WO2023178513A1 - 一种铅酸电池组 - Google Patents

一种铅酸电池组 Download PDF

Info

Publication number
WO2023178513A1
WO2023178513A1 PCT/CN2022/082261 CN2022082261W WO2023178513A1 WO 2023178513 A1 WO2023178513 A1 WO 2023178513A1 CN 2022082261 W CN2022082261 W CN 2022082261W WO 2023178513 A1 WO2023178513 A1 WO 2023178513A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply module
cells
battery
battery pack
Prior art date
Application number
PCT/CN2022/082261
Other languages
English (en)
French (fr)
Inventor
杨桂锋
Original Assignee
浙江铅锂智行科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江铅锂智行科技有限公司 filed Critical 浙江铅锂智行科技有限公司
Priority to PCT/CN2022/082261 priority Critical patent/WO2023178513A1/zh
Priority to CN202223236989.5U priority patent/CN218997012U/zh
Priority to CN202210859651.0A priority patent/CN115296362A/zh
Priority to CN202221907522.6U priority patent/CN218472218U/zh
Priority to CN202221883746.8U priority patent/CN218975534U/zh
Publication of WO2023178513A1 publication Critical patent/WO2023178513A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of lead-acid batteries.
  • the lead-acid battery pack currently used on electric bicycles is usually a group of identical single cells connected in series.
  • a 48V20AH battery pack is a series of four 12V20AH batteries, with each battery having 6 cells.
  • 60V20AH connects five 12V20AH batteries in series, each battery has 6 single cells.
  • the battery cells are continuously improved.
  • Acid density The current acid density on lead-acid batteries is usually 1.38 or even higher. However, a higher acid density will have a negative impact on the life of the battery. A low acid ratio can significantly increase the battery life, but a lower acid ratio It will also cause the battery voltage and capacity to drop.
  • the invention discloses a lead-acid battery pack, which includes a first power supply module and a second power supply module.
  • the first power supply module and the second power supply module are connected in series.
  • the first power supply module includes a single battery, and the first power supply module
  • the number M of battery cells of the single battery of the module, the second power supply module includes deployment cells, is characterized in that the total number of deployment cells Q of the second power supply module is greater than or equal to 1 and less than the first power supply module
  • the number of battery cells of the module's single battery is M.
  • the density of sulfuric acid in the cell of the battery pack is ⁇ , and the value of Q is (1.38- ⁇ )M(X+K)/( ⁇ +0.845) rounded up.
  • the second power supply module includes single cells, and the number of single cells of the second power supply module is greater than or equal to 1 and less than M.
  • the battery cell of the single battery of the first power supply module and the battery cell of the single battery of the second power supply module have the same parameters.
  • the number M of battery cells of the single battery of the first power supply module is 6, the number X of single cells of the first power supply module is 4, and the deployment unit of the second power supply module
  • the total number of cells Q is equal to 1, and the total number of battery cells of the second power supply module is P equal to 1.
  • the number M of battery cells of the single battery of the first power supply module is 6, the number X of single cells of the first power supply module is 3, and the deployment unit of the second power supply module
  • the total number of cells Q is equal to 1, and the total number of battery cells of the second power supply module is P, which is 7.
  • the number M of battery cells of the single battery of the first power supply module is 6, the number X of single cells of the first power supply module is 5, and the deployment unit of the second power supply module
  • the total number of cells Q is equal to 2
  • the total number of battery cells of the second power supply module is P equal to 2.
  • the number M of battery cells of the single battery of the first power supply module is 6, the number X of single cells of the first power supply module is 4, and the deployment unit of the second power supply module
  • the total number of cells Q is equal to 2
  • the total number of battery cells of the second power supply module is P equal to 8.
  • the number M of battery cells of the single battery of the first power supply module is 6, the number X of single cells of the first power supply module is 3, and the deployment unit of the second power supply module
  • the total number of cells Q is equal to 2
  • the total number of battery cells of the second power supply module is P equal to 14.
  • the number of single cells of the second power supply module is 2, and the single cells include one deployment cell.
  • the voltage of the first power supply module is greater than the voltage of the second power supply module.
  • the lead-acid battery pack is a power lead-acid battery pack.
  • the invention also protects a battery pack, in which a lead-acid battery pack is installed.
  • the invention also protects an electric vehicle, which is equipped with a lead-acid battery pack.
  • the invention also protects an electric vehicle equipped with a battery pack.
  • Q satisfies greater than or equal to 1 and less than M.
  • the number of single cells of the basic power supply module is X, and the value of Q is (1.38- ⁇ )M(X+K)/( ⁇ +0.845) rounded up.
  • the voltage of the deployment power supply module is smaller than the voltage of the basic power supply module.
  • the deployment and power supply module includes one deployment unit.
  • the M is 6, and the total number of single cells for deploying the power supply module is 1 or 7.
  • the deployment and power supply module includes two deployment cells.
  • the M is 6, and the total number of single cells for deploying the power supply module is 2, 8, or 14.
  • the number of single cells of the power supply module is two.
  • the power supply module is a power supply module.
  • the invention also protects a lead-acid battery pack, which includes a first power supply module and a second power supply module.
  • the first power supply module and the second power supply module are connected in series.
  • the voltage of the battery pack is U.
  • the first power supply module includes Single battery, the number of battery cells of the single battery of the first power supply module is M, the total number of battery cells of the first power supply module is W, and the number of battery cells of the single battery of the second power supply module is Number N, the total number of battery cells P of the second power supply module, which is characterized in that the number N of battery cells of the single cells of the second power supply module is the same as the number of single cells of the first power supply module.
  • the number of single cells M is not equal, and U/(W+P)-0.845 ⁇ 1.38.
  • the number of single cells of the first power supply module is X, each single cell has the same number of battery cells M, and U/(MX+P)-0.845 ⁇ 1.38.
  • each single cell has the same number N of battery cells, and U/(MX+NY)-0.845 ⁇ 1.38.
  • the voltage of the first power supply module is higher than the voltage of the second power supply module.
  • the invention also protects a power supply module.
  • the total number of battery cells in the power supply module is P.
  • the number of battery cells in the single cell of the power supply module is N.
  • the acid density in the cell is ⁇ .
  • the deployment power supply module is used in series with a basic power supply module with a total number of battery cells W and an acid density in a cell of ⁇ , and the sum of the voltages of the deployment power supply module and the basic power supply module is U, the number M of battery cells of the single battery of the basic power supply module, the number M of battery cells of the single battery of the basic power supply module and the number of battery cells of the single battery of the deployment power supply module
  • the numbers N are not equal and satisfy U/(W+P)-0.845 ⁇ 1.38.
  • the number of single cells of the basic power supply module is X, each single cell has the same number of battery cells, M, and U/(MX+P)-0.845 ⁇ 1.38.
  • each single cell has the same number of battery cells N, and U/(MX+NY)-0.845 ⁇ 1.38.
  • the lead-acid battery pack and the power supply module of the present invention can improve battery life.
  • Figure 1 shows a first embodiment of the lead-acid battery pack of the present invention
  • Figure 2 shows a second embodiment of the lead-acid battery pack of the present invention
  • Figure 3 shows a third embodiment of the lead-acid battery pack of the present invention
  • Figure 4 shows a fourth embodiment of the lead-acid battery pack of the present invention
  • Figure 5 shows a fifth embodiment of the lead-acid battery pack of the present invention.
  • a lead-acid battery pack 1000 of the present invention includes a first power supply module 100 and a second power supply module 200.
  • the first power supply module 100 and the second power supply module 200 are connected in series (not shown in the figure).
  • the lead-acid battery pack 1000 The voltage is U.
  • the first power supply module 100 includes a single battery 10.
  • the single battery 10 has a battery cell 1.
  • the number of battery cells of the single battery 10 of the first power supply module 100 is M.
  • the battery cells of the first power supply module 100 are The total number of cells W, as shown in the figure, M is 6.
  • the second power supply module 200 includes a deployment cell 2. In Figure 1, a deployment cell is a single battery 20.
  • the cells of the second power supply module 200 shown in Figure 1 The total number P is equal to the total number of allocated cells Q, the number of cell cells of the single cells of the second power supply module is N, the density of sulfuric acid in the battery cells of the battery pack 1000 is ⁇ , the number of single cells of the first power supply module 100 is The number of cells is The deployment cells of the two power supply modules 200 are connected in series.
  • the voltages of the lead-acid battery pack 1000 are U, M, X, and Q and satisfy the following relationship: U/(MX+Q)-0.845 ⁇ 1.38.
  • the total number of deployment units Q of the second power supply module is (1.38- ⁇ )MX/( ⁇ +0.845), which is rounded to the nearest integer.
  • one deployment cell constitutes a single battery.
  • any number of deployment cells can be combined to form a single battery.
  • 2 deployment cells are combined to form a single battery, or more deployment cells can be combined.
  • any number of deployment cells of the second power supply module can also be integrally formed with at least part of the single cells of the first power supply module, so that the single cells of the second power supply module form a structure including M +1 or M+2 or more single cells with different cell numbers.
  • K is the number of Q cells allocated to the cells of the first power supply module.
  • the number of single cells that are integrated into the battery K is an integer greater than or equal to 0, the number of single cells of the single battery of the second power supply module is N, and the number of single cells of the single battery of the first power supply module is M. not equal.
  • the number K of single cells formed integrally with the single cells of the first power supply module is 0.
  • the single cells are deployed at this time.
  • U, M, X, Q, K satisfies the following relationship: U/[M(X+K)+Q]-0.845 ⁇ 1.38.
  • the value of Q is (1.38- ⁇ ).
  • the value of M(X+K)/( ⁇ +0.845) is rounded to the nearest 1.38. It's better to round up to the next round.
  • the number of deployment cells Q is 2, and the number K of single cells formed by the two deployment cells and the single cells of the first power supply module is 1.
  • U, M, X, Q and K satisfy the following relationship: U/[M(X+K)+Q]-0.845 ⁇ 1.38, the value of Q is (1.38- ⁇ )M(X+K)/( ⁇ +0.845) rounded up , it is best to round to the next round.
  • the number of single cells of the first power supply module in Figure 4 will be greater than that of the first power supply module in Figure 3.
  • the quantity is 1 more.
  • the number of single cells of the second power supply module is greater than or equal to 1 and less than M.
  • the service life of the battery pack will be significantly increased without affecting the user's riding experience.
  • Battery pack deployment Different installation methods of single cells can meet different installation environments and adapt to different application scenarios.
  • the battery cells 1 of the first power supply module 100 and the battery cells 2 of the second power supply module 200 of the present invention are preferably exactly the same, such as cell voltage, cell capacity, cell volume, cell size, etc. are exactly the same.
  • the number of deployment cells set in this embodiment is the optimal way to set the number of deployment cells in the present invention. Of course, the number of deployment cells can also be increased according to the voltage of the battery pack that matches the motor power required. or decrease.
  • the voltage of the first power supply module of the present invention is preferably higher than the voltage of the second power supply module, which facilitates standardized mass production of the first power supply module and the second power supply module and improves production efficiency and assembly efficiency.
  • the cells are allocated to remove KM (K is an integer greater than or equal to 0) for the second power supply module. For the remaining battery cells after the battery cell, when the total number of cells P of the second power supply module is lower than the number M of battery cells of the single battery of the first power supply module, the allocated cells at this time are all the cells of the second power supply module. Battery cells.
  • the power supply module in the battery pack of the present invention can be combined and matched according to the service life of the battery. For example, when the voltage of the battery pack is determined according to the power demand of the electric vehicle motor, the acid ratio of the battery is determined according to the service life of the battery, and the third Calculate the voltage drop of the first power supply module and the number of single cells, calculate the voltage of the second power supply module deployment single cell, and calculate the required number of deployment single cells of the second power supply module.
  • the deployment cell of the second power supply module can be a single cell forming a single battery, or multiple deployment cells forming a single battery, or all deployment cells of the second power supply module and the first power supply module.
  • a certain single battery is combined to form a single battery, that is, any number of allocated cells of the second power supply module can be combined with the corresponding single cells of the first power supply module to form a single battery through the second power supply module.
  • the number of deployed cells or installation methods can be adapted to different installation environments or application scenarios.
  • the 48V20AH lead-acid battery pack is composed of 4 12V20AH single cells connected in series, each single cell has 6 single cells, a total of 24 single cells.
  • the density of sulfuric acid in a single cell, that is, the acid ratio, is 1.38g/cm 2 .
  • Figure 1 In order to improve the service life of the 48V20AH lead-acid battery pack, refer to Figure 1.
  • the original four 12V20AH single cells are The acid ratio is reduced to 1.33g/cm 2 , that is, in the lead-acid battery pack of the present invention, the first power supply module has 4 single cells, each single cell has 6 single cells, and then the second power supply module and the first The power supply modules are connected in series.
  • the lead-acid battery pack of the present invention can also adjust the number of the first power supply module and the single cell of the second power supply module.
  • the first power supply module The module has 3 single cells, each single cell has 6 single cells, and the second power supply module has 1 single cell, and 1 single battery has 7 single cells. Due to the reduction of the acid ratio, the service life will be significantly improved.
  • Matching the 400W power of electric vehicle motors it does not affect the user’s riding experience.
  • different single quantities and cells of lead-acid battery packs can adapt to different installation environments or application scenarios.
  • the 60V20AH lead-acid battery pack is composed of 5 12V20AH single cells connected in series, each single cell has 6 single cells, a total of 30 single cells.
  • the density of sulfuric acid in a single cell, that is, the acid ratio, is 1.38g/cm2.
  • the lead-acid battery pack of the present invention reduces the acid ratio in the original five 12V20AH single cells to 1.30g. /cm2, that is, the first power supply module of the lead-acid battery pack of the present invention.
  • the deployment cell can independently form a single battery, that is, the number of single cells of the second power supply module is 1, and the number of single cells is 2, or the number of single cells is 2.
  • the number of single cells is 1 when the number of batteries is 2.
  • the lead-acid battery pack of the present invention can also adjust the number of first power supply modules and the number of second power supply module cells.
  • the first power supply module has 4 single cells. Each single battery has 6 single cells, the second power supply module has 1 single cell, and 1 single battery has 8 single cells, as shown in Figure 5; or the first power supply module has 3 single cells, Each single battery has 6 single cells, the second power supply module has 2 single cells, and 1 single battery has 7 single cells.
  • the service life of the lead-acid battery pack of the present invention will be significantly improved due to the reduction of the acid ratio.
  • the density of the acid solution of the lead-acid battery pack of the present invention is preferably lower than 1.33g/cm2, which can better improve the life of the battery and the utilization rate of the active material.
  • M takes the greatest common divisor 6.
  • the first power supply module of the battery pack includes three single cells.
  • the number of battery cells of each single battery is 5, 8, and 9 respectively.
  • the number of battery cells M of the single battery of the first power supply module is 5 or 8 or 9.
  • the number of battery cells of the first power supply module is The total number of cells W is 22, and the number of cell cells of the single cell of the second power supply module of the battery pack is 3.
  • the number of cell cells N of the single cell of the second power supply module of the battery pack is 3.
  • the number of battery cells N of the single battery of the power supply module is not equal to the number of battery cells M of the single battery of the first power supply module.
  • the total number of battery cells P of the second power supply module is 3, and at this time U /(W+P)-0.845 ⁇ 1.38, preferably less than 1.33.
  • the first power supply module of the battery pack includes three single cells, The number of battery cells of each single cell is 5, 8, and 9 respectively.
  • the second power supply module of the battery pack includes one single cell, and the number of battery cells is 3; or the first power supply module of the battery pack includes three Single battery, the number of battery cells of each single battery is 5, 2, and 9 respectively.
  • the second power supply module of the battery pack includes a single battery, and the number of battery cells is 9. At this time, the number of cells of the second power supply module is 9.
  • the number N of battery cells of the single battery is 9, which is not equal to the number M of battery cells of the single battery of the first power supply module being 5 or 2.
  • the number N of battery cells of the single battery of the second power supply module of the present invention is not equal to the number M of battery cells of the single battery of the first power supply module. This means that as long as any one of the single cells of the second power supply module The number of battery cells is not equal to the number M of battery cells of any single battery of the first power supply module. In this way, the number of battery cells of the battery pack can be configured according to different installation environments.
  • the voltage of the first power supply module is preferably higher than the voltage of the second power supply module.
  • the invention also discloses a battery pack, in which the lead-acid battery pack of the invention is installed.
  • the invention also discloses an electric vehicle, which is installed with a lead-acid battery pack or battery pack of the invention.
  • the invention also discloses a deployment and power supply module.
  • the deployment and power supply module includes deployment of single cells, the total number of deployment cells is Q, the density of the acid liquid in the single cell is ⁇ , ⁇ 1.38g/cm2, preferably less than 1.33g/cm2,
  • the power supply module is deployed to be used in series with a basic power supply module with a single battery cell number of M and an acid density in a single cell of ⁇ , and Q satisfies the requirement of being greater than or equal to 1 and less than M.
  • the total number of battery cells in the basic power supply module is W.
  • the sum of the voltages of the deployed power supply module and the basic power supply module is U ,U/(W+P)-0.845 ⁇ 1.38.
  • the deployment power supply module and the basic power supply module of the present invention are preferably lead-acid power supply modules.
  • the deployment power supply module of the present invention can be used in series with the basic power supply module, thereby meeting the needs of electric vehicles, especially electric bicycles, for motors and battery life. , the needs of different installation environments and the needs of different application scenarios, the above purposes can also be achieved without changing the structure of the existing basic power supply module.
  • the voltage of the deployed power supply module is preferably smaller than the voltage of the basic power supply module, which is conducive to standardized mass production of the deployed power supply module and the basic power supply module, and improves production efficiency and assembly efficiency.
  • the deployed power supply module used in series with the single cell of the basic power supply module in which the number M of the battery cells is 6 can be one deployed single cell, and the total number of single cells of the deployed power supply module is one.
  • K 0
  • the total number of single cells for deploying the power supply module is 7, that is, in the form of 1X7.
  • K 1, and the number of battery cells N for deploying the single battery of the power supply module is 7; it can also be 2 single cells, in this case When deploying the power supply module, the total number of single cells is 2. It can be one single cell including two single cells, or it can be two single cells, each single cell has one single cell.
  • the number of battery cells N is 1 or 2, and the total number of cells of the power supply module is 8, that is, a single cell in the form of 1X8.
  • the number of single cells of the power supply module is deployed.
  • the number of battery cells N is 8, or it can be a 1X7 single battery and a single cell battery.
  • the number of battery cells N of the single cells deployed in the power supply module is 7 and 1.
  • K 1, or the total number of single cells of the power supply module is 14, that is, two single cells in the form of 1X7.
  • the number of single cells of the single battery of the power supply module is 7.
  • the deployment power supply module can be applied to the structure of the existing basic power supply module with a single cell number of 6, so that the purpose of the present invention can be achieved.
  • the deployment and power supply module of the present invention is preferably a power supply deployment module.
  • the density of the acid solution used in the power supply module is preferably lower than 1.33g/cm2, which can better extend the life of the battery and improve the utilization rate of active materials.
  • the deployment and power supply module of the present invention can also be configured such that the total number of battery cells of the deployment power supply module is P, the number of battery cells of the single cells of the deployment power supply module is N, the acid density in the single cell is ⁇ , the deployment power supply module It is used in series with a basic power supply module with a total number of battery cells W and an acid density in a single cell of ⁇ .
  • the voltage of the allocated power supply module and the basic power supply module is U.
  • the number of battery cells of the single battery of the basic power supply module is M, the number M of battery cells of the single battery of the basic power supply module is not equal to the number N of battery cells of the single battery of the deployment power supply module, and satisfies U/(W+P)-0.845 ⁇ 1.38.
  • the number of single cells of the basic power supply module X If each single battery has the same number of battery cells M, then U/(MX+P)-0.845 ⁇ 1.38; Number Y, if each single battery has the same number of battery cells N, then U/(MX+NY)-0.845 ⁇ 1.38.
  • the invention also discloses a battery pack, in which the deployment and power supply module of the invention is installed.
  • the invention also discloses an electric vehicle, which is equipped with the deployment and power supply module of the invention and the battery pack of the invention.
  • the design of the lead-acid battery pack and power supply module of the present invention is also convenient for transportation. Different battery combinations can also be configured according to the motor power, and even different voltages can be selected to be configured under the same power, thereby meeting different riding needs. The needs of different installation environments. In addition, the lead-acid battery pack of the present invention can travel farther and have more power under the same conditions, without affecting the installation efficiency of the battery.
  • the power supply module and lead-acid battery pack of the present invention are preferably power batteries, especially power batteries used on electric bicycles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种铅酸电池组(1000),包括第一供电模块(100)和第二供电模块(200),第一供电模块(100)和第二供电模块(200)串联连接,第一供电模块(100)包括单体电池(10),第一供电模块(100)的单体电池(10)的电池单格个数为M,第二供电模块(200)包括调配单格(2),第二供电模块(200)的调配单格总数Q大于等于1且小于第一供电模块(100)的单体电池(10)的电池单格个数M。

Description

一种铅酸电池组 技术领域
本发明涉及铅酸蓄电池领域。
背景技术
目前电动自行车上使用的铅酸蓄电池组通常是将一组具有相同单只电池串联后进行使用,为了保证安装效率,比如48V20AH电池组是将4只12V20AH的电池串联,每只电池6个单格,60V20AH将5只12V20AH的电池串联,每只电池6个单格,为匹配现有电动自行车电机功率,保证铅酸蓄电池组的电压以及得到电池相应的容量,都是通过不断提高电池单格的酸液密度,目前铅酸蓄电池上的酸液密度通常为1.38甚至更高,然而较高的酸液密度,将对电池的寿命产生不利影响,低酸比可以明显提高电池寿命,然而降低酸比又会带来电池电压和容量的下降。
发明内容
本发明公开了一种铅酸电池组,包括第一供电模块和第二供电模块,第一供电模块和第二供电模块串联连接,所述第一供电模块包括单体电池,所述第一供电模块的单体电池的电池单格个数M,所述第二供电模块包括调配单格,其特征在于,所述第二供电模块的调配单格总数Q大于等于1且小于所述第一供电模块的单体电池的电池单格个数M。
进一步地,所述第二供电模块的电池单格总数为P,P=KM+Q,K取大于等于0的整数。
进一步地,所述第一供电模块的单体电池的个数X,所述第二供电模块的调配单格总数Q,U、M、X、Q、K的关系满足U/【M(X+K)+Q】 -0.845<1.38。
进一步地,所述电池组的电池单格内的硫酸密度为ρ,Q的值为(1.38-ρ)M(X+K)/(ρ+0.845)的值取整。
进一步地,所述第二供电模块包括单体电池,所述第二供电模块的单体电池的个数大于等于1且小于M。
进一步地,所述第一供电模块的单体电池的电池单格和所述第二供电模块的单体电池的电池单格具有相同参数。
进一步地,所述第一供电模块的单体电池的电池单格个数M为6,,所述第一供电模块的单体电池的个数X为4,所述第二供电模块的调配单格总数Q等于1,所述第二供电模块的电池单格总数为P等于1。
进一步地,所述第一供电模块的单体电池的电池单格个数M为6,,所述第一供电模块的单体电池的个数X为3,所述第二供电模块的调配单格总数Q等于1,所述第二供电模块的电池单格总数为P为7。
进一步地,所述第一供电模块的单体电池的电池单格个数M为6,,所述第一供电模块的单体电池的个数X为5,所述第二供电模块的调配单格总数Q等于2,所述第二供电模块的电池单格总数为P等于2。
进一步地,所述第一供电模块的单体电池的电池单格个数M为6,,所述第一供电模块的单体电池的个数X为4,所述第二供电模块的调配单格总数Q等于2,所述第二供电模块的电池单格总数为P等于8。
进一步地,所述第一供电模块的单体电池的电池单格个数M为6,,所述第一供电模块的单体电池的个数X为3,所述第二供电模块的调配单格总数Q等于2,所述第二供电模块的电池单格总数为P等于14。
进一步地,所述第二供电模块的单体电池个数为2个,所述单体电池 包括一个调配单格。
进一步地,所述第一供电模块的电压大于所述第二供电模块的电压。
进一步地,所述铅酸电池组为动力铅酸电池组。
本发明还保护一种电池包,所述电池包内安装有铅酸电池组。
本发明还保护一种电动车,电动车安装有铅酸电池组。
本发明还保护一种电动车,安装有电池包。
本发明还保护一种调配供电模块,所述调配供电模块的电池单格总数为P,所述调配供电模块包括调配单格,调配单格总数为Q,单格内的酸液密度为ρ,ρ<1.38g/cm2,其特征在于,所述调配供电模块用于和电池单格个数为M且单格内的酸液密度为ρ的基础供电模块串联使用,满足P=KM+Q,K取大于等于0的整数。
进一步地,Q满足大于等于1且小于M。
进一步地,所述基础供电模块的单体电池个数为X,Q的值为(1.38-ρ)M(X+K)/(ρ+0.845)的值取整。
进一步地,所述调配供电模块的电压小于所述基础供电模块的电压。
进一步地,调配供电模块包括1个调配单格。
进一步地,所述M为6,所述调配供电模块的单格总数为1个或7个。
进一步地,调配供电模块包括2个调配单格。
进一步地,所述M为6,所述调配供电模块的单格总数为2个或8个或14个。
进一步地,所述调配供电模块的单体电池个数为两个。
进一步地,所述调配供电模块为调配动力供电模块。
本发明还保护一种铅酸电池组,包括第一供电模块和第二供电模块,第一供电模块和第二供电模块串联连接,所述电池组的电压为U,所述第一供电模块包括单体电池,所述第一供电模块的单体电池的电池单格个数M,所述第一供电模块的电池单格总数W,所述第二供电模块的单体电池的电池单格个数N,所述第二供电模块的电池单格总数P,其特征在于,所述第二供电模块的单体电池的电池单格个数N与所述第一供电模块的单体电池的电池单格个数M不相等,且U/(W+P)-0.845<1.38。
进一步地,第一供电模块的单体电池的个数X,每个单体电池具有相同的电池单格个数M,且U/(MX+P)-0.845<1.38。
进一步地,第二供电模块的单体电池的个数Y,每个单体电池具有相同的电池单格个数N,且U/(MX+NY)-0.845<1.38。
进一步地,所述第二供电模块包括调配单格,所述调配单格总数为Q,P=KM+Q,K取大于等于0的整数。
进一步地,第一供电模块的电压高于第二供电模块的电压。
进一步地,U/(W+P)-0.845<1.33。
本发明还保护了一种调配供电模块,所述调配供电模块的电池单格总数为P,所述调配供电模块的单体电池的电池单格个数N,单格内的酸液密度为ρ,其特征在于,所述调配供电模块用于和电池单格总数W且单格内的酸液密度为ρ的基础供电模块串联使用,所述调配供电模块和所述基础供电模块的电压之和为U,所述基础供电模块的单体电池的电池单格个数M,所述基础供电模块的单体电池的电池单格个数M与所述调配供电模块的单体电池的电池单格个数N不相等,且满足U/(W+P)-0.845<1.38。
进一步地,所述基础供电模块的的单体电池的个数X,每个单体电池具有相同的电池单格个数M,且U/(MX+P)-0.845<1.38。
进一步地,所述调配供电模块的单体电池的个数Y,每个单体电池具有相同的电池单格个数N,且U/(MX+NY)-0.845<1.38。
进一步地,所述调配供电模块包括调配单格,所述调配单格总数为Q,P=KM+Q,K取大于等于0的整数。
本发明的铅酸电池组和调配供电模块,可以提高电池寿命。
附图说明
图1显示本发明铅酸电池组的第一种实施方式;
图2显示本发明铅酸电池组的第二种实施方式;
图3显示本发明铅酸电池组的第三种实施方式;
图4显示本发明铅酸电池组的第四种实施方式;
图5显示本发明铅酸电池组的第五种实施方式。
具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
本发明的一种铅酸电池组1000,包括第一供电模块100和第二供电模块200,第一供电模块100和第二供电模块200串联连接(图中未显示),铅酸电池组1000的电压为U,第一供电模块100包括单体电池10,单体电池10具有电池单格1,第一供电模块100的单体电池10的电池单格个数M,第一供电模块的电池单格总数W,图示所示,M为6,第二供电模块200包括调配单格2,图1中一个调配单格为一个单体电池20,图1所示第二供电模块200的单格总数P等于调配单格的总数Q,第二供电模块 的单体电池的电池单格个数N,电池组1000的电池单格内的硫酸密度为ρ,第一供电模块100的单体电池的个数X,此时第一供电模块的电池单格总数MX,第一供电模块100的单体电池之间串联连接,第二供电模块200的调配单格总数Q大于等于1且小于M,第二供电模块200的调配单格之间串联连接,铅酸电池组1000的电压为U、M、X、Q满足下面的关系:U/(MX+Q)-0.845<1.38。第二供电模块的调配单格总数Q为(1.38-ρ)MX/(ρ+0.845)的值进一法取整。图1中一个调配单格构成一个单体电池,根据需要也可以任意的多个调配单格组合形成一个单体电池,比如2个调配单格组合形成一个单体电池,也可以是更多个调配单格组合形成多个单体电池。另外,本发明的铅酸蓄电池组,第二供电模块的任意数量的调配单格也可以与第一供电模块的至少部分单体电池一体成型,从而第二供电模块的单体电池形成了包括M+1或M+2个或更多个不同单格数量的单体电池,此时第二供电模块的单格总数P=KM+Q,K为Q个调配单格与第一供电模块的单体电池一体成型的单体电池的数量,K取大于等于0的整数,第二供电模块的单体电池的电池单格个数N与第一供电模块的单体电池的电池单格个数M不相等。如图1所示的本发明的第一种实施方式,调配单格与第一供电模块的单体电池一体成型的单体电池的数量K为0,如图2所示,此时调配单格Q为1个,调配单格与第一供电模块的单体电池一体成型的单体电池的数量K为1,U/(W+P)-0.845<1.38,同样,U、M、X、Q、K满足下面的关系:U/【M(X+K)+Q】-0.845<1.38,Q的值为(1.38-ρ)M(X+K)/(ρ+0.845)的值取整,最好进一法取整。如图3所示,此时调配单格Q为2个,调配单格与第一供电模块的单体电池一体成型的单体电池的数量K为2,同 样,U、M、X、Q、K满足下面的关系:U/【M(X+K)+Q】-0.845<1.38,Q的值为(1.38-ρ)M(X+K)/(ρ+0.845)的值取整,最好进一法取整。如图4所示,此时调配单格Q为2个,2个调配单格与第一供电模块的单体电池一体成型的单体电池的数量K为1,同样,U、M、X、Q、K满足下面的关系:U/【M(X+K)+Q】-0.845<1.38,Q的值为(1.38-ρ)M(X+K)/(ρ+0.845)的值取整,最好进一法取整,在相同的条件下,如电池组电压、酸比,图4中第一供电模块的单体电池的数量将比图3中第一供电模块的单体电池的数量多1个。第二供电模块的单体电池的个数大于等于1且小于M。通过调配单格,在保证铅酸蓄电池组的电压,满足电动车电机的功率的情况下,可以降低酸比,电池组的使用寿命将显著提高,也不会影响用户骑行体验,电池组调配单格的不同安装方式可以符合不同的安装环境、适应不同的应用场景。本发明的第一供电模块100的电池单格1和第二供电模块200的电池单格2最好完全相同,比如单格电压、单格容量、单格体积、单格尺寸等完全相同。本实施例设定的调配单格的数量,为本发明最优的设定调配单格的数量的方式,当然调配单格的数量也可以根据需要的匹配电机功率的电池组的电压来进行增加或减少。本发明的第一供电模块的电压最好高于第二供电模块的电压,这样利于第一供电模块和第二供电模块的标准化批量化生产、提高生产效率、装配效率。本发明当第二供电模块单格总数P高于第一供电模块的单体电池的电池单格个数M时,调配单格为第二供电模块除去KM(K为大于等于0的整数)个电池单格后余下的电池单格,当第二供电模块单格总数P低于第一供电模块的单体电池的电池单格个数M时,此时调配单格为第二供电模块的所有电池单格。此外第二供电模块的单体电池的个数Y, 若第二供电模块的每个单体电池的电池单格数量相等,P=NY,第一供电模块的单体电池的个数X,若第一供电模块的每个单体电池具有相同的电池单格数量M,则W=MX。
本发明的电池组中的供电模块,可以根据电池的使用寿命进行组合匹配,比如当根据电动车电机功率的需求,确定电池组的电压,根据电池的使用寿命确定电池的酸比,设定第一供电模块的个数和单格数,计算电压降,计算第二供电模块调配单格的电压,并计算需要的第二供电模块的调配单格的个数。第二供电模块的调配单格可以是一个单格形成一个单体电池,也可以是多个调配单格形成一个单体电池,或者是第二供电模块的所有调配单格与第一供电模块的某一单体电池组合形成一个单体电池,也就是根据需要第二供电模块的任意数量的调配单格可以与第一供电模块的相应的单体电池组合形成单体电池,通过第二供电模块的调配单格的数量或安装方式可以适应不同的安装环境或应用场景。
以目前标称48V20AH铅酸蓄电池组匹配电动车电机功率400W为例:48V20AH铅酸蓄电池组由4个12V20AH单体电池串联而成,每个单体电池6个单格,共24个单格,单格内硫酸密度即酸比为1.38g/cm 2,为能提高48V20AH铅酸蓄电池组的使用寿命,可以参照图1,本发明的铅酸蓄电池组,将原先四个12V20AH单体电池内的酸比降低为1.33g/cm 2,即本发明的铅酸蓄电池组,第一供电模块具有4个单体电池,每个单体电池具有6个单格,再将第二供电模块与第一供电模块串联,第二供电模块的电池单格总数为P=KM+Q,K取0,计算调配单格Q=(1.38-ρ)M(X+K)/(ρ+0.845),即Q=(1.38-1.33)6(4+0)/(1.33+0.845),Q=(1.38-1.33)6*4/(1.33+0.845)=0.551,进一法取整1,第二供电模块的电池单格总数为 P为1,此时可以确定在电池组一定的电压下、确定的酸比下,需要调配的调配单格数量,此时调配单格可以独立形成一个单体电池,即第二供电模块的单体电池个数为1,另外,本发明的铅酸蓄电池组,也可以调整第一供电模块的数量和第二供电模块单格,可参照图2所示,如第一供电模块具有3个单体电池,每个单体电池具有6个单格,第二供电模块1个单体电池,1单体电池具有7个单格。由于酸比的降低,使用寿命将显著提高,另外,本发明的铅酸蓄电池组的第一供电模块的电压(1.33+0.845)*24=52.2V,第二供电模块的电压1.33+0.845=2.175V,此时铅酸蓄电池组的电压为(1.33+0.845)*25=54.375V,稍高于酸比为1.38时铅酸蓄电池组的电压值(1.38+0.845)*24=53.4V,同样可以匹配电动车电机400W的功率,同时不会影响用户骑行体验。同时铅酸蓄电池组不同的单个数量和单格可以适应不同的安装环境或应用场景。
以目前标称60V20AH铅酸蓄电池组匹配电动车电机功率500W为例:60V20AH铅酸蓄电池组由5个12V20AH单体电池串联而成,每个单体电池6个单格,共30个单格,单格内硫酸密度即酸比为1.38g/cm2,为能提高60V20AH铅酸蓄电池组的使用寿命,本发明的铅酸蓄电池组,将原先5个12V20AH单体电池内的酸比降低为1.30g/cm2,即本发明的铅酸蓄电池组的第一供电模块,第一供电模块具有5个单体电池,每个单体电池具有6个单格,再将第二供电模块与第一供电模块串联,第二供电模块的电池单格总数为P=KM+Q,K取1,计算调配单格Q=(1.38-ρ)M(X+K)/(ρ+0.845),即Q=(1.38-1.30)6(4+1)/(1.30+0.845)=1.1,进一法取整2,第二供电模块的电池单格总数为P=8,此时可以确定在电池组一定的电压下、确定的酸比下,需要调配的调配单格数量,此时调配单 格可以独立形成一个单体电池,即第二供电模块的单体电池个数为1单格为2,或者是单体电池个数为2单格为1,另外,本发明的铅酸蓄电池组,也可以调整第一供电模块的数量和第二供电模块单格,如第一供电模块具有4个单体电池,每个单体电池具有6个单格,第二供电模块1个单体电池,1单体电池具有8个单格,即图5所示;或者是第一供电模块具有3个单体电池,每个单体电池具有6个单格,第二供电模块2个单体电池,1单体电池具有7个单格,此时P=KM+Q=2*6+2=14。此时本发明的铅酸蓄电池组由于酸比的降低,使用寿命将显著提高,另外,本发明的铅酸蓄电池组的第一供电模块的电压(1.30+0.845)*24=51.48V,第二供电模块的电压(1.30+0.845)*8=17.16V,或者是第一供电模块的电压(1.30+0.845)*18=38.61V,第二供电模块的电压(1.30+0.845)*14=30.03V,本发明的铅酸蓄电池组的电压为(1.30+0.845)*32=68.64V,稍高于酸比为1.38时的铅酸蓄电池组电压值(1.38+0.845)*30=66.75V,完全可以匹配电动车电机500W的功率以及电机控制器。同时不会影响用户骑行体验。同时铅酸蓄电池组不同的单个数量和单格可以适应不同的安装环境或应用场景。
本发明的铅酸蓄电池组的酸液的密度最好低于1.33g/cm2,这样可以更好的提高电池的寿命,更好的提高活性物质的利用率。本发明的第一供电模块的单体电池的电池单格数量不相等时,比如成倍数关系,如其中部分单体电池的电池单格数为6,另一部分单体电池的电池单格数为12,则M取最大公约数6。
本发明的一种铅酸电池组的第一供电模块的单体电池的电池单格数量不相等时,且无法获得最大公约数时,比如,电池组的第一供电模块包 括三个单体电池,每个单体电池的电池单格数量分别是5、8、9,此时第一供电模块的单体电池的电池单格个数M为5或8或9,第一供电模块的电池单格总数W为22,电池组的第二供电模块的单体电池的电池单格数量是3,此时电池组的第二供电模块的单体电池的电池单格个数N为3,第二供电模块的单体电池的电池单格个数N与第一供电模块的单体电池的电池单格个数M不相等,此时第二供电模块的电池单格总数P为3,此时U/(W+P)-0.845<1.38,最好小于1.33.当厂家需要对铅酸电池组的第一供电模块和第二供电模块进行配置时,只要知道匹配电动车所需的电池组的电压,以及相应的满足电池寿命的酸液的密度,就可以获得所需的电池单格总数,比如计算得到电池组需要25个单格,那么电池组的第一供电模块包括三个单体电池,每个单体电池的电池单格数量分别是5、8、9,电池组的第二供电模块包括一个单体电池,电池单格数量是3;或者是电池组的第一供电模块包括三个单体电池,每个单体电池的电池单格数量分别是5、2、9,电池组的第二供电模块包括一个单体电池,电池单格数量是9,此时第二供电模块的单体电池的电池单格个数N为9与所述第一供电模块的单体电池的电池单格个数M为5或2不相等。本发明的第二供电模块的单体电池的电池单格个数N与第一供电模块的单体电池的电池单格个数M不相等,表示只要第二供电模块的其中任何一个单体电池的电池单格个数与第一供电模块的其中任何一个单体电池的电池单格个数M不相等即可。这样可以根据不同的安装环境来配置电池组的单体电池的电池单格个数。同上述一样,第一供电模块的电压最好高于第二供电模块的电压。
本发明还公开了一种电池包,电池包内安装有本发明的铅酸电池组。 本发明还公开了一种电动车,电动车安装有本发明的一种铅酸电池组或电池包。
本发明还公开一种调配供电模块,调配供电模块包括调配单格,调配单格总数为Q,单格内的酸液密度为ρ,ρ<1.38g/cm2,最好小于1.33g/cm2,调配供电模块用于和单体电池的电池单格个数为M且单格内的酸液密度为ρ的基础供电模块串联使用,且Q满足大于等于1且小于M。调配供电模块的电池单格总数为P,P=KM+Q,K取大于等于0的整数,基础供电模块的单体电池个数为X,Q的值最好为(1.38-ρ)M(X+K)/(ρ+0.845)的值取整,最好进一位取整。单格内的酸液密度为ρ=U/【M(X+K)+Q】-0.845,基础供电模块的电池单格总数W,调配供电模块和所述基础供电模块的电压之和为U,U/(W+P)-0.845<1.38。本发明的调配供电模块和基础供电模块最好为铅酸供电模块,本发明的调配供电模块可以与基础供电模块串联使用,从而可以满足电动车,尤其是电动自行车电机的需要、电池寿命的需要、不同的安装环境的需要、不同应用场景的需要,也可以在不改变现有基础供电模块的结构的情况下实现上述目的。此外调配供电模块的电压最好小于基础供电模块的电压,这样利于调配供电模块和基础供电模块的标准化批量化生产、提高生产效率、装配效率。本发明与基础供电模块的单体电池的电池单格个数M为6的串联使用的调配供电模块,可以是1个调配单格,调配供电模块的单格总数为1个,此时K=0,调配供电模块的单格总数为7个即1X7的形式,此时K=1,调配供电模块的单体电池的电池单格个数N为7;也可以是2个调配单格,此时调配供电模块的单格总数为2个,可以是一个单体电池包括两个单格,也可以是两个单体电池,每个单体电池具有一个单格,此时K=0, 此时调配供电模块的单体电池的电池单格个数N为1或2,调配供电模块的单格总数为8个即1X8的形式的一个单体电池,此时调配供电模块的单体电池的电池单格个数N为8,也可以是一个1X7的单体电池和一个单格单体电池,此时调配供电模块的单体电池的电池单格个数N为7和1,此时K=1,或者是调配供电模块的单格总数为14个即两个1X7的形式的单体电池,调配供电模块的单体电池的电池单格个数N为7,此时K=2,这样的调配供电模块,可以应用于现有的基础供电模块的单格数为6个的结构,从而可以实现本发明的目的。本发明的调配供电模块最好为调配动力供电模块。此外调配供电模块的酸液的密度最好低于1.33g/cm2,这样可以更好的提高电池的寿命,更好的提高活性物质的利用率。
本发明的调配供电模块,还可以是,调配供电模块的电池单格总数为P,调配供电模块的单体电池的电池单格个数N,单格内的酸液密度为ρ,调配供电模块用于和电池单格总数W且单格内的酸液密度为ρ的基础供电模块串联使用,调配供电模块和基础供电模块的电压为U,基础供电模块的单体电池的电池单格个数M,基础供电模块的单体电池的电池单格个数M与所述调配供电模块的单体电池的电池单格个数N不相等,且满足U/(W+P)-0.845<1.38。基础供电模块的单体电池的个数X,如果每个单体电池具有相同的电池单格个数M,则U/(MX+P)-0.845<1.38;调配供电模块的单体电池的个数Y,若每个单体电池具有相同的电池单格个数N,则U/(MX+NY)-0.845<1.38。
本发明还公开一种电池包,电池包内安装有本发明的调配供电模块。
本发明还公开一种电动车,安装有本发明的调配供电模块和安装有本发明的电池包。
本发明的铅酸电池组、调配供电模块的设计,还便于运输,也可以根据电机功率配置不同电池组合,甚至同一功率下可以选择配置不同的电压,从而满足不同的骑行需要,也可以满足不同安装环境的需要。此外本发明的铅酸蓄电池组,相同条件下可以行使距离更远、动力更足,同时也不影响电池的安装效率。本发明的调配供电模块、铅酸电池组最好为动力电池,尤其是用于在电动自行车上的动力电池。
以上所述的实施例只是本发明的一种较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

Claims (46)

  1. 一种铅酸电池组,包括第一供电模块和第二供电模块,第一供电模块和第二供电模块串联连接,所述第一供电模块包括单体电池,所述第一供电模块的单体电池的电池单格个数M,所述第二供电模块包括调配单格,其特征在于,所述第二供电模块的调配单格总数Q大于等于1且小于所述第一供电模块的单体电池的电池单格个数M。
  2. 如权利要求1所述的一种铅酸电池组,其特征在于,所述第二供电模块的电池单格总数为P,P=KM+Q,K取大于等于0的整数。
  3. 如权利要求2所述的一种铅酸电池组,所述电池组的电压为U,其特征在于,所述第一供电模块的单体电池的个数X,所述第二供电模块的调配单格总数Q,U、M、X、Q、K的关系满足U/【M(X+K)+Q】-0.845<1.38。
  4. 如权利要求3所述的一种铅酸电池组,所述电池组的电池单格内的硫酸密度为ρ,其特征在于,Q的值为(1.38-ρ)M(X+K)/(ρ+0.845)的值取整。
  5. 如权利要求1-4任意一项所述的一种铅酸电池组,其特征在于,所述第二供电模块包括单体电池,所述第二供电模块的单体电池的个数大于等于1且小于M。
  6. 如权利要求5所述的一种铅酸电池组,其特征在于,所述第一供电模块的单体电池的电池单格和所述第二供电模块的单体电池的电池单格具有相同参数。
  7. 如权利要求5所述的一种铅酸电池组,其特征在于,所述第一供电模块的单体电池的电池单格个数M为6,,所述第一供电模块的单体电池的个数X为4,所述第二供电模块的调配单格总数Q等于1,所述第二供电模块的电池单格总数为P等于1。
  8. 如权利要求5所述的一种铅酸电池组,其特征在于,所述第一供电模块的单体电池的电池单格个数M为6,,所述第一供电模块的单体电池的个数X为3,所述第二供电模块的调配单格总数Q等于1,所述第二供电模块的电池单格总数为P为7。
  9. 如权利要求5所述的一种铅酸电池组,其特征在于,所述第一供电模块的单体电池的电池单格个数M为6,,所述第一供电模块的单体电池的个数X为5,所述第二供电模块的调配单格总数Q等于2,所述第二供电模块的电池单格总数为P等于2。
  10. 如权利要求5所述的一种铅酸电池组,其特征在于,所述第一供电模块的单体电池的电池单格个数M为6,,所述第一供电模块的单体电池的个数X为4,所述第二供电模块的调配单格总数Q等于2,所述第二供电模块的电池单格总数为P等于8。
  11. 如权利要求5所述的一种铅酸电池组,其特征在于,所述第一供电模块的单体电池的电池单格个数M为6,,所述第一供电模块的单体电池的个数X为3,所述第二供电模块的调配单格总数Q等于2,所述第二供电模块的电池单格总数为P等于14。
  12. 如权利要求11所述的一种铅酸电池组,其特征在于,所述第二供电模块的单体电池个数为2个,所述单体电池包括一个调配单格。
  13. 如权利要求1所述的一种铅酸电池组,其特征在于,所述第一供电模块的电压大于所述第二供电模块的电压。
  14. 如权利要求1所述的一种铅酸电池组,其特征在于,所述铅酸电池组为动力铅酸电池组。
  15. 一种电池包,其特征在于,所述电池包内安装有如权利要求1-14任意 一项所述的一种铅酸电池组。
  16. 一种电动车,其特征在于,所述电动车安装有如权利要求1-14任意一项所述的一种铅酸电池组。
  17. 一种电动车,其特征在于,所述电动车安装有如权利要求15所述的一种电池包。
  18. 一种调配供电模块,所述调配供电模块的电池单格总数为P,所述调配供电模块包括调配单格,调配单格总数为Q,单格内的酸液密度为ρ,ρ<1.38g/cm2,其特征在于,所述调配供电模块用于和电池单格个数为M且单格内的酸液密度为ρ的基础供电模块串联使用,满足P=KM+Q,K取大于等于0的整数。
  19. 如权利要求18所述的一种调配供电模块,其特征在于,Q满足大于等于1且小于M。
  20. 如权利要求19所述的一种调配供电模块,其特征在于,所述基础供电模块的单体电池个数为X,Q的值为(1.38-ρ)M(X+K)/(ρ+0.845)的值取整。
  21. 如权利要求20所述的一种调配供电模块,其特征在于,所述调配供电模块的电压小于所述基础供电模块的电压。
  22. 如权利要求18-21任意一项所述的一种调配供电模块,其特征在于,调配供电模块包括1个调配单格。
  23. 如权利要求22所述的一种调配供电模块,其特征在于,所述M为6,所述调配供电模块的单格总数为1个或7个。
  24. 如权利要求18-21任意一项所述的一种调配供电模块,其特征在于,调配供电模块包括2个调配单格。
  25. 如权利要求24所述的一种调配供电模块,其特征在于,所述M为6,所述调配供电模块的单格总数为2个或8个或14个。
  26. 如权利要求25所述的一种调配供电模块,其特征在于,所述调配供电模块的单体电池个数为两个。
  27. 如权利要求18-21任意一项所述的一种调配供电模块,其特征在于,所述调配供电模块为调配动力供电模块。
  28. 一种电池包,其特征在于,所述电池包内安装有如权利要求18-21任意一项所述的一种调配供电模块。
  29. 一种电动车,其特征在于,所述电动车安装有如权利要求18-21任意一项所述的一种调配供电模块。
  30. 一种电动车,其特征在于,所述电动车安装有如权利要求28所述的一种电池包。
  31. 一种铅酸电池组,包括第一供电模块和第二供电模块,第一供电模块和第二供电模块串联连接,所述电池组的电压为U,所述第一供电模块包括单体电池,所述第一供电模块的单体电池的电池单格个数M,所述第一供电模块的电池单格总数W,所述第二供电模块的单体电池的电池单格个数N,所述第二供电模块的电池单格总数P,其特征在于,所述第二供电模块的单体电池的电池单格个数N与所述第一供电模块的单体电池的电池单格个数M不相等,且U/(W+P)-0.845<1.38。
  32. 如权利要求31所述的一种铅酸电池组,其特征在于,第一供电模块的单体电池的个数X,每个单体电池具有相同的电池单格个数M,且U/(MX+P)-0.845<1.38。
  33. 如权利要求32所述的一种铅酸电池组,其特征在于,第二供电模块的 单体电池的个数Y,每个单体电池具有相同的电池单格个数N,且U/(MX+NY)-0.845<1.38。
  34. 如权利要求33所述的一种铅酸电池组,其特征在于,所述第二供电模块包括调配单格,所述调配单格总数为Q,P=KM+Q,K取大于等于0的整数。
  35. 如权利要求31-34任意一项所述的一种铅酸电池组,其特征在于,第一供电模块的电压高于第二供电模块的电压。
  36. 如权利要求35所述的一种铅酸电池组,其特征在于,U/(W+P)-0.845<1.33。
  37. 一种电池包,其特征在于,所述电池包内安装有如权利要求31-34任意一项所述的一种铅酸电池组。
  38. 一种电动车,其特征在于,所述电动车安装有如权利要求31-34任意一项所述的一种铅酸电池组。
  39. 一种电动车,其特征在于,所述电动车安装有如权利要求37所述的一种电池包。
  40. 一种调配供电模块,所述调配供电模块的电池单格总数为P,所述调配供电模块的单体电池的电池单格个数N,单格内的酸液密度为ρ,其特征在于,所述调配供电模块用于和电池单格总数W且单格内的酸液密度为ρ的基础供电模块串联使用,所述调配供电模块和所述基础供电模块的电压之和为U,所述基础供电模块的单体电池的电池单格个数M,所述基础供电模块的单体电池的电池单格个数M与所述调配供电模块的单体电池的电池单格个数N不相等,且满足U/(W+P)-0.845<1.38。
  41. 如权利要求40所述的一种调配供电模块,其特征在于,所述基础供电 模块的的单体电池的个数X,每个单体电池具有相同的电池单格个数M,且U/(MX+P)-0.845<1.38。
  42. 如权利要求41所述的一种调配供电模块,其特征在于,所述调配供电模块的单体电池的个数Y,每个单体电池具有相同的电池单格个数N,且U/(MX+NY)-0.845<1.38。
  43. 如权利要求42所述的一种调配供电模块,其特征在于,所述调配供电模块包括调配单格,所述调配单格总数为Q,P=KM+Q,K取大于等于0的整数。
  44. 一种电池包,其特征在于,所述电池包内安装有如权利要求40-43任意一项所述的一种调配供电模块。
  45. 一种电动车,其特征在于,所述电动车安装有如权利要求40-43任意一项所述的一种调配供电模块。
  46. 一种电动车,其特征在于,所述电动车安装有如权利要求44所述的一种电池包。
PCT/CN2022/082261 2022-03-22 2022-03-22 一种铅酸电池组 WO2023178513A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2022/082261 WO2023178513A1 (zh) 2022-03-22 2022-03-22 一种铅酸电池组
CN202223236989.5U CN218997012U (zh) 2022-03-22 2022-07-21 一种调配供电模块、电池包及电动车
CN202210859651.0A CN115296362A (zh) 2022-03-22 2022-07-21 一种铅酸电池组
CN202221907522.6U CN218472218U (zh) 2022-03-22 2022-07-21 一种铅酸电池组、电池包及电动车
CN202221883746.8U CN218975534U (zh) 2022-03-22 2022-07-21 一种铅酸电池组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/082261 WO2023178513A1 (zh) 2022-03-22 2022-03-22 一种铅酸电池组

Publications (1)

Publication Number Publication Date
WO2023178513A1 true WO2023178513A1 (zh) 2023-09-28

Family

ID=83823453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082261 WO2023178513A1 (zh) 2022-03-22 2022-03-22 一种铅酸电池组

Country Status (2)

Country Link
CN (4) CN115296362A (zh)
WO (1) WO2023178513A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114834571B (zh) * 2022-03-22 2024-04-12 浙江铅锂智行科技有限公司 一种铅酸电池组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090317696A1 (en) * 2008-06-19 2009-12-24 Chih-Peng Chang Compound battery device having lithium battery and lead-acid battery
CN102456931A (zh) * 2011-09-05 2012-05-16 凹凸电子(武汉)有限公司 铅酸电池配组方法和系统
CN102651491A (zh) * 2011-02-25 2012-08-29 深圳市雄韬电源科技股份有限公司 一种复合电池
CN204885332U (zh) * 2015-09-02 2015-12-16 司二克 电动车用铅酸蓄电池
CN105438096A (zh) * 2014-09-18 2016-03-30 柯国平 一种车辆启动电源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090317696A1 (en) * 2008-06-19 2009-12-24 Chih-Peng Chang Compound battery device having lithium battery and lead-acid battery
CN102651491A (zh) * 2011-02-25 2012-08-29 深圳市雄韬电源科技股份有限公司 一种复合电池
CN102456931A (zh) * 2011-09-05 2012-05-16 凹凸电子(武汉)有限公司 铅酸电池配组方法和系统
CN105438096A (zh) * 2014-09-18 2016-03-30 柯国平 一种车辆启动电源
CN204885332U (zh) * 2015-09-02 2015-12-16 司二克 电动车用铅酸蓄电池

Also Published As

Publication number Publication date
CN218975534U (zh) 2023-05-05
CN218472218U (zh) 2023-02-10
CN115296362A (zh) 2022-11-04
CN218997012U (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
US7427450B2 (en) Hybrid fuel cell system with battery capacitor energy storage system
US7859202B2 (en) Power management for multi-module energy storage systems in electric, hybrid electric, and fuel cell vehicles
US8381849B2 (en) Vehicle hybrid energy system
US20110206950A1 (en) Energy storage unit, particularly accumulator
CN105612638A (zh) 用于匹配多个蓄电池的组合化学成分
CN112599932A (zh) 电池包、方法和车辆
EP3358697B1 (en) Power storage system and vehicle
US20170166078A1 (en) Battery charge equalization system
US10720676B2 (en) Power storage pack having first and second power storage packs connected in parallel
WO2023178513A1 (zh) 一种铅酸电池组
JP2020004488A (ja) 組電池、車両、および組電池の製造方法
Nemeth et al. Optimized operation of a hybrid energy storage system with lto batteries for high power electrified vehicles
JP2010507215A (ja) 非対称に充電される単電池を備えた高出力二次電池システム
US20150010786A1 (en) Vehicle having a Lithium-Ion Battery
US20140191576A1 (en) Electric storage system
JP2000083327A (ja) 組電池の電圧調整装置及び組電池の電圧調整方法
CN114834571B (zh) 一种铅酸电池组
JP2000040528A (ja) ハイブリッド車両用バッテリー
CN108099680B (zh) 电动车锂电池系统及电动车
Rahman et al. Management and Control Strategies of Battery Switching in a Hybrid Energy Storage System
US20220399583A1 (en) Battery module for supplying electrical motor
CN111152668B (zh) 适用于马达驱动设备的双重混合电池组
CN108666638A (zh) 一种电池组模块及其能量管理系统与方法
JP2016004774A (ja) 集合電池
CN113782888A (zh) 一种动力锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932582

Country of ref document: EP

Kind code of ref document: A1