg inverter that outputs three-phase power.
  • the circuit structure of the three-arm inverter that outputs Phase A is shown in Figure 8.
  • the circuit structure of the remaining Phase B (Phase B) and Phase C (Phase C) is the same as that of Phase A.
  • the three-leg inverter is also called a three-leg interleaved inverter or a three-phase three-leg inverter.
  • Units described as separate components may or may not be physically separate, that is, they may be located in one place, or they may be distributed over multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • Integrated units may be stored in a computer-readable storage medium if they are implemented in the form of software functional units and sold or used as independent products. Based on this understanding, the essence of the technical solution of the present application, or the part that contributes to the existing technology, or the part of the technical solution, can be embodied in the form of a computer software product, and the computer software product is stored in a storage In the medium, the computer software product includes a number of instructions, which are used to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media may include but are not limited to: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Abstract

一种载波生成方法,包括:在检测到区域检测器的输出值发生变化时,获取第一载波的波形;在第一载波到达第一个波谷时,切换为预设频率的切换载波;获取切换载波的波形,在切换载波到达第一个波峰时,切换至第二载波,其中,第一载波、第二载波和切换载波的幅值相同。

Description

载波生成方法、脉宽调制方法以及逆变系统
相关申请的交叉引用
本申请要求于2022年03月21日提交中国专利局、申请号为202210278945.4、发明名称为“载波生成方法、切换装置、脉宽调制方法以及逆变系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于逆变技术领域,尤其涉及一种载波生成方法、脉宽调制方法以及逆变系统。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成示例性技术。
近年来,能源的生产和消费范围日益多样化,对电力电子转换器的设计提出了越来越高的要求,需要更高的功率,在过去的数十年中,通过学者们的不断研究,不同的脉宽调制(Pulse Width Modulation,PWM)调制波方式被研发出。
使用加强的脉宽调制发波方式可以使得输出波形质量大大提高,因此可以使得总谐波失真值更小。然而,即使通过调整载波或调制波可以产出高质量的输出波形,但是调整的过程中存在载波移相或调制波被改动调整时,电路的交错桥臂会受到环形电流的影响,在耦合电感中产生一个磁通量跳变,该跳变最大可使得耦合电感磁通量的峰值为传统的脉宽调制技术下的2.8倍左右。根据法拉第定律,耦合电感的横截面积是与其峰值磁通量有直接关系,峰值越高则意味着需要更大的耦合电感。
发明内容
根据本申请的各种实施例,提供了一种载波生成方法、脉宽调制方法以及逆变系统。
本申请实施例的第一方面提供了一种载波生成方法,所述载波生成方法包括:
在检测到区域检测器的输出值发生变化时,获取第一载波的波形;
在所述第一载波到达第一个波谷时,切换为预设频率的切换载波;
获取所述切换载波的波形,在所述切换载波到达第一个波峰时,切换至第二载波,其中,所述第一载波、所述第二载波和所述切换载波的幅值相同。
本申请实施例的第二方面提供了一种载波生成装置,所述载波生成装置包括:
载波获取模块:用于在检测到区域检测器的输出值发生变化时,获取第一载波的波形;
第一切换模块:用于在所述第一载波到达第一个波谷时,切换为预设频率的切换载波;
第二切换模块:用于获取所述切换载波的波形,在所述切换载波到达第一个波峰时,切换至第二载波,其中,所述第一载波、所述第二载波和所述切换载波的幅值相同。
本申请实施例的第三方面提供了一种脉宽调制方法,应用于多桥臂逆变器,其特征在于,所述脉宽调制方法包括:
采用如上述任一项所述的载波生成方法生成至少一路载波;
将每路所述载波与对应的基准波进行比较,并根据比较结果生成对应的调制信号发送至所述多桥臂逆变器。
本申请实施例的第四方面提供了一种逆变系统,所述逆变系统包括:
载波发生器:用于发送第一载波、第二载波和切换载波;
基准波发生器:用于发送基准波;
区域检测器:用于检测所述基准波的位置;
控制器:
多桥臂逆变器;
所述控制器还用于执行如上述任一项所述的载波生成方法以生成至少一路载波,并将每路所述载波与对应的基准波进行比较,并根据比较结果生成对应的调制信号发送至所述多桥臂逆变器。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或示例性技术中的技术方案,下面将对实施例或示例性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1是本申请一个实施例提供的载波生成方法的结构示意图。
图2是本申请一个实施例提供的基准波区间划分的结构示意图。
图3是本申请一个实施例提供的载波生成方法的具体示意图。
图4是本申请另一个实施例提供的载波生成方法的具体示意图。
图5是本申请一个实施例提供的载波生成装置的结构示意图。
图6是本申请另一个实施例提供的载波生成装置的结构示意图。
图7是本申请一个实施例提供的逆变系统的仿真示意图。
图8为本申请一个实施例提供的将逆变系统应用于三桥臂逆变器中的结构示意图。
具体实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是一个或一个以上,除非另有明确具体的限定。
近年来,能源的生产和消费范围日益多样化,对电力电子转换器的设计提出了越来越高的要求,需要更高的功率。在过去的数十年中,通过学者们的不断研究,不同的脉宽调制(Pulse Width Modulation,PWM)调制波方式被研发出。
使用加强的脉宽调制发波方式可以使得输出波形质量大大提高,因此可以使得总谐波失真值更小。然而,即使通过调整载波或调制波可以产出高质量的输出波形,但是调整的过程中存在载波移相或调制波被改动调整时,电路的交错桥臂会受到环形电流的影响,在耦合电感中产生一个磁通量跳变,该跳变最大可使得耦合电感的磁通量的峰值为传统的脉宽调制技术下的2.8倍左右。根据法拉第定律,耦合电感的横截面积与其峰值磁通量有直接关系,峰值越高则意味着需要更大的耦合电感。
为了解决上述技术问题,本申请实施例提供了一种载波生成方法,参考图1所示,载波生成方法包括步骤S10-S30。
步骤S10:在检测到区域检测器的输出值发生变化时,获取第一载波的波形。
步骤S20:在第一载波到达第一个波谷时,切换为预设频率的切换载波。
步骤S30:获取切换载波的波形,在切换载波到达第一个波峰时,切换至第二载波,其中,第一载波、第二载波和切换载波的幅值相同。
在本实施例中,载波生成装置执行上述载波生成方法。其中,在步骤S10中,区域检测器用于检测基准波的位置,并根据检测到的基准波的位置生成输出值并输出至载波生成装置。该载波生成装置在检测到区域监测器的输出值发生变化时,获取第一载波的波形。在本实施例中,区域检测器可以实时的对基准波的位置进行检测,例如,区域检测器可以以一定的频率检测基准波的位置或者定时检测基准波的位置,并根据基准波的位置输出对应的输出值,不同的输出值代表基准波处于不同的位置。当区域检测器的输出值发生变化时表明基准波的位置发生了变化,则此时载波生成装置获取第一载波的波形为后续载波切换做准备。
在本实施例中,在步骤S20中,当区域检测器检测到基准波的位置发生变化时,改变输出值。此时载波生成装置获取第一载波的波形,并在第一载波到达第一个波谷时,切换为预设频率的切换载波。例如,当检测到区域检测器的输出值发生变化时,获取第一载波的波形,若此时第一载波不在波谷时,则不进行切换,继续等待,直到第一载波运行到距离切换时间最近的第一个波谷时,将第一载波切换为预设频率的切换载波。当检测到区域检测器的输出值发生变化时,获取第一载波的波形,若此时第一载波处于波谷时,则直接进行切换,将第一载波切换为预设频率的切换载波。
在本实施例中,在步骤S30中,检测到区域检测器的输出值发生变化时,获取第一载波的波形,在第一载波到达第一个波谷时,切换为预设频率的切换载波,当第一载波切换为预设频率的切换载波时,预设频率的切换载波代替第一载波,当预设频率的切换载波到达第一个波峰时,则切换至第二载波。
在本实施例中,第一载波、第二载波和切换载波的幅值相同。可以理解的是,第一载波到达波谷,进行切换时,预设频率的切换载波也是从波谷开始运行,当预设频率的切换载波到达第一波峰切换至第二载波时,第二载波也是从波峰开始。可以理解的是,预设频率的切换载波只是在第一载波的波谷开始连接,至切换载波的第一个波峰时,再切换到第二载波。通过使用切换载波连接 第一载波的波谷和第二载波的波峰,从而完成切换,解决了传统的载波生成方法存在的磁通量跳变、磁通量峰值大的问题。需要进一步说明的是,在本申请实施例中,当检测到区域检测器的输出值发生变化时,该第一载波的波形刚好处于波谷,则直接切换至该切换载波。
当检测到该区域检测器的数值发生变化时,该第一载波的波形刚经过波谷处于上升阶段,则需要等待到该第一载波到达下一个波谷时,切换至该切换载波。也就是说,本申请实施例提供的载波生成方法中,获取该区域检测器的输出值发生变化的时间点后,检测该第一载波的输出波形,在且仅在该第一载波距离该时间点最近的第一个波谷切换至该切换载波。当该切换载波的波形达到第一个波峰时,切换成该第二载波,即,该切换载波仅运行了半个周期后直接切换到第二载波。在本申请的申请提供的上述实施例中,该第一载波切换成该切换载波,该切换载波再切换成该第二载波的过程中,该切换载波仅运行了半个周期。
在一个实施例中,参考图2所示,载波生成方法还包括:将基准波的峰峰值区间按照从大到小的顺序依序划分为第一区间(Region1)、第二区间(Region2)、第三区间(Region3)。根据区域检测器的输出值与基准波的区间建立映射关系。其中,当基准波位于第一区间(Region1)或第三区间(Region3)时,区域检测器的输出值为第一阈值,当基准波位于第二区间(Region2)时,区域检测器的输出值为第二阈值。
在本实施例中,根据区域检测器的输出值与基准波的区间建立映射关系。例如,每一个区域检测器的输出值对应一个基准波的区间,区域检测器用于实时检测基准波在哪一个区间,并根据检测结果输出对应的输出值。
在本实施例中,参考图2所示,图中的波形为基准波,将基准波的峰峰值区间按照从大到小的顺序依序划分为第一区间(Region1)、第二区间(Region2)、第三区间(Region3)。具体的,第一区间(Region1)为[1/3A,A],第二区间(Region2)为[-1/3A,1/3A],第三区间(Region3)为[-A,-1/3A],其中,A 为基准波的幅值。在一个实施例中,当基准波的峰峰值为1时,对应的,将基准波的按照等比例划分为三个区间,则第一区间(Region1)为[1/3,1],第二区间(Region2)为[-1/3,1/3],第三区间(Region3)为[-1,-1/3]。按比例划分基准波为三个区间可以使得区域检测器准确的监测基准波的位置变化,使得基准波在进入三个不同的区间时,可以准确地切换其对应的载波,解决传统的载波生成方法存在的磁通量跳变、磁通量峰值大的问题。
在一个实施例中,将基准波的峰峰值区间按照从大到小的顺序依序划分为N个区间,划分区间的个数与多桥臂逆变器的桥臂个数相同,若该多桥臂逆变器为三桥臂,则将基准波的峰峰值分成三个区间,具体参考图2所示。
在一个实施例中,第一阈值设置为0,第二阈值设置为1。具体的,当基准波位于第一区间(Region1)或第三区间(Region3)时,区域检测器的输出值为0,当基准波位于第二区间(Region2)时,区域检测器的输出值为1。可以理解的是,当区域监测器的输出值发生变化时,即从0变为1,或者从1变为0时,获取第一载波的波形,并在第一载波到达第一波谷时,切换为预设频率的切换载波,然后在切换载波到达第一波峰时切换为第二载波。在本实施例中,第一载波和第二载波并不是一个固定的载波,即当区域检测器的输出值从0变为1时,获取的第一载波与区域检测器的输出值从1变为0时,获取的第一载波并不是一样的同一个载波。可以理解的是,当区域检测器的输出值从0变为1时,获取的第一载波是基准波位于第一区间(Region1)或第三区间(Region3)时运行的载波。当区域检测器的输出值从1变为0时,获取的第一载波是基准波位于第二区间(Region2)时运行的载波。
在一个实施例中,在步骤S10中,在检测到区域检测器的输出值发生变化时,获取第一载波的波形包括:在检测到区域检测器的输出值由第一阈值变为第二阈值时,获取第一载波的波形;在第一载波到达第一个波谷时,切换为预设频率的切换载波包括:在第一载波到达第一个波谷时,切换为第一频率的切换载波,其中第一频率为第一载波的载波频率的1.5倍。
在本实施例中,在检测到区域检测器的输出值由第一阈值变为第二阈值时,获取第一载波的波形,此时的第一载波为基准波位于第一区间(Region1)或第三区间(Region3)时对应的载波,当此时的第一载波到达第一个波谷时,切换为第一频率的切换载波。因为第一载波与第二载波的相位不一致,设置第一频率为第一载波的载波频率的1.5倍,可以使得第一载波在第一个波谷切换至第二载波的波峰时,能够实现无缝对接。即,第一载波在波谷时,经过半个周期的切换载波,连接的是第二载波的波峰,如此可以解决传统的载波生成方法存在的磁通量跳变、磁通量峰值大的问题。
在一个实施例中,参考图3所示,第一载波11为60°载波、第二载波12为0°载波,其中,第一载波11和第二载波12的波形参考图3中第一行所示。在本实施例中,当基准波14(图3中水平状的波形)位于第一区间(Region1)或者第三区间(Region3)时,其载波使用第一载波11,其区域检测器的输出值13对应为0,当基准波14由第三区间(Region3)进入到第二区间(Region2)时(参见图2所示的基准波的区间划分,基准波14从第三区间(Region3)向上缓慢变化,从第三区间(Region3)进入第二区间(Region2)),其区域检测器的输出值由0变为1,没有立即进行切换,而是进入切换准备,当第一载波11到达第一个波谷时,切换为第一频率的切换载波15,当第一频率的切换载波15到达第一个波峰时,切换至第二载波12。此时完成缓冲切换,具体切换过程参考图3中第二行所示。可以从图3中第三行看出,原本没有使用第一频率的切换载波15转换的虚线16磁通量波形发生了跳变(750mT左右),其中,mT(毫特斯拉)为磁通量密度单位。而使用了第一频率的切换载波15转换之后的实线17的磁通量密度波形峰值被限制住并在下一载波周期回到了原本的磁通量密度(250mT左右)。本实施例解决了传统的载波生成方法存在的磁通量跳变、磁通量峰值大的问题。参见图3,ab之间的波形为第一载波11的波形,bc之间的波形为切换载波15的波形,cd之间的波形为第二载波12的波形。参见图3,第一行中,横坐标为时间,纵坐标为载波的幅值;第二行中,横坐 标为时间,纵坐标为载波的幅值、基准波幅值和区域检测器的输出值;第三行中,横坐标为时间,纵坐标为磁通量密度。
在一个实施例中,第一载波的频率为20KHZ,第一频率的切换载波的频率为30KHZ,该第一频率的切换载波的频率为第一载波的载波频率的1.5倍,可以通过该切换载波将该第一载波的波谷与该第二载波在波峰连接在一起。
在一个实施例中,在检测到区域检测器的输出值发生变化时,获取第一载波的波形包括:在检测到区域检测器的输出值由第二阈值变为第一阈值时,获取第一载波的波形;在第一载波到达第一个波谷时,切换为预设频率的切换载波包括:在第一载波到达第一个波谷时,切换为第二频率的切换载波,其中第二频率为第一载波的载波频率的0.75倍。
在本实施例中,在检测到区域检测器的输出值由第二阈值变为第一阈值时,获取第一载波的波形。此时的第一载波为基准波位于第二区间(Region2)时对应的载波,当此时的第一载波到达第一个波谷时,切换为第二频率的切换载波。因为第一载波与第二载波的相位不一致,设置第二频率为第一载波的频率的0.75倍,可以使得第一载波在第一个波谷切换至第二载波时,能够实现无缝对接,即,第一载波在第一个波谷时,经过半个周期的切换载波,连接的是第二载波的波峰,可以解决传统的载波生成方法存在的磁通量跳变、磁通量峰值大的问题。
在一个实施例中,参考图4所示,第一载波21为0°载波、第二载波22为60°载波,其中,第二载波22和第一载波21的波形参考图4中第一行所示。在本实施例中,当基准波位于第二区间(Region2)时,其对应的载波为第一载波21(即0°载波),其区域检测器的输出值23对应为1,当基准波由第二区间(Region2)进入到第三区间(Region3)时(参见图2所示的基准波的区间划分,基准波24从第二区间(Region2)向下缓慢变化,从第二区间(Region2)进入第三区间(Region3)),其区域检测器的输出值23由1变为0,此时没有立即进行切换,而是进入切换准备。当第一载波21到达第一个波谷时,切换 为第二频率的切换载波25,当第二频率的切换载波25到达第一个波峰时,切换至第二载波22。此时完成缓冲切换,具体切换过程参考图4中第二行所示。可以从图4中第三行看出,原本没有使用第二频率的切换载波25转换的虚线17磁通量波形发生了跳变,而使用了第二频率的切换载波转换技巧的实线16磁通量密度波形峰值被限制住并在下一载波周期回到了原本的磁通量密度。本实施例解决了传统的载波生成方法存在的磁通量跳变、磁通量峰值大的问题。参加图4,ab之间的波形为第一载波的波形,bc之间的波形为切换载波的波形,cd之间的波形为第二载波的波形。参见图4,第一行中,横坐标为时间,纵坐标为载波的幅值;第二行中,横坐标为时间,纵坐标为载波的幅值、基准波幅值和区域检测器的输出值;第三行中,横坐标为时间,纵坐标为磁通量密度。
在一个实施例中,第一载波的频率为20KHZ,第二频率的切换载波的频率为15KHZ,其第二频率的切换载波的频率为第一载波的载波频率的0.75倍,可以通过该切换载波使得第一载波的波谷与第二载波的波峰连接在一起。
在一个实施例中,第一载波和第二载波的相位差为60°。
在本实施例中,第一载波和第二载波的相位分别为0°和60°。具体的,当基准波位于第一区间(Region1)或第三区间(Region3)时,其对应的载波为60°载波,当基准波位于第二区间(Region2)时,其对应的载波为0°载波。例如,在检测到区域检测器的输出值由第一阈值变为第二阈值时,获取第一载波的波形,此时的第一载波为60°载波,当60°载波到达第一个波谷时,切换为第一频率的切换载波。因为60°载波与0°载波的相位差60°,设置第一频率为60°载波的载波频率的1.5倍,可以使得60°载波在第一个波谷切换至0°载波时,能够实现无缝对接,即,60°载波在波谷时,经过半个周期的切换载波,连接的是0°载波的波峰,可以解决传统的载波生成方法存在的磁通量跳变、磁通量峰值大的问题。
进一步的,在检测到区域检测器的输出值由第二阈值变为第一阈值时,获取第一载波的波形,此时的第一载波为0°载波,当0°载波到达第一个波谷时, 切换为第二频率的切换载波。因为0°载波与60°载波的相位差60°,设置第二频率为0°载波的频率的0.75倍,可以使得0°载波在第一个波谷切换至60°载波时,能够实现无缝对接。即,0°载波在波谷时连接的是60°载波的波峰,可以解决传统的载波生成方法存在的磁通量跳变、磁通量峰值大的问题。
在一个实施例中,载波生成方法应用于多桥臂逆变器;
第一载波的相位角度计算公式为:
Figure PCTCN2022142590-appb-000001
第二载波波形的相位角度计算公式为:
Figure PCTCN2022142590-appb-000002
其中,n为多桥臂逆变器的桥臂数。具体的,设置第一载波和第二载波的相位角度计算公式,可以使得该切换方法应用到不同桥臂交错逆变器中,增加了载波生成方法的应用场景。例如,当该载波生成方法应用到三桥臂逆变器中时,在第一载波的相位角度为:0°,120°,240°。对应的第二载波的相位角度为:0°,60°,180°,300°。对于三相电源而言,其基准波信号为固定的(0°,120°,240°)正弦波。
在一个实施例中,参考图3、图4所示,若基准波从第一区间进入第二区间,则在第一缓冲阶段后将初始载波的波形由第一载波11(60°载波)切换为第二载波12(0°载波),若基准波从第二区间进入第三区间,则在第二缓冲阶段后将初始载波的波形由第一载波21(0°载波)切换为第二载波22(60°载波),若基准波从第三区间进入第二区间,则在第一缓冲阶段后将初始载波的波形由第一载波11(60°载波)切换为第二载波12(0°载波),若基准波从第二区间进入第一区间,则在第二缓冲阶段后将初始载波的波形由第一载波21(0°载波)切换为第二载波22(60°载波),其中,第一载波的相位角度与第二载波的相位角度差60°。
在一个实施例中,若基准波从第一区间进入第二区间,则在第一缓冲阶段 后将初始载波的波形由第一载波波形切换为第二载波波形,包括:对基准波的电压值进行检测,得到基准波电压检测信号,若基准波电压检测信号的电压值从第一电压阈值区间切换至第二电压阈值区间,则在第一缓冲阶段后将初始载波的波形由第一载波波形切换为第二载波波形。
在一个实施例中,在第一缓冲阶段后将初始载波的波形由第一载波波形切换为第二载波波形,包括:在基准波的电压值达到第一预设阈值电压时,调整初始载波的频率为第一频率,以使初始载波在第一缓冲阶段内的电压值达到第二载波波形的第一峰值(即波峰)。
在一个实施例中,若基准波从第二区间进入第三区间,则在第二缓冲阶段后将初始载波的波形由第一载波21(0°载波)切换为第二载波22(60°载波),包括:对基准波的电压值进行检测,得到基准波电压检测信号;若基准波电压检测信号的电压值从第二电压阈值区间切换至第三电压阈值区间,则在第二缓冲阶段后将初始载波的波形由第一载波21(0°载波)切换为第二载波22(60°载波)。
在一个实施例中,在第二缓冲阶段后将初始载波的波形由第一载波21(0°载波)切换为第二载波22(60°载波),包括:若基准波的电压值达到第二预设阈值电压时,则调整初始载波的频率为第二频率,以使初始载波在第二缓冲阶段内的电压值达到第二载波波形的第一峰值(即波峰)。
本申请实施例还提供了一种载波生成装置,参考图5所示,载波生成装置包括:载波获取模块10、第一切换模块20以及第二切换模块30。
具体的,载波获取模块10被配置为在检测到区域检测器的输出值发生变化时,获取第一载波的波形,第一切换模块20被配置为在第一载波到达第一个波谷时,切换为预设频率的切换载波,第二切换模块30被配置为获取切换载波的波形,在切换载波到达第一个波峰时,切换至第二载波,其中,第一载波、第二载波和切换载波的幅值相同。
在一个实施例中,参考图6所示,载波生成装置还包括:基准波划分模块 40。基准波划分模块40被配置为将基准波的峰峰值区间按照从大到小的顺序依序划分为第一区间(Region1)、第二区间(Region2)、第三区间(Region3);并根据区域检测器的输出值与基准波的区间建立映射关系,其中,当基准波位于第一区间(Region1)或第三区间(Region3)时,区域检测器的输出值为第一阈值,当基准波位于第二区间(Region2)时,区域检测器的输出值为第二阈值。
本申请实施例还提供了一种脉宽调制方法,应用于多桥臂逆变器,脉宽调制方法包括:采用如上述任一项的载波生成方法生成至少一路载波;将每路载波与对应的基准波进行比较,并根据比较结果生成对应的调制信号发送至多桥臂逆变器。
在本实施例中,将采用上述任一项的载波生成方法生成至少一路载波与对应的基准波进行比较,并根据比较结果生成对应的调制信号发送至多桥臂逆变器。进一步使得输出的调制信号更加准确,提高了输出波形的质量。解决了传统的输出波形有重合部分的问题。
本申请实施例还提供了一种逆变系统,逆变系统包括:第一载波发生器、第二载波发生器、切换载波发生器、基准波发生器、区域检测器、控制器以及多桥臂逆变器。
第一载波发生器被配置为发送第一载波。第二载波发生器被配置为发送第二载波。切换载波发生器被配置为发送切换载波,基准波发生器被配置为发送基准波。区域检测器被配置为检测基准波的位置。控制器被配置为检测各发生器输出的载波情况,并控制对应的发生器发波。控制器还被配置为执行如上述任一项的载波生成方法以生成至少一路载波,并将每路载波与对应的基准波进行比较,并根据比较结果生成对应的调制信号发送至多桥臂逆变器。需要说明的是,在本申请中实施例中,该第一载波发生器、第二载波发生器和切换载波发生器可以为同一个载波发生器,也可以是不同的载波发生器。当为同一个载波发生器时,该载波发生器按照本申请实施例提供的上述实施例,在不同的时 间点输出不同的载波。当为不同的载波发生器时,各载波发生器在该控制器的控制下,在不同的时间点输出对应的载波。
在一个实施例中,参考图7、图8所示,把应用上述载波生成方法的逆变系统进行仿真实验,其中,该多桥臂逆变器为三桥臂逆变器,电源电压为300V,载波频率为20kHz,基准波频率=60Hz,耦合电感感量=0.2mH,滤波电感=30uH,功率=10.9kW,采用上述载波生成方法进行仿真实验。其中,三桥臂逆变器的三相交错的仿真波形,参考图7所示,由上至下分别为耦合电感内磁通量密度,相位环流(如果有跳变相位环流也会出现跳变),线电压,相电压,以及三相线电流。由图7第一行可以清楚的看出,通过本申请实施例,磁通量跳变消失,大大减小了磁通量峰值。根据本申请提供的上述实施例,能够进一步减小逆变系统所需耦合电感的体积和成本,增加整个逆变系统的功率密度。
在一个实施例中,该逆变系统应用于三桥臂逆变器中,结合图8中的三桥臂逆变器所示,a1、a2、a3分别为三桥臂逆变器中每一桥臂中与输出电感连接的信号节点,每一桥臂由两个串联的开关管组成,V为直流电源,在本实施例中,载波的数量取决于多桥臂逆变器的桥臂数量,对于三桥臂逆变器,则每一组载波有三路相位不同的载波,每一路载波对应驱动一个桥臂,若该三桥臂逆变器应用于三相电,则需要三组载波,每一组载波对应三相电中的一个相位。图8示出了输出三相电的三桥臂逆变器的示意图。其中,输出A相(Phase A)的三桥臂逆变器的电路结构如图8所示,其余的B相(Phase B)和C相(Phase C)的电路结构与A相的电路结构相同。在一些实施例中,该三桥臂逆变器也称为三桥臂交错逆变器或者三相三桥臂逆变器。应该理解到,本申请所揭露的方法和装置/系统,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦 合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上,或者说对现有技术做出贡献的部分,或者该技术方案的部分,可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,该计算机软件产品包括若干指令,该指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。前述的存储介质可以包括但不限于:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种载波生成方法,包括:
    在检测到区域检测器的输出值发生变化时,获取第一载波的波形;
    在所述第一载波到达第一个波谷时,切换为预设频率的切换载波;
    获取所述切换载波的波形,在所述切换载波到达第一个波峰时,切换至第二载波,其中,所述第一载波、所述第二载波和所述切换载波的幅值相同;
    其中,所述区域检测器用于检测基准波的位置,并根据所述基准波的位置输出对应的输出值。
  2. 如权利要求1所述的载波生成方法,其中,所述载波生成方法还包括:
    将基准波的峰峰值区间按照从大到小的顺序依序划分为第一区间、第二区间、第三区间;
    根据所述区域检测器的输出值与所述基准波的区间建立映射关系,其中,当所述基准波位于所述第一区间或第三区间时,所述区域检测器的输出值为第一阈值,当所述基准波位于所述第二区间时,所述区域检测器的输出值为第二阈值。
  3. 如权利要求1所述的载波生成方法,其中,所述在检测到区域检测器的输出值发生变化时,获取第一载波的波形包括:
    在检测到所述区域检测器的输出值由第一阈值变为第二阈值时,获取所述第一载波的波形;
    所述在所述第一载波到达第一个波谷时,切换为预设频率的切换载波包括:
    在所述第一载波到达第一个波谷时,切换为第一频率的切换载波,其中所述第一频率为所述第一载波的载波频率的1.5倍。
  4. 如权利要求1所述的载波生成方法,其中,所述在检测到区域检测器的输出值发生变化时,获取第一载波的波形包括:
    在检测到所述区域检测器的输出值由第二阈值变为第一阈值时,获取所述第一载波的波形;
    所述在所述第一载波到达第一个波谷时,切换为预设频率的切换载波包括:
    在所述第一载波到达第一个波谷时,切换为第二频率的切换载波,其中所述第二频率为所述第一载波的载波频率的0.75倍。
  5. 如权利要求1至4任一项所述的载波生成方法,其中,所述第一载波和所述第二载波的相位差为60°。
  6. 如权利要求1至4任一项所述的载波生成方法,其中,所述载波生成方法应用于多桥臂逆变器;
    所述第一载波的相位角度计算公式为:
    Figure PCTCN2022142590-appb-100001
    所述第二载波波形的相位角度计算公式为:
    Figure PCTCN2022142590-appb-100002
    其中,n为所述多桥臂逆变器的桥臂数。
  7. 如权利要求1至4任一项所述的载波生成方法,其中,所述将基准波的峰峰值区间按照从大到小的顺序依序划分为第一区间、第二区间、第三区间包括:
    获取所述基准波的幅值;
    根据所述基准波的幅值确定所述基准的峰峰值区间;
    按照等比例将所述基准波的峰峰值划分为三个区间,其中,第一区间为 [1/3A,A],第二区间为[-1/3A,1/3A],第三区间为[-A,-1/3A],A表示基准波的幅值。
  8. 如权利要求6所述的载波生成方法,其中,所述载波生成方法还包括:
    获取所述多桥臂逆变器的桥臂个数;
    将所述基准波的峰峰值区间按照从大到小的顺序依序划分为N个区间,其中,N表述所述多桥臂逆变器的桥臂个数。
  9. 如权利要求2所述的载波生成方法,其中,当所述基准波位于所述第一区间或所述第三区间时,所述区域检测器的输出值为0;当所述基准波位于所述第二区间时,所述区域检测器的输出值为1。
  10. 一种脉宽调制方法,应用于多桥臂逆变器,所述脉宽调制方法包括:
    采用如权利要求1-9任一项所述的载波生成方法生成至少一路载波;
    将每路所述载波与对应的基准波进行比较,并根据比较结果生成对应的调制信号发送至所述多桥臂逆变器。
  11. 一种逆变系统,包括:
    载波发生器:用于发送第一载波、第二载波和切换载波;
    基准波发生器:用于发送基准波;
    区域检测器:用于检测所述基准波的位置;
    控制器:多桥臂逆变器;
    所述控制器用于执行如权利要求1-9任一项所述的载波生成方法以生成至少一路载波,并将每路所述载波与对应的基准波进行比较,并根据比较结果生成对应的调制信号发送至所述多桥臂逆变器。
PCT/CN2022/142590 2022-03-21 2022-12-28 载波生成方法、脉宽调制方法以及逆变系统 WO2023179145A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210278945.4 2022-03-21
CN202210278945.4A CN114665738B (zh) 2022-03-21 2022-03-21 载波生成方法、切换装置、脉宽调制方法以及逆变系统

Publications (1)

Publication Number Publication Date
WO2023179145A1 true WO2023179145A1 (zh) 2023-09-28

Family

ID=82032361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142590 WO2023179145A1 (zh) 2022-03-21 2022-12-28 载波生成方法、脉宽调制方法以及逆变系统

Country Status (2)

Country Link
CN (1) CN114665738B (zh)
WO (1) WO2023179145A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114665738B (zh) * 2022-03-21 2022-12-06 深圳市正浩创新科技股份有限公司 载波生成方法、切换装置、脉宽调制方法以及逆变系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195512A (zh) * 2011-03-25 2011-09-21 上海磁浮交通发展有限公司 一种逆变器同步脉宽调制载波比切换时的处理方法
US20170279371A1 (en) * 2014-08-28 2017-09-28 Mitsubishi Electric Corporation Power conversion device and vehicle drive system
CN112003492A (zh) * 2020-08-31 2020-11-27 珠海格力电器股份有限公司 窄脉冲的补偿方法、装置、计算机设备和存储介质
CN112366972A (zh) * 2020-11-05 2021-02-12 武汉理工大学 三相电压型逆变器的变载波脉宽调制系统及方法
CN113765423A (zh) * 2021-09-30 2021-12-07 深圳市英威腾电气股份有限公司 一种两电平逆变器优化vsvm方法及装置
CN114665738A (zh) * 2022-03-21 2022-06-24 深圳市正浩创新科技股份有限公司 载波生成方法、切换装置、脉宽调制方法以及逆变系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108322077B (zh) * 2018-03-28 2020-02-18 中车青岛四方车辆研究所有限公司 基于shepwm的脉宽调制系统及调制方法
CN112653332B (zh) * 2020-12-08 2022-05-24 阳光电源股份有限公司 一种双向dc/dc变换系统的控制方法、装置及控制器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195512A (zh) * 2011-03-25 2011-09-21 上海磁浮交通发展有限公司 一种逆变器同步脉宽调制载波比切换时的处理方法
US20170279371A1 (en) * 2014-08-28 2017-09-28 Mitsubishi Electric Corporation Power conversion device and vehicle drive system
CN112003492A (zh) * 2020-08-31 2020-11-27 珠海格力电器股份有限公司 窄脉冲的补偿方法、装置、计算机设备和存储介质
CN112366972A (zh) * 2020-11-05 2021-02-12 武汉理工大学 三相电压型逆变器的变载波脉宽调制系统及方法
CN113765423A (zh) * 2021-09-30 2021-12-07 深圳市英威腾电气股份有限公司 一种两电平逆变器优化vsvm方法及装置
CN114665738A (zh) * 2022-03-21 2022-06-24 深圳市正浩创新科技股份有限公司 载波生成方法、切换装置、脉宽调制方法以及逆变系统

Also Published As

Publication number Publication date
CN114665738A (zh) 2022-06-24
CN114665738B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2023179145A1 (zh) 载波生成方法、脉宽调制方法以及逆变系统
US10886860B2 (en) Three-phase, three-level inverters and methods for performing soft switching with phase synchronization
CN101981798B (zh) 电力变换装置
CN112165244B (zh) 一种主从式并联逆变器输出均流控制方法
CN102222931A (zh) 一种微电网三相并网逆变系统及其控制方法
CN109510496B (zh) 无电解电容npc三电平逆变器中点电压平衡控制方法及系统
US20220077769A1 (en) Power Factor Correction Circuit, Control Method and Electrical Appliance
JP2011036045A5 (zh)
CN103427666A (zh) 一种双级矩阵变换器的载波调制方法
WO2023179144A1 (zh) 脉宽调制方法、脉宽调制装置以及逆变系统
CN106981883A (zh) 一种多逆变器并联发电的载波同步方法和装置
CN103684031A (zh) 一种pwm整流器电流滞环控制数字实现系统
Sun et al. A novel balancing method for DC voltage of cascaded multilevel STATCOM
US20200328697A1 (en) Control method and apparatus for single-phase five-level converter
CN106100393B (zh) 单相四象限整流器死区补偿方法和装置
CN109728740A (zh) 基于解耦原理的模块化多电平换流器环流抑制方法
CN103208940A (zh) 一种基于svpwm的三相逆变器无死区控制方法
CN109347349A (zh) 一种三电平载波调制方法
CN102545269B (zh) 串联型数模综合仿真系统接口
CN108390582A (zh) 一种单相三电平变流器空间矢量脉宽调制优化方法
JP2014064469A (ja) インバータ制御回路、および、このインバータ制御回路を備えた系統連系インバータシステム
CN205051351U (zh) 有源电力滤波器
Canesin et al. A 2kw interleaved zcs-fm boost rectifier digitally controlled by fpga device
CN105140923A (zh) 有源滤波方法和滤波器
CN110429847B (zh) 一种双Buck逆变器开关管驱动信号生成方法及电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933192

Country of ref document: EP

Kind code of ref document: A1