WO2023178457A1 - Nueva tecnología de fabricación para emulsiones de baja viscosidad - Google Patents

Nueva tecnología de fabricación para emulsiones de baja viscosidad Download PDF

Info

Publication number
WO2023178457A1
WO2023178457A1 PCT/CL2022/050028 CL2022050028W WO2023178457A1 WO 2023178457 A1 WO2023178457 A1 WO 2023178457A1 CL 2022050028 W CL2022050028 W CL 2022050028W WO 2023178457 A1 WO2023178457 A1 WO 2023178457A1
Authority
WO
WIPO (PCT)
Prior art keywords
emulsion
range
mic
fuel
manufacturing
Prior art date
Application number
PCT/CL2022/050028
Other languages
English (en)
French (fr)
Inventor
Jose Antonio CONTRERAS OTEY
Eduardo Antonio NUÑEZ CAMUS
Original Assignee
Enaex Servicios Sa
Enaex Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enaex Servicios Sa, Enaex Sa filed Critical Enaex Servicios Sa
Priority to PCT/CL2022/050028 priority Critical patent/WO2023178457A1/es
Publication of WO2023178457A1 publication Critical patent/WO2023178457A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • C06B31/02Compositions containing an inorganic nitrogen-oxygen salt the salt being an alkali metal or an alkaline earth metal nitrate
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • C06B31/28Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product

Definitions

  • the present invention describes an explosive emulsion, the method of manufacturing it, and its uses in the mining industry, civil works, and/or underwater explosions.
  • Explosions can be in the open sky, in galleries, tunnels, or under water.
  • explosive emulsions which are a mixture of water with some fuel oil, in which the aqueous phase is composed of oxidizing inorganic salts dissolved in water and the oily phase by a liquid fuel immiscible with the hydrocarbon type water.
  • these explosive emulsions use surfactants.
  • the surfactants used can have different uses. Below is a table with general uses of surfactants based on their HLB value (hydrophilic-lipophilic balance):
  • Emulsion + ANFO Ammonium Nitrate (AN) + some Fuel derived from petroleum (FO)
  • ANFO Ammonium Nitrate
  • Document WO 2012019245 describes a method for producing an intermediate emulsion comprising an oxidizing solution, fuel and emulsifier, which comprises the steps of (a) mixing in a micromixer an oxidizing solution with a fuel mixture comprising a fuel and an emulsifier to solubilize a portion of the oxidizing solution in the fuel mixture to produce a product precursor; (b) mixing the precursor product obtained in step (a) using a micromixer in one or more successive steps to form the intermediate emulsion.
  • this document uses a static micromixer, and the oxidant:fuel concentration is of the order of 93:7. This concentration prevents the use of an ultra-shearer since the emulsion would have very high viscosity. Furthermore, it describes a particle size of between 5.3 and 32 pm, with 5.3 pm as the smallest size described (Table 7). Therefore, it does not affect this application, since it is in a different range of variables than the emulsion described here.
  • WO2012019245A1 describes (claim 1) a process for producing an intermediate emulsion comprising an oxidizing solution, fuel and emulsifier, which comprises the steps of: (a) mixing in a micromixer an oxidizing solution with a fuel mixture comprising a fuel and an emulsifier to solubilize a portion of the oxidant solution in the fuel mixture to produce a precursor product; (b) mixing the precursor product obtained in step (a) using a micromixer in one or more successive steps to form the intermediate emulsion.
  • the intermediate emulsion has a viscosity of at least 6,000 cP (claim 7), with a size less than 40 pm (claim 8).
  • WO2012019245A1 does not describe that the viscosity is at least 4,000 cP, and that an ultra-shear is used, as the present application does.
  • Document W02007086950A2 describes (claim 1) a method for manufacturing and supplying an emulsion explosive having a discontinuous oxidizing solution phase, a continuous fuel phase and an emulsifier, said method comprising: providing an emulsion manufacturing system; transporting an oxidizing solution phase to said emulsion manufacturing system at a predetermined pressure; transporting a fuel to said emulsion manufacturing system at a predetermined pressure; forming an emulsion explosive from said oxidizing solution phase, said fuel and an emulsifier using only a portion of said predetermined pressures to provide a usable residual pressure after formation of said emulsion explosive; and using said residual pressure to non-mechanically deliver said explosive emulsion to a predetermined location; It mentions a viscosity of at least 6,500 cP (Example 1, and 2). However, W02007086950A2 does not disclose that the viscosity is at least 4,000 cP; and that an ultra-shear is used, as this application does
  • Document WO2015043140A1 describes (claim 1) a method for manufacturing an emulsion for an emulsion explosive, which comprises the steps of: 1) entering all oil phases into a thick slurry mixer; 2) control the aqueous phase in multiple stages of coarse slurry mixer by multiple stages of splitting; 3) connect the last stage of coarse slurry mixer to concentrate mixer; 4) Mix the latex matrix then with a multi-stage concentrate mixer to complete emulsification.
  • WO2015043140A1 does not describe a premixer step, and then ultrashear mixing, as the present application does.
  • the present invention describes:
  • An explosive emulsion comprising: an Oxidizing Solution comprising: i) Ammonium nitrate;
  • a method of manufacturing said emulsion includes the steps of: a) Mixing an Oxidizing Solution with a Fuel Solution; b) Mix in high quality Pre-mix mixer; c) Mixing and displacement technology; d) Regulate Viscosity.
  • the explosive emulsion described is intended to be used in the mining industry, civil works, and/or underwater explosions.
  • the described emulsion has improved properties such as: low viscosity, reduced particle size, increased penetrability, decreases the use of Fuels derived from petroleum, eliminates the formation of water pockets, and improves the compaction of explosive material, among others.
  • the present application describes an explosive emulsion for Mining Blasting, civil works, and/or underwater explosions, more specifically an explosive emulsion, here called 'MIC Emulsion', which comprises:
  • An Oxidizing Solution that comprises: i) Ammonium nitrate in a range of 65 to 85%. (p/p)
  • a Fuel Solution that comprises: iii) Surfactants, in a range of 1 to 4% (w/w) iv) Fuel Oil, in a range of 8 to 15% (w/w).
  • ammonium nitrate is low-density porous, with a density in a range of 0.65 to 0.80 g/mL; preferably 0.76 g/ml, and is selected without limitation from: LD and LR (Low Density), ULD (Ultra Low Density) ammonium nitrates;
  • Fuel Oil selected without limitation from: commercial fuel oil, fuel oil for vehicles, petroleum, oils, among others.
  • Viscosity ⁇ 40,000 cps
  • Density ⁇ 1.29 g/cc; Yellow color;
  • Emulsion/fuel concentration between 8/10 to 9/10 mixture.
  • MIC emulsion provide improved penetration properties into Prill beads (small spheres of ammonium nitrate) and water solubility compared to the state of the art.
  • the small particle size of the MIC emulsion less than ⁇ 10 ⁇ m, and its low viscosity, allows its penetration into the capillaries of the ammonium nitrate, improved compared to the state of the art.
  • the penetration time and coating capacity were studied for different particle sizes below 10 ⁇ m to penetrate said capillarity (See FIG 3A and 3B).
  • Figures 4A and 4B show the results obtained.
  • Figure 4A shows a photograph taken with a 100X zoom microscope.
  • a calibration line is established and then entered into a particle counting program.
  • This program uses a toolbox image processing algorithm that allows, together with the scalar reference, to count each spherical element of said photo, thus establishing the size distribution.
  • Figure 4B shows a graph of frequency and Cumulative % vs particle size in the range 1.5 to 5 ⁇ m.
  • the smaller particle size due to ultra shear reduces the water that is impregnated and dissolved in the prill, so the mixture in operation has better penetration and coating properties. It is observed that the MIC Emulsion penetrates better into the pores of the PRIL and coats it better than conventional emulsions.
  • the layer formed by the MIC emulsion allows the porous ammonium nitrate to be protected, both internally and externally.
  • FIG. 6 allows us to conclude in a comparative way that the penetration capacity of the MIC emulsion in the pores of the pril is similar or equal to that achieved by oil.
  • Figures 7 and 8 show the same products, but internally, applying light intensity to verify the homogeneity of the MIC emulsion and the oil in the LD nitrate. Left side MIC emulsion, right side art emulsion.
  • Figures 9 and 10 show a comparison between the MIC emulsion versus the traditional emulsion. Both emulsions were painted with a pink marker, with the idea of better appreciating the penetration capacity of the products. It is observed, especially in figure 10, that the MIC emulsion penetrates the Prill beads in a better way, since the bead on the right side (impregnated with MIC emulsion) is darker than the bead on the left side (impregnated with emulsion from the art). This improved penetration effect is due to the particle size of the MIC emulsion, which is smaller than the particle size of the state of the art. This allows us to demonstrate that the MIC emulsion has an improved penetration capacity, superior to the penetration capacity of the art emulsions.
  • the present emulsion MIC allows you to use only: MIC Emulsion + Ammonium Nitrate (PRIL), eliminating the need for fuel derived from petroleum.
  • MIC Emulsion + Ammonium Nitrate PRIL
  • Another advantage is that unlike conventional emulsions that have viscosities between 90,000 and 110,000 cps, requiring the use of transport pressures between 180 and 200 PSI, the MIC Emulsion has a viscosity between 4,000 and 40,000 cps, so it only needs transport pressures. between 60 and 100 PSI, considerably reducing the size and power requirements for booster pumps.
  • the MIC Emulsion allows the use of 55% MIC emulsion and 45% porous ammonium nitrate, reducing the necessary amount of emulsion, improving blasting performance per well, especially wet wells.
  • the present application also describes a method of manufacturing the explosive MIC Emulsion described above. (See Figure 2).
  • the manufacturing method includes the steps of: a) Mixing an Oxidizing Solution with a Fuel Solution; b) Mix in high quality Pre-mix mixer; c) Mixing and displacement technology; d) Regulate Viscosity;
  • the Oxidizing Solution comprises: i) Ammonium nitrate in a range of 65 to 85% (w/w);
  • the Fuel Solution includes: iii) Surfactants, in a range of 1 to 4% (w/w); iv) Fuel Oil, in a range of 8 to 15% (w/w);
  • the mixing is carried out in a pre-emulsifier, for a time of between 2 to 30 minutes, with an RPM in a range of 390 to 3000 rpm.
  • step a) The mixture obtained from step a) is now mixed again using an ultrashear, for a time of between 2 to 30 minutes, with an RPM in a range of 390 rpm to 3000 rpm; or until obtaining a particle size less than 10 ⁇ m.
  • stage c) mixing and displacement technology
  • the mixture obtained from stage b) is driven with a progressive cavity pump, transporting the mixture through a cooling system, until reaching the next stage of viscosity regulation.
  • the viscosity is regulated by means of static mixers, until reaching a viscosity in the range of 4,000 to 40,000 cps.
  • the mixture here called 'MIC emulsion' obtained is pumped to the storage silos.
  • Figure 2 shows the diagram of the method described in the present application. This method follows the traditional structure of emulsion manufacturing in continuous plants (traditional state-of-the-art method: Figure 1).
  • the mixer functions as a pre-mixer. Delivering a pre-emulsion of high quality and homogeneity. Then this pre-emulsion is entered into the ultrashear to obtain the MIC Emulsion, as the final product.
  • This manufacturing method allows obtaining the MIC Emulsion, with the improved physical characteristics of low viscosity, density, reduced particle size, improved penetration and protection of Prill described above.
  • this manufacturing method allows obtaining an explosive emulsion that has good fluidity against wells with water.
  • a comparison was made simulating wells with water, being These are loaded emptied onto a borehole or also known as pourable product, which are only used in dry wells.
  • Figure 11 shows a traditional Emulsion presenting difficulties to flow and generating pockets of water, stagnation problems, low fluidity, loss of continuity of the column.
  • Figure 12 shows the MIC Emulsion, with good fluidity capacity and without generating water pockets, favoring the reaction kinetics of the column when it is initiated, with high fluidity, hydrophobic system, high compaction of the column.
  • Figure 13 shows the Traditional Emulsion (left side) Vs MIC Emulsion (right side). It is observed on the left side that the column has pockets of water, while on the right side the column does not present pockets of water.
  • the MIC Emulsion allows wells to be loaded with water and emptied into it. This allows the reduction of loading times, improving productivity in the field.
  • the MIC emulsion described herein can be applied without limitation in: mining industry, mining blasting, civil blasting, and underwater explosions.
  • FIG. 1 Traditional method diagram. Stage 1) Mix an Oxidizing Solution (1) with a Fuel Solution (2); Stage 2) Mix in Mixing Reactor (3); Stage 3) Displacement pump (4); Stage 4) Regulate Viscosity (5).
  • Figure 2 Modified method diagram. Step a) Mix an Oxidizing Solution with a Fuel Solution; Stage b) Mix in a high quality Pre-mix mixer; Stage c) Mixing and displacement technology; Stage d) Regulate Viscosity.
  • Figure 3-A It is observed that the capillarity of ammonium nitrate has a minimum of 4 ⁇ m, allowing the required sizes to be defined for the MIC emulsion to flow correctly.
  • Figure 3-B The results of the penetration analysis of MIC Emulsion in the Prill are observed.
  • Figure 4-A Particle size photography is observed. This image is used to calculate the particle size distribution using image processing.
  • Figure 4-B The particle size distribution is observed.
  • Figure 5 Appearance of LD ammonium nitrate in 12% MIC emulsion mixture.
  • Figure 6 Left side: prill with MIC emulsion.
  • Right side prill with traditional petroleum emulsion. It is observed that in the prill on the left side the tone is lighter, indicating that it requires less oil than the traditional emulsion.
  • Figure 7 Internal appearance of LD (Low Density) ammonium nitrate.
  • Left side MIC mixture
  • vs right side traditional emulsion with petroleum. It is observed that in the left side with MIC emulsion, the shade is lighter, indicating that it has improved penetrability and thus requires less oil than traditional emulsion.
  • Figure 8 Image of the Prill LD Nitrate Product in a homogeneous mixture with MIC on the left side and Oil on the right side.
  • Figure 9 Image of the Product Prill Nitrate LD in a homogeneous mixture with MIC left side and Prill Nitrate LD right side with traditional emulsion. It is observed in the color image that the left side prill is pink, while the right side is gray, demonstrating the improved penetrability of the MIC emulsion versus traditional emulsion.
  • Figure 10 Subsequent light intensity to verify the penetration of the MIC emulsion into the pores of the Prill LD ammonium nitrate. Left side is observed with MIC emulsion that is lighter in tone than the right side. This demonstrates the penetration of the MIC emulsion, which thus requires less oil than the traditional left side emulsion.
  • Figure 11 Traditional emulsion presenting difficulties in flowing and generating pockets of water. The emptying kinetics are observed; High viscosity-stagnation problems-Low fluidity-Loss of column continuity.
  • Figure 12 MIC emulsion, good fluidity and without generating water pockets, favoring the reaction kinetics of the column when it is started. It is observed that the MIC product: Low viscosity - High fluidity - High organic content - Hydrophobic system - Low density and fluidity - High column compaction.
  • Figure 13 It is observed: column on the left: Traditional emulsion Vs Column on the right: MIC emulsion. It is observed that the column on the left (traditional emulsion) presents pockets of water. On the other hand, the column on the right (MIC emulsion) does not present water pockets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

La presente solicitud describe: Una Emulsión explosiva, que comprende: una Solución Oxidante que comprende: i) Nitrato de amonio; ii) Agua; y una Solución Combustible que comprende: iii) Surfactantes; iv) Fuel Oil; Un Método de fabricación de dicha emulsión que comprende las etapas de: a) Mezclar una Solución Oxidante, con una Solución Combustible; b) Mezclar en mezclador de Pre-mezcla de alta calidad; c) Tecnología de mezclado y desplazamiento; d) Regular Viscosidad; La emulsión explosiva descrita sirve para ser utilizada en la industria minera, obras civiles, y/o explosiones submarinas.

Description

NUEVA TECNOLOGÍA DE FABRICACIÓN PARA EMULSIONES DE BAJA VISCOSIDAD
CAMPO TÉCNICO
La presente invención describe una emulsión explosiva, el método de fabricación de la misma, y sus usos en la industria minera, obras civiles, y/o explosiones submarinas.
ANTECEDENTES
En la industria minera se requiere la explosión controlada con el fin de fracturar o fragmentar roca o suelos duros. Las explosiones pueden ser a cielo abierto, en galerías, túneles, o debajo del agua.
Entre las sustancias explosivas más comúnmente utilizadas se encuentran las emulsiones explosivas, que son una mezcla de agua con algún aceite combustible, en las cuales la fase acuosa está compuesta por sales inorgánicas oxidantes disueltas en agua y la fase aceitosa por un combustible líquido inmiscible con el agua del tipo hidrocarbonado. Estas emulsiones explosivas utilizan surfactantes.
Los surfactantes utilizados pueden tener distintos usos. A continuación, se muestra una tabla con usos en general de surfactantes en función de su valor HLB (equilibrio hidrófilo-lipofílico):
Figure imgf000003_0001
Actualmente en la industria se utiliza Emulsión + ANFO (Nitrato de amonio (AN) + algún Combustible derivado del petróleo (FO)).
El documento WO 2012019245, describe un método para producir una emulsión intermedia que comprende una solución oxidante, combustible y emulsionante, que comprende los pasos de (a) mezclar en un micromezclador una solución oxidante con una mezcla de combustible que comprende un combustible y un emulsionante para solubilizar una porción de la solución oxidante en la mezcla de combustible para producir un producto precursor; (b) mezclar el producto precursor obtenido en la etapa (a) usando un micromezclador en una o más etapas sucesivas para formar la emulsión intermedia.
Sin embargo este documento utiliza un micromezclador estático, y la concentración de oxidante:combustible es del orden de 93:7. Esta concentración impide que se pueda usar un ultracizallador ya que la emulsión quedaría con muy alta viscosidad. Además, describe un tamaño de partículas de entre 5,3 y 32 pm, con 5,3 pm como el menor tamaño descrito, (tabla 7). Por lo que no afecta a la presente solicitud, ya que se encuentra en un rango de variables distinto a la emulsión aquí descrita.
El documento WO2012019245A1 , describe (reivindicación 1 ) un proceso para producir una emulsión intermedia que comprende una solución oxidante, combustible y emulsionante, que comprende las etapas de: (a) mezclar en un micromezclador una solución oxidante con una mezcla de combustible que comprende un combustible y un emulsionante para solubilizar una porción de la solución oxidante en la mezcla de combustible para producir un producto precursor; (b) mezclar el producto precursor obtenido en la etapa (a) usando un micromezclador en una o más etapas sucesivas para formar la emulsión intermedia. La emulsión intermedia tiene una viscosidad de al menos 6.000 cP (reivindicación 7), con un tamaño menor a 40 pm (reivindicación 8). Sin embargo, WO2012019245A1 no describe que la viscosidad sea de al menos 4.000 cP, y que se utilice un ultracizallador, como sí lo hace la presente solicitud.
El documento W02007086950A2, describe (reivindicación 1 ) un método para fabricar y suministrar un explosivo en emulsión que tiene una fase de solución oxidante discontinua, una fase de combustible continua y un emulsionante, comprendiendo dicho método: proporcionar un sistema de fabricación de emulsión; transportar una fase de solución oxidante a dicho sistema de fabricación de emulsión a una presión predeterminada; transportar un combustible a dicho sistema de fabricación de emulsión a una presión predeterminada; formar un explosivo en emulsión a partir de dicha fase de solución oxidante, dicho combustible y un emulsionante utilizando sólo una parte de dichas presiones predeterminadas para proporcionar una presión residual utilizable después de la formación de dicho explosivo en emulsión; y utilizar dicha presión residual para suministrar de forma no mecánica dicha emulsión explosiva a una ubicación predeterminada; Menciona viscosidad de al menos 6.500 cP (Ejemplo 1 , y 2). Sin embargo, W02007086950A2 no describe que la viscosidad sea de al menos 4.000 cP; y que se utilice un ultracizallador, como sí lo hace la presente solicitud.
El documento WO2015043140A1 , describe (reivindicación 1 ) un método para fabricar una emulsión para un explosivo en emulsión, que comprende las etapas de: 1) ingresar todas las fases oleosas en un mezclador de lechada gruesa; 2) controlar la fase acuosa en múltiples etapas del mezclador de lechada gruesa mediante múltiples etapas de división; 3) conectar la última etapa del mezclador de lechada gruesa al mezclador de concentrado; 4) Mezclar la matriz de látex luego con un mezclador de concentrado de múltiples etapas para completar la emulsificación. Sin embargo, WO2015043140A1 no describe una etapa de premezclador, y luego un mezclado en ultracizallador, como sí lo hace la presente solicitud.
De esta forma se reconoce, el problema técnico de proporcionar una emulsión explosiva, de baja viscosidad, reducido tamaño de partícula, penetrabilidad aumentada, que disminuya la utilización de Combustibles derivados del petróleo, y que permita ser utilizado en industria minera, obras civiles, y/o explosiones submarinas.
RESUMEN
La presente invención describe:
Una emulsión explosiva, que comprende: una Solución Oxidante que comprende: i) Nitrato de amonio;
¡i) Agua; y una Solución Combustible que comprende: i i i) Surfactantes; iv) Fuel Oil.
Se describe también un método de fabricación de dicha emulsión que comprende las etapas de: a) Mezclar una Solución Oxidante, con una Solución Combustible; b) Mezclar en mezclador de Pre-mezcla de alta calidad; c) Tecnología de mezclado y desplazamiento; d) Regular Viscosidad.
La emulsión explosiva descrita sirve para ser utilizada en la industria minera, obras civiles, y/o explosiones submarinas.
La emulsión descrita posee propiedades mejoradas tales como: baja viscosidad, reducido tamaño de partículas, penetrabilidad aumentada, disminuye la utilización de Combustibles derivados del petróleo, elimina la formación de bolsas de agua, y mejora la compactación del material explosivo, entre otras.
DESCRIPCIÓN
Producto:
La presente solicitud describe una emulsión explosiva para Voladuras Mineras, obras civiles, y/o explosiones submarinas, más específicamente una emulsión explosiva, aquí llamada ‘Emulsión MIC’, que comprende:
Una Solución Oxidante que comprende: i) Nitrato de amonio en un rango de 65 a 85%. (p/p)
¡i) Agua, en un rango de 10 a 20 %. (p/p)
Una Solución Combustible que comprende: iii) Surfactantes, en un rango de 1 a 4 % (p/p) iv) Fuel Oil, en un rango de 8 a 15 % (p/p). en donde: i) el nitrato de amonio es poroso de baja densidad, con una densidad en un rango de 0,65 a 0,80 g/mL; de preferencia 0,76 g/ml, y se selecciona sin limitación de entre: nitratos de amonio de LD y LR (Baja densidad), ULD (Ultra baja densidad); iii) Surfactantes con un HLB (equilibrio hidrófilo-lipofílico) menor a 7; iv) Fuel Oil, se selecciona sin limitación de entre: fuel oil comercial, fuel oil para vehículos, petróleo, aceites, entre otros.
Características:
La emulsión MIC de la presente posee las siguientes características:
Viscosidad: < 40.000 cps;
Densidad: < 1 ,29 g/cc; Color: Amarillo;
Tamaño de partícula < 10 μm;
Concentración de emulsión/combustible de entre 8/10 a 9/10 de mezcla.
Estas características de la emulsión MIC, otorgan propiedades de penetración en perlas Prill (pequeñas esferas de nitrato de amonio), y solubilidad en agua mejoradas respecto al estado del arte.
Tamaño de partículas y Viscosidad:
El reducido tamaño de partículas de la emulsión MIC, menor que < 10 μm, y su baja viscosidad, permite su penetración al interior de las capilaridades del nitrato de amonio mejoradas respecto al estado del arte.
Este fenómeno se observó analizando el comportamiento del petróleo frente a la absorción en el nitrato de amonio. Una vez analizado la viscosidad del petróleo, se generaron distintas emulsiones con diferentes viscosidades en rango de 4.000 a 40.000 cps. Siendo esta variabilidad lograda entre una mezcla operativa y una mezcla de formulación.
Estableciendo así un rango óptimo en tiempo de penetración de 10 a 30 segundos, con una capacidad de absorción en los rangos de 8 a 14%, siendo idealmente sobre el 6%.
Se estudió el tiempo de penetración y capacidad de recubrimiento para distintos tamaños de partícula bajo los 10 μm para penetrar dicha capilaridad (Ver FIG 3A y 3B).
En la Figura 3B, se observan los Resultados de análisis de penetración de Emulsión MIC en el Prill. Se observa que con una viscosidad menor que 16.000 cps, las perlas se tornan más oscuras, lo cual indica una penetración mayor de la emulsión MIC.
Por el contrario, para viscosidades mayores, 44.000 cps, las perlas son menos oscuras, lo cual muestra una menor penetración de la Emulsión. En el recuadro de “Referencia de comparación” (Fig 3-B), se observa que la perla con la Emulsion MIC, es más oscura que una perla impregnada con ANFO del arte.
Análisis de tamaño de partículas emulsión MIC:
Para conocer los tamaños de partículas de las emulsiones realizadas, se realizó una toma de imágenes microscópicas y análisis mediante software para calcular dicha distribución.
En las Figuras 4A y 4B se muestran los resultados obtenidos. En la Figura 4A, se muestra una fotografía tomada con microscopio con zoom de 100X. Se establece una línea de calibración para luego ser ingresada a un programa de conteo de partículas. Este programa utiliza un algoritmo de procesamiento de imagen toolbox que permite junto a la referencia escalar, contar cada elemento esférico de dicha foto, logrando así establecer la distribución de tamaño.
En la Figura 4B, se muestra un gráfico de frecuencia y % Acumulado vs tamaño de partícula en rango 1,5 a 5 μm.
El menor tamaño de partícula por ultra cizallamiento reduce el agua que se impregna y disuelve en el prill, por lo que la mezcla en operación tiene mejores propiedades de penetración y recubrimiento. Se observa que la Emulsión MIC penetra mejor en los poros del PRIL y lo recubre mejor que las emulsiones convencionales.
Se realizaron estudios comparativos (ver Figuras 5 a 10) entre la emulsión MIC vs emulsión tradicional ANFO, con el fin de comparar y verificar las propiedades mejoradas de la emulsión MIC por sobre el estado del arte.
Baja viscosidad y capacidad de recubrimiento: Figuras 5 y 6.
Se estudió la capacidad de recubrir el nitrato de amonio poroso comparando a la emulsión MIC vs emulsión del arte.
Se observó que la capa formada por la emulsión MIC, permite proteger al nitrato de amonio poroso, tanto interna como externamente.
Recubrimiento externo: Figura 5
Recubrimiento Interno: Figura 6
Se realizó una revisión del aspecto del ANFO, para verificar la absorción del petróleo del Prill. Se comparó con la mezcla de emulsión MIC con nitrato de amonio LD. (Ver Figura 6)
Los resultados demuestran una distribución homogénea en ambos Prill. Se puede apreciar la capa de emulsión protectora que está en el producto Nitrato LD. Se observa la capacidad de penetración que tiene el petróleo en el nitrato de amonio poroso, para lograr como producto el ANFO.
Dicha Figura 6 permite concluir de forma comparativa, que la capacidad de penetración de la emulsión MIC en los poros del pril, es similar o igual a lo logrado por el petróleo. En las Figuras 7 y 8 se muestran los mismos productos, pero de forma interna, aplicando intensidad lumínica para verificar la homogeneidad de la emulsión MIC y del petróleo en el nitrato LD. Lado izquierdo Emulsión MIC, lado derecho emulsión del arte.
Se puede apreciar la capacidad de penetración de la emulsión MIC en las capilaridades internas del pril de nitrato de amonio LD que permite proteger el producto tanto externa como internamente.
Comparación con emulsiones tradicionales:
Con el fin de demostrar la capacidad de penetración de la emulsión MIC en el prill, se realizó una comparación entre la emulsión MIC versus una emulsión tradicional.
Los resultados muestran una mayor penetración en el prill de la emulsión MIC vs la emulsión del arte, (ver Figuras 9 y 10).
Las Figuras 9 y 10, muestran una comparación entre la emulsión MIC versus la emulsión tradicional. Ambas emulsiones fueron pintadas con un trazador de color de rosado, con la idea de apreciar mejor la capacidad de penetración de los productos. Se observa, especialmente en la figura 10, que la emulsión MIC penetra en las perlas Prill de mejor manera, ya que la perla del lado derecho (impregnada con emulsión MIC), es más oscura que la perla del lado izquierdo (Impregnada con emulsión del arte). Este efecto de penetración mejorado se debe al tamaño de partícula de la emulsión MIC, menor al tamaño de partículas del estado del arte. Esto permite demostrar que la emulsión MIC tiene una capacidad de penetración mejorada, superior a la capacidad de penetración de las emulsiones del arte.
Los resultados descritos en la presente demuestran que el reducido tamaño de partícula y baja viscosidad de la Emulsión MIC, permiten una penetración en las capilaridades y poros mejorada respecto a la emulsión del estado del arte.
Entre las ventajas de la emulsión MIC, puede mencionarse que a diferencia de las emulsiones que actualmente se utilizan en la industria las que requieren de Emulsión + ANFO (Nitrato de amonio (AN) + Combustible derivado del petróleo (FO)), la presente emulsión MIC, permite usar solo: Emulsión MIC + Nitrato de Amonio (PRIL), eliminando la necesidad de contar con Combustible derivado del petróleo. Otra ventaja es que a diferencia de las emulsiones convencionales que tienen viscosidades entre 90.000 y 110.000 cps obligando a utilizar presiones de transporte de entre 180 y 200 PSI, la Emulsión MIC tiene viscosidad entre 4.000 y 40.000 cps, por lo que solo necesita presiones de transporte de entre 60 y 100 PSI, reduciendo considerablemente los requerimientos de tamaño y potencia para las bombas impulsoras.
Actualmente, en los pozos con alto contenido de agua se emplean mezclas en torno a 70% de emulsión y 30% de ANFO, para proteger el ANFO del agua del pozo. En cambio, en los mismos pozos la Emulsión MIC permite usar 55% de emulsión MIC y 45% de nitrato de amonio poroso, reduciendo la cantidad necesaria de emulsión mejorando el rendimiento en tronadura por pozo, sobre todo pozos húmedos.
Otro beneficio observado de la presente emulsión MIC, es que en el balance de oxígeno de la reacción química de la explosión, se busca obtener valores negativos cercanos a cero, ojalá cero, pues los valores negativos liberan compuestos orgánicos, mientras que los valores positivos liberan gases tóxicos NOx (Óxidos de Nitrógeno) prohibidos en la minería. La Emulsión MIC permite tener balances de oxígeno negativos más cercanos a cero comparado con el arte previo.
A continuación, se presenta una tabla comparativa para exhibir las ventajas técnicas de la Emulsión MIC por sobre las Emulsiones Tradicionales.
TABLA COMPARATIVA
Figure imgf000010_0001
MÉTODO DE FABRICACIÓN.
La presente solicitud, también describe un método de fabricación de la Emulsión MIC explosiva antes descrita. (Ver Figura 2).
El método de fabricación comprende las etapas de: a) Mezclar una Solución Oxidante, con una Solución Combustible; b) Mezclar en mezclador de Pre-mezcla de alta calidad; c) Tecnología de mezclado y desplazamiento; d) Regular Viscosidad;
En donde:
En la etapa a):
La Solución Oxidante comprende: i) Nitrato de amonio en un rango de 65 a 85% (p/p);
¡i) Agua, en un rango de 10 a 20 % (p/p);
La Solución Combustible comprende: iii) Surfactantes, en un rango de 1 a 4 % (p/p); iv) Fuel Oil, en un rango de 8 a 15 % (p/p);
La mezcla se realiza en un pre-emulsionador, durante un tiempo de entre 2 a 30 minutos, con un RPM en un rango de 390 a 3000 rpm.
En la etapa b)
La mezcla obtenida de la etapa a) se mezcla nuevamente ahora utilizando un ultracizallador, durante un tiempo de entre 2 a 30 minutos, con un RPM en un rango de 390 rpm a 3000 rpm; o hasta obtener un tamaño de partícula menor que 10 μm. En la etapa c) (tecnología de mezclado y desplazamiento)
La mezcla obtenida de la etapa b) en impulsada con una bomba de cavidad progresiva, transportando la mezcla por un sistema de enfriamiento, hasta llegar a la siguiente etapa de regulación de la viscosidad.
En la etapa d) (Regulación de la viscosidad)
En esta etapa se regula la viscosidad por medio de Mezcladores estáticos, hasta alcanzar una viscosidad en el rango de 4.000 a 40.000 cps. Finalmente, la mezcla aquí llamada ‘emulsión MIC’ obtenida, es bombeada hasta los silos de almacenamiento.
DIAGRAMA DEL MÉTODO DE FABRICACIÓN.
En la Figura 2, se muestra el diagrama del método descrito en la presente solicitud. Este método sigue la estructura tradicional de la fabricación de emulsiones en plantas continuas (método tradicional del estado del arte: Figura 1).
En los métodos tradicionales (figura 1), al mezclador ingresan la solución oxidante y combustible previamente mezclados, se realiza la agitación y corte final de la emulsión para salir de este como producto final.
En cambio, en el presente método de fabricación (Figura 2), el mezclador funciona como un pre-mezclador. Entregando una pre-emulsión de alta calidad y homogeneidad. Luego esta pre-emulsión se ingresa al ultracizallador para obtener la Emulsión MIC, como producto final.
Este método de fabricación permite obtener la Emulsión MIC, con las características físicas mejoradas de baja viscosidad, densidad, reducido tamaño de partículas, penetración y protección mejoradas del Prill antes descritas.
EJEMPLOS
Cinética de movimiento en pozos con agua:
De acuerdo a lo presentado, este método de fabricación permite obtener una Emulsión explosiva que presenta una buena fluidez frente a pozos con agua. Para analizar esta característica de fluidez, se realizó una comparación simulando pozos con agua, siendo estos cargados de forma vaciada sobre un barreno o también conocido como producto vaciable, que solo son utilizados en pozos secos.
En las Figuras 11 , 12, y13, se presentan fotos de los resultados de las pruebas de vaciado.
La Figura 11 , muestra una Emulsión tradicional presentando dificultades para fluir y generando bolsas de agua, problemas de estancamiento, baja fluidez, pérdida de continuidad de la columna.
La Figura 12, muestra la Emulsión MIC, con buena capacidad de fluidez y sin generar bolsas de agua, favoreciendo la cinética de reacción de la columna al ser iniciada, con alta fluidez, sistema hidrófobo, alta compactación de la columna.
La Figura 13, muestra la Emulsión tradicional (lado izquierdo) Vs Emulsión MIC (lado derecho). Se observa el lado izquierdo que la columna presenta bolsas de agua, en cambio en lado derecho la columna no presenta bolsas de agua.
Se observó que la Emulsión MIC permite cargar pozos con agua siendo vaciados en este. Esto permite la reducción de los tiempos de carguío mejorando la productividad en terreno.
BENEFICIOS
Aplicaciones y Beneficios de Emulsión MIC.
Beneficios:
Los Beneficios de la presente emulsión MIC explosiva son:
Alta capacidad de fluidez.
Capacidad de penetración.
Protección externa e interna al nitrato de amonio poroso para zonas húmedas.
Fácil manipulación en terreno.
Reduce la tendencia de calibración de los camiones debido a solo requerir dos materias primas (Emulsión más nitrato poroso).
Puede ser vaciada en pozos con agua en mezclas 50/50 y 55/45.
Reduce las presiones de bombeo en los camiones hasta en un 50%. No requiere anillo de agua para ser bombeada.
Buena resistencia a las bajas temperaturas.
Proporciona continuidad de columna en pozos.
Aplicaciones.
La emulsión MIC descrita en la presente, se puede aplicar sin limitación en: industria minera, voladuras mineras, voladuras civiles, y explosiones submarinas.
BREVE DESCRIPCIÓN DE FIGURAS
Figura 1 : Diagrama de método Tradicional. Etapa 1 ) Mezclar una Solución Oxidante(1), con una Solución Combustible(2); Etapa 2) Mezclar en Reactor de Mezclado(3); Etapa 3) Bomba de desplazamiento(4); Etapa 4) Regular Viscosidad(5).
Figura 2: Diagrama de método Modificado. Etapa a) Mezclar una Solución Oxidante, con una Solución Combustible; Etapa b) Mezclar en mezclador de Pre-mezcla de alta calidad; Etapa c) Tecnología de mezclado y desplazamiento; Etapa d) Regular Viscosidad.
Figura 3-A: Se observa que la capilaridad del nitrato de amonio tiene un mínimo de 4 μm, permitiendo definir los tamaños requeridos para que la emulsión MIC fluya correctamente.
Figura 3-B: Se observan los Resultados de análisis de penetración de Emulsión MIC en el Prill.
Figura 4-A: Se observa fotografía de tamaño de partículas. Esta imagen se utiliza para calcular la distribución de tamaño de partículas utilizando procesamiento de imagen.
Figura 4-B: Se observa la distribución de tamaño de partículas. Ejemplo de Distribución de tamaño de partículas bimodal en el rango 1 ,5 a 5 μm.
Figura 5: Apariencia del nitrato de amonio LD en mezcla de la emulsión MIC al 12%.
Figura 6: Lado izquierdo: prill con emulsión MIC. Lado derecho: prill con emulsión tradicional con petróleo. Se observa que en el prill del lado izquierdo la tonalidad es más clara, indicando que requiere menos petróleo que la emulsión tradicional.
Figura 7: Apariencia interna del nitrato de amonio LD (Baja Densidad). Lado izquierdo: mezcla de MIC, vs lado derecho: emulsión tradicional con petróleo. Se observa que en el lado izquierdo con emulsión MIC, la tonalidad es más clara, indicando que posee penetrabilidad mejorada y así requiere menos petróleo que la emulsión tradicional.
Figura 8: Imagen del Producto Nitrato Prill LD en mezcla homogénea con MIC lado izquierdo y Petróleo lado derecho.
Figura 9: Imagen del Producto Nitrato Prill LD en mezcla homogénea con MIC lado izquierdo y Nitrato Prill LD lado derecho con emulsión tradicional. Se observa en imagen a color que el prill lado izquierdo es rosa, mientras que el lado derecho es gris, demostrando la penetrabilidad mejorada de la emulsión MIC versus emulsión tradicional.
Figura 10: Intensidad lumínica posterior para verificación de penetración de la emulsión MIC en los poros del nitrato de amonio Prill LD. Se observa lado Izquierdo con emulsión MIC tonalidad más clara que el lado derecho. Esto demuestra la penetración de la emulsión MIC, que así requiere menos petróleo que la emulsión tradicional lado izquierdo.
Figura 11 : Emulsión tradicional presentando dificultades para fluir y generando bolsas de agua. Se observa la cinética de vaciado, se observan; Alta viscosidad-problemas de estancamiento-Baja fluidez-Pérdida de continuidad de columna.
Figura 12: Emulsión MIC, buena capacidad de fluidez y sin generar bolsas de agua, favoreciendo la cinética de reacción de la columna al ser iniciada. Se observa que el producto MIC: Baja viscosidad-Alta fluidez- Alto contenido de orgánico- Sistema hidrófobo- Baja densidad y fluidez-Alta compactación de columna.
Figura 13: Se observa: columna a la izquierda: Emulsión tradicional Vs Columna a la derecha: Emulsión MIC. Se observa que la columna de la izquierda (emulsión tradicional) presenta bolsas de agua. En cambio, la columna de la derecha (emulsión MIC) no presenta bolsas de agua.

Claims

REIVINDICACIONES
1 . Una emulsión explosiva, CARACTERIZADA porque comprende: una Solución Oxidante que comprende: i) Nitrato de amonio;
¡i) Agua; una Solución Combustible que comprende: i i i) Surfactantes; iv) Fuel Oil.
2. La emulsión explosiva de la reivindicación 1 , CARACTERIZADA porque en la Solución Oxidante, el Nitrato de amonio es poroso de baja densidad, con una densidad en un rango de 0,65 a 0,80 g/mL, y se encuentra en un rango de 65 a 85%. (p/p); y el Agua, se encuentra en un rango de 10 a 20 %. (p/p)
3. La emulsión explosiva de la reivindicación 1 , CARACTERIZADA porque en la Solución Combustible, los Surfactantes se encuentran en un rango de 1 a 4 % (p/p); y el Fuel Oil, en un rango de 8 a 15 % (p/p).
4. La emulsión de la reivindicación 1 , CARACTERIZADA porque el nitrato de amonio se selecciona sin limitación de entre nitrados de amonio de LD y LR (Baja densidad), ULD (Ultra baja densidad).
5. La emulsión de la reivindicación 2, CARACTERIZADA porque los Surfactantes poseen un HLB (equilibrio hidrófilo-lipofílico) menor a 7.
6. La emulsión de la reivindicación 2, CARACTERIZADA porque el Fuel Oil, se selecciona sin limitación de entre: fuel oil comercial, fuel oil para vehículos, petróleo, aceites.
7. La emulsión de las reivindicaciones 1 a 6, CARACTERIZADA porque posee un tamaño de partículas menor que 10 μm.
8. La emulsión de las reivindicaciones 1 a 7, CARACTERIZADA porque posee una viscosidad en el rango de 4.000 a 40.000 cps.
9. Un método de fabricación de la emulsión de las reivindicaciones 1 a 8, CARACTERIZADO porque comprende las etapas de: a) Mezclar una Solución Oxidante, con una Solución Combustible; b) Mezclar en mezclador de Pre-mezcla de alta calidad; c) Tecnología de mezclado y desplazamiento; d) Regular Viscosidad.
10. El método de fabricación de la reivindicación 9, CARACTERIZADO porque: en la etapa a): la Solución Oxidante comprende: i) Nitrato de amonio en un rango de 65 a 85% (p/p);
¡i) Agua, en un rango de 10 a 20 % (p/p); la Solución Combustible comprende: iii) Surfactantes, en un rango de 1 a 4 % (p/p); iv) Fuel Oil, en un rango de 8 a 15 % (p/p); y la mezcla se realiza en un pre-emulsionador.
11 . El método de fabricación de la reivindicación 9, CARACTERIZADO porque: en la etapa b): la mezcla obtenida de la etapa a) se mezcla nuevamente ahora utilizando un UltraCizallador, durante un tiempo de entre 2 a 30 minutos, con un RPM en un rango de 390 rpm a 3000 rpm; o hasta obtener un tamaño de partícula menor que 10 μm.
12. El método de fabricación de la reivindicación 9, CARACTERIZADO porque: en la etapa c) la mezcla obtenida de la etapa b) es impulsada con una bomba de cavidad progresiva, transportando la mezcla por un sistema de enfriamiento, hasta llegar a la siguiente etapa d).
13. El método de fabricación de la reivindicación 9, CARACTERIZADO porque: en la etapa d) se regula la viscosidad por medio de Mezcladores estáticos, hasta alcanzar una viscosidad en el rango de 4.000 a 40.000 cps.
PCT/CL2022/050028 2022-03-25 2022-03-25 Nueva tecnología de fabricación para emulsiones de baja viscosidad WO2023178457A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2022/050028 WO2023178457A1 (es) 2022-03-25 2022-03-25 Nueva tecnología de fabricación para emulsiones de baja viscosidad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2022/050028 WO2023178457A1 (es) 2022-03-25 2022-03-25 Nueva tecnología de fabricación para emulsiones de baja viscosidad

Publications (1)

Publication Number Publication Date
WO2023178457A1 true WO2023178457A1 (es) 2023-09-28

Family

ID=88099497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2022/050028 WO2023178457A1 (es) 2022-03-25 2022-03-25 Nueva tecnología de fabricación para emulsiones de baja viscosidad

Country Status (1)

Country Link
WO (1) WO2023178457A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472215A (en) * 1982-04-02 1984-09-18 C-I-L Inc. Continuous method and apparatus for the preparation of explosives emulsion precursor
WO2007086950A2 (en) * 2005-10-07 2007-08-02 Dyno Nobel As Method and system for manufacture and delivery of an emulsion explosive
WO2009000915A2 (en) * 2007-06-28 2008-12-31 Maxamcorp Holding S.L. Explosive emulsion compositions and methods of making the same
WO2012019245A1 (en) * 2010-08-13 2012-02-16 Orica International Pte Ltd Process for the production of intermediate emulsions for use in emulsion explosives
CA2716285C (en) * 2009-11-23 2018-06-26 Industrias Minco S.A.C. Low density explosive emulsion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472215A (en) * 1982-04-02 1984-09-18 C-I-L Inc. Continuous method and apparatus for the preparation of explosives emulsion precursor
WO2007086950A2 (en) * 2005-10-07 2007-08-02 Dyno Nobel As Method and system for manufacture and delivery of an emulsion explosive
WO2009000915A2 (en) * 2007-06-28 2008-12-31 Maxamcorp Holding S.L. Explosive emulsion compositions and methods of making the same
CA2716285C (en) * 2009-11-23 2018-06-26 Industrias Minco S.A.C. Low density explosive emulsion
WO2012019245A1 (en) * 2010-08-13 2012-02-16 Orica International Pte Ltd Process for the production of intermediate emulsions for use in emulsion explosives

Similar Documents

Publication Publication Date Title
US11346642B2 (en) Systems for delivering explosives and methods related thereto
US9989344B2 (en) Method of producing an explosive emulsion composition
AU2014284046B2 (en) Explosive composition manufacturing and delivery platform, and blasting method
ES2865116T3 (es) Procedimiento para la fabricación “in situ” de hidrogeles explosivos de baja densidad resistentes al agua
AU2012350355B2 (en) Explosive composition
UA85825C2 (uk) Емульсійна вибухова речовина з високою в&#39;язкістю, спосіб її одержання та спосіб і система її доставки
WO2023178457A1 (es) Nueva tecnología de fabricación para emulsiones de baja viscosidad
KR102699402B1 (ko) 기계적으로 기체처리된 에멀젼 폭발물 및 그와 관련된 방법
RU2267475C2 (ru) Способ приготовления взрывчатой смеси на месте проведения взрывных работ
CA2825166A1 (en) Systems for delivering explosives and methods related thereto
AU777423B2 (en) Method and plant for in situ fabrication of explosives from water-based oxidant product
CN104151115A (zh) 一种易敏化复合乳化剂及其制备方法
KR20240046736A (ko) 기계적으로 가스 처리된 에멀젼 폭약 및 관련 방법 및 시스템
KR20240133769A (ko) 기계적으로 기체처리된 에멀젼 폭발물 및 그와 관련된 방법
US20240239722A1 (en) Composition for forming an explosive comprising an emulsion of hydrogen peroxide and an oil type fuel
CN108689784A (zh) 一种高密度高能量乳化炸药及其制备方法
NZ625171B2 (en) Explosive composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932529

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2022448528

Country of ref document: AU