WO2023178678A1 - Foldable foil antenna component - Google Patents

Foldable foil antenna component Download PDF

Info

Publication number
WO2023178678A1
WO2023178678A1 PCT/CN2022/083148 CN2022083148W WO2023178678A1 WO 2023178678 A1 WO2023178678 A1 WO 2023178678A1 CN 2022083148 W CN2022083148 W CN 2022083148W WO 2023178678 A1 WO2023178678 A1 WO 2023178678A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
base station
support part
station antenna
component
Prior art date
Application number
PCT/CN2022/083148
Other languages
French (fr)
Inventor
Christian Helbig
Bernhard Rist
Qiangguo Zhou
Juan Segador Alvarez
Tekin OLMEZ
Serban REBEGEA
Liansong WANG
Johann Baptist Obermaier
Dieter Zierhut
Dmitrij SEMILOVSKY
Ajay Babu Guntupalli
Bruno BISCONTINI
Original Assignee
Huawei Technologies Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co.,Ltd. filed Critical Huawei Technologies Co.,Ltd.
Priority to PCT/CN2022/083148 priority Critical patent/WO2023178678A1/en
Publication of WO2023178678A1 publication Critical patent/WO2023178678A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • the present disclosure in some embodiments thereof, relates to a foldable radiator for antennas, with particular advantages for base station antennas, and a method for manufacturing the antennas.
  • radiators used in mobile communication networks are typical array antennas which consist of several radiators. These radiators must comprise relative complex metallic (generally conductive) , structures. For the production of such radiators different technologies are commonly used. State of the art are die casted or sheet metal radiators in combination with additional plastic parts or etched planar radiators which consist of several planar substrates (PCBs) and additional plastic parts or less commonly, injection molded plastic parts with metalized structures on it.
  • PCBs planar substrates
  • a base station antenna component comprising at least one flexible foil part of one or more conductive structures. At least one support part to which the foil part is laminated, including a planar surface.
  • the base station antenna component is produced in an initial 2D state where the at least one flexible foil part is attached to the planar surface of the at least one rigid support part.
  • the base station antenna component can be transformed by folding operations from its initial 2D state into an operating 3D state. Where the operating 3D state can fulfill its intended electromagnetic function in a base station antenna.
  • the support part may include predefined folding lines to define bendable areas.
  • the bendable areas may be linear within the basically planar surface of the support part in the initial 2D state.
  • the support part integrates elements on its planar surface for an electro-mechanical fixation, alignment, connection to another component.
  • the elements integrated on the planar surface may be pin and hole couples, snap fits, screws or rivet holes.
  • the foil part may include holes or cut out tabs placed such that the holes or cut out tabs do not interfere with the elements integrated on the planar surface.
  • the bendable areas may be created by generating complete voids in the support part, or by generating grooves in the support part, or by generating areas of reduced material thickness in the support part, or by perforations in the support part.
  • the folding operations may be performed along the predefined folding lines that may be created thermally, or by an infrared irradiation through a linear slot mask, or by a laser following the predefined folding lines on the support part.
  • the folding operations may be realized by a bending of the base station antenna component along the predefined folding lines with a distinct minimum bending radius selected to ensure preservation of the material integrity of the base station antenna component after bending.
  • the electromagnetic function of the base station antenna element may be a radiating element, such as a dipole, including a cross polarized radiating element, a filter, a transmission line, a matching structure, such as a balun or a matching network, a passive element with no direct galvanic interconnection to any signal line, such as a director or an isolating element.
  • the conductive structures on the foil part include one or more layers of copper, aluminum, silver, gold, or nickel.
  • the base station antenna element may include coatings such as solder pads, bond pads, and oxidation or environmental protection layers.
  • the conductive structures include one or more layers of polyimide (PI) , polyethylene terephthalate (PET) , polyphenylene sulfide (PPS) , polytetrafluoroethylene (PTFE) , ethylene tetrafluoroethylene (ETFE) , liquid crystal polymer (LCP) , FR4, or glass.
  • PI polyimide
  • PET polyethylene terephthalate
  • PPS polyphenylene sulfide
  • PTFE polytetrafluoroethylene
  • ETFE ethylene tetrafluoroethylene
  • LCP liquid crystal polymer
  • FR4 liquid crystal polymer
  • the base station antenna may component further include an additional flexible foil part with conductive structures.
  • the conductive structures are laminated to the rigid support part, attached to a second planar surface of the one or more support parts and oriented parallel to the first one but on the other side of the support parts.
  • the foil parts may include metallic structures from the two sides of the support part that interact as the two lines of a radio frequency transmission line.
  • the metallic structures may be a microstrip line with one metal side representing the signal line and the other one representing the ground reference, or a symmetric transmission line built from two equal shaped lines.
  • An electrical function of the metallic structures may be a pure transmission line with an impedance. The impedance defined by the line widths, the distance of the metal layers, and the dielectric constant of the material between the metal layers of the support part.
  • the electrical function may include other radio frequency feature that can be derived from transmission line structures, such as a capacitive element, an inductive element, a filter, a matching network, a balun.
  • the method to manufacture a foil lamination roll by adhesively attaching a laminate film to a metal foil.
  • At least two segments may be structured by a removing of at least one area of the metal foil from the laminate film.
  • At least one edge is defined that divides the at least one foldable component into the at least two segments responsive to the removing.
  • the foil lamination roll is laminated by adhesively attaching the foil lamination roll to a planar surface of a support part responsive to the defining of the at least one edge. At least one foldable component is cut out from the foil lamination roll.
  • the at least one foldable component may be folded along the at least one edge at least one angle between the planar surfaces of the at least two segments.
  • the position of the at least one edge of the support part, the size and shape of the at least two segments, and the at least one angle define a specific three dimensional shape of the at least one foldable component.
  • Folding of the at least one foldable base station antenna component may realize a three dimensional antenna component with a specific electromagnetic function.
  • a planner foil may be attached to the support part and the planner foil etched to provide at least one monolithic conductive structure.
  • a port connection may be electrically connected to a matching element connected to the port connection.
  • At least one balun may be electrically connected to the matching element.
  • At least one feedline may be electrically connected to the at least one balun.
  • At least one radiative element shape may be electrically connected to the at least one feedline.
  • FIG. 1 shows a side view of a system included in a multi roll-to-roll (R2R) system, in accordance with some embodiments;
  • FIG. 2A shows processing steps included in a multi roll-to-roll (R2R) system, in accordance with some embodiments
  • FIG. 2B shows processing steps included in a multi roll-to-roll (R2R) system, in accordance with some embodiments
  • FIG. 3A shows a system included in a multi roll-to-roll (R2R) system in accordance with some embodiments
  • FIG. 3B shows a further detailed plan view of a lamination, in accordance with some embodiments.
  • FIG. 3C shows a partial plan view and a cross section of a part of an individual component, in accordance with some embodiments
  • FIG. 3D shows a side view of component folded, in accordance with some embodiments.
  • FIG. 3E shows a cross section side view of a lamination applied on top of a support part, in accordance with some embodiments.
  • FIG. 3F shows a cross section side view of an advancement of a lamination and a support part through a pair of rollers to laminate the lamination to the support part, in accordance with some embodiments.
  • FIG. 4 shows a flow chart of a method, in accordance with some embodiments.
  • FIG. 5A shows a foil part of multiple foil parts included in a roll of lamination, in accordance with some embodiments
  • FIG. 5B shows a support part of multiple support parts included in a contiguous belt of support parts, in accordance with some embodiments
  • FIG. 5C shows an example of a lamination laminated on a support part, in accordance with some embodiments
  • FIG. 6 shows an example of a 2D component, in accordance with some embodiments, in accordance with some embodiments;
  • FIG. 7A shows an example of 2D component folded to give a three dimensional (3D) radio frequency (RF) component, in accordance with some embodiments
  • FIG. 7B shows an example of 2D component folded to give a three dimensional (3D) radio frequency (RF) component, in accordance with some embodiments;
  • FIG. 7C and 7D show respective positioning and fixation parts, in accordance with some embodiments.
  • FIG. 8 shows a drawing of 3D RF component, in accordance with some embodiments.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function (s) .
  • the functions noted in the block may occur out of the order noted in the figures.
  • two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • R2R roll-to-roll
  • a substrate or support part is laminated to the carrier layer where the support part provides areas that enable accurate and well defined bends in a subsequent folding process.
  • the subsequent folding process transforms the two dimensional foldable components cut out from laminated support layer into three-dimensional components.
  • FIG. 1 shows Stage 1 of a roll-to-roll (R2R) process.
  • Stage 1 is representative of the lamination of a metallized foil.
  • Roller R2 is a roll of carrier layer or foil F2 that may be a polyimide (PI) , polyethylene terephthalate (PET) , polyethylene naphthalate (PEN) , or polyphenylene sulfide (PPS) material.
  • Roller R1 includes a roll of metal foil F1 such as copper or aluminum to provide later the conducting RF features for a foldable RF component.
  • Roller R1 is laterally displaced from roller R2 so that foil F2 is exposed to adhesive 12.
  • Adhesive 12 may be held and heated in a container 14 to emit an adhesive from container 14 to coat and adhere to the underside of foil F2 with adhesive 12.
  • metal foil F1 and foil F2 are coated with adhesive 12 and are pulled through rollers R3 and R4.
  • the pressure between rollers R3 and R4 applied to metal foil F1 and foil F2 causes metal foil F1, via adhesive 12, to adhere to foil F2 to give foil lamination 21.
  • Temperature in addition to the pressure may be applied to metal foil F1, foil F2, and adhesive 12 to cause metal foil F1 to adhere to foil F2.
  • a bonding agent may be used instead for adhesive 12 that chemically activates the adjacent surfaces of foils F1 and F2 to allow direct joining again by the pressure and temperature applied to metal foil F1, foil F2, and bonding agent to cause metal foil F1 to adhere to foil F2.
  • Foil lamination 21 is shown in detail by cross sectional detail 21a.
  • Cross sectional detail 21a shows adhesive 12 disposed between metal foil F1 and F2, where metal foil F1 and foil F2 pulled through rollers R3 and R4, so that metal foil F1 adheres to foil F2.
  • FIG. 2A shows processing steps included in a multi roll-to-roll (R2R) system 20a, in accordance with some embodiments.
  • FIG 2A shows Stage 2a of the roll-to-roll (R2R) process.
  • Stage 2a is representative of the structuring of metal foil F1.
  • a foil lamination 21 onto which a mask 23 may be applied to the surface of metal foil F1 is processed.
  • Mask 23 may be applied by screen-printing or by means of a photolithographic process.
  • An etchant applied which etches away the parts of metal foil F1 not covered by mask 23 to leave multiple conductive structures or traces F1’ on the planar top surface of foil F2.
  • the etchant applied may be held in a bath through which masked foil lamination 21 passes in the R2R process.
  • the mask is removed, for example in a chemical bath.
  • FIG. 2B shows processing steps included in a multi roll-to-roll (R2R) system 20b, in accordance with some embodiments.
  • FIG 2B shows Stage 2b of the roll-to-roll (R2R) process.
  • Stage 2b is representative of another way to structure metal foil F1.
  • the R2R process receives foil lamination 21a from a modified use of rollers R1 and R2 to enable the die cutting process shown in Stage 2b.
  • the modified use of rollers R1 and R2 includes the application of an adhesive (adhesive 12a for example) contained in container 14.
  • Adhesive 12a may be held and heated in a container 14 to emit an adhesive from container 14 to coat and adhere to the underside of foil F2a.
  • Foil F2a is a foil of transfer paper that may have greater cross sectional thickness than foil F2 that may not have sufficient cross sectional thickness to enable a die cutting of metal foil F1.
  • Adhesive 12a forms a weaker bond between foil F2a and metal foil F1
  • later on adhesive 12 forms a stronger bond between foil F2 and metal foil F1’.
  • the weaker bond between foil F2a and metal foil F1’ enables easier removal of foil F2a after a die cut 23a of metal foil F1.
  • the die cut 23a of metal foil F1 is shown with knives (shown by black sharp angled triangle) which penetrate through metal foil F1 and part way into foil F2a to remove portions of foil F1 from foil F2a.
  • foil F2 is attached to the top of metal segments 24a by adhesive 12 applied to foil F2 and passing through another roller arrangement similar to rollers R3 and R4, described above, to bond foil F2 to the top of metal segments 24a.
  • foil F2a is peeled off from the underside of metal segments 24a to give a roll of lamination 25. Both the die cutting process and mask and etch process in the roll-to-roll process, produces lamination 25 with multiple foldable components where each foldable component includes multiple conductive segments.
  • FIG. 3A shows a system 30 included in a multi roll-to-roll (R2R) system, in accordance with some embodiments. Further included in the roll-to-roll (R2R) process are Stage 3, Stage 4 and Stage 5.
  • system 30 receives a roll of lamination 25 at Stage 3.
  • the roll of lamination 25 is applied and aligned on top of support part D1 that is held on platform 38 of system 30.
  • Platform 38 may be a transport belt or another feeding system.
  • Support part D1 unlike the roll of lamination 25 is more rigid and is supplied in multiple sheets at the appropriate point and used in the roll-to-roll (R2R) process.
  • lamination 25 is applied on top of support part D1 through rollers R5 and R6 to adhere the roll of the roll of the roll of lamination 25 to support part D1.
  • Foil F4 may or may not be applied to the underside of support part D1 at Stage 4 to adhere foil F4 to support part D1, shown in detail in cross-section 32. Later descriptions of a two dimensional (2D) foldable antenna components derived from system 30 does not include F4 for ease of description.
  • cross-section 32 shows foil F4 attached to the underside of support part D1 by an adhesive.
  • the topside of support part D1 is attached to the underside of lamination 25 by adhesive 12.
  • the height of support part D1 is typically around 1mm–2mm.
  • Adhesive 12 between foil F2 of the roll of lamination 25 and support part D1 may be acrylate or polysiloxane.
  • an adhesive often depends on the combination of materials to be bonded, the processing temperatures they can withstand, the subsequent application scenarios, the intended adhesive thickness, and so on. In most cases depending on the type of foldable component produced the adhesive between various rolls of foils and rigid support parts are usually not the same.
  • the application of adhesives 12 to various rolls of foils and rigid support may be similarly applied in the various ways described above with respect to a bonding agent instead for an adhesive for example.
  • the bonding agent chemically activates the adjacent surfaces of two foils or between a surface of a foil and a surface of rigid support part.
  • the bonding agent to allow direct joining by the pressure and temperature applied to the two foils and/or to the foil and the surface of rigid support part.
  • Roller pairs R7 and R8 can coexist with rollers R9 and R10. Alternatively, rollers R7 and R8 are not present and only rollers R9 and R10 are present. R7-R8 and R9-R10 are used interchangeably.
  • roller pairs R7 and R8 allow predefined cut-outs of slots and holes through the roll of lamination 25, support part D1 and foil F4. Holes in lamination 25 may be made, so that not flat features from the support part D1, such as snap fits, alignment features, pin and hole pairs can penetrate, or features from other parts can intrude.
  • roller pairs R9 and R10 allows inline cutting out of the multiple individual two dimensional (2D) foldable components parts.
  • a three dimensional (3D) view of the surface of roller R9 is shown as die 34.
  • a die on the surface of roller 10 engages with the die 34 to enable the cutting out the individual 2D foldable components parts.
  • FIG. 3B shows a further detailed plan view of a lamination 25, in accordance with some embodiments.
  • the further detailed plan view of lamination 25 is prior to insertion into rollers R5 and R6.
  • Lamination 25 includes multiple two-dimensional (2D) components 32 formed at Stage 2 that are placed above support part D1 that is held in place by platform 38 of system 30.
  • Components 32 are optimally placed and distributed on lamination 25 at Stage 2 so that material waste is reduced when foldable 2D components 32 are made at Stage 5.
  • Components 32 optimally placed and distributed on lamination 25, effectively makes support part D1 serve as a batch plate from which components 32 are cut out from in Stage 5.
  • Support part D1 may be formed by an injection molding process to include guide pins 37b (shown by solid circle) on the planar surface of support part D1.
  • Guide pins 37b match with the location of guide holes 37a (shown by dotted circle) of the roll of lamination 25.
  • Guide holes 37a and/or slots may be pre supplied on foil F2 or guide holes 37a and/or slots may be made to foil F2 at Stage 1. Additional guide holes and/or slots may also be made in each component 32 at Stage 4 or Stage 5.
  • FIG. 3C shows a partial plan view and a cross section of a part of an individual component 32, in accordance with some embodiments.
  • multiple conductive structures or traces F1’ on the planar top surface of foil F2’ are formed at Stages 2a or 2b described above.
  • Three parts (i) , (ii) and (iii) are shown for traces F1’.
  • Common to part (i) and part (iii) is the same width compared to part (ii) which has a narrower width and shorter length than parts (i) and (iii) .
  • the part is shown in a state after passing through roller pairs R7 and R8 at stage 5, to manufacture predefined cut-outs of slots 300, and a guide hole 31.
  • Cut out of slots 300 in support part D1 may be made prior to Stage 4, by an injection molding process to form support part D1, or may be achieved through die cutting of support part D1. Further cuts are made through support part D1 and foil F2 to show modified support parts D1’ and modified foils F2’ respectively.
  • the cross section of the part shows conductive structures F1’ attached to the top sides of foils F2’ with an adhesive 12. Similarly the underside of foils F2’ are attached to the topsides of support parts D1’. Connection bars 39 including support parts D1’ and foil parts F2’ still connect to support parts D1’ and foil parts F1’.
  • Cross sectional areas XR1 and XR2 in support part D1 may be made prior to Stage 4 so that cross sectional areas XR1 and XR2 are less rigid than the other areas of support part D1.
  • the less rigid areas of support part D1 may be achieved by the formation of voids, grooves, reduced material thickness or perforation of support part D1.
  • a further process may be applied to cross sectional areas XR1 and XR2 which makes XR1 and XR2 deformable after Stage 5 when each two-dimensional (2D) component 32 is folded at fold lines FLD1 and FLD2 to form a three-dimensional (3D) component 32.
  • Such a softening process might be done by local heating of areas XR1 and XR1.
  • An inline cutting out of the multiple components 32 of the batch plate may be made at Stage 5.
  • the inline cutting out may include cutting through connection bars 39 that include foil parts F1’, foil parts F2’ and support parts D1’ in each of components 32.
  • Guide holes 31 in each component may be utilized to ensure correct alignment of components 32 to enable the inline cutting out of the multiple components 32 of the batch plate.
  • FIG. 3D shows a side view of component 32 folded, in accordance with some embodiments.
  • the side view shows component 32 cut out from the batch plate and folded at fold lines FLD1 and FLD2 at respective angles ⁇ 1 and ⁇ 2 to form distinct modified parts (i) ’, (ii’) and (iii’) due to a bending of component 32.
  • Fold lines FLD1 and FLD2 and respective cross sectional areas XR1 and XR2 define respective edges that divide between two parts or segments, specifically between parts (ii’) and part (i’) and between parts (ii’) and part (iii’) .
  • modified parts (i) ’, (ii’) and (iii’) in cross section include the topside of support part D1” attached to the underside of foil F2” by an adhesive (not shown) .
  • angles ⁇ 1 and ⁇ 2 are equal to 45° degrees, then part (i) ’ is at 90° degrees to part (iii’) .
  • the folding along fold lines FLD1 and FLD2 and respective cross sectional areas XR1 and XR2 are shown where foil F1” is on the inside of the bends and support part D1” is on the outside of the bends.
  • folding along fold lines FLD1 and FLD2 and respective cross sectional areas XR1 and XR2 is so that foil F1” is on the outside of the bends and support part D1” is on the inside of the bends.
  • Folding or bending along fold lines FLD1 and FLD2 may be by a thermal bending process, such as a thermal bending by IR irradiation, hot wire heating prior to bending or laser irradiation prior to bending.
  • FIG. 3E shows a cross section side view of lamination 25 applied on top of support part D1, in accordance with some embodiments.
  • the roll of lamination 25 is applied on top of support part D1 that is supported on platform 38 of system 30 at stage 3.
  • Lamination 25, laminated to support part D1 creates a batch plate of multiple components 32 as shown in FIG. 3B.
  • Additional guide holes, guide pins and/or slots may also be made in support part D1 as part of an injection molding process of support part D1.
  • support part D1 may include guide pins on the planar surface of support part D1. The guide pins match with the location of guide holes 25a of the roll of lamination 25.
  • Guide holes and/or slots may be pre supplied on lamination 25 or guide holes and/or slots may be made to foil F2 at Stage 1.
  • Snap hooks 35 are a type of integrated plastic fastener common to injection-molded parts. Snap hooks 35 are matching with a specific guide hole 25a in lamination 25. Snap hooks 35 provide a way of mating plastic components together without the need for additional hardware fasteners such as screws and bolts. Snap hooks 35 may be considered the male part and is generally a cantilever beam with a hook on the end. Guide holes 25a, the female part is the receptacle, or groove, into which the cantilever and hook will fit.
  • the cantilever undergoes some displacement as it traverses the receptacle, and once it is mated, the cantilever relaxes to provide a tight fastening.
  • guide hole 25a in lamination 25 is in line with indentation 25b of roller R5.
  • rotation of roller R5 in anticlockwise direction indicated by arrow A2 and rotation of roller R6 in clockwise direction indicated by arrow A3 causes the left to right progression of lamination to support part D1 by lamination 25 shown by arrows A1.
  • gap 33 shows between two consecutive support parts D1.
  • Position marks 35a and the interval between position marks 35a may equal a length or a partial length of the circumference of roller R5.
  • FIG. 3F shows a cross section side view of an advancement of lamination 25 and support part D1 through rollers R5 and R6 to laminate lamination 25 to support part D1, in accordance with some embodiments.
  • the advancement is a continuation of stage 4 shown in FIG. 3E.
  • rotation of roller R5 in anticlockwise direction indicated by arrow A2 and rotation of roller R6 in clockwise direction indicated by arrow A3 causes the left to right progression of lamination to support part D1 by lamination 25 shown by arrows A1.
  • the protruding snap hook 35 is matching with a specific guide hole 25a in lamination 25 is shown diving into indentation 25b of roller R5 to mate snap hook 35 with specific guide hole 25a.
  • protrusions of support part D1 from the planar surface of support part D1 can be realized without any collision with roller R5 or roller R6.
  • the interval between position marks 35a equals the circumference of roller R5.
  • FIG. 4 shows a flow chart of a method 400, in accordance with some embodiments.
  • Method 400 is applied to systems 10, 20a, 20b and 30 as part of a continuous roll-to-roll (R2R) process in a same location at a same time.
  • Systems 10, 20a, 20b and 30 may provide respective foil laminations 21, 25 and foldable components 32 in separate roll-to-roll processes such as Stages 1-4 and/or inline process such as Stage 5 at different times and locations.
  • foil lamination 21 is manufactured by either or both of metal foil F1 and polyimide foil F2 being coated with an adhesive.
  • Metal foil F1 and polyimide foil F2 are pulled off their respective rolls R1 and R2 through rollers R3 and R4 that causes metal foil F1 to adhere to polyimide foil F2 to give foil lamination 21.
  • a bonding agent instead for an adhesive that chemically activates the adjacent surfaces of foils F1 and F2 to allow direct joining again by the pressure and temperature applied to metal foil F1 and foil F2 to cause metal foil F1 to adhere to foil F2.
  • parts of foil are removed from foil F2 as part of the continuous roll-to-roll (R2R) process or in a separate R2R process at a different time and location.
  • metal foil F1 may be etched through the open portions of the mask by an etchant to leave multiple conductive structures or traces of various shape forms of metal foil F1 protected by the mask from the etchant.
  • a further lamination or lacquer may be applied on top of foil F1’ to prevention corrosion of the conductive structures.
  • the conductive structures include metal connection pads, the metal connection pads may be tinned to allow soldering.
  • Steps 403 may be achieved using a die cutting process with respect to Stage 2b, that removes parts of metal foil F1 to form the traces of various shape forms of metal foil F1 and then the application of polyimide foil F2 is applied to the traces.
  • polyimide foil F2 serves as a carrier layer
  • the die cutting process may cut only through metal foil F1 and includes pulling off the unwanted parts of metal foil F1 from polyimide foil F2.
  • arelease paper lamination of sufficient thickness such as foil F2a may be attached to metal foil F1 so that the die cutting process may cut only through metal foil F1 and includes pulling off the unwanted parts of metal foil F1 from the release paper lamination.
  • the release paper is peeled off and polyimide foil F2 may be laminated to the wanted parts of metal foil F1 as foil F1’.
  • Foil F1’ are the traces of metal foil formed as a result of the die cutting process.
  • the conductive structures are printed onto the substrate F2 (ink jet printing or screen printing with conductive inks) .
  • the roll of lamination 25 is applied on top of support part D1 that is supported on platform 38 of system 30.
  • Lamination 25 laminated to support part D1 creates a batch plate of multiple components 32.
  • Lamination 25 laminated to support part D1 is shown in detail in cross section 32 and in the descriptions of FIG. 3E and 3F.
  • Cross section 32 shows foil F4 attached to the underside of support part D1 by an adhesive.
  • the topside of support part D1 is attached to the underside of lamination 25 by an adhesive.
  • Foil F4 may or may not be applied to the underside of support part D1.
  • Foil F4 may be applied for example when components 32 are radio frequency (RF) components where foil F4 serves as a ground plane.
  • RF radio frequency
  • Heat may be applied in the attachment of lamination 25 and F4 in order to anneal lamination 25 and relieve stresses generated in lamination 25, F4 and in lamination 25. Relieving stresses in lamination 25, F4 and in lamination 25 may allow the formation of 2D components 32 easier and later on when 2D components 32 are folded to produce three dimensional (3D) components.
  • cross sectional areas XR1 and XR2 in support part D1 may be made prior to Stage 4 so that cross sectional areas XR1 and XR2 are less rigid than the other areas of support part D1.
  • the less rigid areas of support part D1 may be achieved by the formation of voids, grooves, reduced material thickness or perforations of support part D1.
  • Fold lines FLD1 and FLD2 and respective cross sectional areas XR1 and XR2, define respective edges that divide when folded between two parts or segments; between parts (ii) and part (i) and between parts (ii) and part (iii) for example.
  • foil F4 is not included.
  • slots 300 and guide holes 31 may be cut entirely through cross section 32 by rollers R7 and R8 in a die cutting process or by flat cutting tools such as punches and dies to manufacture predefined cut-outs of slots 300 and guide holes 31 in each 2D component 32. Further cuts are made through support part D1 and foil F2 to show modified support parts D1’ and modified foils F2’ respectively.
  • the cross section of the part shows conductive structures F1’ attached to the top sides of foils F2’ with an adhesive. Similarly the underside of foils F2’ are attached to the topsides of support parts D1’. Connection bars 39 hold each component 32 within the common batch structure during processing.
  • the die cutting process may include cuts deep enough just to pull off the unwanted parts of metal lamination 25 for each component 32.
  • the cuts and peeling of lamination 25 after the die cutting process for example may then allow for tinning of solder pads included in the conductive structures or traces formed in the revealed parts of metal foil F1 or lamination 25 for each component 32.
  • the cuts and peeling of lamination 25 may also allow for the attachment of surface mount devices (SMDs) . Further to include the application of a solder paste to the SMDs. Cut out of slots 300 in at least support part D1 may be made prior to Stage 4, by an injection molding process to form support part D1, or may be achieved through die cutting of support part D1. The die cutting process may include the application of heat to anneal the results of the lamination of lamination 25 on top of support part D1 in step 405.
  • SMDs surface mount devices
  • a further die cutting process cuts out each individual 2D component 32 from the batch plate by passing through rollers R9 and R10.
  • a belt of contiguous batch plates travel between roller pairs R7/R8 and R9/R10.
  • an inline cutting out of the multiple components 32 of the batch plate may be made at step 409 using flat cutting tools that punch through a batch plate.
  • Flat cutting tools that punch The inline cutting out may include cutting through connection bars 39 that include foil parts F1’, foil parts F2’ and support parts D1’ in each of components 32.
  • Guide holes 31 in each 2D component 32 may be utilized to ensure correct alignment of components 32 to enable the inline cutting out of the multiple components 32 of the batch plate.
  • the application of heat prior to the further die cutting process may also enable a reflow soldering process of the SMDs attached along with the solder paste applied at step 407.
  • the side view shows a partial part of component 32 cut out from the batch plate at step 409 and folded at fold lines FLD1 and FLD2 at respective angles ⁇ 1 and ⁇ 2 to form distinct modified parts (i) ’, (ii’) and (iii’) due to a bending of component 32.
  • Fold lines FLD1 and FLD2 and respective cross sectional areas XR1 and XR2 define respective edges that divide between two parts or segments, specifically between parts (ii’) and part (i’) and between parts (ii’) and part (iii’) .
  • modified parts (i) ’, (ii’) and (iii’) in cross section include the topside of support part D1” attached to the underside of foil F2” by an adhesive (not shown) .
  • part (i) ’ is at 90° degrees to part (iii’) .
  • the folding along fold lines FLD1 and FLD2 and respective cross sectional areas XR1 and XR2 is shown where foil F1” is on the inside of the bends and support part D1” is on the outside of the bends.
  • folding along fold lines FLD1 and FLD2 and respective cross sectional areas XR1 and XR2 (not shown) is so that foil F1” is on the outside of the bends and support part D1” is on the inside of the bends.
  • Fold lines FLD1 and FLD2 described above with respect to the planar surface of foil F1’ are generally perpendicular to the each part of foil F1’ but other angles may be defined across foil F1’.
  • FIG. 5A shows a foil part 50 of multiple foil parts 50 included in a roll of lamination 25, in accordance with some embodiments.
  • Foil part 50 of multiple foil parts 50 is an example of a roll lamination 25 manufactured as described in steps 401 and 403 above.
  • Foil part 50 is included in the parts that go to make 2D foldable antenna component in the descriptions that follow.
  • metal foil F1 is attached to foil F2 (step 401) and guide holes 37a and/or slots may be pre supplied on foil F2 or guide holes 37a and/or slots may be made to foil F2 to give foil F2’ at Stage 1.
  • areas of metal foil F1 are removed from foil F2/F2’ to give multiple conductive structures or traces F1’.
  • Carrier layer 510 is analogous to foil F2’ and contact pad 500, metal layer trace 508, metal layer traces 512, 514 are analogous to multiple conductive structures or traces F1’ described above with respect to Stages 1, 2a or 2b.
  • Contact pad 500 is electrically connected to multiple metal layer traces 508. Multiple layer traces have two outputs that are electrically connected to respective metal layer traces 512 and 514. Contact pad 500, multiple layer traces 508 and metal traces 512/514 as radio frequency (RF) components are described herein as distributed elements or circuits. Guide holes 502, 516 and cut out slots 504, 506, 518 may be cut out from carrier layer 510 at Stage 1 and/or Stage 5 to leave multiple connection bars 520. Connection bars 520 help to give the metal foil elements such as contact pad 500, metal layer trace 508, metal layer traces 512, 514 enough support within a roll-to-roll (R2R) process described above with respect to Stages 1-3.
  • R2R roll-to-roll
  • support part 534 may be formed by an injection molding process to include multiple guide holes 516, or guide pins (not shown) and multiple slots 530 derived from the injection molding process or in separate process by use of flat cutting tools such as punches.
  • Guide pins may be included in platform 38 of system 30 that go through guide holes of support parts 52 and foil parts 50.
  • Multiple guide holes 516, 530 or guide pins in each support part 52 of support parts 52 ensure alignment with guide holes 516 of foil part 50 of multiple foil parts 50.
  • the alignment enables alignment of slots 530 of foil part 50 to align with slot 518.
  • An example of the alignment is with reference to detail 52a (marked by dashed ellipse) and connection bars 542 to align with connection bars 520 of foil part 50.
  • Cut outs 538 may define the later folding axes between metal layer traces 508 and metal layer traces 512, 514, and folding axes between metal layer traces 512, 514 and the thinner section of metal layer traces 512, 514.
  • Cross sectional areas in support part 52, perpendicular to the planar surface of support part 52 at the locations of cut outs 538 may be made so that the cross sectional areas are less rigid than the other areas of support part 52.
  • the less rigid areas of support part 52 may be achieved by formation of voids, grooves, reduced material thickness or perforations of support part 52.
  • Fold lines and respective cross sectional areas at the locations of cut outs 538 define respective edges that divide when folded between two, between metal layer traces 508 and metal layer traces 512, 514, or folding axes between metal layer traces 512, 514 and the thinner section of metal layer traces 512.
  • FIG. 5C is an example of a lamination 510 laminated on support part 534, in accordance with some embodiments.
  • Lamination 510 laminated on support part 534 (step 405) as an example of a 2D component 32 included in a belt of contiguous batch plates of multiple 2D components 32.
  • the belt is included in a roll-to-roll process of contiguous batch plates that travel from roller pair R5/R6 pair to roller pairs R7/R8.
  • the alignment requirement for when foil parts 510 are placed on top of support part 534 at Stage 3 prior to laminating foil parts 50 to support parts 52 at Stage 4/step 405 is enabled by guide pins (not shown) to align of guide holes 516, 502 and 530 for each 2D component 32 regularly distributed over the belt. Holes in lamination 510 may be made, so that not flat features from the support part 534, such as snap fits/hooks, alignment features, pin and hole pairs can penetrate, or features from other parts can intrude.
  • At roller pair R7/R9 further cut outs may be made through foil parts 50 and/or support parts 52 (step 407) not performed at Stage 1.2D component 32 at Stage 5 includes metal layer trace 508, metal layer traces 512, 514 that are analogous to multiple conductive structures or traces F1’ described above with respect to Stages 1, 2a or 2b, multiple connection bars 520 and 542, and slots 506, 518 and 530.
  • FIG. 6, is an example of a 2D component 60, in accordance with some embodiments.
  • the 2D component 60 is cut out from other same or different 2D components that are regularly distributed over multiple batch plates included on the belt.
  • the 2D component 60 is cut out from other same or different 2D components (step 409) as the belt passes through roller pair R9/R10.2D component 60 is cut out by cutting through connection bars 520 and 542.
  • the alignment of 2D component 60 in the cutting out being enabled by guide holes 516 and corresponding guide pins (not shown) included within the inline processes of stages 4-5 described in the above descriptions.
  • Connection bars 520 and 542 may be realized within the foil 25 and the support part D1 for stabilizing foil or support elements or for folding otherwise loose foil or support elements.
  • Matching element 61 connects to balun 62 (shown by dashed line box) that provides two outputs. The two outputs connect electrically to two respective feedlines 63 that include alignment bars 542 formed from -support part 534. Feedlines 63 then connect electrically to metal foil structures of respective radiative elements R1a and R1b.
  • Cross sectional areas in support part 534, perpendicular to the planar surface of support part 534 at the locations of cut outs 538 may be made so that the cross sectional areas are less rigid than the other areas of support part 534.
  • the less rigid areas of support part 534 may be achieved by formation of voids, grooves, reduced material thickness or perforations of support part 52.
  • Fold lines and respective cross sectional areas at the locations of cut outs 538 define respective edges that divide when folded between two, between metal layer traces of balun 62 and metal layer traces of feedlines 63. Or folding axes between metal layer traces of feedlines 63 and the thinner section of metal layer traces of radiative elements R1a and R1b.
  • FIG. 7A is an example of 2D component folded (step 411) to give a three dimensional (3D) radio frequency (RF) component 71a, in accordance with some embodiments.
  • 3D radio frequency
  • RF radio frequency
  • Feedlines 63 include niches 73 formed in support part 534, niches 73 are without a metalized foil so that niches 73 do not electrically connect to feedlines 63.
  • multiple angles of fold lines FD5-FD8 that define respective edges that divide when folded between two, between metal layer traces of balun 62 and metal layer traces of feedlines 63.
  • folding axes between metal layer traces of feedlines 63 and the thinner section of metal layer traces of radiative element R1b For example, with respect to fold lines FD1-FD4, at fold line 1 and fold line FD2 both are folded at 45° degrees clockwise to give a perpendicular section of feedlines 63.
  • radiative element R1a is folded perpendicular to the perpendicular section of feedlines 63. A slight fold at fold line FD4 downwards is made.
  • fold line FD5 is folded 135° degrees anti clockwise and fold line FD6 is folded 45° degrees clockwise to give a perpendicular section of feedlines 63.
  • fold line FD7 slot 538, radiative element R1b is folded clockwise to be perpendicular to the perpendicular section of feedline 63.
  • a slight fold at fold line FD8 upwards is further made.
  • the folding along fold lines FD1-FD4 and respective cross sectional areas of cut outs 538 is shown where metal foil traces are on the inside of the bends and support part 534 is on the outside of the bends.
  • folding along fold lines FD1-FD4 and respective cross sectional areas of cut outs 538 is so that metal foil traces are on the inside with respect to the bend of fold line FD5 and support part 534 is on the outside of the bend.
  • the remaining metal foil traces are on the outside of the bends of fold lines FD6-FD8 and support part 534 is on the inside of the bends.
  • Matching element 61 connects to balun 62 (shown by dashed line box) that provides two outputs. The two outputs connect electrically to two respective feedlines 63 and the two feedlines electrically connect to respective radiative elements R1a and R1b.
  • Folding or bending along fold lines FD1 and FD8 may be by a thermal bending process, such as a thermal bending by IR irradiation, hot wire heating prior to bending or laser irradiation prior to bending.
  • Distributed elements devices included in 3D RF component 71a include matching element 61, contact pad 500, balun 62 including metal layer traces 508, feedlines 63 and radiative elements R1a and R1b.
  • 3D RF component 71a in use by connection to a transceiver demonstrates certain characteristics. Characteristics for example where the phase of voltages or currents changes significantly over the physical extent of 3D RF component 71a. The changes are because of the physical dimensions and relative 3D orientations of distributed elements in 3D RF component 71a are similar to, and in some cases even larger than, the wavelength of the operating frequency of 3D RF component 71a.
  • 3D RF component 71a when implemented on a board or substrate (support part 534) in proximity to a localized ground plane, the board and the localized ground plane themselves becomes part of the 3D RF component 71a and how 3D RF component 71a operates.
  • 3D RF component 71a consideration needs to be given for example in the choice of support part 534 and carrier layer 510 to ensure that it has a homogeneous material properties to ensure constant permittivity ( ⁇ ) value in support part 534.
  • ⁇ r relative permittivity value of support part 534.
  • Support part 534 and/or carrier layer 510 may be a polymer with well-defined RF properties.
  • the polymer may be Polytetrafluoroethylene (PTFE) , Ethylene Tetrafluoroethylene (ETFE) , polyphenylene sulfide (PPS) , FR4 and similar PCB substrates, or glass-reinforced epoxy laminate (FR-4) .
  • PTFE Polytetrafluoroethylene
  • PPS polyphenylene sulfide
  • FR4 glass-reinforced epoxy laminate
  • widths of and lengths of distributed elements in 3D RF component 71a for example determine characteristic impedance (Z o ) and electrical lengths of radiative elements R1a and R1b to efficiently radiate a signal applied at contact pad 500 for example.
  • FIG. 7B is an example of a 2D component 60 folded (step 411) to give a three dimensional (3D) radio frequency (RF) component 71b, in accordance with some embodiments.
  • Feedlines 63 hidden in Fig. 7B
  • niches 73 are without a metalized foil so that niches 73 do not electrically connect to feedlines 63.
  • Distributed elements devices included in 3D RF component 71b include matching element 61, contact pad 500, balun 62 including metal layer traces 508, feedlines 63 (not shown) and radiative elements R2a and R2b.
  • 3D RF component 71b is a similar version of 3D RF component 71a.
  • the illustrated example antenna element is a radiator with two independent perpendicular radiating polarizations.
  • 71a and 71b combine after assembly to this radiator, where 71a represents the electric structure for polarization and 71b represents the analogue structure for polarization b.
  • connections and/or transitions in widths between distributed elements behave as transmission lines so 3D RF component 71b, when implemented on a board or substrate (support part 534) in proximity to a localized ground plane, the board and the localized ground plane themselves becomes part of the 3D RF component 71b and how 3D RF component 71b operates. Additionally, widths of and lengths of distributed elements in 3D RF component 71b for example determine characteristic impedance (Z o ) and electrical lengths of radiative elements R2a and R2b to efficiently radiate a signal applied at contact pad 500 for example.
  • the removal of metal foil from carrier layer 510 at step 403, gives conductive structures; contact pad 500 electrically connected to matching element 61.
  • Matching element 61 connects to balun 62 (shown by dashed line box) that provides two outputs. The two outputs connect electrically to two respective feedlines 63 and the two feedlines electrically connect to respective radiative elements R2a and R2b.
  • FIG. 7C and 7D show respective positioning parts 73a and 73b, in accordance with some embodiments.
  • Both positioning parts 73a and 73b include multiple snap hooks 78. Utilization of positioning parts 73a and 73b are described in the description that follow.
  • the purpose of positioning parts 73a and 73b is the precise alignment of the folding operations, as well as the precise positioning of the folded segments of 71a and 71b, and of the components 71a and 71b to each other. Further, positioning parts 73a and 73b allow the fixation and stabilization of the folded segments of 71a and 71b, and of the components 71a and 71b.
  • 3D RF component 80 includes three dimensional (3D) radio frequency (RF) component 71b joined to three dimensional (3D) radio frequency (RF) component 71a by positioning parts 73a and 73b.
  • Each 3D RF component 71a and 71b include niches 73 formed in support part 534 provide counter part for the snap hooks 78 of the fixation and positioning parts 73a and 73b.
  • Radiative elements R1a and R1b of 3D RF component 71a form one polarization at 90° degrees to the polarization of radiative elements R2a and R2b of 3D RF component 71b.
  • Two signals may be applied to respective contact pads 500 of respective 3D RF component 71a and 3D RF component 71b from a transceiver to efficiently radiate the two signal applied at respective contact pads 500 for example.
  • Positioning parts 73a and 73b, RF components 71a and 71b, may further provide mutual mechanical junction interfaces such as pin and hole couples, snap fits, screw or rivet holes to enable a fixation of foldable RF components 71a, 71b and 80 in the 3D geometry of a chassis of an antenna array for example.
  • RF components 71a, 71b the removal of areas of unwanted metal foil from carrier layer 510 at step 403, the cuts and peeling of carrier layer 520 at step 407 for example, may also allow for the attachment of surface mount devices (SMDs) in the area of balun 62. Further to include the application of a solder paste to the SMDs.
  • SMDs surface mount devices
  • a typical inclusion to RF components 71a, 71b may be a low noise amplifier circuit and connection pads to connect a power supply to the low noise amplifier.
  • operating frequency in the context of a three dimensional (3D) radio frequency (RF) component, means the central frequency value between an upper and lower operating frequency range of frequency values of the 3D RF component. For example if the upper operating and lower frequency values of a 3D RF component are 6 gigahertz (GHz) and 4 GHz respectively, the operating frequency of the 3D RF component is 5GHz.
  • GHz gigahertz
  • 4 GHz gigahertz
  • composition or method may include additional ingredients and/or steps, but only if the additional ingredients and/or steps do not materially alter the basic and novel characteristics of the claimed composition or method.
  • a compound or “at least one compound” may include a plurality of compounds, including mixtures thereof.
  • range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the disclosure. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.
  • a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range.
  • the phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.

Abstract

A base station antenna component comprising at least one flexible foil part of one or more conductive structures. At least one support part to which the foil part is laminated, including a planar surface. The base station antenna component is produced in an initial two-dimensional (2D) state where the at least one flexible foil part is attached to the planar surface of the at least one rigid support part. The base station antenna component can be transformed by folding operations from its initial 2D state into an operating three-dimensional (3D) state. Where the operating 3D state can fulfill its intended electromagnetic function in a base station antenna.

Description

Foldable Foil Antenna Component TECHNICAL FIELD
The present disclosure, in some embodiments thereof, relates to a foldable radiator for antennas, with particular advantages for base station antennas, and a method for manufacturing the antennas.
BACKGROUND
Known antennas used in mobile communication networks are typical array antennas which consist of several radiators. These radiators must comprise relative complex metallic (generally conductive) , structures. For the production of such radiators different technologies are commonly used. State of the art are die casted or sheet metal radiators in combination with additional plastic parts or etched planar radiators which consist of several planar substrates (PCBs) and additional plastic parts or less commonly, injection molded plastic parts with metalized structures on it.
SUMMARY
It is an object of the present invention to provide a base antenna component and a method for manufacturing the base antenna component.
A base station antenna component comprising at least one flexible foil part of one or more conductive structures. At least one support part to which the foil part is laminated, including a planar surface. The base station antenna component is produced in an initial 2D state where the at least one flexible foil part is attached to the planar surface of the at least one rigid support part. The base station antenna component can be transformed by folding operations from its initial 2D state into an operating 3D state. Where the operating 3D state can fulfill its intended electromagnetic function in a base station antenna.
The support part may include predefined folding lines to define bendable areas. The bendable areas may be linear within the basically planar surface of the support part in the initial 2D state. The support part integrates elements on its planar surface for an electro-mechanical fixation, alignment, connection to another component. The elements integrated on the planar surface may be pin and hole couples, snap fits, screws or rivet holes. The foil part may include holes or cut out tabs placed such that the holes or cut out tabs do not interfere with the elements integrated on the planar surface. The bendable areas may be created by generating complete  voids in the support part, or by generating grooves in the support part, or by generating areas of reduced material thickness in the support part, or by perforations in the support part.
The folding operations may be performed along the predefined folding lines that may be created thermally, or by an infrared irradiation through a linear slot mask, or by a laser following the predefined folding lines on the support part. The folding operations may be realized by a bending of the base station antenna component along the predefined folding lines with a distinct minimum bending radius selected to ensure preservation of the material integrity of the base station antenna component after bending.
The electromagnetic function of the base station antenna element may be a radiating element, such as a dipole, including a cross polarized radiating element, a filter, a transmission line, a matching structure, such as a balun or a matching network, a passive element with no direct galvanic interconnection to any signal line, such as a director or an isolating element. The conductive structures on the foil part include one or more layers of copper, aluminum, silver, gold, or nickel. The base station antenna element may include coatings such as solder pads, bond pads, and oxidation or environmental protection layers. The conductive structures include one or more layers of polyimide (PI) , polyethylene terephthalate (PET) , polyphenylene sulfide (PPS) , polytetrafluoroethylene (PTFE) , ethylene tetrafluoroethylene (ETFE) , liquid crystal polymer (LCP) , FR4, or glass.
The base station antenna may component further include an additional flexible foil part with conductive structures. The conductive structures are laminated to the rigid support part, attached to a second planar surface of the one or more support parts and oriented parallel to the first one but on the other side of the support parts. The foil parts may include metallic structures from the two sides of the support part that interact as the two lines of a radio frequency transmission line. The metallic structures may be a microstrip line with one metal side representing the signal line and the other one representing the ground reference, or a symmetric transmission line built from two equal shaped lines. An electrical function of the metallic structures may be a pure transmission line with an impedance. The impedance defined by the line widths, the distance of the metal layers, and the dielectric constant of the material between the metal layers of the support part. The electrical function may include other radio frequency feature that can be derived from transmission line structures, such as a capacitive element, an inductive element, a filter, a matching network, a balun.
A method to manufacture at least one foldable base station antenna component, in a roll-to-roll (R2R) , process. The method to manufacture a foil lamination roll by adhesively attaching a laminate film to a metal foil. At least two segments may be structured by a removing of at least one area of the metal foil from the laminate film. At least one edge is defined that divides the at least one foldable component into the at least two segments responsive to the removing. The foil lamination roll is laminated by adhesively attaching the foil lamination roll to a planar surface of a support part responsive to the defining of the at least one edge. At least one foldable component is cut out from the foil lamination roll. The at least one foldable component may be folded along the at least one edge at least one angle between the planar surfaces of the at least two segments. The position of the at least one edge of the support part, the size and shape of the at least two segments, and the at least one angle define a specific three dimensional shape of the at least one foldable component.
Folding of the at least one foldable base station antenna component may realize a three dimensional antenna component with a specific electromagnetic function. A planner foil may be attached to the support part and the planner foil etched to provide at least one monolithic conductive structure. A port connection may be electrically connected to a matching element connected to the port connection. At least one balun may be electrically connected to the matching element. At least one feedline may be electrically connected to the at least one balun. At least one radiative element shape may be electrically connected to the at least one feedline.
The foregoing and other objects are achieved by the features of the independent claims. Further implementation forms are apparent from the dependent claims, the description and the figures.
Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the disclosure pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the disclosure, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.
BRIEF DESCRIPTION OF THE DRAWINGS
Some embodiments of the disclosure are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the disclosure. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the disclosure may be practiced.
In the drawings:
FIG. 1 shows a side view of a system included in a multi roll-to-roll (R2R) system, in accordance with some embodiments;
FIG. 2A shows processing steps included in a multi roll-to-roll (R2R) system, in accordance with some embodiments;
FIG. 2B shows processing steps included in a multi roll-to-roll (R2R) system, in accordance with some embodiments;
FIG. 3A, shows a system included in a multi roll-to-roll (R2R) system in accordance with some embodiments;
FIG. 3B shows a further detailed plan view of a lamination, in accordance with some embodiments;
FIG. 3C shows a partial plan view and a cross section of a part of an individual component, in accordance with some embodiments;
FIG. 3D shows a side view of component folded, in accordance with some embodiments;
FIG. 3E shows a cross section side view of a lamination applied on top of a support part, in accordance with some embodiments.
FIG. 3F shows a cross section side view of an advancement of a lamination and a support part through a pair of rollers to laminate the lamination to the support part, in accordance with some embodiments.
FIG. 4 shows a flow chart of a method, in accordance with some embodiments;
FIG. 5A shows a foil part of multiple foil parts included in a roll of lamination, in accordance with some embodiments;
FIG. 5B shows a support part of multiple support parts included in a contiguous belt of support parts, in accordance with some embodiments;
FIG. 5C shows an example of a lamination laminated on a support part, in accordance with some embodiments;
FIG. 6 shows an example of a 2D component, in accordance with some embodiments, in accordance with some embodiments;
FIG. 7A shows an example of 2D component folded to give a three dimensional (3D) radio frequency (RF) component, in accordance with some embodiments;
FIG. 7B shows an example of 2D component folded to give a three dimensional (3D) radio frequency (RF) component, in accordance with some embodiments;
FIG. 7C and 7D, show respective positioning and fixation parts, in accordance with some embodiments; and
FIG. 8 shows a drawing of 3D RF component, in accordance with some embodiments.
DETAILED DESCRIPTION
Before explaining at least one embodiment of the disclosure in detail, it is to be understood that the disclosure is not necessarily limited in its application to the details of construction and the arrangement of the components and/or methods set forth in the following description and/or illustrated in the drawings and/or the Examples. The disclosure is capable of other embodiments or of being practiced or carried out in various ways.
Aspects of the present disclosure are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) , and computer program products according to embodiments of the disclosure. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present disclosure. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function (s) . In some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.
By way of introduction aspects of the disclosure below, describe a roll-to-roll (R2R) process to manufacture a roll of carrier layer lamination used to provide multiple two dimensional foldable components with metalized foil areas of various sizes and shape forms. Further, in an inline process, a substrate or support part is laminated to the carrier layer where the support part provides areas that enable accurate and well defined bends in a subsequent folding process. The subsequent folding process transforms the two dimensional foldable components cut out from laminated support layer into three-dimensional components.
Reference is now made to FIG. 1, which shows a side view of system 10 included in a multi roll-to-roll (R2R) system, in accordance with some embodiments. FIG. 1 shows Stage 1 of a roll-to-roll (R2R) process. Stage 1 is representative of the lamination of a metallized foil. Roller R2 is a roll of carrier layer or foil F2 that may be a polyimide (PI) , polyethylene terephthalate (PET) , polyethylene naphthalate (PEN) , or polyphenylene sulfide (PPS) material. Roller R1 includes a roll of metal foil F1 such as copper or aluminum to provide later the conducting RF features for a foldable RF component. Roller R1 is laterally displaced from roller R2 so that foil F2 is exposed to adhesive 12. Adhesive 12 may be held and heated in a container 14 to emit an adhesive from container 14 to coat and adhere to the underside of foil F2 with adhesive 12.
In Stage 1 of the roll-to-roll (R2R) process, metal foil F1 and foil F2 are coated with adhesive 12 and are pulled through rollers R3 and R4. The pressure between rollers R3 and R4  applied to metal foil F1 and foil F2, causes metal foil F1, via adhesive 12, to adhere to foil F2 to give foil lamination 21. Temperature in addition to the pressure may be applied to metal foil F1, foil F2, and adhesive 12 to cause metal foil F1 to adhere to foil F2. A bonding agent may be used instead for adhesive 12 that chemically activates the adjacent surfaces of foils F1 and F2 to allow direct joining again by the pressure and temperature applied to metal foil F1, foil F2, and bonding agent to cause metal foil F1 to adhere to foil F2. Foil lamination 21 is shown in detail by cross sectional detail 21a. Cross sectional detail 21a shows adhesive 12 disposed between metal foil F1 and F2, where metal foil F1 and foil F2 pulled through rollers R3 and R4, so that metal foil F1 adheres to foil F2.
Reference is now made to FIG. 2A, which shows processing steps included in a multi roll-to-roll (R2R) system 20a, in accordance with some embodiments. FIG 2A shows Stage 2a of the roll-to-roll (R2R) process. Stage 2a is representative of the structuring of metal foil F1. In the roll-to-roll (R2R) process a foil lamination 21 onto which a mask 23 may be applied to the surface of metal foil F1 is processed. Mask 23 may be applied by screen-printing or by means of a photolithographic process. An etchant applied which etches away the parts of metal foil F1 not covered by mask 23 to leave multiple conductive structures or traces F1’ on the planar top surface of foil F2. The etchant applied may be held in a bath through which masked foil lamination 21 passes in the R2R process. And finally, the mask is removed, for example in a chemical bath.
Reference is now made to FIG. 2B, which shows processing steps included in a multi roll-to-roll (R2R) system 20b, in accordance with some embodiments. FIG 2B shows Stage 2b of the roll-to-roll (R2R) process. Stage 2b is representative of another way to structure metal foil F1. The R2R process receives foil lamination 21a from a modified use of rollers R1 and R2 to enable the die cutting process shown in Stage 2b. The modified use of rollers R1 and R2 includes the application of an adhesive (adhesive 12a for example) contained in container 14. Adhesive 12a may be held and heated in a container 14 to emit an adhesive from container 14 to coat and adhere to the underside of foil F2a. Foil F2a is a foil of transfer paper that may have greater cross sectional thickness than foil F2 that may not have sufficient cross sectional thickness to enable a die cutting of metal foil F1.
Foil F2a coated with an adhesive 12a and metal foil F1 passed through rollers R3 and R4 as described above, bonds foil F2a to metal foil F1 to give foil lamination 21a. Adhesive 12a forms a weaker bond between foil F2a and metal foil F1, whereas later on adhesive 12 forms a  stronger bond between foil F2 and metal foil F1’. The weaker bond between foil F2a and metal foil F1’ enables easier removal of foil F2a after a die cut 23a of metal foil F1. The die cut 23a of metal foil F1 is shown with knives (shown by black sharp angled triangle) which penetrate through metal foil F1 and part way into foil F2a to remove portions of foil F1 from foil F2a. Removed portions of foil F1 from foil F2a, give multiple conductive structures or traces F1’ on the planar top surface of foil F2a to give die cut 24a. Further, in Stage 2b of the R2R process, foil F2 is attached to the top of metal segments 24a by adhesive 12 applied to foil F2 and passing through another roller arrangement similar to rollers R3 and R4, described above, to bond foil F2 to the top of metal segments 24a. Further, in the R2R process, foil F2a is peeled off from the underside of metal segments 24a to give a roll of lamination 25. Both the die cutting process and mask and etch process in the roll-to-roll process, produces lamination 25 with multiple foldable components where each foldable component includes multiple conductive segments.
Reference is now made to FIG. 3A, which shows a system 30 included in a multi roll-to-roll (R2R) system, in accordance with some embodiments. Further included in the roll-to-roll (R2R) process are Stage 3, Stage 4 and Stage 5. In the roll-to-roll (R2R) process or in a separate process, system 30 receives a roll of lamination 25 at Stage 3. The roll of lamination 25 is applied and aligned on top of support part D1 that is held on platform 38 of system 30. Platform 38 may be a transport belt or another feeding system. Support part D1 unlike the roll of lamination 25 is more rigid and is supplied in multiple sheets at the appropriate point and used in the roll-to-roll (R2R) process. At Stage 4, lamination 25 is applied on top of support part D1 through rollers R5 and R6 to adhere the roll of the roll of the roll of lamination 25 to support part D1. Foil F4 may or may not be applied to the underside of support part D1 at Stage 4 to adhere foil F4 to support part D1, shown in detail in cross-section 32. Later descriptions of a two dimensional (2D) foldable antenna components derived from system 30 does not include F4 for ease of description. After Stage 4, cross-section 32 shows foil F4 attached to the underside of support part D1 by an adhesive. The topside of support part D1 is attached to the underside of lamination 25 by adhesive 12. The height of support part D1 is typically around 1mm–2mm. Adhesive 12 between foil F2 of the roll of lamination 25 and support part D1 may be acrylate or polysiloxane.
The choice of an adhesive often depends on the combination of materials to be bonded, the processing temperatures they can withstand, the subsequent application scenarios, the intended adhesive thickness, and so on. In most cases depending on the type of foldable component produced the adhesive between various rolls of foils and rigid support parts are  usually not the same. The application of adhesives 12 to various rolls of foils and rigid support may be similarly applied in the various ways described above with respect to a bonding agent instead for an adhesive for example. Where the bonding agent chemically activates the adjacent surfaces of two foils or between a surface of a foil and a surface of rigid support part. The bonding agent to allow direct joining by the pressure and temperature applied to the two foils and/or to the foil and the surface of rigid support part.
Roller pairs R7 and R8 can coexist with rollers R9 and R10. Alternatively, rollers R7 and R8 are not present and only rollers R9 and R10 are present. R7-R8 and R9-R10 are used interchangeably.
The attachment of the roll of lamination 25 to support part D1 via rollers R5 and R6 at Stage 4 is then further passed through roller pairs R7 and R8, and then further through the roller pairs R9 and R10 at Stage 5. Passing through roller pairs R7 and R8, allows predefined cut-outs of slots and holes through the roll of lamination 25, support part D1 and foil F4. Holes in lamination 25 may be made, so that not flat features from the support part D1, such as snap fits, alignment features, pin and hole pairs can penetrate, or features from other parts can intrude.
Further through the roller pairs R9 and R10 allows inline cutting out of the multiple individual two dimensional (2D) foldable components parts. A three dimensional (3D) view of the surface of roller R9 is shown as die 34. A die on the surface of roller 10 (not shown) engages with the die 34 to enable the cutting out the individual 2D foldable components parts.
Reference is now made to FIG. 3B, which shows a further detailed plan view of a lamination 25, in accordance with some embodiments. The further detailed plan view of lamination 25 is prior to insertion into rollers R5 and R6. Lamination 25 includes multiple two-dimensional (2D) components 32 formed at Stage 2 that are placed above support part D1 that is held in place by platform 38 of system 30. Components 32 are optimally placed and distributed on lamination 25 at Stage 2 so that material waste is reduced when foldable 2D components 32 are made at Stage 5. Components 32 optimally placed and distributed on lamination 25, effectively makes support part D1 serve as a batch plate from which components 32 are cut out from in Stage 5. Support part D1 may be formed by an injection molding process to include guide pins 37b (shown by solid circle) on the planar surface of support part D1. Guide pins 37b match with the location of guide holes 37a (shown by dotted circle) of the roll of lamination 25. Guide holes 37a and/or slots may be pre supplied on foil F2 or guide holes 37a and/or slots may  be made to foil F2 at Stage 1. Additional guide holes and/or slots may also be made in each component 32 at Stage 4 or Stage 5.
Reference is now made to FIG. 3C, which shows a partial plan view and a cross section of a part of an individual component 32, in accordance with some embodiments. Prior to passing the part through roller pairs R7 and R8, multiple conductive structures or traces F1’ on the planar top surface of foil F2’ are formed at  Stages  2a or 2b described above. Three parts (i) , (ii) and (iii) are shown for traces F1’. Common to part (i) and part (iii) is the same width compared to part (ii) which has a narrower width and shorter length than parts (i) and (iii) . The part is shown in a state after passing through roller pairs R7 and R8 at stage 5, to manufacture predefined cut-outs of slots 300, and a guide hole 31. Cut out of slots 300 in support part D1 may be made prior to Stage 4, by an injection molding process to form support part D1, or may be achieved through die cutting of support part D1. Further cuts are made through support part D1 and foil F2 to show modified support parts D1’ and modified foils F2’ respectively. The cross section of the part shows conductive structures F1’ attached to the top sides of foils F2’ with an adhesive 12. Similarly the underside of foils F2’ are attached to the topsides of support parts D1’. Connection bars 39 including support parts D1’ and foil parts F2’ still connect to support parts D1’ and foil parts F1’.
Cross sectional areas XR1 and XR2 in support part D1 may be made prior to Stage 4 so that cross sectional areas XR1 and XR2 are less rigid than the other areas of support part D1. The less rigid areas of support part D1 may be achieved by the formation of voids, grooves, reduced material thickness or perforation of support part D1. Instead of the less rigid areas, a further process may be applied to cross sectional areas XR1 and XR2 which makes XR1 and XR2 deformable after Stage 5 when each two-dimensional (2D) component 32 is folded at fold lines FLD1 and FLD2 to form a three-dimensional (3D) component 32. Such a softening process might be done by local heating of areas XR1 and XR1.
An inline cutting out of the multiple components 32 of the batch plate may be made at Stage 5. The inline cutting out may include cutting through connection bars 39 that include foil parts F1’, foil parts F2’ and support parts D1’ in each of components 32. Guide holes 31 in each component may be utilized to ensure correct alignment of components 32 to enable the inline cutting out of the multiple components 32 of the batch plate.
Reference is now made to FIG. 3D, which shows a side view of component 32 folded, in accordance with some embodiments. The side view shows component 32 cut out from the batch plate and folded at fold lines FLD1 and FLD2 at respective angles θ 1 and θ 2 to form distinct modified parts (i) ’, (ii’) and (iii’) due to a bending of component 32. Fold lines FLD1 and FLD2 and respective cross sectional areas XR1 and XR2, define respective edges that divide between two parts or segments, specifically between parts (ii’) and part (i’) and between parts (ii’) and part (iii’) . Each of modified parts (i) ’, (ii’) and (iii’) in cross section include the topside of support part D1” attached to the underside of foil F2” by an adhesive (not shown) . The topside foil F2” attached to the underside of foil F1” by an adhesive (not shown) . If, by way of non-limiting example, angles θ 1 and θ 2 are equal to 45° degrees, then part (i) ’ is at 90° degrees to part (iii’) . The folding along fold lines FLD1 and FLD2 and respective cross sectional areas XR1 and XR2 are shown where foil F1” is on the inside of the bends and support part D1” is on the outside of the bends. Alternatively, folding along fold lines FLD1 and FLD2 and respective cross sectional areas XR1 and XR2 (not shown) is so that foil F1” is on the outside of the bends and support part D1” is on the inside of the bends. Folding or bending along fold lines FLD1 and FLD2 may be by a thermal bending process, such as a thermal bending by IR irradiation, hot wire heating prior to bending or laser irradiation prior to bending.
Reference is now made to FIG. 3E, which shows a cross section side view of lamination 25 applied on top of support part D1, in accordance with some embodiments. The roll of lamination 25 is applied on top of support part D1 that is supported on platform 38 of system 30 at stage 3. Lamination 25 applied on top of support part D1 and put through rollers R5 and R6, laminates lamination 25 to support part D1. Lamination 25, laminated to support part D1 creates a batch plate of multiple components 32 as shown in FIG. 3B. Additional guide holes, guide pins and/or slots may also be made in support part D1 as part of an injection molding process of support part D1. For example, support part D1 may include guide pins on the planar surface of support part D1. The guide pins match with the location of guide holes 25a of the roll of lamination 25. Guide holes and/or slots may be pre supplied on lamination 25 or guide holes and/or slots may be made to foil F2 at Stage 1.
Included in the injection molding process of support parts D1 may be snap hooks 35, also referred to as snap fits. Snap hooks 35 are a type of integrated plastic fastener common to injection-molded parts. Snap hooks 35 are matching with a specific guide hole 25a in lamination 25. Snap hooks 35 provide a way of mating plastic components together without the need for additional hardware fasteners such as screws and bolts. Snap hooks 35 may be considered the  male part and is generally a cantilever beam with a hook on the end. Guide holes 25a, the female part is the receptacle, or groove, into which the cantilever and hook will fit. The cantilever undergoes some displacement as it traverses the receptacle, and once it is mated, the cantilever relaxes to provide a tight fastening. At stage 4 guide hole 25a in lamination 25 is in line with indentation 25b of roller R5. At stage 4, rotation of roller R5 in anticlockwise direction indicated by arrow A2 and rotation of roller R6 in clockwise direction indicated by arrow A3 causes the left to right progression of lamination to support part D1 by lamination 25 shown by arrows A1. Where gap 33 shows between two consecutive support parts D1. Position marks 35a and the interval between position marks 35a may equal a length or a partial length of the circumference of roller R5.
Reference is now made to FIG. 3F, which shows a cross section side view of an advancement of lamination 25 and support part D1 through rollers R5 and R6 to laminate lamination 25 to support part D1, in accordance with some embodiments. The advancement is a continuation of stage 4 shown in FIG. 3E. At stage 4, rotation of roller R5 in anticlockwise direction indicated by arrow A2 and rotation of roller R6 in clockwise direction indicated by arrow A3 causes the left to right progression of lamination to support part D1 by lamination 25 shown by arrows A1. The protruding snap hook 35 is matching with a specific guide hole 25a in lamination 25 is shown diving into indentation 25b of roller R5 to mate snap hook 35 with specific guide hole 25a. Therefore, protrusions of support part D1 from the planar surface of support part D1, can be realized without any collision with roller R5 or roller R6. In the example shown in FIG. 3E and FIG. 3F, the interval between position marks 35a equals the circumference of roller R5.
Reference is now made to FIG. 4, which shows a flow chart of a method 400, in accordance with some embodiments. Method 400 is applied to  systems  10, 20a, 20b and 30 as part of a continuous roll-to-roll (R2R) process in a same location at a same time.  Systems  10, 20a, 20b and 30 may provide respective foil laminations 21, 25 and foldable components 32 in separate roll-to-roll processes such as Stages 1-4 and/or inline process such as Stage 5 at different times and locations.
At step 401, with reference to Stage 1, foil lamination 21 is manufactured by either or both of metal foil F1 and polyimide foil F2 being coated with an adhesive. Metal foil F1 and polyimide foil F2 are pulled off their respective rolls R1 and R2 through rollers R3 and R4 that causes metal foil F1 to adhere to polyimide foil F2 to give foil lamination 21. A bonding agent  instead for an adhesive that chemically activates the adjacent surfaces of foils F1 and F2 to allow direct joining again by the pressure and temperature applied to metal foil F1 and foil F2 to cause metal foil F1 to adhere to foil F2.
At step 403, with reference to Stage 2a, parts of foil are removed from foil F2 as part of the continuous roll-to-roll (R2R) process or in a separate R2R process at a different time and location. At metal foil F1 may be etched through the open portions of the mask by an etchant to leave multiple conductive structures or traces of various shape forms of metal foil F1 protected by the mask from the etchant. The traces of metal foil F1’ left remain attached to polyimide foil F2 as shown in FIG. 3C. A further lamination or lacquer may be applied on top of foil F1’ to prevention corrosion of the conductive structures. Where the conductive structures include metal connection pads, the metal connection pads may be tinned to allow soldering.
Steps 403 may be achieved using a die cutting process with respect to Stage 2b, that removes parts of metal foil F1 to form the traces of various shape forms of metal foil F1 and then the application of polyimide foil F2 is applied to the traces. Where polyimide foil F2 serves as a carrier layer, if the height of polyimide foil F2 is large enough, the die cutting process may cut only through metal foil F1 and includes pulling off the unwanted parts of metal foil F1 from polyimide foil F2. If the thickness of carrier layer is not large enough, initially arelease paper lamination of sufficient thickness such as foil F2a may be attached to metal foil F1 so that the die cutting process may cut only through metal foil F1 and includes pulling off the unwanted parts of metal foil F1 from the release paper lamination. Once the die cutting process has finished, the release paper is peeled off and polyimide foil F2 may be laminated to the wanted parts of metal foil F1 as foil F1’. Foil F1’ are the traces of metal foil formed as a result of the die cutting process.
It is also conceivable that instead of  steps  401 and 403, the conductive structures are printed onto the substrate F2 (ink jet printing or screen printing with conductive inks) .
At step 405, with reference again to FIG. 3C, the roll of lamination 25 is applied on top of support part D1 that is supported on platform 38 of system 30. Lamination 25 applied on top of support part D1 and put through rollers R5 and R6 to laminate lamination 25 to support part D1. Lamination 25 laminated to support part D1 creates a batch plate of multiple components 32. Lamination 25 laminated to support part D1 is shown in detail in cross section 32 and in the descriptions of FIG. 3E and 3F. Cross section 32 shows foil F4 attached to the underside of  support part D1 by an adhesive. The topside of support part D1 is attached to the underside of lamination 25 by an adhesive. Foil F4 may or may not be applied to the underside of support part D1. Foil F4 may be applied for example when components 32 are radio frequency (RF) components where foil F4 serves as a ground plane.
Heat may be applied in the attachment of lamination 25 and F4 in order to anneal lamination 25 and relieve stresses generated in lamination 25, F4 and in lamination 25. Relieving stresses in lamination 25, F4 and in lamination 25 may allow the formation of 2D components 32 easier and later on when 2D components 32 are folded to produce three dimensional (3D) components. With respect to FIG. 3C without foil F4, cross sectional areas XR1 and XR2 in support part D1 may be made prior to Stage 4 so that cross sectional areas XR1 and XR2 are less rigid than the other areas of support part D1. The less rigid areas of support part D1 may be achieved by the formation of voids, grooves, reduced material thickness or perforations of support part D1. Fold lines FLD1 and FLD2 and respective cross sectional areas XR1 and XR2, define respective edges that divide when folded between two parts or segments; between parts (ii) and part (i) and between parts (ii) and part (iii) for example. In descriptions that follow, foil F4 is not included.
At step 407, with reference again to FIG. 3C, slots 300 and guide holes 31 may be cut entirely through cross section 32 by rollers R7 and R8 in a die cutting process or by flat cutting tools such as punches and dies to manufacture predefined cut-outs of slots 300 and guide holes 31 in each 2D component 32. Further cuts are made through support part D1 and foil F2 to show modified support parts D1’ and modified foils F2’ respectively. The cross section of the part shows conductive structures F1’ attached to the top sides of foils F2’ with an adhesive. Similarly the underside of foils F2’ are attached to the topsides of support parts D1’. Connection bars 39 hold each component 32 within the common batch structure during processing. This applies to the individual parts within support part D1 as well as to the individual parts within foil F2. In a final step they are cut and/or disconnected to release each component 32. Another similar purpose is to hold relatively loose filigree areas of each component 32 tightly within the common structure during processing. In a final step they are cut and/or disconnected to release this areas for a further folding and fixing to other elements The die cutting process may include cuts deep enough just to pull off the unwanted parts of metal lamination 25 for each component 32. The cuts and peeling of lamination 25 after the die cutting process for example may then allow for tinning of solder pads included in the conductive structures or traces formed in the revealed parts of metal foil F1 or lamination 25 for each component 32. The cuts and peeling of lamination 25  for example, may also allow for the attachment of surface mount devices (SMDs) . Further to include the application of a solder paste to the SMDs. Cut out of slots 300 in at least support part D1 may be made prior to Stage 4, by an injection molding process to form support part D1, or may be achieved through die cutting of support part D1. The die cutting process may include the application of heat to anneal the results of the lamination of lamination 25 on top of support part D1 in step 405.
At step 409, with reference again to FIG. 3C, a further die cutting process cuts out each individual 2D component 32 from the batch plate by passing through rollers R9 and R10. In a roll-to-roll process a belt of contiguous batch plates travel between roller pairs R7/R8 and R9/R10. Alternatively, an inline cutting out of the multiple components 32 of the batch plate may be made at step 409 using flat cutting tools that punch through a batch plate. Flat cutting tools that punch The inline cutting out may include cutting through connection bars 39 that include foil parts F1’, foil parts F2’ and support parts D1’ in each of components 32. Guide holes 31 in each 2D component 32 may be utilized to ensure correct alignment of components 32 to enable the inline cutting out of the multiple components 32 of the batch plate. The belt stops during the immediate punching of the inline cutting out, or the punching tools are sectionally moving along with the belt. The application of heat prior to the further die cutting process may also enable a reflow soldering process of the SMDs attached along with the solder paste applied at step 407.
At step 411, with reference again to FIG. 3D, the side view shows a partial part of component 32 cut out from the batch plate at step 409 and folded at fold lines FLD1 and FLD2 at respective angles θ 1 and θ 2 to form distinct modified parts (i) ’, (ii’) and (iii’) due to a bending of component 32. Fold lines FLD1 and FLD2 and respective cross sectional areas XR1 and XR2, define respective edges that divide between two parts or segments, specifically between parts (ii’) and part (i’) and between parts (ii’) and part (iii’) . Each of modified parts (i) ’, (ii’) and (iii’) in cross section include the topside of support part D1” attached to the underside of foil F2” by an adhesive (not shown) . The topside foil F2” attached to the underside of foil F1” by an adhesive (not shown) .
If, by way of non-limiting example angles θ 1 and θ 2 are equal to 45° degrees, then part (i) ’ is at 90° degrees to part (iii’) . The folding along fold lines FLD1 and FLD2 and respective cross sectional areas XR1 and XR2 is shown where foil F1” is on the inside of the bends and support part D1” is on the outside of the bends. Alternatively, folding along fold lines FLD1 and FLD2  and respective cross sectional areas XR1 and XR2 (not shown) is so that foil F1” is on the outside of the bends and support part D1” is on the inside of the bends. Fold lines FLD1 and FLD2 described above with respect to the planar surface of foil F1’ are generally perpendicular to the each part of foil F1’ but other angles may be defined across foil F1’.
Reference is now made to FIG. 5A, which shows a foil part 50 of multiple foil parts 50 included in a roll of lamination 25, in accordance with some embodiments. Foil part 50 of multiple foil parts 50, is an example of a roll lamination 25 manufactured as described in  steps  401 and 403 above. Foil part 50 is included in the parts that go to make 2D foldable antenna component in the descriptions that follow. At Stage 1 metal foil F1 is attached to foil F2 (step 401) and guide holes 37a and/or slots may be pre supplied on foil F2 or guide holes 37a and/or slots may be made to foil F2 to give foil F2’ at Stage 1. At step 403, areas of metal foil F1 are removed from foil F2/F2’ to give multiple conductive structures or traces F1’. Carrier layer 510 is analogous to foil F2’ and contact pad 500, metal layer trace 508, metal layer traces 512, 514 are analogous to multiple conductive structures or traces F1’ described above with respect to  Stages  1, 2a or 2b.
Contact pad 500 is electrically connected to multiple metal layer traces 508. Multiple layer traces have two outputs that are electrically connected to respective metal layer traces 512 and 514. Contact pad 500, multiple layer traces 508 and metal traces 512/514 as radio frequency (RF) components are described herein as distributed elements or circuits. Guide holes 502, 516 and cut out  slots  504, 506, 518 may be cut out from carrier layer 510 at Stage 1 and/or Stage 5 to leave multiple connection bars 520. Connection bars 520 help to give the metal foil elements such as contact pad 500, metal layer trace 508, metal layer traces 512, 514 enough support within a roll-to-roll (R2R) process described above with respect to Stages 1-3.
Reference is now made to FIG. 5B which shows a support part 52 of multiple support parts 52 included in a support part D1, in accordance with some embodiments. Like cut support part D1’shown in FIG. 3C, support part 534 may be formed by an injection molding process to include multiple guide holes 516, or guide pins (not shown) and multiple slots 530 derived from the injection molding process or in separate process by use of flat cutting tools such as punches. Guide pins may be included in platform 38 of system 30 that go through guide holes of support parts 52 and foil parts 50. Multiple guide holes 516, 530 or guide pins in each support part 52 of support parts 52, ensure alignment with guide holes 516 of foil part 50 of multiple foil parts 50. The alignment requirement for when foil parts 50 are placed on top of support part 534 at Stage  3 prior to laminating foil parts 50 to support parts 52 at Stage 4/step 405. The alignment enables alignment of slots 530 of foil part 50 to align with slot 518. An example of the alignment is with reference to detail 52a (marked by dashed ellipse) and connection bars 542 to align with connection bars 520 of foil part 50. Cut outs 538 may define the later folding axes between metal layer traces 508 and metal layer traces 512, 514, and folding axes between metal layer traces 512, 514 and the thinner section of metal layer traces 512, 514.
Cross sectional areas in support part 52, perpendicular to the planar surface of support part 52 at the locations of cut outs 538 may be made so that the cross sectional areas are less rigid than the other areas of support part 52. The less rigid areas of support part 52 may be achieved by formation of voids, grooves, reduced material thickness or perforations of support part 52. Fold lines and respective cross sectional areas at the locations of cut outs 538, define respective edges that divide when folded between two, between metal layer traces 508 and metal layer traces 512, 514, or folding axes between metal layer traces 512, 514 and the thinner section of metal layer traces 512.
Reference is now made to FIG. 5C, which is an example of a lamination 510 laminated on support part 534, in accordance with some embodiments. Lamination 510 laminated on support part 534 (step 405) as an example of a 2D component 32 included in a belt of contiguous batch plates of multiple 2D components 32. The belt is included in a roll-to-roll process of contiguous batch plates that travel from roller pair R5/R6 pair to roller pairs R7/R8. The alignment requirement for when foil parts 510 are placed on top of support part 534 at Stage 3 prior to laminating foil parts 50 to support parts 52 at Stage 4/step 405 is enabled by guide pins (not shown) to align of guide holes 516, 502 and 530 for each 2D component 32 regularly distributed over the belt. Holes in lamination 510 may be made, so that not flat features from the support part 534, such as snap fits/hooks, alignment features, pin and hole pairs can penetrate, or features from other parts can intrude.
At roller pair R7/R9 further cut outs may be made through foil parts 50 and/or support parts 52 (step 407) not performed at Stage 1.2D component 32 at Stage 5 includes metal layer trace 508, metal layer traces 512, 514 that are analogous to multiple conductive structures or traces F1’ described above with respect to  Stages  1, 2a or 2b, multiple connection bars 520 and 542, and  slots  506, 518 and 530.
Reference is now made to FIG. 6, which is an example of a 2D component 60, in accordance with some embodiments. The 2D component 60 is cut out from other same or different 2D components that are regularly distributed over multiple batch plates included on the belt. The 2D component 60 is cut out from other same or different 2D components (step 409) as the belt passes through roller pair R9/R10.2D component 60 is cut out by cutting through connection bars 520 and 542. The alignment of 2D component 60 in the cutting out being enabled by guide holes 516 and corresponding guide pins (not shown) included within the inline processes of stages 4-5 described in the above descriptions. Connection bars 520 and 542 may be realized within the foil 25 and the support part D1 for stabilizing foil or support elements or for folding otherwise loose foil or support elements.
The removal of metal foil from carrier layer 510 at step 403, gives conductive structures; contact pad 500 electrically connected to matching element 61. Matching element 61 connects to balun 62 (shown by dashed line box) that provides two outputs. The two outputs connect electrically to two respective feedlines 63 that include alignment bars 542 formed from -support part 534. Feedlines 63 then connect electrically to metal foil structures of respective radiative elements R1a and R1b.
Cross sectional areas in support part 534, perpendicular to the planar surface of support part 534 at the locations of cut outs 538 (shown by dashed lines) may be made so that the cross sectional areas are less rigid than the other areas of support part 534. The less rigid areas of support part 534 may be achieved by formation of voids, grooves, reduced material thickness or perforations of support part 52. Fold lines and respective cross sectional areas at the locations of cut outs 538, define respective edges that divide when folded between two, between metal layer traces of balun 62 and metal layer traces of feedlines 63. Or folding axes between metal layer traces of feedlines 63 and the thinner section of metal layer traces of radiative elements R1a and R1b.
Reference is now made to FIG. 7A, which is an example of 2D component folded (step 411) to give a three dimensional (3D) radio frequency (RF) component 71a, in accordance with some embodiments. Relative to the planar surface of balun 62 (plane XZ) are multiple angles of fold lines FD1-FD4 that define respective edges that divide when folded between two, between metal layer traces of balun 62 and metal layer traces of feedlines 63. Further, folding axes between metal layer traces of feedlines 63 and the thinner section of metal layer traces of radiative element R1a. Feedlines 63 include niches 73 formed in support part 534, niches 73 are  without a metalized foil so that niches 73 do not electrically connect to feedlines 63. Similarly, multiple angles of fold lines FD5-FD8 that define respective edges that divide when folded between two, between metal layer traces of balun 62 and metal layer traces of feedlines 63. Further, folding axes between metal layer traces of feedlines 63 and the thinner section of metal layer traces of radiative element R1b. For example, with respect to fold lines FD1-FD4, at fold line 1 and fold line FD2 both are folded at 45° degrees clockwise to give a perpendicular section of feedlines 63. At fold line FD3, slot 538, radiative element R1a is folded perpendicular to the perpendicular section of feedlines 63. A slight fold at fold line FD4 downwards is made.
Similarly, with respect to fold lines FD5-FD8, fold line FD5 is folded 135° degrees anti clockwise and fold line FD6 is folded 45° degrees clockwise to give a perpendicular section of feedlines 63. At fold line FD7, slot 538, radiative element R1b is folded clockwise to be perpendicular to the perpendicular section of feedline 63. A slight fold at fold line FD8 upwards is further made. The folding along fold lines FD1-FD4 and respective cross sectional areas of cut outs 538 is shown where metal foil traces are on the inside of the bends and support part 534 is on the outside of the bends. Alternatively, folding along fold lines FD1-FD4 and respective cross sectional areas of cut outs 538 is so that metal foil traces are on the inside with respect to the bend of fold line FD5 and support part 534 is on the outside of the bend. However, the remaining metal foil traces are on the outside of the bends of fold lines FD6-FD8 and support part 534 is on the inside of the bends.
The removal of metal foil from carrier layer 510 at step 403, gives conductive structures; contact pad 500 electrically connected to matching element 61 (connection obscured by radiative element R1a) . Matching element 61 connects to balun 62 (shown by dashed line box) that provides two outputs. The two outputs connect electrically to two respective feedlines 63 and the two feedlines electrically connect to respective radiative elements R1a and R1b. Folding or bending along fold lines FD1 and FD8 may be by a thermal bending process, such as a thermal bending by IR irradiation, hot wire heating prior to bending or laser irradiation prior to bending.
Distributed elements devices included in 3D RF component 71a include matching element 61, contact pad 500, balun 62 including metal layer traces 508, feedlines 63 and radiative elements R1a and R1b. 3D RF component 71a in use by connection to a transceiver demonstrates certain characteristics. Characteristics for example where the phase of voltages or currents changes significantly over the physical extent of 3D RF component 71a. The changes are because of the physical dimensions and relative 3D orientations of distributed elements in 3D  RF component 71a are similar to, and in some cases even larger than, the wavelength of the operating frequency of 3D RF component 71a. Connections and/or transitions in widths between distributed elements behave as transmission lines so 3D RF component 71a, when implemented on a board or substrate (support part 534) in proximity to a localized ground plane, the board and the localized ground plane themselves becomes part of the 3D RF component 71a and how 3D RF component 71a operates. In the design of 3D RF component 71a, consideration needs to be given for example in the choice of support part 534 and carrier layer 510 to ensure that it has a homogeneous material properties to ensure constant permittivity (ε) value in support part 534. Where
ε=ε o×ε r
ε o= Permittivity of free space = 8.85 X 10 -12 farads/metre,
ε r= relative permittivity value of support part 534.
Support part 534 and/or carrier layer 510 may be a polymer with well-defined RF properties. The polymer may be Polytetrafluoroethylene (PTFE) , Ethylene Tetrafluoroethylene (ETFE) , polyphenylene sulfide (PPS) , FR4 and similar PCB substrates, or glass-reinforced epoxy laminate (FR-4) . Additionally, widths of and lengths of distributed elements in 3D RF component 71a for example determine characteristic impedance (Z o) and electrical lengths of radiative elements R1a and R1b to efficiently radiate a signal applied at contact pad 500 for example.
Reference is now made to FIG. 7B, which is an example of a 2D component 60 folded (step 411) to give a three dimensional (3D) radio frequency (RF) component 71b, in accordance with some embodiments. Feedlines 63 (hidden in Fig. 7B) include niches 73 formed in support part 534, niches 73 are without a metalized foil so that niches 73 do not electrically connect to feedlines 63. Distributed elements devices included in 3D RF component 71b include matching element 61, contact pad 500, balun 62 including metal layer traces 508, feedlines 63 (not shown) and radiative elements R2a and R2b. 3D RF component 71b is a similar version of 3D RF component 71a. The illustrated example antenna element is a radiator with two independent perpendicular radiating polarizations. 71a and 71b combine after assembly to this radiator, where 71a represents the electric structure for polarization and 71b represents the analogue structure for polarization b.
Connections and/or transitions in widths between distributed elements behave as transmission lines so 3D RF component 71b, when implemented on a board or substrate (support part 534) in proximity to a localized ground plane, the board and the localized ground plane themselves becomes part of the 3D RF component 71b and how 3D RF component 71b operates. Additionally, widths of and lengths of distributed elements in 3D RF component 71b for example determine characteristic impedance (Z o) and electrical lengths of radiative elements R2a and R2b to efficiently radiate a signal applied at contact pad 500 for example. The removal of metal foil from carrier layer 510 at step 403, gives conductive structures; contact pad 500 electrically connected to matching element 61. Matching element 61 connects to balun 62 (shown by dashed line box) that provides two outputs. The two outputs connect electrically to two respective feedlines 63 and the two feedlines electrically connect to respective radiative elements R2a and R2b.
Reference is now made to FIG. 7C and 7D, which show  respective positioning parts  73a and 73b, in accordance with some embodiments. Both  positioning parts  73a and 73b include multiple snap hooks 78. Utilization of  positioning parts  73a and 73b are described in the description that follow. The purpose of  positioning parts  73a and 73b is the precise alignment of the folding operations, as well as the precise positioning of the folded segments of 71a and 71b, and of the  components  71a and 71b to each other. Further,  positioning parts  73a and 73b allow the fixation and stabilization of the folded segments of 71a and 71b, and of the  components  71a and 71b.
Reference is now made to FIG. 8, which shows a drawing of 3D RF component 80, in accordance with some embodiments. 3D RF component 80 includes three dimensional (3D) radio frequency (RF) component 71b joined to three dimensional (3D) radio frequency (RF) component 71a by positioning  parts  73a and 73b. Each  3D RF component  71a and 71b include niches 73 formed in support part 534 provide counter part for the snap hooks 78 of the fixation and  positioning parts  73a and 73b. Radiative elements R1a and R1b of 3D RF component 71a form one polarization at 90° degrees to the polarization of radiative elements R2a and R2b of 3D RF component 71b. Two signals may be applied to respective contact pads 500 of respective  3D RF component  71a and 3D RF component 71b from a transceiver to efficiently radiate the two signal applied at respective contact pads 500 for example.  Positioning parts  73a and 73b,  RF components  71a and 71b, may further provide mutual mechanical junction interfaces such as pin and hole couples, snap fits, screw or rivet holes to enable a fixation of  foldable RF components  71a, 71b and 80 in the 3D geometry of a chassis of an antenna array for example.
In descriptions above a single support part and carrier layer are discussed. However, using several mutually isolated carrier layers between multiple support parts, can be used for example to realize line crossings. With respect to  RF components  71a, 71b, the removal of areas of unwanted metal foil from carrier layer 510 at step 403, the cuts and peeling of carrier layer 520 at step 407 for example, may also allow for the attachment of surface mount devices (SMDs) in the area of balun 62. Further to include the application of a solder paste to the SMDs. A typical inclusion to  RF components  71a, 71b may be a low noise amplifier circuit and connection pads to connect a power supply to the low noise amplifier.
Other systems, methods, features, and advantages of the present disclosure will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present disclosure, and be protected by the accompanying claims.
The descriptions of the various embodiments of the present disclosure have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
As used herein the term “about” refers to ± 10 %.
The term “operating frequency” in the context of a three dimensional (3D) radio frequency (RF) component, means the central frequency value between an upper and lower operating frequency range of frequency values of the 3D RF component. For example if the upper operating and lower frequency values of a 3D RF component are 6 gigahertz (GHz) and 4 GHz respectively, the operating frequency of the 3D RF component is 5GHz.
The terms "comprises" , "comprising" , "includes" , "including" , “having” and their conjugates mean "including but not limited to" . This term encompasses the terms "consisting of" and "consisting essentially of" .
The phrase "consisting essentially of" means that the composition or method may include additional ingredients and/or steps, but only if the additional ingredients and/or steps do not materially alter the basic and novel characteristics of the claimed composition or method.
As used herein, the singular form "a" , "an" and "the" include plural references unless the context clearly dictates otherwise. For example, the term "a compound" or "at least one compound" may include a plurality of compounds, including mixtures thereof.
The word “exemplary” is used herein to mean “serving as an example, instance or illustration” . Any embodiment described as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments and/or to exclude the incorporation of features from other embodiments.
The word “optionally” is used herein to mean “is provided in some embodiments and not provided in other embodiments” . Any particular embodiment of the disclosure may include a plurality of “optional” features unless such features conflict.
Throughout this application, various embodiments of this disclosure may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the disclosure. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.
Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.
It is appreciated that certain features of the disclosure, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the disclosure, which are, for brevity, described in  the context of a single embodiment, may also be provided separately or in any suitable sub-combination or as suitable in any other described embodiment of the disclosure. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.
It is the intent of the applicant (s) that all publications, patents and patent applications referred to in this specification are to be incorporated in their entirety by reference into the specification, as if each individual publication, patent or patent application was specifically and individually noted when referenced that it is to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting. In addition, any priority document (s) of this application is/are hereby incorporated herein by reference in its/their entirety.

Claims (18)

  1. A base station antenna component comprising:
    at least one flexible foil part comprising one or more conductive structures;
    at least one support part to which the foil part is laminated, comprising a planar surface;
    characterized in that
    the base station antenna component is produced in an initial 2D state where the at least one flexible foil part is attached to the planar surface of the at least one rigid support part, and
    the base station antenna component can be transformed by folding operations from its initial 2D state into an operating 3D state where the operating 3D state can fulfill an intended electromagnetic function in a base station antenna.
  2. The base station antenna component of claim 1, wherein the support part comprises predefined folding lines to define bendable areas, wherein the bendable areas are linear within the basically planar surface of the support part in the initial 2D state.
  3. The base station antenna component of any preceding claim, wherein the bendable areas are created by generating complete voids in the support part, or by generating grooves, or by generating areas of reduced material thickness, or by perforations.
  4. The base station antenna component of claim 2, wherein folding operations are performed along the predefined folding lines which are created thermally, or by an infrared irradiation through a linear slot mask, or by a laser following the predefined folding lines on the support part.
  5. The base station antenna component of any preceding claim, wherein the folding operations are realized by bending the base station antenna component along the fold lines with a distinct minimum bending radius selected to ensure preservation of the material integrity of base station antenna component after bending.
  6. The base station antenna component of any preceding claim, wherein the support part integrates elements on its planar surface for fixation, alignment, electrical and/or mechanical connection to another part of the same component or another component.
  7. The base station antenna component of any preceding claim, wherein the elements integrated on the planar surface are at least one of pin and hole couples, snap fits, screws or rivet holes.
  8. The base station antenna component of any preceding claim, wherein the at least one flexible foil part comprises holes or cut out tabs placed such that the holes or cut out tabs do not interfere with the elements integrated on the planar surface.
  9. The base station antenna component of any preceding claim, wherein the electromagnetic function of the base station antenna element is one or more of:
    a radiating element, such as a dipole, including a cross polarized radiating element,
    a filter,
    a transmission line,
    a matching structure, such as a balun or a matching network,
    a passive element with no direct galvanic interconnection to any signal line, such as a director or an isolating element.
  10. The base station antenna component of any preceding claim, wherein the conductive structures on the foil part comprise one or more layers of copper, aluminum, silver, gold, nickel.
  11. The base station antenna component of any of claims 1 to 9, comprising coatings such as solder pads, bond pads, and oxidation or environmental protection layers.
  12. The base station antenna component of any preceding claim, wherein the conductive structures comprise one or more layers of polyimide (PI) , polyethylene terephthalate (PET) , polyphenylene sulfide (PPS) , polytetrafluoroethylene (PTFE) , ethylene tetrafluoroethylene (ETFE) , liquid crystal polymer (LCP) , FR4, or glass.
  13. The base station antenna component of any preceding claim, wherein the base station antenna element further comprises an additional flexible foil part with conductive structures which are laminated to the rigid support part, attached to a second planar surface of the one or more support parts, oriented parallel to the first one but on the other side of the support parts.
  14. The base station antenna component of any preceding claim, wherein the foil parts comprises metallic structures from the two sides of the support part that interact as the two lines of a radio frequency transmission line.
  15. The base station antenna component of claim 14, wherein the metallic structures are one of a microstrip line with one metal side representing the signal line and the other one representing the ground reference, or a symmetric transmission line built from two equal shaped lines.
  16. The base station antenna component of any preceding claim, wherein an electrical function of the metallic structures is one of:
    a pure transmission line with an impedance basically defined by the line widths, the distance of the metal layers, and the dielectric constant of the material between the metal layers of the support part,
    or any other radio frequency feature which can be derived from transmission line structures, such as a capacitive element, an inductive element, a filter, a matching network, a balun.
  17. A method to manufacture at least one foldable base station antenna component, in a roll-to-roll (R2R) , process, the method comprising:
    manufacturing a foil lamination roll by adhesively attaching a laminate film to a metal foil;
    structuring at least two segments by removing at least one area of the metal foil from the laminate film;
    defining at least one edge which divides the at least one foldable component into the at least two segments responsive to the removing;
    laminating the foil lamination roll by adhesively attaching the foil lamination roll to a planar surface of a support part responsive to the defining;
    cutting out at least one foldable component from the foil lamination roll; and
    folding the at least one foldable component along the at least one edge at least one angle between the planar surfaces of the at least two segments, wherein the position of the at least one edge of the support part, the size and shape of the at least two segments, and the at least one angle define a specific three dimensional shape of the at least one foldable component.
  18. The method of claim 17, wherein responsive to the folding, realizing a three dimensional antenna component with a specific electromagnetic function, comprising the steps:
    attaching a planner foil to the support part, etching the planner foil to provide at least one monolithic conductive structure;
    electrically connecting a port connection to a matching element connected to the port connection;
    electrically connecting at least one balun to the matching element;
    electrically connecting at least one feedline to the at least one balun; and
    electrically connecting at least one radiative element shape connected to the at least one feedline.
PCT/CN2022/083148 2022-03-25 2022-03-25 Foldable foil antenna component WO2023178678A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/083148 WO2023178678A1 (en) 2022-03-25 2022-03-25 Foldable foil antenna component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/083148 WO2023178678A1 (en) 2022-03-25 2022-03-25 Foldable foil antenna component

Publications (1)

Publication Number Publication Date
WO2023178678A1 true WO2023178678A1 (en) 2023-09-28

Family

ID=88099596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083148 WO2023178678A1 (en) 2022-03-25 2022-03-25 Foldable foil antenna component

Country Status (1)

Country Link
WO (1) WO2023178678A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020024468A1 (en) * 2000-08-18 2002-02-28 Palmer William Robert Printed or etched, folding, directional antenna
JP2005124003A (en) * 2003-10-17 2005-05-12 Nissei Electric Co Ltd Antenna and installation method of flat antenna
CN101019137A (en) * 2004-05-14 2007-08-15 波零公司 Radio frequency antennae and identification tags and methods of manufacturing radio frequency antennae and radio frequency identification tags
US20170177025A1 (en) * 2014-03-13 2017-06-22 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US20200154558A1 (en) * 2018-11-14 2020-05-14 At&S (China) Co. Ltd. Component Carrier With Improved Bending Performance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020024468A1 (en) * 2000-08-18 2002-02-28 Palmer William Robert Printed or etched, folding, directional antenna
JP2005124003A (en) * 2003-10-17 2005-05-12 Nissei Electric Co Ltd Antenna and installation method of flat antenna
CN101019137A (en) * 2004-05-14 2007-08-15 波零公司 Radio frequency antennae and identification tags and methods of manufacturing radio frequency antennae and radio frequency identification tags
US20170177025A1 (en) * 2014-03-13 2017-06-22 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US20200154558A1 (en) * 2018-11-14 2020-05-14 At&S (China) Co. Ltd. Component Carrier With Improved Bending Performance

Similar Documents

Publication Publication Date Title
US9113560B2 (en) Signal line and circuit substrate
CN110611160B (en) Patch antenna unit and antenna
US9190720B2 (en) Flexible printed circuit structures
US6665193B1 (en) Electronic circuit construction, as for a wireless RF tag
EP1818861B1 (en) RFID tag manufacturing method and RFID tag
US20060288563A1 (en) Manufacturing method for a wireless communication device and manufacturing apparatus
US6281842B1 (en) Conductive circuit device and method
US8450614B2 (en) Signal transmission line and circuit board
US20120104103A1 (en) Integrated pcb uhf rfid matching network/antenna
US9608304B2 (en) High-frequency signal transmission line, electronic device and manufacturing method of high-frequency signal transmission line
US20190115645A1 (en) Low-profile stacked patch radiator with integrated heating circuit
US9179537B2 (en) Methods for forming metallized dielectric structures
WO2023178678A1 (en) Foldable foil antenna component
US10123414B2 (en) Multilayer circuit board using laser direct structuring additive
EP3238302B1 (en) Creating antennas connected to printed chips by post processing with a laser or other cutting device
US10360492B2 (en) Carrier tape, method for manufacturing same, and method for manufacturing RFID tag
US10283855B2 (en) Antenna element and method of manufacturing the same
kumar Sowpati et al. Performance of printable antennas with different conductor thickness
WO2020200465A1 (en) Method for manufacturing an antenna element
JP2005032815A (en) Flexible wiring board and its manufacturing method
Chen et al. Performance Enhancements of Fully Inkjet-Printing Technology for Antenna-in-Package and Substrate Integrated Waveguides
WO2005099326A2 (en) A method for manufacturing a flexible circuit board having small thickness and flexible board manufactured thereby
CN105025650B (en) flexible circuit film structure
EP1742294B1 (en) A method and a device for manufacturing a roll of items
JPH04349704A (en) Antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932739

Country of ref document: EP

Kind code of ref document: A1