WO2022056709A1 - 近场通信装置和电子设备 - Google Patents

近场通信装置和电子设备 Download PDF

Info

Publication number
WO2022056709A1
WO2022056709A1 PCT/CN2020/115540 CN2020115540W WO2022056709A1 WO 2022056709 A1 WO2022056709 A1 WO 2022056709A1 CN 2020115540 W CN2020115540 W CN 2020115540W WO 2022056709 A1 WO2022056709 A1 WO 2022056709A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
field communication
near field
antenna
communication device
Prior art date
Application number
PCT/CN2020/115540
Other languages
English (en)
French (fr)
Inventor
李健雄
汪海翔
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to EP20953502.0A priority Critical patent/EP4020828A4/en
Priority to PCT/CN2020/115540 priority patent/WO2022056709A1/zh
Publication of WO2022056709A1 publication Critical patent/WO2022056709A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/04Details of telephonic subscriber devices including near field communication means, e.g. RFID

Definitions

  • the embodiments of the present application relate to the field of near field communication, and more particularly, to a near field communication device and an electronic device.
  • NFC Near Field Communication
  • electronic devices such as mobile phones
  • NFC technology allows contactless point-to-point data transfer between electronic devices.
  • users can realize contactless mobile payment in consumption places in daily life, such as buses, subways, and movie theaters, and can also realize access control management, commuting to and from get off work only through mobile phones.
  • Identification functions such as card swiping.
  • the embodiments of the present application provide a near field communication device and an electronic device, which can save the space of the electronic device and reduce the material cost.
  • a near field communication device comprising: a drive circuit for outputting a transmission signal, the transmission signal being a single-ended signal; a filter circuit, having a signal input end for passing the signal input end receiving the transmission signal to filter the transmission signal to obtain the filtered transmission signal; the matching circuit is used to adjust the input impedance of the rear stage load circuit of the drive circuit to the target impedance, and to The received filtered transmission signal is transmitted to an antenna; the antenna is connected to the matching circuit, and the antenna is used for transmitting the filtered transmission signal within a predetermined communication range.
  • the near field communication device further includes a switch, one end of the switch is grounded, and the other end is connected to the first end of the antenna; when the near field communication device is in the transmission mode , the switch is closed, the antenna is a single-ended antenna, and is used to transmit the transmission signal.
  • the switch when the near field communication device is in the receiving mode, the switch is closed, the antenna is a single-ended antenna, and is used to receive the transmission from the opposite end near field communication device within the predetermined communication range near field communication signals.
  • the antenna when the near field communication device is in the receiving mode, the switch is turned off, the antenna is a differential antenna, and is used to receive the transmission from the opposite end near field communication device within the predetermined communication range near field communication signals.
  • the near-field communication device further includes: a negative receiving terminal connected to the first terminal of the antenna through a resistor and a capacitor in series, and the negative receiving terminal is used for receiving the signal from the antenna. the near field communication signal.
  • the filter circuit includes a filter inductor and a filter capacitor, one end of the filter inductor is connected to the signal input end, and the other end is connected to the upper plate of the filter capacitor, the The lower plate of the filter capacitor is connected to the first end of the single-ended antenna.
  • the driving circuit includes a first switch, a second switch and a first output terminal; wherein the first switch is respectively connected to the positive pole of the voltage source and one terminal of the second switch, so The other end of the second switch is connected to the negative electrode of the voltage source and the ground.
  • the first switch is closed, the second switch is opened or when the first switch is opened, the second switch is closed.
  • the first output terminal is connected between the first switch and the second switch.
  • the driving circuit further includes a third switch, a fourth switch and a second output terminal, one end of the third switch is connected to the first switch, and the other end of the third switch is connected connected to the fourth switch, the other end of the fourth switch is grounded, and the second output end is connected between the third switch and the fourth switch; wherein the third switch is connected to the The first switch is closed or opened at the same time, the fourth switch and the second switch are closed or opened at the same time, and the second output terminal is connected between the third switch and the fourth switch.
  • the transmission signal output by the first output terminal is the same as the transmission signal output by the second output terminal, and the first output terminal and the second output terminal are connected in parallel to connect with the filter The signal input terminal of the circuit is connected.
  • the antenna is a single-ended antenna, and the first end of the antenna is directly grounded.
  • the matching circuit includes two capacitors; or the matching circuit includes one capacitor and one inductor.
  • the antenna is further configured to receive a near field communication signal sent by a near field communication device at the opposite end within the predetermined communication range
  • the near field communication device further includes: a receiving positive end, which is connected through a series connection A resistor and a capacitor are connected to the second end of the antenna, and the receiving positive end is used to receive the near field communication signal from the antenna.
  • an electronic device in a second aspect, includes the first aspect or the near field communication device in any possible implementation manner of the first aspect.
  • the signal output by the driving circuit to the subsequent circuit is a single-ended signal, that is, the driving circuit can drive the single-ended antenna by adopting a single-ended driving method, so that the NFC device can be realized without adding a Balun transformer.
  • NFC function Since the cost of producing the Balun transformer is relatively high, the embodiment of the present application can reduce the material cost. Further, compared with devices such as resistors and capacitors, the volume of the Balun transformer is much larger than that of the resistors, capacitors and other devices.
  • the NFC device of the embodiment of the present application does not have a Balun transformer, so that the electronic device configured with the NFC device can be reduced. device space.
  • FIG. 1 is a schematic diagram of driving a differential antenna in a differential driving manner.
  • FIG. 2 is a schematic diagram of driving a single-ended antenna in a differential driving manner.
  • FIG. 3 is a schematic structural diagram of an NFC device implemented according to the present application.
  • FIG. 4 is a specific schematic diagram of an NFC device according to an embodiment of the present application.
  • FIG. 5 is another specific schematic diagram of an NFC device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another NFC device according to an embodiment of the present application.
  • FIG. 7 is a specific schematic diagram of an NFC device according to an embodiment of the present application.
  • FIG. 8 is another specific schematic diagram of an NFC device according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of an electronic device according to an embodiment of the present application.
  • the driving circuit of the NFC antenna can use a differential driving method to drive the NFC antenna, and the driving method can achieve efficient driving by obtaining a higher driving voltage, wherein the NFC antenna is a differential antenna.
  • 1 in Figure 1 represents a filter circuit
  • 2 represents a matching circuit
  • the filter circuit is symmetrically designed
  • the matching circuit is also symmetrically designed. The number of devices is large.
  • the size and shape of the NFC antenna are greatly limited.
  • Mobile phone manufacturers hope that the size of the NFC antenna should be as small as possible, and the shape should support different types of mobile phones as much as possible.
  • internal component layout requirements Since the differential antenna requires a complete coil loop, the space and shape requirements are too high, so the differential antenna can no longer meet the current requirements.
  • NFC devices introduce single-ended antennas, that is, NFC antennas are single-ended antennas, which can reduce the high requirements of NFC antennas on mobile phone space and layout to support the layout requirements of more mobile phones .
  • a single-ended antenna may also be called an unbalanced antenna
  • a differential antenna may also be called a balanced antenna
  • the NFC device can convert the differential driving mode to the single-ended driving mode through a Balanced to Unbalanced (Balun) transformer to drive the single-ended antenna. That is to say, Figure 2 uses a differential driving method combined with a Balun transformer to drive a single-ended antenna.
  • the Balun transformer not only increases the material cost of the NFC device, but also occupies the space of the mobile phone, which is also difficult to accept when the space of the mobile phone is becoming more and more limited.
  • the embodiment of the present application proposes an NFC device, which adopts a single-ended driving method to drive a single-ended antenna without adding an additional Balun transformer. Since the cost of producing a Balun transformer is high, the embodiment of the present application can reduce the material cost . Further, the volume of the Balun transformer is relatively large, and the NFC device of the embodiment of the present application does not have the Balun transformer, so that the space of the electronic device equipped with the NFC device can be reduced.
  • the NFC device in the embodiment of the present application may be a transmitting end in an NFC communication system, that is, the NFC device may generate an electromagnetic field, send a signal to a receiving end, and the receiving end may be coupled to the electromagnetic field to receive the signal sent by the NFC device. , so as to realize the communication between the NFC device and the receiver.
  • the NFC device is the sender
  • the embodiment of the present application does not limit the name of the NFC device, that is, the NFC device may also be called other names.
  • the NFC device may also be referred to as a polling device, a Proximity Coupling Device (PCD) reader, a transmitter, or the like.
  • PCD Proximity Coupling Device
  • the NFC device in this embodiment of the present application may be a receiving end in an NFC communication system, that is, the NFC device may be coupled to an electromagnetic field sent by the sending end to receive a signal sent by the sending end, thereby communicating with the sending end.
  • the NFC device can also be called a listener, a listening device, a proximity integrated circuit card (Proximity Integrated Circuit Card, PICC) tag, a target or other names.
  • PICC proximity integrated circuit card
  • the NFC device in this embodiment of the present application may also be a transceiver that integrates reception and transmission, that is, the NFC device can both send a signal and receive a signal.
  • FIG. 3 is a schematic diagram of an NFC device 100 according to an embodiment of the present application.
  • the NFC device may include a driving circuit 110 , a filtering circuit 120 , a matching circuit 130 and a single-ended antenna 140 .
  • the driving circuit 110 can be used to output a transmission signal, and the transmission signal is a single-ended square wave signal.
  • the filter circuit 120 has a signal input terminal, which can be used to receive the transmission signal through the signal input terminal, and filter the received transmission signal to eliminate harmonics in the transmission signal, thereby obtaining the filtered transmission signal.
  • the filtered transmitted signal is the fundamental signal.
  • the matching circuit 130 can be used to realize the change of impedance, that is, to adjust the input impedance of the rear-stage load circuit of the driving circuit 130 to the target impedance, so that the energy of the filtered transmission signal can be maximized, and the filtered signal received from the filter circuit 120 can be adjusted.
  • the transmitted signal is transmitted to the single-ended antenna 140 .
  • the latter stage load circuit of the driving circuit 110 may include a filter circuit 120 , a matching circuit 130 and a single-ended antenna 140 .
  • the first end of the single-ended antenna 140 is grounded and the single-ended antenna 140 is connected to the matching circuit 130.
  • the coil in the single-ended antenna 140 After receiving the filtered transmission signal transmitted by the matching circuit 130, the coil in the single-ended antenna 140 generates current, and the single-ended antenna 140 transmits the current. It is converted into an electromagnetic signal (or electromagnetic wave), and the electromagnetic signal is transmitted within a predetermined communication range.
  • the filter circuit 120 has one signal input terminal can be understood as: the filter circuit 120 has only one signal input terminal.
  • the driving circuit when the antenna in the NFC device is a single-ended antenna, the driving circuit outputs a single-ended signal to the subsequent circuit, that is, the driving circuit drives the single-ended antenna in a single-ended driving manner, which is similar to the NFC device shown in FIG. 2 .
  • the embodiment of the present application can reduce the material cost.
  • the volume of the Balun transformer is much larger than that of the resistors, capacitors and other devices.
  • the NFC device of the embodiment of the present application does not have a Balun transformer, so that the electronic device configured with the NFC device can be reduced. device space.
  • the NFC device of the embodiments of the present application will be described in detail below with reference to FIGS. 4 to 8 .
  • FIG. 4 shows a specific embodiment of the NFC device 100 .
  • the driving circuit 110 may include a first switch S1 , a second switch S2 and a signal output terminal TXP.
  • One end of the first switch S1 is connected to the positive electrode of the voltage source VDDTX, the other end is connected to the second switch S2, and the other end of the second switch S2 is respectively connected to the negative electrode of the voltage source VDDTX and the ground.
  • the first switch S1 is controlled by the control signal Ctr1
  • the second switch S2 is controlled by the control signal Ctr2
  • Ctr1 and Ctr2 can be pulse width modulation (Pulse Width Modulation, PWM) signals with adjustable duty cycle and phase, and Ctr1 and Ctr2 are inverted . That is, when the first switch S1 is turned on (or closed), the second switch S2 is turned off (or turned off); when the first switch S1 is turned off, the second switch S2 is turned on.
  • the signal output terminal TXP is connected between the first switch S1 and the second switch S2.
  • the first switch S1 and the second switch S2 may be, but not limited to, metal oxide semiconductor (Metal Oxide Semiconductor, MOS) transistors, triodes, or junction field effect transistors.
  • MOS Metal Oxide Semiconductor
  • the filter circuit 120 is an L-shaped LC filter, that is, it includes a filter inductor L1 and a filter capacitor C1.
  • the filter circuit 120 may also be other low-pass filters, which are not specifically limited in this embodiment of the present application.
  • the filter circuit 120 may also include a resistor, which is connected in series with the filter inductor L1.
  • the signal input end of the filter circuit 120 is connected to the signal output end TXP of the drive circuit 110, the drive circuit outputs the transmission signal through the signal output end TXP, the filter circuit 120 receives the transmission signal sent by the drive circuit 120 through the signal input end, and performs the transmission signal processing.
  • the filtering process is performed to obtain the filtered transmission signal.
  • the matching circuit 130 is composed of matching elements.
  • the matching circuit 130 in FIG. 4 includes a capacitor C2 and a capacitor C3, wherein the left plate of the capacitor C2 is connected to the filter inductor L1, the right plate is connected to the upper plate of the capacitor C3, and the capacitor C3
  • the lower plate of the filter circuit 120 is connected to the lower plate of the filter capacitor C1 in the filter circuit 120 .
  • the matching circuit 130 can change the input impedance of the subsequent stage load circuit of the driving circuit 110 by changing the capacitance values of the capacitor C2 and the capacitor C3.
  • the matching elements C2 and C3 can adjust the input impedance of the rear-stage load circuit of the driving circuit 110 to the target impedance according to the following formula:
  • R target is the target impedance
  • G A is the real part of the reciprocal of the impedance of the single-ended antenna 140
  • B A is the imaginary part of the reciprocal of the impedance of the single-ended antenna 140
  • L 1 is the inductance value of the filter inductor L1
  • C 1 is the capacitance value of the filter capacitor C1.
  • the matching circuit 130 may also be composed of other matching elements, for example, the matching circuit may include a capacitor and an inductor or other components.
  • the filter circuit 120 in this embodiment of the present application can also be used to implement impedance changes in addition to filtering out harmonics in the transmitted signal.
  • the filter circuit 120 and the matching element as a whole can adjust the input impedance of the subsequent stage load circuit to the target impedance, so that the energy of the filtered transmission signal can be maximized.
  • the second end of the single-ended antenna 140 is connected between the capacitors C2 and C3, and the first end is grounded.
  • the single-ended antenna 140 may be grounded through the middle frame of the mobile phone.
  • the NFC device 100 may also be a transceiver that integrates reception and transmission, that is, the single-ended antenna 140 has a transmission mode and a reception mode. Specifically, when the single-ended antenna 140 is in the transmit mode, the NFC device 100 transmits the transmit signal within a predetermined communication range; when the single-ended antenna 140 is in the receive mode, the single-ended antenna 140 can be used to receive signals within the predetermined communication range The near field communication signal of the opposite NFC device. Therefore, the NFC device 100 may further include a receiving positive terminal RXP, and the receiving positive terminal RXP may be coupled to the second terminal of the single-ended antenna 140 through the receiving element 150 and the matching circuit 130 in the receiving path for receiving the signal from the single-ended antenna 140 . Near field communication signals. In the NFC device 100 shown in FIG. 4 , the single-ended antenna 140 can receive the near field communication signal sent by the opposite-end NFC device within a predetermined communication range in a single-ended driving manner.
  • the receiving element 150 may include a resistor R1 and a capacitor C4 in series.
  • FIG. 5 is another specific embodiment of the NFC device 100 .
  • the driving circuit 110 may also include a third switch S3 , a fourth switch S4 and a second signal output terminal (ie, the signal output terminal) terminal TXN).
  • the third switch S3 is controlled by the control signal Ctr3, and the fourth switch S4 is controlled by the control signal Ctr4. Similar to Ctr1 and Ctr2, Ctr3 and Ctr4 can also be PWM signals with adjustable duty cycle and phase, Ctr1 and Ctr3 are in phase, Ctr2 and Ctr4 are in phase, and Ctr1 and Ctr2 are inverse, that is, the first switch S1 and the third switch When the switch S3 is turned on, the second switch S2 and the fourth switch S4 are turned off; when the first switch S1 and the third switch S3 are turned off, the second switch S2 and the fourth switch S4 are turned on.
  • the driving circuit 110 in FIG. 5 is a full-bridge circuit, and the first switch S1 , the second switch S2 , the third switch S3 and the fourth switch S4 are respectively four bridge arms of the full-bridge circuit.
  • first switch S1 and the third switch S3 may be controlled by the same control signal, eg, both controlled by Ctr1; the second switch S2 and the fourth switch S4 may also be controlled by the same control signal, eg, both may be controlled by Ctr2.
  • the signal output terminal TXP of the driving circuit 110 is connected between the first switch S1 and the second switch S2, and the signal output terminal TXN is connected between the third switch S3 and the fourth switch S4.
  • the driving circuit 110 outputs the transmission signal through the signal output terminal TXP and the signal output terminal TXN.
  • the output signals of the two signal output terminals TXP and TXN of the driving circuit 110 are in phase.
  • the TXN is connected in parallel, it is connected to the signal input end of the filter circuit 120 to drive the subsequent circuit, so that the output power of the drive circuit 110 can be the sum of the power output through the signal output end TXP and the power output by the signal output end TXN.
  • the NFC device shown in FIG. 4 has fewer components in the driving circuit than in the driving circuit in FIG. 5 , so the material cost can be further reduced.
  • the filter circuit includes an inductor and a capacitor, and the receiving end includes a capacitor and a resistor.
  • the filter circuit includes two inductors and two capacitors, the receiving positive end includes a capacitor and a resistor, and the receiving negative end also includes a capacitor and a resistor.
  • the NFC device shown in Figures 4 and 5 has one less Balun transformer, one inductor, two capacitors and one resistor, and the volume of the Balun transformer is The production cost is much greater than the volume and production cost of other electronic devices (such as resistors). Therefore, the NFC device shown in FIG. 4 and FIG. 5 reduces the material cost of the NFC device and saves the electronic equipment integrated with the NFC device. space.
  • the first end of the single-ended antenna 140 is directly grounded, that is, the first end of the single-ended antenna 140 is not grounded through a switch element or other components.
  • the NFC device 200 may include: a driving circuit 210 , a filtering circuit 220 , a matching circuit 230 , a single-ended antenna 240 and a switch 260 .
  • the driving circuit 210 , the filtering circuit 220 , the matching circuit 230 and the single-ended antenna 240 in FIG. 6 may respectively correspond to the driving circuit 110 , the filtering circuit 120 , the matching circuit 130 and the single-ended antenna 140 in FIG. 3 , and the specific working methods can refer to The description of FIG. 3 will not be repeated here.
  • One end of the switch 260 is grounded, and the other end can be connected to the first end of the single-ended antenna 240 .
  • the single-ended antenna 240 When the switch 260 is in a closed state, the single-ended antenna 240 may be in a transmit mode or a receive mode; when the switch 260 is in an off state, the single-ended antenna 240 may be in a receive mode.
  • the single-ended antenna 240 when the single-ended antenna 240 is in the sending mode, the switch 260 is closed, and the driving mode of the NFC device 200 is the single-ended driving mode; when the single-ended antenna 240 is in the receiving mode, the NFC device 200 can have two types Reception mode: In mode 1, if the switch 260 is in the closed state, the single-ended antenna 240 receives a single-ended reception mode; in mode 2, if the switch 260 is in the off state, the single-ended antenna 240 receives in a differential mode
  • the receiving mode can be understood as the conversion of a single-ended antenna to a differential antenna.
  • the single-ended antenna 240 when the switch 260 is open, the single-ended antenna 240 is in the receiving mode, and when the switch 260 is closed, the single-ended antenna 240 can be in the transmitting mode. Therefore, the driving and receiving of the NFC device 200 in this case Not simultaneously.
  • the NFC device 200 can perform differential reception in a card emulation mode or a peer-to-peer mode.
  • the card simulation mode refers to simulating an electronic device with NFC function into a tag or a contactless card, for example, a mobile phone supporting NFC function can be read as an access control card, bank card, etc.
  • the card simulation mode can realize the "mobile wallet" function, which can be mainly used in contactless mobile payment applications such as shopping malls and transportation. The user only needs to put the mobile phone close to the card reader and enter the password to confirm the transaction or directly receive the transaction.
  • the peer-to-peer mode refers to connecting two NFC-enabled electronic devices to realize peer-to-peer data transmission.
  • two NFC-enabled phones can exchange contact details.
  • the NFC device 200 can perform single-ended reception in card emulation mode, peer-to-peer mode, and card reader mode.
  • the card reader mode means that the NFC device can be used as a contactless reader.
  • a mobile phone that supports NFC plays the role of a reader when interacting with the tag, and a mobile phone that has NFC function enabled can read and write and support the NFC data format standard.
  • FIG. 7 shows a specific embodiment of an NFC device 200 .
  • the NFC device 200 shown in FIG. 7 adds a switch 260 , a receiving element 270 and a negative receiving terminal RXN.
  • the receiving element 250 in FIG. 7 may be the receiving element 150 in FIG. 4 .
  • One end of the switch 260 is connected to the first end of the single-ended antenna 240, and the other end is grounded.
  • the switch 260 is closed, the single-ended antenna 240 is in a single-ended receiving state; when the switching switch 260 is open, the single-ended antenna 240 is in a differential receiving state.
  • the receive negative end RXN may be coupled to the first end of the single-ended antenna 240 through the receive element 270 in the receive path for receiving near field communication signals from the single-ended antenna 240 transmitted thereto through the receive path.
  • the receiving element 270 may include a resistor R5 and a capacitor C5 in series.
  • FIG. 8 shows a specific embodiment of an NFC device 200 .
  • the NFC device 200 shown in FIG. 8 adds a switch 260 , a receiving element 270 and a negative receiving terminal RXN.
  • One end of the switch 260 is connected to the first end of the single-ended antenna 240, and the other end is grounded.
  • the switch 260 is closed, the single-ended antenna 240 is in a single-ended receiving state; when the switching switch 260 is open, the single-ended antenna 240 is in a differential receiving state.
  • the receive negative terminal RXN may be coupled to the first terminal of the single-ended antenna 240 through a series-connected resistor R5 and capacitor C5 for receiving a receive signal from the single-ended antenna 240 sent to it through the receive path.
  • the first end of the single-ended antenna 240 is grounded through the switch 260, that is, the first end of the single-ended antenna 240 is not directly grounded.
  • a switch enables the NFC device to be compatible with single-ended driving and differential reception at the same time, and in this differential reception mode, the receiving sensitivity of the NFC device will not decrease.
  • the NFC device of FIG. 7 and FIG. 8 has no Balun transformer, the filter circuit has one less inductor and the first capacitor includes two inductors and two capacitors, and The volume and production cost of Balun transformers are much larger than those of other electronic devices such as resistors. Therefore, the NFC device shown in FIG. 7 and FIG. 8 ensures the receiving sensitivity of the NFC device while reducing the material cost of the NFC device and saving the space of the electronic device in which the NFC device is integrated.
  • FIGS. 3 to 8 are only exemplary descriptions of the NFC device, which are only to help those skilled in the art to better understand the embodiments of the present application, and are not intended to limit it.
  • the scope of the embodiments of the present application and the implementation manners derived based on FIG. 3 to FIG. 8 may all be included in the protection scope of the embodiments of the present application.
  • the electronic device 300 may include an NFC device 310 .
  • the NFC device 310 may be the NFC device 100 or the NFC device 200 in the foregoing embodiments.
  • the electronic device in this embodiment of the present application may be any terminal device with NFC function, mobile phone, tablet computer, laptop computer, desktop computer, game device, vehicle electronic device, or wearable smart device, etc.
  • Portable or Mobile computing devices, as well as digital cameras, still cameras, video cameras and other shooting devices, can also be automated teller machines (Automated Teller Machine, ATM), access control, etc.
  • the wearable smart device includes full functions, large size, and can achieve complete or partial functions without relying on smart phones, such as smart watches, etc., and only focus on a certain type of application function, which needs to be used in conjunction with other devices such as smart phones, such as Various types of smart bracelets, smart jewelry and other equipment for physical monitoring.
  • the disclosed systems and apparatuses may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application are essentially or part of contributions to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

本申请实施例提供了一种近场通信装置和电子设备,可以在节约电子设备空间的同时减少物料成本。该近场通信装置包括:驱动电路,用于输出发送信号,发送信号为单端信号;滤波电路,具有一个信号输入端,用于通过信号输入端接收发送信号,以对发送信号进行滤波处理,得到滤波后的发送信号;匹配电路,用于将驱动电路的后级负载电路的输入阻抗调整为目标阻抗,并将接收的滤波后的发送信号传输至天线;天线,连接至匹配电路,天线用于将滤波后的发送信号在预定通信范围内进行发射。

Description

近场通信装置和电子设备 技术领域
本申请实施例涉及近场通信领域,并且更具体地,涉及一种近场通信装置和电子设备。
背景技术
随着无线通信技术的发展,近场通信(Near Field Communication,NFC)已成为目前主流移动通信装置的必备功能之一。NFC是一种短距离范围的无线联机技术,允许电子设备之间进行非接触式点对点数据传输。通过电子设备(例如手机)和NFC技术的结合,用户仅通过手机就可以在日常生活中的消费场所实现非接触式的移动支付,如公交汽车、地铁、电影院,还可以实现门禁管理、上下班刷卡等身份识别功能。
目前,手机内部组件越来越多,手机的空间越来越有限,因此,如何在有限的空间中实现NFC功能,是一项亟需解决的问题。
发明内容
本申请实施例提供一种近场通信装置和电子设备,可以在节约电子设备空间的同时减少物料成本。
第一方面,提供了一种近场通信装置,包括:驱动电路,用于输出发送信号,所述发送信号为单端信号;滤波电路,具有一个信号输入端,用于通过所述信号输入端接收所述发送信号,以对所述发送信号进行滤波处理,得到滤波后的所述发送信号;匹配电路,用于将所述驱动电路的后级负载电路的输入阻抗调整为目标阻抗,并将接收的滤波后的所述发送信号传输至天线;所述天线,连接至所述匹配电路,所述天线用于将滤波后的所述发送信号在预定通信范围内进行发射。
在一些可能的实施例中,所述近场通信装置还包括切换开关,所述切换开关的一端接地,另一端与所述天线的第一端连接;当所述近场通信装置处于发送模式时,所述切换开关闭合,所述天线为单端天线,并用于发射所述发送信号。
在一些可能的实施例中,当所述近场通信装置处于接收模式时,所述切 换开关闭合,所述天线为单端天线,并用于接收所述预定通信范围内对端近场通信装置发出的近场通信信号。
在一些可能的实施例中,当所述近场通信装置处于接收模式时,所述切换开关断开,所述天线为差分天线,并用于接收所述预定通信范围内对端近场通信装置发出的近场通信信号。
在一些可能的实施例中,所述近场通信装置还包括:接收负端,通过串联的电阻和电容连接至所述天线的第一端,所述接收负端用于接收来自所述天线的所述近场通信信号。
在一些可能的实施例中,所述滤波电路包括一个滤波电感和一个滤波电容,所述滤波电感的一端与所述信号输入端连接,另一端与所述滤波电容的上极板连接,所述滤波电容的下极板与所述单端天线的第一端连接。
在一些可能的实施例中,所述驱动电路包括第一开关、第二开关和第一输出端;其中,所述第一开关分别与电压源的正极和所述第二开关的一端连接,所述第二开关的另一端连接于所述电压源的负极以及地,所述第一开关闭合时所述第二开关断开或所述第一开关断开时所述第二开关闭合,所述第一输出端连接于所述第一开关和所述第二开关之间。
在一些可能的实施例中,所述驱动电路还包括第三开关、第四开关和第二输出端,所述第三开关的一端与所述第一开关连接,所述第三开关的另一端与所述第四开关连接,所述第四开关的另一端接地,所述第二输出端连接于所述第三开关和所述第四开关之间;其中,所述第三开关与所述第一开关同时闭合或同时断开,所述第四开关与所述第二开关同时闭合或同时断开,所述第二输出端连接于所述第三开关和所述第四开关之间。
在一些可能的实施例中,所述第一输出端输出的发送信号和所述第二输出端输出的发送信号相同,所述第一输出端和所述第二输出端并联以与所述滤波电路的信号输入端连接。
在一些可能的实施例中,所述天线为单端天线,所述天线的第一端直接接地。
在一些可能的实施例中,所述匹配电路包括两个电容;或所述匹配电路包括一个电容和一个电感。
在一些可能的实施例中,所述天线还用于接收所述预定通信范围内对端近场通信装置发送的近场通信信号,所述近场通信装置还包括:接收正端, 通过串联的电阻和电容连接至所述天线的第二端,所述接收正端用于接收来自所述天线的所述近场通信信号。
第二方面,提供了一种电子设备,该电子设备包括上述第一方面或者第一方面中任一种可能的实施方式中的近场通信装置。
本申请实施例的近场通信装置,驱动电路向后级电路输出的信号为单端信号,即驱动电路采用单端驱动方式即可驱动单端天线,如此NFC装置无需额外增加Balun变压器就可以实现NFC功能。由于生产Balun变压器的成本较高,因此本申请实施例可以减少物料成本。进一步地,与电阻器、电容器等器件相比,Balun变压器的体积远大于电阻器、电容器等器件的体积,本申请实施例的NFC装置没有Balun变压器,从而可以减小配置有该NFC装置的电子设备空间。
附图说明
图1是差分驱动方式驱动差分天线的示意性图。
图2是差分驱动方式驱动单端天线的示意性图。
图3是根据本申请实施的NFC装置的结构示意性图。
图4是根据本申请实施例的NFC装置的具体示意性图。
图5是根据本申请实施例的NFC装置的另一具体示意性图。
图6是根据本申请实施例的另一种NFC装置的结构示意性图。
图7是根据本申请实施例的NFC装置的具体示意性图。
图8是根据本申请实施例的NFC装置的另一具体示意性图。
图9是根据本申请实施例的电子设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
目前,在NFC装置中,NFC天线的驱动电路可以采用差分驱动方式来驱动NFC天线,该驱动方式可以通过获取更高的驱动电压以实现高效驱动,其中,该NFC天线为差分天线。然而由于是差分驱动,因此,如图1所示,图1中1表示滤波电路,2表示匹配电路,滤波电路为对称设计,匹配电路也是对称设计,这样的话,滤波电路和匹配电路所需的器件数量较多。
随着电子设备(例如手机)内部组成越来越多,空间越来越有限,导致 NFC天线的尺寸和形状都受到极大限制,手机厂家希望NFC天线尺寸尽量小,形状尽可能支持不同型号手机的内部元器件布局要求。由于差分天线需要一个完整的线圈环路,其对空间和形状要求太高,因此差分天线已经不能满足目前的需求。
由于单端天线的一端接地,且手机一般通过中框接地,这样的话,单端天线可以通过手机中框接地,即利用手机中框实现回路,不需要和差分天线一样需要有完整的线圈环路。基于单端天线相对于差分天线的上述优点,NFC装置引入了单端天线,即NFC天线为单端天线,从而可以降低NFC天线对手机空间和布局的高要求,以支持更多手机的布局要求。
其中,单端天线也可以称为不平衡天线,差分天线也可以称为平衡天线。
在引入了单端天线后,如图2所示,NFC装置可以通过平衡-不平衡(Balanced to Unbalanced,Balun)变压器将差分驱动方式转换为单端驱动方式,以驱动单端天线。也就是说,图2采用差分驱动方式与Balun变压器结合的方式来驱动单端天线。然而,Balun变压器不仅增加了NFC装置的物料成本,同时也挤占手机空间,这在手机空间越来越有限的情况下也是很难被接受的。
鉴于此,本申请实施例提出了一种NFC装置,采用单端驱动方式而无需额外增加Balun变压器即可驱动单端天线,由于生产Balun变压器的成本较高,因此本申请实施例可以减少物料成本。进一步地,Balun变压器的体积较大,本申请实施例的NFC装置没有Balun变压器,从而可以减小配置有该NFC装置的电子设备空间。
可选地,本申请实施例的NFC装置可以是NFC通信系统中的发送端,即该NFC装置可以产生电磁场,向接收端发送信号,接收端可以耦合到该电磁场以接收该NFC装置发送的信号,从而实现该NFC装置与接收端的通信。当NFC装置为发送端时,本申请实施例对该NFC装置的名称并不限定,也就是说,该NFC装置也可以称为其他名称。例如,该NFC装置也可以称为轮询装置、邻近耦合装置(Proximity Coupling Device,PCD)读取器、发送器等。
可选地,本申请实施例的NFC装置可以是NFC通信系统中的接收端,即该NFC装置可以耦合到发送端发送的电磁场,以接收发送端发送的信号,从而与发送端进行通信。应理解,当NFC装置为接收端时,该NFC装置也 可以称为监听器、收听装置、邻近集成电路卡(Proximity Integrated Circuit Card,PICC)标签、靶点或其他名称。
当然,本申请实施例的NFC装置也可以是集接收、发送为一体的收发端,即该NFC装置既可以发信信号也可以接收信号。
图3是本申请实施例的NFC装置100的示意性图。该NFC装置可以包括驱动电路110、滤波电路120、匹配电路130以及单端天线140。
具体而言,驱动电路110可以用于输出发送信号,该发送信号为单端方波信号。滤波电路120具有一个信号输入端,可以用于通过该信号输入端接收发送信号,并对接收的发送信号进行滤波处理,以消除发送信号中的谐波,从而得到滤波后的发送信号。应理解,滤波后的发送信号为基波信号。匹配电路130可以用于实现阻抗的变化,即将驱动电路130的后级负载电路的输入阻抗调整为目标阻抗,使得滤波后的发送信号的能量可以达到最大,并将从滤波电路120接收的滤波后的发送信号传输至单端天线140。其中,驱动电路110的后级负载电路可以包括滤波电路120、匹配电路130和单端天线140。单端天线140的第一端接地且单端天线140与匹配电路130连接,接收到匹配电路130传输的滤波后的发送信号后,单端天线140中的线圈产生电流,单端天线140将电流转换成电磁信号(或电磁波),并将该电磁信号在预定通信范围内进行发射。
其中,滤波电路120具有一个信号输入端可以理解为:滤波电路120仅具有一个信号输入端。
本申请实施例,在NFC装置中的天线为单端天线时,驱动电路向后级电路输出单端信号,即驱动电路采用单端驱动方式驱动单端天线,与图2所示的NFC装置相比,无需额外增加Balun变压器来将差分驱动转换为单端驱动方式,由于生产Balun变压器的成本较高,因此本申请实施例可以减少物料成本。进一步地,与电阻器、电容器等器件相比,Balun变压器的体积远大于电阻器、电容器等器件的体积,本申请实施例的NFC装置没有Balun变压器,从而可以减小配置有该NFC装置的电子设备空间。
为了更好地理解本申请实施例,以下,结合图4-图8详细说明本申请实施例的NFC装置。
需要说明的是,为便于说明,在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说 明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
图4示出了NFC装置100的一个具体实施例。如图4所示,驱动电路110可以包括第一开关S1、第二开关S2和信号输出端TXP。其中,第一开关S1的一端与电压源VDDTX的正极连接,另一端与第二开关S2连接,第二开关S2的另一端分别连接于电压源VDDTX的负极和地。第一开关S1由控制信号Ctr1控制,第二开关S2由控制信号Ctr2控制,Ctr1和Ctr2可以为占空比和相位可调的脉冲宽度调制(Pulse Width Modulation,PWM)信号,Ctr1和Ctr2反相。也就是说,第一开关S1导通(或称为闭合)时,第二开关S2关断(或称为断开);第一开关S1关断时,第二开关S2导通。信号输出端TXP连接于第一开关S1和第二开关S2之间。
可选地,第一开关S1和第二开关S2可以是但不限于金属氧化物半导体(Metal Oxide Semiconductor,MOS)管、三极管或结型场效应管等。
应理解,在本申请实施例中,“第一”和“第二”仅仅为了区分不同的对象,但并不对本申请实施例的范围构成限制。
滤波电路120为一个L型的LC滤波器,即包括一个滤波电感L1和一个滤波电容C1。可选地,滤波电路120也可以是其他的低通滤波器,本申请实施例对此不作具体限定。例如,滤波电路120除了可以包括一个滤波电感L1和一个滤波电容C1之外,还可以包括一个电阻,该电阻与滤波电感L1串联。
滤波电路120的信号输入端与驱动电路110的信号输出端TXP连接,驱动电路通过信号输出端TXP输出发送信号,滤波电路120通过信号输入端接收驱动电路120发送的发送信号,并对发送信号进行滤波处理,得到滤波后的发送信号。
匹配电路130由匹配元件组成,图4中的匹配电路130包括电容器C2和电容器C3,其中,电容器C2的左极板连接至滤波电感L1,右极板连接至电容器C3的上极板,电容器C3的下极板与滤波电路120中的滤波电容C1的下极板连接。
可选地,匹配电路130可以通过改变电容器C2和电容器C3的电容值实现驱动电路110的后级负载电路的输入阻抗的变化。
其中,匹配元件C2和C3可以按照以下公式实现驱动电路110的后级负载电路的输入阻抗调整为目标阻抗:
Figure PCTCN2020115540-appb-000001
Figure PCTCN2020115540-appb-000002
Figure PCTCN2020115540-appb-000003
Figure PCTCN2020115540-appb-000004
ω=2πf        (5)
其中,R target为目标阻抗,f为NFC装置100的工作频率,比如f=13.56MHz,G A为单端天线140阻抗的倒数的实部,B A为单端天线140阻抗的倒数的虚部,L 1为滤波电感L1的电感值,C 1为滤波电容C1的电容值。
可选地,匹配电路130也可以由其他匹配元件组成,例如,匹配电路可以包括一个电容器和一个电感或者其他元器件。
应理解,本申请实施例的滤波电路120除了可以滤除发送信号中的谐波之外,也可以用于实现阻抗的变化。换言之,滤波电路120和匹配元件整体可以将后级负载电路的输入阻抗调整为目标阻抗,使得滤波后的发送信号的能量可以达到最大。
单端天线140的第二端连接至电容器C2和电容器C3之间,第一端接地。示例性地,单端天线140可以通过手机中框接地。
如上文所述,NFC装置100还可以是一个集接收、发送为一体的收发端,即单端天线140具有发送模式和接收模式。具体来说,当单端天线140处于发送模式时,NFC装置100将发送信号在预定通信范围内进行发射;当单端天线140处于接收模式时,单端天线140可以用于接收预定通信范围内对端NFC装置的近场通信信号。因此,NFC装置100还可以包括接收正端RXP,接收正端RXP可以通过接收路径中的接收元件150以及匹配电路130耦合到单端天线140的第二端,用于接收来自单端天线140的近场通信信号。在图4所示的NFC装置100中,单端天线140可以通过单端驱动方式接收预定通信范围内对端NFC装置发送的近场通信信号。
可选地,接收元件150可以包括串联的电阻R1和电容器C4。
图5是NFC装置100的另一个具体实施例。如图5所示,驱动电路110除了包括第一开关S1、第二开关S2和信号输出端TXP之外,还可以包括第三开关S3、第四开关S4和第二信号输出端(即信号输出端TXN)。
其中,第三开关S3由控制信号Ctr3控制,第四开关S4由控制信号Ctr4控制。与Ctr1和Ctr2类似,Ctr3和Ctr4也可以为占空比和相位可调的PWM信号,Ctr1和Ctr3同相,Ctr2和Ctr4同相,Ctr1和Ctr2反相,也就是说,第一开关S1和第三开关S3导通时,第二开关S2和第四开关S4关断;当第一开关S1和第三开关S3关断时,第二开关S2和第四开关S4导通。从图5中可以看出,图5的驱动电路110为全桥电路,第一开关S1、第二开关S2、第三开关S3以及第四开关S4分别为全桥电路的4个桥臂。
或者,第一开关S1和第三开关S3可以由同一个控制信号控制,比如都由Ctr1控制;第二开关S2和第四开关S4也可以由同一个控制信号控制,比如都可以由Ctr2控制。
驱动电路110的信号输出端TXP连接于第一开关S1和第二开关S2之间,信号输出端TXN连接于第三开关S3和第四开关S4之间。驱动电路110通过信号输出端TXP和信号输出端TXN输出发送信号。
由于第一开关S1和第三开关S3同相控制,第二开关S2和第四开关S4同相控制,则驱动电路110的两个信号输出端TXP和TXN的输出信号为同相,因此,可以将TXP和TXN并联后,与滤波电路120的信号输入端连接,以驱动后级电路,这样驱动电路110的输出功率可以为通过信号输出端TXP输出的功率与信号输出端TXN输出的功率之和。
应理解,关于其他电路,如匹配电路130和单端天线140的详细描述可以参考图4,为了内容的简洁,此处不再赘述。
可以看到,图4所示的NFC装置与图5所示的NFC装置相比,驱动电路的元器件的数量少于图5中驱动电路的元器件的数量,因此可以进一步减少物料成本。
图4和图5所示的NFC装置,在天线为单端天线的情况下,与图2所示的NFC装置相比,在没有Balun变压器的情况下就可以驱动单端天线。此外,图4和图5所示的NFC装置,滤波电路包括一个电感器和一个电容器,接收端包括一个电容器和一个电阻器。而图2所示的NFC装置,滤波 电路包括两个电感器和两个电容器,接收正端包括一个电容器和一个电阻器且接收负端也包括一个电容器和一个电阻器。总的来说,图4和图5所示的NFC装置与图2所示的NFC装置相比,少了一个Balun变压器,一个电感器,两个电容器以及一个电阻器,且Balun变压器的体积和生产成本远大于其他电子器件(如电阻器)的体积和生产成本,因此,图4和图5所示的NFC装置减少了NFC装置的物料成本,且节省了集成有该NFC装置的电子设备的空间。
从图3-图5中可以看出,单端天线140的第一端是直接接地的,即单端天线140的第一端不通过开关元件或其他元器件接地。
可选地,本申请实施例还提出了另一种NFC装置200,如图6所示,NFC装置200可以包括:驱动电路210、滤波电路220、匹配电路230、单端天线240以及切换开关260。
图6中的驱动电路210、滤波电路220、匹配电路230和单端天线240可以分别对应于图3中的驱动电路110、滤波电路120、匹配电路130和单端天线140,具体工作方式可以参考图3的描述,此处不再赘述。
切换开关260的一端接地,另一端可以与单端天线240的第一端连接。当切换开关260处于闭合状态时,单端天线240可以处于发送模式或接收模式;当切换开关260处于关断状态时,单端天线240可以处于接收模式。
具体来说,当单端天线240处于发送模式时,切换开关260是闭合的,NFC装置200的驱动方式为单端驱动方式;当单端天线240处于接收模式时,NFC装置200可以有两种接收方式:方式1,若切换开关260为闭合状态,则单端天线240的接收方式为单端接收方式;方式2,若切换开关260为关断状态,则单端天线240的接收方式为差分接收方式,可以理解为单端天线转换为了差分天线。
可以看出,当切换开关260断开时,单端天线240处于接收模式,当切换开关260闭合时,单端天线240可以处于发送模式,因此,这种情况下的NFC装置200的驱动和接收不是同时进行的。
因此,NFC装置200可以在卡模拟模式或点对点模式下进行差分接收。其中,卡模拟模式指的是将具有NFC功能的电子设备模拟成一张标签或非接触卡,例如支持NFC功能的手机可以作为门禁卡、银行卡等而被读取。卡模拟模式可以实现“移动钱包”功能,该模式主要可以用于商场、交通等非 接触移动支付应用中,用户只要将手机靠近读卡器,并输入密码确认交易或者直接接收交易即可。
点对点模式指的是将两个具有NFC功能的电子设备进行连接,实现点对点数据传输。例如,两个具有NFC功能的手机可以交换联系方式。
NFC装置200可以在卡模拟模式、点对点模式以及读卡器模式下进行单端接收。其中,读卡器模式指的是NFC装置可以作为非接触读写器使用,如支持NFC的手机在与标签交互时扮演读写器的角色,开启NFC功能的手机可以读写支持NFC数据格式标准的标签。
图7示出了NFC装置200的一个具体实施例。从图7中可以看出,相对于图4所示的NFC装置,图7所示的NFC装置200增加了切换开关260、接收元件270和接收负端RXN。图7中的接收元件250可以为图4中的接收元件150。
其中,切换开关260的一端与单端天线240的第一端连接,另一端接地。当切换开关260闭合时,单端天线240为单端接收状态;当切换开关260断开时,单端天线240为差分接收状态。
接收负端RXN可以通过接收路径中的接收元件270耦合到单端天线240的第一端,用于接收来自单端天线240通过接收路径向其发送的近场通信信号。作为一种示例,接收元件270可以包括串联的电阻R5和电容器C5。
图8示出了NFC装置200的一个具体实施例。从图8中可以看出,相对于图5所示的NFC装置,图8所示的NFC装置200增加了切换开关260、接收元件270和接收负端RXN。
其中,切换开关260的一端与单端天线240的第一端连接,另一端接地。当切换开关260闭合时,单端天线240为单端接收状态;当切换开关260断开时,单端天线240为差分接收状态。
接收负端RXN可以通过串联的电阻R5和电容器C5耦合到单端天线240的第一端,用于接收来自单端天线240通过接收路径向其发送的接收信号。
从图6-图8中可以看出,单端天线240的第一端是通过切换开关260接地的,即单端天线240的第一端没有直接接地。
上述技术方案,通过一个切换开关使得NFC装置可以同时兼容单端驱动和差分接收,且在这种差分接收方式下,NFC装置的接收灵敏度不会下降。 除此之外,与图2所示的NFC装置相比,图7和图8的NFC装置没有Balun变压器,滤波电路少了一个电感器和第一电容器包括两个电感器和两个电容器,且Balun变压器的体积和生产成本远大于其他电子器件(如电阻器)的体积和生产成本。因此,图7和图8所示的NFC装置在减少NFC装置的物料成本和且节省集成有该NFC装置的电子设备的空间的同时,保证了NFC装置的接收灵敏度。
应理解,本申请实施例的NFC装置可以有多种实现方式,图3-图8仅为NFC装置的示例性说明,只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围,基于图3-图8所衍生出来的实现方式都可以包括在本申请实施例的保护范围内。
本申请实施例还提供了一种电子设备,如图9所示,该电子设备300可以包括NFC装置310。该NFC装置310可以为前述实施例中的NFC装置100或NFC装置200。
作为示例而非限定,本申请实施例中的电子设备可以为任意具有NFC功能的终端设备、手机、平板电脑、笔记本电脑、台式机电脑、游戏设备、车载电子设备或穿戴式智能设备等便携式或移动计算设备,以及数码相机、静态摄像头、摄像机等拍摄设备,还可以为自动取款机(Automated Teller Machine,ATM)、门禁等。该穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或部分的功能,例如:智能手表等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等设备。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述 了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围 之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种近场通信装置,其特征在于,包括:
    驱动电路,用于输出发送信号,所述发送信号为单端信号;
    滤波电路,具有一个信号输入端,用于通过所述信号输入端接收所述发送信号,以对所述发送信号进行滤波处理,得到滤波后的所述发送信号;
    匹配电路,用于将所述驱动电路的后级负载电路的输入阻抗调整为目标阻抗,并将接收的滤波后的所述发送信号传输至天线;
    所述天线,连接至所述匹配电路,所述天线用于将滤波后的所述发送信号在预定通信范围内进行发射。
  2. 根据权利要求1所述的近场通信装置,其特征在于,所述近场通信装置还包括切换开关,所述切换开关的一端接地,另一端与所述天线的第一端连接;
    当所述近场通信装置处于发送模式时,所述切换开关闭合,所述天线为单端天线,并用于发射所述发送信号。
  3. 根据权利要求2所述的近场通信装置,其特征在于,当所述近场通信装置处于接收模式时,所述切换开关闭合,所述天线为单端天线,并用于接收所述预定通信范围内对端近场通信装置发出的近场通信信号。
  4. 根据权利要求2所述的近场通信装置,其特征在于,当所述近场通信装置处于接收模式时,所述切换开关断开,所述天线为差分天线,并用于接收所述预定通信范围内对端近场通信装置发出的近场通信信号。
  5. 根据权利要求3或4所述的近场通信装置,其特征在于,所述近场通信装置还包括:
    接收负端,通过串联的电阻和电容连接至所述天线的第一端,所述接收负端用于接收来自所述天线的所述近场通信信号。
  6. 根据权利要求1至5中任一项所述的近场通信装置,其特征在于,所述滤波电路包括一个滤波电感和一个滤波电容,所述滤波电感的一端与所述信号输入端连接,另一端与所述滤波电容的上极板连接,所述滤波电容的下极板与所述天线的第一端连接。
  7. 根据权利要求1至6中任一项所述的近场通信装置,其特征在于,所述驱动电路包括第一开关、第二开关和第一输出端;
    其中,所述第一开关分别与电压源的正极和所述第二开关的一端连接,所述第二开关的另一端连接于所述电压源的负极以及地,所述第一开关闭合时所述第二开关断开或所述第一开关断开时所述第二开关闭合,所述第一输出端连接于所述第一开关和所述第二开关之间。
  8. 根据权利要求7所述的近场通信装置,其特征在于,所述驱动电路还包括第三开关、第四开关和第二输出端,所述第三开关的一端与所述第一开关连接,所述第三开关的另一端与所述第四开关连接,所述第四开关的另一端接地,所述第二输出端连接于所述第三开关和所述第四开关之间;
    其中,所述第三开关与所述第一开关同时闭合或同时断开,所述第四开关与所述第二开关同时闭合或同时断开。
  9. 根据权利要求8所述的近场通信装置,其特征在于,所述第一输出端输出的发送信号和所述第二输出端输出的发送信号相同,所述第一输出端和所述第二输出端并联以与所述滤波电路的信号输入端连接。
  10. 根据权利要求1所述的近场通信装置,其特征在于,所述天线为单端天线,所述天线的第一端直接接地。
  11. 根据权利要求1至10中任一项所述的近场通信装置,其特征在于,所述匹配电路包括两个电容;或
    所述匹配电路包括一个电容和一个电感。
  12. 根据权利要求1至11中任一项所述的近场通信装置,其特征在于,所述天线还用于接收所述预定通信范围内对端近场通信装置发送的近场通信信号,所述近场通信装置还包括:
    接收正端,通过串联的电阻和电容连接至所述天线的第二端,所述接收正端用于接收来自所述天线的所述近场通信信号。
  13. 一种电子设备,其特征在于,包括:
    如权利要求1至12中任一项所述的近场通信装置。
PCT/CN2020/115540 2020-09-16 2020-09-16 近场通信装置和电子设备 WO2022056709A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20953502.0A EP4020828A4 (en) 2020-09-16 2020-09-16 NEAR FIELD COMMUNICATION DEVICE AND ELECTRONIC DEVICE
PCT/CN2020/115540 WO2022056709A1 (zh) 2020-09-16 2020-09-16 近场通信装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115540 WO2022056709A1 (zh) 2020-09-16 2020-09-16 近场通信装置和电子设备

Publications (1)

Publication Number Publication Date
WO2022056709A1 true WO2022056709A1 (zh) 2022-03-24

Family

ID=80777528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115540 WO2022056709A1 (zh) 2020-09-16 2020-09-16 近场通信装置和电子设备

Country Status (2)

Country Link
EP (1) EP4020828A4 (zh)
WO (1) WO2022056709A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050280582A1 (en) * 2004-06-22 2005-12-22 Powell Johnna D Differential and single ended elliptical antennas
CN201898506U (zh) * 2010-11-11 2011-07-13 东莞宇龙通信科技有限公司 一种带nfc功能的手机及其nfc天线
CN104184435A (zh) * 2013-05-22 2014-12-03 株式会社村田制作所 天线装置及通信装置
CN106537801A (zh) * 2014-07-18 2017-03-22 迪睿合株式会社 非接触通信装置、天线电路、天线驱动装置、非接触供电装置、电子设备、调谐方法、发现方法和实现这些方法的程序
CN108737999A (zh) * 2017-03-17 2018-11-02 恩智浦有限公司 近场通信装置
CN108781090A (zh) * 2016-03-24 2018-11-09 迪睿合株式会社 发送装置、天线驱动装置、调谐方法及实现调谐方法的程序
CN109088657A (zh) * 2017-06-13 2018-12-25 恩智浦有限公司 Rf前端模块和近场通信装置
CN110549929A (zh) * 2018-05-31 2019-12-10 意法半导体奥地利有限公司 无线通信设备和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10108825B2 (en) * 2017-03-22 2018-10-23 Nxp B.V. NFC reader with remote antenna
US10382098B2 (en) * 2017-09-25 2019-08-13 Nxp B.V. Method and system for operating a communications device that communicates via inductive coupling

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050280582A1 (en) * 2004-06-22 2005-12-22 Powell Johnna D Differential and single ended elliptical antennas
CN201898506U (zh) * 2010-11-11 2011-07-13 东莞宇龙通信科技有限公司 一种带nfc功能的手机及其nfc天线
CN104184435A (zh) * 2013-05-22 2014-12-03 株式会社村田制作所 天线装置及通信装置
CN106537801A (zh) * 2014-07-18 2017-03-22 迪睿合株式会社 非接触通信装置、天线电路、天线驱动装置、非接触供电装置、电子设备、调谐方法、发现方法和实现这些方法的程序
CN108781090A (zh) * 2016-03-24 2018-11-09 迪睿合株式会社 发送装置、天线驱动装置、调谐方法及实现调谐方法的程序
CN108737999A (zh) * 2017-03-17 2018-11-02 恩智浦有限公司 近场通信装置
CN109088657A (zh) * 2017-06-13 2018-12-25 恩智浦有限公司 Rf前端模块和近场通信装置
CN110549929A (zh) * 2018-05-31 2019-12-10 意法半导体奥地利有限公司 无线通信设备和方法

Also Published As

Publication number Publication date
EP4020828A1 (en) 2022-06-29
EP4020828A4 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
JP5684573B2 (ja) 複数の結合モードの間の切り替え
US9024576B2 (en) Inductive charging of a rechargeable battery
US9553747B2 (en) Systems and methods for switching quality factors during inductively coupled communications
WO2013086997A1 (zh) 用于近场通信的接收端组件及包括该组件的接收设备
WO2012139344A1 (zh) Nfc双模移动终端及其通信方法
CN109088657B (zh) Rf前端模块和近场通信装置
CN105897312B (zh) 一种为能量采集和小尺寸优化的nfc标签接口
TWI454076B (zh) 通訊裝置與其近場通訊電路
CN211742146U (zh) 近场通信电路及电子设备
WO2013159429A1 (zh) 一种nfc通讯模块
US11038553B2 (en) EMC inductor-free RF front-end method and topology with power by field function for an inductively coupled communication system
CN111934725B (zh) 近场通信装置和电子设备
CN105897313B (zh) 一种优化能量采集及实现小尺寸天线的nfc通信系统及方法
US9379777B2 (en) Near field communication circuitry used for hearing aid compatibility
WO2022056709A1 (zh) 近场通信装置和电子设备
US9985693B2 (en) Integrated circuit including multiple transmitters and near field communication system including the circuit
CN105868810B (zh) 一种为能量采集和小尺寸天线优化的nfc读写器接口
CN105703804B (zh) 使用差分线圈拓扑提高近场通信的数据速率或范围
WO2023072080A1 (zh) 天线调整电路、谐振频率调整方法和电子设备
CN103577862A (zh) 双界面用户识别装置与移动终端
EP4016390A1 (en) Dual system rfid tag
CN212969639U (zh) Nfc装置及电子设备
CN219834145U (zh) 近场通信装置和电子设备
US20110111792A1 (en) System and method for effectively implementing a composite antenna for a wireless transceiver device
US20230107933A1 (en) NFC Apparatus, Electronic Device, and Signal Processing Method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020953502

Country of ref document: EP

Effective date: 20220323

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE