WO2023178929A1 - 一种软磁材料磁特性曲线的测量装置及方法 - Google Patents
一种软磁材料磁特性曲线的测量装置及方法 Download PDFInfo
- Publication number
- WO2023178929A1 WO2023178929A1 PCT/CN2022/116982 CN2022116982W WO2023178929A1 WO 2023178929 A1 WO2023178929 A1 WO 2023178929A1 CN 2022116982 W CN2022116982 W CN 2022116982W WO 2023178929 A1 WO2023178929 A1 WO 2023178929A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic
- sample
- magnetic field
- soft magnetic
- rubidium
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 39
- 239000000696 magnetic material Substances 0.000 title claims abstract description 32
- 229910052701 rubidium Inorganic materials 0.000 claims abstract description 200
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims abstract description 199
- 230000005415 magnetization Effects 0.000 claims abstract description 41
- 230000008569 process Effects 0.000 claims abstract description 23
- 238000001816 cooling Methods 0.000 claims abstract description 14
- 238000001514 detection method Methods 0.000 claims description 78
- 238000012546 transfer Methods 0.000 claims description 26
- 229920006395 saturated elastomer Polymers 0.000 claims description 21
- 238000000691 measurement method Methods 0.000 claims description 17
- 230000008859 change Effects 0.000 claims description 12
- 230000005347 demagnetization Effects 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims description 7
- 230000035699 permeability Effects 0.000 claims description 4
- 238000005086 pumping Methods 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 3
- 239000000523 sample Substances 0.000 abstract 10
- 238000009738 saturating Methods 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000005389 magnetism Effects 0.000 description 4
- 230000005386 paleomagnetism Effects 0.000 description 3
- 229910000889 permalloy Inorganic materials 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/12—Measuring magnetic properties of articles or specimens of solids or fluids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/12—Measuring magnetic properties of articles or specimens of solids or fluids
- G01R33/14—Measuring or plotting hysteresis curves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Definitions
- the invention relates to the technical field of magnetic field measurement, and specifically relates to a device and method for measuring the magnetic characteristic curve of soft magnetic materials based on a pump-detection rubidium atomic magnetometer.
- various magnetic characteristic curves are used to characterize the physical properties of magnetic materials. For example, information such as coercivity and remanence can be obtained from the hysteresis loop, and the magnetic properties of magnetic materials can be studied from the temperature change curve of the sample magnetic moment. Identification of magnetic carriers in rocks or soils through saturation isothermal remanence curves and remanence coercivity curves in phase transition, paleomagnetism and environmental magnetism research.
- the commonly used precision magnetometers for measuring the magnetic characteristic curves of magnetic materials are mainly Superconducting Quantum Interference Device (SQUID) magnetometers and Vibrating Sample Magnetometers (VSM). Paleomagnetism and Environment In magnetism, pulse magnetizers and rotating magnetometers are used to measure saturation isothermal remanence curves and remanence coercivity curves.
- SQUID Superconducting Quantum Interference Device
- VSM Vibrating Sample Magnetometers
- Soft magnetic materials are easy to magnetize and demagnetize. Their basic characteristics are small coercive force. The measurement of the magnetic characteristic curve of soft magnetic samples is a difficult issue in basic research.
- the commonly used magnetic performance testing systems (SQUID-VSM) use superconducting magnets to provide magnetic fields. When the current of the superconducting magnet is zero, the residual magnetic field can reach tens of Gauss due to the frozen magnetic flux. This has a negative impact on the magnetic properties of soft magnetic materials. Being able to measure can lead to a lot of errors. For example, the document “Yu Hongyun, Effect of residual magnetic field of superconducting magnets on testing of soft magnetic materials [J].
- the present invention discloses a device and method for measuring the magnetic characteristic curve of soft magnetic materials based on a pump-detection atomic magnetometer.
- the Larmor precession effect is a natural benchmark.
- the pump-detection rubidium atomic magnetometer based on the Larmor precession effect is used to measure the magnetic field generated by the soft magnetic sample at the rubidium bubble in different magnetization histories. It also measures the saturation residual magnetic moment value of soft magnetic samples under specific temperature conditions and calibrates the magnetic characteristic curves of a series of soft magnetic materials. It can trace the magnetic moment value of soft magnetic samples to the natural benchmark and significantly improve the magnetic properties of soft magnetic samples. Accuracy of curve measurements.
- the measuring device for the magnetic characteristic curve of soft magnetic materials of the present invention includes: a pump-detection rubidium atomic magnetometer, a background magnetic field generating component, and a soft magnetic sample magnetizing and demagnetizing component;
- the background magnetic field generation component includes a magnetic shielding cylinder and a background magnetic field coil; the magnetic shielding cylinder is used to achieve geomagnetic shielding; the background magnetic field coil is located inside the magnetic shielding cylinder and is used to generate an axially uniform and stable magnetic field in the magnetic shielding cylinder. Background magnetic field; the background magnetic field is in the range of 200nT to 20000nT;
- the pump-detection rubidium atomic magnetometer is located in a magnetic shielding cylinder, and its rubidium bubble is located in the magnetic field uniform area of the background magnetic field.
- the direction of the circularly polarized pumping light is parallel to the direction of the background magnetic field, and the direction of the linearly polarized detection light is parallel to the background magnetic field.
- the direction of the magnetic field is vertical; the pump-detection rubidium atomic magnetometer is used to measure the magnetic field at the spatial position of the rubidium bubble in the pump-detection rubidium atomic magnetometer;
- the soft magnetic sample magnetization and demagnetization components include a sample chamber, a magnetizing coil, a 6.5-bit precision current source, a sample transfer rod and a non-magnetic temperature changing system; the sample chamber is located in a magnetic shielding cylinder, the magnetizing coil is wound around the sample chamber, and the sample transfer rod It is used to place the soft magnetic sample in the sample chamber and in the center of the magnetizing coil.
- the line connecting the soft magnetic sample and the center of the rubidium bubble is parallel to the direction of the background magnetic field; the 6.5-bit precision current source inputs positive or negative pulses to the magnetizing coil.
- the pulse magnetic field produced by the magnetic field is used to magnetize and demagnetize soft magnetic samples; the non-magnetic temperature changing system is used to keep the temperature of the sample chamber constant, or to change the temperature of the sample chamber.
- the magnetic shielding cylinder is cylindrical, with a diameter of ⁇ 500mm and a length greater than or equal to 700mm; or, the magnetic shielding cylinder is replaced by a magnetic shielding chamber with a magnetic shielding coefficient better than 10 -3 .
- the present invention also provides a method for measuring a series of magnetic characteristic curves of soft magnetic materials based on the above measuring device: first, based on the above measuring device, measure the saturation residual magnetic moment value of the soft magnetic sample under constant temperature conditions near zero magnetic field.
- the moment value is defined as the residual magnetic moment value of the soft magnetic sample in the background magnetic field after the soft magnetic sample is first saturated and magnetized under constant temperature conditions, and then the magnetizing field is removed; then the magnetic characteristic curves of the soft magnetic material are obtained based on the above measurement device, and based on The saturated residual magnetic moment value calibrates the magnetic characteristic curve.
- the measurement of the saturated residual magnetic moment value includes the following steps:
- Step 1 Set the distance between the center position of the magnetizing coil and the center position of the rubidium bubble by moving and fixing the position of the sample chamber; start the pump-detection rubidium atomic magnetometer and adjust the current flowing into the background magnetic field coil so that the background The magnetic field is in the range of 200nT to 1000nT; the pump-detection rubidium atomic magnetometer works in an open-loop state, and the frequency of the sinusoidal excitation signal input by its radio frequency magnetic field coil is the Larmor precession frequency corresponding to the background magnetic field;
- Step 2 Use the sample transfer rod to place the soft magnetic sample in the center of the magnetizing coil and wait for the temperature of the soft magnetic sample to stabilize;
- the 6.5-bit precision current source outputs the maximum current that can saturate the soft magnetic sample in the form of pulses, so that the soft magnetic sample is saturated and magnetized.
- the pulse magnetization time is longer than 10 seconds; among them, the direction of the magnetic field generated by the magnetizing coil is consistent with the background magnetic field. The direction is the same; turn off the 6.5-bit precision current source, use a pump-detection rubidium atomic magnetometer to measure the magnetic field at the rubidium bubble, and obtain the measured magnetic field value.
- the measured magnetic field value is the background magnetic field and the soft magnetic sample at the rubidium bubble.
- Step 4 Move the position of the soft magnetic sample away from the rubidium bubble with a fixed step length. Each time the sample position is moved, a pump-detection rubidium atomic magnetometer is used to measure the magnetic field at the rubidium bubble to obtain a series of measured magnetic field values. ;
- Step 5 Subtract the background magnetic field value from the measured magnetic field value in Steps 3 and 4 to obtain a series of magnetic field values B’ generated by the saturated residual magnetic moment of the soft magnetic sample at different positions at the rubidium bubble;
- the temperature of the sample remains unchanged.
- the magnetic characteristic curve is an isothermal remanence loop.
- Step 7 Keep the temperature of the sample chamber unchanged, use the sample transfer rod to place the soft magnetic sample in the center of the magnetizing coil, and wait for the temperature of the soft magnetic sample to stabilize; the pulse current output by the 6.5-bit precision current source changes from forward to positive at a specific step size.
- the maximum current discretely decreases to the negative maximum current, and then increases discretely from the negative maximum current to the positive maximum current, and is measured n times.
- the time interval of the current use a pump-detection rubidium atomic magnetometer to measure the magnetic field at the rubidium bubble after each pulse current and when the 6.5-digit precision current source does not output current, and obtain the measured magnetic field value corresponding to the pulse current.
- the magnetic field value is the algebraic sum of the background magnetic field and the magnetic field generated by the soft magnetic sample at the rubidium bubble; where the maximum forward current is the saturation magnetizing current of the soft magnetic sample;
- Step 8 Subtract the background magnetic field from the measured magnetic field value of the pump-detection rubidium atomic magnetometer in step 7 to obtain the magnetic field generated by the soft magnetic sample at the rubidium bubble; draw a data curve: the horizontal line of the data curve is The coordinate is the pulse current flowing into the magnetizing coil, and the ordinate is the magnetic field generated by the soft magnetic sample at the rubidium bubble;
- the magnetic characteristic curve is a low-field partial isothermal hysteresis loop.
- the meaning of the low field is that the magnetic field generated by the magnetized coil and the soft magnetic sample at the rubidium bubble is within the range of the pump-detection rubidium atomic magnetometer.
- Step 7A keep the temperature of the sample chamber unchanged, use the sample transfer rod to place the soft magnetic sample in the center of the magnetizing coil, and wait for the temperature of the soft magnetic sample to stabilize;
- the pulse current output by the 6.5-bit precision current source changes from forward to positive in a specific step.
- the maximum current decreases in steps to the negative maximum current, and then increases in steps from the negative maximum current to the positive maximum current, and is measured cyclically n times; a pump-detection rubidium atomic magnetometer is used to measure each pulse
- the current tail measures the magnetic field at the rubidium bubble to obtain the measured magnetic field value corresponding to the pulse current.
- This magnetic field value is the algebraic sum of the magnetic field generated by the background magnetic field, the magnetizing coil and the soft magnetic sample at the rubidium bubble; wherein, the forward direction
- the maximum current is the saturation magnetizing current of the soft magnetic sample;
- Step 8A Under the condition that there is no sample in the sample chamber, perform the same measurement process as in step 7A again.
- the magnetic field value measured by the pump-detection rubidium atomic magnetometer is the background magnetic field and the magnetizing coil generated at the rubidium bubble.
- Step 9A Subtract the magnetic field value measured in step 8A from the magnetic field value measured under the same pulse current in each cycle of step 7A to obtain a series of magnetic field values generated by the soft magnetic sample at the rubidium bubble during the cycle measurement process;
- Step 10A draw a data curve; the abscissa of the data curve is the pulse current passed into the magnetizing coil, and the ordinate is the magnetic field generated by the soft magnetic sample obtained in step 9A at the rubidium bubble;
- step 1 Preferably, if you want to increase the magnetic field range of the isothermal hysteresis loop in the low-field part, return to step 1 to increase the distance r 0 between the center of the magnetizing coil and the center of the rubidium bubble, and at the same time increase the background magnetic field appropriately.
- the magnetic characteristic curve is a low-field isothermal initial magnetization curve.
- the meaning of the low field is that the magnetic field generated by the magnetizing coil and the soft magnetic sample at the rubidium bubble is within the range of the pump-detection rubidium atomic magnetometer.
- Step 7B keep the temperature of the sample chamber unchanged, use the sample transfer rod to place the soft magnetic sample in the center of the magnetization coil, and wait for the temperature of the soft magnetic sample to stabilize; pulse demagnetize the soft magnetic sample to make its residual magnetic moment zero, and the soft magnetic sample
- the condition for determining that the residual magnetic moment of the sample is zero is that when the output current of the 6.5-digit precision current source is zero, the magnetic field value measured by the pump-detection rubidium atomic magnetometer is equal to the background magnetic field value;
- Step 8B The pulse current output by the 6.5-bit precision current source increases stepwise from zero current to the set forward maximum current with a specific step length.
- a pump-detection rubidium atomic magnetometer is used to measure the pulse current at the end of each pulse current.
- the magnetic field at the rubidium bubble is measured to obtain the measured magnetic field value corresponding to the pulse current.
- the magnetic field value is the algebraic sum of the magnetic field generated by the background magnetic field, the magnetizing coil and the soft magnetic sample at the rubidium bubble;
- Step 9B Under the condition that there is no sample in the sample chamber, perform the same measurement process as in step 8B again.
- the magnetic field value measured by the pump-detection rubidium atomic magnetometer is the background magnetic field and the magnetizing coil generated at the rubidium bubble. algebraic sum of magnetic fields;
- Step 10B Subtract the magnetic field value measured in step 9B from the magnetic field value measured in step 8B under the same pulse current to obtain a series of magnetic field values generated by the soft magnetic sample at the rubidium bubble during the measurement process;
- Step 11B draw a data curve, the abscissa of the data curve is the pulse current flowing into the magnetizing coil, and the ordinate is the magnetic field generated by the soft magnetic sample obtained in step 10B at the rubidium bubble;
- step 1 Preferably, if you want to increase the magnetic field range of the isothermal initial magnetization curve in the low-field part, return to step 1 to increase the distance r 0 between the center position of the magnetizing coil and the center position of the rubidium bubble, and at the same time increase the background magnetic field appropriately.
- the magnetic characteristic curve is a zero-field cooling magnetic moment-temperature curve.
- Step 7C use the sample transfer rod to place the soft magnetic sample in the center of the magnetizing coil, wait for the temperature of the soft magnetic sample to stabilize; reduce the temperature inside the sample chamber step by step with specific steps, when the temperature of the sample chamber is stable and 6.5-digit precision
- a pump-detection atomic magnetometer is used to measure and record the magnetic field at the rubidium bubble at different temperatures.
- the magnetic field value is the algebraic sum of the background magnetic field and the magnetic field generated by the soft magnetic sample at the rubidium bubble;
- Step 8C subtract the background magnetic field from the magnetic field value measured by the pump-detection rubidium atomic magnetometer in step 7C, to obtain the magnetic field generated by the soft magnetic sample at the rubidium bubble 5 under different temperature conditions;
- Step 9C draw a data curve, the abscissa of the data curve is the temperature of the soft magnetic sample, and the ordinate is the magnetic field generated by the soft magnetic sample at the rubidium bubble;
- the isothermal residual magnetization loop when measuring the isothermal residual magnetization loop, the isothermal hysteresis loop in the low field part, the isothermal initial magnetization curve in the low field part, and the magnetic moment-temperature curve of zero field cooling, if the soft magnetic sample is saturated and the residual magnetic moment is measured during the measurement If the magnetic field value measured by the pump-detection atomic magnetometer is greater than 1.5 times the background magnetic field, return to step 1 to increase the distance r 0 between the center of the magnetizing coil and the center of the rubidium bubble, and at the same time increase the background magnetic field appropriately.
- the invention discloses a device and method for measuring the magnetic characteristic curve of soft magnetic materials.
- a pulse magnetic field is used to saturate the soft magnetic sample at a specific temperature.
- a pump-detection rubidium atomic magnetometer is used to quickly measure the magnetic field at the rubidium bubble.
- the saturated residual magnetic moment of the soft magnetic sample is obtained at the rubidium bubble.
- the saturated residual magnetic moment of the soft magnetic sample is obtained through data analysis. Divide this value by the soft magnetic moment at the initial position.
- the magnetic field generated by the magnetic sample at the rubidium bubble is used to obtain the calibration coefficient of the soft magnetic sample at the initial position under specific temperature conditions.
- the calibration coefficient is used to convert the magnetic field value generated by the soft magnetic sample at the rubidium bubble during various measurement processes into the magnetic moment value of the soft magnetic sample itself, and finally realize the isothermal residual magnetic loop and low field part isothermal of the soft magnetic sample. Measurement of hysteresis loop, isothermal initial magnetization curve in low field part, and magnetic moment-temperature curve of zero field cooling.
- the present invention innovatively proposes a pump-detection type rubidium atom based on The magnetometer is a device and method for measuring the magnetic characteristic curve of soft magnetic materials, with high measurement accuracy and good repeatability.
- the measuring device and method of the present invention can directly trace the magnetic moment value in the magnetic characteristic curve of soft magnetic materials to the two natural benchmarks of Larmor precession effect and laser wavelength, and have the ability to further improve the magnetic properties of soft magnetic materials. Potential for accuracy of curve measurements.
- pulse magnetizers and rotating magnetometers are generally used to measure the remanent coercivity of samples.
- pulse magnetizers and rotating magnetometers need to be used in turn, and the samples need to be constantly moved and rotated. .
- the invention measures the isothermal residual magnetization curve in situ, has a short measurement period and good reproducibility.
- Figure 1 is a structural diagram of a device for measuring the magnetic characteristic curve of soft magnetic materials according to the present invention.
- 1 - magnetic shielding cylinder 1 - magnetic shielding cylinder, 2 - background magnetic field coil, 3 - radio frequency magnetic field coil, 4 - rubidium bubble heating module, 5 - rubidium bubble, 6 - sample chamber, 7 - soft magnetic sample, 8 - magnetizing coil, 9 -6.5-bit precision current source, 10-sample transfer rod, 11-non-magnetic temperature changing system.
- Figure 2 shows the measurement process of the saturation residual magnetic moment of the soft magnetic sample with permalloy strip.
- the device for saturation magnetizing soft magnetic samples is as shown in Figure 1.
- the distance between the permalloy soft magnetic sample and the rubidium bubble is 11cm, and the background magnetic field is set to 500nT.
- Figure (a) is the measurement result of the atomic magnetometer output after magnetizing with +1A pulse current for 30 seconds when there is a sample in the magnetizing coil 8.
- the residual magnetic moment of the soft magnetic sample 7 at the rubidium bubble 5 decays slowly, indicating that Permo
- Figure (b) is measured and recorded by the pump-detection atomic magnetometer after the soft magnetic sample 7 was saturation magnetized and moved away from the rubidium bubble for 5 hours in 5 mm steps.
- Figure (c) is the result obtained after deducting the background magnetic field from Figure (b) and averaging the magnetic field value on the platform. Taking the distance (r 0 +x) between soft magnetic sample 7 and rubidium bubble 5 as the abscissa, taking the soft magnetic The magnetic field B' generated by Sample 7 at the rubidium bubble 5 is plotted on the ordinate; Figure (d) is the result of transforming the coordinate axis of Figure (c), and the linear fitting coefficient is 5.46701 ⁇ 10 6 .
- Figure 3 shows the measurement results of the isothermal residual magnetization loop of the soft magnetic sample.
- the distance between soft magnetic sample 7 and rubidium bubble 5 is 11cm, and the background magnetic field is set to 500nT; in the figure, the magnetic field value generated by soft magnetic sample 7 at rubidium bubble 5 is multiplied by the calibration coefficient 7.75 ⁇ 10 -6 A ⁇ m 2 /nT, converts the magnetic field value into the magnetic moment value.
- Figure 4 shows the measurement results of the isothermal hysteresis loop in the low field part of the soft magnetic sample.
- the distance between soft magnetic sample 7 and rubidium bubble 5 is 20cm, and the background magnetic field is set to 500nT.
- the magnetic field value generated by soft magnetic sample 7 at rubidium bubble 5 is multiplied by the calibration coefficient 4.05 ⁇ 10 -5 A ⁇ m 2 /nT, converts the magnetic field value into the magnetic moment value.
- Figure 5 shows the measurement results of the isothermal initial magnetization curve in the low field part.
- the background magnetic field is set to 500nT
- the distance between soft magnetic sample 7 and rubidium bubble 5 is 20cm
- soft magnetic sample 7 is pulse demagnetized until the residual magnetic moment is zero before measurement
- (a) records the entry into the magnetizing coil
- the pulse current of 8 gradually increases, the magnetic field values measured by the atomic magnetometer with and without samples in the magnetizing coil 8
- Figure (b) Calculate the magnetic field generated by the soft magnetic sample at the rubidium bubble from Figure (a), and Multiply the magnetic field value by the scaling coefficient 4.05 ⁇ 10 -5 A ⁇ m 2 /nT to convert it into a magnetic moment value.
- the device of the present invention using a pump-detection atomic magnetometer to measure the magnetic characteristic curve of soft magnetic materials is shown in Figure 1, which includes: a pump-detection rubidium atomic magnetometer, a background magnetic field generation component, and a soft magnetic sample magnetization and Demagnetization components.
- the background magnetic field generating assembly includes a magnetic shielding cylinder 1 and a background magnetic field coil 2; the magnetic shielding cylinder 1 is used to achieve geomagnetic shielding; the background magnetic field coil 2 is located inside the magnetic shielding cylinder 1 and is used to generate axial direction in the magnetic shielding cylinder 1 Uniform and stable background magnetic field; the background magnetic field ranges from 200nT to 20000nT.
- the internal size of the magnetic shielding cylinder 1 can be selected to be larger than the size of ⁇ 500mm ⁇ 700mm in the embodiment of the present invention, or it can be replaced with a magnetic shielding room with a magnetic shielding coefficient better than 10 -3 , a large-sized magnetic shielding cylinder 1 or a magnetic shielding chamber.
- the chamber can significantly reduce the impact on the magnetization state of the magnetic shielding cylinder during the magnetization or demagnetization process of the soft magnetic sample 7, ensure the stability of the background magnetic field, and at the same time increase the adjustable range of the distance between the magnetization and demagnetization components of the soft magnetic sample and the rubidium bubble 5, which is beneficial to Measurement of magnetic characteristic curves of soft magnetic samples of different types and sizes.
- the composition and working principle of the pumping-detection rubidium atomic magnetometer can be found in the authorized invention patent "A rubidium atomic magnetometer and its magnetic field measurement method" (application number: CN201710270545.8).
- the pumping in Figure 1 of the present invention -
- the detection type rubidium atomic magnetometer only lists three components: radio frequency magnetic field coil 3, rubidium bubble heating module 4 and rubidium bubble 5. They are placed in the magnetic shielding cylinder 1 of the background magnetic field generation component and placed in the background magnetic field. 2 uniform magnetic field area; the range of the pump-detection rubidium atomic magnetometer is 100nT ⁇ 100000nT.
- the direction of the circularly polarized pump light of the pump-detection rubidium atomic magnetometer is parallel to the direction of the background magnetic field, and the direction of the linearly polarized detection light is perpendicular to the direction of the background magnetic field;
- the pump-detection rubidium atomic magnetometer is used to measure pump- The magnetic field at the spatial position of the rubidium bubble in the detection-type rubidium atomic magnetometer;
- the soft magnetic sample magnetization and demagnetization components include a sample chamber 6, a magnetizing coil 8, a 6.5-digit precision current source 9, a sample transfer rod 10 and a non-magnetic temperature changing system 11; the sample chamber 6 is located in the magnetic shielding cylinder 1, and the magnetizing coil 8 is wound around the sample. On the chamber 6, the sample transfer rod 10 is used to place the soft magnetic sample 7 in the sample chamber and at the center of the magnetizing coil 8.
- the line connecting the soft magnetic sample 7 and the center of the rubidium bubble 5 is parallel to the direction of the background magnetic field; 6.5-digit precision
- the current source 9 pulses forward or reverse current to the magnetizing coil 8, and the generated pulse magnetic field is used to magnetize and demagnetize the soft magnetic sample 7; the non-magnetic temperature changing system 11 is used to keep the temperature of the sample chamber 6 constant. Or change the temperature of sample chamber 6.
- the magnetic dipole layer and the current-carrying coil are equivalent.
- the magnetic moment of the magnetic sample can be equivalent to the magnetic moment of the current-carrying coil.
- m is the magnetic moment of the current-carrying coil
- R is the radius of the coil
- I is the current flowing into the coil
- r 0 is the position on the coil axis from the center of the circle
- B' is the magnetic field generated by the current-carrying coil at the r 0 position
- ⁇ 0 is the vacuum magnetic permeability
- r 0 is the distance between the center position of the soft magnetic sample 7 and the center position of the rubidium bubble 5.
- r 0 is the distance between the center position of the magnetizing coil 8 and the center position of the rubidium bubble 5 .
- the definition of r 0 is consistent with the present invention.
- the magnetic moment value in the magnetic characteristic curve measured by the present invention is the projected component of the total magnetic moment of the sample in the direction of the background magnetic field.
- the measuring device is used to measure the saturation residual magnetic moment value of the soft magnetic sample under constant temperature conditions near zero magnetic field.
- the saturation residual magnetic moment value is defined as the soft magnetic sample 7 that is first saturated and magnetized under constant temperature conditions, and then the magnetization field is removed.
- the residual magnetic moment value of the magnetic sample 7 in the background magnetic field; the magnetic characteristic curve of the soft magnetic material is calibrated based on the saturated residual magnetic moment value.
- the soft magnetic sample is a 1J85 permalloy strip rolled along the long side into a cylindrical sample with a diameter of less than 10mm and a length of 20mm. The magnetic field generated by this sample in space Distributed with axial symmetry.
- Step 1 Set the distance between the center position of the magnetizing coil 8 and the center position of the rubidium bubble 5 by moving and fixing the position of the sample chamber 6; start the pump-detection rubidium atomic magnetometer and adjust the current flowing into the background magnetic field coil 2 , so that the background magnetic field is in the range of 200nT ⁇ 1000nT; the pump-detection rubidium atomic magnetometer works in an open-loop state, and the frequency of the sinusoidal excitation signal input by its radio frequency magnetic field coil is the Larmor precession frequency corresponding to the background magnetic field. .
- the working cycle of the pump-detection rubidium atomic magnetometer is set to 100ms, in which the pumping light action time is 30ms and the radio frequency field action time is 0.1ms.
- the atomic magnetometer is in continuous operation and completes 10 times per second.
- Working cycle adjust the current flowing into the background magnetic field coil 2 according to the magnetic field value measured by the pump-detection atomic magnetometer, so that the background magnetic field is 500nT.
- Step 2 Use the sample transfer rod 10 to place the soft magnetic sample 7 in the center of the magnetizing coil 8, and wait for the temperature of the soft magnetic sample 7 to stabilize.
- the distance between the center of the magnetizing coil 8 and the rubidium bubble 5 is 11 cm; the internal temperature of the sample chamber 6 is room temperature 20°C.
- the 6.5-bit precision current source 9 outputs a maximum current of +1A that can saturate the soft magnetic sample 7 in the form of pulses, so that the soft magnetic sample 7 is saturated and magnetized.
- the pulse magnetization duration is set to 30 seconds; among them, the magnetizing coil 8
- the direction of the generated magnetic field is the same as the direction of the background magnetic field; turn off the 6.5-bit precision current source 9, use a pump-detection rubidium atomic magnetometer to measure the magnetic field at the rubidium bubble 5, and obtain the measured magnetic field value, which is the background Magnetic field and soft magnetic sample 7 generates the algebraic sum of the magnetic field at the rubidium bubble 5;
- Figure 2(a) shows the magnetic field value measured by the atomic magnetometer after the current is removed.
- the magnetic field generated by the saturated residual magnetic moment of the soft magnetic sample 7 at the rubidium bubble 5 decays slowly.
- Step 4 Move the position of the soft magnetic sample 7 with a fixed step length to keep it away from the rubidium bubble 5.
- a pump-detection rubidium atomic magnetometer is used to measure the magnetic field at the rubidium bubble 5 to obtain a series of Measure the magnetic field value.
- Step 5 Subtract the background magnetic field value from the magnetic field value measured in steps 3 and 4 to obtain a series of magnetic field values B’ generated by the saturated residual magnetic moment of the soft magnetic sample 7 at the rubidium bubble 5 at different positions.
- Figure 2(c) is the result obtained by subtracting the background magnetic field and averaging the platform data on Figure 2(b).
- the magnetic characteristic curve is an isothermal residual magnetic loop.
- steps 1 to 6 are used to obtain the saturated residual magnetic moment of the soft magnetic sample 7, and then the isothermal residual magnetic loop of the soft magnetic sample is measured and calibrated based on the saturated residual magnetic moment value. line, specifically including the following steps:
- Step 7 Keep the temperature of the sample chamber unchanged, use the sample transfer rod 10 to place the soft magnetic sample 7 in the center of the magnetizing coil 8, and wait for the temperature of the soft magnetic sample 7 to stabilize; the pulse current output by the 6.5-bit precision current source 9 is in a specific The step size discretely decreases from the positive maximum current to the negative maximum current, and then discretely increases from the negative maximum current to the positive maximum current, and is measured n times, with 6.5 bits between each two pulse currents.
- the measured magnetic field value of the pulse current is the algebraic sum of the background magnetic field and the magnetic field generated by the soft magnetic sample 7 at the rubidium bubble 5; where the maximum forward current is the saturation magnetizing current of the soft magnetic sample.
- the distance between the sample chamber 6 and the rubidium bubble 5 in the magnetic shielding cylinder is set so that the distance between the center of the magnetizing coil 8 and the rubidium bubble 5 is 11cm; the background magnetic field is set to 500nT; the internal temperature of the sample chamber 6 is set The room temperature is 20°C; the sample transfer rod 10 is used to place the soft magnetic sample 7 in the center of the magnetizing coil 8; a computer is used to control the opening and closing of the output current of the 6.5-bit precision current source 9 to magnetize or demagnetize the soft magnetic sample in a pulse manner; Among them, the duration of the magnetizing current on state is 2 seconds, and the duration of the magnetizing current off state is 0.5 seconds; among them, the current output by the 6.5-bit precision current source 9 decreases from 1A to -1A in a step of 0.02A, and finally from -1A increases to 1A, and the measurement is repeated 10 times; among them, during the process of pulse magnetization and pulse demagnetization of the soft magnetic sample,
- Step 8 Subtract the background magnetic field from the measured magnetic field value of the pumping-detection rubidium atomic magnetometer in step 7 to obtain the magnetic field generated by the soft magnetic sample at the rubidium bubble 5; draw a data curve; the data curve The abscissa is the pulse current flowing into the magnetizing coil 8, and the ordinate is the magnetic field generated by the soft magnetic sample 7 at the rubidium bubble 5;
- the magnetic characteristic curve is a low-field isothermal hysteresis loop.
- the meaning of the low field is that the magnetic field generated by the magnetizing coil 8 and the soft magnetic sample 7 at the rubidium bubble 5 is at the pump-detection type rubidium atomic magnetometer.
- steps 1 to 6 are first used to obtain the saturation residual magnetic moment of the soft magnetic sample 7, and then the low-field partial isothermal hysteresis loop of the soft magnetic sample is measured and calibrated based on the saturation residual magnetic moment value. Specifically, it also includes Following steps:
- Step 7A keep the temperature of the sample chamber unchanged, use the sample transfer rod 10 to place the soft magnetic sample 7 in the center of the magnetizing coil 8, and wait for the temperature of the soft magnetic sample 7 to stabilize; the pulse current output by the 6.5-bit precision current source 9 is in a specific
- the step size decreases step by step from the maximum positive current to the maximum negative current, and then increases step by step from the maximum negative current to the maximum positive current, and is measured cyclically n times; using pump-detection rubidium atomic magnetism.
- the instrument measures the magnetic field at the rubidium bubble 5 at the end of each pulse current, and obtains the measured magnetic field value corresponding to the pulse current.
- This magnetic field value is the magnetic field generated by the background magnetic field, the magnetizing coil 8 and the soft magnetic sample 7 at the rubidium bubble 5. Algebraic sum; where, the maximum forward current is the saturation magnetizing current of the soft magnetic sample.
- step 1 Preferably, if you want to increase the magnetic field range of the isothermal hysteresis loop in the low-field part, return to step 1 to increase the distance r 0 between the center position of the magnetizing coil 8 and the center position of the rubidium bubble 5, and at the same time increase the background magnetic field appropriately.
- the distance between the sample chamber 6 and the rubidium bubble 5 in the magnetic shielding cylinder is set so that the distance between the center position of the magnetizing coil 8 and the rubidium bubble 5 is 20cm; the background magnetic field is set to 500nT; the internal temperature of the sample chamber 6 is set The room temperature is 20°C; use the sample transfer rod 10 to place the soft magnetic sample 7 in the center of the magnetizing coil 8; use a computer to control the continuous scanning process of the 6.5-bit precision current source 9: from 1A to 0.01A with a step size of 0.03A, and From 0.01A to -0.01A in 0.5mA steps, from -0.01A to -1A in 0.03A steps, from -1A to -0.01A in 0.03A steps, from -0.01A to 0.01A in 0.5mA steps , with a step size of 0.03A from 0.01A to 1A, and measured 10 times in a loop; during this process, the pump-detection atomic magnetometer measured the magnetic
- Step 8A Under the condition that there is no sample in the sample chamber 6, perform the same measurement process as in step 7A again.
- the magnetic field value measured by the pump-detection rubidium atomic magnetometer is the background magnetic field and the magnetizing coil 8 in the rubidium bubble.
- the algebraic sum of magnetic fields generated at 5 places is measured once in a cycle;
- Step 9A Subtract the magnetic field value measured in step 8A from the magnetic field value measured under the same pulse current in each cycle of step 7A to obtain a series of magnetic field values generated by the soft magnetic sample 7 at the rubidium bubble 5 during the cycle measurement process;
- Step 10A draw a data curve; the abscissa of the data curve is the pulse current flowing into the magnetizing coil 8, and the ordinate is the magnetic field generated by the soft magnetic sample 7 obtained in step 9A at the rubidium bubble 5;
- the magnetic characteristic curve is a low-field isothermal initial magnetization curve.
- the meaning of the low field is that the magnetic field generated by the magnetizing coil 8 and the soft magnetic sample 7 at the rubidium bubble 5 is within the range of the pump-detection rubidium atomic magnetometer.
- steps 1 to 6 to obtain the saturation residual magnetic moment of the soft magnetic sample 7, and then measure and calibrate the isothermal residual magnetic loop of the soft magnetic sample based on the saturation residual magnetic moment value, which specifically also includes the following steps:
- Step 7B keep the temperature of the sample chamber unchanged, use the sample transfer rod 10 to place the soft magnetic sample 7 in the center of the magnetizing coil 8, wait for the temperature of the soft magnetic sample 7 to stabilize; pulse demagnetize the soft magnetic sample 7 to make its residual magnetic moment is zero.
- the condition for determining that the residual magnetic moment of the soft magnetic sample 7 is zero is that when the output current of the 6.5-digit precision current source 9 is zero, the magnetic field value measured by the pump-detection rubidium atomic magnetometer is equal to the background magnetic field value;
- step 1 Preferably, if you want to increase the magnetic field range of the isothermal initial magnetization curve in the low-field part, return to step 1 to increase the distance r 0 between the center position of the magnetizing coil 8 and the center position of the rubidium bubble 5, and at the same time increase the background magnetic field appropriately.
- the distance between the sample chamber 6 and the rubidium bubble 5 in the magnetic shielding cylinder is set so that the distance between the center position of the magnetizing coil 8 and the rubidium bubble 5 is 20cm; the background magnetic field is set to 500nT; the internal temperature of the sample chamber 6 is set The room temperature is 20°C; use the sample transfer rod 10 to place the soft magnetic sample 7 in the center of the magnetizing coil 8; pulse demagnetize the soft magnetic sample 7 to make its residual magnetic moment zero.
- Step 8B the pulse current output by the 6.5-bit precision current source 9 increases stepwise from zero current to the set forward maximum current with a specific step length, using a pump-detection rubidium atomic magnetometer at the end of each pulse current Measure the magnetic field at the rubidium bubble 5 to obtain the measured magnetic field value corresponding to the pulse current.
- the magnetic field value is the algebraic sum of the magnetic field generated by the background magnetic field, the magnetizing coil 8 and the soft magnetic sample 7 at the rubidium bubble 5;
- a computer is used to control the continuous scanning process of the 6.5-bit precision current source 9: from 0mA to 11mA with a step size of 0.1mA, and from 11mA to 51mA with a step size of 5mA, measuring once; during this process, the pumping-detection type atoms are
- the magnetometer measures and records the magnetic field at the rubidium bubble 5; this magnetic field is the algebraic sum of the magnetic field generated by the background magnetic field, the magnetizing coil 8 and the soft magnetic sample 7 at the rubidium bubble 5.
- the test result is the sample in Figure 5(a) data curve.
- Step 9B Under the condition that there is no sample in the sample chamber 6, perform the same measurement process as in step 8B again.
- the magnetic field value measured by the pump-detection rubidium atomic magnetometer is the background magnetic field and the magnetizing coil 8 in the rubidium bubble.
- the test results are the data curve without samples in Figure 5(a).
- Step 10B Subtract the magnetic field value measured in step 9B from the magnetic field value measured in step 8B under the same pulse current to obtain a series of magnetic field values generated by the soft magnetic sample 7 at the rubidium bubble 5 during the measurement process.
- Step 11B Draw a data curve.
- the abscissa of the data curve is the pulse current flowing into the magnetizing coil 8, and the ordinate is the magnetic field generated by the soft magnetic sample 7 obtained in step 10B at the rubidium bubble 5.
- the data curve is shown in Figure 5(b).
- the magnetic characteristic curve is a zero-field cooling magnetic moment-temperature curve.
- steps 1 to 6 are used to obtain the saturation residual magnetic moment of the soft magnetic sample 7, and then the saturation residual magnetic moment of the soft magnetic sample is measured and calibrated based on the saturated residual magnetic moment value.
- the magnetic moment-temperature curve of zero field cooling also includes the following steps:
- Step 7C use the sample transfer rod 10 to place the soft magnetic sample 7 in the center of the magnetizing coil 8, wait for the temperature of the soft magnetic sample 7 to stabilize; lower the temperature inside the sample chamber 6 step by step with specific steps.
- a pump-detection atomic magnetometer is used to measure and record the magnetic field at the rubidium bubble 5 at different temperatures.
- the magnetic field value is the background magnetic field and the soft magnetic sample 7 at The algebraic sum of the magnetic field generated at 5 of the rubidium bubble;
- Step 8C subtract the background magnetic field from the magnetic field value measured by the pump-detection rubidium atomic magnetometer in step 7C, to obtain the magnetic field generated by the soft magnetic sample 7 at the rubidium bubble 5 under different temperature conditions;
- Step 9C draw a data curve, the abscissa of the data curve is the temperature of the soft magnetic sample 7, and the ordinate is the magnetic field generated by the soft magnetic sample 7 at the rubidium bubble 5;
- the isothermal residual magnetization loop when measuring the isothermal residual magnetization loop, the isothermal hysteresis loop in the low field part, the isothermal initial magnetization curve in the low field part, and the magnetic moment-temperature curve of zero field cooling, if the soft magnetic sample is saturated and the residual magnetic moment is measured during the measurement If the magnetic field value measured by the pump-detection atomic magnetometer is greater than 1.5 times the background magnetic field, return to step 1 to increase the distance r 0 between the center of the magnetizing coil 8 and the center of the rubidium bubble 5, and at the same time increase the background appropriately. magnetic field.
- the embodiments of measuring the saturation residual magnetic moment, isothermal residual magnetization loop, low-field isothermal hysteresis loop, and low-field isothermal initial magnetization curve of the soft magnetic sample 7 are only preferred embodiments of the present invention. , are not intended to limit the scope of the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection scope of the present invention.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
一种软磁材料磁特性曲线的测量装置及方法。本方法首先在特定温度下利用脉冲磁场饱和磁化软磁样品(7),然后改变软磁样品(7)和铷泡(5)的间距,并利用抽运-检测型铷原子磁力仪快速测量出软磁样品(7)不同位置时铷泡(5)处的磁场,求得软磁样品(7)的饱和剩余磁矩;然后用饱和剩余磁矩除以初始位置处软磁样品(7)在铷泡(5)处产生的磁场,得到特定温度条件下软磁样品(7)在初始位置处的定标系数;最后利用定标系数将各种测量过程中软磁样品(7)在铷泡(5)处产生的磁场值转换为软磁样品(7)本身的磁矩值,实现软磁样品(7)等温剩磁回线、低场部分等温磁滞回线、低场部分等温初始磁化曲线、零场冷却的磁矩-温度曲线等各磁特性曲线的测量。
Description
本发明涉及磁场测量技术领域,具体涉及一种基于抽运-检测型铷原子磁力仪的软磁材料磁特性曲线的测量装置及方法。
在磁性材料测量领域,各种磁特性曲线用于表征磁性材料的物理性质,例如从磁滞回线可获得矫顽力、剩磁等信息,从样品磁矩的变温曲线可研究磁性材料的磁相变,古地磁学和环境磁学研究中通过饱和等温剩磁曲线和剩磁矫顽力曲线识别岩石或土壤中的磁性载体。目前测量磁性材料磁特性曲线的常用精密磁强计主要是超导量子干涉器件(Superconducting Quantum Interference Device,SQUID)磁强计和振动样品磁强计(Vibrating Sample Magnetometer,VSM),古地磁学和环境磁学中采用脉冲磁化仪和旋转磁力仪测量饱和等温剩磁曲线和剩磁矫顽力曲线。
软磁材料容易磁化,也容易退磁,矫顽力小是其基本特征,软磁样品磁特性曲线的测量是基础研究中的难点问题。目前常用的磁学性能测试系统(SQUID-VSM)都采用超导磁体来提供磁场,在超导磁体电流为零时,由于冻结磁通,剩余磁场可达几十高斯,这对软磁材料磁性能测量会造成很多错误。例如文献“于红云,超导磁体剩余磁场对软磁材料测试的影响[J].物理学报,2014,63(4):047502.”中指出,SQUID超导磁体退磁后剩余磁场有时大于30Gs,由此产生的磁场误差将导致测试的矫顽力、剩磁等数据不准确,甚至导致反向的磁滞回线,剩磁误差会引起特定磁场下软磁样品磁矩的测量误差。目前工业上采用抛移测量方法(软磁材料矫顽力的抛移测量方法.国家标准GB/T 3656-2008) 或开磁路测量方法(在开磁路中测量磁性材料矫顽力的方法.国家标准GB/T 13888-2009.)来测量软磁材料的矫顽力,这两种方法无法进一步被开发成高精度测量软磁样品各类磁特性曲线的装置。
发明内容
有鉴于此,本发明公开了一种基于抽运-检测型原子磁力仪测量软磁材料磁特性曲线的装置及方法。拉莫尔进动效应是一种自然基准,软磁样品在不同磁化历史中利用基于拉莫尔进动效应的抽运-检测型铷原子磁力仪测量软磁样品在铷泡处产生的磁场,并在特定温度条件下测量软磁样品的饱和剩余磁矩值并定标一系列软磁材料的磁特性曲线,能够将软磁样品的磁矩值溯源到自然基准,显著提高软磁样品磁特性曲线测量的准确度。
本发明的软磁材料磁特性曲线的测量装置,包括:抽运-检测型铷原子磁力仪、本底磁场产生组件,以及软磁样品磁化和退磁组件;
本底磁场产生组件包括磁屏蔽筒和本底磁场线圈;所述磁屏蔽筒用于实现地磁屏蔽;所述本底磁场线圈位于磁屏蔽筒内部,用于在磁屏蔽筒中产生轴向均匀稳定的本底磁场;所述本底磁场在200nT至20000nT范围内;
所述抽运-检测型铷原子磁力仪位于磁屏蔽筒内,其铷泡位于本底磁场的磁场均匀区,圆偏振抽运光方向与本底磁场方向平行,线偏振探测光方向与本底磁场方向垂直;抽运-检测型铷原子磁力仪用于测量抽运-检测型铷原子磁力仪内铷泡空间位置的磁场;
所述软磁样品磁化和退磁组件包括样品室、磁化线圈、6.5位精密电流源、样品传送杆和无磁变温系统;样品室位于磁屏蔽筒内,磁化线圈缠绕在样品室上,样品传送杆用于将软磁样品放置在样品室内且位于磁化线圈的正中心,软磁样品与铷泡中心的连线平行于本底磁场方向;6.5位精密电流源向磁化线圈脉 冲地输入正向或反向的电流,产生的脉冲磁场用于实现对软磁样品的磁化和退磁;无磁变温系统用于保持样品室的温度恒定,或改变样品室的温度。
较优的,所述磁屏蔽筒为圆柱形,直径为φ500mm,长度大于或等于700mm;或者,磁屏蔽筒替换为磁屏蔽系数优于10
-3的磁屏蔽室。
较优的,采用电控位移台或人工手动方式移动或台阶式增大软磁样品与铷泡的间距。
本发明还提供了基于上述测量装置测量软磁材料一些列磁特性曲线的方法:首先,基于上述测量装置测量软磁样品在零磁场附近恒温条件下的饱和剩余磁矩值,所述饱和剩余磁矩值定义为恒温条件下先饱和磁化软磁样品、再撤去磁化场后软磁样品在本底磁场中的剩余磁矩值;然后基于上述测量装置获得软磁材料的各磁特性曲线,并基于所述饱和剩余磁矩值定标所述磁特性曲线。
其中,所述饱和剩余磁矩值的测量包括如下步骤:
步骤1、通过移动并固定样品室的位置来设定磁化线圈中心位置和铷泡中心位置的间距;启动抽运-检测型铷原子磁力仪,调节通入本底磁场线圈的电流,使本底磁场在200nT~1000nT范围内;抽运-检测型铷原子磁力仪工作于开环状态,其射频磁场线圈输入的正弦激励信号频率为与本底磁场对应的拉莫尔进动频率;
步骤2、采用样品传送杆将软磁样品置于磁化线圈的正中心,等待软磁样品的温度稳定;
步骤3、6.5位精密电流源以脉冲的方式输出能够使软磁样品饱和磁化的最大电流,使得软磁样品饱和磁化,脉冲磁化时长大于10秒;其中,磁化线圈产生磁场的方向与本底磁场方向相同;关闭6.5位精密电流源,采用抽运-检测型铷原子磁力仪对铷泡处的磁场进行测量,得到测量磁场值,该测量磁场值为本底磁场和软磁样品在铷泡处产生磁场的代数和;
步骤4、以固定步长移动软磁样品的位置使其远离铷泡,每次移动样品位置时采用抽运-检测型铷原子磁力仪对铷泡处的磁场进行测量,得到一系列测量磁场值;
步骤5、用步骤3和步骤4的测量磁场值减去本底磁场值,即得到不同位置处软磁样品的饱和剩余磁矩在铷泡处产生的一系列磁场值B’;
步骤6、将步骤5获得的一系列磁场值B’按照
作图,线性拟合后得斜率k,其中,r
0为磁化线圈中心位置和铷泡中心位置的间距;x为软磁样品与磁化线圈正中心的距离,x=iΔ,其中i为非负整数,Δ为x的变化步长;则软磁样品的饱和剩余磁矩m为:m=2π/μ
0k
3/2,其中,μ
0是真空磁导率。
较优的,步骤4移动软磁样品7时样品的温度保持不变。
所述磁特性曲线为等温剩磁回线,基于上述测量装置测量并基于所述饱和剩余磁矩值定标软磁样品的等温剩磁回线时,还包括以下步骤:
步骤7,保持样品室温度不变,采用样品传送杆将软磁样品置于磁化线圈的正中心,等待软磁样品的温度稳定;6.5位精密电流源输出的脉冲电流以特定步长由正向最大电流离散地减小到负向最大电流,然后再从负向最大电流离散地增大到正向最大电流,循环测量n次,其中每两个脉冲电流之间存在6.5位精密电流源不输出电流的时间间隔;采用抽运-检测型铷原子磁力仪在每次脉冲电流后且6.5位精密电流源不输出电流时对铷泡处的磁场进行测量,得到对应脉冲电流的测量磁场值,该磁场值即为本底磁场和软磁样品在铷泡处产生磁场的代数和;其中,所述正向最大电流即为软磁样品的饱和磁化电流;
步骤8、将步骤7的抽运-检测型铷原子磁力仪的测量磁场值扣除本底磁场,即得到软磁样品在铷泡处产生的磁场;绘制数据曲线图:所述数据曲线图的横坐标为通入磁化线圈的脉冲电流,纵坐标为软磁样品在铷泡处产生的磁场;
步骤9、基于步骤6获得的软磁样品在相同温度下的饱和剩余磁矩值,定标步骤8得到的数据曲线:首先计算定标系数,定标系数=饱和剩余磁矩值÷(步骤3的测量磁场值-本底磁场值);然后用该定标系数乘以数据曲线图中所有脉冲磁化电流对应的磁场值,更新数据曲线图的纵坐标,即得到软磁样品的等温剩磁回线。
所述磁特性曲线为低场部分等温磁滞回线,所述低场的含义是磁化线圈和软磁样品共同在铷泡处产生的磁场处于抽运-检测型铷原子磁力仪的量程范围内,基于上述测量装置测量并基于所述饱和剩余磁矩值定标软磁样品的低场部分等温磁滞回线时,还包括以下步骤:
步骤7A,保持样品室温度不变,采用样品传送杆将软磁样品置于磁化线圈的正中心,等待软磁样品的温度稳定;6.5位精密电流源输出的脉冲电流以特定步长由正向最大电流台阶式地减小到负向最大电流,然后再从负向最大电流台阶式地增大到正向最大电流,循环测量n次;采用抽运-检测型铷原子磁力仪在每次脉冲电流尾部对铷泡处的磁场进行测量,得到对应脉冲电流的测量磁场值,该磁场值为本底磁场、磁化线圈和软磁样品在铷泡处产生磁场的代数和;其中,所述正向最大电流即为软磁样品的饱和磁化电流;
步骤8A、在样品室中无样品的条件下,再次执行与步骤7A中相同的测量过程,抽运-检测型铷原子磁力仪测得的磁场值为本底磁场和磁化线圈在铷泡处产生磁场的代数和,循环测量1次;
步骤9A、将步骤7A的每个循环中相同脉冲电流下测得的磁场值减去步骤8A测得的磁场值,得到循环测量过程中软磁样品在铷泡处产生的一系列磁场值;
步骤10A、绘制数据曲线图;所述数据曲线图的横坐标为通入磁化线圈的脉冲电流,纵坐标为步骤9A获得的软磁样品在铷泡处产生的磁场;
步骤11A、基于步骤6获得的软磁样品在相同温度下的饱和剩余磁矩值, 定标步骤10A得到的数据曲线:首先计算定标系数,定标系数=饱和剩余磁矩值÷(步骤3的测量磁场值-本底磁场值);然后用该定标系数乘以数据曲线图中所有脉冲磁化电流对应的磁场值,更新数据曲线图的纵坐标,即得到软磁样品的低场部分等温磁滞回线。
较优的,如果要增大等温磁滞回线在低场部分的磁场范围,则返回步骤1增大磁化线圈中心位置和铷泡中心位置的间距r
0,同时适当增大本底磁场。
所述磁特性曲线为低场部分等温初始磁化曲线,所述低场的含义是磁化线圈和软磁样品共同在铷泡处产生的磁场处于抽运-检测型铷原子磁力仪的量程范围内,基于上述测量装置测量并基于所述饱和剩余磁矩值定标软磁样品的等温剩磁回线时,还包括以下步骤:
步骤7B,保持样品室温度不变,采用样品传送杆将软磁样品置于磁化线圈的正中心,等待软磁样品的温度稳定;脉冲退磁软磁样品,使其剩余磁矩为零,软磁样品剩余磁矩为零的判定条件为6.5位精密电流源输出电流为零时抽运-检测型铷原子磁力仪测得的磁场值等于本底磁场值;
步骤8B,6.5位精密电流源输出的脉冲电流以特定步长由零电流台阶式地增大至设定的正向最大电流,采用抽运-检测型铷原子磁力仪在每次脉冲电流尾部对铷泡处的磁场进行测量,得到对应脉冲电流的测量磁场值,该磁场值为本底磁场、磁化线圈和软磁样品在铷泡处产生磁场的代数和;
步骤9B、在样品室中无样品的条件下,再次执行与步骤8B中相同的测量过程,抽运-检测型铷原子磁力仪测得的磁场值为本底磁场和磁化线圈在铷泡处产生磁场的代数和;
步骤10B、将步骤8B的相同脉冲电流下测得的磁场值减去步骤9B测得的磁场值,得到测量过程中软磁样品在铷泡处产生的一系列磁场值;
步骤11B、绘制数据曲线图,所述数据曲线图的横坐标为通入磁化线圈的脉 冲电流,纵坐标为步骤10B获得的软磁样品在铷泡处产生的磁场;
步骤12B、基于步骤6获得的软磁样品在相同温度下的饱和剩余磁矩值,定标步骤11B得到的数据曲线:首先计算定标系数,定标系数=饱和剩余磁矩值÷(步骤3的测量磁场值-本底磁场值);然后用该定标系数乘以数据曲线图中所有脉冲磁化电流对应的磁场值,即得到定标后的低场部分等温初始磁化曲线。
较优的,如果要增大等温初始磁化曲线在低场部分的磁场范围,则返回步骤1增大磁化线圈中心位置和铷泡中心位置的间距r
0,同时适当增大本底磁场。
所述磁特性曲线为零场冷却的磁矩-温度曲线,基于所述饱和剩余磁矩值定标软磁样品的零场冷却的磁矩-温度曲线时,还包括以下步骤:
步骤7C,采用样品传送杆将软磁样品置于磁化线圈的正中心,等待软磁样品的温度稳定;以特定步长台阶式地降低样品室内部的温度,当样品室温度稳定且6.5位精密电流源输出电流为零时,采用抽运-检测型原子磁力仪测量并记录不同温度下铷泡处的磁场,该磁场值为本底磁场和软磁样品在铷泡处产生磁场的代数和;
步骤8C,将步骤7C的抽运-检测型铷原子磁力仪测量的磁场值扣除本底磁场,即得到不同温度条件下软磁样品在铷泡5处产生的磁场;
步骤9C,绘制数据曲线图,所述数据曲线图的横坐标为软磁样品的温度,纵坐标为软磁样品在铷泡处产生的磁场;
步骤10C,基于步骤6获得的软磁样品的饱和剩余磁矩值,定标步骤9C得到的数据曲线:首先计算定标系数,定标系数=饱和剩余磁矩值÷(步骤3的测量磁场值-本底磁场值);然后用该定标系数乘以步骤9C数据曲线图中其他温度对应的磁场值,即得到定标后的零场冷却的磁矩-温度曲线。
较优的,测量等温剩磁回线、低场部分等温磁滞回线、低场部分等温初始磁化曲线、零场冷却的磁矩-温度曲线时,若软磁样品饱和剩余磁矩测量过程中 出现抽运-检测型原子磁力仪测量的磁场值大于1.5倍本底磁场的情况,则返回步骤1增大磁化线圈中心位置和铷泡中心位置的间距r
0,同时适当增大本底磁场。
本发明公开了一种软磁材料磁特性曲线的测量装置及方法。首先在特定温度下利用脉冲磁场饱和磁化软磁样品,软磁样品和铷泡的间距在台阶式增大的过程中利用抽运-检测型铷原子磁力仪快速测量出铷泡处的磁场,测量的一系列磁场值扣除本底磁场后得到软磁样品的饱和剩余磁矩在铷泡处产生的磁场,通过数据分析求得软磁样品的饱和剩余磁矩,用该值除以初始位置处软磁样品在铷泡处产生的磁场,得到特定温度条件下软磁样品在初始位置处的定标系数。然后,利用所述定标系数将各种测量过程中软磁样品在铷泡处产生的磁场值转换为软磁样品本身的磁矩值,最终实现软磁样品等温剩磁回线、低场部分等温磁滞回线、低场部分等温初始磁化曲线、零场冷却的磁矩-温度曲线的测量。
(1)本发明针对常用的磁学性能测试系统(SQUID-VSM)难以消除仪器自身剩余磁场而导致软磁材料磁特性曲线测量困难的问题,创新性地提出了基于抽运-检测型铷原子磁力仪测量软磁材料磁特性曲线的装置及方法,测量精度高,重复性好。
(2)本发明的测量装置及方法可直接将软磁材料磁特性曲线中的磁矩值溯源到拉莫尔进动效应和激光波长这两种自然基准上,具备进一步提高软磁材料磁特性曲线测量的准确度的潜力。
(3)古地磁学和环境磁学研究中一般采用脉冲磁化仪和旋转磁力仪测量样品的剩磁矫顽力,具体测量时需轮流使用脉冲磁化仪和旋转磁力仪,需不断移动和旋转样品。本发明原位地测量了等温剩磁曲线,测量周期短,复现性好。
图1为本发明测量软磁材料磁特性曲线的装置结构图。
其中,1-磁屏蔽筒,2-本底磁场线圈,3-射频磁场线圈,4-铷泡加热模块,5-铷泡,6-样品室,7-软磁样品,8-磁化线圈,9-6.5位精密电流源,10-样品传送杆,11-无磁变温系统。
图2为坡莫合金带软磁样品饱和剩余磁矩的测量过程。
图中,饱和磁化软磁样品的装置参考图1,坡莫合金带软磁样品距离铷泡11cm,本底磁场设为500nT。图(a)是磁化线圈8内有样品时+1A脉冲电流磁化30秒后原子磁力仪输出的测量结果,软磁样品7的剩余磁矩在铷泡5处产生的磁场衰减缓慢,表明坡莫合金带软磁样品的剩余磁矩能够很好地保持;图(b)是软磁样品7被饱和磁化后,以5mm步长远离铷泡5时抽运-检测型原子磁力仪测量并记录的磁场值;图(c)为图(b)扣除本底磁场且平均平台上磁场值后得到的结果,以软磁样品7与铷泡5间距(r
0+x)为横坐标,以软磁样品7在铷泡5处产生的磁场B’为纵坐标作图;图(d)是对图(c)坐标轴变换后的结果,线性拟合得系数为5.46701×10
6。
图3为软磁样品等温剩磁回线的测量结果。
其中,软磁样品7与铷泡5的间距为11cm,本底磁场设为500nT;图中,用软磁样品7在铷泡5处产生的磁场值乘以定标系数7.75×10
-6A·m
2/nT,将磁场值转化为磁矩值。
图4为软磁样品低场部分等温磁滞回线的测量结果。
其中,软磁样品7与铷泡5的间距为20cm,本底磁场设为500nT;图中,用软磁样品7在铷泡5处产生的磁场值乘以定标系数4.05×10
-5A·m
2/nT,将磁场值转化为磁矩值。
图5为低场部分等温初始磁化曲线的测量结果。
其中,本底磁场设为500nT,软磁样品7与铷泡5的间距为20cm,软磁样品7测量前脉冲退磁至剩余磁矩为零;图中,(a)图记录了通入磁化线圈8的脉冲电流逐渐增加时,磁化线圈8内有样品和无样品条件下原子磁力仪测量的磁场值;(b)图由(a)图计算出软磁样品在铷泡处产生的磁场,并将磁场值乘以定标系数4.05×10
-5A·m
2/nT转化为磁矩值。
下面结合附图并举实施例,对本发明进行详细描述。
本发明采用抽运-检测型原子磁力仪测量软磁材料磁特性曲线的装置如图1所示,包括:抽运-检测型铷原子磁力仪、本底磁场产生组件、以及软磁样品磁化和退磁组件。
本底磁场产生组件包括磁屏蔽筒1和本底磁场线圈2;磁屏蔽筒1用于实现地磁屏蔽;本底磁场线圈2位于磁屏蔽筒1内部,用于在磁屏蔽筒1中产生轴向均匀稳定的本底磁场;本底磁场在200nT至20000nT范围内。其中,优选地,磁屏蔽筒1内部尺寸可选择大于本发明实施例中φ500mm×700mm的尺寸,或者替换为磁屏蔽系数优于10
-3的磁屏蔽室,大尺寸磁屏蔽筒1或磁屏蔽室能够显著降低软磁样品7磁化或退磁过程中对磁屏蔽筒磁化状态的影响,保证本底磁场的稳定,同时增加软磁样品磁化和退磁组件与铷泡5间距的可调节范围,有利于不同种类、不同尺寸软磁样品磁特性曲线的测量。
抽运-检测型铷原子磁力仪的组成及工作原理见已授权的发明专利“一种铷原子磁力仪及其磁场测量方法”(申请号为:CN201710270545.8),本发明图1中抽运-检测型铷原子磁力仪仅列出了射频磁场线圈3、铷泡加热模块4和铷泡5三个组件,它们被放置在本底磁场产生组件的磁屏蔽筒1中,置于本底磁场2 的磁场均匀区;抽运-检测型铷原子磁力仪量程为100nT~100000nT。抽运-检测型铷原子磁力仪的圆偏振抽运光方向与本底磁场方向平行,线偏振探测光方向与本底磁场方向垂直;抽运-检测型铷原子磁力仪用于测量抽运-检测型铷原子磁力仪内铷泡空间位置的磁场;
软磁样品磁化和退磁组件包括样品室6、磁化线圈8、6.5位精密电流源9、样品传送杆10和无磁变温系统11;样品室6位于磁屏蔽筒1内,磁化线圈8缠绕在样品室6上,样品传送杆10用于将软磁样品7放置在样品室内且位于磁化线圈8的正中心,软磁样品7与铷泡5中心的连线平行于本底磁场方向;6.5位精密电流源9向磁化线圈8脉冲地输入正向或反向的电流,产生的脉冲磁场用于实现对软磁样品7的磁化和退磁;无磁变温系统11用于保持样品室6的温度恒定,或改变样品室6的温度。
电磁学中磁偶极层与载流线圈具有等价性,磁性样品的磁矩可等效为载流线圈的磁矩。假设m是载流线圈的磁矩,R是线圈的半径,I是通入线圈的电流,r
0是线圈轴线上距离圆心的位置,B’是r
0位置处载流线圈产生的磁场,μ
0是真空磁导率,则:
在线圈轴线上使r
0增大x,上一表达式变形后得:
本发明中软磁样品7等效为载流线圈时,同样适用于表达式(2),则r
0为软磁样品7中心位置和铷泡5中心位置的间距,当软磁样品7放置在磁化线圈8的中心位置时,r
0即为磁化线圈8中心位置和铷泡5中心位置的间距,此时r
0的定义与本发明一致。
由表达式(1)可知,载流线圈轴线上固定位置处产生的磁场与载流线圈的磁矩呈线性关系,用软磁样品7替换载流线圈,线性关系同样成立,因此可用抽运-检测型原子磁力仪在铷泡5处测得的磁场定标软磁样品7的磁矩。
由表达式(2)可知,
呈线性关系,当移动软磁样品7的位置时用抽运-检测型原子磁力仪测量铷泡5处的磁场,然后按照
作图,线性拟合的斜率值k等于
由此可计算出载流标准线圈的磁矩
由该方法得到的磁矩值只与B’和(r
0+x)有关,其中B’可溯源至拉莫尔进动效应,(r
0+x)可溯源至激光波长。因此,本发明的测量装置及方法可直接将待测磁矩溯源到上述两个自然基准上。当软磁样品7的温度固定时,其饱和剩余磁矩值是固定的,由该性质可定标本发明描述的一系列磁特性曲线。对于不对称、不规则的软磁样品,本发明测得的磁特性曲线中磁矩值为该样品总磁矩在本底磁场方向上的投影分量。
采用所述的测量装置测量软磁样品在零磁场附近恒温条件下的饱和剩余磁矩值,所述饱和剩余磁矩值定义为恒温条件下先饱和磁化软磁样品7、再撤去磁化场后软磁样品7在本底磁场中的剩余磁矩值;基于所述饱和剩余磁矩值定标软磁材料的磁特性曲线。
下面结合四个实施例具体说明本发明基于抽运-检测型铷原子磁力仪测量软磁样品饱和剩余磁矩、软磁样品等温剩磁回线、低场部分等温磁滞回线、低场部分等温初始磁化曲线的方法。其中,软磁样品为由宽20mm、长100mm、厚0.1mm的带状1J85坡莫合金带沿长边卷绕成直径小于10mm、长度为20mm的圆筒状样品,该样品在空间产生的磁场呈轴对称性分布。
1、软磁样品饱和剩余磁矩的测量方法及实施例
步骤1、通过移动并固定样品室6的位置来设定磁化线圈8中心位置和铷泡5中心位置的间距;启动抽运-检测型铷原子磁力仪,调节通入本底磁场线圈2的电流,使本底磁场在200nT~1000nT范围内;抽运-检测型铷原子磁力仪工作于开环状态,其射频磁场线圈输入的正弦激励信号频率为与本底磁场对应的拉莫尔进动频率。
实施例中抽运-检测型铷原子磁力仪的工作周期设定为100ms,其中抽运光作用时长为30ms,射频场作用时长为0.1ms,原子磁力仪处于连续工作状态,每秒完成10个工作周期;根据抽运-检测型原子磁力仪测量的磁场值调节通入本底磁场线圈2的电流大小,使本底磁场为500nT。
步骤2、采用样品传送杆10将软磁样品7置于磁化线圈8的正中心,等待软磁样品7的温度稳定。
实施例中磁化线圈8正中心位置与铷泡5的间距为11cm;样品室6内部温度为室温20℃。
步骤3、6.5位精密电流源9以脉冲的方式输出能够使软磁样品7饱和磁化的最大电流﹢1A,使得软磁样品7饱和磁化,脉冲磁化时长设定为30秒;其中,磁化线圈8产生磁场的方向与本底磁场方向相同;关闭6.5位精密电流源9,采用抽运-检测型铷原子磁力仪对铷泡5处的磁场进行测量,得到测量磁场值,该磁场值为本底磁场和软磁样品7在铷泡5处产生磁场的代数和;
图2(a)显示撤去电流后原子磁力仪测量的磁场值,软磁样品7的饱和剩余磁矩在铷泡5处产生的磁场衰减缓慢。
步骤4、以固定步长移动软磁样品7的位置使其远离铷泡5,每次移动样品位置时采用抽运-检测型铷原子磁力仪对铷泡5处的磁场进行测量,得到一系列测量磁场值。
以5mm步长利用样品传送杆10台阶式地增大软磁样品7与铷泡5的间距, 每个台阶停留时间超过10秒,取台阶上20个磁场值计算平均值,该平均值代表软磁样品7的饱和剩余磁矩在铷泡5处产生磁场和本底磁场的代数和;图2(b)显示了软磁样品7移动位置及抽出磁屏蔽筒过程中抽运-检测型铷原子磁力仪测量并记录的磁场值;
步骤5、用步骤3和步骤4测量的磁场值减去本底磁场值,即得到不同位置处软磁样品7的饱和剩余磁矩在铷泡5处产生的一系列磁场值B’。
图2(c)是对图2(b)进行本底磁场扣除和平台数据平均后得到的结果。
步骤6、将步骤5获得的一系列磁场值B’按照
作图,线性拟合后得斜率k,其中,r
0为磁化线圈8中心位置和铷泡5中心位置的间距;x为软磁样品7与磁化线圈8正中心的距离,x=iΔ,其中i为非负整数,Δ为x的变化步长;则软磁样品的饱和剩余磁矩m为:m=2π/μ
0k
3/2,其中,μ
0是真空磁导率。
如图2(d)所示,线性拟合后得斜率k=5.46701×10
6,计算出软磁样品7的饱和剩余磁矩m=2π/μ
0k
3/2=3.91×10
-4A·m
2。
软磁样品饱和脉冲磁化后由上述步骤测量出的磁矩m为3.91×10
-4A·m
2。图2(c)中(r
0+x)=11cm时,B’为50.4634nT,因此可粗略估计,软磁样品位置在该位置时,ΔB’=1nT将对应磁矩变化Δm=7.75×10
-6A·m
2;图2(c)中(r
0+x)=20cm时,B’为9.6488nT,因此可粗略估计,软磁样品在该位置时,ΔB’=1nT将对应磁矩变化Δm=4.05×10
-5A·m
2。
2、等温剩磁回线的测量方法及实施例
所述磁特性曲线为等温剩磁回线,首先采用步骤1~6获得软磁样品7的饱和剩余磁矩,然后测量并基于所述饱和剩余磁矩值定标软磁样品的等温剩磁回线,具体还包括以下步骤:
步骤7,保持样品室温度不变,采用样品传送杆10将软磁样品7置于磁化线圈8的正中心,等待软磁样品7的温度稳定;6.5位精密电流源9输出的脉冲电流以特定步长由正向最大电流离散地减小到负向最大电流,然后再从负向最大电流离散地增大到正向最大电流,循环测量n次,其中每两个脉冲电流之间存在6.5位精密电流源9不输出电流的时间间隔;采用抽运-检测型铷原子磁力仪在每次脉冲电流后且6.5位精密电流源9不输出电流时对铷泡5处的磁场进行测量,得到对应脉冲电流的测量磁场值,该磁场值为本底磁场和软磁样品7在铷泡5处产生磁场的代数和;其中,所述正向最大电流即为软磁样品的饱和磁化电流。
实施例中设定磁屏蔽筒内样品室6与铷泡5的间距,使磁化线圈8正中心位置与铷泡5的间距为11cm;本底磁场设定为500nT;样品室6内部温度设定为室温20℃;采用样品传送杆10将软磁样品7置于磁化线圈8的正中心;采用计算机控制6.5位精密电流源9输出电流的打开和关闭,以脉冲方式磁化或退磁软磁样品;其中,磁化电流打开状态持续时间为2秒,磁化电流关闭状态持续时间为0.5秒;其中,6.5位精密电流源9输出的电流以0.02A的步长从1A减小到-1A,最后再从-1A增大到1A,如此循环测量10次;其中,在脉冲磁化和脉冲退磁软磁样品的过程中,当6.5位精密电流源9电流关闭时利用抽运-检测型铷原子磁力仪测量并记录铷泡5处的磁场值,该磁场即为本底磁场与软磁样品在铷泡5处产生磁场的代数和。
步骤8、将步骤7的抽运-检测型铷原子磁力仪的测量磁场值扣除本底磁场,即得到软磁样品在铷泡5处产生的磁场;绘制数据曲线图;所述数据曲线图的横坐标为通入磁化线圈8的脉冲电流,纵坐标为软磁样品7在铷泡5处产生的磁场;
步骤9、基于步骤6获得的软磁样品在相同温度下的饱和剩余磁矩值,定标 步骤8得到的数据曲线:首先计算定标系数,定标系数=饱和剩余磁矩值÷(步骤3的测量磁场值-本底磁场值);然后用该定标系数乘以数据曲线图中所有脉冲磁化电流对应的磁场值,更新数据曲线图的纵坐标,即得到软磁样品的等温剩磁回线。
从软磁样品饱和剩余磁矩测量的实施例中得出,(r
0+x)=11cm时,ΔB’=1nT将对应磁矩变化Δm=7.75×10
-6A·m
2,定标系数为7.75×10
-6A·m
2/nT,用该值乘以图3左侧纵坐标磁场值,得到右侧纵坐标磁矩值,即将步骤8所得数据曲线定标为等温剩磁回线。
3、低场部分等温磁滞回线的测量方法及实施例
所述磁特性曲线为低场部分等温磁滞回线,所述低场的含义是磁化线圈8和软磁样品7共同在铷泡5处产生的磁场处于抽运-检测型铷原子磁力仪的量程范围内,首先采用步骤1~6获得软磁样品7的饱和剩余磁矩,然后测量并基于所述饱和剩余磁矩值定标软磁样品的低场部分等温磁滞回线,具体还包括以下步骤:
步骤7A,保持样品室温度不变,采用样品传送杆10将软磁样品7置于磁化线圈8的正中心,等待软磁样品7的温度稳定;6.5位精密电流源9输出的脉冲电流以特定步长由正向最大电流台阶式地减小到负向最大电流,然后再从负向最大电流台阶式地增大到正向最大电流,循环测量n次;采用抽运-检测型铷原子磁力仪在每次脉冲电流尾部对铷泡5处的磁场进行测量,得到对应脉冲电流的测量磁场值,该磁场值为本底磁场、磁化线圈8和软磁样品7在铷泡5处产生磁场的代数和;其中,所述正向最大电流即为软磁样品的饱和磁化电流。
较优的,如果要增大等温磁滞回线在低场部分的磁场范围,则返回步骤1增大磁化线圈8中心位置和铷泡5中心位置的间距r
0,同时适当增大本底磁场。
实施例中设定磁屏蔽筒内样品室6与铷泡5的间距,使磁化线圈8正中心 位置与铷泡5的间距为20cm;本底磁场设定为500nT;样品室6内部温度设定为室温20℃;采用样品传送杆10将软磁样品7置于磁化线圈8的正中心;用计算机控制6.5位精密电流源9的连续扫描过程:以步长0.03A从1A至0.01A,以步长0.5mA从0.01A至-0.01A,以步长0.03A从-0.01A至-1A,以步长0.03A从-1A至-0.01A,以步长0.5mA从-0.01A至0.01A,以步长0.03A从0.01A至1A,循环测量10次;在此过程中抽运-检测型原子磁力仪在每次脉冲电流尾部对铷泡5处的磁场进行测量。
步骤8A、在样品室6中无样品的条件下,再次执行与步骤7A中相同的测量过程,抽运-检测型铷原子磁力仪测得的磁场值为本底磁场和磁化线圈8在铷泡5处产生磁场的代数和,循环测量1次;
步骤9A、将步骤7A的每个循环中相同脉冲电流下测得的磁场值减去步骤8A测得的磁场值,得到循环测量过程中软磁样品7在铷泡5处产生的一系列磁场值;
步骤10A、绘制数据曲线图;所述数据曲线图的横坐标为通入磁化线圈8的脉冲电流,纵坐标为步骤9A获得的软磁样品7在铷泡5处产生的磁场;
步骤11A、基于步骤6获得的软磁样品在相同温度下的饱和剩余磁矩值,定标步骤10A得到的数据曲线:首先计算定标系数,定标系数=饱和剩余磁矩值÷(步骤3的测量磁场值-本底磁场值);然后用该定标系数乘以数据曲线图中所有脉冲磁化电流对应的磁场值,更新数据曲线图的纵坐标,即得到软磁样品的低场部分等温磁滞回线。
从软磁样品饱和剩余磁矩测量的实施例中得出,(r
0+x)=20cm时,ΔB’=1nT将对应磁矩变化Δm=4.05×10
-5A·m
2,定标系数为4.05×10
-5A·m
2/nT,用该值乘以图4左侧纵坐标磁场值,得到右侧纵坐标磁矩值,即将步骤10A所得数据曲线定标为低场部分等温磁滞回线。
4、低场部分等温初始磁化曲线的测量方法及实施例
所述磁特性曲线为低场部分等温初始磁化曲线,所述低场的含义是磁化线圈8和软磁样品7共同在铷泡5处产生的磁场处于抽运-检测型铷原子磁力仪的量程范围内,首先采用步骤1~6获得软磁样品7的饱和剩余磁矩,然后测量并基于所述饱和剩余磁矩值定标软磁样品的等温剩磁回线,具体还包括以下步骤:
步骤7B,保持样品室温度不变,采用样品传送杆10将软磁样品7置于磁化线圈8的正中心,等待软磁样品7的温度稳定;脉冲退磁软磁样品7,使其剩余磁矩为零,软磁样品7剩余磁矩为零的判定条件为6.5位精密电流源9输出电流为零时抽运-检测型铷原子磁力仪测得的磁场值等于本底磁场值;
较优的,如果要增大等温初始磁化曲线在低场部分的磁场范围,则返回步骤1增大磁化线圈8中心位置和铷泡5中心位置的间距r
0,同时适当增大本底磁场。
实施例中设定磁屏蔽筒内样品室6与铷泡5的间距,使磁化线圈8正中心位置与铷泡5的间距为20cm;本底磁场设定为500nT;样品室6内部温度设定为室温20℃;采用样品传送杆10将软磁样品7置于磁化线圈8的正中心;脉冲退磁软磁样品7,使其剩余磁矩为零。
步骤8B,6.5位精密电流源9输出的脉冲电流以特定步长由零电流台阶式地增大至设定的正向最大电流,采用抽运-检测型铷原子磁力仪在每次脉冲电流尾部对铷泡5处的磁场进行测量,得到对应脉冲电流的测量磁场值,该磁场值为本底磁场、磁化线圈8和软磁样品7在铷泡5处产生磁场的代数和;
实施例中用计算机控制6.5位精密电流源9的连续扫描过程:以步长0.1mA从0mA至11mA,以步长5mA从11mA至51mA,测量1次;在此过程中抽运-检测型原子磁力仪测量并记录铷泡5处的磁场;该磁场即为本底磁场、磁化线圈8和软磁样品7在铷泡5处产生磁场的代数和,测试结果为图5(a)中有 样品的数据曲线。
步骤9B、在样品室6中无样品的条件下,再次执行与步骤8B中相同的测量过程,抽运-检测型铷原子磁力仪测得的磁场值为本底磁场和磁化线圈8在铷泡5处产生磁场的代数和。测试结果为图5(a)中无样品的数据曲线。
步骤10B、将步骤8B的相同脉冲电流下测得的磁场值减去步骤9B测得的磁场值,得到测量过程中软磁样品7在铷泡5处产生的一系列磁场值。
步骤11B、绘制数据曲线图,所述数据曲线图的横坐标为通入磁化线圈8的脉冲电流,纵坐标为步骤10B获得的软磁样品7在铷泡5处产生的磁场。数据曲线图如图5(b)所示。
步骤12B、基于步骤6获得的软磁样品在相同温度下的饱和剩余磁矩值,定标步骤11B得到的数据曲线:首先计算定标系数,定标系数=饱和剩余磁矩值÷(步骤3的测量磁场值-本底磁场值);然后用该定标系数乘以数据曲线图中所有脉冲磁化电流对应的磁场值,即得到定标后的低场部分等温初始磁化曲线。
从软磁样品饱和剩余磁矩测量的实施例中得出,(r
0+x)=20cm时,ΔB’=1nT将对应磁矩变化Δm=4.05×10
-5A·m
2,定标系数为4.05×10
-5A·m
2/nT,用该值乘以图5(b)左侧纵坐标磁场值,得到右侧纵坐标磁矩值,即将步骤11B所得数据曲线定标为低场部分等温初始磁化曲线。
5、零场冷却的磁矩-温度曲线测量方法
所述磁特性曲线为零场冷却的磁矩-温度曲线,首先采用步骤1~6获得软磁样品7的饱和剩余磁矩,然后测量并基于所述饱和剩余磁矩值定标软磁样品的零场冷却的磁矩-温度曲线,具体还包括以下步骤:
步骤7C,采用样品传送杆10将软磁样品7置于磁化线圈8的正中心,等待软磁样品7的温度稳定;以特定步长台阶式地降低样品室6内部的温度,当样品室6温度稳定且6.5位精密电流源9输出电流为零时,采用抽运-检测型原子 磁力仪测量并记录不同温度下铷泡5处的磁场,该磁场值为本底磁场和软磁样品7在铷泡5处产生磁场的代数和;
步骤8C,将步骤7C的抽运-检测型铷原子磁力仪测量的磁场值扣除本底磁场,即得到不同温度条件下软磁样品7在铷泡5处产生的磁场;
步骤9C,绘制数据曲线图,所述数据曲线图的横坐标为软磁样品7的温度,纵坐标为软磁样品7在铷泡5处产生的磁场;
步骤10C,基于步骤6获得的软磁样品的饱和剩余磁矩值,定标步骤9C得到的数据曲线:首先计算定标系数,定标系数=饱和剩余磁矩值÷(步骤3的测量磁场值-本底磁场值);然后用该定标系数乘以步骤9C数据曲线图中其他温度对应的磁场值,即得到定标后的零场冷却的磁矩-温度曲线。
较优的,测量等温剩磁回线、低场部分等温磁滞回线、低场部分等温初始磁化曲线、零场冷却的磁矩-温度曲线时,若软磁样品饱和剩余磁矩测量过程中出现抽运-检测型原子磁力仪测量的磁场值大于1.5倍本底磁场的情况,则返回步骤1增大磁化线圈8中心位置和铷泡5中心位置的间距r
0,同时适当增大本底磁场。
综上所述,测量软磁样品7饱和剩余磁矩、等温剩磁回线、低场部分等温磁滞回线、低场部分等温初始磁化曲线的实施例仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (12)
- 一种软磁材料磁特性曲线的测量装置,其特征在于,包括:抽运-检测型铷原子磁力仪、本底磁场产生组件,以及软磁样品磁化和退磁组件;本底磁场产生组件包括磁屏蔽筒(1)和本底磁场线圈(2);其中,磁屏蔽筒(1)用于实现地磁屏蔽;本底磁场线圈(2)位于磁屏蔽筒(1)内部,用于在磁屏蔽筒(1)中产生轴向均匀稳定的本底磁场;其中,本底磁场在200nT至20000nT范围内;抽运-检测型铷原子磁力仪位于磁屏蔽筒(1)内,其铷泡(5)位于本底磁场的磁场均匀区,圆偏振抽运光方向与本底磁场方向平行,线偏振探测光方向与本底磁场方向垂直;抽运-检测型铷原子磁力仪用于测量抽运-检测型铷原子磁力仪内铷泡空间位置的磁场;软磁样品磁化和退磁组件包括样品室(6)、磁化线圈(8)、6.5位精密电流源(9)、样品传送杆(10)和无磁变温系统(11);样品室(6)位于磁屏蔽筒(1)内,磁化线圈(8)缠绕在样品室(6)上,样品传送杆(10)用于将软磁样品(7)放置在样品室内且位于磁化线圈(8)的正中心,软磁样品(7)与铷泡(5)中心的连线平行于本底磁场方向;6.5位精密电流源(9)向磁化线圈(8)脉冲地输入正向或反向的电流,产生的脉冲磁场用于实现对软磁样品(7)的磁化和退磁;无磁变温系统(11)用于保持样品室(6)的温度恒定,或改变样品室(6)的温度。
- 如权利要求1所述的软磁材料磁特性曲线的测量装置,其特征在于,所述磁屏蔽筒(1)为圆柱形,直径为φ500mm,长度大于或等于700mm。
- 如权利要求1所述的软磁材料磁特性曲线的测量装置,其特征在于,磁屏蔽筒(1)替换为磁屏蔽系数优于10 -3的磁屏蔽室。
- 一种软磁材料磁特性曲线的测量方法,其特征在于,采用如权利要求1~3 任意一项所述的测量装置测量软磁样品在零磁场附近恒温条件下的饱和剩余磁矩值,所述饱和剩余磁矩值定义为恒温条件下先饱和磁化软磁样品(7)、再撤去磁化场后软磁样品(7)在本底磁场中的剩余磁矩值;基于所述饱和剩余磁矩值定标软磁材料的磁特性曲线;其中,所述饱和剩余磁矩值的测量包括如下步骤:步骤1、通过移动并固定样品室(6)的位置来设定磁化线圈(8)中心位置和铷泡(5)中心位置的间距;启动抽运-检测型铷原子磁力仪,调节通入本底磁场线圈(2)的电流,使本底磁场在200nT~1000nT范围内;抽运-检测型铷原子磁力仪工作于开环状态,其射频磁场线圈输入的正弦激励信号频率为与本底磁场对应的拉莫尔进动频率;步骤2、采用样品传送杆(10)将软磁样品(7)置于磁化线圈(8)的正中心,等待软磁样品(7)的温度稳定;步骤3、6.5位精密电流源(9)以脉冲的方式输出能够使软磁样品(7)饱和磁化的最大电流,使得软磁样品(7)饱和磁化,脉冲磁化时长大于10秒;其中,磁化线圈(8)产生磁场的方向与本底磁场方向相同;关闭6.5位精密电流源(9),采用抽运-检测型铷原子磁力仪对铷泡(5)处的磁场进行测量,得到测量磁场值;步骤4、以固定步长移动软磁样品(7)的位置使其远离铷泡(5),每次移动样品位置时采用抽运-检测型铷原子磁力仪对铷泡(5)处的磁场进行测量,得到一系列测量磁场值;步骤5、用所述测量磁场值减去本底磁场值,即得到不同位置处软磁样品(7)的饱和剩余磁矩在铷泡(5)处产生的一系列磁场值B’;
- 如权利要求4所述的测量方法,其特征在于,所述磁特性曲线为等温剩磁回线,基于所述饱和剩余磁矩值定标软磁样品的等温剩磁回线时,还包括:步骤7,保持样品室温度不变,采用样品传送杆(10)将软磁样品(7)置于磁化线圈(8)的正中心,等待软磁样品(7)的温度稳定;6.5位精密电流源(9)输出的脉冲电流以特定步长由正向最大电流离散地减小到负向最大电流,然后再从负向最大电流离散地增大到正向最大电流,循环测量n次;采用抽运-检测型铷原子磁力仪在每次脉冲电流后、6.5位精密电流源(9)不输出电流时对铷泡(5)处的磁场进行测量,得到对应脉冲电流的测量磁场值;其中,所述正向最大电流即为软磁样品的饱和磁化电流;步骤8、将步骤7的抽运-检测型铷原子磁力仪的测量磁场值扣除本底磁场,即得到软磁样品(7)在铷泡(5)处产生的磁场;绘制数据曲线图:所述数据曲线图的横坐标为通入磁化线圈(8)的脉冲电流,纵坐标为软磁样品(7)在铷泡(5)处产生的磁场;步骤9、基于步骤6获得的软磁样品在相同温度下的饱和剩余磁矩值,定标步骤8得到的数据曲线:首先计算定标系数,定标系数=饱和剩余磁矩值÷(步骤3的测量磁场值-本底磁场值);然后用该定标系数乘以数据曲线图中所有脉冲磁化电流对应的磁场值,更新数据曲线图的纵坐标,即得到软磁样品的等温剩磁回线。
- 如权利要求4所述的测量方法,其特征在于,所述磁特性曲线为低场部分等温磁滞回线,所述低场是指磁化线圈(8)和软磁样品(7)共同在铷泡(5) 处产生的磁场处于抽运-检测型铷原子磁力仪的量程范围内,基于所述饱和剩余磁矩值定标软磁样品的低场部分等温磁滞回线时,还包括:步骤7A,保持样品室温度不变,采用样品传送杆(10)将软磁样品(7)置于磁化线圈(8)的正中心,等待软磁样品(7)的温度稳定;6.5位精密电流源(9)输出的脉冲电流以特定步长由正向最大电流台阶式地减小到负向最大电流,然后再从负向最大电流台阶式地增大到正向最大电流,循环测量n次;采用抽运-检测型铷原子磁力仪在每次脉冲电流尾部对铷泡(5)处的磁场进行测量,得到对应脉冲电流的测量磁场值;其中,所述正向最大电流即为软磁样品的饱和磁化电流;步骤8A、在样品室(6)中无样品的条件下,再次执行与步骤7A中相同的测量过程,循环测量1次;步骤9A、将步骤7A的每个循环中相同脉冲电流下的测量磁场值减去步骤8A的测量磁场值,得到循环测量过程中软磁样品(7)在铷泡(5)处产生的一系列磁场值;步骤10A、绘制数据曲线图:所述数据曲线图的横坐标为通入磁化线圈(8)的脉冲电流,纵坐标为步骤9A获得的软磁样品(7)在铷泡(5)处产生的磁场;步骤11A、基于步骤6获得的软磁样品在相同温度下的饱和剩余磁矩值,定标步骤10A得到的数据曲线:首先计算定标系数,定标系数=饱和剩余磁矩值÷(步骤3的测量磁场值-本底磁场值);然后用该定标系数乘以数据曲线图中所有脉冲磁化电流对应的磁场值,更新数据曲线图的纵坐标,即得到软磁样品的低场部分等温磁滞回线。
- 如权利要求6所述的测量方法,其特征在于,如果要增大等温磁滞回线在低场部分的磁场范围,则返回步骤1增大磁化线圈(8)中心位置和铷泡(5)中心位置的间距r 0,同时适当增大本底磁场。
- 如权利要求4所述的测量方法,其特征在于,所述磁特性曲线为低场部分等温初始磁化曲线,所述低场是指磁化线圈(8)和软磁样品(7)共同在铷泡(5)处产生的磁场处于抽运-检测型铷原子磁力仪的量程范围内;基于所述饱和剩余磁矩值定标软磁样品的低场部分等温剩磁回线时,还包括:步骤7B,保持样品室温度不变,采用样品传送杆(10)将软磁样品(7)置于磁化线圈(8)的正中心,等待软磁样品(7)的温度稳定;脉冲退磁软磁样品(7),使其剩余磁矩为零,软磁样品(7)剩余磁矩为零的判定条件为6.5位精密电流源(9)输出电流为零时抽运-检测型铷原子磁力仪测得的磁场值等于本底磁场值;步骤8B,6.5位精密电流源(9)输出的脉冲电流以特定步长由零电流台阶式地增大至设定的正向最大电流,采用抽运-检测型铷原子磁力仪在每次脉冲电流尾部对铷泡(5)处的磁场进行测量,得到对应脉冲电流的测量磁场值;所述正向最大电流即为软磁样品的饱和磁化电流;步骤9B、在样品室(6)中无样品的条件下,再次执行与步骤8B中相同的测量过程;步骤10B、将步骤8B的相同脉冲电流下的测量磁场值减去步骤9B的测量磁场值,得到测量过程中软磁样品(7)在铷泡(5)处产生的一系列磁场值;步骤11B、绘制数据曲线图,所述数据曲线图的横坐标为通入磁化线圈(8)的脉冲电流,纵坐标为步骤10B获得的软磁样品(7)在铷泡(5)处产生的磁场;步骤12B、基于步骤6获得的软磁样品在相同温度下的饱和剩余磁矩值,定标步骤11B得到的数据曲线:首先计算定标系数,定标系数=饱和剩余磁矩值÷(步骤3的测量磁场值-本底磁场值);然后用该定标系数乘以数据曲线图中所有脉冲磁化电流对应的磁场值,即得到定标后的低场部分等温初始磁化曲线。
- 如权利要求8所述的测量方法,其特征在于,如果要增大等温初始磁化曲线在低场部分的磁场范围,则返回步骤1增大磁化线圈(8)中心位置和铷泡(5)中心位置的间距r 0,同时适当增大本底磁场。
- 如权利要求4所述的测量方法,其特征在于,所述磁特性曲线为零场冷却的磁矩-温度曲线;基于所述饱和剩余磁矩值定标软磁样品的零场冷却的磁矩-温度曲线时,还包括:步骤7C,采用样品传送杆(10)将软磁样品(7)置于磁化线圈(8)的正中心,等待软磁样品(7)的温度稳定;以特定步长台阶式地降低样品室(6)内部的温度,当样品室(6)温度稳定且6.5位精密电流源(9)输出电流为零时,采用抽运-检测型原子磁力仪测量并记录不同温度下铷泡(5)处的磁场;步骤8C,将步骤7C的抽运-检测型铷原子磁力仪测量的磁场值扣除本底磁场,即得到不同温度条件下软磁样品(7)在铷泡(5)处产生的磁场;步骤9C,绘制数据曲线图,所述数据曲线图的横坐标为软磁样品(7)的温度,纵坐标为软磁样品(7)在铷泡(5)处产生的磁场;步骤10C,基于步骤6获得的软磁样品的饱和剩余磁矩值,定标步骤9C得到的数据曲线:首先计算定标系数,定标系数=饱和剩余磁矩值÷(步骤3的测量磁场值-本底磁场值);然后用该定标系数乘以步骤9C数据曲线图中其他温度对应的磁场值,即得到定标后的零场冷却的磁矩-温度曲线。
- 如权利要求4~10任一所述的测量方法,其特征在于,所述步骤4中,若测量过程中出现测量磁场值大于1.5倍本底磁场的情况,则返回步骤1增大磁化线圈(8)中心位置和铷泡(5)中心位置的间距r 0,同时适当增大本底磁场。
- 如权利要求4~10任一所述的测量方法,其特征在于,改变步骤2中样品室(6)的内部温度,在该温度条件下测量软磁样品的饱和剩余磁矩值并定标一系列软磁材料的磁特性曲线;其中,步骤4移动软磁样品(7)时样品的温度 保持不变。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210303770.8 | 2022-03-24 | ||
CN202210303770.8A CN114779136B (zh) | 2022-03-24 | 2022-03-24 | 一种软磁材料磁特性曲线的测量装置及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023178929A1 true WO2023178929A1 (zh) | 2023-09-28 |
Family
ID=82424477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/116982 WO2023178929A1 (zh) | 2022-03-24 | 2022-09-05 | 一种软磁材料磁特性曲线的测量装置及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114779136B (zh) |
WO (1) | WO2023178929A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112782623B (zh) * | 2020-12-16 | 2023-10-24 | 兰州空间技术物理研究所 | 一种磁矩的测量装置及方法 |
CN114779136B (zh) * | 2022-03-24 | 2024-01-30 | 兰州空间技术物理研究所 | 一种软磁材料磁特性曲线的测量装置及方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6201386B1 (en) * | 1997-04-23 | 2001-03-13 | Redcliffe Magtronics Limited | Method for demagnetizing and measuring remanence and coercivity characteristics of a magnetic sample |
CN108008327A (zh) * | 2017-12-12 | 2018-05-08 | 江西中磁科技协同创新有限公司 | 一种新型软磁材料测量装置 |
CN112782623A (zh) * | 2020-12-16 | 2021-05-11 | 兰州空间技术物理研究所 | 一种磁矩的测量装置及方法 |
CN112782625A (zh) * | 2020-12-16 | 2021-05-11 | 兰州空间技术物理研究所 | 一种软磁材料剩磁矫顽力的测量装置及方法 |
CN112782624A (zh) * | 2020-12-16 | 2021-05-11 | 兰州空间技术物理研究所 | 一种软磁材料矫顽力的测量装置及方法 |
CN113240985A (zh) * | 2021-04-16 | 2021-08-10 | 兰州空间技术物理研究所 | 一种磁共振塞曼跃迁调控的实验装置及方法 |
CN114779136A (zh) * | 2022-03-24 | 2022-07-22 | 兰州空间技术物理研究所 | 一种软磁材料磁特性曲线的测量装置及方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO162537C (no) * | 1986-02-17 | 1990-01-10 | Dam Patent A S | Fremgangsmaate og anordning for ikke-destruktiv materialproevning. |
US5012189A (en) * | 1989-05-22 | 1991-04-30 | Iowa State University Research Foundation, Inc. | Method for deriving information regarding stress from a stressed ferromagnetic material |
US5537036A (en) * | 1992-09-10 | 1996-07-16 | Kabushiki Kaisha Toshiba | High-frequency magnetic property measuring apparatus with wound plane-shaped conductors for measuring soft magnetic films |
CN103744039B (zh) * | 2014-01-10 | 2016-06-01 | 兰州大学 | 一种测量磁性软磁薄膜复数磁导率的方法 |
CN104375103B (zh) * | 2014-10-31 | 2017-05-03 | 上海卫星装备研究所 | 用于卫星整星磁测试的试验夹具装置 |
CN108387854A (zh) * | 2018-04-04 | 2018-08-10 | 中国人民解放军61489部队 | 低频脉冲强磁场环境下屏蔽体磁饱和性能测试装置及方法 |
CN110212084B (zh) * | 2019-05-24 | 2020-09-08 | 北京大学 | 一种测量弱磁性La1-xSrxMnO3外延薄膜层状磁结构的方法 |
CN112485732B (zh) * | 2020-11-13 | 2021-07-02 | 山西大学 | 一种基于铷原子磁共振谱的磁强计校准方法与装置 |
CN112924910B (zh) * | 2021-01-29 | 2022-07-26 | 北京航空航天大学 | 一种基于原位磁强计的屏蔽桶内剩磁测量方法 |
-
2022
- 2022-03-24 CN CN202210303770.8A patent/CN114779136B/zh active Active
- 2022-09-05 WO PCT/CN2022/116982 patent/WO2023178929A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6201386B1 (en) * | 1997-04-23 | 2001-03-13 | Redcliffe Magtronics Limited | Method for demagnetizing and measuring remanence and coercivity characteristics of a magnetic sample |
CN108008327A (zh) * | 2017-12-12 | 2018-05-08 | 江西中磁科技协同创新有限公司 | 一种新型软磁材料测量装置 |
CN112782623A (zh) * | 2020-12-16 | 2021-05-11 | 兰州空间技术物理研究所 | 一种磁矩的测量装置及方法 |
CN112782625A (zh) * | 2020-12-16 | 2021-05-11 | 兰州空间技术物理研究所 | 一种软磁材料剩磁矫顽力的测量装置及方法 |
CN112782624A (zh) * | 2020-12-16 | 2021-05-11 | 兰州空间技术物理研究所 | 一种软磁材料矫顽力的测量装置及方法 |
CN113240985A (zh) * | 2021-04-16 | 2021-08-10 | 兰州空间技术物理研究所 | 一种磁共振塞曼跃迁调控的实验装置及方法 |
CN114779136A (zh) * | 2022-03-24 | 2022-07-22 | 兰州空间技术物理研究所 | 一种软磁材料磁特性曲线的测量装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114779136B (zh) | 2024-01-30 |
CN114779136A (zh) | 2022-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022127080A1 (zh) | 一种磁矩的测量装置及方法 | |
WO2023178929A1 (zh) | 一种软磁材料磁特性曲线的测量装置及方法 | |
CN112782625B (zh) | 一种软磁材料剩磁矫顽力的测量装置及方法 | |
CN112782624B (zh) | 一种软磁材料矫顽力的测量装置及方法 | |
Lima et al. | Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields | |
US6201386B1 (en) | Method for demagnetizing and measuring remanence and coercivity characteristics of a magnetic sample | |
Liu et al. | Experimental research on hysteresis effects in GMR sensors for analog measurement applications | |
Krishnan et al. | Harmonic detection of multipole moments and absolute calibration in a simple, low-cost vibrating sample magnetometer | |
O’Grady et al. | Alternating gradient force magnetometry: Applications and extension to low temperatures | |
Dimitropoulos et al. | Boosting the performance of miniature fluxgates with novel signal extraction techniques | |
Liu | Discussion on several principal problems aroused from measuring high performance permanent magnetic materials | |
Case et al. | Calibration of vibrating-sample magnetometers | |
Tawfik et al. | Analysis of magnetoresistive sensors for nondestructive evaluation | |
RU2483301C1 (ru) | Способ локального измерения коэрцитивной силы ферромагнитных объектов | |
Watson et al. | Techniques of magnetic-field measurement | |
RU2613588C1 (ru) | Способ определения напряжённости намагничивающего поля в магнитометрах со сверхпроводящим соленоидом | |
Deak et al. | Dynamic calculation of the responsivity of monodomain fluxgate magnetometers | |
Falohun et al. | Development of A Low-Cost Microcontroller-Based Magnetic Fluxmeter | |
CN104678329A (zh) | 磁场感测装置及方法 | |
Kodama | Measurement of dynamic magnetization induced by a pulsed field: Proposal for a new rock magnetism method | |
Allcock et al. | Magnetic Measuring Techniques for Both Magnets and Assemblies | |
Naumoski et al. | Measuring the hysteresis curve of not-saturated, high-coercive permanent magnets by pulsed-field-magnetometer | |
Ripka | Improving the accuracy of magnetic sensors | |
Schneider | Domain cooperation in ferromagnetic hysteresis | |
KR101976552B1 (ko) | 자성체 특성 분석시스템 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22932981 Country of ref document: EP Kind code of ref document: A1 |