WO2023179019A1 - 支持低时延业务的用户面配置方法、系统、基站及介质 - Google Patents

支持低时延业务的用户面配置方法、系统、基站及介质 Download PDF

Info

Publication number
WO2023179019A1
WO2023179019A1 PCT/CN2022/127986 CN2022127986W WO2023179019A1 WO 2023179019 A1 WO2023179019 A1 WO 2023179019A1 CN 2022127986 W CN2022127986 W CN 2022127986W WO 2023179019 A1 WO2023179019 A1 WO 2023179019A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
plane entity
user plane
configuration
pdcp
Prior art date
Application number
PCT/CN2022/127986
Other languages
English (en)
French (fr)
Inventor
许森
刘悦
史凡
熊尚坤
信金灿
Original Assignee
中国电信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210392671.1A external-priority patent/CN116847409A/zh
Application filed by 中国电信股份有限公司 filed Critical 中国电信股份有限公司
Publication of WO2023179019A1 publication Critical patent/WO2023179019A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a user plane configuration method, system, base station and medium that support low-latency services.
  • 5G (5th Generation, fifth generation) network introduces a design architecture that separates the control plane (Control Plane) and the user plane (User Plane).
  • the present disclosure provides a user plane configuration method, system, base station and medium that support low-latency services.
  • a user plane configuration method that supports low-latency services.
  • the method includes: a base station control plane entity receives a session establishment or modification request message issued by a core network control plane entity; when the base station When the control plane entity determines that the base station user plane entity supports the extended PDCP discard timer and/or Ethernet header compression EHC configuration, the base station control plane entity sends the corresponding extended PDCP discard timer and/or EHC configuration through the bearer context establishment or modification request message.
  • the EHC configuration is included in the PDCP configuration information and sent to the base station user plane entity; the base station control plane entity generates a radio resource control RRC reconfiguration message based on the bearer context establishment or modification response message returned by the base station user plane entity, and sends To the terminal; after receiving the RRC reconfiguration complete message returned by the terminal, the base station control plane entity returns a session establishment or modification response message to the core network control plane entity.
  • the base station control plane entity determines the PDCP discard timer and/or Ethernet header compression EHC configuration that the base station and the terminal user plane PDCP configuration need to support based on the service characteristic information of the established or modified session;
  • the PDCP discard timer includes a first discard timer or a second discard timer, the first discard timer is a PDCP discard timer supported by the radio resource control RRC layer, and the second discard timer is an extended support PDCP discard timer for low-latency services.
  • the method further includes any one of the following: the base station control plane entity determines the base station user plane based on the protocol version information supported by the base station user plane entity carried in the first network management configuration information. Whether the entity supports the extended PDCP discard timer; the base station control plane entity determines whether the base station user plane entity supports the extended PDCP discard timer according to the protocol version indication information carried by the base station user plane entity in the E1 interface establishment or update message; The base station control plane entity determines that the base station user plane entity does not support the extended discard timer set based on the bearer establishment or modification failure reason received by the E1 interface.
  • the protocol version indication information uses an enumeration type to represent the protocol version supported by the base station user plane entity.
  • the protocol versions supported by the base station user plane entity include any one of the following: 3GPP Rel-15 version, 3GPP Rel-16-v80 previous version, and 3GPP Rel-16-v90 subsequent version.
  • the method further includes: the base station control plane entity performs the following steps according to the second network management configuration information and the session Establish or modify the quality of service QOS level of the data bearer carried in the request message, and determine the PDCP discard timer and/or EHC configuration sent to the base station user plane entity.
  • the second network management configuration information at least includes: the mapping relationship between the QOS level and the service data transmission interval; whether the QOS level enables EHC configuration and the type of the started EHC configuration.
  • the type of the EHC configuration includes any of the following One: Upstream compression only, Downstream compression only, and Bidirectional compression.
  • the method further includes: the base station control plane entity determines according to the service data transmission interval to configure the PDCP discard timer using the timer value in the first discard timer set or the second discard timer set. , wherein the timer value in the first discard timer set is greater than or equal to 10ms; the timer value in the second discard timer set is less than 10ms, and the timer value in the second discard timer set Used to configure the extended PDCP discard timer supported by the base station user plane entity.
  • the first discard timer set at least includes the following timer values: 10ms, 20ms, 30ms, 40ms, 50ms, 60ms, 75ms, 100ms, 150ms, 200ms, 250ms, 300ms, 500ms, 750ms, 1500ms ;
  • the second drop timer set at least includes the following timer values: 0.5ms, 1ms, 2ms, 4ms, 8ms, and the second drop timer set indicates an extended PDCP drop timer.
  • the method further includes: when the base station control plane entity does not learn the protocol version supported by the base station user plane entity When receiving information, the base station control plane entity sends the first PDCP configuration information to the base station user plane entity through the E1 interface message carrying context establishment or modification request message, where the first PDCP configuration information includes the PDCP discard timer and/or Or EHC configuration; wherein the PDCP discard timer configuration includes: a timer value in the first discard timer set or the second discard timer set.
  • the EHC configuration includes: header compression context identification, including 7 bit and 15 bit; for downlink header compression, at least includes the following information: continuity indication information of downlink header compression, enumeration type, including at least True ; For upstream header compression, at least include the following information: continuity indication information of upstream header compression, enumeration type, including at least True; the maximum upstream header compression context identifier MAX_CID_EHC_UL, the value does not exceed maxNumberEHC-Contexts.
  • the EHC configuration includes at least one of the following: a header compression context identifier, continuity indication information for uplink or downlink header compression, and a maximum uplink header compression context identifier.
  • the method further includes: when the base station control plane entity supports the robust header compression ROHC function, including the ROHC configuration parameters and the EHC configuration simultaneously in the PDCP configuration and sending it to the base station through a bearer context establishment or modification request message.
  • the base station control plane entity supports the robust header compression ROHC function, including the ROHC configuration parameters and the EHC configuration simultaneously in the PDCP configuration and sending it to the base station through a bearer context establishment or modification request message.
  • User plane entity so that the base station user plane entity configures the header compression operation of the corresponding bearer.
  • the method further includes: the base station user plane entity Check whether it supports the timer value in the first PDCP configuration information of the established or modified bearer; when the base station user plane entity does not support the discard timer value in the first PDCP configuration information of the bearer, the The base station user plane entity returns a bearer context establishment or modification failure message and a first failure reason to the base station control plane entity.
  • the first failure reason is used to indicate that the base station user plane entity does not support the timer included in the first PDCP configuration information.
  • the base station user plane entity does not delete the user context configuration information and keeps receiving the original PDCP configuration information; when the base station user plane entity supports the timer value in the first PDCP configuration information, save the first The timer value in the PDCP configuration information; the base station user plane entity uses the EHC configuration included in the bearer context establishment or modification request message PDCP configuration to perform header compression of the corresponding data bearer for the data bearer requested by each base station control plane entity.
  • Operation process and when the first PDCP configuration information contains uplink header compression configuration, check whether the largest uplink header compression context identifier MAX_CID_EHC_UL in the first PDCP configuration information exceeds maxNumberEHC-Contexts; when the first When the maximum upstream header compression context identifier MAX_CID_EHC_UL in the PDCP configuration information exceeds maxNumberEHC-Contexts, the base station user plane entity returns a bearer context establishment or modification failure message and a second failure reason to the base station control plane entity. The second failure reason The reason is used to indicate that the maximum upstream header compression context identifier in the first PDCP configuration information is greater than maxNumberEHC-Contexts.
  • the method further includes: after the base station user plane entity checks whether it supports the discard timer value in the first PDCP configuration information, when the base station user plane entity supports the first When the discard timer value in the PDCP configuration information is configured and other configurations can support the configuration, the base station user plane entity returns a bearer context establishment or modification response message to the base station control plane entity; and/or, when the base station user After the plane entity returns the bearer context establishment or modification failure message and the first failure reason to the base station control plane entity, the base station control plane entity determines that the base station user plane entity does not support the extended discard timer, and after the first discard timing Re-select a timer value with the smallest value from the server set, update the first PDCP configuration information of the corresponding bearer to the second PDCP configuration information, and send the second PDCP configuration information to the E1 interface message bearer context establishment or modification request message.
  • Base station user plane entity is the base station user plane entity.
  • the method further includes: the base station control plane entity returns a bearer context establishment or modification response message according to the base station user plane entity.
  • the bearer context establishment or modification response message is generated to generate a first RRC reconfiguration message sent to the terminal, wherein the discard timer value and/or EHC configuration in the first RRC reconfiguration message is consistent with the first PDCP configuration information.
  • the discard timer value and/or EHC configuration are the same.
  • the method further includes: the base station control plane entity sends a first RRC reconfiguration message to the terminal through the base station separation entity; the base station control plane entity receives the terminal according to the first RRC reconfiguration message through the base station separation entity. A first RRC reconfiguration completion message returned by an RRC reconfiguration message; the base station control plane entity sends a session establishment or modification response message to the core network control plane entity according to the first RRC reconfiguration completion message returned by the terminal. to confirm that the bearer configuration on the wireless network is completed.
  • the method further includes: the base station user plane entity returning a bearer context establishment or modification response message to the base station control plane entity according to the received second PDCP configuration information; the base station control plane entity returning a bearer context establishment or modification response message according to the received second PDCP configuration information;
  • the bearer context establishment or modification response message returned by the base station user plane entity generates a second RRC reconfiguration message sent to the terminal, wherein the discard timer value and/or the EHC configuration in the second RRC reconfiguration message are consistent with the The discard timer value and/or EHC configuration of the second PDCP configuration information are the same.
  • the method further includes: the base station control plane entity sends a second RRC reconfiguration message to the terminal through the base station separation entity; the base station control plane entity receives the terminal's request according to the first request through the base station separation entity.
  • a communication system including: a core network control plane entity, a base station control plane entity, and a base station user plane entity; wherein the core network control plane entity is used to issue session establishment or modification request message; the base station control plane entity is configured to, after receiving the session establishment or modification request message, when it is determined that the base station user plane entity supports the extended PDCP discard timer and/or Ethernet header compression EHC configuration, through
  • the bearer context establishment or modification request message includes the corresponding extended PDCP discard timer and/or EHC configuration in the PDCP configuration information and sends it to the base station user plane entity;
  • the PDCP discard timer includes the first discard timer and/or A second discard timer, the first discard timer is a PDCP discard timer supported by the radio resource control RRC layer, and the second discard timer is an extended PDCP discard timer that supports low-latency services;
  • the base station The user plane entity is configured to return a bearer context establishment or modification response message to the base station control plane
  • the base station control plane entity is also used to determine the PDCP discard timer and/or Ethernet header compression that the base station and the terminal user plane PDCP configuration need to support based on the service characteristic information of the established or modified session. EHC configuration.
  • the communication system further includes: a base station separation entity, configured for the base station control plane entity to send an RRC reconfiguration message to the terminal or receive an RRC reconfiguration complete message returned by the terminal.
  • a base station separation entity configured for the base station control plane entity to send an RRC reconfiguration message to the terminal or receive an RRC reconfiguration complete message returned by the terminal.
  • a base station including: a processor; and a memory for storing executable instructions of the processor; wherein the processor is configured to execute the executable instructions via To perform any of the above mentioned user plane configuration methods for supporting low-latency services.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the user can implement any one of the above-mentioned methods of supporting low-latency services.
  • Surface configuration method When the computer program is executed by a processor, the user can implement any one of the above-mentioned methods of supporting low-latency services.
  • the base station control plane entity when the base station control plane entity receives the session establishment or modification request message issued by the core network control plane entity, the base station controls The plane entity determines the PDCP discard timer that the base station and the terminal user plane PDCP configuration need to support based on the service characteristic information of the session established or modified (the first discard timer supported by the Radio Resource Control RRC layer or the extended low-latency support Second discard timer of the service) and/or Ethernet header compression EHC configuration; when the base station control plane entity determines that the base station user plane entity supports the extended PDCP discard timer and/or Ethernet header compression EHC configuration, the base station control plane entity passes The bearer context establishment or modification request message includes the corresponding extended PDCP discard timer and/or EHC configuration in the PDCP configuration information and sends it to the base station user plane entity; the base station control plane entity responds according to the bearer context establishment or modification response returned by the base station user plane entity
  • Figure 1 shows a schematic diagram of a control plane and user plane separation architecture in related technologies
  • Figure 2 shows a schematic diagram of the establishment process of an E1 interface between a control plane and a user plane in the related art
  • Figure 3 shows a schematic diagram of the establishment process of a bearer context between a base station control plane entity and a base station user plane entity in an embodiment of the present disclosure
  • Figure 4 shows a schematic diagram of a communication system in an embodiment of the present disclosure
  • Figure 5 shows a flow chart of a user plane configuration method that supports low-latency services in an embodiment of the present disclosure
  • Figure 6 shows a schematic diagram of the interaction process of a user plane configuration system that supports low-latency services in an embodiment of the present disclosure
  • Figure 7 shows a schematic diagram of the establishment process of an E1 interface between the control plane and the user plane in an embodiment of the present disclosure
  • Figure 8 shows a schematic diagram of a base station in an embodiment of the present disclosure
  • Figure 9 shows a schematic diagram of a computer-readable storage medium in an embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concepts of the example embodiments. To those skilled in the art.
  • the described features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • UE User Equipment, user equipment, also called user terminal, referred to as terminal;
  • gNB base station of 5G network
  • CU Centralized Unit, centralized unit
  • DU Distributed Unit, distributed unit
  • CP Control Plane, control surface
  • PDCP Packet Data Convergence Protocol, packet data convergence protocol
  • EHC Ethernet Header Compression, Ethernet header compression
  • QOS Quality of Service, quality of service
  • RRC Radio Resource Control, wireless resource control
  • MAC Medium Access Control, media access control
  • PDCP Packet Data Convergence Protocol, packet data convergence protocol
  • RLC Radio Link Control, wireless link layer control protocol
  • PDU Protocol Data Unit, protocol data unit
  • SDU Service Data Unit, service data unit
  • RRC Radio Resource Control, wireless resource control.
  • 3GPP In order to support low-latency industrial Internet services, 3GPP has introduced related air interface enhancement technologies, but the support for low-latency services in the separated architecture of base station virtualization is not yet complete.
  • Figure 1 shows a schematic diagram of a control plane and user plane separation architecture in related technologies.
  • the base station user plane for example, gNB-CU-UP
  • the base station user plane for example, gNB-CU-UP
  • SDAP Service Data Adaptation Protocol, Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol, Packet Data Convergence Protocol
  • the base station control plane for example, gNB-CU-CP
  • RRC Radio Resource Control, Radio Resource Control
  • the separate (for example, gNB-DU) entity supports the protocol functions of the physical layer, MAC (Media Access Control, Media Access Control) layer, and RLC (Radio Link Control, Radio Link Layer Control Protocol) layer.
  • the base station control plane entity (gNB-CU-CP) and the base station user plane entity (gNB-CU-UP) use the E1 interface to communicate.
  • the base station control plane entity communicates with the base station.
  • the user plane entity Before the user plane entity performs related configurations, it is necessary to obtain information such as the service support capabilities of the base station user plane entity.
  • Figure 3 shows a schematic diagram of the establishment process of a bearer context between a base station control plane entity and a base station user plane entity in an embodiment of the present disclosure.
  • the base station control plane entity cannot understand the base station user.
  • the support capabilities of the base station user plane entity for protocol versions or some business functions can only be obtained through network management configuration.
  • the base station may be damaged due to differences in the business support capabilities of the base station control plane entity and the base station user plane entity.
  • the bearer establishment or modification between the control plane entity and the base station user plane entity failed.
  • the PDU (Ptotocol Data Unit, protocol data unit) of PDCP is divided into two types: data PDU and control PDU; among them, the data PDU is the data transferred between N-layer protocol entities; the control PDU is between N-layer users and N-layer protocols. data passed between.
  • the process of PDU encapsulation/decapsulation is: at the sender, add the protocol control information PCI to the SDU submitted by the user, and encapsulate it into a PDU; at the receiver, decapsulate the received PDU, remove the PCI, and restore it to SDU for transmission. Receiving user.
  • SDU segmentation/assembly If the bandwidth of the lower channel cannot meet the needs of transmitting SDU, it is necessary to divide an SDU into multiple segments, encapsulate them into PDUs and send them out (segmentation); after the receiver decapsulates these PDUs Reassemble into SDU.
  • splicing means that the sender encapsulates multiple short-length SDUs into one PDU for sending, and then decapsulates the received PDU at the receiver, separates the multiple SDUs, and uses the splicing function Can improve channel utilization.
  • PDCP does not allocate SN (Serial Number, serial number) to control PDUs, but allocates SNs to all data PDUs, and ensures that the SNs will not be repeated within a period of time.
  • the sender starts a discard timer (Discard Timer), also known as a packet loss timer, for each SDU. After timeout, the SDU is discarded to prevent congestion in the sending buffer.
  • SN Serial Number, serial number
  • SNs Serial Number, serial number
  • the sender starts a discard timer (Discard Timer), also known as a packet loss timer, for each SDU. After timeout, the SDU is discarded to prevent congestion in the sending buffer.
  • Discard Timer also known as a packet loss timer
  • the discard timer granularity supported by the RRC layer is: 10ms, 20ms, 30ms, 40ms, 50ms, 60ms, 75ms, 100ms, 150ms, 200ms, 250ms, 300ms, 500ms, 750ms, 1500ms and other extended values ; Since low-latency services have lower transmission intervals, in order to support the matching of transmission intervals and discard timers, lower discard timer granularities are introduced on the air interface, namely: 0.5ms, 1ms, 2ms, 4ms, 8ms and Other extended values.
  • E1 interface protocol (TS38.463 protocol) does not yet support lower discard timer values, this will result in low-latency services being unable to receive corresponding support in the control plane and user plane separation architecture. At the same time, it is incompatible with the core network and the There will also be interoperability issues between terminals.
  • the 3GPP standard introduced Ethernet Header Compression (EHC) technology in the Rel-15 stage to reduce the amount of data transmitted in data packets.
  • EHC Ethernet Header Compression
  • the relevant configuration of uplink and downlink header compression is defined in the air interface RRC message.
  • the uplink part includes the following content:
  • maxCID-EHC-UL is used to define the EHC context identifier for uplink. According to the TS38.331 protocol, this value is not allowed to be greater than maxNumberEHC-Contexts; and drb-ContinueEHC-UL-r16 is used to define the continuity of uplink compression.
  • the current E1 interface protocol (TS38.463 protocol) does not define the maximum context identifier of the uplink EHC, but defines: maxCID-EHC-UL (the maximum context identifier of the uplink EHC) and maxCID-EHC-DL (the maximum value of the context identifier of the downlink EHC).
  • maxNumberEHC-Contexts maximum context identifier
  • maxNumberEHC-Contexts maximum context identifier
  • the base station control plane entity does not know the support of the discard timer by the base station user plane entity, and when the user plane entity does not support the enhanced discard timer extension, the base station control plane entity communicates with the terminal and core network The processing behavior is undefined.
  • the failure reason for protocol support can only be "PDCP configuration not supported".
  • the meaning of this failure reason is that the corresponding PDCP configuration cannot be supported, so the base station control plane entity cannot know whether it is because the extended information is not supported. caused by.
  • the current 3GPP Rel-17 5G separation architecture protocol still has flaws for low-latency services.
  • the base station user plane entity supports low-latency related features and reduce configuration errors caused by incomplete protocols, This can effectively increase the user's transmission delay and improve the user experience.
  • Embodiments of the present disclosure provide a user plane configuration method that supports low-latency services.
  • the base station control plane entity receives a session establishment or modification request message sent by the core network control plane entity, the base station control plane entity Or modify the service characteristic information of the session to determine the PDCP discard timer that the base station and terminal user plane PDCP configuration needs to support (the first discard timer supported by the Radio Resource Control RRC layer or the extended second discard timer that supports low-latency services.
  • the base station control plane entity determines that the base station user plane entity supports the extended PDCP discard timer and/or Ethernet header compression EHC configuration
  • the base station control plane entity establishes or modifies it through the bearer context
  • the request message includes the corresponding extended PDCP discard timer and/or EHC configuration in the PDCP configuration information and sends it to the base station user plane entity; the base station control plane entity establishes or modifies the response message based on the bearer context returned by the base station user plane entity to generate wireless resources.
  • low-latency services can be supported accordingly in a base station designed to separate the control plane and the user plane, avoiding the need for base station control plane entities and base station user plane entities.
  • the user plane configuration method for supporting low-latency services provided in the embodiment of the present disclosure can be applied to but is not limited to the communication system shown in Figure 4.
  • the communication system includes: core network control plane entity 41, base station Control plane entity 42 and base station user plane entity 43;
  • the core network control plane entity 41 is used to deliver session establishment or modification request messages
  • the base station control plane entity 42 is used to determine the PDCP discard timer and/or Ethernet header compression EHC configuration that the base station and terminal user plane PDCP configuration need to support based on the service characteristic information of the established or modified session; when determining the base station user plane
  • the entity supports the extended PDCP discard timer and/or Ethernet header compression EHC configuration the corresponding extended PDCP discard timer and/or EHC configuration is included in the PDCP configuration information and sent to the base station user plane through the bearer context establishment or modification request message.
  • the PDCP discard timer includes a first discard timer and/or a second discard timer, the first discard timer is a PDCP discard timer supported by the radio resource control RRC layer, and the second discard timer is an extended Support PDCP discard timer for low-latency services;
  • the base station user plane entity 43 is used to return a bearer context establishment or modification response message to the base station control plane entity 42;
  • the base station control plane entity 42 is also used to generate a radio resource control RRC reconfiguration message according to the bearer context establishment or modification response message returned by the base station user plane entity 43, send it to the terminal 44, and complete the RRC reconfiguration after receiving the RRC reconfiguration message returned by the terminal 44. After receiving the message, a session establishment or modification response message is returned to the core network control plane entity 41.
  • the terminal 44 in the embodiment of the present disclosure can be various electronic devices, including but not limited to smart phones, tablet computers, laptop computers, desktop computers, wearable devices, augmented reality devices, and virtual reality devices. wait.
  • the clients of the application programs installed in different terminal devices 44 are the same, or the clients of the same type of application programs based on different operating systems.
  • the specific form of the application client can also be different.
  • the application client can be a mobile phone client, a PC client, etc.
  • the above-mentioned communication system provided in the embodiment of the present disclosure may also include: a base station separation entity 45, used for the base station control plane entity 42 to send an RRC reconfiguration message to the terminal 44 or receive a response from the terminal. RRC reconfiguration complete message.
  • embodiments of the present disclosure provide a user plane configuration method that supports low-latency services, which at least to a certain extent overcomes the inability of low-latency services in related technologies to be obtained in a control plane and user plane separation architecture. Support technical issues accordingly.
  • This method can be applied to but is not limited to the base station control plane entity shown in Figure 4.
  • Figure 5 shows a flow chart of a user plane configuration method that supports low-latency services in an embodiment of the present disclosure. As shown in Figure 5, the method includes the following steps:
  • the base station control plane entity receives the session establishment or modification request message sent by the core network control plane entity.
  • the above session establishment or modification request message may contain service characteristic information of the service data transmitted by the established or modified session, for example, service data transmission interval requirements and whether to enable Ethernet header compression, etc.; when the base station control plane entity After receiving the session establishment request message or session modification request message issued by the core network control plane entity, the base station and terminal user plane PDCP can be determined based on the service characteristic information of the session established or modified by the session establishment request message or session modification request message. Configure the required supported PDCP discard timer and/or Ethernet header compression EHC configuration.
  • the method further includes: the base station control plane entity determines the session establishment or modification request message according to the second network management configuration information and the session establishment or modification request message.
  • the quality of service QOS level of the carried data bearer determines the PDCP discard timer and/or EHC configuration sent to the base station user plane entity, where the second network management configuration information at least includes: the mapping relationship between the QOS level and the service data transmission interval; QOS Whether the level enables EHC configuration and the type of enabled EHC configuration.
  • the type of EHC configuration includes any of the following: upstream compression only, downstream compression only, and bidirectional compression.
  • the base station control plane entity determines the PDCP discard timer and/or Ethernet header compression EHC configuration that the base station and the terminal user plane PDCP configuration need to support based on the service characteristic information of the established or modified session.
  • the PDCP discard timers required to be supported by the base station and terminal user plane PDCP configuration include the first discard timer or the second discard timer.
  • the first discard timer is the PDCP discard timer supported by the radio resource control RRC layer.
  • the second discard timer is an extended PDCP discard timer that supports low-latency services.
  • the value of the first discard timer may be: 10ms, 20ms, 30ms, 40ms, 50ms, 60ms, 75ms, 100ms, 150ms, 200ms, 250ms, 300ms, 500ms, 750ms, 1500ms and other extended values;
  • the value of the second discard timer can be: 0.5ms, 1ms, 2ms, 4ms, 8ms and other extended values.
  • the base station control plane entity determines that the base station user plane entity supports the extended PDCP discard timer and/or Ethernet header compression EHC configuration
  • the base station control plane entity sends the corresponding extended PDCP discard timer and EHC configuration through the bearer context establishment or modification request message.
  • the EHC configuration is included in the PDCP configuration information and sent to the base station user plane entity
  • the base station control plane entity can determine the base station according to the protocol version supported by the base station user plane entity. User plane entity's ability to support PDCP discard timer and/or EHC configuration.
  • the user plane configuration method for supporting low-latency services can also determine whether the base station user plane entity supports the extended PDCP discard timer in any of the following ways:
  • the base station control plane entity determines whether the base station user plane entity supports the extended PDCP discard timer based on the protocol version information supported by the base station user plane entity carried in the first network management configuration information;
  • the base station control plane entity determines whether the base station user plane entity supports the extended PDCP discard timer based on the protocol version indication information carried by the base station user plane entity in the E1 interface establishment or update message, where the E1 interface is the base station control plane entity and Communication interface between base station user plane entities;
  • Method 3 The base station control plane entity determines that the base station user plane entity does not support the extended discard timer set based on the bearer establishment or modification failure reason received on the E1 interface.
  • the protocol version indication information carried by the user plane entity of the base station may include but is not limited to: the version number of the protocol, which may be represented by enumeration data, for example, v15, v16, etc.
  • the user plane configuration method for supporting low-latency services may also include the following steps: the base station control plane entity determines to use the first discard timer set or the second discard timer set according to the service data transmission interval.
  • the timer value in the timer set configures the PDCP discard timer, where the timer value in the first discard timer set is greater than or equal to 10ms; the timer value in the second discard timer set is less than 10ms, and the timer value in the second discard timer set is less than 10ms.
  • the timer value in the discard timer set is used to configure the extended PDCP discard timer supported by the base station user plane entity.
  • the discard timer size to be used can be determined according to the transmission interval of the low-latency service. If the range of 10ms and above needs to be used, it is determined that the discard timer adopts a value in the first discard timer set.
  • the discard timer Use Rel-15 applicable cells; if the range of 0.5ms to 8ms needs to be used, determine that the discard timer uses a value in the second discard timer set, and the discard timer uses Rel-16 applicable cells.
  • the first set of discard timers may include the following timer values: 10ms, 20ms, 30ms, 40ms, 50ms, 60ms, 75ms, 100ms, 150ms, 200ms, 250ms, 300ms, 500ms, 750ms, 1500ms, and others Extended values;
  • the second discard timer set may include the following timer values: 0.5ms, 1ms, 2ms, 4ms, 8ms and other extended values.
  • the second drop timer set indicates extended PDCP drop timers.
  • the user plane configuration method for supporting low-latency services may also include the following steps: when the base station control plane entity does not know the protocol version information supported by the base station user plane entity, the base station control plane entity sends the first PDCP configuration information to the base station user through the E1 interface message bearer context establishment or modification request message.
  • the PDCP discard timer configuration includes: a timer value in the first discard timer set or the second discard timer set;
  • the EHC configuration includes: a header compression context identifier, including 7 bit and 15 bit;
  • Downstream header compression continuity indication information enumeration type, including at least True
  • the maximum upstream header compression context identifier MAX_CID_EHC_UL the value does not exceed maxNumberEHC-Contexts.
  • the user plane configuration method for supporting low-latency services may also include the following steps: when the base station control plane entity supports the robust header compression ROHC function, combine the ROHC configuration parameters with the EHC configuration At the same time, the bearer context establishment or modification request message included in the PDCP configuration is sent to the base station user plane entity, so that the base station user plane entity configures the header compression operation of the corresponding bearer.
  • the low-latency service provided in the embodiments of the present disclosure is
  • the user plane configuration method may also include the following steps: the base station user plane entity checks whether it supports the timer value in the first PDCP configuration information of the established or modified bearer; when the base station user plane entity does not support the first PDCP configuration of the bearer When the discard timer value in the message is discarded, the base station user plane entity returns a bearer context establishment or modification failure message and the first failure reason to the base station control plane entity. The first failure reason is used to indicate that the base station user plane entity does not support the first PDCP configuration information.
  • the timer value contained in; the base station user plane entity does not delete the user context configuration information and keeps receiving the original PDCP configuration information; when the base station user plane entity supports the timer value in the first PDCP configuration information, save the first PDCP The timer value in the configuration information; for the data bearer requested by each base station control plane entity, the base station user plane entity uses the EHC configuration included in the bearer context establishment or modification request message PDCP configuration to perform the header compression operation process of the corresponding data bearer.
  • the base station user plane entity returns a bearer context establishment or modification failure message and a second failure reason to the base station control plane entity.
  • the second failure reason is used to indicate the maximum uplink header compression in the first PDCP configuration information.
  • the context ID is greater than maxNumberEHC-Contexts.
  • the user plane configuration method for supporting low-latency services may also include the following steps: : When the base station user plane entity supports the discard timer value in the first PDCP configuration information and other configurations can support the configuration, the base station user plane entity returns a bearer context establishment or modification response message to the base station control plane entity.
  • the base station control plane entity generates a radio resource control RRC reconfiguration message based on the bearer context establishment or modification response message returned by the base station user plane entity, and sends it to the terminal;
  • the base station for example, 5G base station
  • the base station control plane entity can send an RRC reconfiguration message to the terminal through the base station separation entity (DU);
  • the terminal may also return an RRC reconfiguration completion message to the base station control plane entity (CU) through the base station detached entity (DU).
  • the base station control plane entity After receiving the RRC reconfiguration completion message returned by the terminal, the base station control plane entity returns a session establishment or modification response message to the core network control plane entity.
  • the RRC reconfiguration message sent by the base station control plane entity to the terminal contains bearer configuration information that the base station control plane entity successfully established or modified based on the bearer context between the base station control plane entity and the base station user plane entity. Therefore, the terminal can Establish an RRC connection based on the bearer configuration information contained in the RRC reconfiguration message, and after establishing the RRC connection, return an RRC reconfiguration completion message to the base station control plane entity so that the base station control plane entity returns session establishment or modification to the core network control plane entity. Respond to the message.
  • the user plane configuration method for supporting low-latency services may further include the following steps: base station The control plane entity generates a first RRC reconfiguration message sent to the terminal based on the bearer context establishment or modification response message returned by the base station user plane entity, where the discard timer value and/or the EHC configuration in the first RRC reconfiguration message are consistent with The discard timer value and/or the EHC configuration of the first PDCP configuration information are the same.
  • the user plane configuration method for supporting low-latency services may also include the following steps: the base station control plane entity sends a first RRC reconfiguration message to the terminal through the base station separation entity; The base station control plane entity receives the first RRC reconfiguration completion message returned by the terminal according to the first RRC reconfiguration message through the base station separation entity; the base station control plane entity sends the first RRC reconfiguration completion message returned by the terminal to the core network control plane entity. Session establishment or modification response message to confirm that the bearer configuration on the wireless network is completed.
  • the user plane configuration method for supporting low-latency services can also be used It includes the following steps: the base station control plane entity determines that the base station user plane entity does not support the extended discard timer, reselects a timer value with the smallest value in the first discard timer set, and updates the first PDCP configuration information of the corresponding bearer to the first discard timer set.
  • the second PDCP configuration information is sent to the base station user plane entity through the E1 interface message bearer context establishment or modification request message.
  • the user plane configuration method for supporting low-latency services may also include the following steps: the base station user plane entity returns the bearer to the base station control plane entity according to the received second PDCP configuration information. Context establishment or modification response message; the base station control plane entity generates a second RRC reconfiguration message sent to the terminal based on the bearer context establishment or modification response message returned by the base station user plane entity, where the discard timing in the second RRC reconfiguration message
  • the value of the timer and/or the EHC configuration are the same as the value of the discard timer and/or the EHC configuration of the second PDCP configuration information.
  • the user plane configuration method for supporting low-latency services may also include the following steps: the base station control plane entity sends a second RRC reconfiguration message to the terminal through the base station separation entity; the base station control plane The entity receives the second RRC reconfiguration completion message returned by the terminal according to the second RRC reconfiguration message through the base station separation entity; the base station control plane entity returns the session establishment or session establishment message to the core network control plane entity according to the second RRC reconfiguration completion message returned by the terminal. Modify the response message to confirm that the bearer is configured on the wireless network.
  • Figure 6 shows a schematic diagram of the interaction process of a user plane configuration system that supports low-latency services in an embodiment of the present disclosure. As shown in Figure 6, it specifically includes the following steps:
  • the base station control plane entity obtains the protocol version information of the base station user plane entity.
  • the base station control plane entity can determine the protocol version information supported by the base station user plane entity according to the network management configuration or the protocol version indication information carried by the first base station user plane entity in the E1 interface establishment or update message, and then obtain the base station user The business function support capabilities of surface entities.
  • the core network control plane entity and the base station control plane entity deliver a PDU session establishment request message or a modification request message to the base station control plane entity.
  • the base station control plane entity receives the session establishment request message or modification request message issued by the core network control plane entity, and determines the transmission interval requirements of the service data and whether according to the QOS level of the data bearer carried in the message and the network management configuration information. Enable Ethernet header compression and other information, and determine the discard timer size based on the transmission interval of service data.
  • the network management configuration information here includes but is not limited to the following:
  • 3Types of Ethernet header compression (using enumeration type): only uplink header compression, only downlink header compression and bidirectional header compression.
  • the base station control plane entity determines the PDCP configuration information for establishing or modifying the bearer context with the base station user plane entity.
  • the base station control plane entity corrects the value set used by the discard timer based on obtaining the protocol version indication information supported by the base station user plane entity.
  • protocol version When the protocol version supported by the base station user plane entity is lower than the protocol version supported by the base station control plane entity, protocol version, only the value in the first discard timer set is used; when the protocol version supported by the base station user plane entity is higher than or equal to the protocol version supported by the base station control plane entity, the value of the discard timer is not modified. If not When the protocol version indication information of the base station user plane entity is obtained or the network management does not configure the relevant information, the value of the discard timer will not be modified.
  • the first PDCP configuration information is sent to the base station user plane entity through an E1 interface message carrying a context establishment request or modification request message.
  • the first PDCP configuration information includes but is not limited to the following information:
  • Discard timer It is a value in the determined first or second discard timer set
  • 2Ethernet header compression configuration includes but is not limited to:
  • Header compression context identifier adopts ehc-CID-Length-r16 defined in TS38.463, enumeration type, including at least 7bit and 15bit;
  • downstream header compression includes but is not limited to the following information: continuity indication information for downstream header compression, which adopts drb-ContinueEHC-DL-r16 defined in TS38.463, enumeration type, including at least "True";
  • upstream header compression For upstream header compression, it includes but is not limited to the following information: continuity indication information for upstream header compression, which adopts drb-ContinueEHC-UL-r16 defined in TS38.463, enumeration type, including at least "True”; the largest Line header compression context identifier: such as maxCID-EHC-UL-r16 defined in the TS38.331 protocol, the value is not allowed to be greater than maxNumberEHC-Contexts.
  • continuity indication information for upstream header compression which adopts drb-ContinueEHC-UL-r16 defined in TS38.463, enumeration type, including at least "True”
  • the largest Line header compression context identifier such as maxCID-EHC-UL-r16 defined in the TS38.331 protocol, the value is not allowed to be greater than maxNumberEHC-Contexts.
  • the base station control plane entity sends a bearer context establishment or modification request message (carrying the discard timer value and/or EHC configuration) to the base station user plane entity.
  • the base station user plane entity After the base station user plane entity receives the first PDCP configuration information, it processes it according to the following process:
  • the first failure reason is that the configured value version is not supported, indicating that the value is not within the support range of the current version; if If supported, perform the following steps:
  • header compression If header compression is configured and upstream header compression is configured, check whether the maximum upstream header compression context identifier exceeds the maximum maxNumberEHC-Contexts; if it does not exceed, save the header compression context identifier and the continuity indication of upstream header compression. information and the maximum upstream header compression context identifier; in the case of exceeding the value, a bearer context failure message and a second failure reason are generated. The second failure reason indicates that the configured maximum value is exceeded;
  • the base station user plane entity returns a bearer context establishment or modification response message (carrying the failure reason) to the base station control plane entity.
  • the base station user plane entity bears the configuration result and sends a bearer context failure message or a bearer context establishment/modification response message containing the failure reason to the base station control plane entity. If the base station control plane entity receives the bearer context failure message, it further obtains the failure reason. If the failure reason is the first failure reason, it is determined that the base station user plane cannot receive the configured timer value, and then the base station user plane is unable to receive the configured timer value. Re-select a minimum value as the new discard timer value. If the failure reason is the second failure reason, update the maximum upstream header compression context identifier to the maximum maxNumberEHC-Contexts, and update the first PDCP configuration information to the second PDCP Configuration information.
  • the base station control plane entity updates the PDCP configuration information for establishing or modifying the bearer context with the base station user plane entity.
  • the PDCP configuration information is updated and established through the bearer context.
  • the modification request message sends the updated PDCP configuration information to the base station user plane entity, and re-establishes or modifies the bearer context between the base station control plane entity and the base station user plane entity.
  • S614 Establish or modify the bearer context based on the updated configuration.
  • an RRC message is generated based on the confirmed PDCP configuration information (first PDCP configuration information or second PDCP configuration information), and the discard timer used in the RRC message
  • the value and/or EHC configuration is the same as the PDCP configuration information (first PDCP configuration information or second PDCP configuration information) for which the bearer is successfully established or modified.
  • the base station control plane entity sends an RRC message to the terminal through the base station separation entity.
  • S618 The terminal returns an RRC configuration confirmation message to the base station control plane entity.
  • the base station control plane entity returns a PDU session establishment success indication message to the core network control plane entity.
  • Figure 7 shows a schematic diagram of the establishment process of an E1 interface between a control plane and a user plane in an embodiment of the present disclosure.
  • the E1 interface can be established through
  • the E1 interface response message carries indication information of its protocol version, so that the base station control plane entity can obtain the protocol version information supported by the base station user plane.
  • Example 1 The base station user plane entity supports the second discard timer set value, and the base station user plane entity notifies the base station control plane acquisition capability through the E1 interface.
  • the base station control plane (gNB-CU-CP) entity determines the base station user plane (gNB-CU-UP) entity by carrying the first version indication information in the E1 interface establishment message.
  • the first version indication information includes the following: Version number: v16
  • the base station control plane (gNB-CU-CP) entity receives the session establishment request message issued by the core network control plane entity AMF, and combines it based on the QOS level of the data radio bearer (DRB) carried in it.
  • the second Operation and Maintenance Center (OMC) configuration information determines the transmission interval requirements in its business type characteristics and whether to enable Ethernet header compression, and determines the discard timer size it uses based on the transmission interval. If it is determined that 0.5 is needed ms to 8ms, the discard timer adopts a value of 0.5 ms in the second discard timer set.
  • the second OMC configuration information includes but is not limited to the following:
  • the base station control plane (gNB-CU-CP) entity does not modify the discard timer value in step 2, and uses the bearer context establishment request message in the E1 interface message to A PDCP configuration information is sent to the base station user plane (gNB-CU-UP) entity.
  • the first PDCP configuration information includes the following information: discard timer: 0.5ms.
  • the base station user plane (gNB-CU-UP) entity After receiving the first PDCP configuration information, the base station user plane (gNB-CU-UP) entity processes it according to the following process:
  • the base station control plane (gNB-CU-CP) entity After receiving the bearer context establishment or modification response message fed back from the base station user plane (gNB-CU-UP) entity, the base station control plane (gNB-CU-CP) entity generates an RRC message based on the confirmed first PDCP configuration, The discard timer value used in the RRC message is the same as the first PDCP configuration.
  • the base station control plane (gNB-CU-CP) entity sends the generated RRC message to the terminal through the first base station separation entity.
  • the base station control plane (gNB-CU-CP) entity After receiving the RRC configuration confirmation message sent by the terminal, the base station control plane (gNB-CU-CP) entity notifies the AMF PDU session establishment success indication message.
  • Example 2 The network management does not configure the capabilities of any user plane entity, so the base station control plane entity does not have any prior information about the base station user plane entity, and the base station user plane entity does not support base station control plane entities based on the second discard timer set value. Updated the discard timer configuration parameters through secondary reconfiguration.
  • the base station control plane (gNB-CU-CP) entity receives the session establishment request message issued by the AMF, and determines the transmission interval requirements in its service type characteristics based on the QOS level of the DRB carried in it and the second OMC configuration information. and whether to enable Ethernet header compression, and determine the discard timer size based on the transmission interval. If the range of 0.5ms to 8ms needs to be used, the discard timer adopts a value of 0.5ms in the second discard timer set.
  • the second OMC configuration information includes but is not limited to the following:
  • the base station control plane (gNB-CU-CP) entity corrects the set information used by the packet loss timer on the basis of obtaining the first version indication information. Since the OMC has not configured the relevant information, it does not modify step 1. If the discard timer value is in the E1 interface message, the first PDCP configuration information is sent to the base station user plane (gNB-CU-UP) entity through the bearer context establishment request message in the E1 interface message.
  • the first PDCP configuration information includes the following information: discard timer: 0.5ms.
  • the base station user plane (gNB-CU-UP) entity After receiving the first PDCP configuration information, the base station user plane (gNB-CU-UP) entity processes it according to the following process:
  • the first failure reason is that the configuration value version is not supported.
  • the base station user plane (gNB-CU-UP) entity sends a bearer context failure message containing the failure reason to gNB-CU-CP according to the bearer configuration result.
  • the base station control plane (gNB-CU-CP) entity receives a bearer context failure message, since the failure reason is the first failure reason, it is determined that the base station user plane (gNB-CU-UP) entity cannot receive the configured timing. timer value, reselect a value of 10ms from the first discard timer set, and update the first PDCP configuration information to the second PDCP configuration information.
  • the base station control plane (gNB-CU-CP) entity sends the second PDCP configuration information to the base station user plane (gNB-CU-UP) entity through the bearer context establishment request message in the E1 interface message for configuring the PDCP configuration.
  • the base station control plane (gNB-CU-CP) entity After receiving the bearer context establishment response or modification response message fed back from the base station user plane (gNB-CU-UP) entity, the base station control plane (gNB-CU-CP) entity generates an RRC message based on the confirmed second PDCP configuration. , where the discard timer value used in the RRC message is the same as the second PDCP configuration.
  • the base station control plane (gNB-CU-CP) entity sends the generated RRC message to the terminal through the first base station separation entity.
  • the base station control plane (gNB-CU-CP) entity After receiving the RRC configuration confirmation message sent by the terminal, the base station control plane (gNB-CU-CP) entity notifies the AMF of the PDU session establishment success indication message.
  • Example 3 The base station user plane entity correctly configures the configuration parameters related to upstream header compression, and completes the bearer configuration process with the base station control plane entity through the E1 interface.
  • the base station control plane (gNB-CU-CP) entity receives the session establishment request message issued by the core network control plane entity AMF, and determines its service type based on the QOS level of the DRB carried in it and the second OMC configuration information. In the characteristics, the transmission interval requirement and whether to enable Ethernet header compression are determined, and the discard timer size is determined based on the transmission interval. If it is determined that a range of more than 10ms is needed, the discard timer adopts a value in the first discard timer set. 20ms.
  • the second OMC configuration information includes but is not limited to the following:
  • the base station control plane (gNB-CU-CP) entity On the basis of obtaining the first version indication information, the base station control plane (gNB-CU-CP) entity does not modify the discard timer value in step 1 because the OMC has not configured the relevant information, and then passes the E1 interface
  • the bearer context establishment or modification request message in the message sends the first PDCP configuration information to the base station user plane (gNB-CU-UP) entity.
  • the first PDCP configuration information includes the following information:
  • 2Ethernet header compression configuration including but not limited to the following:
  • Header compression context identifier 15bit
  • continuity indication information for upstream header compression "True”
  • maximum upstream header compression context identifier maxNumberEHC-Contexts-10.
  • the base station user plane (gNB-CU-UP) entity After receiving the first PDCP configuration information, the base station user plane (gNB-CU-UP) entity processes it according to the following process:
  • the base station control plane (gNB-CU-CP) entity After receiving the bearer context establishment or modification response message fed back from the base station user plane (gNB-CU-UP) entity, the base station control plane (gNB-CU-CP) entity generates an RRC message based on the confirmed first PDCP configuration, The discard timer value used in the RRC message is the same as the first PDCP configuration.
  • the base station control plane (gNB-CU-CP) entity sends the generated RRC message to the terminal through the first base station separation entity.
  • the base station control plane (gNB-CU-CP) entity After receiving the RRC configuration confirmation message sent by the terminal, the base station control plane (gNB-CU-CP) entity notifies the AMFPDU session establishment success indication message.
  • the following technical effects can be achieved but are not limited to: 1 Solve the problem of base station control plane entities and base station user plane entities supporting low-latency service discard timers When there are differences in capabilities, the problem that the bearer cannot be established or modified successfully avoids the problem of bearer release caused by configuration failure; 2 By defining new failure reasons, the base station control plane entity is supported to re-identify the error cause, and can re-identify the error cause based on the cause value. Configure PDCP parameters; 3 Overcome the inconsistency in the understanding of the header compression context identifier between the base station control plane entity and the base station user plane entity, thereby reducing errors during air interface transmission and reducing user call drop rates.
  • embodiments of the present disclosure also provide a base station, which may be a 5G and later version base station (for example: 5G NR NB), or a base station in other communication systems (for example: eNB base station), as needed
  • a base station which may be a 5G and later version base station (for example: 5G NR NB), or a base station in other communication systems (for example: eNB base station), as needed
  • 5G NR NB 5G and later version base station
  • eNB base station base station in other communication systems
  • Figure 8 shows a schematic diagram of a base station in an embodiment of the present disclosure.
  • the base station includes: a processor 801; and a memory 802 for storing executable instructions of the processor 801;
  • the processor 801 is configured to execute the following steps of the above method embodiment by executing executable instructions: the base station control plane entity receives a session establishment or modification request message issued by the core network control plane entity; the base station control plane entity performs the following steps according to the established or modified Modify the service characteristic information of the session to determine the PDCP discard timer and/or Ethernet header compression EHC configuration that the base station and terminal user plane PDCP configuration need to support; the PDCP discard timer includes the first discard timer or the second discard timer.
  • the first discard timer is the PDCP discard timer supported by the radio resource control RRC layer
  • the second discard timer is the extended PDCP discard timer that supports low-latency services
  • the base station control plane entity determines that the base station user plane entity supports the extension
  • the base station control plane entity includes the corresponding extended PDCP discard timer and/or EHC configuration in the PDCP configuration information and sends it to the base station user through the bearer context establishment or modification request message.
  • the base station control plane entity generates a radio resource control RRC reconfiguration message based on the bearer context establishment or modification response message returned by the base station user plane entity, and sends it to the terminal; the base station control plane entity receives the RRC reconfiguration completion message returned by the terminal. Finally, a session establishment or modification response message is returned to the core network control plane entity.
  • the above-mentioned processor 801 is also used to perform the following steps of the above-mentioned method embodiment: the base station control plane entity determines the base station user plane according to the protocol version information supported by the base station user plane entity carried in the first network management configuration information. Whether the entity supports the extended PDCP discard timer; the base station control plane entity determines whether the base station user plane entity supports the extended PDCP discard timer based on the protocol version indication information carried by the base station user plane entity in the E1 interface establishment or update message; the base station control plane entity According to the bearer establishment or modification failure reason received by the E1 interface, it is determined that the base station user plane entity does not support the extended discard timer set.
  • the protocol version indication information uses an enumeration type to represent the protocol version supported by the base station user plane entity.
  • the protocol versions supported by the base station user plane entity include any of the following: 3GPP Rel-15 version, 3GPP Rel-16-v80 previous version, and 3GPP Rel-16-v90 subsequent version.
  • the above-mentioned processor 801 is also configured to perform the following steps in the above-mentioned method embodiment: the base station control plane entity performs the QOS level of the data bearer according to the second network management configuration information and the quality of service QOS level of the data bearer carried in the session establishment or modification request message, Determine the PDCP discard timer and/or EHC configuration sent to the base station user plane entity, where the second network management configuration information at least includes: the mapping relationship between the QOS level and the service data transmission interval; whether the QOS level enables EHC configuration and the activated EHC configuration
  • the type of EHC configuration includes any one of the following: uplink compression only, downlink compression only, and bidirectional compression.
  • the above-mentioned processor 801 is also configured to perform the following steps in the above-mentioned method embodiment: the base station control plane entity determines to use a timer in the first discard timer set or the second discard timer set according to the service data transmission interval. The value configures the PDCP discard timer, where the timer value in the first discard timer set is greater than or equal to 10ms; the timer value in the second discard timer set is less than 10ms, and the timer value in the second discard timer set The value is used to configure the extended PDCP discard timer supported by the base station user plane entity.
  • the first discard timer set at least includes the following timer values: 10ms, 20ms, 30ms, 40ms, 50ms, 60ms, 75ms, 100ms, 150ms, 200ms, 250ms, 300ms, 500ms, 750ms, 1500ms;
  • the second drop timer set at least contains the following timer values: 0.5ms, 1ms, 2ms, 4ms, and 8ms.
  • the second drop timer set indicates the extended PDCP drop timer.
  • the above-mentioned processor 801 is also used to perform the following steps of the above-mentioned method embodiment: when the base station control plane entity does not know the protocol version information supported by the base station user plane entity, the base station control plane entity passes the E1 interface message The bearer context establishment or modification request message sends the first PDCP configuration information to the base station user plane entity, where the first PDCP configuration information includes the PDCP discard timer and/or EHC configuration;
  • the PDCP discard timer configuration includes: a timer value in the first discard timer set or the second discard timer set;
  • the EHC configuration includes: a header compression context identifier, including 7 bit and 15 bit;
  • Downstream header compression continuity indication information enumeration type, including at least True
  • the maximum upstream header compression context identifier MAX_CID_EHC_UL the value does not exceed maxNumberEHC-Contexts.
  • the above-mentioned processor 801 is also used to perform the following steps of the above-mentioned method embodiment: when the base station control plane entity supports the robust header compression ROHC function, include the ROHC configuration parameters and the EHC configuration simultaneously in the PDCP configuration.
  • the bearer context establishment or modification request message is sent to the base station user plane entity, so that the base station user plane entity configures the header compression operation of the corresponding bearer.
  • the above-mentioned processor 801 is also configured to perform the following steps of the above-mentioned method embodiment: the base station user plane entity checks whether it supports the timer value in the first PDCP configuration information of the established or modified bearer; when the base station When the user plane entity does not support the discard timer value in the first PDCP configuration information of the bearer, the base station user plane entity returns a bearer context establishment or modification failure message and the first failure reason to the base station control plane entity. The first failure reason is used for indication.
  • the base station user plane entity does not support the timer value contained in the first PDCP configuration information; the base station user plane entity does not delete the user context configuration information and keeps receiving the original PDCP configuration information; when the base station user plane entity supports the first PDCP configuration information When the timer value is in, save the timer value in the first PDCP configuration information; the base station user plane entity uses the EHC included in the bearer context establishment or modification request message PDCP configuration for the data bearer requested by each base station control plane entity.
  • the base station user plane entity returns a bearer context establishment or modification failure message and the second failure reason to the base station control plane entity.
  • the second failure reason is used for indication.
  • the maximum uplink header compression context identifier in the first PDCP configuration information is greater than maxNumberEHC-Contexts.
  • the above-mentioned processor 801 is also configured to perform the following steps of the above-mentioned method embodiment: when the base station user plane entity supports the discard timer value in the first PDCP configuration information and other configurations can support the configuration, the base station The user plane entity returns a bearer context establishment or modification response message to the base station control plane entity.
  • the above-mentioned processor 801 is also configured to perform the following steps of the above-mentioned method embodiment: the base station control plane entity generates the first RRC reconfiguration message sent to the terminal according to the bearer context establishment or modification response message returned by the base station user plane entity.
  • Configuration message wherein the discard timer value and/or EHC configuration in the first RRC reconfiguration message are the same as the discard timer value and/or EHC configuration in the first PDCP configuration information.
  • the above-mentioned processor 801 is also used to perform the following steps of the above-mentioned method embodiment: the base station control plane entity sends the first RRC reconfiguration message to the terminal through the base station separation entity; the base station control plane entity receives the terminal through the base station separation entity According to the first RRC reconfiguration completion message returned by the first RRC reconfiguration message; the base station control plane entity sends a session establishment or modification response message to the core network control plane entity according to the first RRC reconfiguration completion message returned by the terminal to confirm the bearer The wireless network configuration is completed.
  • the above-mentioned processor 801 is also configured to perform the following steps of the above-mentioned method embodiment: the base station control plane entity determines that the base station user plane entity does not support the extended discard timer, and reselects one from the first discard timer set. The timer value with the smallest value updates the first PDCP configuration information of the corresponding bearer to the second PDCP configuration information, and sends the second PDCP configuration information to the base station user plane entity through the bearer context establishment or modification request message in the E1 interface message.
  • the above-mentioned processor 801 is also configured to perform the following steps of the above-mentioned method embodiment: the base station user plane entity returns a bearer context establishment or modification response message to the base station control plane entity according to the received second PDCP configuration information; The base station control plane entity generates a second RRC reconfiguration message sent to the terminal according to the bearer context establishment or modification response message returned by the base station user plane entity, wherein the discard timer value and/or EHC configuration in the second RRC reconfiguration message The same as the discard timer value and/or EHC configuration of the second PDCP configuration information.
  • the above-mentioned processor 801 is also used to perform the following steps of the above-mentioned method embodiment: the base station control plane entity sends the second RRC reconfiguration message to the terminal through the base station separation entity; the base station control plane entity receives the terminal through the base station separation entity According to the second RRC reconfiguration completion message returned by the second RRC reconfiguration message; the base station control plane entity returns a session establishment or modification response message to the core network control plane entity according to the second RRC reconfiguration completion message returned by the terminal to confirm the bearer The wireless network configuration is completed.
  • embodiments of the present disclosure also provide a computer-readable storage medium.
  • the computer-readable storage medium may be a readable signal medium or a readable storage medium.
  • Figure 9 shows a schematic diagram of a computer-readable storage medium in an embodiment of the disclosure.
  • the computer-readable storage medium 900 stores a program product capable of implementing the above method of the disclosure.
  • various aspects of the present disclosure can also be implemented in the form of a program product, which includes program code. When the program product is run on a terminal device, the program code is used to cause the terminal device to execute the above described instructions.
  • the steps according to various exemplary embodiments of the present disclosure are described in the "Exemplary Methods" section.
  • Computer-readable storage media in this disclosure may include, but are not limited to: electrical connections having one or more wires, portable computer disks, hard drives, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory Erasable programmable read-only memory
  • CD-ROM portable compact disk read-only memory
  • magnetic storage device or any suitable combination of the above.
  • a computer-readable storage medium may include a data signal propagated in baseband or as part of a carrier wave carrying readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a readable signal medium may also be any readable medium other than a readable storage medium that can send, propagate, or transport the program for use by or in connection with an instruction execution system, apparatus, or device.
  • program code embodied on a computer-readable storage medium may be transmitted using any appropriate medium, including but not limited to wireless, wired, optical cable, RF, etc., or any suitable combination of the above.
  • program code for performing operations of the present disclosure may be written in any combination of one or more programming languages, including object-oriented programming languages such as Java, C++, etc., and Includes conventional procedural programming languages—such as "C” or similar programming languages.
  • the program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server execute on.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device, such as provided by an Internet service. (business comes via Internet connection).
  • LAN local area network
  • WAN wide area network
  • the technical solution according to the embodiment of the present disclosure can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (which can be a CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to cause a computing device (which may be a personal computer, a server, a mobile terminal, a network device, etc.) to execute a method according to an embodiment of the present disclosure.
  • a computing device which may be a personal computer, a server, a mobile terminal, a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种支持低时延业务的用户面配置方法、系统、基站及介质,涉及通信技术领域。该方法包括:基站控制面实体接收核心网控制面实体下发的会话建立或修改请求消息;根据会话业务特征信息,确定所需支持的PDCP丢弃定时器和/或EHC配置;当确定基站用户面实体支持低时延业务的扩展PDCP丢弃定时器和/或EHC配置时,通过承载上下文建立或修改请求消息将扩展PDCP丢弃定时器和/或EHC配置包含在PDCP配置信息中发送给基站用户面实体;根据基站用户面实体返回的承载上下文建立或修改响应消息,生成RRC重配置消息发送给终端;在接收到终端返回的RRC重配置完成消息后,向核心网控制面实体返回会话建立或修改响应消息。本公开使基站用户面实体能够支持低时延业务。

Description

支持低时延业务的用户面配置方法、系统、基站及介质
相关申请的交叉引用
本申请是以CN申请号为202210392671.1,申请日为2022年4月14日的申请,以及CN申请号为202210291246.3,申请日为2022年3月23日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及通信技术领域,尤其涉及一种支持低时延业务的用户面配置方法、系统、基站及介质。
背景技术
相比于4G(4th Generation,第四代)网络,5G(5th Generation,第五代)网络引入了控制面(Control Plane,控制面)与用户面(User Plane,用户面)分离的设计架构。
基站控制面实体与基站用户面实体对低时延业务丢弃定时器的支持能力存在差异,可能会导致基站控制面实体与基站用户面实体之间的承载建立或修改失败,从而使得低时延业务无法在控制面与用户面分离架构中得到相应支持。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的相关技术的信息。
发明内容
本公开提供一种支持低时延业务的用户面配置方法、系统、基站及介质。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
根据本公开的一个方面,提供了一种支持低时延业务的用户面配置方法,该方法包括:基站控制面实体接收核心网控制面实体下发的会话建立或修改请求消息;当所述基站控制面实体确定基站用户面实体支持扩展PDCP丢弃定时器和/或以太网头压缩EHC配置时,所述基站控制面实体通过承载上下文建立或修改请求消息将相应的扩展PDCP丢弃定时器和/或EHC配置包含在PDCP配置信息中发送给所述基站用户 面实体;所述基站控制面实体根据所述基站用户面实体返回的承载上下文建立或修改响应消息,生成无线资源控制RRC重配置消息,发送给终端;所述基站控制面实体在接收到所述终端返回的RRC重配置完成消息后,向所述核心网控制面实体返回会话建立或修改响应消息。
在一些实施例中,所述基站控制面实体根据所建立或修改的会话的业务特征信息,确定基站和终端用户面PDCP配置所需支持的PDCP丢弃定时器和/或以太网头压缩EHC配置;所述PDCP丢弃定时器包括第一丢弃定时器或第二丢弃定时器,所述第一丢弃定时器为无线资源控制RRC层支持的PDCP丢弃定时器,所述第二丢弃定时器为扩展的支持低时延业务的PDCP丢弃定时器。
在一些实施例中,所述方法还包括如下任意之一:所述基站控制面实体根据第一网管配置信息中携带的所述基站用户面实体所支持的协议版本信息,确定所述基站用户面实体是否支持扩展PDCP丢弃定时器;所述基站控制面实体根据E1接口建立或更新消息中由基站用户面实体携带的协议版本指示信息,确定所述基站用户面实体是否支持扩展PDCP丢弃定时器;所述基站控制面实体根据E1接口接收到的承载建立或修改失败原因,确定基站用户面实体不支持扩展丢弃定时器集合。
在一些实施例中,所述协议版本指示信息采用枚举类型表示所述基站用户面实体所支持的协议版本。
在一些实施例中,所述基站用户面实体所支持的协议版本包括如下任意之一:3GPP Rel-15版本、3GPP Rel-16-v80之前版本、3GPP Rel-16-v90后续版本。
在一些实施例中,在基站控制面实体接收核心网控制面实体下发的会话建立或修改请求消息之后,所述方法还包括:所述基站控制面实体根据第二网管配置信息以及所述会话建立或修改请求消息中携带的数据承载的质量服务QOS等级,确定向所述基站用户面实体发送的PDCP丢弃定时器和/或EHC配置。
在一些实施例中,所述第二网管配置信息至少包括:QOS等级与业务数据传输间隔的映射关系;QOS等级是否启动EHC配置以及启动的EHC配置的类型,所述EHC配置的类型包括如下任意之一:仅上行压缩、仅下行压缩和双向压缩。
在一些实施例中,所述方法还包括:所述基站控制面实体根据业务数据传输间隔确定采用第一丢弃定时器集合或第二丢弃定时器集合中的定时器数值对PDCP丢弃定时器进行配置,其中,所述第一丢弃定时器集合中的定时器数值大于或等于10ms;所述第二丢弃定时器集合中的定时器数值小于10ms,所述第二丢弃定时器集合中的定 时器数值用于配置基站用户面实体支持的扩展PDCP丢弃定时器。
在一些实施例中,所述第一丢弃定时器集合至少包含如下定时器数值:10ms、20ms、30ms、40ms、50ms、60ms、75ms、100ms、150ms、200ms、250ms、300ms、500ms、750ms、1500ms;所述第二丢弃定时器集合至少包含如下定时器数值:0.5ms、1ms、2ms、4ms、8ms,所述第二丢弃定时器集合指示了扩展的PDCP丢弃定时器。在一些实施例中,在基站控制面实体接收核心网控制面实体下发的会话建立或修改请求消息之后,所述方法还包括:当基站控制面实体未获知基站用户面实体所支持的协议版本信息时,所述基站控制面实体通过E1接口消息承载上下文建立或修改请求消息将第一PDCP配置信息发送至基站用户面实体,其中,所述第一PDCP配置信息中包含PDCP丢弃定时器和/或EHC配置;其中,所述PDCP丢弃定时器配置包括:第一丢弃定时器集合或第二丢弃定时器集合中的一个定时器数值。
在一些实施例中,所述EHC配置包括:头压缩上下文标识,包括7bit和15bit两种;对于下行头压缩,至少包括如下信息:下行头压缩的连续性指示信息,枚举类型,至少包括True;对于上行头压缩,至少包括如下信息:上行头压缩的连续性指示信息,枚举类型,至少包括True;最大的上行头压缩上下文标识MAX_CID_EHC_UL,数值不超过maxNumberEHC-Contexts。
在一些实施例中,所述EHC配置包括以下至少一项:头压缩上下文标识、上行或下行头压缩的连续性指示信息、最大的上行头压缩上下文标识。
在一些实施例中,所述方法还包括:当基站控制面实体支持健壮性包头压缩ROHC功能时,将ROHC配置参数与EHC配置同时包含在PDCP配置中通过承载上下文建立或修改请求消息发送给基站用户面实体,以使得所述基站用户面实体配置相应承载的头压缩操作。
在一些实施例中,在所述基站控制面实体通过E1接口消息承载上下文建立或修改请求消息将第一PDCP配置信息发送至基站用户面实体之后,所述方法还包括:所述基站用户面实体检查自身是否支持所建立或修改的承载的第一PDCP配置信息中的定时器数值;当所述基站用户面实体不支持所述承载的第一PDCP配置信息中的丢弃定时器数值时,所述基站用户面实体向所述基站控制面实体返回承载上下文建立或修改失败消息及第一失败原因,所述第一失败原因用于指示基站用户面实体不支持第一PDCP配置信息中包含的定时器数值;基站用户面实体不删除用户上下文配置信息,保持接收到原有的PDCP配置信息;当所述基站用户面实体支持所述第一PDCP配置 信息中的定时器数值时,保存所述第一PDCP配置信息中的定时器数值;所述基站用户面实体对于每一个基站控制面实体请求的数据承载,采用包含在承载上下文建立或修改请求消息PDCP配置中的EHC配置执行相应数据承载的头压缩操作过程,并在所述第一PDCP配置信息中包含上行头压缩配置的情况下,检查所述第一PDCP配置信息中最大的上行头压缩上下文标识MAX_CID_EHC_UL是否超过maxNumberEHC-Contexts;当所述第一PDCP配置信息中最大的上行头压缩上下文标识MAX_CID_EHC_UL超过maxNumberEHC-Contexts时,所述基站用户面实体向所述基站控制面实体返回承载上下文建立或修改失败消息及第二失败原因,所述第二失败原因用于指示第一PDCP配置信息中最大的上行头压缩上下文标识大于maxNumberEHC-Contexts。
在一些实施例中,所述方法还包括:在所述基站用户面实体检查自身是否支持所述第一PDCP配置信息中的丢弃定时器数值之后,当所述基站用户面实体支持所述第一PDCP配置信息中的丢弃定时器数值时且其他配置均可支持配置时,所述基站用户面实体向所述基站控制面实体返回承载上下文建立或修改响应消息;和/或,在所述基站用户面实体向所述基站控制面实体返回承载上下文建立或修改失败消息及第一失败原因之后,所述基站控制面实体确定基站用户面实体不支持扩展丢弃定时器,并在所述第一丢弃定时器集合中重新选择一个数值最小的定时器数值,更新相应承载的第一PDCP配置信息为第二PDCP配置信息,通过E1接口消息承载上下文建立或修改请求消息将第二PDCP配置信息发送至所述基站用户面实体。
在一些实施例中,在所述基站用户面实体向所述基站控制面实体返回承载上下文建立或修改响应消息之后,所述方法还包括:所述基站控制面实体根据所述基站用户面实体返回的承载上下文建立或修改响应消息,生成向终端发送的第一RRC重配置消息,其中,所述第一RRC重配置消息中的丢弃定时器数值和/或EHC配置与所述第一PDCP配置信息的丢弃定时器数值和/或EHC配置相同。
在一些实施例中,所述方法还包括:所述基站控制面实体通过基站分离实体向终端发送第一RRC重配置消息;所述基站控制面实体通过基站分离实体接收所述终端根据所述第一RRC重配置消息返回的第一RRC重配置完成消息;所述基站控制面实体根据所述终端返回的第一RRC重配置完成消息,向所述核心网控制面实体发送会话建立或修改响应消息,以确认承载在无线网配置完成。
在一些实施例中,所述方法还包括:所述基站用户面实体根据接收到的第二PDCP 配置信息,向基站控制面实体返回承载上下文建立或修改响应消息;所述基站控制面实体根据所述基站用户面实体返回的承载上下文建立或修改响应消息,生成向终端发送的第二RRC重配置消息,其中,所述第二RRC重配置消息中的丢弃定时器数值和/或EHC配置与所述第二PDCP配置信息的丢弃定时器数值和/或EHC配置相同。
在一些实施例中,所述方法还包括:所述基站控制面实体通过基站分离实体向终端发送第二RRC重配置消息;所述基站控制面实体通过基站分离实体接收所述终端根据所述第二RRC重配置消息返回的第二RRC重配置完成消息;所述基站控制面实体根据所述终端返回的第二RRC重配置完成消息,向所述核心网控制面实体返回会话建立或修改响应消息,以确认承载在无线网配置完成。
根据本公开的另一个方面,还提供了一种通信系统,包括:核心网控制面实体、基站控制面实体和基站用户面实体;其中,所述核心网控制面实体,用于下发会话建立或修改请求消息;所述基站控制面实体,用于在接收会话建立或修改请求消息后,当确定所述基站用户面实体支持扩展PDCP丢弃定时器和/或以太网头压缩EHC配置时,通过承载上下文建立或修改请求消息将相应的扩展PDCP丢弃定时器和/或EHC配置包含在PDCP配置信息中发送给所述基站用户面实体;所述PDCP丢弃定时器包括第一丢弃定时器和/或第二丢弃定时器,所述第一丢弃定时器为无线资源控制RRC层支持的PDCP丢弃定时器,所述第二丢弃定时器为扩展的支持低时延业务的PDCP丢弃定时器;所述基站用户面实体,用于向所述基站控制面实体返回承载上下文建立或修改响应消息;所述基站控制面实体还用于根据所述基站用户面实体返回的承载上下文建立或修改响应消息,生成无线资源控制RRC重配置消息,发送给终端,并在接收到所述终端返回的RRC重配置完成消息后,向所述核心网控制面实体返回会话建立或修改响应消息。
在一些实施例中,所述基站控制面实体还用于根据所建立或修改的会话的业务特征信息,确定基站和终端用户面PDCP配置所需支持的PDCP丢弃定时器和/或以太网头压缩EHC配置。
在一些实施例中,所述通信系统还包括:基站分离实体,用于所述基站控制面实体向终端发送RRC重配置消息或接收所述终端返回的RRC重配置完成消息。
根据本公开的另一个方面,还提供了一种基站,包括:处理器;以及存储器,用于存储所述处理器的可执行指令;其中,所述处理器配置为经由执行所述可执行指令来执行上述任意一项所述的支持低时延业务的用户面配置方法。
根据本公开的另一个方面,还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任意一项所述的支持低时延业务的用户面配置方法。
本公开的实施例中提供的支持低时延业务的用户面配置方法、系统、基站及介质,当基站控制面实体接收到核心网控制面实体下发的会话建立或修改请求消息后,基站控制面实体根据所建立或修改的会话的业务特征信息,确定基站和终端用户面PDCP配置所需支持的PDCP丢弃定时器(无线资源控制RRC层支持的第一丢弃定时器或扩展的支持低时延业务的第二丢弃定时器)和/或以太网头压缩EHC配置;当基站控制面实体确定基站用户面实体支持扩展PDCP丢弃定时器和/或以太网头压缩EHC配置时,基站控制面实体通过承载上下文建立或修改请求消息将相应的扩展PDCP丢弃定时器和/或EHC配置包含在PDCP配置信息中发送给基站用户面实体;基站控制面实体根据基站用户面实体返回的承载上下文建立或修改响应消息,生成无线资源控制RRC重配置消息发送给终端;终端向基站控制面实体返回RRC重配置完成消息后,基站控制面实体向核心网控制面实体返回会话建立或修改响应消息。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出相关技术中一种控制面与用户面分离架构示意图;
图2示出相关技术中一种控制面与用户面之间E1接口的建立过程示意图;
图3示出本公开实施例中一种基站控制面实体与基站用户面实体之间承载上下文的建立过程示意图;
图4示出本公开实施例中一种通信系统示意图;
图5示出本公开实施例中一种支持低时延业务的用户面配置方法流程图;
图6示出本公开实施例中一种支持低时延业务的用户面配置系统交互过程示意图;
图7示出本公开实施例中一种控制面与用户面之间E1接口的建立过程示意图;
图8示出本公开实施例中一种基站示意图;
图9示出本公开实施例中一种计算机可读存储介质示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
为便于理解,在介绍本公开实施例之前,首先对本公开实施例中涉及到的几个名词进行解释如下:
UE:User Equipment,用户设备,也称用户终端,简称终端;
gNB:5G网络的基站;
CU:Centralized Unit,集中单元;
DU:Distributed Unit,分布单元;
UP:User Plane,用户面;
CP:Control Plane,控制面;
PDCP:Packet Data Convergence Protocol,分组数据汇聚协议;
EHC:Ethernet Header Compression,以太网头压缩;
QOS:Quality of Service,服务质量;
RRC:Radio Resource Control,无线资源控制;
MAC:Medium Access Control,媒体接入控制;
PDCP:Packet Data Convergence Protocol,分组数据汇聚协议;
RLC:Radio Link Control,无线链路层控制协议;
PDU:Ptotocol Data Unit,协议数据单元;
SDU:Service Data Unit,服务数据单元;
RRC:Radio Resource Control,无线资源控制。
下面结合附图,对本公开实施例的具体实施方式进行详细说明。
为了支持低时延的工业互联网业务,3GPP引入了相关空口增强技术的,但是在基站虚拟化的分离架构中对于低时延业务的支持尚不完善。
图1示出相关技术中一种控制面与用户面分离架构示意图,如图1所示,基站用户面(例如,gNB-CU-UP)实体支持SDAP(Service Data Adaptation Protocol,服务数据适配协议)和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)层的协议功能,而基站控制面(例如,gNB-CU-CP)实体支持RRC(Radio Resource Control,无线资源控制)层的协议功能,基站分离(例如,gNB-DU)实体支持物理层、MAC(Media Access Control,媒体访问控制)层、RLC(Radio Link Control,无线链路层控制协议)层的协议功能。
如图2所示,基站控制面实体(gNB-CU-CP)和基站用户面实体(gNB-CU-UP)之间采用E1接口通信,在E1接口建立过程中,基站控制面实体在对基站用户面实体进行相关配置前需要获知基站用户面实体的业务支持能力等信息。图3示出本公开实施例中一种基站控制面实体与基站用户面实体之间承载上下文的建立过程示意图,如图3所示,目前的E1接口协议,基站控制面实体是无法了解基站用户面实体对于协议版本或部分业务功能的支持能力,只能通过网管配置来获得基站用户面实体的业务功能支持能力,可能因基站控制面实体与基站用户面实体的业务支持能力存在差异而导致基站控制面实体与基站用户面实体之间的承载建立或修改失败。
PDCP的PDU(Ptotocol Data Unit,协议数据单元)分为两种类型:数据PDU和控制PDU;其中,数据PDU为N层协议实体之间传递的数据;控制PDU为N层用户与N层协议之间传递的数据。
PDU的封装/解封装的过程为:在发送方,将用户递交的SDU加上协议控制信息PCI,封装成PDU;在接收方,将接收到的PDU解封装,去掉PCI,还原成SDU传输给接收方用户。
SDU分段/装配的过程为:如果下层通道的带宽不能满足传递SDU的需要,就需要将一个SDU分成多段,分别封装成PDU发送出去(分段);在接收方再将这些PDU解封装后重新装配成SDU。
SDU拼接/分离的过程为:拼接是指在发送方将多个长度较短的SDU封装成一个PDU发送,在接收方再将接收到的PDU解封装,将多个SDU分离出来,采用拼接功 能可提高通道的利用率。
PDCP对控制PDU都没有分配SN(Serial Number,序号号码),而对所有的数据PDU都分配了SN,并保证SN在一段时间内都不会重复。发送方对每一个SDU都会启动一个丢弃定时器(Discard Timer),也称丢包定时器,超时后丢弃该SDU,以防止发送缓冲拥塞。
在3GPP R15协议中,RRC层支持的丢弃定时器颗粒度为:10ms、20ms、30ms、40ms、50ms、60ms、75ms、100ms、150ms、200ms、250ms、300ms、500ms、750ms、1500ms及其他扩展数值;由于低时延业务具有较低传输间隔,为了支持传输间隔和丢弃定时器的匹配,因此在空口引入了更低的丢弃定时器颗粒度,即:0.5ms、1ms、2ms、4ms、8ms及其他扩展数值。
由于E1接口协议(即TS38.463协议)中尚不支持更低的丢弃定时器数值,这将导致低时延业务无法在控制面和用户面分离架构中得到相应的支持,同时与核心网以及终端间的互操作也会存在互操作问题。
此外针对工业互联网场景中,3GPP标准在Rel-15阶段引入了以太网头压缩(Ethernet Header Compression,EHC)技术,以减少数据包的传输数据量。在空口RRC消息中定义了上行和下行头压缩的相关配置,上行部分包括如下内容:
Figure PCTCN2022127986-appb-000001
其中,maxCID-EHC-UL用于定义用于上行的EHC上下文标识,根据TS38.331协议,该数值不允许大于maxNumberEHC-Contexts;而drb-ContinueEHC-UL-r16用于定义上行压缩的连续性。目前的E1接口协议(即TS38.463协议)中未定义上行EHC的上下文标识最大值,但定义:maxCID-EHC-UL(上行EHC的上下文标识最大值)与maxCID-EHC-DL(下行EHC的上下文标识最大值)的总和应该小于或等于由UE指示的maxNumberEHC-Contexts(上下文标识最大值)。
可见,对于采用CP/UP分离架构的无线网络,例如,相关的5G网络或后续网络设计中仍存在如下缺陷:
①导致承载配置或者修改失败:基站控制面实体不知道基站用户面实体对丢弃定时器的支持情况,且当用户面实体不支持增强的丢弃定时器扩展时,基站控制面实体 与终端和核心网的处理行为未定义。
②不支持低时延的工业互联网业务:在分离架构中无法配置相应的丢弃定时器,工业互联网业务性能无法得到相应的保障,从而导致性能下降。
③无法区分失败的原因:由于协议支持的失败原因仅能是“PDCP configuration not supported”,该失败原因的含义是无法支持相应的PDCP配置,因此基站控制面实体无法知道是否是因为扩展信息不支持而导致的。
④上行以太网头压缩过程中可能存在失败:根据目前E1接口协议(即TS38.463协议)中的定义,可通过计算maxNumberEHC-Contexts(上下文标识最大值)与maxCID-EHC-DL(下行EHC的上下文标识最大值)的差值,反推maxCID-EHC-UL(上行EHC的上下文标识最大值)的值,这种方式在计算过程中与RRC协议(即TS38.331协议)中的定义存在差异,导致E1接口与RRC空口的上下文存在差异,从而可能导致承载建立和修改失败。
基于上述需求和原因分析,目前的3GPP Rel-17的5G分离架构协议对于低时延业务仍然存在缺陷,为了保障基站用户面实体支持低时延的相关特性,减少协议不完备导致的配置错误,从而可以有效的提升用户的传输时延,改善用户体验。
本公开实施例中提供了一种支持低时延业务的用户面配置方法,当基站控制面实体接收到核心网控制面实体下发的会话建立或修改请求消息后,基站控制面实体根据所建立或修改的会话的业务特征信息,确定基站和终端用户面PDCP配置所需支持的PDCP丢弃定时器(无线资源控制RRC层支持的第一丢弃定时器或扩展的支持低时延业务的第二丢弃定时器)和/或以太网头压缩EHC配置;当基站控制面实体确定基站用户面实体支持扩展PDCP丢弃定时器和/或以太网头压缩EHC配置时,基站控制面实体通过承载上下文建立或修改请求消息将相应的扩展PDCP丢弃定时器和/或EHC配置包含在PDCP配置信息中发送给基站用户面实体;基站控制面实体根据基站用户面实体返回的承载上下文建立或修改响应消息,生成无线资源控制RRC重配置消息发送给终端;终端向基站控制面实体返回RRC重配置完成消息后,基站控制面实体向核心网控制面实体返回会话建立或修改响应消息。
通过本公开实施例中提供的支持低时延业务的用户面配置方法,能够使得低时延业务在控制面与用户面分离设计的基站中得到相应支持,避免基站控制面实体和基站用户面实体因对低时延业务丢弃定时器的支持能力存在差异而导致基站控制面实体和基站用户面实体之间的承载建立或修改失败的问题。
本公开实施例中提供的支持低时延业务的用户面配置方法,可以应用但不限于图4所示的通信系统,如图4所示,该通信系统包括:核心网控制面实体41、基站控制面实体42和基站用户面实体43;
其中,核心网控制面实体41用于下发会话建立或修改请求消息;
基站控制面实体42用于根据所建立或修改的会话的业务特征信息,确定基站和终端用户面PDCP配置所需支持的PDCP丢弃定时器和/或以太网头压缩EHC配置;当确定基站用户面实体支持扩展PDCP丢弃定时器和/或以太网头压缩EHC配置时,通过承载上下文建立或修改请求消息将相应的扩展PDCP丢弃定时器和/或EHC配置包含在PDCP配置信息中发送给基站用户面实体3;其中,PDCP丢弃定时器包括第一丢弃定时器和/或第二丢弃定时器,第一丢弃定时器为无线资源控制RRC层支持的PDCP丢弃定时器,第二丢弃定时器为扩展的支持低时延业务的PDCP丢弃定时器;
基站用户面实体43用于向基站控制面实体42返回承载上下文建立或修改响应消息;
基站控制面实体42还用于根据基站用户面实体43返回的承载上下文建立或修改响应消息,生成无线资源控制RRC重配置消息,发送给终端44,并在接收到终端44返回的RRC重配置完成消息后,向核心网控制面实体41返回会话建立或修改响应消息。
需要说明的是,本公开实施例中的终端44可以是各种电子设备,包括但不限于智能手机、平板电脑、膝上型便携计算机、台式计算机、可穿戴设备、增强现实设备、虚拟现实设备等。
可选地,不同的终端设备44中安装的应用程序的客户端是相同的,或基于不同操作系统的同一类型应用程序的客户端。基于终端平台的不同,该应用程序的客户端的具体形态也可以不同,比如,该应用程序客户端可以是手机客户端、PC客户端等。
在一些实施例中,如图4所示,本公开实施例中提供的上述通信系统还可包括:基站分离实体45,用于基站控制面实体42向终端44发送RRC重配置消息或接收终端返回的RRC重配置完成消息。
本领域技术人员可以知晓,图4中的核心网控制面实体41、基站控制面实体42、基站用户面实体43、终端44和基站分离实体45的数量仅仅是示意性的,根据实际需要,可以具有任意数目的终端设备、网络和服务器。本公开实施例对此不作限定。
在上述系统架构下,本公开实施例中提供了一种支持低时延业务的用户面配置方 法,至少在一定程度上克服相关技术中低时延业务无法在控制面与用户面分离架构中得到相应支持的技术问题。该方法可以应用但不限于图4所示的基站控制面实体。
图5示出本公开实施例中一种支持低时延业务的用户面配置方法流程图,如图5所示,该方法包括如下步骤:
S502,基站控制面实体接收核心网控制面实体下发的会话建立或修改请求消息。
需要说明的是,上述会话建立或修改请求消息中可包含所建立或修改会话传输的业务数据的业务特征信息,例如,业务数据传输间隔需求以及是否启用以太网头压缩等;当基站控制面实体接收到核心网控制面实体下发的会话建立请求消息或会话修改请求消息后,可根据会话建立请求消息或会话修改请求消息所建立或修改的会话的业务特征信息,确定基站和终端用户面PDCP配置所需支持的PDCP丢弃定时器和/或以太网头压缩EHC配置。
在一些实施例中,在基站控制面实体接收核心网控制面实体下发的会话建立或修改请求消息之后,方法还包括:基站控制面实体根据第二网管配置信息以及会话建立或修改请求消息中携带的数据承载的质量服务QOS等级,确定向基站用户面实体发送的PDCP丢弃定时器和/或EHC配置,其中,第二网管配置信息至少包括:QOS等级与业务数据传输间隔的映射关系;QOS等级是否启动EHC配置以及启动的EHC配置的类型,EHC配置的类型包括如下任意之一:仅上行压缩、仅下行压缩和双向压缩。
S504,基站控制面实体根据所建立或修改的会话的业务特征信息,确定基站和终端用户面PDCP配置所需支持的PDCP丢弃定时器和/或以太网头压缩EHC配置。
需要说明的是,基站和终端用户面PDCP配置所需支持的PDCP丢弃定时器包括第一丢弃定时器或第二丢弃定时器,第一丢弃定时器为无线资源控制RRC层支持的PDCP丢弃定时器,第二丢弃定时器为扩展的支持低时延业务的PDCP丢弃定时器。
在一些实施例中,第一丢弃定时器的数值可以是:10ms、20ms、30ms、40ms、50ms、60ms、75ms、100ms、150ms、200ms、250ms、300ms、500ms、750ms、1500ms及其他扩展数值;第二丢弃定时器的数值可以是:0.5ms、1ms、2ms、4ms、8ms及其他扩展数值。
S506,当基站控制面实体确定基站用户面实体支持扩展PDCP丢弃定时器和/或以太网头压缩EHC配置时,基站控制面实体通过承载上下文建立或修改请求消息将相应的扩展PDCP丢弃定时器和/或EHC配置包含在PDCP配置信息中发送给基站用 户面实体
由于基站控制面实体与基站用户面实体对PDCP丢弃定时器和/或EHC配置的支持能力存在差异,因而,上述S506中,基站控制面实体可根据基站用户面实体所支持的协议版本,确定基站用户面实体对PDCP丢弃定时器和/或EHC配置的支持能力。
在一些实施例中,本公开实施例中提供的支持低时延业务的用户面配置方法还可通过如下任意一种方式确定基站用户面实体是否支持扩展PDCP丢弃定时器:
方式一:基站控制面实体根据第一网管配置信息中携带的基站用户面实体所支持的协议版本信息,确定基站用户面实体是否支持扩展PDCP丢弃定时器;
方式二:基站控制面实体根据E1接口建立或更新消息中由基站用户面实体携带的协议版本指示信息,确定基站用户面实体是否支持扩展PDCP丢弃定时器,其中,E1接口为基站控制面实体与基站用户面实体之间的通信接口;
方式三:基站控制面实体根据E1接口接收到的承载建立或修改失败原因,确定基站用户面实体不支持扩展丢弃定时器集合。
可选地,由基站用户面实体携带的协议版本指示信息可包括但不限于:协议的版本号,可采用枚举型数据表示,例如,v15、v16等。
在一些实施例中,本公开实施例中提供的支持低时延业务的用户面配置方法还可包括如下步骤:基站控制面实体根据业务数据传输间隔确定采用第一丢弃定时器集合或第二丢弃定时器集合中的定时器数值对PDCP丢弃定时器进行配置,其中,第一丢弃定时器集合中的定时器数值大于或等于10ms;第二丢弃定时器集合中的定时器数值小于10ms,第二丢弃定时器集合中的定时器数值用于配置基站用户面实体支持的扩展PDCP丢弃定时器。
在具体实施时,可根据低时延业务的传输间隔确定采用的丢弃定时器大小,若需要使用10ms及以上范围,则确定丢弃定时器采用第一丢弃定时器集合中的一个数值,丢弃定时器采用Rel-15适用信元;若需要使用0.5ms~8ms的范围,则确定丢弃定时器采用第二丢弃定时器集合中的一个数值,丢弃定时器采用Rel-16适用信元。
在一些实施例中,第一丢弃定时器集合可包括如下定时器数值:10ms、20ms、30ms、40ms、50ms、60ms、75ms、100ms、150ms、200ms、250ms、300ms、500ms、750ms、1500ms及其他扩展数值;第二丢弃定时器集合可包括如下定时器数值:0.5ms、1ms、2ms、4ms、8ms及其他扩展数值。第二丢弃定时器集合指示了扩展的PDCP丢弃定时器。
更进一步地,在一些实施例中,在在基站控制面实体接收核心网控制面实体下发的会话建立或修改请求消息之后,本公开实施例中提供的支持低时延业务的用户面配置方法还可包括如下步骤:当基站控制面实体未获知基站用户面实体所支持的协议版本信息时,基站控制面实体通过E1接口消息承载上下文建立或修改请求消息将第一PDCP配置信息发送至基站用户面实体,其中,第一PDCP配置信息中包含PDCP丢弃定时器和/或EHC配置;
其中,PDCP丢弃定时器配置包括:第一丢弃定时器集合或第二丢弃定时器集合中的一个定时器数值;EHC配置包括:头压缩上下文标识,包括7bit和15bit两种;
对于下行头压缩,至少包括如下信息:
下行头压缩的连续性指示信息,枚举类型,至少包括True;
对于上行头压缩,至少包括如下信息:
上行头压缩的连续性指示信息,枚举类型,至少包括True;
最大的上行头压缩上下文标识MAX_CID_EHC_UL,数值不超过maxNumberEHC-Contexts。
在一些实施例中,本公开实施例中提供的支持低时延业务的用户面配置方法还可包括如下步骤:当基站控制面实体支持健壮性包头压缩ROHC功能时,将ROHC配置参数与EHC配置同时包含在PDCP配置中通过承载上下文建立或修改请求消息发送给基站用户面实体,以使得基站用户面实体配置相应承载的头压缩操作。
在一些实施例中,在基站控制面实体通过E1接口消息中的承载上下文建立或修改请求消息将第一PDCP配置信息发送至基站用户面实体之后,本公开实施例中提供的支持低时延业务的用户面配置方法还可包括如下步骤:基站用户面实体检查自身是否支持所建立或修改的承载的第一PDCP配置信息中的定时器数值;当基站用户面实体不支持承载的第一PDCP配置信息中的丢弃定时器数值时,基站用户面实体向基站控制面实体返回承载上下文建立或修改失败消息及第一失败原因,第一失败原因用于指示基站用户面实体不支持第一PDCP配置信息中包含的定时器数值;基站用户面实体不删除用户上下文配置信息,保持接收到原有的PDCP配置信息;当基站用户面实体支持第一PDCP配置信息中的定时器数值时,保存第一PDCP配置信息中的定时器数值;基站用户面实体对于每一个基站控制面实体请求的数据承载,采用包含在承载上下文建立或修改请求消息PDCP配置中的EHC配置执行相应数据承载的头压缩操作过程,并在第一PDCP配置信息中包含上行头压缩配置的情况下,检查第一PDCP 配置信息中最大的上行头压缩上下文标识MAX_CID_EHC_UL是否超过maxNumberEHC-Contexts;当第一PDCP配置信息中最大的上行头压缩上下文标识MAX_CID_EHC_UL超过maxNumberEHC-Contexts时,基站用户面实体向基站控制面实体返回承载上下文建立或修改失败消息及第二失败原因,第二失败原因用于指示第一PDCP配置信息中最大的上行头压缩上下文标识大于maxNumberEHC-Contexts。
在一些实施例中,在基站用户面实体检查自身是否支持第一PDCP配置信息中的丢弃定时器数值之后,本公开实施例中提供的支持低时延业务的用户面配置方法还可包括如下步骤:当基站用户面实体支持第一PDCP配置信息中的丢弃定时器数值时且其他配置均可支持配置时,基站用户面实体向基站控制面实体返回承载上下文建立或修改响应消息。
S508,基站控制面实体根据基站用户面实体返回的承载上下文建立或修改响应消息,生成无线资源控制RRC重配置消息,发送给终端;
需要说明的是,基站(例如,5G基站)功能可重构为CU和DU两个功能实体,其中,CU与DU功能的切分以处理内容的实时性进行区分。因而,在一些实施例中,本公开实施例中提供的支持低时延业务的用户面配置方法中,基站控制面实体(CU)可通过基站分离实体(DU)向终端发送RRC重配置消息;终端也可通过基站分离实体(DU)向基站控制面实体(CU)返回RRC重配置完成消息。
S510,基站控制面实体在接收到终端返回的RRC重配置完成消息后,向核心网控制面实体返回会话建立或修改响应消息。
需要说明的是,基站控制面实体发送给终端的RRC重配置消息中包含基站控制面实体根据基站控制面实体与基站用户面实体之间承载上下文成功建立或修改的承载配置信息,因而,终端可根据RRC重配置消息中包含的承载配置信息建立RRC连接,并在建立RRC连接之后,向基站控制面实体返回RRC重配置完成消息,以便基站控制面实体向核心网控制面实体返回会话建立或修改响应消息。
在一些实施例中,在基站用户面实体向基站控制面实体返回承载上下文建立或修改响应消息之后,本公开实施例中提供的支持低时延业务的用户面配置方法还可包括如下步骤:基站控制面实体根据基站用户面实体返回的承载上下文建立或修改响应消息,生成向终端发送的第一RRC重配置消息,其中,第一RRC重配置消息中的丢弃定时器数值和/或EHC配置与第一PDCP配置信息的丢弃定时器数值和/或EHC配置相同。
进一步地,在一些实施例中,本公开实施例中提供的支持低时延业务的用户面配置方法还可包括如下步骤:基站控制面实体通过基站分离实体向终端发送第一RRC重配置消息;基站控制面实体通过基站分离实体接收终端根据第一RRC重配置消息返回的第一RRC重配置完成消息;基站控制面实体根据终端返回的第一RRC重配置完成消息,向核心网控制面实体发送会话建立或修改响应消息,以确认承载在无线网配置完成。
在一些实施例中,在基站用户面实体向基站控制面实体返回承载上下文建立或修改失败消息及第一失败原因之后,本公开实施例中提供的支持低时延业务的用户面配置方法还可包括如下步骤:基站控制面实体确定基站用户面实体不支持扩展丢弃定时器,并在第一丢弃定时器集合中重新选择一个数值最小的定时器数值,更新相应承载的第一PDCP配置信息为第二PDCP配置信息,通过E1接口消息承载上下文建立或修改请求消息将第二PDCP配置信息发送至基站用户面实体。
在一些实施例中,本公开实施例中提供的支持低时延业务的用户面配置方法还可包括如下步骤:基站用户面实体根据接收到的第二PDCP配置信息,向基站控制面实体返回承载上下文建立或修改响应消息;基站控制面实体根据基站用户面实体返回的承载上下文建立或修改响应消息,生成向终端发送的第二RRC重配置消息,其中,第二RRC重配置消息中的丢弃定时器数值和/或EHC配置与第二PDCP配置信息的丢弃定时器数值和/或EHC配置相同。
在一些实施例中,本公开实施例中提供的支持低时延业务的用户面配置方法还可包括如下步骤:基站控制面实体通过基站分离实体向终端发送第二RRC重配置消息;基站控制面实体通过基站分离实体接收终端根据第二RRC重配置消息返回的第二RRC重配置完成消息;基站控制面实体根据终端返回的第二RRC重配置完成消息,向核心网控制面实体返回会话建立或修改响应消息,以确认承载在无线网配置完成。
图6示出本公开实施例中一种支持低时延业务的用户面配置系统交互过程示意图,如图6所示,具体包括如下步骤:
S602,基站控制面实体获取基站用户面实体的协议版本信息。
该步骤中,基站控制面实体可根据网管配置或通过E1接口建立或更新消息中由第一基站用户面实体携带的协议版本指示信息来确定基站用户面实体所支持协议版本信息,进而获得基站用户面实体的业务功能支持能力。
S604,核心网控制面实体基站控制面实体向基站控制面实体下发PDU会话建立 请求消息或修改请求消息。
该步骤中,基站控制面实体接收到核心网控制面实体下发的会话建立请求消息或修改请求消息,根据消息中携带的数据承载的QOS等级结合网管配置信息确定业务数据的传输间隔需求以及是否启用以太网头压缩等信息,根据业务数据的传输间隔确定采用的丢弃定时器大小。此处的网管配置信息包括但不限于如下:
①QOS等级与GBR(Guaranteed Bit Rate,保证比特速率)速率、传输间隔需求的映射关系;
②QOS等级是否启动以太网头压缩;
③以太网头压缩的类型(采用枚举型):仅上行头压缩、仅下行头压缩和双向头压缩。
S606,基站控制面实体确定与基站用户面实体建立或修改承载上下文的PDCP配置信息。
该步骤中,基站控制面实体在获得基站用户面实体支持协议版本指示信息的基础上,修正丢弃定时器采用的数值集合,当基站用户面实体支持的协议版本低于基站控制面实体所支持的协议版本时,仅采用第一丢弃定时器集合中的数值;当基站用户面实体支持的协议版本高于或等于基站控制面实体所支持的协议版本时,不修改丢弃定时器的数值,如未获得基站用户面实体的协议版本指示信息或网管未配置相关信息的情况下,也不修改丢弃定时器的数值。通过E1接口消息承载上下文建立请求或者修改请求消息将第一PDCP配置信息发送给基站用户面实体。第一PDCP配置信息包括但不限于如下信息:
①丢弃定时器:为已确定的第一或第二丢弃定时器集合中的一个数值;
②以太网头压缩配置包括但不限于:
头压缩上下文标识:采用TS38.463中定义的ehc-CID-Length-r16,枚举型,至少包括7bit和15bit两种;
对于下行头压缩,包括但不限于如下信息:下行头压缩的连续性指示信息,其采用TS38.463中定义的drb-ContinueEHC-DL-r16,枚举型,至少包括“True”;
对于上行头压缩,包括但不限于如下信息:上行头压缩的连续性指示信息,其采用TS38.463中定义的drb-ContinueEHC-UL-r16,枚举型,至少包括“True”;最大的上行头压缩上下文标识:如TS38.331协议中定义的maxCID-EHC-UL-r16,数值不允许大于maxNumberEHC-Contexts。
S608,基站控制面实体向基站用户面实体发送承载上下文建立或修改请求消息(携带丢弃定时器数值和/或EHC配置)。
基站用户面实体接收到第一PDCP配置信息后,按照如下流程进行处理:
检查丢弃定时器中的数值是否可支持;若不支持,生成承载上下文失败消息和第一失败原因,第一失败原因是配置数值版本不支持,表示所述数值不在当前版本支持范围之内;若支持,则执行如下步骤:
①保存该弃定时器的数值;
②若配置了头压缩且配置了上行头压缩时,则检查最大的上行头压缩上下文标识是否超过最大maxNumberEHC-Contexts;在不超过的情况下,保存头压缩上下文标识、上行头压缩的连续性指示信息和最大的上行头压缩上下文标识;在超过的情况下,生成承载上下文失败消息和第二失败原因,第二失败原因表示超过配置最大值;
③生成承载上下文建立/修改响应消息。
S610,基站用户面实体向基站控制面实体返回承载上下文建立或修改响应消息(携带失败原因)。
该步骤中,基站用户面实体承载配置结果,将包含失败原因的承载上下文失败消息或承载上下文建立/修改响应消息发送给基站控制面实体。若基站控制面实体接收到的是承载上下文失败消息,进一步获取失败原因,若失败原因是第一失败原因则确定是基站用户面无法接收配置的定时器数值,则从第一丢弃定时器集合中重新选择一个最小的数值作为新的丢弃定时器数值,若失败原因是第二失败原因,则更新最大的上行头压缩上下文标识为最大的maxNumberEHC-Contexts,并更新第一PDCP配置信息为第二PDCP配置信息。
S612,基站控制面实体更新与基站用户面实体建立或修改承载上下文的PDCP配置信息。
该步骤中,若基站控制面实体向基站用户面实体下发的PDCP配置使得基站控制面实体与基站用户面实体之间未成功建立或修改承载上下文,则更新PDCP配置信息,并通过承载上下文建立或修改请求消息将更新后的PDCP配置信息发送给基站用户面实体,重新建立或修改基站控制面实体与基站用户面实体之间的承载上下文。
S614,基于更新后的配置进行承载上下文建立或修改。
该步骤中,若更新后的配置成功建立或修改承载上下文,则基于已确认的PDCP配置信息(第一PDCP配置信息或第二PDCP配置信息)生成RRC消息,该RRC消 息中采用的丢弃定时器数值和/或EHC配置与承载建立或修改成功的PDCP配置信息(第一PDCP配置信息或第二PDCP配置信息)相同。
S616,基站控制面实体通过基站分离实体向终端发送RRC消息。
S618,终端向基站控制面实体返回RRC配置确认消息。
S620,基站控制面实体向核心网控制面实体返回PDU会话建立成功指示消息。
图7示出本公开实施例中一种控制面与用户面之间E1接口的建立过程示意图,如图7所示,当基站用户面实体与基站控制面实体建立E1接口的过程中,可通过E1接口响应消息携带其协议版本的指示信息,以便基站控制面实体获取到基站用户面所支持的协议版本信息。
下面列举两个具体实施例,来对本公开实施例中提供的支持低时延业务的用户面配置方法进行说明:
示例1:基站用户面实体支持基于第二丢弃定时器集合数值,并且基站用户面实体通过E1接口通知了基站控制面获知能力。
1)基站控制面(gNB-CU-CP)实体通过E1接口建立消息中由基站用户面(gNB-CU-UP)实体携带第一版本指示信息来确定基站用户面(gNB-CU-UP)实体所支持协议版本信息。其中第一版本指示信息包括如下:版本号:v16
2)基站控制面(gNB-CU-CP)实体收到核心网控制面实体AMF下发的会话建立请求消息,根据其中携带的数据无线承载(data radio bearer,DRB)的QOS等级的基础上结合第二操作维护中心(Operation and Maintenance Center,OMC)配置信息判断其业务类型特征中传输间隔需求和是否启用以太网头压缩,并根据传输间隔确定其采用的丢弃定时器大小,如确定需要使用0.5ms到8ms的范围,则丢弃定时器采用第二丢弃定时器集合中的一个数值0.5ms。第二OMC配置信息包括但不限于如下:
①QOS等级和GBR速率与传输间隔需求的映射关系;
②QOS等级是否启动以太网头压缩:QCI=72;
③头压缩的类型:仅上行头压缩;
3)基站控制面(gNB-CU-CP)实体在获得了第一版本指示信息的基础上,不修改步骤2中的丢弃定时器数值,则通过E1接口消息中的承载上下文建立请求消息把第一PDCP配置信息发送给基站用户面(gNB-CU-UP)实体。其中,第一PDCP配置信息包括如下信息:丢弃定时器:0.5ms。
4)基站用户面(gNB-CU-UP)实体收到第一PDCP配置信息后,按照如下流程 进行处理:
①检查丢弃定时器中的数值可以支持,则保存该丢弃定时器的数值;
②生成承载上下文建立/修改响应消息。
5)基站控制面(gNB-CU-CP)实体收到来自基站用户面(gNB-CU-UP)实体反馈的承载上下文建立或修改响应消息后,基于已确认的第一PDCP配置生成RRC消息,其中RRC消息中采用的丢弃定时器数值与第一PDCP配置相同。
6)基站控制面(gNB-CU-CP)实体将生成的RRC消息通过第一基站分离实体发送给终端。
7)基站控制面(gNB-CU-CP)实体收到终端发送的RRC配置确认消息后,通知AMF PDU会话建立成功指示消息。
示例2:网管未配置任何用户面实体的能力,因此基站控制面实体没有关于基站用户面实体的任何先验信息,并且基站用户面实体不支持基于第二丢弃定时器集合数值,基站控制面实体通过二次重配的方式更新了丢弃定时器配置参数。
1)基站控制面(gNB-CU-CP)实体收到AMF下发的会话建立请求消息,根据其中携带的DRB的QOS等级的基础上结合第二OMC配置信息判断其业务类型特征中传输间隔需求和是否启用以太网头压缩,并根据传输间隔确定其采用的丢弃定时器大小,需要使用0.5ms到8ms的范围,则丢弃定时器采用第二丢弃定时器集合中的一个数值0.5ms。第二OMC配置信息包括但不限于如下:
①QOS等级和GBR速率与传输间隔需求的映射关系;
②QOS等级是否启动以太网头压缩:QCI=72;
③头压缩的类型:仅上行头压缩。
2)基站控制面(gNB-CU-CP)实体在获得了第一版本指示信息的基础上,修正丢包定时器采用的集合信息,由于OMC未配置相关信息的情况下,也不修改步骤1中的丢弃定时器数值,则通过E1接口消息中的承载上下文建立请求消息把第一PDCP配置信息发送给基站用户面(gNB-CU-UP)实体。其中第一PDCP配置信息包括如下信息:丢弃定时器:0.5ms。
3)基站用户面(gNB-CU-UP)实体收到第一PDCP配置信息后,按照如下流程进行处理:
①检查丢弃定时器中的数值不可以支持;
②生成承载上下文失败消息和第一失败原因,第一失败原因是配置数值版本不支 持。
4)基站用户面(gNB-CU-UP)实体根据承载配置结果,将包含失败原因的承载上下文失败消息发送给gNB-CU-CP。
5)如果基站控制面(gNB-CU-CP)实体收到的是承载上下文失败消息,由于失败原因是第一失败原因则确定是基站用户面(gNB-CU-UP)实体无法接收配置的定时器数值,则从第一丢弃定时器集合中重新选择一个数值10ms,并更新第一PDCP配置信息为第二PDCP配置信息。
6)基站控制面(gNB-CU-CP)实体通过E1接口消息中的承载上下文建立请求消息把第二PDCP配置信息发送给基站用户面(gNB-CU-UP)实体用于配置PDCP配置。
7)基站控制面(gNB-CU-CP)实体收到来自基站用户面(gNB-CU-UP)实体反馈的承载上下文建立响应或者修改响应消息后,基于已确认的第二PDCP配置生成RRC消息,其中RRC消息中采用的丢弃定时器数值与第二PDCP配置相同。
8)基站控制面(gNB-CU-CP)实体将生成的RRC消息通过第一基站分离实体发送给终端。
9)基站控制面(gNB-CU-CP)实体收到终端发送的RRC配置确认消息后,通知AMF关于PDU会话建立成功指示消息。
示例3:基站用户面实体正确的配置了上行头压缩相关配置参数,并通过E1接口与基站控制面实体完成了承载配置的过程。
1)基站控制面(gNB-CU-CP)实体收到核心网控制面实体AMF下发的会话建立请求消息,根据其中携带的DRB的QOS等级的基础上结合第二OMC配置信息判断其业务类型特征中传输间隔需求和是否启用以太网头压缩,并根据传输间隔确定其采用的丢弃定时器大小,如确定需要使用10ms以上的范围,则丢弃定时器采用第一丢弃定时器集合中的一个数值20ms。第二OMC配置信息包括但不限于如下:
①QOS等级和GBR速率与传输间隔需求的映射关系;
②QOS等级是否启动以太网头压缩:QCI=72;
③头压缩的类型:仅上行。
2)基站控制面(gNB-CU-CP)实体在获得了第一版本指示信息的基础上,由于OMC未配置相关信息的情况下,不修改步骤1中的丢弃定时器数值,则通过E1接口消息中的承载上下文建立或修改请求消息把第一PDCP配置信息发送给基站用户面 (gNB-CU-UP)实体。其中第一PDCP配置信息包括如下信息:
①丢弃定时器:20ms
②以太网头压缩配置,包括但不限于如下:
头压缩上下文标识:15bit;
对于下行头压缩,“True”;
对于上行头压缩,包括如下信息:上行头压缩的连续性指示信息:“True”;最大的上行头压缩上下文标识:maxNumberEHC-Contexts-10。
3)基站用户面(gNB-CU-UP)实体收到第一PDCP配置信息后,按照如下流程进行处理:
①检查丢弃定时器中的数值可以支持,保存该弃定时器的数值;若配置了头压缩且配置了上行头压缩时,则检查最大的上行头压缩上下文标识未超过最大maxNumberEHC-Contexts;在不超过的情况下,保存头压缩上下文标识、上行头压缩的连续性指示信息和最大的上行头压缩上下文标识;
②生成承载上下文建立响应消息。
4)基站控制面(gNB-CU-CP)实体收到来自基站用户面(gNB-CU-UP)实体反馈的承载上下文建立或修改响应消息后,基于已确认的第一PDCP配置生成RRC消息,其中RRC消息中采用的丢弃定时器数值与第一PDCP配置相同。
5)基站控制面(gNB-CU-CP)实体将生成的RRC消息通过第一基站分离实体发送给终端。
6)基站控制面(gNB-CU-CP)实体收到终端发送的RRC配置确认消息后,通知AMFPDU会话建立成功指示消息。
通过本公开实施例中提供的支持低时延业务的用户面配置方法,能够实现但不不限于如下技术效果:①解决了基站控制面实体和基站用户面实体对于低时延业务丢弃定时器支持能力存在差异时,承载无法建立或修改成功的问题,避免了配置失败导致的承载释放问题;②通过定义了新的失败原因,支持了基站控制面实体重新识别错误原因,并可基于原因值重新配置PDCP参数;③克服基站控制面实体和基站用户面实体对于头压缩上下文标识理解的不一致,从而减少空口传输时的错误,降低了用户掉话率。
基于同一发明构思,本公开实施例中还提供了一种基站,该基站可以是5G及以后版本的基站(例如:5G NR NB),或者其他通信系统中的基站(例如:eNB基站), 需要说明的是,在本公开实施例中并不限定网络侧设备的具体类型。
图8示出本公开实施例中一种基站示意图,如图8所示,该基站包括:处理器801;以及存储器802,用于存储处理器801的可执行指令;
其中,处理器801配置为经由执行可执行指令来执行上述方法实施例的如下步骤:基站控制面实体接收核心网控制面实体下发的会话建立或修改请求消息;基站控制面实体根据所建立或修改的会话的业务特征信息,确定基站和终端用户面PDCP配置所需支持的PDCP丢弃定时器和/或以太网头压缩EHC配置;PDCP丢弃定时器包括第一丢弃定时器或第二丢弃定时器,第一丢弃定时器为无线资源控制RRC层支持的PDCP丢弃定时器,第二丢弃定时器为扩展的支持低时延业务的PDCP丢弃定时器;当基站控制面实体确定基站用户面实体支持扩展PDCP丢弃定时器和/或以太网头压缩EHC配置时,基站控制面实体通过承载上下文建立或修改请求消息将相应的扩展PDCP丢弃定时器和/或EHC配置包含在PDCP配置信息中发送给基站用户面实体;基站控制面实体根据基站用户面实体返回的承载上下文建立或修改响应消息,生成无线资源控制RRC重配置消息,发送给终端;基站控制面实体在接收到终端返回的RRC重配置完成消息后,向核心网控制面实体返回会话建立或修改响应消息。
在一些实施例中,上述处理器801还用于执行上述方法实施例的如下步骤:基站控制面实体根据第一网管配置信息中携带的基站用户面实体所支持的协议版本信息,确定基站用户面实体是否支持扩展PDCP丢弃定时器;基站控制面实体根据E1接口建立或更新消息中由基站用户面实体携带的协议版本指示信息,确定基站用户面实体是否支持扩展PDCP丢弃定时器;基站控制面实体根据E1接口接收到的承载建立或修改失败原因,确定基站用户面实体不支持扩展丢弃定时器集合。
在一些实施例中,协议版本指示信息采用枚举类型表示基站用户面实体所支持的协议版本。
在一些实施例中,基站用户面实体所支持的协议版本包括如下任意之一:3GPP Rel-15版本、3GPP Rel-16-v80之前版本、3GPP Rel-16-v90后续版本。
在一些实施例中,上述处理器801还用于执行上述方法实施例的如下步骤:基站控制面实体根据第二网管配置信息以及会话建立或修改请求消息中携带的数据承载的质量服务QOS等级,确定向基站用户面实体发送的PDCP丢弃定时器和/或EHC配置,其中,第二网管配置信息至少包括:QOS等级与业务数据传输间隔的映射关系;QOS等级是否启动EHC配置以及启动的EHC配置的类型,EHC配置的类型包括如 下任意之一:仅上行压缩、仅下行压缩和双向压缩。
在一些实施例中,上述处理器801还用于执行上述方法实施例的如下步骤:基站控制面实体根据业务数据传输间隔确定采用第一丢弃定时器集合或第二丢弃定时器集合中的定时器数值对PDCP丢弃定时器进行配置,其中,第一丢弃定时器集合中的定时器数值大于或等于10ms;第二丢弃定时器集合中的定时器数值小于10ms,第二丢弃定时器集合中的定时器数值用于配置基站用户面实体支持的扩展PDCP丢弃定时器。
在一些实施例中,第一丢弃定时器集合至少包含如下定时器数值:10ms、20ms、30ms、40ms、50ms、60ms、75ms、100ms、150ms、200ms、250ms、300ms、500ms、750ms、1500ms;第二丢弃定时器集合至少包含如下定时器数值:0.5ms、1ms、2ms、4ms、8ms,第二丢弃定时器集合指示了扩展的PDCP丢弃定时器。
在一些实施例中,上述处理器801还用于执行上述方法实施例的如下步骤:当基站控制面实体未获知基站用户面实体所支持的协议版本信息时,基站控制面实体通过E1接口消息中的承载上下文建立或修改请求消息将第一PDCP配置信息发送至基站用户面实体,其中,第一PDCP配置信息中包含PDCP丢弃定时器和/或EHC配置;
其中,PDCP丢弃定时器配置包括:第一丢弃定时器集合或第二丢弃定时器集合中的一个定时器数值;EHC配置包括:头压缩上下文标识,包括7bit和15bit两种;
对于下行头压缩,至少包括如下信息:
下行头压缩的连续性指示信息,枚举类型,至少包括True;
对于上行头压缩,至少包括如下信息:
上行头压缩的连续性指示信息,枚举类型,至少包括True;
最大的上行头压缩上下文标识MAX_CID_EHC_UL,数值不超过maxNumberEHC-Contexts。
在一些实施例中,上述处理器801还用于执行上述方法实施例的如下步骤:当基站控制面实体支持健壮性包头压缩ROHC功能时,将ROHC配置参数与EHC配置同时包含在PDCP配置中通过承载上下文建立或修改请求消息发送给基站用户面实体,以使得基站用户面实体配置相应承载的头压缩操作。
在一些实施例中,上述处理器801还用于执行上述方法实施例的如下步骤:基站用户面实体检查自身是否支持所建立或修改的承载的第一PDCP配置信息中的定时器数值;当基站用户面实体不支持承载的第一PDCP配置信息中的丢弃定时器数值时, 基站用户面实体向基站控制面实体返回承载上下文建立或修改失败消息及第一失败原因,第一失败原因用于指示基站用户面实体不支持第一PDCP配置信息中包含的定时器数值;基站用户面实体不删除用户上下文配置信息,保持接收到原有的PDCP配置信息;当基站用户面实体支持第一PDCP配置信息中的定时器数值时,保存第一PDCP配置信息中的定时器数值;基站用户面实体对于每一个基站控制面实体请求的数据承载,采用包含在承载上下文建立或修改请求消息PDCP配置中的EHC配置执行相应数据承载的头压缩操作过程,并在第一PDCP配置信息中包含上行头压缩配置的情况下,检查第一PDCP配置信息中最大的上行头压缩上下文标识MAX_CID_EHC_UL是否超过maxNumberEHC-Contexts;当第一PDCP配置信息中最大的上行头压缩上下文标识MAX_CID_EHC_UL超过maxNumberEHC-Contexts时,基站用户面实体向基站控制面实体返回承载上下文建立或修改失败消息及第二失败原因,第二失败原因用于指示第一PDCP配置信息中最大的上行头压缩上下文标识大于maxNumberEHC-Contexts。
在一些实施例中,上述处理器801还用于执行上述方法实施例的如下步骤:当基站用户面实体支持第一PDCP配置信息中的丢弃定时器数值时且其他配置均可支持配置时,基站用户面实体向基站控制面实体返回承载上下文建立或修改响应消息。
在一些实施例中,上述处理器801还用于执行上述方法实施例的如下步骤:基站控制面实体根据基站用户面实体返回的承载上下文建立或修改响应消息,生成向终端发送的第一RRC重配置消息,其中,第一RRC重配置消息中的丢弃定时器数值和/或EHC配置与第一PDCP配置信息的丢弃定时器数值和/或EHC配置相同。
在一些实施例中,上述处理器801还用于执行上述方法实施例的如下步骤:基站控制面实体通过基站分离实体向终端发送第一RRC重配置消息;基站控制面实体通过基站分离实体接收终端根据第一RRC重配置消息返回的第一RRC重配置完成消息;基站控制面实体根据终端返回的第一RRC重配置完成消息,向核心网控制面实体发送会话建立或修改响应消息,以确认承载在无线网配置完成。
在一些实施例中,上述处理器801还用于执行上述方法实施例的如下步骤:基站控制面实体确定基站用户面实体不支持扩展丢弃定时器,并在第一丢弃定时器集合中重新选择一个数值最小的定时器数值,更新相应承载的第一PDCP配置信息为第二PDCP配置信息,通过E1接口消息中的承载上下文建立或修改请求消息将第二PDCP配置信息发送至基站用户面实体。
在一些实施例中,上述处理器801还用于执行上述方法实施例的如下步骤:基站用户面实体根据接收到的第二PDCP配置信息,向基站控制面实体返回承载上下文建立或修改响应消息;基站控制面实体根据基站用户面实体返回的承载上下文建立或修改响应消息,生成向终端发送的第二RRC重配置消息,其中,第二RRC重配置消息中的丢弃定时器数值和/或EHC配置与第二PDCP配置信息的丢弃定时器数值和/或EHC配置相同。
在一些实施例中,上述处理器801还用于执行上述方法实施例的如下步骤:基站控制面实体通过基站分离实体向终端发送第二RRC重配置消息;基站控制面实体通过基站分离实体接收终端根据第二RRC重配置消息返回的第二RRC重配置完成消息;基站控制面实体根据终端返回的第二RRC重配置完成消息,向核心网控制面实体返回会话建立或修改响应消息,以确认承载在无线网配置完成。
基于同一发明构思,本公开实施例中还提供了一种计算机可读存储介质,该计算机可读存储介质可以是可读信号介质或者可读存储介质。图9示出本公开实施例中一种计算机可读存储介质示意图,如图9所示,该计算机可读存储介质900上存储有能够实现本公开上述方法的程序产品。在一些可能的实施方式中,本公开的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当程序产品在终端设备上运行时,程序代码用于使终端设备执行本说明书上述“示例性方法”部分中描述的根据本公开各种示例性实施方式的步骤。
本公开中的计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
在本公开中,计算机可读存储介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
可选地,计算机可读存储介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
在具体实施时,可以以一种或多种程序设计语言的任意组合来编写用于执行本公 开操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
通过以上实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、移动终端、或者网络设备等)执行根据本公开实施方式的方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (24)

  1. 一种支持低时延业务的用户面配置方法,包括:
    基站控制面实体接收核心网控制面实体下发的会话建立或修改请求消息;
    当所述基站控制面实体确定基站用户面实体支持扩展PDCP丢弃定时器和/或以太网头压缩EHC配置时,所述基站控制面实体通过承载上下文建立或修改请求消息将相应的扩展PDCP丢弃定时器和/或EHC配置包含在PDCP配置信息中发送给所述基站用户面实体;
    所述基站控制面实体根据所述基站用户面实体返回的承载上下文建立或修改响应消息,生成无线资源控制RRC重配置消息,发送给终端;
    所述基站控制面实体在接收到所述终端返回的RRC重配置完成消息后,向所述核心网控制面实体返回会话建立或修改响应消息。
  2. 根据权利要求1所述的支持低时延业务的用户面配置方法,还包括:
    在将PDCP配置信息发送给所述基站用户面实体之前,所述基站控制面实体根据所建立或修改的会话的业务特征信息,确定基站和终端用户面PDCP配置所需支持的PDCP丢弃定时器和/或以太网头压缩EHC配置;所述PDCP丢弃定时器包括第一丢弃定时器或第二丢弃定时器,所述第一丢弃定时器为无线资源控制RRC层支持的PDCP丢弃定时器,所述第二丢弃定时器为扩展的支持低时延业务的PDCP丢弃定时器。
  3. 根据权利要求1或2所述的支持低时延业务的用户面配置方法,所述方法还包括如下任意之一:
    所述基站控制面实体根据第一网管配置信息中携带的所述基站用户面实体所支持的协议版本信息,确定所述基站用户面实体是否支持扩展PDCP丢弃定时器;
    所述基站控制面实体根据E1接口建立或更新消息中由基站用户面实体携带的协议版本指示信息,确定所述基站用户面实体是否支持扩展PDCP丢弃定时器;
    所述基站控制面实体根据E1接口接收到的承载建立或修改失败原因,确定基站用户面实体不支持扩展丢弃定时器集合。
  4. 根据权利要求3所述的支持低时延业务的用户面配置方法,其中,所述协议版本指示信息采用枚举类型表示所述基站用户面实体所支持的协议版本。
  5. 根据权利要求4所述的支持低时延业务的用户面配置方法,其中,所述基站用户面实体所支持的协议版本包括如下任意之一:3GPP Rel-15版本、3GPP Rel-16-v80之前版本、3GPP Rel-16-v90后续版本。
  6. 根据权利要求1或2所述的支持低时延业务的用户面配置方法,在基站控制面实体接收核心网控制面实体下发的会话建立或修改请求消息之后,所述方法还包括:
    所述基站控制面实体根据第二网管配置信息以及所述会话建立或修改请求消息中携带的数据承载的质量服务QOS等级,确定向所述基站用户面实体发送的PDCP丢弃定时器和/或EHC配置。
  7. 根据权利要求6所述的支持低时延业务的用户面配置方法,其中,所述第二网管配置信息至少包括:
    QOS等级与业务数据传输间隔的映射关系;
    QOS等级是否启动EHC配置以及启动的EHC配置的类型,所述EHC配置的类型包括如下任意之一:仅上行压缩、仅下行压缩和双向压缩。
  8. 根据权利要求6所述的支持低时延业务的用户面配置方法,所述方法还包括:
    所述基站控制面实体根据业务数据传输间隔确定采用第一丢弃定时器集合或第二丢弃定时器集合中的定时器数值对PDCP丢弃定时器进行配置,其中,所述第一丢弃定时器集合中的定时器数值大于或等于10ms;所述第二丢弃定时器集合中的定时器数值小于10ms,所述第二丢弃定时器集合中的定时器数值用于配置基站用户面实体支持的扩展PDCP丢弃定时器。
  9. 根据权利要求8所述的支持低时延业务的用户面配置方法,其中,所述第一丢弃定时器集合至少包含如下定时器数值:10ms、20ms、30ms、40ms、50ms、60ms、75ms、100ms、150ms、200ms、250ms、300ms、500ms、750ms、1500ms;所述第二丢弃定时器集合至少包含如下定时器数值:0.5ms、1ms、2ms、4ms、8ms,所述第二丢弃定时器集合指示了扩展的PDCP丢弃定时器。
  10. 根据权利要求9所述的支持低时延业务的用户面配置方法,在基站控制面实体接收核心网控制面实体下发的会话建立或修改请求消息之后,所述方法还包括:
    当基站控制面实体未获知基站用户面实体所支持的协议版本信息时,所述基站控制面实体通过E1接口消息承载上下文建立或修改请求消息将第一PDCP配置信息发送至基站用户面实体,其中,所述第一PDCP配置信息中包含PDCP丢弃定时器和/或EHC配置;其中,所述PDCP丢弃定时器配置包括:第一丢弃定时器集合或第二 丢弃定时器集合中的一个定时器数值。
  11. 根据权利要求10所述的支持低时延业务的用户面配置方法,其中,所述EHC配置包括:
    头压缩上下文标识,包括7bit和15bit两种;
    对于下行头压缩,至少包括如下信息:
    下行头压缩的连续性指示信息,枚举类型,至少包括True;
    对于上行头压缩,至少包括如下信息:
    上行头压缩的连续性指示信息,枚举类型,至少包括True;
    最大的上行头压缩上下文标识MAX_CID_EHC_UL,数值不超过maxNumberEHC-Contexts。
  12. 根据权利要求1或2或所述的支持低时延业务的用户面配置方法,其中,所述EHC配置包括以下至少一项:头压缩上下文标识、上行或下行头压缩的连续性指示信息、最大的上行头压缩上下文标识。
  13. 根据权利要求10所述的支持低时延业务的用户面配置方法,所述方法还包括:
    当基站控制面实体支持健壮性包头压缩ROHC功能时,将ROHC配置参数与EHC配置同时包含在PDCP配置中通过承载上下文建立或修改请求消息发送给基站用户面实体,以使得所述基站用户面实体配置相应承载的头压缩操作。
  14. 根据权利要求10所述的支持低时延业务的用户面配置方法,在所述基站控制面实体通过E1接口消息承载上下文建立或修改请求消息将第一PDCP配置信息发送至基站用户面实体之后,所述方法还包括:
    所述基站用户面实体检查自身是否支持所建立或修改的承载的第一PDCP配置信息中的定时器数值;
    当所述基站用户面实体不支持所述承载的第一PDCP配置信息中的丢弃定时器数值时,所述基站用户面实体向所述基站控制面实体返回承载上下文建立或修改失败消息及第一失败原因,所述第一失败原因用于指示基站用户面实体不支持第一PDCP配置信息中包含的定时器数值;基站用户面实体不删除用户上下文配置信息,保持接收到原有的PDCP配置信息;
    当所述基站用户面实体支持所述第一PDCP配置信息中的定时器数值时,保存所述第一PDCP配置信息中的定时器数值;
    所述基站用户面实体对于每一个基站控制面实体请求的数据承载,采用包含在承载上下文建立或修改请求消息PDCP配置中的EHC配置执行相应数据承载的头压缩操作过程,并在所述第一PDCP配置信息中包含上行头压缩配置的情况下,检查所述第一PDCP配置信息中最大的上行头压缩上下文标识MAX_CID_EHC_UL是否超过maxNumberEHC-Contexts;
    当所述第一PDCP配置信息中最大的上行头压缩上下文标识MAX_CID_EHC_UL超过maxNumberEHC-Contexts时,所述基站用户面实体向所述基站控制面实体返回承载上下文建立或修改失败消息及第二失败原因,所述第二失败原因用于指示第一PDCP配置信息中最大的上行头压缩上下文标识大于maxNumberEHC-Contexts。
  15. 根据权利要求14所述的支持低时延业务的用户面配置方法,所述方法还包括:
    在所述基站用户面实体检查自身是否支持所述第一PDCP配置信息中的丢弃定时器数值之后,当所述基站用户面实体支持所述第一PDCP配置信息中的丢弃定时器数值时且其他配置均可支持配置时,所述基站用户面实体向所述基站控制面实体返回承载上下文建立或修改响应消息;和/或
    在所述基站用户面实体向所述基站控制面实体返回承载上下文建立或修改失败消息及第一失败原因之后,所述基站控制面实体确定基站用户面实体不支持扩展丢弃定时器,并在所述第一丢弃定时器集合中重新选择一个数值最小的定时器数值,更新相应承载的第一PDCP配置信息为第二PDCP配置信息,通过E1接口消息承载上下文建立或修改请求消息将第二PDCP配置信息发送至所述基站用户面实体。
  16. 根据权利要求15所述的支持低时延业务的用户面配置方法,在所述基站用户面实体向所述基站控制面实体返回承载上下文建立或修改响应消息之后,所述方法还包括:
    所述基站控制面实体根据所述基站用户面实体返回的承载上下文建立或修改响应消息,生成向终端发送的第一RRC重配置消息,其中,所述第一RRC重配置消息中的丢弃定时器数值和/或EHC配置与所述第一PDCP配置信息的丢弃定时器数值和/或EHC配置相同。
  17. 根据权利要求16所述的支持低时延业务的用户面配置方法,所述方法还包括:
    所述基站控制面实体通过基站分离实体向终端发送第一RRC重配置消息;
    所述基站控制面实体通过基站分离实体接收所述终端根据所述第一RRC重配置消息返回的第一RRC重配置完成消息;
    所述基站控制面实体根据所述终端返回的第一RRC重配置完成消息,向所述核心网控制面实体发送会话建立或修改响应消息,以确认承载在无线网配置完成。
  18. 根据权利要求15所述的支持低时延业务的用户面配置方法,所述方法还包括:
    所述基站用户面实体根据接收到的第二PDCP配置信息,向基站控制面实体返回承载上下文建立或修改响应消息;
    所述基站控制面实体根据所述基站用户面实体返回的承载上下文建立或修改响应消息,生成向终端发送的第二RRC重配置消息,其中,所述第二RRC重配置消息中的丢弃定时器数值和/或EHC配置与所述第二PDCP配置信息的丢弃定时器数值和/或EHC配置相同。
  19. 根据权利要求18所述的支持低时延业务的用户面配置方法,所述方法还包括:
    所述基站控制面实体通过基站分离实体向终端发送第二RRC重配置消息;
    所述基站控制面实体通过基站分离实体接收所述终端根据所述第二RRC重配置消息返回的第二RRC重配置完成消息;
    所述基站控制面实体根据所述终端返回的第二RRC重配置完成消息,向所述核心网控制面实体返回会话建立或修改响应消息,以确认承载在无线网配置完成。
  20. 一种通信系统,包括:核心网控制面实体、基站控制面实体和基站用户面实体;
    其中,所述核心网控制面实体,用于下发会话建立或修改请求消息;
    所述基站控制面实体,用于在接收会话建立或修改请求消息后,当确定所述基站用户面实体支持扩展PDCP丢弃定时器和/或以太网头压缩EHC配置时,通过承载上下文建立或修改请求消息将相应的扩展PDCP丢弃定时器和/或EHC配置包含在PDCP配置信息中发送给所述基站用户面实体;所述PDCP丢弃定时器包括第一丢弃定时器和/或第二丢弃定时器,所述第一丢弃定时器为无线资源控制RRC层支持的PDCP丢弃定时器,所述第二丢弃定时器为扩展的支持低时延业务的PDCP丢弃定时器;
    所述基站用户面实体,用于向所述基站控制面实体返回承载上下文建立或修改响应消息;
    所述基站控制面实体还用于根据所述基站用户面实体返回的承载上下文建立或修改响应消息,生成无线资源控制RRC重配置消息,发送给终端,并在接收到所述终端返回的RRC重配置完成消息后,向所述核心网控制面实体返回会话建立或修改响应消息。
  21. 根据权利要求20所述的通信系统,其中,所述基站控制面实体还用于根据所建立或修改的会话的业务特征信息,确定基站和终端用户面PDCP配置所需支持的PDCP丢弃定时器和/或以太网头压缩EHC配置。
  22. 根据权利要求20所述的通信系统,所述通信系统还包括:基站分离实体,用于所述基站控制面实体向终端发送RRC重配置消息或接收所述终端返回的RRC重配置完成消息。
  23. 一种基站,包括:
    处理器;以及
    存储器,用于存储所述处理器的可执行指令;
    其中,所述处理器配置为经由执行所述可执行指令来执行权利要求1~19中任意一项所述的支持低时延业务的用户面配置方法。
  24. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1~19中任意一项所述的支持低时延业务的用户面配置方法。
PCT/CN2022/127986 2022-03-23 2022-10-27 支持低时延业务的用户面配置方法、系统、基站及介质 WO2023179019A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210291246.3 2022-03-23
CN202210291246 2022-03-23
CN202210392671.1 2022-04-14
CN202210392671.1A CN116847409A (zh) 2022-03-23 2022-04-14 支持低时延业务的用户面配置方法、系统、基站及介质

Publications (1)

Publication Number Publication Date
WO2023179019A1 true WO2023179019A1 (zh) 2023-09-28

Family

ID=88099736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127986 WO2023179019A1 (zh) 2022-03-23 2022-10-27 支持低时延业务的用户面配置方法、系统、基站及介质

Country Status (1)

Country Link
WO (1) WO2023179019A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810981A (zh) * 2017-04-28 2018-11-13 中国移动通信有限公司研究院 一种数据传输方法及装置
CN113766461A (zh) * 2020-06-01 2021-12-07 中国电信股份有限公司 用户面数据处理方法和基站
WO2021244177A1 (zh) * 2020-06-01 2021-12-09 中国电信股份有限公司 连接模式配置方法、基站和通信系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810981A (zh) * 2017-04-28 2018-11-13 中国移动通信有限公司研究院 一种数据传输方法及装置
CN113766461A (zh) * 2020-06-01 2021-12-07 中国电信股份有限公司 用户面数据处理方法和基站
WO2021244177A1 (zh) * 2020-06-01 2021-12-09 中国电信股份有限公司 连接模式配置方法、基站和通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHINA TELECOM: "Discussion on PDCP Status Report indication over E1", 3GPP DRAFT; R3-203134, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20200601 - 20200612, 22 May 2020 (2020-05-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051889078 *

Similar Documents

Publication Publication Date Title
US10602400B2 (en) Enhancement of PDCP status report
EP3621360B1 (en) System information transmission method and related device
WO2022142676A1 (zh) 数据传输方法、装置、计算机可读介质及电子设备
WO2019000866A1 (zh) 一种数据处理方法及物联网网关
WO2020233249A1 (zh) 一种报文传输方法以及相关装置
WO2022142517A1 (zh) 数据传输方法、装置、计算机可读介质及电子设备
WO2019173951A1 (zh) 一种ue策略的更新方法及装置、计算机存储介质
US20230224253A1 (en) Communication method and apparatus
WO2023179019A1 (zh) 支持低时延业务的用户面配置方法、系统、基站及介质
US20230007544A1 (en) Methods and devices for updating data transmission during inter-donor migration
CN107431965B (zh) 一种实现传输控制协议tcp传输的方法及装置
EP3297191A1 (en) Protocol frame transmission method, device, node apparatus and system
US10827403B2 (en) Data transmission method, user equipment, base station, and system
CN112994848B (zh) Mcs的调整方法、装置、存储介质及无线节点
US20080186847A1 (en) Link-aware throughput acceleration profiles
WO2021047443A1 (zh) 一种业务数据包转发的方法及装置
WO2021000763A1 (zh) 数据传输方法及装置
CN114514764B (zh) 设备、方法和计算机程序
WO2021128100A1 (zh) 一种通信方法及装置
CN116847409A (zh) 支持低时延业务的用户面配置方法、系统、基站及介质
WO2018228545A1 (zh) 信息处理方法以及相关装置
WO2024017054A1 (zh) 数据处理方法、装置及存储介质
WO2023056832A1 (zh) 一种通信方法及相关产品
WO2023150997A1 (zh) 通信方法及通信装置
WO2023020614A1 (zh) 基于多模态业务的小区切换方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933070

Country of ref document: EP

Kind code of ref document: A1