WO2023178496A1 - 通信设备及其工作方法 - Google Patents

通信设备及其工作方法 Download PDF

Info

Publication number
WO2023178496A1
WO2023178496A1 PCT/CN2022/082120 CN2022082120W WO2023178496A1 WO 2023178496 A1 WO2023178496 A1 WO 2023178496A1 CN 2022082120 W CN2022082120 W CN 2022082120W WO 2023178496 A1 WO2023178496 A1 WO 2023178496A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupled
inductor
signal transmission
power distribution
transmission network
Prior art date
Application number
PCT/CN2022/082120
Other languages
English (en)
French (fr)
Inventor
郭万易
郭东东
高鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/082120 priority Critical patent/WO2023178496A1/zh
Publication of WO2023178496A1 publication Critical patent/WO2023178496A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field

Definitions

  • the power distribution synthesizer is a device used to convert single-channel RF signals and multi-channel RF signals to each other. It can divide a radio frequency signal into multiple radio frequency signals, equally divided or unequal divided radio frequency signals. At this time, it can be called a power divider. It can also synthesize multiple RF signals into one RF signal, which can be called a power combiner.
  • Embodiments of the present application provide a communication device and a working method thereof to solve the problem of how to reduce the loss of the communication device.
  • a first aspect of the embodiment of the present application provides a communication device.
  • the communication device includes: a first radio frequency circuit and a plurality of second radio frequency circuits; a power distribution synthesis network including a signal synthesis end and a plurality of signal splitting ends; signal synthesis
  • the terminal is coupled to the first radio frequency circuit for transmitting the combined signal; the plurality of signal branch terminals is coupled to the plurality of second radio frequency circuits for transmitting the separated signal.
  • the power distribution and synthesis network can distribute the received power of the first radio frequency circuit to a plurality of second radio frequency circuits, and the power distribution and synthesis network can also synthesize the received power of the second radio frequency circuit to the first radio frequency circuit.
  • the power distribution and synthesis network includes at least one power distribution combiner, and the power distribution combiner includes a common port, a first branch port and a second branch port, a first signal transmission network, a second signal transmission network and a mode adjustment circuit; first Two ends of the signal transmission network are coupled to the public port and the first branch port respectively; two ends of the second signal transmission network are coupled to the public port and the second branch port respectively; the mode adjustment circuit is coupled to the first signal transmission network
  • the connection is used to provide the working mode adjustment capability of the power distribution combiner; wherein, the working mode of the power distribution combiner includes a first mode and a second mode, and the first mode is the conduction of both the first signal transmission network and the second signal transmission network. On, the second mode is that only the second signal transmission network is on.
  • the power distribution combiner in the communication device provided by the embodiment of the present application includes a mode mediation circuit.
  • the mode mediation circuit controls whether the first signal transmission network is turned on, so as to adjust the power distribution combiner to enter the first mode (first signal transmission network).
  • the effect of entering the second mode (a pass-through mode in which only the second signal transmission network is connected).
  • the power distribution combiner can be configured in dual-pass mode or pass-through mode according to the actual application scenario.
  • the power distribution combiner can be adjusted to the pass-through mode without both the first signal transmission network and the second signal transmission network being turned on. In the pass-through mode, power waste on unused branches can be eliminated and the insertion loss of the power distribution combiner can be reduced.
  • the mode adjustment circuit is also coupled to the second signal transmission network; the working mode of the power distribution combiner further includes a third mode, where only the first signal transmission network is turned on.
  • the mode adjustment circuit can also control whether the second signal transmission network is turned on to achieve the effect of adjusting whether the power distribution combiner enters the third mode (the pass-through mode in which only the first signal transmission network is turned on), and increases the mode of the power distribution combiner. type.
  • the power distribution combiner further includes an isolation circuit coupled between the first signal transmission network and the second signal transmission network; the mode adjustment circuit is also coupled with the isolation circuit.
  • the isolation circuit plays an isolation role, which can increase the isolation between the first branch port and the second branch port and reduce signal leakage.
  • the mode adjustment circuit includes a first switch, which is coupled to the first signal transmission network and used to control whether the first signal transmission network is turned on.
  • the mode adjustment circuit further includes a second switch, the second switch is coupled to the second signal transmission network and is used to control whether the second signal transmission network is turned on.
  • the common port includes a positive common differential terminal and a negative common differential terminal;
  • the first shunt port includes a first positive shunt differential terminal and a first negative shunt differential terminal; and the second shunt port includes the second positive branch differential terminal and the second negative branch differential terminal;
  • the first signal transmission network includes a first inductor and a second inductor;
  • the second signal transmission network includes a third inductor and a fourth inductor; the first inductor terminal and the first terminal of the third inductor are coupled correspondingly to the positive common differential terminal and the negative common differential terminal, the second terminal of the first inductor is coupled to the second terminal of the third inductor; both terminals of the second inductor are coupled to the first The positive branch differential terminal and the first negative branch differential terminal are coupled correspondingly, and both ends of the fourth inductor are coupled correspondingly to the second positive branch differential terminal and the second negative branch differential terminal.
  • the first signal transmission network and the second signal transmission network based on the transformer network transmit differential signals and have high immunity to external electromagnetic interference, which can improve the quality of radio frequency signal transmission.
  • the first signal transmission network and the second signal transmission network based on the transformer network have more bandwidth advantages and can meet high bandwidth requirements.
  • the first signal transmission network further includes a first capacitor, a first end of the first capacitor is coupled to a first end of the first inductor, and a second end of the first capacitor is coupled to the ground end.
  • the second signal transmission network also includes a second capacitor, the first end of the second capacitor is coupled to the first end of the third coil, and the second end of the second capacitor is coupled to the ground end.
  • the first capacitor and the second capacitor serve as tuning capacitors.
  • the first capacitor and the first inductor resonate together, and the second capacitor and the third inductor resonate together, so that the transformer operates in the required frequency band, and the operating frequency of the transformer can be adjusted through adjustment.
  • the power distribution combiner further includes a third capacitor; two ends of the third capacitor are respectively coupled to the first end of the first inductor and the first end of the third inductor.
  • the first inductor and the third inductor in the two transformer networks on the first branch and the second branch share the same tuning capacitor (third capacitor), which can simplify the structure of the power distribution combiner.
  • the first signal transmission network further includes a fourth capacitor
  • the second signal transmission network further includes a fifth capacitor
  • the fourth capacitor is connected in parallel with the second inductor
  • the fifth capacitor is connected in parallel with the fourth inductor.
  • the fourth capacitor and the fifth capacitor serve as tuning capacitors.
  • the fourth capacitor and the second inductor resonate together, and the fifth capacitor and the fourth inductor resonate together, so that the transformer operates in the required frequency band, and the operating frequency of the transformer can be adjusted through adjustment.
  • the common port includes a positive common differential terminal and a negative common differential terminal;
  • the first shunt port includes a first positive shunt differential terminal and a first negative shunt differential terminal; and the second shunt port includes The second positive branch differential terminal and the second negative branch differential terminal;
  • the first signal transmission network includes a fifth inductor, a sixth inductor, a sixth capacitor and a seventh capacitor;
  • the second signal transmission network includes a seventh inductor, an eighth the inductor, the eighth capacitor and the ninth capacitor; the first end of the fifth inductor and the first end of the seventh inductor are coupled to the positive common differential terminal, and the second end of the fifth inductor is coupled to the first positive shunt differential terminal , the second end of the seventh inductor is coupled to the second positive shunt differential terminal;
  • the first end of the sixth inductor and the first end of the eighth inductor are coupled to the negative common differential terminal, and the second end of the sixth inductor is coupled to The first negative branch differential terminal is coupled
  • two ends of the first switch in the mode adjustment circuit are coupled correspondingly to the first positive branch differential terminal and the first negative branch differential terminal.
  • two ends of the second switch in the mode adjustment circuit are coupled correspondingly to the second positive branch differential terminal and the second negative branch differential terminal.
  • the isolation circuit includes a first isolation resistor and a second isolation resistor; the mode adjustment circuit further includes a third switch and a fourth switch; the first isolation resistor and the third switch are coupled in series to the first positive between the shunt differential terminal and the second positive shunt differential terminal; the second isolation resistor and the fourth switch are coupled in series between the first negative shunt differential terminal and the second negative shunt differential terminal.
  • the third switch and the fourth switch are used to cooperate with the first switch and the second switch to adjust the working mode of the power distribution combiner during the operation of the power distribution combiner.
  • the isolation circuit includes a third isolation resistor; the mode adjustment circuit further includes a fifth switch; the third isolation resistor and the fifth switch are coupled in series to the first shunt port and the second shunt port. Between the two ports with the same phase, the other two ports of the first shunt port and the second shunt port with the same phase are both coupled to the ground terminal. The other two terminals with the same phase in the first shunt port and the second shunt port are both coupled to the ground terminal.
  • the two shunt differential terminals in the power distribution combiner are equivalent to a single-ended structure.
  • the power division combiner is used as a power divider, the power divider can be provided with the function of converting from a differential signal to a single-ended signal.
  • the power combiner When the power distribution combiner is used as a power combiner, the power combiner can be provided with the function of converting a single-ended signal into a differential signal.
  • the communication device further includes a circuit board, and the power distribution synthesis network is disposed on the circuit board. A way to achieve it.
  • the signal splitting end of the power distribution and synthesis network receives the signal, and the power of the plurality of second radio frequency circuits is synthesized to the first radio frequency circuit through the power distribution and synthesis network.
  • the power distribution synthesis network can be applied in the receive channel.
  • the signal synthesis end of the power distribution and synthesis network receives the signal, and the power of the first radio frequency circuit is distributed to the plurality of second radio frequency circuits through the power distribution and synthesis network.
  • the power distribution synthesis network can be applied in the transmit channel.
  • the communication device further includes an antenna; the antenna is coupled to the second radio frequency circuit.
  • the power distribution and synthesis network includes a power distribution combiner, the common port of the power distribution combiner serves as the signal synthesis end, and the first branch port and the second branch port serve as the signal branch end.
  • the power distribution synthesis network includes multiple power distribution combiners, at least some of the power distribution combiners in the multiple power distribution combiners are connected in series, and the common port of the next-level power distribution combiner is connected to the previous one.
  • the first shunt port or the second shunt port of the power distribution combiner of the first stage is coupled; the common port of the power distribution combiner of the first stage serves as the signal synthesis terminal, and at least part of the third branch port of the power distribution combiner that is not coupled to the common port
  • the first branch port and the second branch port serve as signal branch ends.
  • the signal synthesis terminal is coupled to the first radio frequency circuit for transmitting the combined signal; a plurality of signal branch terminals is coupled to a plurality of second radio frequency circuits for transmitting separate signals; the power distribution synthesis network includes at least one power distribution The combiner, the power distribution combiner includes a common port, a first branch port and a second branch port, a first signal transmission network, a second signal transmission network and a mode adjustment circuit; both ends of the first signal transmission network are connected to the public port respectively.
  • the port is coupled to the first branch port; both ends of the second signal transmission network are coupled to the common port and the second branch port respectively; the mode adjustment circuit is coupled to the first signal transmission network for providing a power distribution combiner
  • the working mode adjustment capability; the working mode of the power distribution synthesizer includes a first mode and a second mode. The first mode is when both the first signal transmission network and the second signal transmission network are turned on, and the second mode is when the second signal transmission network is turned on.
  • the working method of the communication device includes: at the same time, the mode mediation circuit controls the first signal transmission network and the second signal transmission network to be conductive, and the power distribution combiner enters the first mode; or, the mode mediation circuit controls the first signal The transmission network is disconnected, the second signal transmission network is controlled to be turned on, and the power distribution combiner enters the second mode.
  • the mode adjustment circuit is also coupled to the second signal transmission network; the working mode of the power distribution combiner also includes a third mode, and the third mode is for the first signal transmission network to be turned on; the communication device
  • the working method includes: or at the same time, the mode adjustment circuit controls the first signal transmission network to be turned on, controls the second signal transmission network to be turned off, and the power distribution combiner enters the third mode.
  • a third aspect of the embodiment of the present application provides a power distribution combiner.
  • the power distribution combiner includes a common port, a first branch port and a second branch port, a first signal transmission network, a second signal transmission network, and a mode Adjustment circuit; two ends of the first signal transmission network are respectively coupled to the public port and the first branch port; two ends of the second signal transmission network are respectively coupled to the public port and the second branch port; the mode adjustment circuit is coupled to the first branch port.
  • a signal transmission network is coupled to provide the working mode adjustment capability of the power distribution combiner; wherein the working mode of the power distribution combiner includes a first mode and a second mode, and the first mode is a first signal transmission network and a second All signal transmission networks are turned on, and in the second mode, only the second signal transmission network is turned on.
  • the power distribution combiner provided by the embodiment of the present application sets a first signal transmission network on the first branch and a second signal transmission network on the second branch, so that the power distribution combiner can be used well as a power divider. It realizes the power distribution function and can be used as a power combiner to realize the power synthesis function.
  • the power distribution combiner includes a mode adjustment circuit, and the mode adjustment circuit controls whether the first signal transmission network is turned on, so as to adjust the power distribution combiner to enter the first mode (the first signal transmission network and the second signal transmission network). The effect of entering the second mode (pass-through mode in which only the second signal transmission network is turned on).
  • the power distribution combiner can be configured in dual-pass mode or pass-through mode according to the actual application scenario.
  • the power distribution combiner can be adjusted to the pass-through mode without both the first signal transmission network and the second signal transmission network being turned on. In the pass-through mode, power waste on unused branches can be eliminated and the insertion loss of the power distribution combiner can be reduced.
  • the mode adjustment circuit is also coupled to the second signal transmission network; the working mode of the power distribution combiner further includes a third mode, where only the first signal transmission network is turned on.
  • the mode adjustment circuit can also control whether the second signal transmission network is turned on to achieve the effect of adjusting whether the power distribution combiner enters the third mode (the pass-through mode in which only the first signal transmission network is turned on), and increases the mode of the power distribution combiner. type.
  • the power distribution combiner further includes an isolation circuit coupled between the first signal transmission network and the second signal transmission network; the mode adjustment circuit is also coupled with the isolation circuit.
  • the isolation circuit plays an isolation role, which can increase the isolation between the first branch port and the second branch port and reduce signal leakage.
  • the mode adjustment circuit includes a first switch, which is coupled to the first signal transmission network and used to control whether the first signal transmission network is turned on.
  • the mode adjustment circuit further includes a second switch, the second switch is coupled to the second signal transmission network and is used to control whether the second signal transmission network is turned on.
  • the common port includes a positive common differential terminal and a negative common differential terminal;
  • the first shunt port includes a first positive shunt differential terminal and a first negative shunt differential terminal; and the second shunt port includes the second positive branch differential terminal and the second negative branch differential terminal;
  • the first signal transmission network includes a first inductor and a second inductor;
  • the second signal transmission network includes a third inductor and a fourth inductor; the first inductor terminal and the first terminal of the third inductor are coupled correspondingly to the positive common differential terminal and the negative common differential terminal, the second terminal of the first inductor is coupled to the second terminal of the third inductor; both terminals of the second inductor are coupled to the first The positive branch differential terminal and the first negative branch differential terminal are coupled correspondingly, and both ends of the fourth inductor are coupled correspondingly to the second positive branch differential terminal and the second negative branch differential terminal.
  • the first signal transmission network and the second signal transmission network based on the transformer network transmit differential signals and have high immunity to external electromagnetic interference, which can improve the quality of radio frequency signal transmission.
  • the first signal transmission network and the second signal transmission network based on the transformer network have more bandwidth advantages and can meet high bandwidth requirements.
  • Figure 1B is a schematic framework diagram of a power distribution synthesis network and radio frequency circuit provided by an embodiment of the present application
  • Figure 4 is a schematic framework diagram of another power distribution combiner provided by an embodiment of the present application.
  • Figures 5A-5C are schematic structural diagrams of a power distribution combiner provided by embodiments of the present application.
  • FIGS 6A-6C are schematic structural diagrams of another power distribution combiner provided by an embodiment of the present application.
  • Figure 7 is a schematic framework diagram of yet another power distribution combiner provided by an embodiment of the present application.
  • FIGS 8A-8C are schematic structural diagrams of yet another power distribution combiner provided by an embodiment of the present application.
  • FIGS 9A-9C are schematic structural diagrams of yet another power distribution combiner provided by an embodiment of the present application.
  • Figures 10-12 are schematic diagrams of the driving process of a power divider provided by embodiments of the present application.
  • Figures 13-15 are schematic diagrams of the driving process of a power combiner provided by embodiments of the present application.
  • FIGS 17A-17D are schematic structural diagrams of yet another power distribution combiner provided by an embodiment of the present application.
  • Figure 18A is a schematic structural diagram of a power distribution synthesis network provided by an embodiment of the present application.
  • Figure 18B is a schematic diagram of the equivalent structure of a power distribution synthesis network provided by an embodiment of the present application.
  • Figure 18C is a schematic diagram of an equivalent structure of another power distribution synthesis network provided by an embodiment of the present application.
  • Coupled When describing some embodiments, the expression “coupled” and its derivatives may be used. For example, some embodiments may be described using the term “coupled” to indicate that two or more components are in direct physical or electrical contact. However, the term “coupled” may also refer to two or more components that are not in direct contact with each other, but still cooperate or interact with each other. The embodiments disclosed herein are not necessarily limited by the content herein.
  • Exemplary embodiments are described in the embodiments of the present application with reference to cross-sectional views and/or plan views and/or equivalent circuit diagrams that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. For example, an etched area shown as a rectangle will typically have curved features. Accordingly, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • the communication device is, for example, consumer electronic products, household electronic products, vehicle-mounted electronic products, financial terminal products, and communication electronic products.
  • consumer electronic products include mobile phones, tablets, laptops, e-readers, personal computers (PC), personal digital assistants (PDA), desktop monitors, Smart wearable products (such as smart watches, smart bracelets), virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, drones, etc.
  • Home electronic products include smart door locks, TVs, remote controls, refrigerators, rechargeable small household appliances (such as soymilk machines, sweeping robots), etc.
  • Vehicle-mounted electronic products such as car navigation systems, vehicle-mounted high-density digital video discs (digital video discs, DVDs), etc.
  • Financial terminal products include automated teller machines (ATMs), self-service terminals, etc.
  • Communication electronic products include servers, memories, radars, base stations and other equipment.
  • FIG. 1A is a schematic structural diagram of a communication device illustratively provided by an embodiment of the present application, taking the communication device as a mobile phone as an example.
  • the communication device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, and a battery. 142.
  • Wired communication system 150 wireless communication system 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone interface 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, And subscriber identification module (subscriber identification module, SIM) card interface 195, etc.
  • SIM subscriber identification module
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the communication device 100.
  • the communication device 100 may include more or less components than shown in the figures, or some components may be combined, or some components may be separated, or may be arranged differently.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU), etc.
  • image signal processor image signal processor, ISP
  • controller video codec
  • digital signal processor digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit
  • NPU neural-network processing unit
  • different processing units can be independent devices or integrated in one or more processors.
  • the controller can generate operation control signals based on the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • the processor 110 may also be provided with a memory for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have been recently used or recycled by processor 110 . If the processor 110 needs to use the instructions or data again, it can be called directly from the memory. Repeated access is avoided and the waiting time of the processor 110 is reduced, thus improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • Interfaces may include integrated circuit (inter-integrated circuit, I2C) interface, integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, pulse code modulation (pulse code modulation, PCM) interface, universal asynchronous receiver and transmitter (universal asynchronous receiver/transmitter (UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and /or universal serial bus (USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • UART universal asynchronous receiver and transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the USB interface 130 is an interface that complies with the USB standard specification, and may be a Mini USB interface, a Micro USB interface, a USB Type C interface, etc.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140 to provide power to the processor 110, the internal memory 121, the display screen 194, the camera 193, the wireless communication system 160, and the like.
  • the power management module 141 can also be used to monitor battery capacity, battery cycle times, battery health status (leakage, impedance) and other parameters.
  • the communication device 100 implements display functions through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is an image processing microprocessor and is connected to the display screen 194 and the application processor.
  • the display screen 194 is used to display images, videos, etc.
  • the communication device 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the communication device 100 can implement the shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, an application processor, and the like.
  • the ISP is used to process the data fed back by the camera 193, which is used to capture still images or videos, and the video codec is used to compress or decompress the digital video.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the communication device 100.
  • an external memory card such as a Micro SD card
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the communication device 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the headphone interface 170D, and the application processor.
  • the sensor module 180 may include an image sensor, a pressure sensor, a magnetic sensor, a distance sensor, etc.
  • the image sensor may be, for example, a contact image sensor (CIS).
  • the power distribution combiner 300 includes a common port O, a first branch port P, a second branch port Q, a first branch A, a second branch B, and a mode adjustment circuit 33 .
  • the first branch A includes a first signal transmission network 31, and two ends of the first signal transmission network 31 are coupled to the common port O and the first branch port P respectively.
  • the second branch B includes a second signal transmission network 32, and two ends of the second signal transmission network 32 are coupled to the common port 0 and the second branch port Q respectively.
  • the mode adjustment circuit 33 is coupled to the first signal transmission network 31 and is used to provide the working mode adjustment capability of the power distribution combiner 30 .
  • the working mode of the power distribution combiner 300 includes a first mode and a second mode.
  • the first mode is when both the first signal transmission network 31 and the second signal transmission network 32 are turned on, and the first branch A and the second branch B is in a conductive state.
  • the second mode the second signal transmission network 32 is turned on, the first branch A is in a blocking state, and the second branch B is in a conducting state.
  • the power distribution combiner 300 is also coupled to the second signal transmission network 32 , and the mode adjustment circuit 33 is used to provide the working mode adjustment capability of the power distribution combiner 30 to enable power distribution synthesis.
  • the working mode of the processor 300 also includes a third mode. In the third mode, the first signal transmission network 31 is turned on, the first branch A is in a conductive state, and the second branch B is in a blocked state.
  • the power distribution combiner 300 further includes an isolation circuit 34 coupled between the first signal transmission network 31 and the second signal transmission network 32 ; the mode adjustment circuit 33 also coupled to the isolation circuit 34.
  • the isolation circuit 34 By providing the isolation circuit 34, the isolation between the first branch port P and the second branch port Q can be increased and signal leakage can be reduced.
  • the power distribution synthesizer 300 includes a mode adjustment circuit 33.
  • the mode adjustment circuit 33 controls whether the first signal transmission network 31 is conductive to regulate whether the first branch A is conductive. In order to adjust the power distribution combiner 300 to enter the first mode (double-pass mode in which both the first branch A and the second branch B are conductive) or enter the second mode (through-pass mode in which only the second branch B is conductive) Effect.
  • the mode adjustment circuit 33 can also control whether the second signal transmission network 32 is turned on to control whether the second branch B is turned on to achieve adjustment.
  • the power distribution combiner 300 includes a common port O, a first branch port P, a second branch port Q, a first branch A, and a second branch B. and mode adjustment circuit 33.
  • the common port O includes a pair of common differential terminals.
  • the common port O includes a positive common differential terminal O1 and a negative common differential terminal O2 as an example for schematic explanation.
  • the first branch port P includes a pair of first branch differential terminals.
  • the first branch port P includes a first positive branch differential terminal P1 and a first negative branch differential terminal P2 as an example.
  • the second branch port Q includes a pair of second branch differential terminals.
  • the second branch port Q includes a second positive branch differential terminal Q1 and a second negative branch differential terminal Q2 as an example. illustrate.
  • the two signals transmitted on a pair of differential terminals have the same amplitude (or equal magnitude) and opposite phases.
  • the signal transmitted through a pair of differential terminals is called a differential signal.
  • the first terminal of the first inductor L1 and the first terminal of the third inductor L3 are respectively coupled to the positive common differential terminal O1 and the negative common differential terminal O2.
  • the second terminal of the first inductor L1 is coupled to the second terminal of the third inductor L3. Coupling; two ends of the second inductor L2 are coupled correspondingly to a pair of first shunt differential terminals (the first positive shunt differential terminal P1 and the first negative shunt differential terminal P2).
  • Two ends of the fourth inductor L4 are coupled correspondingly to a pair of second shunt differential terminals (the second positive shunt differential terminal Q1 and the second negative shunt differential terminal Q2).
  • the first terminal of the first inductor L1 is coupled to the positive common differential terminal O1, and the second terminal of the first inductor L1 is coupled to the second terminal of the third inductor L3.
  • the first end of the second inductor L2 is coupled to the first positive shunt differential terminal P1, and the second end of the second inductor L2 is coupled to the first negative shunt differential terminal P2.
  • the first terminal of the third inductor L3 is coupled to the negative common differential terminal O2, and the second terminal of the third inductor L3 is coupled to the second terminal of the first inductor L1.
  • the first end of the fourth inductor L4 is coupled to the second positive shunt differential terminal Q1, and the second end of the fourth inductor L4 is coupled to the second negative shunt differential terminal Q2.
  • the first positive branch differential terminal P1 and the second positive branch differential terminal Q1 have the same phase, and the first negative branch differential terminal P2 and the second negative branch differential terminal Q2 have the same phase. Therefore, the first terminal of the second inductor L2 and the first terminal of the fourth inductor L4 have the same phase, and the second terminal of the second inductor L2 and the second terminal of the fourth inductor L4 have the same phase.
  • the embodiment of the present application only takes as an example that the first end of the first inductor L1 is coupled to the positive common differential terminal P1 and the second end of the third inductor L3 is coupled to the negative common differential terminal P2.
  • the first terminal of the first inductor L1 may also be coupled to the negative common differential terminal P2, and the second terminal of the third inductor L3 may be coupled to the positive common differential terminal P1.
  • the first end of the first inductor L1 and the first end of the third inductor L3 are coupled correspondingly to the positive common differential terminal P1 and the negative common differential terminal P2.
  • the first signal transmission network 31 also includes a first capacitor C1 and/or a fourth capacitor C4, and/or a second signal transmission network 31.
  • Network 32 also includes a second capacitor C2 and/or a fifth capacitor C5.
  • the first branch A includes a first capacitor C1 and a fourth capacitor C4, and the second branch B includes a second capacitor C2 and a fifth capacitor C5.
  • the first signal transmission network 31 includes the first capacitor C1 and the fourth capacitor C4; it can also be that only the second signal transmission network 32 includes the second capacitor C2 and the fifth capacitor C5; it can also be that only the first signal transmission
  • the network 31 includes the first capacitor C1; it may also be that only the first signal transmission network 31 includes the fourth capacitor C4; it may also be that only the second signal transmission network 32 includes the second capacitor C2; it may also be that only the second signal transmission network 32 including the fifth capacitor C5; it may also be that the first signal transmission network 31 includes the first capacitor C1, and the second signal transmission network 32 includes the second capacitor C2; it may also be that the first signal transmission network 31 includes the first capacitor C1, and the second The signal transmission network 32 includes a fifth capacitor C5; it may also be that the first signal transmission network 31 includes a fourth capacitor C4, and the second signal transmission network 32 includes a fifth capacitor C5; it may also be that the first signal transmission network 31 includes a fourth capacitor C4, the second signal transmission network 32 includes a second capacitor C2.
  • the first signal transmission network 31 includes the first capacitor C1
  • the first terminal of the first capacitor C1 is coupled to the first terminal of the first inductor L1
  • the second terminal of the first capacitor C1 is coupled to the ground terminal.
  • the fourth capacitor C4 is connected in parallel with the second inductor L2. That is to say, the first terminal of the fourth capacitor C4 is coupled to the first terminal of the second inductor L2, and the second terminal of the fourth capacitor C4 is coupled to the second terminal of the second inductor L2.
  • the first terminal of the second capacitor C2 is coupled to the first terminal of the third inductor L3, and the second terminal of the second capacitor C2 is coupled to the ground terminal. That is to say, two ends of the second capacitor C2 are coupled correspondingly to the first positive branch differential terminal P1 and the first negative branch differential terminal P2.
  • the second branch B includes the fifth capacitor C5
  • the first terminal of the fifth capacitor C5 is coupled to the first terminal of the fourth inductor L4
  • the second terminal of the fifth capacitor C5 is coupled to the first terminal of the fourth inductor L4.
  • Two-terminal coupling That is to say, two ends of the fifth capacitor C5 are coupled correspondingly to the second positive branch differential terminal Q1 and the second negative branch differential terminal Q2.
  • the first signal transmission network 31 on the first branch A also includes a first capacitor C1 connected in parallel with the first inductor L1 and a capacitor C1 connected in parallel with the second inductor L2.
  • the fourth capacitor C4, the first capacitor C1 and the fourth capacitor C4 serve as tuning capacitors.
  • the first capacitor C1 and the first inductor L1 resonate together, and the fourth capacitor C4 and the second inductor L2 resonate together to make the transformer operate in the required frequency band.
  • C can be adjusted through the first capacitor C1 and the fourth capacitor C4, so that the operating frequency of the transformer can be adjusted.
  • the second signal transmission network 32 on the second branch B also includes a second capacitor C2 connected in parallel with the third inductor L3 and a fifth capacitor C5 connected in parallel with the fourth inductor L4.
  • the second capacitor C2 and the fifth capacitor C5 serves as a tuning capacitor, the second capacitor C2 and the third inductor L3 resonate together, and the fifth capacitor C5 and the fourth inductor L4 resonate together to make the transformer work in the required frequency band.
  • C can be adjusted through the second capacitor C2 and the fifth capacitor C5, so that the operating frequency of the transformer can be adjusted.
  • the power distribution combiner 300 further includes a third capacitor, and/or the first branch A further includes a fourth capacitor, and/or the second branch B further includes The fifth capacitor.
  • the power distribution combiner 300 further includes a third capacitor C3, the first signal transmission network 31 further includes a fourth capacitor C4, and the second signal transmission network 32 further includes a fifth capacitor C5.
  • the power distribution combiner 300 includes a third capacitor C3, two ends of the third capacitor C3 are respectively coupled to the first end of the first inductor L1 and the first end of the third inductor L3.
  • the fourth capacitor C4 is connected in parallel with the second inductor L2, and the first end of the fourth capacitor C4 is coupled with the first end of the second inductor L2.
  • the fourth capacitor C4 The second end of is coupled to the second end of the second inductor L2.
  • the fifth capacitor C5 is connected in parallel with the fourth inductor L4, and the first end of the fifth capacitor C5 is coupled with the first end of the fourth inductor L4.
  • the fifth capacitor C5 The second end of is coupled to the second end of the fourth inductor L4.
  • the power distribution combiner 300 may also include only the third capacitor C3; or the first signal transmission network 31 may only include the fourth capacitor C4; or the second signal transmission network 32 may only include the fifth capacitor C5; or the power The distribution combiner 300 includes a third capacitor C3, and the first signal transmission network 31 includes a fourth capacitor C4; or, the power distribution combiner 300 includes a third capacitor C3, and the second signal transmission network 32 includes a fifth capacitor C5; or, A signal transmission network 31 includes a fourth capacitor C4, and a second signal transmission network 32 includes a fifth capacitor C5.
  • the first inductor L1 and the third inductor L3 in the first signal transmission network 31 and the second signal transmission network 32 share the same tuning capacitor. (third capacitor C3), the structure of the power distribution combiner 300 can be simplified.
  • the coupling coefficient K1 of the first inductor L1 and the second inductor L2 and the coupling coefficient K2 of the third inductor L3 and the fourth inductor L4 may or may not be equal.
  • the inductance ratio (that is, the impedance ratio) of the first inductor L1 and the second inductor L2 is 1 or 2 or 1/2.
  • the radio frequency signal received by the first inductor L1 is equal to or similar in magnitude to the radio frequency signal coupled out by the second inductor L2.
  • the inductance ratio (that is, the impedance ratio) of the third inductor L3 and the fourth inductor L4 is 1 or 2 or 1/2.
  • the radio frequency signal received by the third inductor L3 is equal to or similar in magnitude to the radio frequency signal coupled out by the fourth inductor L4.
  • the structure of the first branch A and the structure of the second branch B may be the same or different, and this is not limited in the embodiment of the present application.
  • the mode adjustment circuit 33 is coupled to the first signal transmission network 31 .
  • the mode adjustment circuit 33 includes a first switch S1.
  • the first switch S1 is coupled to the first signal transmission network 31 for controlling the first signal. Whether the transmission network 31 is conductive.
  • the first switch S1 is coupled between the first signal transmission network 31 and the first shunt port P, and both ends of the first switch S1 are connected to the first positive shunt differential terminal.
  • P1 and the first negative branch differential terminal P2 are coupled correspondingly.
  • the first switch S1 may be composed of one switch.
  • the first switch S1 may also include multiple switches connected in series.
  • the first switch S1 may also include multiple switches connected in parallel.
  • This application implements For example, the specific structure of the first switch S1 is not limited.
  • the first switch S1 is a diode.
  • the on and off of the first switch S1 can be controlled through a digital signal.
  • the first switch S1 is a triode.
  • the on and off of the first switch S1 can be controlled through an analog signal.
  • the structures of the third switch S3 and the fourth switch S4 may be the same as the structure of the above-mentioned first switch S1. Reference may be made to the above-mentioned related description of the first switch S1, which will not be described again here.
  • the first isolation resistor R1 and the second isolation resistor R2 both play an isolation role.
  • the odd-even mode analysis can Let the isolation between the first branch differential terminal P and the second branch differential terminal Q increase (or understand that the signal leakage tends to zero).
  • the third switch S3 connected in series with the first isolation resistor R1 it is possible to control whether the first branch A and the second branch B are connected.
  • the fourth switch S4 in series with the second isolation resistor R2 it can be controlled whether the first branch A and the second branch B are connected. In this way, the operating mode of the power distribution combiner 300 can be adjusted.
  • one of the first shunt differential terminals P is coupled to the ground and one of the second shunt differential terminals Q is coupled to the ground.
  • first negative branch differential terminal P2 of the first branch differential terminal P is coupled to the ground terminal
  • second negative branch differential terminal Q2 of the second branch differential terminal Q is coupled to the ground terminal
  • the first positive shunt differential terminal P1 of the first shunt differential terminal P is coupled to the ground terminal
  • the second positive shunt differential terminal Q1 of the second shunt differential terminal Q is coupled to the ground terminal.
  • the mode adjustment circuit 33 is also coupled to the second signal transmission network 32 .
  • the mode adjustment circuit 33 further includes a second switch S2.
  • the second switch S2 is coupled to the second signal transmission network 32 and is used to control whether the second signal transmission network 32 is turned on.
  • the second switch S2 is connected in parallel with the fourth inductor L4. Two ends of the second switch S2 are coupled with two ends of the fourth inductor L4 correspondingly. The second switch S2 is coupled between the fourth inductor L4 and the second shunt port Q.
  • the second switch S2 can be used to control whether the second branch B is conductive to adjust the working mode of the power distribution combiner 300 .
  • the mode adjustment circuit 33 may also include a second switch S2 .
  • the common port O serves as The radio frequency signal received at the input end flows into the first branch A through the positive common differential terminal O1, and flows into the second branch B through the negative common differential terminal O2.
  • the first inductor L1 in the first branch A serves as the primary coil
  • the second inductor L2 serves as the secondary coil.
  • the third inductor L3 in the second branch B serves as the primary coil
  • the fourth inductor L4 serves as the secondary coil.
  • the combining principle when the power distribution combiner 300 is used as a power combiner is: the second inductor L2 of the first branch A serves as the primary coil, and the first inductor L1 serves as the secondary coil.
  • the fourth inductor L4 of the second branch B serves as the primary coil, and the third inductor L3 serves as the secondary coil.
  • the radio frequency signal received by the first branch port P as the input end is electromagnetically coupled to the first inductor L1 through the second inductor L2.
  • the radio frequency signal received by the second branch port Q as the input end is electromagnetically coupled to the third inductor L3 through the fourth inductor L4.
  • the first inductor L1 and the third inductor L3 are connected in series to combine the radio frequency signals received by the first branch port P and the second branch port Q and output them from the common port O.
  • the driving process of the power distribution synthesizer 300 includes:
  • the mode adjustment circuit 33 controls the first signal transmission network 31 and the second signal transmission network 32 to be turned on, and the power distribution combiner 300 enters the first mode.
  • the mode adjustment circuit 33 controls the first signal transmission network 31 to disconnect, controls the second signal transmission network 32 to conduct, and the power distribution combiner 300 enters the second mode.
  • the first switch S1 in the first branch A Since the first switch S1 in the first branch A is closed, the first shunt port P is short-circuited. Then, the second inductor (secondary coil of the transformer network) L2 in the first branch A is coupled to the short-circuit load.
  • the first point X1 is low resistance when looking towards the second point X2, that is, the first inductor (primary coil of the transformer network) L1 between the first point X1 and the second point X2 is approximately short-circuited, and the first inductor L1 can be approximately equivalent.
  • the RF signal transmitted from the positive common differential terminal O1 of the common port O to the second point X2 will be transmitted to the first point X1.
  • the RF signal of the common port O is all fed to the second branch B, and there is no power division.
  • the power obtained by the first branch port P is p2 ⁇ 0.
  • loss is the loss of the transformer network in the second branch B at the corresponding frequency.
  • the mode adjustment circuit 33 controls the first signal transmission network 31 to turn on, controls the second signal transmission network 32 to turn off, and the power distribution combiner 300 enters the third mode.
  • the first switch S1 is controlled to be turned off
  • the second switch S2 is controlled to be closed
  • the third switch S3 is controlled to be turned off
  • the fourth switch S4 is controlled to be turned off, so that the first branch A is turned on.
  • the second switch S2 Since the second switch S2 is closed, the second shunt port Q is short-circuited. Then, the second inductor (secondary coil of the transformer network) L2 in the second branch B is coupled to the short-circuit load.
  • the first point X1 looks toward the third point X3 with low resistance, that is, the first inductor (primary coil of the transformer network) L1 between the first point X1 and the third point X3 is approximately short-circuited, and the third inductor L3 can be approximately equivalent.
  • the RF signal transmitted from the negative common differential terminal O2 of the common port O to the third point X3 will be transmitted to the first point X1, so that all the RF signals of the common port O are fed to the first branch A, and the common port O input
  • the RF signal passes directly to the first branch port P, and there is no power division.
  • the power obtained by the second branch port Q is p3 ⁇ 0.
  • loss is the loss of the transformer network in the first branch A at the corresponding frequency.
  • the driving process of the power distribution combiner 300 includes:
  • the mode adjustment circuit 33 controls the first signal transmission network 31 and the second signal transmission network 32 to be turned on, and the power distribution combiner 300 enters the first mode.
  • the first switch S1 is controlled to open
  • the second switch S2 is controlled to open
  • the third switch S3 is controlled to close
  • the fourth switch S4 is controlled to close, so that the first branch A and the second branch B are all conducting.
  • the radio frequency signal at the first branch port P is transmitted to the common port O after passing through the first branch A.
  • the radio frequency signal of the second branch port Q is transmitted to the common port O after passing through the second branch B.
  • the power p2 of the first branch port P and the power p3 of the second branch port Q are combined to the common port O.
  • the mode adjustment circuit 33 controls the first signal transmission network 31 to disconnect, controls the second signal transmission network 32 to conduct, and the power distribution combiner 300 enters the second mode.
  • the first switch S1 is controlled to be closed
  • the second switch S2 is controlled to be open
  • the third switch S3 is controlled to be open
  • the fourth switch S4 is controlled to be open, so that the second branch B is turned on.
  • the radio frequency signal of the second branch port Q When the radio frequency signal of the second branch port Q is transmitted to the common port O through the second branch B, since the first inductor L1 and the third inductor L3 of the second branch B are connected in series, the radio frequency signal will flow to the third point X1 through the first point X1. Two points X2. However, since the first switch S1 in the first branch A is closed, the first shunt port P is short-circuited. Then, the second inductor (secondary coil of the transformer network) L2 in the first branch A is coupled to the short-circuit load.
  • the radio frequency signal in the first inductor L1 will not be coupled to the second inductor L2, but will be transmitted to the positive common differential terminal O1 of the common short circuit O, so that the radio frequency signal of the second branch port Q is transmitted to the common port O,
  • the power p3 of the second branch port Q is passed directly to the common port O.
  • the mode adjustment circuit 33 controls the first signal transmission network 31 to turn on, controls the second signal transmission network 32 to turn off, and the power distribution combiner 300 enters the third mode.
  • the first switch S1 is controlled to be turned off
  • the second switch S2 is controlled to be closed
  • the third switch S3 is controlled to be turned off
  • the fourth switch S4 is controlled to be turned off, so that the first branch A is turned on.
  • the power distribution combiner 300 removes the need for the second switch S2 during operation. The control process of switch S2 is enough. Meanwhile, the power distribution combiner 300 does not include the third mode.
  • the power distribution combiner 300 provided by the embodiment of the present application sets a transformer network including a first inductor L1 and a second inductor L2 on the first branch A, and sets a transformer network including a first inductor L2 on the second branch B.
  • the transformer network of the three inductors L3 and the fourth inductor L4 enables the power distribution combiner 300 to be used as a power divider to realize the power distribution function, and to be used as a power combiner to realize the power synthesis function.
  • the power distribution synthesizer 300 provided in the embodiment of the present application transmits differential signals, which has high immunity to external electromagnetic interference (EMI) and can improve the quality of radio frequency signal transmission.
  • EMI external electromagnetic interference
  • the power distribution combiner 300 also includes a mode adjustment circuit 33.
  • the power distribution combiner 300 can Control whether the first branch A and the second branch B are connected.
  • the power distribution synthesizer 300 can be configured according to the actual application scenario to enter the first mode (dual-pass mode), the second mode (the pass-through mode with the first branch A conducting)) or the third mode (the second branch B conduction pass-through mode). Without both the first branch A and the second branch B being turned on, the power distribution combiner 300 can be adjusted to the pass-through mode. In the pass-through mode, power waste on unused branches can be eliminated and the insertion loss of the power distribution combiner 300 can be reduced.
  • the power distribution combiner 300 includes a common port O, a first branch port P, a second branch port Q, a first branch A, a second branch port Road B and mode adjustment circuit 33.
  • the first end of the fifth inductor L5 and the first end of the seventh inductor L7 are coupled to the positive common differential terminal O1
  • the second end of the fifth inductor L5 is coupled to the first positive shunt differential terminal P1
  • the seventh inductor L7 The second terminal is coupled to the second positive shunt differential terminal Q1.
  • the first end of the sixth inductor L6 and the first end of the eighth inductor L8 are coupled to the negative common differential terminal O2
  • the second end of the sixth inductor L6 is coupled to the first negative branch differential terminal P2
  • the eighth inductor L8 The second terminal is coupled to the second negative branch differential terminal Q2.
  • the sixth capacitor C6 is coupled between the first terminal of the fifth inductor L5 and the first terminal of the sixth inductor L6.
  • the seventh capacitor C7 is coupled between the second terminal of the fifth inductor L5 and the second terminal of the sixth inductor L6. between ends.
  • the eighth capacitor C8 is coupled between the first terminal of the seventh inductor L7 and the first terminal of the eighth inductor L8.
  • the ninth capacitor C9 is coupled between the second terminal of the seventh inductor L7 and the second terminal of the eighth inductor L8. between ends.
  • the mode adjustment circuit 33 may include only the first switch S1. As shown in FIG. 16A, the mode adjustment circuit 33 may also include a first switch S1 and a second switch S2.
  • the power distribution combiner 300 may further include a first isolation resistor R1 and a second isolation resistor R2.
  • the mode adjustment circuit 33 may also include a third switch S3 and a fourth switch S4.
  • the structures of the first isolation resistor R1, the second isolation resistor R2, the third switch S3, and the fourth switch S4 may be the same as in Example 1. Reference may be made to the above related descriptions and will not be described again here.
  • the structure of the first signal transmission network 31 and the second signal transmission network 32 illustrated in FIG. 16A can transmit differential signals, it is different from the structure of the transformer-based first signal transmission network 31 and the second signal transmission network 32 illustrated in FIG. 9C In comparison, the structures of the first signal transmission network 31 and the second signal transmission network 32 illustrated in FIG. 9C have more advantages in bandwidth and can meet high bandwidth requirements.
  • Example 3 The main difference between Example 3 and Example 1 and Example 2 is that the isolation circuit in this example does not include two isolation resistors, but only one isolation resistor, and the first shunt port P and the second shunt port Q respectively There is a terminal coupled to the ground terminal.
  • the structures of the common port O, the first branch port P, the second branch port Q, the first branch A, and the second branch B are the same as those in Example 1 or Example 2. Please refer to the relevant information in Example 1 or Example 2. describe.
  • the isolation circuit includes a third isolation resistor R3, and the mode adjustment circuit 33 includes a fifth switch S5 in addition to the first switch S1 and/or the second switch S2.
  • the third isolation resistor R3 and the fifth switch S5 are coupled in series between the two terminals of the first shunt port P and the second shunt port Q with the same phase.
  • the other two terminals with the same phase in the port P and the second shunt port Q are both coupled to the ground terminal.
  • the third isolation resistor R3 and the fifth switch S5 are coupled in series between the first positive branch differential terminal P1 and the second positive branch differential terminal Q1.
  • the path differential terminal P2 and the second negative branch differential terminal Q2 are both coupled to the ground terminal.
  • the third isolation resistor R3 and the fifth switch S5 are coupled in series between the first end of the second inductor L2 and the first end of the fourth inductor L4, and the second end of the second inductor L2 and the fourth inductor L4 are connected in series.
  • the second end of L4 is both coupled to the ground terminal (that is, the first negative shunt differential terminal P2 and the second negative shunt differential terminal Q2 are both coupled to the ground terminal).
  • the first terminal of the second inductor L2 has the same phase as the first terminal of the fourth inductor L4, and the second terminal of the second inductor L2 has the same phase as the second terminal of the fourth inductor L4.
  • the third isolation resistor R3 and the fifth switch S5 are coupled in series between the first negative branch differential terminal P2 and the second negative branch differential terminal Q2.
  • the positive shunt differential terminal P1 and the second positive shunt differential terminal Q1 are both coupled to the ground terminal.
  • the third isolation resistor R3 and the fifth switch S5 are coupled in series between the second end of the second inductor L2 and the second end of the fourth inductor L4.
  • the first end of the second inductor L2 and the fourth inductor L4 are connected in series.
  • the first terminals of L4 are both coupled to the ground terminal (that is, the first positive shunt differential terminal P1 and the second positive shunt differential terminal Q1 are both coupled to the ground terminal).
  • the first terminal of the second inductor L2 has the same phase as the first terminal of the fourth inductor L4, and the second terminal of the second inductor L2 has the same phase as the second terminal of the fourth inductor L4.
  • the structure of the third isolation resistor R3 may be the same as that of the first isolation resistor R1 or the second isolation resistor R2. Reference may be made to the above-mentioned descriptions of the first isolation resistor R1 and the second isolation resistor R2, which will not be described again here.
  • the structure of the fifth switch S5 may be the same as the structure of the first switch S1 in Example 1. Reference may be made to the above-mentioned description of the first switch S1 and will not be described again here.
  • the first shunt differential terminal P and the second shunt differential terminal Q in the power distribution combiner 300 are equivalent to a single-ended structure.
  • the power divider can have the function of converting a differential signal into a single-ended signal.
  • the power combiner can be configured to have the function of converting a single-ended signal into a differential signal.
  • first signal transmission network 31 and the second signal transmission network 32 shown in FIGS. 17A to 17D are only for illustration and are not limited in any way.
  • the structure of the first signal transmission network 31 and the second signal transmission network 32 may be the signal transmission network illustrated in Example 1 and Example 2.
  • the first shunt differential terminal P and the second shunt differential terminal Q in the power distribution combiner 300 are equivalent It is a single-ended structure.
  • the power divider can have the function of converting a differential signal into a single-ended signal.
  • the power combiner can be configured to have the function of converting a single-ended signal into a differential signal.
  • the power distribution combiner network 30 may include only one power distribution combiner 300.
  • the common port O of the power distribution combiner 300 serves as the signal synthesis end M1 of the power distribution synthesis network 30
  • the first branch port P and the second branch port Q serve as signal branches of the power distribution synthesis network 30 Terminal M2.
  • multiple power distribution combiners 300 may also include a structure arranged in series.
  • the branches in the power distribution synthesis network 30 spread like branches.
  • the number of power distribution combiners 300 included in each stage is not limited, and the decomposition needs to be set appropriately.
  • the first branch port P and the second branch port Q of the plurality of power distribution combiners 300 that are not coupled to the common port O serve as the signal branch port M2.
  • the signal splitting ends M2 of the power distribution and synthesis network 30 are not necessarily located at the same stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

提供一种通信设备及其工作方法,涉及通信技术领域,用于解决如何降低通信设备损耗的问题。通信设备包括:第一射频电路和多个第二射频电路;功率分配合成网络,包括信号合成端和多个信号分路端;信号合成端与第一射频电路耦接,多个信号分路端与多个第二射频电路耦接。功率分配合成网络包括功率分配合成器,功率分配合成器中的第一信号传输网络的两端分别与公共端口和第一分路端口耦接;第二信号传输网络的两端分别与公共端口和第二分路端口耦接;模式调解电路与第一信号传输网络耦接,用于提供功率分配合成器的工作模式调解能力;功率分配合成器的工作模式包括第一信号传输网络和第二信号传输网络均导通和仅第二信号传输网络导通。

Description

通信设备及其工作方法 技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信设备及其工作方法。
背景技术
功率分配合成器是一种用于将单路射频信号和多路射频信号相互转换的器件。它可以将一路射频信号分成多路、等分或不等分射频信号,此时可称为功率分配器。它也可以将多路射频信号合成为一路射频信号,此时可称为功率合路器。
然而,当前的功率分配器和功率合路器的存在功率浪费的问题,将功率分配合成器应用于通信设备中时,会导致通信设备的损耗较大。
发明内容
本申请实施例提供一种通信设备及其工作方法,用于解决如何降低通信设备损耗的问题。
为达到上述目的,本申请采用如下技术方案:
本申请实施例的第一方面,提供一种通信设备,通信设备包括:第一射频电路和多个第二射频电路;功率分配合成网络,包括信号合成端和多个信号分路端;信号合成端与第一射频电路耦接,用于传输合路信号;多个信号分路端与多个第二射频电路耦接,用于传输分离信号。其中,功率分配合成网络可以将接收到的第一射频电路的功率分配至多个第二射频电路中,功率分配合成网络也可以将接收到的第二射频电路的功率合成至第一射频电路。功率分配合成网络包括至少一个功率分配合成器,功率分配合成器包括公共端口、第一分路端口和第二分路端口、第一信号传输网络、第二信号传输网络以及模式调解电路;第一信号传输网络的两端分别与公共端口和第一分路端口耦接;第二信号传输网络的两端分别与公共端口和第二分路端口耦接;模式调解电路与第一信号传输网络耦接,用于提供功率分配合成器的工作模式调解能力;其中,功率分配合成器的工作模式包括第一模式和第二模式,第一模式为第一信号传输网络和第二信号传输网络均导通,第二模式为仅第二信号传输网络导通。
本申请实施例提供的通信设备中的功率分配合成器包括模式调解电路,通过模式调解电路控制第一信号传输网络是否导通,以达到调整功率分配合成器进入第一模式(第一信号传输网络和第二信号传输网络均导通的双通模式)或者进入第二模式(仅第二信号传输网络导通的直通模式)的效果。这样一来,可以根据实际应用场景将功率分配合成器配置成双通模式或者直通模式。在无需第一信号传输网络和第二信号传输网络都导通的情况下,可将功率分配合成器调整至直通模式。在直通模式下,可省去未使用的支路上的功率浪费,减小功率分配合成器的插损。
在一种可能的实现方式中,模式调解电路还与第二信号传输网络耦接;功率分配合成器的工作模式还包括第三模式,第三模式为仅第一信号传输网络导通。模式调解电路还可以控制第二信号传输网络是否导通,以达到调整功率分配合成器是否进入第 三模式(仅第一信号传输网络导通的直通模式)的效果,增加功率分配合成器的模式类型。
在一种可能的实现方式中,功率分配合成器还包括隔离电路,隔离电路耦接于第一信号传输网络与第二信号传输网络之间;模式调解电路还与隔离电路耦接。通过设置隔离电路,隔离电路起隔离作用,可增大第一分路端口和第二分路端口之间的隔离度,减小信号泄露。
在一种可能的实现方式中,模式调解电路包括第一开关,第一开关与第一信号传输网络耦接,用于控制第一信号传输网络是否导通。一种结构简单的实现方式。
在一种可能的实现方式中,模式调解电路还包括第二开关,第二开关与第二信号传输网络耦接,用于控制第二信号传输网络是否导通。一种结构简单的实现方式。
在一种可能的实现方式中,公共端口包括正公共差分端子和负公共差分端子;第一分路端口包括第一正分路差分端子和第一负分路差分端子;第二分路端口包括第二正分路差分端子和第二负分路差分端子;第一信号传输网络包括第一电感和第二电感;第二信号传输网络包括第三电感和第四电感;第一电感的第一端和第三电感的第一端与正公共差分端子和负公共差分端子对应耦接,第一电感的第二端与第三电感的第二端耦接;第二电感的两端与第一正分路差分端子和第一负分路差分端子对应耦接,第四电感的两端与第二正分路差分端子和第二负分路差分端子对应耦接。基于变压器网络的第一信号传输网络和第二信号传输网络,传输的为差分信号,对外部电磁干扰具有较高的免疫,可提高射频信号传输质量。另外,基于变压器网络的第一信号传输网络和第二信号传输网络,带宽更有优势,可以满足高宽带要求。
在一种可能的实现方式中,第一信号传输网络还包括第一电容,第一电容的第一端与第一电感的第一端耦接,第一电容的第二端与接地端耦接;第二信号传输网络还包括第二电容,第二电容的第一端与第三线圈的第一端耦接,第二电容的第二端与接地端耦接。第一电容和第二电容作为调谐电容,第一电容和第一电感一起谐振,第二电容和第三电感一起谐振,使变压器工作在需要的频段,通过调节可以调节变压器工作频率。
在一种可能的实现方式中,功率分配合成器还包括第三电容;第三电容的两端分别与第一电感的第一端和第三电感的第一端耦接。第一支路和第二支路上的两个变压器网络中的第一电感和第三电感共用同一调谐电容(第三电容),可简化功率分配合成器的结构。
在一种可能的实现方式中,第一信号传输网络还包括第四电容,第二信号传输网络还包括第五电容;第四电容与第二电感并联,第五电容与第四电感并联。第四电容和第五电容作为调谐电容,第四电容和第二电感一起谐振,第五电容和第四电感一起谐振,使变压器工作在需要的频段,通过调节可以调节变压器工作频率。
在一种可能的实现方式中,公共端口包括正公共差分端子和负公共差分端子;第一分路端口包括第一正分路差分端子和第一负分路差分端子;第二分路端口包括第二正分路差分端子和第二负分路差分端子;第一信号传输网络包括第五电感、第六电感、第六电容以及第七电容;第二信号传输网络包括第七电感、第八电感、第八电容以及第九电容;第五电感的第一端和第七电感的第一端与正公共差分端子耦接,第五电感 的第二端与第一正分路差分端子耦接,第七电感的第二端与第二正分路差分端子耦接;第六电感的第一端和第八电感的第一端与负公共差分端子耦接,第六电感的第二端与第一负分路差分端子耦接,第八电感的第二端与第二负分路差分端子耦接;第六电容耦接于第五电感的第一端和第六电感的第一端之间,第七电容耦接于第五电感的第二端和第六电感的第二端之间;第八电容耦接于第七电感的第一端和第八电感的第一端之间,第九电容耦接于第七电感的第二端和第八电感的第二端之间。该结构的第一信号传输网络和第二信号传输网络,传输的为差分信号,对外部电磁干扰具有较高的免疫,可提高射频信号传输质量。
在一种可能的实现方式中,模式调解电路中第一开关的两端与第一正分路差分端子和第一负分路差分端子对应耦接。一种结构简单的实现方式。
在一种可能的实现方式中,模式调解电路中第二开关的两端与第二正分路差分端子和第二负分路差分端子对应耦接。一种结构简单的实现方式。
在一种可能的实现方式中,隔离电路包括第一隔离电阻和第二隔离电阻;模式调解电路还包括第三开关和第四开关;第一隔离电阻和第三开关串联耦接于第一正分路差分端子和第二正分路差分端子之间;第二隔离电阻和第四开关串联耦接于第一负分路差分端子和第二负分路差分端子之间。通过设置第一隔离电阻和第二隔离电阻,第一隔离电阻和第二隔离电阻均起隔离作用,可以让第一分路差分端子和第二分路差分端子两个端口之间的隔离度增大(或者理解为信号泄露趋向于零)。第三开关和第四开关用于在功率分配合成器工作过程中,配合第一开关和第二开关调整功率分配合成器的工作模式。
在一种可能的实现方式中,隔离电路包括第三隔离电阻;模式调解电路还包括第五开关;第三隔离电阻和第五开关串联耦接于第一分路端口和第二分路端口中相位相同的两个端口之间,第一分路端口和第二分路端口中相位相同的另外两个端口均与接地端耦接。第一分路端口和第二分路端口中相位相同的另外两个端子均与接地端耦接,功率分配合成器中的两个分路差分端子等效为单端结构。在功率分配合成器用作功率分配器时,可使功率分配器具有从差分信号转换为单端信号的功能。在功率分配合成器用作功率合路器时,可使功率合路器具有从单端信号转换为差分信号的功能。
在一种可能的实现方式中,通信设备还包括电路板,功率分配合成网络设置在电路板上。一种实现方式。
在一种可能的实现方式中,功率分配合成网络的信号分路端接收信号,多个第二射频电路的功率经功率分配合成网络合成至第一射频电路。功率分配合成网络可以应用于接收通道中。
在一种可能的实现方式中,功率分配合成网络的信号合成端接收信号,第一射频电路的功率经功率分配合成网络分配至多个第二射频电路。功率分配合成网络可以应用于发射通道中。
在一种可能的实现方式中,通信设备还包括天线;天线与第二射频电路耦接。一种应用场景。
在一种可能的实现方式中,功率分配合成网络包括一个功率分配合成器,功率分配合成器的公共端口作为信号合成端,第一分路端口和第二分路端口作为信号分路端。 一种应用方式。
在一种可能的实现方式中,功率分配合成网络包括多个功率分配合成器,多个功率分配合成器中的至少部分功率分配合成器串联,下一级功率分配合成器的公共端口与上一级功率分配合成器的第一分路端口或第二分路端口耦接;第一级功率分配合成器的公共端口作为信号合成端,至少部分功率分配合成器的未与公共端口耦接的第一分路端口和第二分路端口作为信号分路端。一种应用方式。
本申请实施例的第二方面,提供一种通信设备的工作方法,通信设备包括:第一射频电路和多个第二射频电路;功率分配合成网络,包括信号合成端和多个信号分路端;信号合成端与第一射频电路耦接,用于传输合路信号;多个信号分路端与多个第二射频电路耦接,用于传输分离信号;功率分配合成网络包括至少一个功率分配合成器,功率分配合成器包括公共端口、第一分路端口和第二分路端口、第一信号传输网络、第二信号传输网络以及模式调解电路;第一信号传输网络的两端分别与公共端口和第一分路端口耦接;第二信号传输网络的两端分别与公共端口和第二分路端口耦接;模式调解电路与第一信号传输网络耦接,用于提供功率分配合成器的工作模式调解能力;功率分配合成器的工作模式包括第一模式和第二模式,第一模式为第一信号传输网络和第二信号传输网络均导通,第二模式为第二信号传输网络导通;通信设备的工作方法包括:在同一时刻,模式调解电路控制第一信号传输网络和第二信号传输网络导通,功率分配合成器进入第一模式;或者,模式调解电路控制第一信号传输网络断开,控制第二信号传输网络导通,功率分配合成器进入第二模式。
本申请实施例第二方面提供的通信设备的工作方法的有益效果与通信设备的有益效果相同,此处不再赘述。
在一种可能的实现方式中,模式调解电路还与第二信号传输网络耦接;功率分配合成器的工作模式还包括第三模式,第三模式为第一信号传输网络导通;通信设备的工作方法包括:或者在同一时刻,模式调解电路控制第一信号传输网络导通,控制第二信号传输网络断开,功率分配合成器进入第三模式。
本申请实施例的第三方面,提供一种功率分配合成器,功率分配合成器包括公共端口、第一分路端口和第二分路端口、第一信号传输网络、第二信号传输网络以及模式调解电路;第一信号传输网络的两端分别与公共端口和第一分路端口耦接;第二信号传输网络的两端分别与公共端口和第二分路端口耦接;模式调解电路与第一信号传输网络耦接,用于提供功率分配合成器的工作模式调解能力;其中,功率分配合成器的工作模式包括第一模式和第二模式,第一模式为第一信号传输网络和第二信号传输网络均导通,第二模式为仅第二信号传输网络导通。
本申请实施例提供的功率分配合成器,通过在第一支路上设置第一信号传输网络,在第二支路上设置第二信号传输网络,使得功率分配合成器作为功率分配器使用可很好的实现功率分配功能,作为功率合路器使用可很好的实现功率合成功能。在此基础上,功率分配合成器包括模式调解电路,通过模式调解电路控制第一信号传输网络是否导通,以达到调整功率分配合成器进入第一模式(第一信号传输网络和第二信号传输网络均导通的双通模式)或者进入第二模式(仅第二信号传输网络导通的直通模式)的效果。这样一来,可以根据实际应用场景将功率分配合成器配置成双通模式或者直 通模式。在无需第一信号传输网络和第二信号传输网络都导通的情况下,可将功率分配合成器调整至直通模式。在直通模式下,可省去未使用的支路上的功率浪费,减小功率分配合成器的插损。
在一种可能的实现方式中,模式调解电路还与第二信号传输网络耦接;功率分配合成器的工作模式还包括第三模式,第三模式为仅第一信号传输网络导通。模式调解电路还可以控制第二信号传输网络是否导通,以达到调整功率分配合成器是否进入第三模式(仅第一信号传输网络导通的直通模式)的效果,增加功率分配合成器的模式类型。
在一种可能的实现方式中,功率分配合成器还包括隔离电路,隔离电路耦接于第一信号传输网络与第二信号传输网络之间;模式调解电路还与隔离电路耦接。通过设置隔离电路,隔离电路起隔离作用,可增大第一分路端口和第二分路端口之间的隔离度,减小信号泄露。
在一种可能的实现方式中,模式调解电路包括第一开关,第一开关与第一信号传输网络耦接,用于控制第一信号传输网络是否导通。一种结构简单的实现方式。
在一种可能的实现方式中,模式调解电路还包括第二开关,第二开关与第二信号传输网络耦接,用于控制第二信号传输网络是否导通。一种结构简单的实现方式。
在一种可能的实现方式中,公共端口包括正公共差分端子和负公共差分端子;第一分路端口包括第一正分路差分端子和第一负分路差分端子;第二分路端口包括第二正分路差分端子和第二负分路差分端子;第一信号传输网络包括第一电感和第二电感;第二信号传输网络包括第三电感和第四电感;第一电感的第一端和第三电感的第一端与正公共差分端子和负公共差分端子对应耦接,第一电感的第二端与第三电感的第二端耦接;第二电感的两端与第一正分路差分端子和第一负分路差分端子对应耦接,第四电感的两端与第二正分路差分端子和第二负分路差分端子对应耦接。基于变压器网络的第一信号传输网络和第二信号传输网络,传输的为差分信号,对外部电磁干扰具有较高的免疫,可提高射频信号传输质量。另外,基于变压器网络的第一信号传输网络和第二信号传输网络,带宽更有优势,可以满足高宽带要求。
在一种可能的实现方式中,第一信号传输网络还包括第一电容,第一电容的第一端与第一电感的第一端耦接,第一电容的第二端与接地端耦接;第二信号传输网络还包括第二电容,第二电容的第一端与第三线圈的第一端耦接,第二电容的第二端与接地端耦接。第一电容和第二电容作为调谐电容,第一电容和第一电感一起谐振,第二电容和第三电感一起谐振,使变压器工作在需要的频段,通过调节可以调节变压器工作频率。
在一种可能的实现方式中,功率分配合成器还包括第三电容;第三电容的两端分别与第一电感的第一端和第三电感的第一端耦接。第一支路和第二支路上的两个变压器网络中的第一电感和第三电感共用同一调谐电容(第三电容),可简化功率分配合成器的结构。
在一种可能的实现方式中,第一信号传输网络还包括第四电容,第二信号传输网络还包括第五电容;第四电容与第二电感并联,第五电容与第四电感并联。第四电容和第五电容作为调谐电容,第四电容和第二电感一起谐振,第五电容和第四电感一起 谐振,使变压器工作在需要的频段,通过调节可以调节变压器工作频率。
在一种可能的实现方式中,公共端口包括正公共差分端子和负公共差分端子;第一分路端口包括第一正分路差分端子和第一负分路差分端子;第二分路端口包括第二正分路差分端子和第二负分路差分端子;第一信号传输网络包括第五电感、第六电感、第六电容以及第七电容;第二信号传输网络包括第七电感、第八电感、第八电容以及第九电容;第五电感的第一端和第七电感的第一端与正公共差分端子耦接,第五电感的第二端与第一正分路差分端子耦接,第七电感的第二端与第二正分路差分端子耦接;第六电感的第一端和第八电感的第一端与负公共差分端子耦接,第六电感的第二端与第一负分路差分端子耦接,第八电感的第二端与第二负分路差分端子耦接;第六电容耦接于第五电感的第一端和第六电感的第一端之间,第七电容耦接于第五电感的第二端和第六电感的第二端之间;第八电容耦接于第七电感的第一端和第八电感的第一端之间,第九电容耦接于第七电感的第二端和第八电感的第二端之间。该结构的第一信号传输网络和第二信号传输网络,传输的为差分信号,对外部电磁干扰具有较高的免疫,可提高射频信号传输质量。
在一种可能的实现方式中,模式调解电路中第一开关的两端与第一正分路差分端子和第一负分路差分端子对应耦接。一种结构简单的实现方式。
在一种可能的实现方式中,模式调解电路中第二开关的两端与第二正分路差分端子和第二负分路差分端子对应耦接。一种结构简单的实现方式。
在一种可能的实现方式中,隔离电路包括第一隔离电阻和第二隔离电阻;模式调解电路还包括第三开关和第四开关;第一隔离电阻和第三开关串联耦接于第一正分路差分端子和第二正分路差分端子之间;第二隔离电阻和第四开关串联耦接于第一负分路差分端子和第二负分路差分端子之间。通过设置第一隔离电阻和第二隔离电阻,第一隔离电阻和第二隔离电阻均起隔离作用,可以让第一分路差分端子和第二分路差分端子两个端口之间的隔离度增大(或者理解为信号泄露趋向于零)。第三开关和第四开关用于在功率分配合成器工作过程中,配合第一开关和第二开关调整功率分配合成器的工作模式。
在一种可能的实现方式中,隔离电路包括第三隔离电阻;模式调解电路还包括第五开关;第三隔离电阻和第五开关串联耦接于第一分路端口和第二分路端口中相位相同的两个端口之间,第一分路端口和第二分路端口中相位相同的另外两个端口均与接地端耦接。第一分路端口和第二分路端口中相位相同的另外两个端子均与接地端耦接,功率分配合成器中的两个分路差分端子等效为单端结构。在功率分配合成器用作功率分配器时,可使功率分配器具有从差分信号转换为单端信号的功能。在功率分配合成器用作功率合路器时,可使功率合路器具有从单端信号转换为差分信号的功能。
附图说明
图1A为本申请实施例提供的一种通信设备的框架示意图;
图1B为本申请实施例提供的一种功率分配合成网络与射频电路的框架示意图;
图2A-图2D为本申请实施例提供的一种功率分配合成器的结构示意图;
图3A-图3C为本申请实施例提供的一种功率分配器的框架图示意图;
图4为本申请实施例提供的另一种功率分配合成器的框架图示意图;
图5A-图5C为本申请实施例提供的一种功率分配合成器的结构示意图;
图6A-图6C为本申请实施例提供的另一种功率分配合成器的结构示意图;
图7为本申请实施例提供的又一种功率分配合成器的框架图示意图;
图8A-图8C为本申请实施例提供的又一种功率分配合成器的结构示意图;
图9A-图9C为本申请实施例提供的又一种功率分配合成器的结构示意图;
图10-图12为本申请实施例提供的一种功率分配器的驱动过程示意图;
图13-图15为本申请实施例提供的一种功率合成器的驱动过程示意图;
图16A-图16D为本申请实施例提供的又一种功率分配合成器的结构示意图;
图17A-图17D为本申请实施例提供的又一种功率分配合成器的结构示意图;
图18A为本申请实施例提供的一种功率分配合成网络的结构示意图;
图18B为本申请实施例提供的一种功率分配合成网络的等效结构示意图;
图18C为本申请实施例提供的另一种功率分配合成网络的等效结构示意图。
附图标记:
100-通信设备;110-处理器;120-外部存储器接口;121-内部存储器;130-通用串行总线接口;140-充电管理模块;141-电源管理模块;142-电池;150-移动通信模块;160-无线通信模块;170-音频模块;170A-扬声器;170B-受话器;170C-麦克风;170D-耳机接口;180-传感器模块;190-摄像头;191-马达;192-指示器;193-摄像头;194-显示屏;195-SIM卡接口;300-功率分配合成器;31-第一信号传输网络;32-第二信号传输网络;33-模式调解电路;34-隔离电路;O-公共端口;O1-正公共差分端子;O2-负公共差分端子;P-第一分路端口;P1-第一正分路差分端子;P2-第一负分路差分端子;Q-第二分路端口;Q1-第二正分路差分端子;Q2-第二负分路差分端子;A-第一支路;B-第二支路;R-隔离电阻;L-电感;C-电容;L1-第一电感;L2-第二电感;L3-第三电感;L4-第四电感;C1-第一电容;C2-第二电容;C3-第三电容;C4-第四电容;C5-第五电容;S1-第一开关;S2-第四开关;S3-第二开关;S4-第三开关;S5-第五开关;R1-第一隔离电阻;R2-第二隔离电阻;R3-第三隔离电阻;X1-第一点;X2-第二点;X3-第三点。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
以下,本申请实施例中,术语“第一”、“第二”等仅用于描述方便,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更两个该特征。在本申请的描述中,除非另有说明,“两个”的含义是两个或两个以上。
本申请实施例中,“上”、“下”、“左”以及“右”不限于相对附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语可以是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件附图所放置的方位的变化而相应地发生变化。
在本申请实施例中,除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例”、“一些实施例”、“示例性实施例”、“示例性地”或 “一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或两个实施例或示例中。
在描述一些实施例时,可能使用了“耦接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
在本申请实施例中,“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请实施例中参照作为理想化示例性附图的剖视图和/或平面图和/或等效电路图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
本申请实施例提供一种的通信设备。该通信设备例如为消费性电子产品、家居式电子产品、车载式电子产品、金融终端产品、通信电子产品。其中,消费性电子产品如为手机(mobile phone)、平板电脑(pad)、笔记本电脑、电子阅读器、个人计算机(personal computer,PC)、个人数字助理(personal digital assistant,PDA)、桌面显示器、智能穿戴产品(例如,智能手表、智能手环)、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、无人机等。家居式电子产品如为智能门锁、电视、遥控器、冰箱、充电家用小型电器(例如豆浆机、扫地机器人)等。车载式电子产品如为车载导航仪、车载高密度数字视频光盘(digital video disc,DVD)等。金融终端产品如为自动取款机(automated teller machine,ATM)机、自助办理业务的终端等。通信电子产品如为服务器、存储器、雷达、基站等设备。
图1A为本申请实施例示例性地提供的一种通信设备的结构示意图,以通信设备为手机为例进行示意。如图1A所示,该通信设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,有线通信系统150,无线通信系统160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。
可以理解的是,本申请实施例示意的结构并不构成对通信设备100的具体限定。在本申请另一些实施例中,通信设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软 件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193和无线通信系统160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。
通信设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。
显示屏194用于显示图像,视频等。在一些实施例中,通信设备100可以包括1个或N个显示屏194,N为大于1的正整数。
通信设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据,摄像头193用于捕获静态图像或视频,视频编解码器用于对数字视频压缩或解压缩。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展通信设备100的存储能力。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。
通信设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。扬声器170A用于将音频电信号转换为声音信号。受话器170B用于将音频电信号转换成声音信号。麦克风170C用于将声音信号转换为电信号。耳机接口170D用于连接有线耳机。
传感器模块180可以包括图像传感器、压力传感器、磁传感器、距离传感器等,图像传感器例如可以为接触式图像传感器(contact image sensor,CIS)。
按键190包括开机键,音量键等。马达191可以产生振动提示。指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。SIM卡接口195用于连接SIM卡。
通信设备100的通信功能可以通过有线通信系统150、无线通信系统160、调制解调处理器以及基带处理器等实现。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器,受话器等)输出声音信号,或通过显示屏194显示图像或视频。
有线通信系统150可以提供应用在通信设备100上的包括2G/3G/4G/5G等无线通信的解决方案。有线通信系统150可以包括一个或多个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。
无线通信系统160可以提供应用在通信设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外(infrared,IR)技术等无线通信的解决方案。
上述的通信设备100还包括电路板,例如印刷电路板(printed circuit board,PCB)。通信设备100中的一些电子器件例如处理器100、内部存储器121等可以设置在电路板上。
在一些实施例中,如图1B所示,上述通信设备100中无线通信系统150或者有线通信系统160的包括第一射频电路10、第二射频电路20以及功率分配合成网络30。
功率分配合成网络30包括信号合成端M1和多个信号分路端M2,信号合成端M1用于传输合路信号,信号合成端M1与第一射频电路10耦接。信号分路端M2用于传输分离信号,多个信号分路端M2与多个第二射频电路20耦接。
在一些实施例中,如图1B所示,第二射频电路20例如可以为射频前端电路,第二射频电路20还与天线耦接。
在一种可能的实施方式中,功率分配合成网络30应用于发射通道中,功率分配合成网络30用作功率分配网络。
那么,功率分配合成网络30的信号合成端M1接收信号,第一射频电路10的功 率经功率分配合成网络30分配至多个第二射频电路20。
在另一种可能的实施方式中,功率分配合成网络30应用于接收通道中,功率分配合成网络30用作功率合成网络。
那么,功率分配合成网络30的信号分路端M2接收信号,多个第二射频电路20的功率经功率分配合成网络30合成至第一射频电路10。
功率分配合成网络30通常包括多个支路,功率分配合成网络30包括的支路的数量与功率分配合路网络包括的功率分配合路器的数量相关。
在一种可能的实现方式中,功率分配合成网络30包括一个功率分配合成器。在这种情况下,功率分配合成网络30包括2个支路。
在另一种可能的实现方式中,功率分配合成网络30包括n(n>1)个功率分配合成器。在这种情况下,功率分配合成网络30包括两个以上(例如2 n)个支路。
当然,功率分配合成网络30包括但不限于应用于上述的无线通信系统150或者有线通信系统160中。功率分配合成网络30可以应用于任意需要信号分配和信号合路的场景中。例如,功率分配合成网络30可以应用于多天线系统、多基站系统、多路信号系统、家用有线电视分配网络等。
基于此,本申请实施例还提供一种功率分配合成器,功率分配合成器包括公共端口、第一分路端口和第二分路端口。
本申请实施例提供的功率分配合成器,可以用作功率分配器,也可以用作功率合路器。如图2A所示,当公共端口O作为功率输入端口、第一分路端口P和第二分路端口Q作为功率输出端口时,功率分配合成器300作为功率分配器,将一路射频信号分配成两路射频信号,以进行功率分配,通往不同的支路。如图2B所示,当第一分路端口P和第二分路端口Q作为功率输入端口、公共端口O作为功率输出端口时,功率分配合成器300作为功率合路器,将两个支路的射频信号合成为一路射频信号,以进行功率合成。
关于功率分配合成器300的结构,在一些实施例中,如图2C所示,提供一种传输线型单端功率分配合成器。功率分配合成器300包括第一支路A和第二支路B,第一支路A和第二支路B由传输线构成,第一支路A和第二支路B之间耦接隔离电阻R,隔离电阻R的阻值是传输线特征阻抗Z 0的两倍。
传输线型单端功率分配合成器,结构简单,易于布局设计。
在另一些实施例中,如图2D所示,提供一种CLC(电容电感电容)网络型单端功率分配合成器。功率分配合成器300包括第一支路A和第二支路B,第一支路A和第二支路B上分别包括电感L和两个电容C,电感L的两端分别耦接电容C,电容C的另一端与接地端耦接。两条支路A和B之间耦接有隔离电阻R。
CLC网络型单端功率分配合成器,通过在第一支路A和第二支路B中设置电感L,可以减少传输线的缠绕面积,提高功率分配合成器的集成度。
但是,上述任一种功率分配合成器300,功率分配合成器300无论是作为功率合路器应用,还是作为功率分配器应用,在任意应用场景下,在功率分配合成器300处于工作状态的支路数量是固定的。无论实际有几个支路处于工作状态,每个支路都处于导通状态。但是,在实际应用中,例如在5G高频通信的相控阵系统中,或者在一 些其他应用场景中,不需要所有的支路处于工作状态,用来支持多变的应用场景。这就造成没有用到但却处于工作状态的支路中的存在功率浪费的问题,导致功率分配合成器300功率浪费,从而导致通信设备损耗较大。
例如,在有些场景下,只有第一支路A在工作,第二支路B不工作。在这种情况下,如果第二支路B处于导通状态,第二分路端口Q的功率就浪费了。
基于此,本申请实施例提供一种工作模式可调的功率分配合成器。
如图3A所示,功率分配合成器300包括公共端口O、第一分路端口P、第二分路端口Q、第一支路A、第二支路B以及模式调解电路33。
第一支路A包括第一信号传输网络31,第一信号传输网络31的两端分别与公共端口O和第一分路端口P耦接。第二支路B包括第二信号传输网络32,第二信号传输网络32的两端分别与公共端口0和第二分路端口Q耦接。
模式调解电路33与第一信号传输网络31耦接,用于提供功率分配合成器30的工作模式调解能力。
其中,功率分配合成器300的工作模式包括第一模式和第二模式,第一模式为第一信号传输网络31和第二信号传输网络32均导通,第一支路A和第二支路B均处于导通状态。第二模式为第二信号传输网络32导通,第一支路A处于阻断状态,第二支路B处于导通状态。
在此基础上,如图3B所示,功率分配合成器300还与第二信号传输网络32耦接,模式调解电路33用于提供功率分配合成器30的工作模式调解能力,以使功率分配合成器300的工作模式还包括第三模式。第三模式为第一信号传输网络31导通,第一支路A处于导通状态,第二支路B处于阻断状态。
在一些实施例中,如图3C所示,功率分配合成器300还包括隔离电路34,隔离电路34耦接于第一信号传输网络31与第二信号传输网络32之间;模式调解电路33还与隔离电路34耦接。
通过设置隔离电路34,可大第一分路端口P和第二分路端口Q之间的隔离度,减小信号泄露。
通过上述描述可知,本申请实施例提供的功率分配合成器300,包括模式调解电路33。通过模式调解电路33控制第一信号传输网络31是否导通,以调控第一支路A是否导通。以达到调整功率分配合成器300进入第一模式(第一支路A和第二支路B均导通的双通模式)或者进入第二模式(仅第二支路B导通的直通模式)的效果。在模式调解电路33还与第二信号传输网络32耦接的情况下,模式调解电路33还可以控制第二信号传输网络32是否导通,以调控第二支路B是否导通,以达到调整功率分配合成器300是否进入第三模式(仅第一支路A导通的直通模式)的效果。这样一来,可以根据实际应用场景配置成第一支路A和第二支路B均导通(双通模式)、第一支路A导通(直通模式)、第二支路B(直通模式)导通三种不同的模式。在无需第一支路A和第二支路B都导通的情况下,可将功率分配合成器300调整至直通模式。在直通模式下,可省去未使用的支路上的功率浪费,减小功率分配合成器300的插损。
下面,以几个详细的示例,对本申请实施例提供的功率分配合成器300的结构进行示意说明。
示例一
如图4所示,提供一种功率分配合成器300,功率分配合成器300包括公共端口O、第一分路端口P、第二分路端口Q、第一支路A、第二支路B以及模式调解电路33。
在一些实施例中,公共端口O包括一对公共差分端子,本申请实施例中以公共端口O包括正公共差分端子O1和负公共差分端子O2为例进行示意说明。第一分路端口P包括一对第一分路差分端子,本申请实施例中以第一分路端口P包括第一正分路差分端子P1和第一负分路差分端子P2为例进行示意说明。第二分路端口Q包括一对第二分路差分端子,本申请实施例中以第二分路端口Q包括第二正分路差分端子Q1和第二负分路差分端子Q2为例进行示意说明。
其中,一对差分端子上传输的两个信号的振幅相同(或者理解为大小相等),相位相反,通过一对差分端子传输的信号称为差分信号。
第一支路A的第一端和第二支路B的第一端均与公共端口O耦接,第一支路A的第二端与第一分路端口P耦接,第二支路B的第二端与第二分路端口Q耦接。
关于支路的结构,在一些实施例中,如图4所示,第一支路A包括第一信号传输网络31,第一信号传输网络31的两端分别与公共端口O中的正公共差分端子O1和第一分路端口P耦接。第二支路B包括第二信号传输网络32,第二信号传输网络31的两端分别与公共端口O中的负公共差分端子O2和第二分路端口Q耦接。
关于第一信号传输网络31和第二信号传输网络32的结构,在一些实施例中,第一信号传输网络31和第二信号传输网络32均为变压器网络。
示例的,如图5A所示,第一信号传输网络31包括电磁耦合的第一电感L1和第二电感L2。第二信号传输网络32包括电磁耦合的第三电感L3和第四电感L4。
第一电感L1的第一端和第三电感L3的第一端与正公共差分端子O1和负公共差分端子O2对应耦接,第一电感L1的第二端与第三电感L3的第二端耦接;第二电感L2的两端与一对第一分路差分端子(第一正分路差分端子P1和第一负分路差分端子P2)对应耦接。第四电感L4的两端与一对第二分路差分端子(第二正分路差分端子Q1和第二负分路差分端子Q2)对应耦接。
示例的,第一电感L1的第一端与正公共差分端子O1耦接,第一电感L1的第二端与第三电感L3的第二端耦接。第二电感L2的第一端与第一正分路差分端子P1耦接,第二电感L2的第二端与第一负分路差分端子P2耦接。第三电感L3的第一端与负公共差分端子O2耦接,第三电感L3的第二端与第一电感L1的第二端耦接。第四电感L4的第一端与第二正分路差分端子Q1耦接,第四电感L4的第二端与第二负分路差分端子Q2耦接。
其中,第一正分路差分端子P1与第二正分路差分端子Q1的相位相同,第一负分路差分端子P2与第二负分路差分端子Q2的相位相同。因此,第二电感L2的第一端与第四电感L4的第一端的相位相同,第二电感L2的第二端与第四电感L4的第二端的相位相同。
需要说明的是,本申请实施例仅是以第一电感L1的第一端与正公共差分端子P1耦接,第三电感L3的第二端与负公共差分端子P2耦接为例进行示意。第一电感L1的第一端也可以与负公共差分端子P2耦接,第三电感L3的第二端与正公共差分端子 P1耦接。第一电感L1的第一端和第三电感L3的第一端与正公共差分端子P1和负公共差分端子P2对应耦接即可。
关于第一信号传输网络31的结构,如图5B所示,在一些实施例中,第一信号传输网络31还包括第一电容C1和/或第四电容C4,和/或,第二信号传输网络32还包括第二电容C2和/或第五电容C5。
示例的,第一支路A还包括第一电容C1和第四电容C4,第二支路B还包括第二电容C2和第五电容C5。
其中,图5B中以第一支路A包括第一电容C1和第四电容C4,第二支路B包括第二电容C2和第五电容C5为例进行示意。
也可以是仅第一信号传输网络31包括第一电容C1和第四电容C4;还可以是仅第二信号传输网络32包括第二电容C2和第五电容C5;还可以是仅第一信号传输网络31包括第一电容C1;还可以是仅第一信号传输网络31包括第四电容C4;还可以是仅第二信号传输网络32包括第二电容C2;还可以是仅第二信号传输网络32包括第五电容C5;还可以是第一信号传输网络31包括第一电容C1,第二信号传输网络32包括第二电容C2;还可以是第一信号传输网络31包括第一电容C1,第二信号传输网络32包括第五电容C5;还可以是第一信号传输网络31包括第四电容C4,第二信号传输网络32包括第五电容C5;还可以是第一信号传输网络31包括第四电容C4,第二信号传输网络32包括第二电容C2。
在第一信号传输网络31包括第一电容C1的情况下,第一电容C1的第一端与第一电感L1的第一端耦接,第一电容C1的第二端与接地端耦接。在第一信号传输网络31包括第四电容C4的情况下,第四电容C4与第二电感L2并联。也就是说,第四电容C4的第一端与第二电感L2的第一端耦接,第四电容C4的第二端与第二电感L2的第二端耦接。
在第二支路B包括第二电容C2的情况下,第二电容C2的第一端与第三电感L3的第一端耦接,第二电容C2的第二端与接地端耦接。也就是说,第二电容C2的两端与第一正分路差分端子P1和第一负分路差分端子P2对应耦接。在第二支路B包括第五电容C5的情况下,第五电容C5的第一端与第四电感L4的第一端耦接,第五电容C5的第二端与第四电感L4的第二端耦接。也就是说,第五电容C5的两端与第二正分路差分端子Q1和第二负分路差分端子Q2对应耦接。
也就是说,图5B所示的功率分配合成器300中,第一支路A上的第一信号传输网络31还包括与第一电感L1并联的第一电容C1和与第二电感L2并联的第四电容C4,第一电容C1和第四电容C4作为调谐电容,第一电容C1和第一电感L1一起谐振,第四电容C4和第二电感L2一起谐振,使变压器工作在需要的频段
Figure PCTCN2022082120-appb-000001
通过第一电容C1和第四电容C4可以调节C,从而可以调节变压器工作频率。同理,第二支路B上的第二信号传输网络32还包括与第三电感L3并联的第二电容C2和与第四电感L4并联的第五电容C5,第二电容C2和第五电容C5作为调谐电容,第二电容C2和第三电感L3一起谐振,第五电容C5和第四电感L4一起谐振,使变压器工作在需要的频段
Figure PCTCN2022082120-appb-000002
通过第二电容C2和第五电容C5可以调节C,从而可以调节变压器工作频率。
关于支路的结构,在另一些实施例中,功率分配合成器300还包括第三电容,和/ 或,第一支路A还包括第四电容,和/或,第二支路B还包括第五电容。
示例的,如图5C所示,功率分配合成器300还包括与第三电容C3,第一信号传输网络31还包括第四电容C4,第二信号传输网络32还包括第五电容C5。
功率分配合成器300包括第三电容C3的情况下,第三电容C3的两端分别与第一电感L1的第一端和第三电感L3的第一端耦接。
在第一支路A包括第四电容C4的情况下,第四电容C4与第二电感L2并联,第四电容C4的第一端与第二电感L2的第一端耦接,第四电容C4的第二端与第二电感L2的第二端耦接。
在第二支路B包括第五电容C5的情况下,第五电容C5与第四电感L4并联,第五电容C5的第一端与第四电感L4的第一端耦接,第五电容C5的第二端与第四电感L4的第二端耦接。
当然,也可以是功率分配合成器300仅包括第三电容C3;或者,第一信号传输网络31仅包括第四电容C4;或者,第二信号传输网络32仅包括第五电容C5;或者,功率分配合成器300包括第三电容C3,第一信号传输网络31包括第四电容C4;或者,功率分配合成器300包括第三电容C3,第二信号传输网络32包括第五电容C5;或者,第一信号传输网络31包括第四电容C4,第二信号传输网络32包括第五电容C5。
也就是说,与图5B相比,图5C所示的功率分配合成器300中,第一信号传输网络31和第二信号传输网络32中的第一电感L1和第三电感L3共用同一调谐电容(第三电容C3),可简化功率分配合成器300的结构。
需要强调的是,第一电感L1和第二电感L2的耦合系数K1与第三电感L3和第四电感L4的耦合系数K2可以相等,也可以不相等。功率分配合成器300作为功率分配器使用时,在K1=K2的情况下,公共端口O作为输入端输入的射频信号均分至第一支路A和第二支路B。在K1≠K2的情况下,公共端口O作为输入端输入的射频信号不等分的分配至第一支路A和第二支路B。
在一些实施例中,第一支路A中,第一电感L1与第二电感L2的感值比(也就是阻抗比)为1或者2或者1/2。
这样一来,第一支路A中,第一电感L1接收到的射频信号,与第二电感L2耦合出的射频信号的大小相等或者相似。
在一些实施例中,第二支路B中,第三电感L3与第四电感L4的感值比(也就是阻抗比)为1或者2或者1/2。
这样一来,第一支路A中,第三电感L3接收到的射频信号,与第四电感L4耦合出的射频信号的大小相等或者相似。
其中,第一支路A的结构和第二支路B的结构可以相同,也可以不相同,本申请实施例对此不做限定。
请继续参考图4,模式调解电路33与第一信号传输网络31耦接。
关于模式调解电路33的结构,在一些实施例中,如图5A所示,模式调解电路33包括第一开关S1,第一开关S1与第一信号传输网络31耦接,用于控制第一信号传输网络31是否导通。
示例的,如图5A-图5C所示,第一开关S1耦接于第一信号传输网络31与第一分 路端口P之间,第一开关S1的两端与第一正分路差分端子P1和第一负分路差分端子P2对应耦接。
例如,第一开关S1与第二电感L2并联,第一开关S1的两端与第二电感L2的两端对应偶接,第一开关S1耦接于第二电感L2与第一分路端口P之间。
关于第一开关S1的结构,第一开关S1可以是由一个开关构成,第一开关S1也可以是包括多个串联的开关,第一开关S1还可以是包括多个并联的开关,本申请实施例对第一开关S1的具体结构不做限定。
在一些实施例中,第一开关S1为二极管。例如,可以通过数字信号来控制第一开关S1的导通与断开。
在另一些实施例中,第一开关S1为三极管。例如,可以通过模拟信号开控制第一开关S1的导通与断开。
在此基础上,如图6A-图6C所示,在一些实施例中,隔离电路包括第一隔离电阻R1和第二隔离电阻R2。模式调解电路33还包括第三开关S3和第四开关S4。
第一隔离电阻R1和第三开关S3串联耦接于第一正分路差分端子P1和第二正分路差分端子Q1(第二电感L2的第一端和第四电感L4的第一端)之间。第二隔离电阻R2和第四开关S4串联耦接于第一负分路差分端子P2和第二负正分路差分端子Q2(第二电感L2的第二端和第四电感L4的第二端)之间。
或者理解为,第一隔离电阻R1和第三开关S3串联耦接于第二电感L2的第一端与第四电感L4的第一端之间;第二隔离电阻R2和第四开关S4串联耦接于第二电感L2的第二端与第四电感L4的第二端之间。
其中,第一隔离电阻R1和第二隔离电阻R2可以由一个电阻构成,第一隔离电阻R1和第二隔离电阻R2也可以包括多个串联的电阻,第一隔离电阻R1和第二隔离电阻R2还可以包括多个并联的电阻。当然,第一隔离电阻R1和第二隔离电阻R2还可以包括其他等效电阻结构(例如源跟随晶体管等),本申请实施例对此不做限定。
在一些实施例中,第一隔离电阻R1和第二隔离电阻R2可以为引线式电阻或者贴片式电阻等。在另一些实施例中,第一隔离电阻R1和第二隔离电阻R2为薄膜电阻。薄膜电阻具有良好的散热效率,可以大大提升功率分配合成器300工作的可靠性。
第三开关S3和第四开关S4的结构,可以与上述第一开关S1的结构相同,可以参考上述关于第一开关S1的相关描述,此处不再赘述。
通过设置第一隔离电阻R1和第二隔离电阻R2,第一隔离电阻R1和第二隔离电阻R2均起隔离作用,有了第一隔离电阻R1和第二隔离电阻R2后,通过奇偶模分析可以让第一分路差分端子P和第二分路差分端子Q两个端口之间的隔离度增大(或者理解为信号泄露趋向于零)。通过设置与第一隔离电阻R1串联的第三开关S3,可以控制第一支路A和第二支路B之间是否联通。同理,通过设置与第二隔离电阻R2串联的第四开关S4,可以控制第一支路A和第二支路B之间是否联通。这样一来,可以调解功率分配合成器300的工作模式。
在一些实施例中,第一分路差分端子P中的一个端子与接地端耦接和第二分路差分端子Q中的一个端子与接地端耦接。
也可以理解为,第一正分路差分端子P1或第一负分路差分端子P2与接地端耦接, 第二正分路差分端子Q1或第二负分路差分端子Q2与接地端耦接。
示例的,第一分路差分端子P中的第一负分路差分端子P2与接地端耦接,第二分路差分端子Q中的第二负分路差分端子Q2与接地端耦接。
或者,示例的,第一分路差分端子P中的第一正分路差分端子P1与接地端耦接,第二分路差分端子Q中的第二正分路差分端子Q1与接地端耦接。
或者,示例的,第一分路差分端子P中的第一负分路差分端子P2与接地端耦接,第二分路差分端子Q中的第二正分路差分端子Q1与接地端耦接。
或者,示例的,第一分路差分端子P中的第一正分路差分端子P1与接地端耦接,第二分路差分端子Q中的第二负分路差分端子Q2与接地端耦接。
这样一来,功率分配合成器300中的第一分路差分端子P和第二分路差分端子Q等效为单端结构。在功率分配合成器300用作功率分配器时,可使功率分配器具有从差分信号转换为单端信号的功能。在功率分配合成器300用作功率合路器时,可使功率合路器具有从单端信号转换为差分信号的功能。
在此基础上,如图7所示,模式调解电路33还与第二信号传输网络32耦接。
在一些实施例中,如图8A所示,模式调解电路33还包括第二开关S2,第二开关S2与第二信号传输网络32耦接,用于控制第二信号传输网络32是否导通。
示例的,如图8A-图8C所示,第二开关S2耦接于第二信号传输网络32与第二分路端口Q之间,第二开关S2的两端与第二正分路差分端子Q1和第二负分路差分端子Q2对应耦接。
例如,第二开关S2与第四电感L4并联。第二开关S2的两端与第四电感L4的两端对应偶接,第二开关S2耦接于第四电感L4与第二分路端口Q之间。
第二开关S2的结构可以与第一开关S1的结构相同,可参考上述关于第一开关S1的相关描述。
通过使模式调解电路33还与第二信号传输网络32耦接,可通过第二开关S2控制第二支路B是否导通,以调整功率分配合成器300的工作模式。
在一些实施例中,如图9A-图9C所示,在功率合成分配器300还包括第一隔离电阻R1和第二隔离电阻R2的情况下,模式调解电路33也可以包括第二开关S2。
以图9C示意的功率分配合成器300为例,在功率分配合成器300不包括模式调解电路33的情况下,功率分配合成器300用作功率分配器时的分路原理为:公共端口O作为输入端接收的射频信号,经正公共差分端子O1流入第一支路A,经负公共差分端子O2流入第二支路B。第一支路A中的第一电感L1作为初级线圈,第二电感L2作为次级线圈。第二支路B中的第三电感L3作为初级线圈,第四电感L4作为次级线圈。由于第一电感L1的第二端与第三电感L3的第二端耦接,相当于第一电感L1与第三电感L3串联。基于分压原理,第一电感L1与第三电感L3对射频信号进行比例分配,从而使得射频信号部分电磁耦合至第一支路A的第二电感L2,部分电磁耦合至第二支路B的第四电感L4,实现对公共端口O接收的射频信号进行分路分配,并分别从第一分路端口P和第二分路端口Q输出。
功率分配合成器300用作功率合路器时的合路原理为:第一支路A的第二电感L2作为初级线圈,第一电感L1作为次级线圈。第二支路B的第四电感L4作为初级线圈, 第三电感L3作为次级线圈。第一支路A中,第一分路端口P作为输入端接收的射频信号,经第二电感L2电磁耦合至第一电感L1。第二支路B中,第二分路端口Q作为输入端接收的射频信号,经第四电感L4电磁耦合至第三电感L3。第一电感L1和第三电感L3串联,实现对第一分路端口P和第二分路端口Q接收的射频信号进行合路,并从公共端口O输出。
请继续参考图9C,在功率分配合成器300包括模式调解电路33后,功率分配合成器300的驱动过程包括:
在功率分配模式下:
第一模式:
模式调解电路33控制第一信号传输网络31和第二信号传输网络32导通,功率分配合成器300进入第一模式。
示例的,如图10所示,控制第一开关S1断开,控制第二开关S2断开,控制第三开关S3闭合,控制第四开关S4闭合,使第一支路A和第二支路B均导通。
公共端口O的射频信号经第一支路A和第二支路B后,按比例分配至第一分路端口P和第二分路端口Q。以公共端口O输入的射频信号的功率为p1,第一支路A和第二支路B均分射频信号为例,第一分路端口P得到的功率p2和第二分路端口Q得到的功率p3约为:p2=p3=(p1)/2-loss。其中,loss为第一支路A和第二支路B中的变压器网络在对应频率处的损耗。
第二模式:
模式调解电路33控制第一信号传输网络31断开,控制第二信号传输网络32导通,功率分配合成器300进入第二模式。
示例的,如图11所示,控制第一开关S1闭合,控制第二开关S2断开,控制第三开关S3断开,控制第四开关S4断开,使第二支路B导通。
由于第一支路A中的第一开关S1闭合,使得第一分路端口P短路。那么,第一支路A中的第二电感(变压器网络的次级线圈)L2耦接短路负载。第一点X1往第二点X2看是低阻,即第一点X1与第二点X2之间的第一电感(变压器网络的初级线圈)L1近似被短路,第一电感L1可以近似等效为一条导线,公共端口O的正公共差分端子O1传输至第二点X2的射频信号会传输至第一点X1,公共端口O的射频信号全部馈向第二支路B,不存在功分。此时,第二分路端口Q得到的功率为p3=p1-loss,第一分路端口P得到的功率为p2≈0。其中,loss为第二支路B中变压器网络在对应频率处的损耗。
第三模式:
模式调解电路33控制第一信号传输网络31导通,控制第二信号传输网络32断开,功率分配合成器300进入第三模式。
示例的,如图12所示,控制第一开关S1断开,控制第二开关S2闭合,控制第三开关S3断开,控制第四开关S4断开,使第一支路A导通。
由于第二开关S2闭合,使得第二分路端口Q短路。那么,第二支路B中的第二电感(变压器网络的次级线圈)L2耦接短路负载。第一点X1往第三点X3看是低阻,即第一点X1与第三点X3之间的第一电感(变压器网络的初级线圈)L1近似被短路, 第三电感L3可以近似等效为一条导线,公共端口O的负公共差分端子O2传输至第三点X3的射频信号会传输至第一点X1,使得公共端口O的射频信号全部馈向第一支路A,公共端口O输入的射频信号直通到第一分路端口P,不存在功分。此时,第一分路端口P得到的功率为p2=p1-loss,第二分路端口Q得到的功率为p3≈0。其中,loss为第一支路A中变压器网络在对应频率处的损耗。
在功率分配合成器300作为功率合路器使用的情况下,功率分配合成器300的驱动过程包括:
在功率合成模式下:
第一模式:
模式调解电路33控制第一信号传输网络31和第二信号传输网络32导通,功率分配合成器300进入第一模式。
示例的,如图13所示,控制第一开关S1断开,控制第二开关S2断开,控制第三开关S3闭合,控制第四开关S4闭合,使第一支路A和第二支路B均导通。
第一分路端口P的射频信号,经第一支路A后,传输至公共端口O。第二分路端口Q的射频信号,经第二支路B后,传输至公共端口O。第一分路端口P的功率p2和第二分路端口Q的功率p3合路至公共端口O,公共端口O的功率p3约为:p3=p1-loss+p2-loss。
第二模式:
模式调解电路33控制第一信号传输网络31断开,控制第二信号传输网络32导通,功率分配合成器300进入第二模式。
示例的,如图14所示,控制第一开关S1闭合,控制第二开关S2断开,控制第三开关S3断开,控制第四开关S4断开,使第二支路B导通。
第二分路端口Q的射频信号经第二支路B向公共端口O传输时,由于第二支路B的第一电感L1和第三电感L3串联,射频信号会经第一点X1流向第二点X2。但是由于第一支路A中的第一开关S1闭合,使得第一分路端口P短路。那么,第一支路A中的第二电感(变压器网络的次级线圈)L2耦接短路负载。因此,第一电感L1中的射频信号不会耦合至第二电感L2,而是会传输至公共短路O的正公共差分端子O1,使得第二分路端口Q的射频信号传输至公共端口O,第二分路端口Q的功率p3直通至公共端口O。此时,公共端口O得到的功率为p1=p3-loss。
第三模式:
模式调解电路33控制第一信号传输网络31导通,控制第二信号传输网络32断开,功率分配合成器300进入第三模式。
示例的,如图15所示,控制第一开关S1断开,控制第二开关S2闭合,控制第三开关S3断开,控制第四开关S4断开,使第一支路A导通。
第一分路端口P的射频信号经第一支路A向公共端口O传输时,由于第一电感L1和第三电感L3串联,射频信号会经第一点X1流向第三点X3。但是由于第二开关S2闭合,使得第二分路端口Q短路。那么,第二支路B中的第二电感(变压器网络的次级线圈)L2耦接短路负载。因此,第三电感L3中的射频信号不会耦合至第四电感L4,而是会传输至公共短路O的负公共差分端子O2,使得第一分路端口P的射频 信号传输至公共端口O,第一分路端口P的功率p2直通至公共端口O。此时,公共端口O得到的功率为p1=p2-loss。
其中,在第一正分路差分端子P1和第二正分路差分端子Q1与接地端耦接的情况下,第三开关S3可以不驱动。在第一负分路差分端子P2和第二负分路差分端子Q2与接地端耦接的情况下,第四开关S4可以不驱动。
在功率分配合成器300不包括第一隔离电阻R1、第二隔离电阻R2、第三开关S3以及第四开关S4的情况下,上述功率分配合成器300的工作过程中去除对第三开关S3和第四开关S4的控制过程即可。
在模式调解电路33不与第二信号传输网络32耦接的情况下,也就是在模式调解电路33不包括第二开关S2的情况下,上述功率分配合成器300的工作过程中去除对第二开关S2的控制过程即可。同时,功率分配合成器300不包括第三模式。
需要强调的是,功率分配合成器300的工作过程中,在同一时刻,上述第一模式、第二模式、第三模式只会出现一种模式。当然,功率分配合成网络30包括多个功率分配合成器300的情况下,多个功率分配合成器300的工作模式不限定为相同,可以是任意一种可能。
通过上述描述可知,本申请实施例提供的功率分配合成器300,通过在第一支路A上设置包括第一电感L1和第二电感L2的变压器网络,在第二支路B上设置包括第三电感L3和第四电感L4的变压器网络,使得功率分配合成器300作为功率分配器使用可很好的实现功率分配功能,作为功率合路器使用可很好的实现功率合成功能。且本申请实施例提供的功率分配合成器300中传输的为差分信号,对外部电磁干扰(electromagnetic interference,EMI)具有较高的免疫,可提高射频信号传输质量。
在此基础上,功率分配合成器300还包括模式调解电路33,通过控制模式调解电路33中第一开关S1、第二开关S2、第三开关S3以及第四开关S4的闭合与断开,可控制第一支路A和第二支路B是否导通。这样一来,可以根据实际应用场景配置功率分配合成器300进入第一模式(双通模式)、第二模式(第一支路A导通的直通模式))或者第三模式(第二支路B导通的直通模式)。在无需第一支路A和第二支路B都导通的情况下,可将功率分配合成器300调整至直通模式。在直通模式下,可省去未使用的支路上的功率浪费,减小功率分配合成器300的插损。
示例二
示例二与示例一的主要不同之处在于:第一支路A和第二支路B的结构不同。
本示例提供一种功率分配合成器300,如图16A所示,功率分配合成器300包括公共端口O、第一分路端口P、第二分路端口Q、第一支路A、第二支路B以及模式调解电路33。
公共端口O、第一分路端口P、第二分路端口Q以及模式调解电路33与示例一中相同,可参考示例一的相关描述,此处不再赘述。
关于第一支路A中第一信号传输网络31和第二支路B中第二信号传输网络32的结构,在一些实施例中,如图16A所示,第一信号传输网络31包括第五电感L5、第六电感L6、第六电容C6以及第七电容C7;第二信号传输网络32包括第七电感L7、 第八电感L8、第八电容C8以及第九电容C9。
第五电感L5的第一端和第七电感L7的第一端与正公共差分端子O1耦接,第五电感L5的第二端与第一正分路差分端子P1耦接,第七电感L7的第二端与第二正分路差分端子Q1耦接。
第六电感L6的第一端和第八电感L8的第一端与负公共差分端子O2耦接,第六电感L6的第二端与第一负分路差分端子P2耦接,第八电感L8的第二端与第二负分路差分端子Q2耦接。
第六电容C6耦接于第五电感L5的第一端和第六电感L6的第一端之间,第七电容C7耦接于第五电感L5的第二端和第六电感L6的第二端之间。
第八电容C8耦接于第七电感L7的第一端和第八电感L8的第一端之间,第九电容C9耦接于第七电感L7的第二端和第八电感L8的第二端之间。
如图16A所示,模式调解电路33可以仅包括第一开关S1。如图16B所示,模式调解电路33也可以包括第一开关S1和第二开关S2。
在此基础上,如图16C和图16D所示,功率分配合成器300还可以包括第一隔离电阻R1、第二隔离电阻R2。模式调解电路33还可以包括第三开关S3和第四开关S4。第一隔离电阻R1、第二隔离电阻R2、第三开关S3和第四开关S4的结构,可以与示例一中相同,可参考上述相关描述,此处不再赘述。
图16A示意的第一信号传输网络31和第二信号传输网络32的结构虽然可以传输差分信号,但是与图9C中示意的基于变压器的第一信号传输网络31和第二信号传输网络32的结构相比,图9C中示意的第一信号传输网络31和第二信号传输网络32的结构的带宽更有优势,可以满足高宽带要求。
示例三示例三与示例一和示例二的主要不同之处在于:本示例中隔离电路不包括两个隔离电阻,只包括一个隔离电阻,且第一分路端口P和第二分路端口Q各自有一个端子与接地端耦接。
本示例提供一种功率分配合成器300,如图17A所示,功率分配合成器300包括公共端口O、第一分路端口P、第二分路端口Q、第一支路A、第二支路B、第三隔离电阻R3以及模式调解电路33。
公共端口O、第一分路端口P、第二分路端口Q、第一支路A、第二支路B的结构与示例一或者示例二中相同,可参考示例一或者示例二中的相关描述。
隔离电路包括第三隔离电阻R3,模式调解电路33包括第一开关S1和/或第二开关S2的基础上,还包括第五开关S5。
请继续参考图17A和图17B,第三隔离电阻R3和第五开关S5串联耦接于第一分路端口P和第二分路端口Q中相位相同的两个端子之间,第一分路端口P和所述第二分路端口Q中相位相同的另外两个端子均与接地端耦接。
示例的,如图17A和图17B所示,第三隔离电阻R3和第五开关S5串联耦接于第一正分路差分端子P1和第二正分路差分端子Q1之间,第一负分路差分端子P2和第二负分路差分端子Q2均与接地端耦接。
也就是说,第三隔离电阻R3和第五开关S5串联耦接于第二电感L2的第一端与 第四电感L4的第一端之间,第二电感L2的第二端和第四电感L4的第二端均与接地端耦接(也就是第一负分路差分端子P2和第二负分路差分端子Q2均与接地端耦接)。第二电感L2的第一端与第四电感L4的第一端相位相同,第二电感L2的第二端与第四电感L4的第二端相位相同。
或者,示例的,如图17C和图17D所示,第三隔离电阻R3和第五开关S5串联耦接于第一负分路差分端子P2和第二负分路差分端子Q2之间,第一正分路差分端子P1和第二正分路差分端子Q1均与接地端耦接。
也就是说,第三隔离电阻R3和第五开关S5串联耦接于第二电感L2的第二端与第四电感L4的第二端之间,第二电感L2的第一端和第四电感L4的第一端均与接地端耦接(也就是第一正分路差分端子P1和第二正分路差分端子Q1均与接地端耦接)。第二电感L2的第一端与第四电感L4的第一端相位相同,第二电感L2的第二端与第四电感L4的第二端相位相同。
第三隔离电阻R3的结构,可以与第一隔离电阻R1或者第二隔离电阻R2的结构相同,可参考上述关于第一隔离电阻R1和第二隔离电阻R2的相关描述,此处不再赘述。第五开关S5的结构,可以与示例一中第一开关S1的结构相同,可参考上述关于第一开关S1的相关描述,此处不再赘述。
这样一来,功率分配合成器300中的第一分路差分端子P和第二分路差分端子Q等效为单端结构。在功率分配合成器300用作功率分配器时,可使功率分配器具有从差分信号转换为单端信号的功能。在功率分配合成器300用作功率合路器时,可使功率合路器具有从单端信号转换为差分信号的功能。
需要说明的是,图17A-图17D示意的第一信号传输网络31和第二信号传输网络32的结构仅为一种示意,不做任何限定。第一信号传输网络31和第二信号传输网络32的结构可以是示例一和示例二中示意的一种信号传输网络。
在功率分配合成器300包括第三隔离电阻R3和第五开关S5的情况下,若第三隔离电阻R3和第五开关S5串联耦接于第二电感L2的第一端和第四电感L4的第一端之间,则第五开关S5的驱动过程等效于上述第三开关S3的驱动过程。若第三隔离电阻R3和第五开关S5串联耦接于第二电感L2的第二端和第四电感L4的第二端之间,则第五开关S5的驱动过程等效于上述第四开关S4的驱动过程。
第一分路差分端子P和第二分路差分端子Q中的一个端子与参考地端耦接,功率分配合成器300中的第一分路差分端子P和第二分路差分端子Q等效为单端结构。在功率分配合成器300用作功率分配器时,可使功率分配器具有从差分信号转换为单端信号的功能。在功率分配合成器300用作功率合路器时,可使功率合路器具有从单端信号转换为差分信号的功能。
其中,上述功率分配合成器300应用于功率分配合成网络30中时,功率分配合成网络30可以仅包括一个功率分配合成器300。在这种情况下,功率分配合成器300的公共端口O作为功率分配合成网络30的信号合成端M1,第一分路端口P和第二分路端口Q作为功率分配合成网络30的信号分路端M2。
功率分配合成网络30也可以包括多个功率分配合成器300。在这种情况下,如图18A所示,多个功率分配合成器300逐级串联,下一级功率分配合成器300的公共端 口O与上一级功率分配合成器300的第一分路端口P或第二分路端口Q耦接;第一级功率分配合成器300的公共端口O作为功率分配合成网络30的信号合成端M1,多个功率分配合成器300的未与公共端口O耦接的第一分路端口P和第二分路端口Q作为功率分配合成网络30的信号分路端M2。
需要说明的是,在功率分配合成网络30包括多个功率分配合成器300的情况下,多个功率分配合成器300的结构可以相同,多个功率分配合成器300的结构也可以不完全相同,或者多个功率分配合成器300的结构完全不相同。多个功率分配合成器300可以是上述多种功率分配合成器300的任意组合。
另外,如图18B所示,功率分配合成网络30包括的多个功率分配合成器300可以是并列设置的。
如图18C所示,多个功率分配合成器300也可以包括串联设置的结构。
功率分配合成网络30中的功率分配合成器300串联设置时,功率分配合成网络30中的支路呈树杈状扩散。每一级所包括的功率分配合成器300的数量不做限定,分解需要合理设置即可。多个功率分配合成器300的未与公共端口O耦接的第一分路端口P和第二分路端口Q作为信号分路端M2。功率分配合成网络30的信号分路端M2不一定位于同一级。
本申请实施例提供的功率分配合成网络30,示例性地可以设置于通信设备100中的芯片上、也可以设置于通信设备100中的PCB上、当然还可以设置于封装基板上,本申请实施例对此不做限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种通信设备,其特征在于,包括:
    第一射频电路和多个第二射频电路;
    功率分配合成网络,包括信号合成端和多个信号分路端;所述信号合成端与所述第一射频电路耦接,用于传输合路信号;所述多个信号分路端与所述多个第二射频电路耦接,用于传输分离信号;
    所述功率分配合成网络包括至少一个功率分配合成器,所述功率分配合成器包括公共端口、第一分路端口和第二分路端口、第一信号传输网络、第二信号传输网络以及模式调解电路;
    所述第一信号传输网络的两端分别与所述公共端口和所述第一分路端口耦接;所述第二信号传输网络的两端分别与所述公共端口和所述第二分路端口耦接;所述模式调解电路与所述第一信号传输网络耦接,用于提供所述功率分配合成器的工作模式调解能力;
    其中,所述功率分配合成器的工作模式包括第一模式和第二模式,所述第一模式为所述第一信号传输网络和所述第二信号传输网络均导通,所述第二模式为仅所述第二信号传输网络导通。
  2. 根据权利要求1所述的通信设备,其特征在于,所述模式调解电路还与所述第二信号传输网络耦接;所述功率分配合成器的工作模式还包括第三模式,所述第三模式为仅所述第一信号传输网络导通。
  3. 根据权利要求1或2所述的通信设备,其特征在于,所述功率分配合成器还包括隔离电路,所述隔离电路耦接于所述第一信号传输网络与所述第二信号传输网络之间;所述模式调解电路还与所述隔离电路耦接。
  4. 根据权利要求1-3任一项所述的通信设备,其特征在于,所述模式调解电路包括第一开关,所述第一开关与所述第一信号传输网络耦接,用于控制所述第一信号传输网络是否导通。
  5. 根据权利要求2-4任一项所述的通信设备,其特征在于,所述模式调解电路还包括第二开关,所述第二开关与所述第二信号传输网络耦接,用于控制所述第二信号传输网络是否导通。
  6. 根据权利要求1-5任一项所述的通信设备,其特征在于,所述公共端口包括正公共差分端子和负公共差分端子;所述第一分路端口包括第一正分路差分端子和第一负分路差分端子;所述第二分路端口包括第二正分路差分端子和第二负分路差分端子;
    所述第一信号传输网络包括第一电感和第二电感;所述第二信号传输网络包括第三电感和第四电感;
    所述第一电感的第一端和所述第三电感的第一端与所述正公共差分端子和所述负公共差分端子对应耦接,所述第一电感的第二端与所述第三电感的第二端耦接;所述第二电感的两端与所述第一正分路差分端子和所述第一负分路差分端子对应耦接,所述第四电感的两端与所述第二正分路差分端子和所述第二负分路差分端子对应耦接。
  7. 根据权利要求6所述的通信设备,其特征在于,所述第一信号传输网络还包括第一电容,所述第一电容的第一端与所述第一电感的第一端耦接,所述第一电容的第 二端与接地端耦接;
    所述第二信号传输网络还包括第二电容,所述第二电容的第一端与所述第三线圈的第一端耦接,所述第二电容的第二端与所述接地端耦接。
  8. 根据权利要求6所述的通信设备,其特征在于,所述功率分配合成器还包括第三电容;所述第三电容的两端分别与所述第一电感的第一端和所述第三电感的第一端耦接。
  9. 根据权利要求7或8所述的通信设备,其特征在于,所述第一信号传输网络还包括第四电容,所述第二信号传输网络还包括第五电容;
    所述第四电容与所述第二电感并联,所述第五电容与所述第四电感并联。
  10. 根据权利要求1-5任一项所述的通信设备,其特征在于,所述公共端口包括正公共差分端子和负公共差分端子;所述第一分路端口包括第一正分路差分端子和第一负分路差分端子;所述第二分路端口包括第二正分路差分端子和第二负分路差分端子;
    所述第一信号传输网络包括第五电感、第六电感、第六电容以及第七电容;所述第二信号传输网络包括第七电感、第八电感、第八电容以及第九电容;
    所述第五电感的第一端和所述第七电感的第一端与所述正公共差分端子耦接,所述第五电感的第二端与所述第一正分路差分端子耦接,所述第七电感的第二端与所述第二正分路差分端子耦接;
    所述第六电感的第一端和所述第八电感的第一端与所述负公共差分端子耦接,所述第六电感的第二端与所述第一负分路差分端子耦接,所述第八电感的第二端与所述第二负分路差分端子耦接;
    所述第六电容耦接于所述第五电感的第一端和所述第六电感的第一端之间,所述第七电容耦接于所述第五电感的第二端和所述第六电感的第二端之间;
    所述第八电容耦接于所述第七电感的第一端和所述第八电感的第一端之间,所述第九电容耦接于所述第七电感的第二端和所述第八电感的第二端之间。
  11. 根据权利要求6-10所述的通信设备,其特征在于,所述模式调解电路中第一开关的两端与所述第一正分路差分端子和所述第一负分路差分端子对应耦接;
    和/或,
    所述模式调解电路中第二开关的两端与所述第二正分路差分端子和所述第二负分路差分端子对应耦接。
  12. 根据权利要求6-11任一项所述的通信设备,其特征在于,隔离电路包括第一隔离电阻和第二隔离电阻;所述模式调解电路还包括第三开关和第四开关;
    所述第一隔离电阻和所述第三开关串联耦接于所述第一正分路差分端子和所述第二正分路差分端子之间;
    所述第二隔离电阻和所述第四开关串联耦接于所述第一负分路差分端子和所述第二负分路差分端子之间。
  13. 根据权利要求6-11任一项所述的通信设备,其特征在于,隔离电路包括第三隔离电阻;所述模式调解电路还包括第五开关;
    所述第三隔离电阻和所述第五开关串联耦接于所述第一分路端口和所述第二分路 端口中相位相同的两个端口之间,所述第一分路端口和所述第二分路端口中相位相同的另外两个端口均与接地端耦接。
  14. 根据权利要求1-13任一项所述的通信设备,其特征在于,所述功率分配合成网络的所述信号分路端接收信号,所述多个第二射频电路的功率经所述功率分配合成网络合成至所述第一射频电路;
    或者,
    所述功率分配合成网络的所述信号合成端接收信号,所述第一射频电路的功率经所述功率分配合成网络分配至所述多个第二射频电路。
  15. 根据权利要求1-14任一项所述的通信设备,其特征在于,所述通信设备还包括天线;所述天线与所述第二射频电路耦接。
  16. 根据权利要求1-15任一项所述的通信设备,其特征在于,所述功率分配合成网络包括一个所述功率分配合成器,所述功率分配合成器的公共端口作为所述信号合成端,所述第一分路端口和所述第二分路端口作为所述信号分路端;
    或者,
    所述功率分配合成网络包括多个所述功率分配合成器,多个所述功率分配合成器中的至少部分所述功率分配合成器串联,下一级所述功率分配合成器的所述公共端口与上一级所述功率分配合成器的所述第一分路端口或所述第二分路端口耦接;第一级所述功率分配合成器的所述公共端口作为所述信号合成端,所述至少部分功率分配合成器的未与所述公共端口耦接的所述第一分路端口和所述第二分路端口作为所述信号分路端。
  17. 一种通信设备的工作方法,其特征在于,所述通信设备包括:第一射频电路和多个第二射频电路;功率分配合成网络,包括信号合成端和多个信号分路端;所述信号合成端与所述第一射频电路耦接,用于传输合路信号;所述多个信号分路端与所述多个第二射频电路耦接,用于传输分离信号;所述功率分配合成网络包括至少一个功率分配合成器,所述功率分配合成器包括公共端口、第一分路端口和第二分路端口、第一信号传输网络、第二信号传输网络以及模式调解电路;所述第一信号传输网络的两端分别与所述公共端口和所述第一分路端口耦接;所述第二信号传输网络的两端分别与所述公共端口和所述第二分路端口耦接;所述模式调解电路与所述第一信号传输网络耦接,用于提供所述功率分配合成器的工作模式调解能力;所述功率分配合成器的工作模式包括第一模式和第二模式,所述第一模式为所述第一信号传输网络和所述第二信号传输网络均导通,所述第二模式为所述第二信号传输网络导通;
    所述通信设备的工作方法包括:在同一时刻,所述模式调解电路控制所述第一信号传输网络和所述第二信号传输网络导通,所述功率分配合成器进入所述第一模式;或者,所述模式调解电路控制所述第一信号传输网络断开,控制所述第二信号传输网络导通,所述功率分配合成器进入所述第二模式。
  18. 根据权利要求17所述的通信设备的工作方法,其特征在于,所述模式调解电路还与所述第二信号传输网络耦接;所述功率分配合成器的工作模式还包括第三模式,所述第三模式为所述第一信号传输网络导通;
    所述通信设备的工作方法包括:
    或者在同一时刻,所述模式调解电路控制所述第一信号传输网络导通,控制所述第二信号传输网络断开,所述功率分配合成器进入所述第三模式。
PCT/CN2022/082120 2022-03-21 2022-03-21 通信设备及其工作方法 WO2023178496A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/082120 WO2023178496A1 (zh) 2022-03-21 2022-03-21 通信设备及其工作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/082120 WO2023178496A1 (zh) 2022-03-21 2022-03-21 通信设备及其工作方法

Publications (1)

Publication Number Publication Date
WO2023178496A1 true WO2023178496A1 (zh) 2023-09-28

Family

ID=88099557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082120 WO2023178496A1 (zh) 2022-03-21 2022-03-21 通信设备及其工作方法

Country Status (1)

Country Link
WO (1) WO2023178496A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438684A (en) * 1992-03-13 1995-08-01 Motorola, Inc. Radio frequency signal power amplifier combining network
CN101478291A (zh) * 2008-10-24 2009-07-08 锐迪科微电子(上海)有限公司 射频功率放大器电路和射频功率放大方法
US20100311339A1 (en) * 2009-06-05 2010-12-09 Mediatek Inc. System for the coexistence between a plurality of wireless communication modules
CN101917167A (zh) * 2010-08-24 2010-12-15 惠州市正源微电子有限公司 射频功率放大器功率合成电路
US20130070772A1 (en) * 2011-09-16 2013-03-21 Rogers Communications Inc. Coaxial cable distribution of catv and wireless signals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438684A (en) * 1992-03-13 1995-08-01 Motorola, Inc. Radio frequency signal power amplifier combining network
CN101478291A (zh) * 2008-10-24 2009-07-08 锐迪科微电子(上海)有限公司 射频功率放大器电路和射频功率放大方法
US20100311339A1 (en) * 2009-06-05 2010-12-09 Mediatek Inc. System for the coexistence between a plurality of wireless communication modules
CN101917167A (zh) * 2010-08-24 2010-12-15 惠州市正源微电子有限公司 射频功率放大器功率合成电路
US20130070772A1 (en) * 2011-09-16 2013-03-21 Rogers Communications Inc. Coaxial cable distribution of catv and wireless signals

Similar Documents

Publication Publication Date Title
US11689242B2 (en) Electronic device including wireless communication system, for processing transmission signal or reception signal
JP6336582B2 (ja) 集積回路(ic)における磁気結合を低減させるためのシステムならびに関連構成要素および方法
KR102334270B1 (ko) 복수의 주파수 대역을 지원하기 위한 무선 통신 회로 및 그를 포함하는 장치
WO2012139344A1 (zh) Nfc双模移动终端及其通信方法
US10361474B2 (en) Near field communication device
KR102375132B1 (ko) 다른 주파수 대역의 무선 신호를 처리하는 전자 장치 및 방법
WO2021093850A1 (zh) 天线模组、终端以及天线隔离度的调整方法
US11469190B2 (en) Parasitic-aware integrated substrate balanced filter and apparatus to achieve transmission zeros
US11038553B2 (en) EMC inductor-free RF front-end method and topology with power by field function for an inductively coupled communication system
WO2023178496A1 (zh) 通信设备及其工作方法
CN110797642B (zh) 一种天线模组以及终端
WO2022251983A1 (zh) 一种收发电路、通信系统及电子设备
CN115913128B (zh) 多尔蒂功率放大器、射频芯片及电子设备
EP4064452A1 (en) Terminal device
WO2023159651A1 (zh) 转换电路及转换方法、射频芯片、射频收发机、电子设备
CN111934725B (zh) 近场通信装置和电子设备
US11024574B2 (en) Integrated substrate communication frontend
WO2023178494A1 (zh) 变压器及其工作方法、射频芯片、电子设备
KR20190142128A (ko) 멀티밴드를 지원하는 안테나 및 그것을 포함하는 전자 장치
CN210694375U (zh) 蓝牙通信电路和电子设备
CN204231586U (zh) 一种内置于机顶盒的eoc终端模块
WO2022056709A1 (zh) 近场通信装置和电子设备
CN116054680B (zh) 马达驱动电路及终端设备
WO2024109212A1 (zh) 一种射频模组
CN217468811U (zh) 一种天线结构及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932565

Country of ref document: EP

Kind code of ref document: A1