WO2023176911A1 - Method for producing polypropylene resin extruded foam particles - Google Patents

Method for producing polypropylene resin extruded foam particles Download PDF

Info

Publication number
WO2023176911A1
WO2023176911A1 PCT/JP2023/010210 JP2023010210W WO2023176911A1 WO 2023176911 A1 WO2023176911 A1 WO 2023176911A1 JP 2023010210 W JP2023010210 W JP 2023010210W WO 2023176911 A1 WO2023176911 A1 WO 2023176911A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene resin
melt
foam particles
kneading
resin foam
Prior art date
Application number
PCT/JP2023/010210
Other languages
French (fr)
Japanese (ja)
Inventor
光孝 下田
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023176911A1 publication Critical patent/WO2023176911A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/695Flow dividers, e.g. breaker plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • B29C48/87Cooling

Definitions

  • the present invention relates to a method for producing extruded polypropylene resin foam particles.
  • Polypropylene resin in-mold foamed molded products obtained using polypropylene resin foam particles have the advantages of in-mold foamed molded products such as excellent shape flexibility, cushioning properties, lightness, and heat insulation properties. .
  • Examples of methods for producing expanded polypropylene resin particles include a batch foaming method that is a discontinuous process, and an extrusion foaming method that is a continuous process (for example, Patent Documents 1 and 2).
  • the extrusion foaming method has many advantages in terms of efficiency and environment.
  • One embodiment of the present invention has been made in view of the above problems, and its purpose is to provide a new manufacturing method capable of providing extruded polypropylene resin foam particles having a low open cell ratio.
  • the present inventor has completed the present invention as a result of intensive research to solve the above problems.
  • a method for producing extruded polypropylene resin foam particles uses a production apparatus equipped with a melt-kneading section having a plurality of screws and a granulation section having a die.
  • the ratio (L/D) of the effective length L of the screw to the screw diameter D is 20 to 24.
  • X unit a "constituent unit derived from an X monomer" contained in a polymer, copolymer, or resin may be referred to as an "X unit.”
  • the present inventor conducted extensive research into the reason why the closed cell ratio of extruded polypropylene resin foam particles is low.
  • the present inventor attempted to observe changes in resin due to extrusion foaming. Normally, in the extrusion foaming process, the composition extruded from the extruder into a region with a lower pressure than the inside of the extruder immediately begins to foam, so it is not possible to take out the resin during the extrusion foaming process and analyze it. Therefore, the present inventors returned the obtained extruded foamed polypropylene resin particles to the resin by subjecting them to heat treatment under reduced pressure, and analyzed the obtained resin.
  • the physical properties of the resin thus obtained after extrusion foaming were compared with the physical properties of the polypropylene resin used as the material for the extruded polypropylene resin foam particles.
  • the present inventor surprisingly found that the melt tension of the resin obtained by returning the extruded polypropylene resin foam particles to the resin is significantly lower than the melt tension of the polypropylene resin before extrusion foaming.
  • a polypropylene resin having a high melt tension such as a polypropylene resin having a branched structure
  • a polypropylene resin having a branched structure is used as a raw material.
  • polypropylene resins that do not have a branched structure do not deteriorate when melt-kneaded, or only slightly deteriorate when melt-kneaded, but polypropylene resins that have a branched structure do not deteriorate when melt-kneaded.
  • the knowledge that polypropylene resins having a branched structure are significantly degraded by melt-kneading is the knowledge obtained from (a) techniques using polypropylene resins that do not have a branched structure (for example, depressurized foaming techniques); This finding was first obtained through the ingenuity of (b) returning the obtained extruded polypropylene resin foam particles to the resin.
  • the present inventor further conducted intensive studies in order to obtain extruded polypropylene resin foam particles having a low open cell ratio.
  • the present inventor independently discovered the following findings and completed the present invention: By setting the length of the screw in the melt-kneading section of a twin-screw extruder within a specific range, a surprising In particular, it is possible to obtain extruded polypropylene resin foam particles with a low open cell ratio.
  • a method for producing foamed polypropylene particles having a branched structure is a method for producing a polypropylene resin having a branched structure, and includes a melt kneading section having a plurality of screws and a granulation part having a die.
  • melt-kneading step of melt-kneading a polypropylene resin having a branched structure and a blowing agent in the melt-kneading section using a manufacturing apparatus comprising a part; an extrusion foaming step of discharging into a region whose pressure is lower than the internal pressure of the manufacturing device, and in the melt-kneading section, the ratio (L/D) of the effective length L of the screw to the screw diameter D is 20 to 24. be.
  • the "effective length L of the screw” refers to the length (mm) from the upstream end in the extrusion direction of the screw element that has the function of melting the polypropylene resin to the downstream end of the screw.
  • screw diameter D intends the diameter (mm) of the circumscribed circle in the cross section perpendicular to the extrusion direction of the screw element.
  • polypropylene resin having a branched structure may be referred to as "branched polypropylene resin”
  • polypropylene resin extruded foam particles may be referred to as “extruded foam particles”
  • polypropylene resin extruded foam particles may be referred to as “polypropylene foam particles”.
  • Method for producing extruded polypropylene resin foam particles according to an embodiment of the present invention may be referred to as "the production method”
  • method for producing extruded polypropylene resin foam particles according to an embodiment of the present invention may be referred to as "the present production method”.
  • the extruded foam particles obtained by this production method can be made into a polypropylene resin foam molded article by molding the extruded foam particles (for example, in-mold foam molding).
  • a "polypropylene resin foam molded product” may be referred to as a "foamed molded product”.
  • the present manufacturing method has the above-described configuration, it has the advantage that there is little deterioration of the resin, and as a result, it is possible to provide extruded foam particles having a low open cell ratio.
  • the deterioration of the resin can be determined by comparing the physical properties of the resin obtained by returning the extruded foamed particles to the resin and the physical properties of the branched polypropylene resin that is the raw material for the extruded foamed particles. It can be evaluated.
  • the term "resin return” refers to melting the extruded foam particles under reduced pressure to obtain a resin mass. A resin mass obtained by returning the resin is sometimes referred to as a "restored resin.”
  • the specific method for returning the resin is not particularly limited, but examples include a method in which the following steps (b1) to (b5) are carried out in order: (b1) Melting point of the raw material polypropylene resin (for example, branched polypropylene resin) Place the expanded particles into a dryer adjusted to +10°C; (b2) Then, over a period of 5 to 10 minutes, use a vacuum pump to reduce the pressure inside the dryer to -0.05 MPa (gauge pressure).
  • steps (b1) to (b5) are carried out in order: (b1) Melting point of the raw material polypropylene resin (for example, branched polypropylene resin) Place the expanded particles into a dryer adjusted to +10°C; (b2) Then, over a period of 5 to 10 minutes, use a vacuum pump to reduce the pressure inside the dryer to -0.05 MPa (gauge pressure).
  • extruded foamed particles having a low open cell ratio are extruded foamed particles with excellent moldability. That is, since the present manufacturing method has the above-described configuration, it also has the advantage of being able to provide extruded foam particles with excellent moldability.
  • the resin mixture contains a polypropylene resin having a branched structure, and may optionally contain additives such as a cell nucleating agent.
  • polypropylene resin having a branched structure refers to (a) a polypropylene resin in which molecules of a polypropylene resin into which no branched structure has been introduced are partially crosslinked, and (b) A polypropylene resin in which a diene compound other than (poly)propylene or the like is introduced as a branched chain is intended as opposed to a polypropylene resin in which a branched structure is not introduced.
  • linear polypropylene resin into which a branched structure has not been introduced
  • linear polypropylene resin linear polypropylene resin
  • branched polypropylene resin branched polypropylene resin
  • the linear polypropylene resin can also be said to be a raw material for branched polypropylene resin.
  • a "constituent unit derived from a propylene monomer” may be referred to as a "propylene unit.”
  • polypropylene resin refers to a resin containing 50 mol% or more of propylene units out of 100 mol% of all structural units constituting the resin.
  • branched polypropylene resin In branched polypropylene resins, the structure derived from the raw material linear polypropylene resin is also referred to as the "main chain.” Therefore, by referring to each aspect regarding the main chain of the branched polypropylene resin detailed in this section (for example, the structural units included in the main chain and the bonding order of the structural units), the branched polypropylene resin Each aspect regarding the structure and/or composition of the linear polypropylene resin that is the raw material can be explained.
  • the main chain of the branched polypropylene resin may be (a) a homopolymer of propylene, or (b) a block copolymer, alternating copolymer, or random copolymer of propylene and a monomer other than propylene. It may be a combination or graft copolymer, or (c) a mixture of two or more thereof.
  • the main chain of polypropylene resins with a branched structure consists of a propylene homopolymer, a block copolymer of propylene and a monomer other than propylene, and a random copolymer of propylene and a monomer other than propylene.
  • it is one or more selected from the group.
  • the main chain of the branched polypropylene resin has one or more structural units (sometimes referred to as “structural units") derived from monomers other than propylene monomers. It is also possible to have one or more types.
  • monomers other than propylene monomers contained in the main chain of branched polypropylene resin may be referred to as "comonomers”
  • “propylene monomers contained in the main chain of branched polypropylene resin "Constituent units derived from monomers other than monomers" are sometimes referred to as "comonomer units.”
  • Comonomers include the following monomers: (a) ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, ⁇ -olefins having 2 or 4 to 12 carbon atoms such as 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene, 1-decene, (b) cyclopentene, norbornene, Cyclic olefins such as tetracyclo[6,2,11,8,13,6]-4-dodecene, (c) 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl- Dienes such as 1,4-hexadiene, 7-methyl-1,6-octadiene, and (d) vinyl chloride, vinylidene chloride, acrylonitrile, meth
  • acrylic esters include methyl acrylate, ethyl acrylate, butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and Examples include glycidyl acrylate.
  • methacrylate esters include methyl methacrylate, ethyl methacrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, and Examples include glycidyl methacrylate.
  • Styrenic monomers include styrene, methylstyrene, dimethylstyrene, alpha-methylstyrene, para-methylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, t-butylstyrene, bromostyrene, dibromostyrene, tribromostyrene, and chlorostyrene. , dichlorostyrene and trichlorostyrene.
  • the main chain of the branched polypropylene resin preferably has a structural unit derived from an ⁇ -olefin having 2 or 4 to 12 carbon atoms as a comonomer unit, and includes ethylene, 1-butene, isobutene, 1-pentene, 3- Methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene and/or 1-decene, etc.
  • branched polypropylene resin can have high melt tension and low gel fraction, it is possible to provide extruded polypropylene resin foam particles with a lower open cell ratio, and the extruded polypropylene resin has better moldability. It has the advantage of providing expanded particles.
  • the main chain of the branched polypropylene resin is preferably a propylene homopolymer, a polypropylene block copolymer, a polypropylene alternating copolymer, and/or a polypropylene random copolymer; More preferably, it is a polypropylene random copolymer.
  • the branched polypropylene resin can have high melt tension and low gel fraction, it is possible to provide extruded polypropylene resin foam particles with a lower open cell ratio, and the extruded polypropylene resin has better moldability. It has the advantage of providing expanded particles.
  • the main chain of the branched polypropylene resin preferably contains 90 mol% or more of propylene units, more preferably 93 mol% or more, and 95 mol% of the total structural units contained in the polypropylene resin. It is more preferable to contain at least 97 mol%, particularly preferably at least 97 mol%. This configuration has the advantage that the branched polypropylene resin can have high melt tension and low gel fraction.
  • the melting point of the branched polypropylene resin is not particularly limited.
  • the melting point of the polypropylene resin is, for example, preferably 130°C to 165°C, more preferably 135°C to 164°C, even more preferably 138°C to 163°C, and even more preferably 140°C to 162°C. It is particularly preferable that there be.
  • the melting point of the branched polypropylene resin is (a) 130°C or higher, there is no risk that the dimensional stability of the foamed molded product will decrease, there is no risk that the heat resistance of the foamed molded product will be insufficient, and It has the advantage that the compressive strength of the molded product tends to be strong, and (b) when the temperature is 165°C or lower, it is possible to mold extruded foam particles with a relatively low vapor pressure, so polypropylene resin foaming It has the advantage that extruded foam particles can be formed using a general-purpose particle forming machine.
  • the melting point of the branched polypropylene resin is measured by differential scanning calorimetry (hereinafter referred to as "DSC method").
  • DSC method differential scanning calorimetry
  • the specific operating procedure is as follows: (1) The branched polypropylene resin is heated by increasing the temperature of 5 to 6 mg of the branched polypropylene resin from 40°C to 220°C at a heating rate of 10°C/min. (2) Then, the temperature of the melted branched polypropylene resin is lowered from 220°C to 40°C at a cooling rate of 10°C/min to crystallize the branched polypropylene resin.
  • the temperature of the crystallized branched polypropylene resin is further increased from 40°C to 220°C at a rate of 10°C/min.
  • the temperature of the peak (melting peak) of the DSC curve of the branched polypropylene resin obtained during the second temperature increase can be determined as the melting point of the branched polypropylene resin.
  • the temperature of the peak with the maximum heat of fusion (melting peak) is , is the melting point of the branched polypropylene resin.
  • the differential scanning calorimeter for example, DSC6200 model manufactured by Seiko Instruments Inc. can be used.
  • the melt tension of the branched polypropylene resin is not particularly limited, but it can usually be higher than the melt tension of the raw material linear polypropylene resin.
  • the melt tension of the branched polypropylene resin at 200° C. is preferably 8.0 cN or more, more preferably 9.0 cN or more, and even more preferably 10.0 cN or more.
  • melt tension is measured using Capillograph 1D (manufactured by Toyo Seiki Seisakusho Co., Ltd., Japan). Specifically, the following are (1) to (5): (1) Sample resin for measurement (branched polypropylene resin) is placed in a barrel with a diameter of 9.55 mm heated to the test temperature (200°C).
  • the sample resin is heated for 10 minutes in a barrel heated to the test temperature (200 ° C.); (3) Then, from a capillary die (caliber 1.0 mm, length 10 mm), At a constant piston descending speed (10 mm/min), the sample resin is drawn out in a string, passed through a tension detection pulley located 350 mm below the capillary die, and then wound up. Start winding using a roll; (4) After the string-like material is taken up stably, the string-like material is wound at a constant speed from an initial speed of 1.0 m/min until it reaches a speed of 200 m/min in 4 minutes. (5) Measure the load applied to the pulley with a load cell when the string-like material breaks as the melt tension.
  • the melt flow rate (MFR) of the branched polypropylene resin at 230°C is not particularly limited.
  • the MFR of the branched polypropylene resin at 230°C is, for example, preferably 0.5 g/10 minutes to 20.0 g/10 minutes, and preferably 1.0 g/10 minutes to 15.0 g/10 minutes. It is more preferable, and particularly preferably 2.0 g/10 minutes to 10.0 g/10 minutes.
  • the MFR at 230°C of the branched polypropylene resin is (a) 0.5 g/10 minutes or more, the resulting extruded foamed particles have little deformation and a foamed molded product with good (beautiful) surface properties. (b) If it is 20.0 g/10 minutes or less, the composition has an advantage that the foamability of the composition becomes good during extrusion foaming.
  • the MFR of the branched polypropylene resin is measured using an MFR measuring device described in JIS K7210, with an orifice diameter of 2.0959 ⁇ 0.0050 mm ⁇ , an orifice length of 8.000 ⁇ 0.025 mm, This is a value determined by measurement under conditions of a load of 2160 g and a temperature of 230 ⁇ 0.2°C.
  • a branched polypropylene resin can be obtained by introducing a branched structure into a linear polypropylene resin.
  • Methods for introducing a branched structure into a linear polypropylene resin are not particularly limited, but examples include (a1) a method of irradiating a linear polypropylene resin with radiation, and (a2) a method of introducing a linear polypropylene resin and a conjugated diene compound. Examples include a method of melt-kneading a mixture containing a radical polymerization initiator and a radical polymerization initiator.
  • a branched polypropylene resin can be obtained by sequentially performing the following (i) to (iv): (i) a linear polypropylene resin, a conjugated diene compound, and a radical polymerization initiator; (ii) extrude the obtained melt-kneaded product from the die; (iii) cool the extruded melt-kneaded product (also referred to as strand); (iv) Shredding the strands simultaneously with or after cooling the strands.
  • Specific examples of the method (a2) include the method described in WO2020/004429.
  • the branched polypropylene resin is preferably a branched polypropylene resin obtained by the method (a2) described above.
  • conjugated diene compound examples include butadiene, isoprene, 1,3-heptadiene, 2,3-dimethylbutadiene, and 2,5-dimethyl-2,4-hexadiene. These conjugated diene compounds may be used alone or in combination of two or more. Among these conjugated diene compounds, butadiene and isoprene are particularly preferred because (a) they are inexpensive and easy to handle, and (b) the reaction tends to proceed uniformly.
  • the amount of the conjugated diene compound used in the method (a2) is 0.30 parts by weight to 1.50 parts by weight, and 0.30 parts by weight to 0.80 parts by weight, based on 100 parts by weight of the linear polypropylene resin. parts by weight, and more preferably from 0.30 parts by weight to 0.60 parts by weight.
  • the amount of the conjugated diene compound used is 0.30 parts by weight or more per 100 parts by weight of the linear polypropylene resin, the degree of modification to the polypropylene resin (the number of crosslinks introduced into the linear polypropylene resin) ) becomes sufficient, and as a result, the melt tension of the branched polypropylene resin obtained can be sufficiently increased (for example, to 8.0 cN or more).
  • the amount of the conjugated diene compound used is 1.50 parts by weight or less based on 100 parts by weight of the linear polypropylene resin, the crosslinking between the polypropylene resins by the conjugated diene compound will not become excessive, so that the There is no risk of the viscosity of the branched polypropylene resin being increased. As a result, it becomes easy to obtain extruded polypropylene resin foam particles with a high magnification from the obtained branched polypropylene resin.
  • radical polymerization initiator used in method (a2) is an organic peroxide having the ability to abstract hydrogen from a linear polypropylene resin and a conjugated diene compound.
  • radical polymerization initiators suitably used in one embodiment of the present invention include organic polymerization initiators such as ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxydicarbonate, and peroxyester. Examples include oxides.
  • organic peroxide one having particularly high hydrogen abstraction ability is preferable.
  • organic peroxides with high hydrogen abstraction ability include 1,1-bis(t-butylperoxy)3,3,5-trimethylcyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, n- Peroxyketals such as butyl 4,4-bis(t-butylperoxy)valerate, 2,2-bis(t-butylperoxy)butane; dicumyl peroxide, 2,5-dimethyl-2,5-dimethyl (t-butylperoxy)hexane, ⁇ , ⁇ '-bis(t-butylperoxy-m-isopropyl)benzene, t-butylcumyl peroxide, di-t-butylperoxide, 2,5-dimethyl-2 , 5-di(t-butylperoxy)-3-hexyne and other dialkyl peroxides; benzoyl peroxide and
  • t-butylperoxyisopropyl carbonate t-butylperoxybenzoate and 2,2-bis(t-butylperoxy)butane are preferred.
  • organic peroxides may be used alone or in combination of two or more.
  • the amount of the radical polymerization initiator used in the method (a2) is 0.50 to 2.00 parts by weight, and 0.60 to 1.80 parts by weight based on 100 parts by weight of the linear polypropylene resin. parts by weight are preferable, 0.70 parts by weight to 1.60 parts by weight are more preferable, 0.70 parts by weight to 1.50 parts by weight are more preferable, 0.70 parts by weight to 1.30 parts by weight are more preferable, It is more preferably 0.70 parts by weight to 1.10 parts by weight, even more preferably 0.75 parts by weight to 1.00 parts by weight, and particularly preferably 0.75 parts by weight to 0.90 parts by weight.
  • the amount of the radical polymerization initiator used is less than 0.50 parts by weight per 100 parts by weight of the linear polypropylene resin, the degree of modification of the linear polypropylene resin may be insufficient. As a result, when extrusion foaming is performed using the obtained branched polypropylene resin, the branched polypropylene resin does not exhibit sufficient strain hardening properties, and therefore only extruded foam particles with a high open cell ratio tend to be obtained.
  • the amount of the radical polymerization initiator used exceeds 2.00 parts by weight per 100 parts by weight of the linear polypropylene resin, hydrogen is obtained by increasing the abstraction of hydrogen from the linear polypropylene resin by the radical polymerization initiator.
  • the amount of gel of the branched polypropylene resin can be increased. As a result, when extrusion foaming is performed using the branched polypropylene resin, there is a tendency that only extruded foam particles with a low expansion ratio and a high open cell ratio are obtained.
  • the resin mixture may further contain a resin other than the branched polypropylene resin (sometimes referred to as “other resin”) and/or rubber, as long as the effects of the embodiment of the present invention are not impaired. good.
  • Other resins and rubbers may be collectively referred to as “other resins, etc.”.
  • Other resins include (a) linear polypropylene resins such as ethylene/propylene random copolymers, ethylene/propylene block copolymers, ethylene/propylene alternating copolymers, and propylene homopolymers; Density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, linear very low density polyethylene, ethylene/vinyl acetate copolymer, ethylene/acrylic acid copolymer, and ethylene/methacrylic acid copolymer and (c) styrenic resins such as polystyrene, styrene/maleic anhydride copolymers, and styrene/ethylene copolymers.
  • the rubber include olefin rubbers such as ethylene/propylene rubber, ethylene/butene rubber, ethylene/hexene rubber, and ethylene/octene rubber.
  • the content of other resins in the resin mixture is, for example, preferably 60 parts by weight or less, more preferably 40 parts by weight or less, and 20 parts by weight or less based on 100 parts by weight of the resin mixture. It is even more preferable that the amount is 10 parts by weight or less.
  • the lower limit of the content of other resins, etc. is not particularly limited, and may be, for example, 0 parts by weight based on 100 parts by weight of the resin mixture.
  • the resin mixture may contain a cell nucleating agent for the purpose of controlling the number and shape of cells in the resulting extruded foam particles.
  • Bubble nucleating agents may include sodium bicarbonate-citric acid mixtures, monosodium citrate, talc, calcium carbonate, and the like. These bubble nucleating agents may be used alone or in combination of two or more.
  • the amount of the cell nucleating agent used is not particularly limited.
  • the amount of the cell nucleating agent used is, for example, preferably 0.01 parts by weight to 5.00 parts by weight, and 0.01 parts by weight to 3.50 parts by weight, based on 100 parts by weight of the branched polypropylene resin. parts by weight, more preferably from 0.01 parts by weight to 1.00 parts by weight, and particularly preferably from 0.01 parts by weight to 0.50 parts by weight.
  • the resin mixture may contain other ingredients as necessary (a) antioxidant, metal deactivator, phosphorus processing stabilizer, ultraviolet absorber, ultraviolet stabilizer, optical brightener, metal soap, and antacid adsorbent. and/or (b) additives such as crosslinkers, chain transfer agents, lubricants, plasticizers, fillers, reinforcements, flame retardants, colorants, and antistatic agents. You can stay there. These other components may be used alone or in combination of two or more. The amount of additives such as the above-mentioned antioxidants and metal deactivators used is not particularly limited.
  • the amount of the additive used is, for example, preferably 0.01 parts by weight to 20.00 parts by weight, and 0.10 parts by weight to 5.00 parts by weight, based on 100 parts by weight of the branched polypropylene resin. It is more preferable that it is part.
  • composition (2-2. Composition)
  • the substance obtained by adding a foaming agent to the resin mixture described above may be referred to as a "composition”.
  • the blowing agent that can be used in this manufacturing method is not particularly limited as long as it is a commonly used blowing agent used in extrusion foaming.
  • the blowing agent include (a) (a-1) aliphatic hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, and hexane; (a-2) alicyclics such as cyclopentane and cyclobutane; (a-3) Ethers such as dimethyl ether, diethyl ether, methyl ethyl ether; (a-4) Fluorinated hydrocarbons such as difluoroethane; (a-5) Alcohols such as methanol and ethanol; (a-6) Inorganic gases such as air, nitrogen, and carbon dioxide; (a-7) Physical blowing agents such as water; and (b) Inorganic gases such as sodium bicarbonate, azodicarbonamide, and dinitrosopentamethylenetetramine. Examples
  • the blowing agent inorganic gas is preferred, and carbon dioxide gas is more preferred, since the production cost and environmental impact are low.
  • the content of the blowing agent other than carbon dioxide, which is mentioned above as an example of the blowing agent, in the composition is 0.01 parts by weight or less, and 0.001 parts by weight or less, based on 100 parts by weight of the composition. It is more preferably at most 0.0001 parts by weight, even more preferably at most 0.0001 parts by weight, and particularly preferably at most 0 parts by weight.
  • the amount of the blowing agent used may be adjusted as appropriate depending on the type of blowing agent and the target expansion ratio of the foam.
  • the total amount of blowing agents used is preferably 1 to 20 parts by weight, more preferably 1 to 15 parts by weight, based on 100 parts by weight of the composition. , more preferably from 1 part by weight to 10 parts by weight, particularly preferably from 2 parts by weight to 10 parts by weight.
  • the "amount of blowing agent used" can also be said to be the "content of the blowing agent in the composition.”
  • the manufacturing apparatus used in this manufacturing method includes a melt-kneading section having a plurality of screws and a granulation section having a die.
  • the manufacturing apparatus may further include a transport section and/or a cooling section.
  • the manufacturing apparatus includes a transport section and a cooling section, (a) the melt-kneading section, the transport section, the cooling section, and the granulation section are connected, and (b) from the upstream side to the downstream side in the extrusion direction of the composition.
  • a melt-kneading section, a transport section, a cooling section, and a granulation section are arranged in this order.
  • the transport section and the cooling section may be provided with the order changed between the upstream side and the downstream side, and (b) the transport section is provided on the cooling section. It may be provided on both the upstream side and the downstream side.
  • the transport section can be omitted if the pressure of the composition in the pipe from the melt-kneading section to the granulation section is sufficiently low. Further, if the temperature of the composition is sufficiently lowered at the outlet of the melt-kneading section, the cooling section may be omitted.
  • melt-kneading section having a plurality of screws for example, a twin-screw extruder having two screws is preferable in order to have good mixing properties. Further, it is preferable that the melt-kneading section has a screw configuration so that the blowing agent press-injected into the melt-kneading section does not flow back to the upstream side. That is, as the melt-kneading section having a plurality of screws, a twin-screw extruder having a two-screw configuration with a backflow prevention function is more preferable.
  • the melt-kneading section includes a kneading disk, a notched screw, which has a forward shift angle (for example, 45 degrees) and/or a shift angle of 90 degrees and/or a reverse shift angle (for example, -45 degrees). It may have elements such as a forward-threaded flight screw and a counter-threaded flight screw. Kneading disks and notched screws having a forward shift angle (for example, 45 degrees) and/or a shift angle of 90 degrees and/or a reverse shift angle (for example, -45 degrees) can be said to be elements having a relatively strong kneading action.
  • Elements with relatively strong kneading effects include rotors, gear mixing elements, pin elements, and the like.
  • the normally threaded flight screw can be said to be an element with relatively weak kneading action.
  • the counter-threaded flight screw can be said to be an element that has the function of securing a filling area.
  • Such elements having the function of ensuring a filling area include kneading discs, torpedo rings, seal rings, etc. with a 90 degree offset angle and/or a reverse offset angle (for example -45 degrees).
  • melt-kneading section include the following configurations: (1) A configuration in which a kneading disk, a forward flight screw, a kneading disk, a reverse flight screw, a forward flight screw, a kneading disk, a notch screw, and a forward flight screw are connected in this order; (2) A configuration in which a kneading disk, a counter-thread flight screw, a normal-thread flight screw, a kneading disk, a notch screw, and a normal-thread flight screw are connected in this order; (3) A configuration in which a kneading disk, a forward flight screw, a kneading disk, a reverse flight screw, a gear mixing element, a forward flight screw, a gear mixing element, and a forward flight screw are connected in this order; (4) A configuration in which a kneading disk, a reverse thread flight screw, a
  • the transport section is constituted by a transport member for transporting the composition from the melt-kneading section to the granulation section.
  • the transport member may be any known transport member used in the extrusion foaming method, such as a gear pump.
  • a gear pump is a useful member for maintaining or optionally increasing the pressure of the composition stream.
  • the cooling section is composed of a cooling member that cools the composition transported from the transport section (or the melt-kneading section if the transport section is omitted).
  • the cooling member may be any known cooling member used in the extrusion foaming method. Examples of the cooling member include a single screw extruder, a static mixer, a melt cooler, and the like.
  • the composition is cooled to a predetermined temperature by slow cooling while mixing at a low shear rate using a single screw extruder, static mixer, or melt cooler.
  • the cooling section includes a static mixer, and it is preferable that the cooling section is composed only of a static mixer.
  • the present inventor independently obtained the following new knowledge in the process of intensive study: Compared to the case of using a manufacturing device equipped with a cooling section equipped with a single-screw extruder, the present inventor has a cooling section equipped with a static mixer. Using the production equipment, it is surprisingly possible to obtain extruded foam particles with a significantly lower open cell content.
  • the die in the granulation section is equipped with at least one hole (sometimes referred to as a discharge hole) for discharging the melt-kneaded material.
  • the shape of the cross section of the hole provided in the die perpendicular to the extrusion direction (hereinafter sometimes simply referred to as "the shape of the hole of the die") is not particularly limited. Since extruded foamed particles having a spherical or approximately spherical shape can be obtained, the shape of the hole in the die is preferably a perfect circle, a substantially circle, an ellipse, a square, or the like.
  • the number and diameter of holes provided in the die are not particularly limited.
  • the die preferably has a hole with a hole diameter of 0.1 mm to 2.0 mm, for example, and a hole diameter of 0.4 mm to 1.5 mm, from the viewpoint of maintaining an appropriate size of expanded particles in the in-mold foam molding process. It is more preferable to have holes. More preferably, the die has a plurality of holes (for example, two or more). In this specification, when the shape of the hole of the die is not a perfect circle, the diameter of the hole of the die is intended to be the diameter of the inscribed circle of the shape of the hole of the die.
  • the melt-kneading step is a step in which the branched polypropylene resin is melted and the blowing agent is dissolved in the branched polypropylene resin in the melt-kneading section of the manufacturing device.
  • the melt-kneading step can also be said to be a step of preparing a melt-kneaded product of a composition containing a resin mixture having a branched polypropylene resin and a blowing agent.
  • the order and method of supplying the branched polypropylene resin and the blowing agent to the melt-kneading section are not particularly limited, and include, for example, the following methods (d) or (e): (d) (d-1) Mix or blend the branched polypropylene resin and a blowing agent to prepare a composition; (d-2) Then, supply the composition to a melt-kneading section, and A method of melting and kneading things; (e) (e-1) Supply the branched polypropylene resin to the melt-kneading section, and melt-knead the branched polypropylene-based resin; (e-2) After that, the branched polypropylene resin that has been melt-kneaded is A blowing agent is supplied from a raw materials
  • the temperature of the melt-kneaded composition is controlled within a temperature range at which the melt-kneaded composition does not solidify. It may further include a lowering step.
  • the ratio of the effective length L of the screw to the screw diameter D (L/D) is 20 to 24 in the melt-kneading section.
  • the present inventor independently obtained the following new findings in the course of intensive studies: A manufacturing apparatus equipped with a melt-kneading section in which the ratio of the effective length L of the screw to the screw diameter D (L/D) is 24.
  • L/D the blowing agent can be sufficiently uniformly dispersed in the melt-kneaded branched polypropylene resin.
  • the above (L/D) is preferably 20 or more and less than 24, more preferably 20 to 23, and 20 or more and less than 23. It is more preferably 1, and particularly preferably 20 to 22.
  • the "effective length L of the screw” refers to the length (mm) from the upstream end in the extrusion direction of the screw element that has the function of melting the polypropylene resin to the downstream end of the screw.
  • the “effective length L of the screw” includes the lengths of the elements that have a relatively strong kneading action, the elements that have a relatively weak kneading action, and the elements that have the function of ensuring a filled region.
  • the ratio of the kneading element length (mm) of the screw to the screw diameter D (mm) (kneading element length/D) is preferably less than 14 in the melt-kneading section.
  • the "kneading element length of the screw” refers to the length (mm) of elements with strong kneading action such as kneading discs and notched screws, and the length (mm) of elements with strong kneading action, such as kneading disks and notched screws, out of the "effective length of the screw". It is intended to be the sum total of the length (mm) of the element that has the function of securing a filled area.
  • Deterioration of polypropylene resin is suppressed by using a manufacturing device equipped with a melt-kneading section in which the ratio of the screw kneading element length (mm) to the screw diameter D (mm) (kneading element length/D) is less than 14. It has the advantage of being
  • the ratio of the kneading element length to the screw diameter D (kneading element length/D) of the screw is less than 14. It is preferably less than 12, even more preferably less than 11, and particularly preferably less than 10.
  • the lower limit of kneading element length/D is preferably 4 or more.
  • the temperature of the melt-kneading section is not particularly limited.
  • the temperature of the melt-kneading section is preferably within a range that does not interfere with the supply of the blowing agent to the raw materials.
  • the blowing agent is a gas
  • the blowing agent may escape to the upstream side of the melt-kneading section.
  • the temperature of the melt-kneading section is, for example, preferably in the range of 170°C to 230°C, more preferably in the range of 180°C to 220°C, even more preferably in the range of 180°C to 210°C. .
  • the temperature of the melt-kneading section includes, for example, the temperature of the cylinder (barrel) in which the screw is housed.
  • the temperature of the cooling section and the temperature of the die are not particularly limited.
  • the temperature of the cooling section and the temperature of the die may be independently set as appropriate depending on the melting point of the branched polypropylene resin, the type and amount of blowing agent used, the mode of the extrusion foaming process, etc. good.
  • the temperature of the cooling section includes, for example, the temperature of the cylinder (barrel) in which the screw is housed in the single screw extruder.
  • the temperature of the cooling section includes, for example, the temperature of the housing in which the static mixer is housed.
  • the discharge amount Q of the melt-kneaded composition is not particularly limited.
  • the discharge amount Q of the melt-kneaded composition may be set as appropriate depending on the size of the melt-kneading section (for example, the above (L/D)).
  • melt-kneading time and the rotation speed N of the screw in the melt-kneading section are not particularly limited.
  • the melt-kneading time and the rotation speed N of the screw in the melt-kneading section are both independent depending on the size of the melt-kneading section (for example, (L/D)) and/or the discharge amount Q, etc. You may set it as appropriate.
  • the discharge amount Q of the melt-kneaded composition, the melt-kneading time, and the rotation speed N of the screw in the melt-kneading section all have no effect on the deterioration of the branched polypropylene resin due to melt-kneading, or if they do. There are also very few.
  • the extrusion foaming process is a process in which the composition obtained in the melt-kneading process, that is, the melt-kneaded composition, is extruded through a die into an area whose pressure is lower than the internal pressure of the manufacturing equipment, and the extruded composition is shredded. be. Extruded foam particles are obtained by the extrusion foaming process. Therefore, the extrusion foaming process can also be said to be a granulation process of granulating extruded polypropylene resin foam particles.
  • the area where the composition obtained in the melt-kneading step is extruded is not particularly limited as long as the pressure is lower than the internal pressure of the manufacturing equipment.
  • the composition obtained in the melt-kneading process may be extruded into the gas phase or into the liquid phase.
  • the composition being foamed may be shredded, or the foamed composition may be shredded. If the foaming composition is shredded, the shredded composition may complete foaming in the extruded region.
  • the extrusion foaming step can be roughly divided into two types: a cold cut method and a die face cut method.
  • the cold cut method include a method in which a composition containing a foaming agent extruded from a die is foamed, the foam is cooled through a water tank, and the strand-shaped foam is taken out and shredded (strand cut method).
  • the die face cutting method is a method in which a composition extruded from a hole in a die is cut with a rotating cutter while contacting the surface of the die or while maintaining a slight gap.
  • the die face cutting method can be further divided into the following three methods depending on the cooling method. That is, they are an underground cut (hereinafter sometimes referred to as UWC) method, a watering cut (hereinafter sometimes referred to as WRC) method, and a hot cut (hereinafter sometimes referred to as HC) method.
  • UWC underground cut
  • WRC watering cut
  • HC hot cut
  • the UWC method is a method in which a chamber attached to the tip of a die is filled with cooling water adjusted to a predetermined pressure so as to be in contact with the resin discharge surface of the die, and the composition extruded from the holes of the die is cut underwater.
  • a cooling drum is connected to the die and cooling water flows along the inner peripheral surface of the drum, which is placed downstream from the die, so that the composition cut by the cutter foams in the air.
  • This method involves cooling in the cooling water while foaming or after foaming.
  • the HC method is a method in which a composition is cut with a cutter in the air, and the cut composition is cooled in the air while or after foaming.
  • the HC method also includes a mist cut method that further includes a step of spraying a mixed mist of water and air.
  • the liquid phase is not particularly limited, but water is preferred because it can be produced inexpensively and safely.
  • the temperature of the liquid phase is not particularly limited, but it is preferably between 20°C and 90°C, and between 25°C and 85°C, since it is easier to obtain extruded foamed particles with fewer extruded foamed particles adhering to each other.
  • the temperature is preferably 30°C to 80°C, even more preferably 35°C to 80°C, and particularly preferably 40°C to 80°C.
  • the temperature of the liquid phase can be measured by a thermometer placed in contact with the liquid phase.
  • the pressure of the liquid phase on the composition within the region is not particularly limited, but it is easy to keep the open cell ratio of the obtained extruded foam particles low and also to keep the stickiness of the obtained extruded foam particles low, so it is 0. It is preferably from 0.05 MPa.G to 0.60 MPa.G, more preferably from 0.07 MPa.G to 0.55 MPa.G, and more preferably from 0.10 MPa.G to 0.50 MPa.G. , more preferably 0.10 MPa ⁇ G to 0.45 MPa ⁇ G, particularly preferably 0.10 MPa ⁇ G to 0.40 MPa ⁇ G.
  • MPa.G is intended to mean that MPa indicates gauge pressure.
  • polypropylene resin extruded foam particles obtained by this production method
  • this extruded foamed particles this extruded foamed particles
  • the extruded foamed particles have the advantage of having a low open cell ratio.
  • the open cell ratio of the extruded foam particles is preferably less than 4.2%, more preferably 4.1% or less, more preferably 4.0% or less, and 3.9% or less. It is more preferably 3.8% or less, more preferably 3.7% or less, more preferably 3.6% or less, and 3.5% or less. It is more preferable that the content is 3.4% or less, and particularly preferably 3.4% or less.
  • the lower limit of the open cell ratio of the extruded foamed particles is not particularly limited, and is, for example, 0.0% or more.
  • the extruded foamed particles have excellent moldability because the cells hardly break and shrink during molding of the extruded foamed particles, and (b) the extruded foamed particles have excellent moldability.
  • the foamed molded article obtained using this method has the advantage that characteristics such as shape flexibility, cushioning properties, lightness, compressive strength, and heat insulation properties are better exhibited.
  • the method for measuring the open cell ratio of extruded polypropylene resin foam particles will be explained in detail in Examples below.
  • the expansion ratio of the extruded foam particles is preferably 2.0 times to 45.0 times, more preferably 2.5 times to 40.0 times, and 2.5 times to 35.0 times. More preferably, it is 3.0 times to 30.0 times, more preferably 3.5 times to 25.0 times, and 3.5 times to 20.0 times. is more preferable, more preferably 3.5 times to 15.0 times, even more preferably 3.5 times to 10.0 times, particularly 4.0 times to 8.0 times. preferable. According to the above structure, there is an advantage that the polypropylene resin foam molded product obtained using the extruded foam particles exhibits characteristics such as shape arbitrariness, cushioning properties, lightness, and heat insulation properties. .
  • the expansion ratio of the extruded foamed particles obtained by manufacturing the extruded foamed particles does not reach the above range, the extruded foamed particles obtained are pressurized with an inert gas, and then the extruded foamed particles are A method of increasing the expansion ratio by heating expanded particles (for example, the method described in JP-A-10-237212) can also be used.
  • the method for measuring the expansion ratio of extruded polypropylene resin foam particles will be explained in detail in Examples below.
  • the "polypropylene resin foam molded article according to an embodiment of the present invention” may be referred to as the "present foam molded article”.
  • a foamed molded product obtained by manufacturing using a mold is sometimes referred to as an in-mold foamed molded product.
  • the method for producing a polypropylene resin foam molded article according to an embodiment of the present invention has the above-described configuration, the polypropylene resin foam molding has excellent compressive strength, excellent fusion properties, and/or a beautiful surface. It has the advantage of being able to provide the body.
  • the mold used is not particularly limited.
  • the mold may include at least two molds, for example, a fixed mold that cannot be driven and a movable mold that can be driven.
  • a molding space is formed inside the fixed mold and the movable mold. Note that when the extruded foam particles in the molding space are heated, the fixed mold and the movable mold can come into contact (that is, the mold can be sealed).
  • the fixed formwork and the movable formwork do not need to be in contact with each other, and there is a slight gap between the fixed formwork and the movable formwork.
  • a gap also referred to as a crack may be formed.
  • a method for filling extruded polypropylene resin foam particles into a molding space and a method for heating extruded polypropylene resin foam particles in a mold are as follows: Not particularly limited. Examples of these methods include methods (b1) to (b4) below.
  • the extruded foam particles are pressurized with an inorganic gas in a container to impregnate the extruded foam particles with the inorganic gas and apply a predetermined internal pressure to the extruded foam particles. Thereafter, a method of filling the extruded foam particles into a molding space of a mold and heating the extruded foam particles in the molding space with steam; (b2) Filling the molding space of the mold with extruded foam particles.
  • the heating step preferably includes a step of heating the extruded polypropylene resin foam particles with steam.
  • the pressure of water vapor for heating extruded foam particles (hereinafter sometimes referred to as vapor pressure) varies depending on the characteristics of the extruded foam particles used, etc. , cannot be defined in general terms.
  • At least one kind selected from the group consisting of air, nitrogen, oxygen, carbon dioxide, helium, neon, argon, etc. can be used as the inorganic gas.
  • air and/or carbon dioxide are preferred.
  • the internal pressure of the expanded particles in the method (b1) is preferably 0.05 MPa to 0.30 MPa (absolute pressure), and preferably 0.06 MPa to 0.25 MPa (absolute pressure).
  • the temperature inside the container when impregnating the expanded particles with an inorganic gas is preferably 10°C to 90°C, more preferably 40°C to 90°C.
  • An embodiment of the present invention may have the following configuration.
  • the polypropylene resin having a branched structure has a melt flow rate of 0.5 g/10 minutes to 20.0 g/10 minutes at 230°C, and a melt tension of 8.0 cN or more at 200°C, [1 ] to [6].
  • the method for producing extruded polypropylene resin foam particles according to any one of [6].
  • the main chain of the polypropylene resin having a branched structure may be a propylene homopolymer, a block copolymer of propylene and a monomer other than propylene, or a random copolymer of propylene and a monomer other than propylene.
  • the polypropylene resin having a branched structure is obtained by melt-kneading a linear polypropylene resin, a conjugated diene compound, and a radical polymerization initiator, [1] to [13] The method for producing extruded polypropylene resin foam particles according to any one of the above.
  • [15] Filling the extruded polypropylene resin foam particles obtained by the production method according to any one of [1] to [14] into a molding space formed by at least two molds provided in a mold. .
  • the extruded foam particles were submerged in ethanol contained in a graduated cylinder, and the volume v (cm 3 ) of the extruded foam particles was measured based on the rise in the liquid level in the graduated cylinder; (3) the weight w (g) was expressed as the volume v ( cm 3 ) to calculate the density ⁇ 1 of the extruded foam particles; (4) Perform the same operations as (1) to (3) using the base resin (restored resin) instead of the extruded foam particles. By this, the density ⁇ 2 of the base resin was calculated; (5) The density ⁇ 2 of the base resin of the extruded foam particles was divided by the density ⁇ 1 of the extruded foam particles ( ⁇ 2 / ⁇ 1 ), and the expansion ratio and did.
  • the density of the resin mass obtained by returning the extruded foam particles to the resin was regarded as the density of the base resin.
  • the following steps (b1) to (b5) were performed in order, and the resulting resin mass was used as a return resin for extruded foam particles: (b1) The extruded foam particles were placed in a dryer whose temperature was adjusted to 160°C; (b2 ) Next, the pressure inside the dryer was reduced to -0.05 MPa (gauge pressure) to -0.10 MPa (gauge pressure) using a vacuum pump over a period of 5 to 10 minutes; (b3) After that, The extruded foam particles were left in the dryer for 30 minutes to prepare a resin mass (reconstituted resin); (b4) Next, after cooling the temperature in the dryer to room temperature, the pressure in the dryer was returned to normal pressure. (b5) Thereafter, the resin mass was taken out from the dryer.
  • the manufacturing equipment used for manufacturing extruded polypropylene resin foam particles is an equipment in which a melt-kneading section, a cooling section, a transport section, a diverter valve, and a granulation section are connected in series. used.
  • a melt-kneading section a twin-screw extruder having two screws, a raw material supply section at one end, and a blowing agent supply section in the middle of the screws was used.
  • the structure of the melt-kneading section is a kneading disk, a forward flight screw, a kneading disk, a reverse flight screw, a forward flight screw, a kneading disk, a notch screw, and a forward flight screw connected in this order. It was the composition.
  • the outer diameter D of the screw was 26 mm.
  • the effective length (mm) of the screw was different for each example and comparative example.
  • the kneading element length (mm) of the screw was different between Example 1, Example 2, and Comparative Example 1.
  • a static mixer was used as the cooling section.
  • the granulation section had a die with three holes with a hole diameter of 0.8 mm.
  • Resin A was produced as a branched polypropylene resin as follows. First, a linear polypropylene resin (F-724NPC (manufactured by Prime Polymer)), which is a raw material resin, was supplied to a twin-screw extruder. Next, 0.81 parts by weight of t-butylperoxyisopropyl monocarbonate as a radical polymerization initiator was supplied to the twin-screw extruder based on 100 parts by weight of the raw material resin.
  • F-724NPC linear polypropylene resin
  • t-butylperoxyisopropyl monocarbonate as a radical polymerization initiator
  • branched polypropylene resin was discharged from the die in the form of a strand at a discharge rate of 70 kg/h.
  • the discharged branched polypropylene resin (strand) was cooled with water and shredded into pellets (cylindrical shapes).
  • Resin B was obtained in the same manner as above except that the raw resin was changed to F227D (manufactured by Prime Polymer) and the amount of the conjugated diene compound added was changed to 0.27 parts by weight.
  • the MFR of the obtained resin A at 230°C was 3.0 g/10 minutes, and the melt tension was 10.2 cN.
  • the MFR of the obtained resin B at 230° C. was 2.2 g/10 minutes, and the melt tension was 9.7 cN.
  • talc was used as a bubble nucleating agent.
  • Example 1 (melt kneading process) 75.55 parts by weight of resin A as a polypropylene resin having a branched structure (branched polypropylene resin), 20 parts by weight of resin B, and 4.25 parts by weight of a polypropylene resin without a branched structure (linear polypropylene resin) 1 part by weight, and 0.2 part by weight of talc as a cell nucleating agent to prepare a resin mixture. Thereafter, the resin mixture was supplied from the raw material supply section to a twin-screw extruder (melt-kneading section), and melt-kneading of the resin mixture was started at a cylinder temperature of 200° C.
  • the amount of resin mixture supplied to the twin screw extruder was 10 kg/h.
  • carbon dioxide gas was forced into the twin-screw extruder as a blowing agent from the blowing agent supply section, and the resulting composition was further melt-kneaded.
  • the amount of blowing agent supplied to the twin-screw extruder was 0.25 kg/h.
  • the ratio (L/D) between the effective length L (mm) of the screw and the screw diameter D (mm) was 21.
  • the ratio (L/D) of the screw kneading element length (mm) to the screw diameter D (mm) was 6.
  • melt-kneaded composition obtained through the melt-kneading process is passed through a die included in the granulation unit, and is discharged into an area filled with water at a temperature of 70°C as a liquid phase at a pressure lower than the internal pressure of the manufacturing equipment. It was discharged at a rate of 10.25 kg/h. In this region, the pressure of water on the composition was 0.2 MPa ⁇ G.
  • the extruded composition was shredded with a cutter in a region filled with water (liquid phase) to obtain spherical or approximately spherical extruded polypropylene resin foam particles.
  • the obtained extruded polypropylene resin foam particles were collected by subjecting them to a centrifugal dehydrator. Table 1 shows each manufacturing condition and manufacturing result.
  • the obtained extruded polypropylene resin foam particles were evaluated for expansion ratio and open cell ratio using the methods described above. As a result, the open cell ratio was 3.4%, and other physical properties were as shown in Table 1.
  • Example 2 The ratio (L/D) between the effective length L and the outer diameter D of the screw of the twin screw extruder is 22, and the ratio (L/D) between the screw kneading element length (mm) and the screw diameter D (mm).
  • Polypropylene resin extruded foam particles and in-mold foamed molded products were obtained by the same manufacturing method as in Example 1, except that an apparatus equipped with a melt-kneading section with ) of 10 was used.
  • the obtained extruded polypropylene resin foam particles and in-mold foam molded articles were evaluated for expansion ratio and open cell ratio using the methods described above. As a result, the open cell ratio was 3.7%, and other physical properties were as shown in Table 1.
  • Table 1 shows that Examples 1 and 2 have lower open cell ratios than Comparative Example 1. That is, it was found that in Examples 1 and 2, the deterioration of the resin was reduced compared to Comparative Example 1, in which the value of effective length L/outer diameter D of the screw was larger.
  • the extruded foamed polypropylene resin particles according to one embodiment of the present invention provide a method for producing extruded foamed polypropylene resin particles having a low open cell ratio.
  • the extruded foam particles obtained by this production method can be suitably used in agriculture, fisheries, forestry, medicine, sanitary products, clothing, packaging, and other fields.

Abstract

The purpose of the present invention is to provide a method for producing polypropylene resin extruded foam particles having a low open-cell rate. Provided is a method for producing polypropylene resin extruded foam particles, the method comprising: a melt-kneading step for melt-kneading a polypropylene resin and a foaming agent in a melt-kneading part having a plurality of screws; and an extrusion foaming step for discharging the composition obtained in the melt-kneading step from a die, wherein a ratio (L/D) between the screw length L and the screw diameter D is 20-24.

Description

ポリプロピレン系樹脂押出発泡粒子の製造方法Method for producing polypropylene resin extruded foam particles
 本発明は、ポリプロピレン系樹脂押出発泡粒子の製造方法に関する。 The present invention relates to a method for producing extruded polypropylene resin foam particles.
 ポリプロピレン系樹脂発泡粒子を用いて得られるポリプロピレン系樹脂型内発泡成形体は、型内発泡成形体の長所である形状の任意性、緩衝性、軽量性、および断熱性などに優れるという特徴を有する。 Polypropylene resin in-mold foamed molded products obtained using polypropylene resin foam particles have the advantages of in-mold foamed molded products such as excellent shape flexibility, cushioning properties, lightness, and heat insulation properties. .
 ポリプロピレン系樹脂発泡粒子の製造方法としては、不連続プロセスであるバッチ発泡法、および連続プロセスである押出発泡法等が挙げられる(例えば、特許文献1および2)。押出発泡法は、効率面および環境面等において多くの利点を有する。 Examples of methods for producing expanded polypropylene resin particles include a batch foaming method that is a discontinuous process, and an extrusion foaming method that is a continuous process (for example, Patent Documents 1 and 2). The extrusion foaming method has many advantages in terms of efficiency and environment.
日本国公開特許公報特開平2019-038967号公報Japanese Patent Application Publication No. 2019-038967 国際公開第2021/106795号公報International Publication No. 2021/106795
 しかしながら、上述のような従来技術は、発泡粒子の独立気泡率の観点からは、十分なものでなく、さらなる改善の余地があった。 However, the above-mentioned conventional techniques are not sufficient from the viewpoint of the closed cell ratio of expanded particles, and there is room for further improvement.
 本発明の一実施形態は、前記課題に鑑みなされたものであり、その目的は、低い連続気泡率を有するポリプロピレン系樹脂押出発泡粒子を提供し得る新規の製造方法を提供することである。 One embodiment of the present invention has been made in view of the above problems, and its purpose is to provide a new manufacturing method capable of providing extruded polypropylene resin foam particles having a low open cell ratio.
 本発明者は、前記課題を解決するため鋭意研究した結果、本発明を完成させるに至った。 The present inventor has completed the present invention as a result of intensive research to solve the above problems.
 本発明の一実施形態に係るポリプロピレン系樹脂押出発泡粒子の製造方法は、複数のスクリューを有する溶融混練部と、ダイを有する造粒部とを備える製造装置を使用し、分岐構造を有するポリプロピレン系樹脂および発泡剤を前記溶融混練部にて溶融混練する溶融混練工程と、前記溶融混練工程で得られた組成物を、前記ダイを通して前記製造装置の内圧よりも低圧である領域に吐出する押出発泡工程と、を含み、前記溶融混練部において、スクリューの有効長Lとスクリュー径Dとの比(L/D)が20~24である。 A method for producing extruded polypropylene resin foam particles according to an embodiment of the present invention uses a production apparatus equipped with a melt-kneading section having a plurality of screws and a granulation section having a die. A melt-kneading step of melt-kneading a resin and a foaming agent in the melt-kneading section, and an extrusion foaming step of discharging the composition obtained in the melt-kneading step through the die into an area whose pressure is lower than the internal pressure of the manufacturing device. In the melt-kneading section, the ratio (L/D) of the effective length L of the screw to the screw diameter D is 20 to 24.
 本発明の一実施形態によれば、低い連続気泡率を有するポリプロピレン系樹脂押出発泡粒子を提供し得る新規の製造方法を提供することができる。 According to one embodiment of the present invention, it is possible to provide a novel manufacturing method capable of providing extruded polypropylene resin foam particles having a low open cell ratio.
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態または実施例にそれぞれ開示された技術的手段を組み合わせて得られる実施形態または実施例についても、本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。なお、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。 An embodiment of the present invention will be described below, but the present invention is not limited thereto. The present invention is not limited to each configuration described below, and various changes can be made within the scope of the claims. Furthermore, embodiments or examples obtained by combining technical means disclosed in different embodiments or examples are also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment. Note that all academic literature and patent literature described in this specification are incorporated as references in this specification. In addition, unless otherwise specified in this specification, the numerical range "A to B" is intended to be "above A (including A and greater than A) and less than or equal to B (including B and less than B)."
 本明細書において、重合体、共重合体または樹脂に含まれる、「X単量体に由来する構成単位」を「X単位」と称する場合がある。 In this specification, a "constituent unit derived from an X monomer" contained in a polymer, copolymer, or resin may be referred to as an "X unit."
 〔1.本発明の一実施形態の技術的思想〕
 本発明者が、従来公知の押出発泡法によるポリプロピレン系樹脂発泡粒子の製造方法を検討したところ、本発明者は、これらの方法で得られるポリプロピレン系樹脂押出発泡粒子は独立気泡率が低い、という新規知見を独自に得た。
[1. Technical idea of one embodiment of the present invention]
When the present inventor studied methods for manufacturing polypropylene resin foam particles using conventionally known extrusion foaming methods, the present inventor found that the polypropylene resin foam particles obtained by these methods have a low closed cell ratio. We independently obtained new knowledge.
 本発明者は、ポリプロピレン系樹脂押出発泡粒子の独立気泡率が低い理由について、鋭意検討を行った。まず、本発明者は、押出発泡による樹脂の変化の観察を試みた。通常、押出発泡工程では、押出機から押出機内より低圧の領域に押出された組成物が直ちに発泡し始めるため、押出発泡の途中で樹脂を取り出して解析することはできない。そこで、本発明者は、得られたポリプロピレン系樹脂押出発泡粒子を減圧熱処理することで樹脂戻しし、得られた樹脂を解析した。そのようにして得られた押出発泡後の樹脂の物性と、ポリプロピレン系樹脂押出発泡粒子の材料として使用したポリプロピレン系樹脂の物性と、を比較した。その結果、本発明者は、驚くべきことに、ポリプロピレン系樹脂押出発泡粒子を樹脂戻しして得られる樹脂の溶融張力が押出発泡前のポリプロピレン系樹脂の溶融張力よりも著しく低いこと、すなわちポリプロピレン系樹脂押出発泡粒子を樹脂戻しして得られる樹脂が押出発泡過程で劣化している、という新規知見を独自に得た。 The present inventor conducted extensive research into the reason why the closed cell ratio of extruded polypropylene resin foam particles is low. First, the present inventor attempted to observe changes in resin due to extrusion foaming. Normally, in the extrusion foaming process, the composition extruded from the extruder into a region with a lower pressure than the inside of the extruder immediately begins to foam, so it is not possible to take out the resin during the extrusion foaming process and analyze it. Therefore, the present inventors returned the obtained extruded foamed polypropylene resin particles to the resin by subjecting them to heat treatment under reduced pressure, and analyzed the obtained resin. The physical properties of the resin thus obtained after extrusion foaming were compared with the physical properties of the polypropylene resin used as the material for the extruded polypropylene resin foam particles. As a result, the present inventor surprisingly found that the melt tension of the resin obtained by returning the extruded polypropylene resin foam particles to the resin is significantly lower than the melt tension of the polypropylene resin before extrusion foaming. We have independently obtained new knowledge that the resin obtained by returning extruded foam particles to resin deteriorates during the extrusion foaming process.
 ポリプロピレン系樹脂押出発泡粒子の製造方法では、2つの工程がある:原料のポリプロピレン系樹脂と発泡剤とを溶融混練する工程、および得られた組成物(溶融混練物)を押出機内より低圧の領域に押出して発泡させる工程、である。本発明者は、樹脂の劣化は、溶融混練工程で起こっていると仮定した。しかし、ポリプロピレン系樹脂の溶融混練は、不連続プロセスであるバッチ発泡法(例えば除圧発泡法)でポリプロピレン系樹脂粒子を製造する過程でも行われる。従来、ポリプロピレン系樹脂粒子を製造する過程で、ポリプロピレン系樹脂が著しく劣化するという知見はない。 There are two steps in the method for producing extruded polypropylene resin foam particles: a step of melt-kneading the raw material polypropylene resin and a foaming agent, and a step of melt-kneading the resulting composition (melt-kneaded product) in an area of lower pressure than the inside of the extruder. This is a step of extruding and foaming. The present inventor assumed that resin deterioration occurred during the melt-kneading process. However, melt-kneading of polypropylene resin is also performed in the process of producing polypropylene resin particles by a batch foaming method (for example, depressurized foaming method), which is a discontinuous process. Conventionally, there is no knowledge that polypropylene resin deteriorates significantly during the process of manufacturing polypropylene resin particles.
 ここで、成形性のよいポリプロピレン系樹脂発泡粒子を押出発泡法により製造するため、押出発泡法では、原料として、高い溶融張力を有するポリプロピレン系樹脂、例えば分岐構造を有するポリプロピレン系樹脂を使用する場合がある。本発明者は、驚くべきことに、分岐構造を有していないポリプロピレン系樹脂では溶融混練によって樹脂は劣化しないか、劣化するとしてもわずかであるが、分岐構造を有するポリプロピレン系樹脂では溶融混練によって樹脂が大きく劣化する、という新規知見を独自に得た。すなわち、分岐構造を有するポリプロピレン系樹脂が溶融混練によって大きく劣化するという知見は、(a)分岐構造を有していないポリプロピレン系樹脂を用いる技術(例えば除圧発泡法の技術)からは得られる知見ではなく、かつ(b)得られたポリプロピレン系樹脂押出発泡粒子を樹脂戻しするという創意工夫によって初めて得られた知見である。 Here, in order to produce polypropylene resin foam particles with good moldability by an extrusion foaming method, in the extrusion foaming method, a polypropylene resin having a high melt tension, such as a polypropylene resin having a branched structure, is used as a raw material. There is. Surprisingly, the present inventor found that polypropylene resins that do not have a branched structure do not deteriorate when melt-kneaded, or only slightly deteriorate when melt-kneaded, but polypropylene resins that have a branched structure do not deteriorate when melt-kneaded. We independently obtained new knowledge that the resin deteriorates significantly. In other words, the knowledge that polypropylene resins having a branched structure are significantly degraded by melt-kneading is the knowledge obtained from (a) techniques using polypropylene resins that do not have a branched structure (for example, depressurized foaming techniques); This finding was first obtained through the ingenuity of (b) returning the obtained extruded polypropylene resin foam particles to the resin.
 かかる新規知見に基づき、本発明者は、低い連続気泡率を有するポリプロピレン系樹脂押出発泡粒子を得るべく、さらに鋭意検討を行った。その結果、本発明者は、以下の知見を独自に見出し、本発明を完成するに至った:二軸押出機において溶融混練部のスクリューの長さを特定の範囲内とすることにより、驚くべきことに、連続気泡率が低いポリプロピレン系樹脂押出発泡粒子を得ることができること。 Based on this new knowledge, the present inventor further conducted intensive studies in order to obtain extruded polypropylene resin foam particles having a low open cell ratio. As a result, the present inventor independently discovered the following findings and completed the present invention: By setting the length of the screw in the melt-kneading section of a twin-screw extruder within a specific range, a surprising In particular, it is possible to obtain extruded polypropylene resin foam particles with a low open cell ratio.
 〔2.分岐構造を有するポリプロピレン系樹脂の製造方法〕
 本発明の一実施形態に係る分岐構造を有するポリプロピレン系発泡粒子の製造方法は、分岐構造を有するポリプロピレン系樹脂の製造方法であって、複数のスクリューを有する溶融混練部と、ダイを有する造粒部とを備える製造装置を使用し、分岐構造を有するポリプロピレン系樹脂および発泡剤を前記溶融混練部にて溶融混練する溶融混練工程と、前記溶融混練工程で得られた組成物を、前記ダイを通して前記製造装置の内圧よりも低圧である領域に吐出する押出発泡工程と、を含み、前記溶融混練部において、スクリューの有効長Lとスクリュー径Dとの比(L/D)が20~24である。
[2. Method for producing polypropylene resin with branched structure]
A method for producing foamed polypropylene particles having a branched structure according to an embodiment of the present invention is a method for producing a polypropylene resin having a branched structure, and includes a melt kneading section having a plurality of screws and a granulation part having a die. a melt-kneading step of melt-kneading a polypropylene resin having a branched structure and a blowing agent in the melt-kneading section using a manufacturing apparatus comprising a part; an extrusion foaming step of discharging into a region whose pressure is lower than the internal pressure of the manufacturing device, and in the melt-kneading section, the ratio (L/D) of the effective length L of the screw to the screw diameter D is 20 to 24. be.
 本明細書において、「スクリューの有効長L」とは、ポリプロピレン系樹脂を溶融させる機能を持ったスクリューエレメントの押出方向の上流端からスクリュー下流端までの長さ(mm)を意図する。また、本明細書において、「スクリュー径D」とは、スクリューエレメントの押出方向に垂直な断面における外接円の直径(mm)を意図する。 In this specification, the "effective length L of the screw" refers to the length (mm) from the upstream end in the extrusion direction of the screw element that has the function of melting the polypropylene resin to the downstream end of the screw. Moreover, in this specification, "screw diameter D" intends the diameter (mm) of the circumscribed circle in the cross section perpendicular to the extrusion direction of the screw element.
 本明細書において、「分岐構造を有するポリプロピレン系樹脂」を「分岐状ポリプロピレン系樹脂」と称する場合があり、「ポリプロピレン系樹脂押出発泡粒子」を「押出発泡粒子」と称する場合があり、「ポリプロピレン系樹脂押出発泡粒子の製造方法」を「製造方法」と称する場合があり、「本発明の一実施形態に係るポリプロピレン系樹脂押出発泡粒子の製造方法」を、「本製造方法」と称する場合がある。本製造方法で得られる押出発泡粒子は、当該押出発泡粒子を成形(例えば、型内発泡成形)することにより、ポリプロピレン系樹脂発泡成形体とすることができる。本明細書において、「ポリプロピレン系樹脂発泡成形体」を「発泡成形体」と称する場合もある。 In this specification, "polypropylene resin having a branched structure" may be referred to as "branched polypropylene resin", "polypropylene resin extruded foam particles" may be referred to as "extruded foam particles", and "polypropylene resin extruded foam particles" may be referred to as "polypropylene foam particles". "Method for producing extruded polypropylene resin foam particles according to an embodiment of the present invention" may be referred to as "the production method", and "method for producing extruded polypropylene resin foam particles according to an embodiment of the present invention" may be referred to as "the present production method". be. The extruded foam particles obtained by this production method can be made into a polypropylene resin foam molded article by molding the extruded foam particles (for example, in-mold foam molding). In this specification, a "polypropylene resin foam molded product" may be referred to as a "foamed molded product".
 本製造方法は、前述した構成を有するため、樹脂の劣化が少なく、その結果、低い連続気泡率を有する押出発泡粒子を提供することができるという利点を有する。なお、樹脂の劣化については、上述したように、押出発泡粒子を樹脂戻しして得られた樹脂の物性と、当該押出発泡粒子の原料である分岐状ポリプロピレン系樹脂の物性とを比較することで評価できる。ここで、前記「樹脂戻し」とは、押出発泡粒子を減圧下で融解して樹脂塊を得ることを意図する。樹脂戻しして得られる樹脂塊を「戻し樹脂」と称する場合がある。 Since the present manufacturing method has the above-described configuration, it has the advantage that there is little deterioration of the resin, and as a result, it is possible to provide extruded foam particles having a low open cell ratio. As mentioned above, the deterioration of the resin can be determined by comparing the physical properties of the resin obtained by returning the extruded foamed particles to the resin and the physical properties of the branched polypropylene resin that is the raw material for the extruded foamed particles. It can be evaluated. Here, the term "resin return" refers to melting the extruded foam particles under reduced pressure to obtain a resin mass. A resin mass obtained by returning the resin is sometimes referred to as a "restored resin."
 樹脂戻しの具体的な方法としては特に限定されないが、例えば以下(b1)~(b5)を順に行う方法が挙げられる:(b1)原料のポリプロピレン系樹脂(例えば、分岐状ポリプロピレン系樹脂)の融点+10℃に調整した乾燥機中に、発泡粒子を入れる;(b2)次いで、5分~10分かけて、真空ポンプを使用して、前記乾燥機内の圧力を-0.05MPa(ゲージ圧)~-0.10MPa(ゲージ圧)になるまで減圧する;(b3)その後、前記乾燥機内で30分間、押出発泡粒子を放置し、樹脂塊(戻し樹脂)を調製する;(b4)次いで、乾燥機内の温度を室温まで冷却した後、乾燥機内の圧力を常圧まで戻す;(b5)その後、乾燥機から前記樹脂塊を取り出す。 The specific method for returning the resin is not particularly limited, but examples include a method in which the following steps (b1) to (b5) are carried out in order: (b1) Melting point of the raw material polypropylene resin (for example, branched polypropylene resin) Place the expanded particles into a dryer adjusted to +10°C; (b2) Then, over a period of 5 to 10 minutes, use a vacuum pump to reduce the pressure inside the dryer to -0.05 MPa (gauge pressure). - Reduce the pressure to 0.10 MPa (gauge pressure); (b3) Then, leave the extruded foam particles in the dryer for 30 minutes to prepare a resin mass (reconstituted resin); (b4) Next, After cooling the temperature to room temperature, the pressure inside the dryer is returned to normal pressure; (b5) After that, the resin mass is taken out from the dryer.
 また、低い連続気泡率を有する押出発泡粒子は、成形性に優れる押出発泡粒子であるともいえる。すなわち、本製造方法は、前述した構成を有するため、成形性に優れる押出発泡粒子を提供することができるという利点も有する。 It can also be said that extruded foamed particles having a low open cell ratio are extruded foamed particles with excellent moldability. That is, since the present manufacturing method has the above-described configuration, it also has the advantage of being able to provide extruded foam particles with excellent moldability.
 まず、本製造方法で使用する原料(成分)について説明し、その後各工程について説明する。 First, the raw materials (components) used in this manufacturing method will be explained, and then each step will be explained.
 (2-1.樹脂混合物)
 本製造方法において、発泡剤以外の原料(成分)を「樹脂混合物」と称する場合がある。樹脂混合物は、分岐構造を有するポリプロピレン系樹脂を含み、さらに任意で気泡核形成剤等の添加剤を含み得る。
(2-1. Resin mixture)
In this manufacturing method, raw materials (components) other than the blowing agent may be referred to as a "resin mixture." The resin mixture contains a polypropylene resin having a branched structure, and may optionally contain additives such as a cell nucleating agent.
 本明細書において、「分岐構造を有するポリプロピレン系樹脂」とは、(a)分岐構造が導入されていないポリプロピレン系樹脂の分子同士を分子間で一部架橋させたポリプロピレン系樹脂、および(b)分岐構造が導入されていないポリプロピレン系樹脂に対して、(ポリ)プロピレン以外のジエン化合物等を分岐鎖として導入したポリプロピレン系樹脂を意図する。本明細書において、「分岐構造が導入されていないポリプロピレン系樹脂」を「線状ポリプロピレン系樹脂」と称する場合がある。また、本明細書において、「線状ポリプロピレン系樹脂」および「分岐状ポリプロピレン系樹脂」をまとめて「ポリプロピレン系樹脂」と称する場合がある。線状ポリプロピレン系樹脂は、分岐状ポリプロピレン系樹脂の原料ともいえる。 In this specification, "polypropylene resin having a branched structure" refers to (a) a polypropylene resin in which molecules of a polypropylene resin into which no branched structure has been introduced are partially crosslinked, and (b) A polypropylene resin in which a diene compound other than (poly)propylene or the like is introduced as a branched chain is intended as opposed to a polypropylene resin in which a branched structure is not introduced. In this specification, a "polypropylene resin into which a branched structure has not been introduced" may be referred to as a "linear polypropylene resin." Moreover, in this specification, "linear polypropylene resin" and "branched polypropylene resin" may be collectively referred to as "polypropylene resin." The linear polypropylene resin can also be said to be a raw material for branched polypropylene resin.
 本明細書において、「プロピレン単量体に由来する構成単位」を「プロピレン単位」と称する場合がある。 In this specification, a "constituent unit derived from a propylene monomer" may be referred to as a "propylene unit."
 本明細書において、「ポリプロピレン系樹脂」とは、樹脂を構成している全構成単位100モル%中、プロピレン単位を50モル%以上含む樹脂を意図する。 As used herein, the term "polypropylene resin" refers to a resin containing 50 mol% or more of propylene units out of 100 mol% of all structural units constituting the resin.
 (分岐状ポリプロピレン系樹脂)
 分岐状ポリプロピレン系樹脂において、原料である線状ポリプロピレン系樹脂に由来する構造を「主鎖」とも称する。そのため、本項に詳説する分岐状ポリプロピレン系樹脂の主鎖に関する各態様(例えば、当該主鎖に含まれる構成単位および当該構成単位の結合順序など)を援用して、当該分岐状ポリプロピレン系樹脂の原料である線状ポリプロピレン系樹脂の構造および/または組成に関する各態様を説明することができる。
(branched polypropylene resin)
In branched polypropylene resins, the structure derived from the raw material linear polypropylene resin is also referred to as the "main chain." Therefore, by referring to each aspect regarding the main chain of the branched polypropylene resin detailed in this section (for example, the structural units included in the main chain and the bonding order of the structural units), the branched polypropylene resin Each aspect regarding the structure and/or composition of the linear polypropylene resin that is the raw material can be explained.
 分岐状ポリプロピレン系樹脂の主鎖は、(a)プロピレンの単独重合体であってもよく、(b)プロピレンとプロピレン以外の単量体とのブロック共重合体、交互共重合体、ランダム共重合体もしくはグラフト共重合体であってもよく、または(c)これらの2種以上の混合物であってもよい。 The main chain of the branched polypropylene resin may be (a) a homopolymer of propylene, or (b) a block copolymer, alternating copolymer, or random copolymer of propylene and a monomer other than propylene. It may be a combination or graft copolymer, or (c) a mixture of two or more thereof.
 分岐構造を有するポリプロピレン系樹脂の主鎖は、プロピレンの単独重合体、プロピレンとプロピレン以外の単量体とのブロック共重合体、およびプロピレンとプロピレン以外の単量体とのランダム共重合体からなる群から選ばれる1種以上であることが好ましい。 The main chain of polypropylene resins with a branched structure consists of a propylene homopolymer, a block copolymer of propylene and a monomer other than propylene, and a random copolymer of propylene and a monomer other than propylene. Preferably, it is one or more selected from the group.
 分岐状ポリプロピレン系樹脂の主鎖は、プロピレン単位に加えて、プロピレン単量体以外の単量体に由来する構成単位(「構造単位」と称される場合もある)を1単位以上有していてもよく、1種以上有していてもよい。本明細書において、分岐状ポリプロピレン系樹脂の主鎖に含まれるプロピレン単量体以外の単量体を「コモノマー」と称する場合があり、分岐状ポリプロピレン系樹脂の主鎖に含まれる「プロピレン単量体以外の単量体に由来する構成単位」を「コモノマー単位」と称する場合がある。 In addition to propylene units, the main chain of the branched polypropylene resin has one or more structural units (sometimes referred to as "structural units") derived from monomers other than propylene monomers. It is also possible to have one or more types. In this specification, monomers other than propylene monomers contained in the main chain of branched polypropylene resin may be referred to as "comonomers", and "propylene monomers contained in the main chain of branched polypropylene resin "Constituent units derived from monomers other than monomers" are sometimes referred to as "comonomer units."
 コモノマーとしては、以下のような単量体が挙げられる:(a)エチレン、1-ブテン、イソブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3,4-ジメチル-1-ブテン、1-ヘプテン、3-メチル-1-ヘキセン、1-オクテン、1-デセンなどの炭素数2または4~12のα-オレフィン、(b)シクロペンテン、ノルボルネン、テトラシクロ[6,2,11,8,13,6]-4-ドデセンなどの環状オレフィン、(c)5-メチレン-2-ノルボルネン、5-エチリデン-2-ノルボルネン、1,4-ヘキサジエン、メチル-1,4-ヘキサジエン、7-メチル-1,6-オクタジエンなどのジエン、並びに(d)塩化ビニル、塩化ビニリデン、アクリロニトリル、メタクリロニトリル、酢酸ビニル、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、マレイン酸、無水マレイン酸、スチレン系単量体、ビニルトルエン、ジビニルベンゼンなどのビニル系単量体、など。 Comonomers include the following monomers: (a) ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, α-olefins having 2 or 4 to 12 carbon atoms such as 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene, 1-decene, (b) cyclopentene, norbornene, Cyclic olefins such as tetracyclo[6,2,11,8,13,6]-4-dodecene, (c) 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl- Dienes such as 1,4-hexadiene, 7-methyl-1,6-octadiene, and (d) vinyl chloride, vinylidene chloride, acrylonitrile, methacrylonitrile, vinyl acetate, acrylic acid, acrylic ester, methacrylic acid, methacrylic acid Ester, maleic acid, maleic anhydride, styrene monomers, vinyl monomers such as vinyltoluene, divinylbenzene, etc.
 アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピルおよびアクリル酸グリシジルなどが挙げられる。 Examples of acrylic esters include methyl acrylate, ethyl acrylate, butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and Examples include glycidyl acrylate.
 メタクリル酸エステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピルおよびメタクリル酸グリシジルなどが挙げられる。 Examples of methacrylate esters include methyl methacrylate, ethyl methacrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, and Examples include glycidyl methacrylate.
 スチレン系単量体としては、スチレン、メチルスチレン、ジメチルスチレン、アルファメチルスチレン、パラメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、t-ブチルスチレン、ブロモスチレン、ジブロモスチレン、トリブロモスチレン、クロロスチレン、ジクロロスチレンおよびトリクロロスチレンなどが挙げられる。 分岐状ポリプロピレン系樹脂の主鎖は、コモノマー単位として、炭素数2または4~12のα-オレフィンに由来する構造単位を有することが好ましく、エチレン、1-ブテン、イソブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3,4-ジメチル-1-ブテン、1-ヘプテン、3-メチル-1-ヘキセン、1-オクテンおよび/または1-デセンなどに由来する構造単位を有することがより好ましく、エチレン、1-ブテン、イソブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセンおよび/または4-メチル-1-ペンテンに由来する構造単位を有することがより好ましく、エチレン、1-ブテン、イソブテンおよび/または1-ペンテンに由来する構造単位を有することがよりさらに好ましく、エチレンおよび/または1-ブテンに由来する構造単位を有することがより特に好ましい。当該構成によると、分岐状ポリプロピレン系樹脂が高い溶融張力および低いゲル分率を有し得るため、より低い連続気泡率を有するポリプロピレン系樹脂押出発泡粒子を提供でき、成形性により優れるポリプロピレン系樹脂押出発泡粒子を提供できるという利点を有する。 Styrenic monomers include styrene, methylstyrene, dimethylstyrene, alpha-methylstyrene, para-methylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, t-butylstyrene, bromostyrene, dibromostyrene, tribromostyrene, and chlorostyrene. , dichlorostyrene and trichlorostyrene. The main chain of the branched polypropylene resin preferably has a structural unit derived from an α-olefin having 2 or 4 to 12 carbon atoms as a comonomer unit, and includes ethylene, 1-butene, isobutene, 1-pentene, 3- Methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene and/or 1-decene, etc. It is more preferable to have a structural unit derived from ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene and/or 4-methyl-1-pentene. It is more preferable to have a structural unit derived from ethylene, 1-butene, isobutene and/or 1-pentene, even more preferably to have a structural unit derived from ethylene and/or 1-butene. Particularly preferred. According to this configuration, since the branched polypropylene resin can have high melt tension and low gel fraction, it is possible to provide extruded polypropylene resin foam particles with a lower open cell ratio, and the extruded polypropylene resin has better moldability. It has the advantage of providing expanded particles.
 分岐状ポリプロピレン系樹脂の主鎖は、プロピレン単独重合体、ポリプロピレン系ブロック共重合体、ポリプロピレン系交互共重合体および/またはポリプロピレン系ランダム共重合体であることが好ましく、プロピレン単独重合体および/またはポリプロピレン系ランダム共重合体であることがより好ましい。当該構成によると、分岐状ポリプロピレン系樹脂が高い溶融張力および低いゲル分率を有し得るため、より低い連続気泡率を有するポリプロピレン系樹脂押出発泡粒子を提供でき、成形性により優れるポリプロピレン系樹脂押出発泡粒子を提供できるという利点を有する。 The main chain of the branched polypropylene resin is preferably a propylene homopolymer, a polypropylene block copolymer, a polypropylene alternating copolymer, and/or a polypropylene random copolymer; More preferably, it is a polypropylene random copolymer. According to this configuration, since the branched polypropylene resin can have high melt tension and low gel fraction, it is possible to provide extruded polypropylene resin foam particles with a lower open cell ratio, and the extruded polypropylene resin has better moldability. It has the advantage of providing expanded particles.
 分岐状ポリプロピレン系樹脂の主鎖は、当該ポリプロピレン系樹脂に含まれる全構造単位100モル%中、プロピレン単位を90モル%以上含むことが好ましく、93モル%以上含むことがより好ましく、95モル%以上含むことがさらに好ましく、97モル%以上含むことが特に好ましい。当該構成によると、分岐状ポリプロピレン系樹脂が高い溶融張力および低いゲル分率を有し得るという利点を有する。 The main chain of the branched polypropylene resin preferably contains 90 mol% or more of propylene units, more preferably 93 mol% or more, and 95 mol% of the total structural units contained in the polypropylene resin. It is more preferable to contain at least 97 mol%, particularly preferably at least 97 mol%. This configuration has the advantage that the branched polypropylene resin can have high melt tension and low gel fraction.
 分岐状ポリプロピレン系樹脂の融点は、特に限定されない。ポリプロピレン系樹脂の融点は、例えば、130℃~165℃であることが好ましく、135℃~164℃であることがより好ましく、138℃~163℃であることがさらに好ましく、140℃~162℃であることが特に好ましい。分岐状ポリプロピレン系樹脂の融点が、(a)130℃以上である場合、発泡成形体の寸法安定性が低下する虞がなく、発泡成形体の耐熱性が不十分となる虞がなく、かつ発泡成形体の圧縮強度が強くなる傾向があるという利点を有し、(b)165℃以下である場合、押出発泡粒子を比較的低い蒸気圧で成形することが可能となるため、ポリプロピレン系樹脂発泡粒子用の汎用成形機を使用して押出発泡粒子を成形できるという利点を有する。 The melting point of the branched polypropylene resin is not particularly limited. The melting point of the polypropylene resin is, for example, preferably 130°C to 165°C, more preferably 135°C to 164°C, even more preferably 138°C to 163°C, and even more preferably 140°C to 162°C. It is particularly preferable that there be. When the melting point of the branched polypropylene resin is (a) 130°C or higher, there is no risk that the dimensional stability of the foamed molded product will decrease, there is no risk that the heat resistance of the foamed molded product will be insufficient, and It has the advantage that the compressive strength of the molded product tends to be strong, and (b) when the temperature is 165°C or lower, it is possible to mold extruded foam particles with a relatively low vapor pressure, so polypropylene resin foaming It has the advantage that extruded foam particles can be formed using a general-purpose particle forming machine.
 本明細書において、分岐状ポリプロピレン系樹脂の融点は、示差走査熱量計法(以降、「DSC法」と称する)により測定したものである。具体的な操作手順は以下の通りである:(1)分岐状ポリプロピレン系樹脂5~6mgの温度を10℃/分の昇温速度で40℃から220℃まで昇温することにより当該分岐状ポリプロピレン系樹脂を融解させる;(2)その後、融解された分岐状ポリプロピレン系樹脂の温度を10℃/分の降温速度で220℃から40℃まで降温することにより当該分岐状ポリプロピレン系樹脂を結晶化させる;(3)その後、さらに結晶化された分岐状ポリプロピレン系樹脂の温度を10℃/分の昇温速度で40℃から220℃まで昇温する。2回目の昇温時(すなわち(3)のとき)に得られる当該分岐状ポリプロピレン系樹脂のDSC曲線のピーク(融解ピーク)の温度を当該分岐状ポリプロピレン系樹脂の融点として求めることができる。なお、上述の方法により、2回目の昇温時に得られる、分岐状ポリプロピレン系樹脂のDSC曲線において、ピーク(融解ピーク)が複数存在する場合、融解熱量が最大のピーク(融解ピーク)の温度を、分岐状ポリプロピレン系樹脂の融点とする。示差走査熱量計としては、例えば、セイコーインスツルメンツ(株)製、DSC6200型を用いることができる。 In this specification, the melting point of the branched polypropylene resin is measured by differential scanning calorimetry (hereinafter referred to as "DSC method"). The specific operating procedure is as follows: (1) The branched polypropylene resin is heated by increasing the temperature of 5 to 6 mg of the branched polypropylene resin from 40°C to 220°C at a heating rate of 10°C/min. (2) Then, the temperature of the melted branched polypropylene resin is lowered from 220°C to 40°C at a cooling rate of 10°C/min to crystallize the branched polypropylene resin. (3) Thereafter, the temperature of the crystallized branched polypropylene resin is further increased from 40°C to 220°C at a rate of 10°C/min. The temperature of the peak (melting peak) of the DSC curve of the branched polypropylene resin obtained during the second temperature increase (that is, at the time of (3)) can be determined as the melting point of the branched polypropylene resin. In addition, if there are multiple peaks (melting peaks) in the DSC curve of the branched polypropylene resin obtained during the second temperature increase by the above method, the temperature of the peak with the maximum heat of fusion (melting peak) is , is the melting point of the branched polypropylene resin. As the differential scanning calorimeter, for example, DSC6200 model manufactured by Seiko Instruments Inc. can be used.
 分岐状ポリプロピレン系樹脂の溶融張力は、特に限定されないが、通常、原料の線状ポリプロピレン系樹脂の溶融張力と比較して高くなり得る。分岐状ポリプロピレン系樹脂の200℃における溶融張力は、8.0cN以上であることが好ましく、9.0cN以上であることがより好ましく、10.0cN以上であることがさらに好ましい。高い溶融張力を有する分岐状ポリプロピレン系樹脂を原料として使用することにより、得られるポリプロピレン系樹脂押出発泡粒子の成形幅を広くすることができる。 The melt tension of the branched polypropylene resin is not particularly limited, but it can usually be higher than the melt tension of the raw material linear polypropylene resin. The melt tension of the branched polypropylene resin at 200° C. is preferably 8.0 cN or more, more preferably 9.0 cN or more, and even more preferably 10.0 cN or more. By using a branched polypropylene resin having a high melt tension as a raw material, it is possible to widen the molding width of the obtained extruded polypropylene resin foam particles.
 本明細書における溶融張力の測定方法について以下に説明する。本明細書では、溶融張力は、キャピログラフ1D(日本 株式会社東洋精機製作所製)を用いて測定する。具体的には、以下(1)~(5)の通りである:(1)試験温度(200℃)に加熱された径9.55mmのバレルに測定用の試料樹脂(分岐状ポリプロピレン系樹脂)を充填する;(2)次いで、試料樹脂を10分間、試験温度(200℃)に加熱されたバレル内で加熱する;(3)次いで、キャピラリーダイ(口径1.0mm、長さ10mm)から、一定に保持したピストン降下速度(10mm/分)にて、試料樹脂を紐状に出しながら、この紐状物を前記キャピラリーダイの下方350mmに位置する張力検出のプーリーに通過させた後、巻取りロールを用いる巻取りを開始する;(4)紐状物の引き取りが安定した後、紐状物の巻取り速度を初速1.0m/分から、4分間で200m/分の速度に達するまで一定の割合で増加させる;(5)紐状物が破断したときのロードセル付きプーリーにかかる荷重を溶融張力として測定する。 The method for measuring melt tension in this specification will be explained below. In this specification, melt tension is measured using Capillograph 1D (manufactured by Toyo Seiki Seisakusho Co., Ltd., Japan). Specifically, the following are (1) to (5): (1) Sample resin for measurement (branched polypropylene resin) is placed in a barrel with a diameter of 9.55 mm heated to the test temperature (200°C). (2) Then, the sample resin is heated for 10 minutes in a barrel heated to the test temperature (200 ° C.); (3) Then, from a capillary die (caliber 1.0 mm, length 10 mm), At a constant piston descending speed (10 mm/min), the sample resin is drawn out in a string, passed through a tension detection pulley located 350 mm below the capillary die, and then wound up. Start winding using a roll; (4) After the string-like material is taken up stably, the string-like material is wound at a constant speed from an initial speed of 1.0 m/min until it reaches a speed of 200 m/min in 4 minutes. (5) Measure the load applied to the pulley with a load cell when the string-like material breaks as the melt tension.
 分岐状ポリプロピレン系樹脂の230℃におけるメルトフローレート(Melt Flow Rate;MFR)は、特に限定されない。分岐状ポリプロピレン系樹脂の230℃におけるMFRは、例えば、0.5g/10分~20.0g/10分であることが好ましく、1.0g/10分~15.0g/10分であることがより好ましく、2.0g/10分~10.0g/10分であることが特に好ましい。分岐状ポリプロピレン系樹脂の230℃におけるMFRが、(a)0.5g/10分以上である場合、得られる押出発泡粒子が、変形が少なく、表面性が良好(美麗)である発泡成形体を提供できるという利点を有し、(b)20.0g/10分以下である場合、押出発泡時、組成物の発泡性が良好になるという利点を有する。 The melt flow rate (MFR) of the branched polypropylene resin at 230°C is not particularly limited. The MFR of the branched polypropylene resin at 230°C is, for example, preferably 0.5 g/10 minutes to 20.0 g/10 minutes, and preferably 1.0 g/10 minutes to 15.0 g/10 minutes. It is more preferable, and particularly preferably 2.0 g/10 minutes to 10.0 g/10 minutes. When the MFR at 230°C of the branched polypropylene resin is (a) 0.5 g/10 minutes or more, the resulting extruded foamed particles have little deformation and a foamed molded product with good (beautiful) surface properties. (b) If it is 20.0 g/10 minutes or less, the composition has an advantage that the foamability of the composition becomes good during extrusion foaming.
 本明細書において、分岐状ポリプロピレン系樹脂のMFRは、JIS K7210に記載のMFR測定器を用い、オリフィスの直径が2.0959±0.0050mmφ、オリフィスの長さが8.000±0.025mm、そして、荷重が2160g、230±0.2℃の条件下で測定して求められる値である。 In this specification, the MFR of the branched polypropylene resin is measured using an MFR measuring device described in JIS K7210, with an orifice diameter of 2.0959 ± 0.0050 mmφ, an orifice length of 8.000 ± 0.025 mm, This is a value determined by measurement under conditions of a load of 2160 g and a temperature of 230±0.2°C.
 (分岐状ポリプロピレン系樹脂の製造方法)
 分岐状ポリプロピレン系樹脂は、線状ポリプロピレン系樹脂に分岐構造を導入することによって得ることができる。線状ポリプロピレン系樹脂に分岐構造を導入する方法としては、特に限定されないが、例えば、(a1)線状ポリプロピレン系樹脂に放射線を照射する方法、および(a2)線状ポリプロピレン系樹脂と共役ジエン化合物とラジカル重合開始剤とを含む混合物を溶融混練する方法などが挙げられる。
(Method for producing branched polypropylene resin)
A branched polypropylene resin can be obtained by introducing a branched structure into a linear polypropylene resin. Methods for introducing a branched structure into a linear polypropylene resin are not particularly limited, but examples include (a1) a method of irradiating a linear polypropylene resin with radiation, and (a2) a method of introducing a linear polypropylene resin and a conjugated diene compound. Examples include a method of melt-kneading a mixture containing a radical polymerization initiator and a radical polymerization initiator.
 前記(a1)の方法の具体的な方法としては、例えば特表2002-542360に記載の方法が挙げられる。 Specific examples of the method (a1) include the method described in Japanese Patent Application Publication No. 2002-542360.
 前記(a2)の方法についてさらに説明する。前記(a2)の方法では、例えば、以下(i)~(iv)を順に行い分岐状ポリプロピレン系樹脂を得ることができる:(i)線状ポリプロピレン系樹脂と共役ジエン化合物とラジカル重合開始剤とを含む混合物を、ダイを備える装置で溶融混練する;(ii)得られた溶融混練物をダイから押出す;(iii)押出された溶融混練物(ストランドとも称される。)を冷却する;(iv)ストランドの冷却と同時にまたは、冷却後に、ストランドを細断する。前記(a2)の方法の具体的な方法としては、例えばWO2020/004429に記載の方法が挙げられる。 The method (a2) above will be further explained. In the method (a2) above, for example, a branched polypropylene resin can be obtained by sequentially performing the following (i) to (iv): (i) a linear polypropylene resin, a conjugated diene compound, and a radical polymerization initiator; (ii) extrude the obtained melt-kneaded product from the die; (iii) cool the extruded melt-kneaded product (also referred to as strand); (iv) Shredding the strands simultaneously with or after cooling the strands. Specific examples of the method (a2) include the method described in WO2020/004429.
 (i)線状ポリプロピレン系樹脂に分岐構造を安定して導入でき、かつ分岐構造の導入の再現性が高いことから、および/または(ii)複雑な設備を必要とせず、かつ高い生産性で分岐状ポリプロピレン系樹脂を得ることができるとことから、本発明の一実施形態において、分岐状ポリプロピレン系樹脂は、上述の(a2)の方法によって得られる分岐状ポリプロピレン系樹脂であることが好ましい。 (i) It is possible to stably introduce a branched structure into a linear polypropylene resin and the reproducibility of introducing the branched structure is high, and/or (ii) it does not require complicated equipment and has high productivity. Since a branched polypropylene resin can be obtained, in one embodiment of the present invention, the branched polypropylene resin is preferably a branched polypropylene resin obtained by the method (a2) described above.
 (共役ジエン化合物)
 (a2)の方法における共役ジエン化合物としては、例えば、ブタジエン、イソプレン、1,3-ヘプタジエン、2,3-ジメチルブタジエン、および2,5-ジメチル-2,4-ヘキサジエン、などがあげられる。これら共役ジエン化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これら共役ジエン化合物の中では、(a)安価で取り扱い点、および(b)反応が均一に進みやすい点から、ブタジエン、およびイソプレンが特に好ましい。
(conjugated diene compound)
Examples of the conjugated diene compound in method (a2) include butadiene, isoprene, 1,3-heptadiene, 2,3-dimethylbutadiene, and 2,5-dimethyl-2,4-hexadiene. These conjugated diene compounds may be used alone or in combination of two or more. Among these conjugated diene compounds, butadiene and isoprene are particularly preferred because (a) they are inexpensive and easy to handle, and (b) the reaction tends to proceed uniformly.
 (a2)の方法における共役ジエン化合物の使用量は、線状ポリプロピレン系樹脂100重量部に対して、0.30重量部~1.50重量部であり、0.30重量部~0.80重量部が好ましく、0.30重量部~0.60重量部がより好ましい。共役ジエン化合物の使用量が線状ポリプロピレン系樹脂100重量部に対して0.30重量部以上である場合には、ポリプロピレン系樹脂に対する改質の程度(線状ポリプロピレン系樹脂に導入する架橋の数)が十分なものとなり、その結果、得られる分岐状ポリプロピレン系樹脂の溶融張力を十分に(例えば、8.0cN以上に)増加させることができる。共役ジエン化合物の使用量が線状ポリプロピレン系樹脂100重量部に対して1.50重量部以下である場合には、共役ジエン化合物によるポリプロピレン系樹脂間の架橋が過剰になることがないため、得られる分岐状ポリプロピレン系樹脂の粘度が高くなる虞がない。その結果、得られた分岐状ポリプロピレン系樹脂から高倍率のポリプロピレン系樹脂押出発泡粒子を得ることが容易となる。 The amount of the conjugated diene compound used in the method (a2) is 0.30 parts by weight to 1.50 parts by weight, and 0.30 parts by weight to 0.80 parts by weight, based on 100 parts by weight of the linear polypropylene resin. parts by weight, and more preferably from 0.30 parts by weight to 0.60 parts by weight. When the amount of the conjugated diene compound used is 0.30 parts by weight or more per 100 parts by weight of the linear polypropylene resin, the degree of modification to the polypropylene resin (the number of crosslinks introduced into the linear polypropylene resin) ) becomes sufficient, and as a result, the melt tension of the branched polypropylene resin obtained can be sufficiently increased (for example, to 8.0 cN or more). When the amount of the conjugated diene compound used is 1.50 parts by weight or less based on 100 parts by weight of the linear polypropylene resin, the crosslinking between the polypropylene resins by the conjugated diene compound will not become excessive, so that the There is no risk of the viscosity of the branched polypropylene resin being increased. As a result, it becomes easy to obtain extruded polypropylene resin foam particles with a high magnification from the obtained branched polypropylene resin.
 (ラジカル重合開始剤)
 (a2)の方法で用いられるラジカル重合開始剤は、線状ポリプロピレン系樹脂および共役ジエン化合物からの水素引き抜き能を有する有機過酸化物である。本発明の一実施形態において好適に用いられるラジカル重合開始剤としては、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステルなどの有機過酸化物が挙げられる。
(radical polymerization initiator)
The radical polymerization initiator used in method (a2) is an organic peroxide having the ability to abstract hydrogen from a linear polypropylene resin and a conjugated diene compound. Examples of radical polymerization initiators suitably used in one embodiment of the present invention include organic polymerization initiators such as ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxydicarbonate, and peroxyester. Examples include oxides.
 有機過酸化物としては、特に水素引き抜き能が高いものが好ましい。水素引き抜き能が高い有機過酸化物としては、例えば1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、n-ブチル4,4-ビス(t-ブチルパーオキシ)バレレート、2,2-ビス(t-ブチルパーオキシ)ブタン等のパーオキシケタール;ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシン等のジアルキルパーオキサイド;ベンゾイルパーオキサイド等のジアシルパーオキサイド;t-ブチルパーオキシオクテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシラウレート、t-ブチルパーオキシ3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシイソプロピルカーボネート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、ジ-t-ブチルパーオキシイソフタレート等のパーオキシエステル;等が好適に挙げられる。これらの中でも、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシベンゾエートおよび2,2-ビス(t-ブチルパーオキシ)ブタンが好ましい。これら有機過酸化物は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the organic peroxide, one having particularly high hydrogen abstraction ability is preferable. Examples of organic peroxides with high hydrogen abstraction ability include 1,1-bis(t-butylperoxy)3,3,5-trimethylcyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, n- Peroxyketals such as butyl 4,4-bis(t-butylperoxy)valerate, 2,2-bis(t-butylperoxy)butane; dicumyl peroxide, 2,5-dimethyl-2,5-dimethyl (t-butylperoxy)hexane, α,α'-bis(t-butylperoxy-m-isopropyl)benzene, t-butylcumyl peroxide, di-t-butylperoxide, 2,5-dimethyl-2 , 5-di(t-butylperoxy)-3-hexyne and other dialkyl peroxides; benzoyl peroxide and other diacyl peroxides; t-butyl peroxyoctate, t-butyl peroxyisobutyrate, t-butyl Peroxylaurate, t-butylperoxy 3,5,5-trimethylhexanoate, t-butylperoxyisopropyl carbonate, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, t-butyl Preferred examples include peroxyesters such as peroxyacetate, t-butylperoxybenzoate, and di-t-butylperoxyisophthalate. Among these, t-butylperoxyisopropyl carbonate, t-butylperoxybenzoate and 2,2-bis(t-butylperoxy)butane are preferred. These organic peroxides may be used alone or in combination of two or more.
 (a2)の方法におけるラジカル重合開始剤の使用量は、線状ポリプロピレン系樹脂100重量部に対して、0.50重量部~2.00重量部であり、0.60重量部~1.80重量部が好ましく、0.70重量部~1.60重量部がより好ましく、0.70重量部~1.50重量部がより好ましく、0.70重量部~1.30重量部がより好ましく、0.70重量部~1.10重量部がより好ましく、0.75重量部~1.00重量部がさらに好ましく、0.75重量部~0.90重量部が特に好ましい。ラジカル重合開始剤の使用量が線状ポリプロピレン系樹脂100重量部に対して0.50重量部未満の場合には、線状ポリプロピレン系樹脂に対する改質の程度が不十分となり得る。その結果、得られる分岐状ポリプロピレン系樹脂を用いて押出発泡する場合、分岐状ポリプロピレン系樹脂に歪硬化性が十分に発現しないため、連続気泡率の高い押出発泡粒子しか得られない傾向がある。ラジカル重合開始剤の使用量が線状ポリプロピレン系樹脂100重量部に対して2.00重量部を超える場合、ラジカル重合開始剤による線状ポリプロピレン系樹脂からの水素の引き抜きが増加することによって得られる分岐状ポリプロピレン系樹脂のゲル量が増大し得る。その結果、当該分岐状ポリプロピレン系樹脂を用いて押出発泡する場合、発泡倍率が低く、連続気泡率の高い押出発泡粒子しか得られない傾向がある。 The amount of the radical polymerization initiator used in the method (a2) is 0.50 to 2.00 parts by weight, and 0.60 to 1.80 parts by weight based on 100 parts by weight of the linear polypropylene resin. parts by weight are preferable, 0.70 parts by weight to 1.60 parts by weight are more preferable, 0.70 parts by weight to 1.50 parts by weight are more preferable, 0.70 parts by weight to 1.30 parts by weight are more preferable, It is more preferably 0.70 parts by weight to 1.10 parts by weight, even more preferably 0.75 parts by weight to 1.00 parts by weight, and particularly preferably 0.75 parts by weight to 0.90 parts by weight. If the amount of the radical polymerization initiator used is less than 0.50 parts by weight per 100 parts by weight of the linear polypropylene resin, the degree of modification of the linear polypropylene resin may be insufficient. As a result, when extrusion foaming is performed using the obtained branched polypropylene resin, the branched polypropylene resin does not exhibit sufficient strain hardening properties, and therefore only extruded foam particles with a high open cell ratio tend to be obtained. When the amount of the radical polymerization initiator used exceeds 2.00 parts by weight per 100 parts by weight of the linear polypropylene resin, hydrogen is obtained by increasing the abstraction of hydrogen from the linear polypropylene resin by the radical polymerization initiator. The amount of gel of the branched polypropylene resin can be increased. As a result, when extrusion foaming is performed using the branched polypropylene resin, there is a tendency that only extruded foam particles with a low expansion ratio and a high open cell ratio are obtained.
 (その他の樹脂およびゴム)
 樹脂混合物は、本発明の一実施形態に係る効果を損なわない範囲で、分岐状ポリプロピレン系樹脂以外の樹脂(「その他の樹脂」と称する場合がある。)および/またはゴムをさらに含んでいてもよい。その他の樹脂およびゴムを総称して「その他の樹脂等」と称する場合もある。その他の樹脂としては、(a)エチレン/プロピレンランダム共重合体、エチレン/プロピレンブロック共重合体、エチレン/プロピレン交互共重合体、プロピレン単独重合体などの線状のポリプロピレン系樹脂、(b)高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、エチレン/酢酸ビニル共重合体、エチレン/アクリル酸共重合体、およびエチレン/メタアクリル酸共重合体などのエチレン系樹脂、並びに(c)ポリスチレン、スチレン/無水マレイン酸共重合体、およびスチレン/エチレン共重合体などのスチレン系樹脂、などが挙げられる。前記ゴムとしては、エチレン/プロピレンゴム、エチレン/ブテンゴム、エチレン/ヘキセンゴム、エチレン/オクテンゴムなどのオレフィン系ゴムが挙げられる。
(Other resins and rubbers)
The resin mixture may further contain a resin other than the branched polypropylene resin (sometimes referred to as "other resin") and/or rubber, as long as the effects of the embodiment of the present invention are not impaired. good. Other resins and rubbers may be collectively referred to as "other resins, etc.". Other resins include (a) linear polypropylene resins such as ethylene/propylene random copolymers, ethylene/propylene block copolymers, ethylene/propylene alternating copolymers, and propylene homopolymers; Density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, linear very low density polyethylene, ethylene/vinyl acetate copolymer, ethylene/acrylic acid copolymer, and ethylene/methacrylic acid copolymer and (c) styrenic resins such as polystyrene, styrene/maleic anhydride copolymers, and styrene/ethylene copolymers. Examples of the rubber include olefin rubbers such as ethylene/propylene rubber, ethylene/butene rubber, ethylene/hexene rubber, and ethylene/octene rubber.
 樹脂混合物中のその他の樹脂等の含有量は、例えば、樹脂混合物100重量部に対して60重量部以下であることが好ましく、40重量部以下であることがより好ましく、20重量部以下であることがさらに好ましく、10重量部以下であることが特に好ましい。その他の樹脂等の含有量の下限値は特に限定されず、例えば、樹脂混合物100重量部に対して0重量部であってよい。 The content of other resins in the resin mixture is, for example, preferably 60 parts by weight or less, more preferably 40 parts by weight or less, and 20 parts by weight or less based on 100 parts by weight of the resin mixture. It is even more preferable that the amount is 10 parts by weight or less. The lower limit of the content of other resins, etc. is not particularly limited, and may be, for example, 0 parts by weight based on 100 parts by weight of the resin mixture.
 (気泡核形成剤)
 樹脂混合物は、得られる押出発泡粒子の気泡数および気泡の形状をコントロールする目的で、気泡核形成剤を含んでいてもよい。気泡核形成剤としては、重炭酸ソーダ-クエン酸混合物、クエン酸モノナトリウム塩、タルク、および炭酸カルシウムなどを挙げることができる。これら気泡核形成剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(bubble nucleating agent)
The resin mixture may contain a cell nucleating agent for the purpose of controlling the number and shape of cells in the resulting extruded foam particles. Bubble nucleating agents may include sodium bicarbonate-citric acid mixtures, monosodium citrate, talc, calcium carbonate, and the like. These bubble nucleating agents may be used alone or in combination of two or more.
 気泡核形成剤の使用量、換言すれば樹脂混合物中の気泡核形成剤の含有量、は特に限定されない。気泡核形成剤の使用量は、例えば、分岐状ポリプロピレン系樹脂100重量部に対して、0.01重量部~5.00重量部であることが好ましく、0.01重量部~3.50重量部であることがより好ましく、0.01重量部~1.00重量部であることがさらに好ましく、0.01重量部~0.50重量部であることが特に好ましい。 The amount of the cell nucleating agent used, in other words, the content of the cell nucleating agent in the resin mixture, is not particularly limited. The amount of the cell nucleating agent used is, for example, preferably 0.01 parts by weight to 5.00 parts by weight, and 0.01 parts by weight to 3.50 parts by weight, based on 100 parts by weight of the branched polypropylene resin. parts by weight, more preferably from 0.01 parts by weight to 1.00 parts by weight, and particularly preferably from 0.01 parts by weight to 0.50 parts by weight.
 (その他成分)
 樹脂混合物は、必要に応じてその他成分として、(a)酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸、および制酸吸着剤などの安定剤、並びに/または、(b)架橋剤、連鎖移動剤、滑剤、可塑剤、充填材、強化材、難燃剤、着色剤、および帯電防止剤などの添加剤、をさらに含んでいてもよい。これらその他成分は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。上記の酸化防止剤や金属不活性剤などの添加剤の使用量は特に限定されない。上記の添加剤の使用量は、例えば、分岐状ポリプロピレン系樹脂100重量部に対して、0.01重量部~20.00重量部であることが好ましく、0.10重量部~5.00重量部であることがより好ましい。
(Other ingredients)
The resin mixture may contain other ingredients as necessary (a) antioxidant, metal deactivator, phosphorus processing stabilizer, ultraviolet absorber, ultraviolet stabilizer, optical brightener, metal soap, and antacid adsorbent. and/or (b) additives such as crosslinkers, chain transfer agents, lubricants, plasticizers, fillers, reinforcements, flame retardants, colorants, and antistatic agents. You can stay there. These other components may be used alone or in combination of two or more. The amount of additives such as the above-mentioned antioxidants and metal deactivators used is not particularly limited. The amount of the additive used is, for example, preferably 0.01 parts by weight to 20.00 parts by weight, and 0.10 parts by weight to 5.00 parts by weight, based on 100 parts by weight of the branched polypropylene resin. It is more preferable that it is part.
 (2-2.組成物)
 本の製造方法において、上述した樹脂混合物に発泡剤を加えて得られた物質を、「組成物」と称する場合がある。
(2-2. Composition)
In the manufacturing method of this book, the substance obtained by adding a foaming agent to the resin mixture described above may be referred to as a "composition".
 本製造方法において使用可能な発泡剤としては、押出発泡で使用される一般的に使用される発泡剤であれば特に限定されない。前記発泡剤としては、例えば、(a)(a-1)プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等の脂肪族炭化水素類;(a-2)シクロペンタン、シクロブタン等の脂環式炭化水素類;(a-3)ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル等のエーテル類;(a-4)ジフルオロエタン等のフッ化炭化水素類;(a-5)メタノール、エタノール等のアルコール類;(a-6)空気、窒素、炭酸ガス等の無機ガス;並びに(a-7)水などの物理系発泡剤、並びに、(b)重炭酸ナトリウム、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミンなどの熱分解型発泡剤を含む化学系発泡剤、などが挙げられる。 The blowing agent that can be used in this manufacturing method is not particularly limited as long as it is a commonly used blowing agent used in extrusion foaming. Examples of the blowing agent include (a) (a-1) aliphatic hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, and hexane; (a-2) alicyclics such as cyclopentane and cyclobutane; (a-3) Ethers such as dimethyl ether, diethyl ether, methyl ethyl ether; (a-4) Fluorinated hydrocarbons such as difluoroethane; (a-5) Alcohols such as methanol and ethanol; (a-6) Inorganic gases such as air, nitrogen, and carbon dioxide; (a-7) Physical blowing agents such as water; and (b) Inorganic gases such as sodium bicarbonate, azodicarbonamide, and dinitrosopentamethylenetetramine. Examples include chemical foaming agents including pyrolytic foaming agents.
 本製造方法において、生産コストおよび環境負荷が小さいことから、発泡剤としては、無機ガスが好ましく、炭酸ガスがより好ましい。また、生産コストおよび環境負荷がより小さいことから、発泡剤としては炭酸ガスのみを使用し、発泡剤の例として上述した、炭酸ガス以外の発泡剤を実質的に含まないことが好ましい。具体的に、発泡剤の例として上述した、炭酸ガス以外の発泡剤の組成物中の含有量が、組成物100重量部に対して0.01重量部以下であることが好ましく、0.001重量部以下であることがより好ましく、0.0001重量部以下であることがさらに好ましく、0重量部であることが特に好ましい。 In this manufacturing method, as the blowing agent, inorganic gas is preferred, and carbon dioxide gas is more preferred, since the production cost and environmental impact are low. In addition, since the production cost and environmental burden are smaller, it is preferable to use only carbon dioxide gas as the blowing agent, and not substantially contain any blowing agent other than carbon dioxide gas, which is mentioned above as an example of the blowing agent. Specifically, it is preferable that the content of the blowing agent other than carbon dioxide, which is mentioned above as an example of the blowing agent, in the composition is 0.01 parts by weight or less, and 0.001 parts by weight or less, based on 100 parts by weight of the composition. It is more preferably at most 0.0001 parts by weight, even more preferably at most 0.0001 parts by weight, and particularly preferably at most 0 parts by weight.
 発泡剤の使用量は、発泡剤の種類および目標とする発泡体の発泡倍率に応じて、適宜調整すればよい。本製造方法において、使用する発泡剤の合計使用量は、組成物100重量部に対して、1重量部~20重量部であることが好ましく、1重量部~15重量部であることがより好ましく、1重量部~10重量部であることがさらに好ましく、2重量部~10重量部であることが特に好ましい。「発泡剤の使用量」は、「組成物中の発泡剤の含有量」ともいえる。 The amount of the blowing agent used may be adjusted as appropriate depending on the type of blowing agent and the target expansion ratio of the foam. In this production method, the total amount of blowing agents used is preferably 1 to 20 parts by weight, more preferably 1 to 15 parts by weight, based on 100 parts by weight of the composition. , more preferably from 1 part by weight to 10 parts by weight, particularly preferably from 2 parts by weight to 10 parts by weight. The "amount of blowing agent used" can also be said to be the "content of the blowing agent in the composition."
 (2-3.製造装置)
 本製造方法において使用する製造装置は、複数のスクリューを有する溶融混練部と、ダイを有する造粒部とを備える。製造装置は、さらに、輸送部および/または冷却部を備えていてよい。製造装置が輸送部および冷却部を備える場合、(a)溶融混練部、輸送部、冷却部、および造粒部は連結しており、(b)組成物の押出方向の上流側から下流側へ向かって、溶融混練部、輸送部、冷却部、および造粒部がこの順に配置されている。製造装置が輸送部および冷却部を備える場合、(a)輸送部および冷却部は、上流側と下流側とで順番が入れ替えられて設けられてもよく、(b)輸送部は、冷却部の上流側および下流側の両方に設けられてもよい。輸送部は、溶融混練部から造粒部までの配管内の組成物の圧力が十分低ければ省略できる。また、溶融混練部の出口にて十分に組成物の温度が低下している場合、冷却部は省略してもよい。
(2-3. Manufacturing equipment)
The manufacturing apparatus used in this manufacturing method includes a melt-kneading section having a plurality of screws and a granulation section having a die. The manufacturing apparatus may further include a transport section and/or a cooling section. When the manufacturing apparatus includes a transport section and a cooling section, (a) the melt-kneading section, the transport section, the cooling section, and the granulation section are connected, and (b) from the upstream side to the downstream side in the extrusion direction of the composition. A melt-kneading section, a transport section, a cooling section, and a granulation section are arranged in this order. When the manufacturing apparatus includes a transport section and a cooling section, (a) the transport section and the cooling section may be provided with the order changed between the upstream side and the downstream side, and (b) the transport section is provided on the cooling section. It may be provided on both the upstream side and the downstream side. The transport section can be omitted if the pressure of the composition in the pipe from the melt-kneading section to the granulation section is sufficiently low. Further, if the temperature of the composition is sufficiently lowered at the outlet of the melt-kneading section, the cooling section may be omitted.
 複数のスクリューを有する溶融混練部としては、例えば、良好な混合性を有するために、2本のスクリューを有する二軸押出機が好ましい。また、溶融混練部は、溶融混練部に圧入された発泡剤が上流側に逆流しないためのスクリュー構成を有することが好ましい。すなわち、複数のスクリューを有する溶融混練部としては、逆流防止機能を持った2本のスクリュー構成を有する二軸押出機がより好ましい。 As the melt-kneading section having a plurality of screws, for example, a twin-screw extruder having two screws is preferable in order to have good mixing properties. Further, it is preferable that the melt-kneading section has a screw configuration so that the blowing agent press-injected into the melt-kneading section does not flow back to the upstream side. That is, as the melt-kneading section having a plurality of screws, a twin-screw extruder having a two-screw configuration with a backflow prevention function is more preferable.
 より具体的な態様として、溶融混練部は、順ずらし角(例えば45度)および/またはずらし角が90度および/または逆ずらし角(例えば―45度)を有するニーディングディスク、切り欠きスクリュー、順ねじのフライトスクリューおよび逆ねじのフライトスクリューなどのエレメントを有し得る。順ずらし角(例えば45度)および/またはずらし角が90度および/または逆ずらし角(例えば―45度)を有するニーディングディスクおよび切り欠きスクリューは、混練作用が比較的強いエレメントといえる。そのような混練作用が比較的強いエレメントとしては、ローター、ギアミキシングエレメントおよびピンエレメント等も挙げられる。順ねじのフライトスクリューは、混練作用が比較的弱いエレメントといえる。逆ねじのフライトスクリューは、充満領域を確保する機能を持ったエレメントといえる。そのような、充満領域を確保する機能を持ったエレメントとしては、ずらし角が90度および/または逆ずらし角(例えば―45度)を有するニーディングディスク、トーピードリングおよびシールリング等も挙げられる。 As a more specific embodiment, the melt-kneading section includes a kneading disk, a notched screw, which has a forward shift angle (for example, 45 degrees) and/or a shift angle of 90 degrees and/or a reverse shift angle (for example, -45 degrees). It may have elements such as a forward-threaded flight screw and a counter-threaded flight screw. Kneading disks and notched screws having a forward shift angle (for example, 45 degrees) and/or a shift angle of 90 degrees and/or a reverse shift angle (for example, -45 degrees) can be said to be elements having a relatively strong kneading action. Elements with relatively strong kneading effects include rotors, gear mixing elements, pin elements, and the like. The normally threaded flight screw can be said to be an element with relatively weak kneading action. The counter-threaded flight screw can be said to be an element that has the function of securing a filling area. Such elements having the function of ensuring a filling area include kneading discs, torpedo rings, seal rings, etc. with a 90 degree offset angle and/or a reverse offset angle (for example -45 degrees).
 溶融混練部の具体的な構成としては、以下のような構成が挙げられる:
 (1)ニーディングディスク、順ねじフライトスクリュー、ニーディングディスク、逆ねじフライトスクリュー、順ねじフライトスクリュー、ニーディングディスク、切り欠きスクリューおよび順ねじフライトスクリューがこの順に連結された構成;
 (2)ニーディングディスク、逆ねじフライトスクリュー、順ねじフライトスクリュー、ニーディングディスク、切り欠きスクリューおよび順ねじフライトスクリューがこの順に連結された構成;
 (3)ニーディングディスク、順ねじフライトスクリュー、ニーディングディスク、逆ねじフライトスクリュー、ギアミキシングエレメント、順ねじフライトスクリュー、ギアミキシングエレメントおよび順ねじフライトスクリューがこの順に連結された構成;
 (4)ニーディングディスク、逆ねじフライトスクリュー、ギアミキシングエレメント、順ねじフライトスクリュー、ギアミキシングエレメントおよび順ねじフライトスクリューがこの順に連結された構成;
 (5)ニーディングディスク、逆ねじフライトスクリュー、シールリング、順ねじフライトスクリュー、ニーディングディスク、切り欠きスクリューおよび順ねじフライトスクリューがこの順に連結された構成。
Specific configurations of the melt-kneading section include the following configurations:
(1) A configuration in which a kneading disk, a forward flight screw, a kneading disk, a reverse flight screw, a forward flight screw, a kneading disk, a notch screw, and a forward flight screw are connected in this order;
(2) A configuration in which a kneading disk, a counter-thread flight screw, a normal-thread flight screw, a kneading disk, a notch screw, and a normal-thread flight screw are connected in this order;
(3) A configuration in which a kneading disk, a forward flight screw, a kneading disk, a reverse flight screw, a gear mixing element, a forward flight screw, a gear mixing element, and a forward flight screw are connected in this order;
(4) A configuration in which a kneading disk, a reverse thread flight screw, a gear mixing element, a normal thread flight screw, a gear mixing element, and a normal thread flight screw are connected in this order;
(5) A configuration in which a kneading disk, a reverse flight screw, a seal ring, a normal flight screw, a kneading disk, a notch screw, and a normal flight screw are connected in this order.
 輸送部は、溶融混練部から造粒部へ組成物を輸送するための輸送部材によって構成されている。当該輸送部材は、押出発泡法にて使用される公知の輸送部材であればよく、例えばギアポンプである。ギアポンプは、組成物の流れの圧力を維持する、あるいは適宜昇圧するために有用な部材である。 The transport section is constituted by a transport member for transporting the composition from the melt-kneading section to the granulation section. The transport member may be any known transport member used in the extrusion foaming method, such as a gear pump. A gear pump is a useful member for maintaining or optionally increasing the pressure of the composition stream.
 冷却部は、輸送部(輸送部が省略される場合は溶融混練部)から輸送された組成物を冷却する冷却部材から構成されている。当該冷却部材は、押出発泡法にて使用される公知の冷却部材であればよい。当該冷却部材としては、例えば、単軸押出機、スタティックミキサーまたはメルトクーラー等が挙げられる。単軸押出機、スタティックミキサーまたはメルトクーラーにより低せん断速度で混合しながら徐冷することにより、組成物は所定の温度に冷却される。 The cooling section is composed of a cooling member that cools the composition transported from the transport section (or the melt-kneading section if the transport section is omitted). The cooling member may be any known cooling member used in the extrusion foaming method. Examples of the cooling member include a single screw extruder, a static mixer, a melt cooler, and the like. The composition is cooled to a predetermined temperature by slow cooling while mixing at a low shear rate using a single screw extruder, static mixer, or melt cooler.
 製造装置が冷却部をさらに備える場合、当該冷却部はスタティックミキサーを備えることが好ましく、冷却部はスタティックミキサーのみから構成されることが好ましい。本発明者は、鋭意検討の過程において、以下の新規知見を独自に得た:単軸押出機を備える冷却部を備える製造装置を使用した場合と比較して、スタティックミキサーを備える冷却部を備える製造装置を使用した場合、驚くべきことに、著しく低い連続気泡率を有する押出発泡粒子を得ることができる。 When the manufacturing apparatus further includes a cooling section, it is preferable that the cooling section includes a static mixer, and it is preferable that the cooling section is composed only of a static mixer. The present inventor independently obtained the following new knowledge in the process of intensive study: Compared to the case of using a manufacturing device equipped with a cooling section equipped with a single-screw extruder, the present inventor has a cooling section equipped with a static mixer. Using the production equipment, it is surprisingly possible to obtain extruded foam particles with a significantly lower open cell content.
 造粒部におけるダイは、溶融混練物を吐出するための孔(吐出孔と称する場合もある。)を少なくとも1つ備えている。ダイが備える孔の、押出方向に対して垂直な断面の形状(以下、単に「ダイの孔の形状」と称する場合がある。)は、特に限定されない。球状または略球状の形状を有する押出発泡粒子を得ることができることから、ダイの孔の形状は、真円形、略円形、楕円形、正方形、などであることが好ましい。ダイが備える孔の数および孔径は、特に限定されない。ダイは、型内発泡成形工程において発泡粒子の大きさを適切に保つ観点から、例えば、孔径0.1mm~2.0mmである孔を有することが好ましく、孔径0.4mm~1.5mmである孔を有することがより好ましい。ダイは、孔を複数(例えば、2個以上)有することがより好ましい。なお、本明細書において、ダイの孔の形状が真円形でない場合、ダイの孔の孔径は、ダイの孔の形状の内接円の直径を意図する。 The die in the granulation section is equipped with at least one hole (sometimes referred to as a discharge hole) for discharging the melt-kneaded material. The shape of the cross section of the hole provided in the die perpendicular to the extrusion direction (hereinafter sometimes simply referred to as "the shape of the hole of the die") is not particularly limited. Since extruded foamed particles having a spherical or approximately spherical shape can be obtained, the shape of the hole in the die is preferably a perfect circle, a substantially circle, an ellipse, a square, or the like. The number and diameter of holes provided in the die are not particularly limited. The die preferably has a hole with a hole diameter of 0.1 mm to 2.0 mm, for example, and a hole diameter of 0.4 mm to 1.5 mm, from the viewpoint of maintaining an appropriate size of expanded particles in the in-mold foam molding process. It is more preferable to have holes. More preferably, the die has a plurality of holes (for example, two or more). In this specification, when the shape of the hole of the die is not a perfect circle, the diameter of the hole of the die is intended to be the diameter of the inscribed circle of the shape of the hole of the die.
 (2-4.溶融混練工程)
 溶融混練工程は、製造装置の溶融混練部にて、分岐状ポリプロピレン系樹脂を溶融させて、分岐状ポリプロピレン系樹脂に発泡剤を溶解させる工程である。溶融混練工程は、分岐状ポリプロピレン系樹脂を有する樹脂混合物と発泡剤とを含む組成物の溶融混練物を調製する工程ともいえる。
(2-4. Melt-kneading process)
The melt-kneading step is a step in which the branched polypropylene resin is melted and the blowing agent is dissolved in the branched polypropylene resin in the melt-kneading section of the manufacturing device. The melt-kneading step can also be said to be a step of preparing a melt-kneaded product of a composition containing a resin mixture having a branched polypropylene resin and a blowing agent.
 溶融混練工程では、最終的に、分岐状ポリプロピレン系樹脂に発泡剤が溶解されていればよい。溶融混練工程において、分岐状ポリプロピレン系樹脂および発泡剤を溶融混練部に供給する順序並びに方法としては、特に限定されず、例えば以下(d)または(e)の方法が挙げられる:
 (d)(d-1)分岐状ポリプロピレン系樹脂と、発泡剤とを混合またはブレンドし、組成物を調製する;(d-2)その後、当該組成物を溶融混練部に供給し、当該組成物を溶融混練する方法;
 (e)(e-1)分岐状ポリプロピレン系樹脂を溶融混練部に供給し、当該分岐状ポリプロピレン系樹脂を溶融混練する;(e-2)その後、溶融混練された分岐状ポリプロピレン系樹脂に対して、溶融混練部の途中にある原料供給口から、発泡剤を供給し、すなわち、溶融混練部内にて組成物を調製(完成)し、当該組成物をさらに溶融混練する方法。 上述した(d)または(e)の方法において、必要に応じて使用するその他の樹脂、気泡核形成剤およびその他成分を前記組成物に添加する場合、これらの原料を溶融混練部に供給する方法および順序は特に限定されない。必要に応じて使用するその他の樹脂、気泡核形成剤およびその他成分は、分岐状ポリプロピレン系樹脂および/または発泡剤と同時に添加してもよく、別々に、かつ順不同に、添加してもよい。発泡剤として常温で液体の発泡剤(例えば脂肪族炭化水素類、脂環式炭化水素類、エーテル類およびアルコール類など)を使用する場合は、上述した(d)および(e)の方法を用いることができる。発泡剤として常温で気体の発泡剤、例えば炭酸ガスを使用する場合は、上述した(e)の方法を用いることができる。
In the melt-kneading step, it is sufficient that the blowing agent is finally dissolved in the branched polypropylene resin. In the melt-kneading step, the order and method of supplying the branched polypropylene resin and the blowing agent to the melt-kneading section are not particularly limited, and include, for example, the following methods (d) or (e):
(d) (d-1) Mix or blend the branched polypropylene resin and a blowing agent to prepare a composition; (d-2) Then, supply the composition to a melt-kneading section, and A method of melting and kneading things;
(e) (e-1) Supply the branched polypropylene resin to the melt-kneading section, and melt-knead the branched polypropylene-based resin; (e-2) After that, the branched polypropylene resin that has been melt-kneaded is A blowing agent is supplied from a raw material supply port located in the middle of the melt-kneading section, that is, a composition is prepared (completed) in the melt-kneading section, and the composition is further melt-kneaded. In the above-mentioned method (d) or (e), when adding other resins, cell nucleating agents, and other components used as necessary to the composition, a method of supplying these raw materials to the melt-kneading section. and the order is not particularly limited. Other resins, cell nucleating agents, and other components used as necessary may be added at the same time as the branched polypropylene resin and/or blowing agent, or may be added separately and in random order. When using a blowing agent that is liquid at room temperature (for example, aliphatic hydrocarbons, alicyclic hydrocarbons, ethers, and alcohols) as a blowing agent, use the methods (d) and (e) above. be able to. When using a foaming agent that is gaseous at room temperature, such as carbon dioxide gas, the above-mentioned method (e) can be used.
 溶融混練工程は、例えば上述した(d)または(e)の方法で組成物を溶融混練した後、溶融混練された組成物が固化しない温度の範囲内において、溶融混練された組成物の温度を下げる工程をさらに有していてもよい。 In the melt-kneading step, for example, after melt-kneading the composition by the method (d) or (e) described above, the temperature of the melt-kneaded composition is controlled within a temperature range at which the melt-kneaded composition does not solidify. It may further include a lowering step.
 本製造方法では、溶融混練部において、スクリューの有効長Lとスクリュー径Dとの比(L/D)が20~24である。本発明者は、鋭意検討の過程において、以下の新規知見を独自に得た:スクリューの有効長Lとスクリュー径Dとの比(L/D)が24である溶融混練部を備える製造装置を使用することにより、驚くべきことに、樹脂の劣化が著しく低減されることにより、著しく低い連続気泡率を有する押出発泡粒子を得ることができる。また、前記(L/D)が20以上である場合、溶融混練された分岐状ポリプロピレン系樹脂に対して発泡剤が十分均一に分散できるという利点を有する。 In this manufacturing method, the ratio of the effective length L of the screw to the screw diameter D (L/D) is 20 to 24 in the melt-kneading section. The present inventor independently obtained the following new findings in the course of intensive studies: A manufacturing apparatus equipped with a melt-kneading section in which the ratio of the effective length L of the screw to the screw diameter D (L/D) is 24. Through its use, it is surprisingly possible to obtain extruded foamed particles with a significantly lower open cell content due to a significantly reduced deterioration of the resin. Moreover, when the above-mentioned (L/D) is 20 or more, there is an advantage that the blowing agent can be sufficiently uniformly dispersed in the melt-kneaded branched polypropylene resin.
 さらに低い連続気泡率を有する押出発泡粒子を得ることができることから、前記(L/D)は、20以上24未満であることが好ましく、20~23であることがより好ましく、20以上23未満であることがさらに好ましく、20~22であることが特に好ましい。 Since it is possible to obtain extruded foam particles having an even lower open cell ratio, the above (L/D) is preferably 20 or more and less than 24, more preferably 20 to 23, and 20 or more and less than 23. It is more preferably 1, and particularly preferably 20 to 22.
 上述したように、「スクリューの有効長L」とは、ポリプロピレン系樹脂を溶融させる機能を持ったスクリューエレメントの押出方向の上流端からスクリュー下流端までの長さ(mm)を意図する。「スクリューの有効長L」には、上述した混練作用が比較的強いエレメント、混練作用が比較的弱いエレメントおよび充満領域を確保する機能を持ったエレメントの長さが含まれる。 As mentioned above, the "effective length L of the screw" refers to the length (mm) from the upstream end in the extrusion direction of the screw element that has the function of melting the polypropylene resin to the downstream end of the screw. The "effective length L of the screw" includes the lengths of the elements that have a relatively strong kneading action, the elements that have a relatively weak kneading action, and the elements that have the function of ensuring a filled region.
 本製造方法では、溶融混練部において、スクリューの混練エレメント長(mm)とスクリュー径D(mm)との比(混練エレメント長/D)が14未満であることが好ましい。本明細書において、「スクリューの混練エレメント長」とは、「スクリューの有効長」のうち、ニーディングディスクおよび切り欠きスクリュー等の混練作用の強いエレメントの長さ(mm)と、逆ねじフライトスクリューといった充満領域を確保する機能を持ったエレメントの長さ(mm)との総和を意図する。スクリューの混練エレメント長(mm)とスクリュー径D(mm)との比(混練エレメント長/D)が14未満である溶融混練部を備える製造装置を使用することにより、ポリプロピレン系樹脂の劣化が抑制されるという利点を有する。 In the present manufacturing method, the ratio of the kneading element length (mm) of the screw to the screw diameter D (mm) (kneading element length/D) is preferably less than 14 in the melt-kneading section. In this specification, the "kneading element length of the screw" refers to the length (mm) of elements with strong kneading action such as kneading discs and notched screws, and the length (mm) of elements with strong kneading action, such as kneading disks and notched screws, out of the "effective length of the screw". It is intended to be the sum total of the length (mm) of the element that has the function of securing a filled area. Deterioration of polypropylene resin is suppressed by using a manufacturing device equipped with a melt-kneading section in which the ratio of the screw kneading element length (mm) to the screw diameter D (mm) (kneading element length/D) is less than 14. It has the advantage of being
 さらに、ポリプロピレン系樹脂の劣化の抑制、可塑化機能および発泡剤の分散機能のバランスの観点から、前記スクリューの混練エレメント長とスクリュー径Dとの比(混練エレメント長/D)は、14未満であることが好ましく、12未満であることがより好ましく、11未満であることがさらに好ましく、10未満であることが特に好ましい。混練エレメント長/Dの下限は、4以上が好ましい。 Furthermore, from the viewpoint of suppressing deterioration of the polypropylene resin and balancing the plasticizing function and the dispersion function of the blowing agent, the ratio of the kneading element length to the screw diameter D (kneading element length/D) of the screw is less than 14. It is preferably less than 12, even more preferably less than 11, and particularly preferably less than 10. The lower limit of kneading element length/D is preferably 4 or more.
 溶融混練工程において、溶融混練部の温度は特に限定されない。例えば、溶融混練部の温度は、原料に対する発泡剤の供給に支障の無い範囲の温度であることが好ましい。発泡剤が気体である場合は、溶融混練部における発泡剤の供給位置にて分岐状ポリプロピレン系樹脂が溶融していないと、発泡剤が溶融混練部の上流側へ抜ける可能性がある。このため、分岐状ポリプロピレン系樹脂を完全溶融させつつ、樹脂温度が高いことによる発泡剤気化が起こらないように溶融混練部の温度を設定することが好ましい。溶融混練部の温度としては、例えば、170℃~230℃の範囲であることが好ましく、180℃~220℃の範囲であることがより好ましく、180℃~210℃の範囲であることがさらに好ましい。溶融混練部の温度としては、例えば、内部にスクリューを収めるシリンダ(バレル)の温度が挙げられる。溶融混練部の温度が前記範囲内であれば、分岐状ポリプロピレン系樹脂およびその他の樹脂等が溶融し、かつ熱分解しないという利点を有する。 In the melt-kneading step, the temperature of the melt-kneading section is not particularly limited. For example, the temperature of the melt-kneading section is preferably within a range that does not interfere with the supply of the blowing agent to the raw materials. When the blowing agent is a gas, if the branched polypropylene resin is not melted at the blowing agent supply position in the melt-kneading section, the blowing agent may escape to the upstream side of the melt-kneading section. For this reason, it is preferable to set the temperature of the melt-kneading section so that the branched polypropylene resin is completely melted and the blowing agent is not vaporized due to the high resin temperature. The temperature of the melt-kneading section is, for example, preferably in the range of 170°C to 230°C, more preferably in the range of 180°C to 220°C, even more preferably in the range of 180°C to 210°C. . The temperature of the melt-kneading section includes, for example, the temperature of the cylinder (barrel) in which the screw is housed. When the temperature of the melt-kneading section is within the above range, there is an advantage that the branched polypropylene resin and other resins are melted and not thermally decomposed.
 冷却部の温度およびダイの温度としては、いずれも、特に限定されない。冷却部の温度およびダイの温度としては、いずれも、分岐状ポリプロピレン系樹脂の融点、発泡剤の種類および使用量、押出発泡工程の態様等に依存して、それぞれ独立して適宜設定してもよい。冷却部として単軸押出機を使用する場合、冷却部の温度としては、例えば、単軸押出機の、内部にスクリューを収めるシリンダ(バレル)の温度が挙げられる。冷却部としてスタティックミキサーを使用する場合、冷却部の温度としては、例えば、内部にスタティックミキサーを収めるハウジングの温度が挙げられる。 The temperature of the cooling section and the temperature of the die are not particularly limited. The temperature of the cooling section and the temperature of the die may be independently set as appropriate depending on the melting point of the branched polypropylene resin, the type and amount of blowing agent used, the mode of the extrusion foaming process, etc. good. When a single screw extruder is used as the cooling section, the temperature of the cooling section includes, for example, the temperature of the cylinder (barrel) in which the screw is housed in the single screw extruder. When a static mixer is used as the cooling section, the temperature of the cooling section includes, for example, the temperature of the housing in which the static mixer is housed.
 溶融混練された組成物の吐出量Qは特に限定されない。溶融混練された組成物の吐出量Qは、溶融混練部の大きさ(例えば、前記(L/D))等に依存して、適宜設定してもよい。 The discharge amount Q of the melt-kneaded composition is not particularly limited. The discharge amount Q of the melt-kneaded composition may be set as appropriate depending on the size of the melt-kneading section (for example, the above (L/D)).
 溶融混練時間、および溶融混練部のスクリューの回転数Nは、いずれも、特に限定されない。溶融混練時間、および溶融混練部のスクリューの回転数Nは、いずれも、溶融混練部の大きさ(例えば、前記(L/D))および/または吐出量Q等に依存して、それぞれ独立して適宜設定してもよい。 Both the melt-kneading time and the rotation speed N of the screw in the melt-kneading section are not particularly limited. The melt-kneading time and the rotation speed N of the screw in the melt-kneading section are both independent depending on the size of the melt-kneading section (for example, (L/D)) and/or the discharge amount Q, etc. You may set it as appropriate.
 溶融混練された組成物の吐出量Q、溶融混練時間、および溶融混練部のスクリューの回転数Nは、いずれも、溶融混練による分岐状ポリプロピレン系樹脂の劣化には影響をあたえないか、あたえるとしても極わずかである。 The discharge amount Q of the melt-kneaded composition, the melt-kneading time, and the rotation speed N of the screw in the melt-kneading section all have no effect on the deterioration of the branched polypropylene resin due to melt-kneading, or if they do. There are also very few.
 (2-5.押出発泡工程)
 押出発泡工程は、溶融混練工程で得られた組成物、すなわち溶融混練された組成物を、ダイを通して製造装置の内圧よりも低圧である領域に押し出し、押し出された組成物を細断する工程である。押出発泡工程により、押出発泡粒子が得られる。そのため、押出発泡工程は、ポリプロピレン系樹脂押出発泡粒子を造粒する造粒工程ともいえる。
(2-5. Extrusion foaming process)
The extrusion foaming process is a process in which the composition obtained in the melt-kneading process, that is, the melt-kneaded composition, is extruded through a die into an area whose pressure is lower than the internal pressure of the manufacturing equipment, and the extruded composition is shredded. be. Extruded foam particles are obtained by the extrusion foaming process. Therefore, the extrusion foaming process can also be said to be a granulation process of granulating extruded polypropylene resin foam particles.
 押出発泡工程において、溶融混練工程で得られた組成物を押出す領域は、製造装置の内圧よりも低圧である限り特に限定されない。例えば、押出発泡工程において、溶融混練工程で得られた組成物は、気相中に押出されてもよく、液相中に押出されてもよい。 In the extrusion foaming step, the area where the composition obtained in the melt-kneading step is extruded is not particularly limited as long as the pressure is lower than the internal pressure of the manufacturing equipment. For example, in the extrusion foaming process, the composition obtained in the melt-kneading process may be extruded into the gas phase or into the liquid phase.
 押出発泡工程において製造装置の内圧よりも低圧である領域に押出された組成物は、直ちに発泡し始める。押出発泡工程では、発泡中の組成物を細断してもよく、発泡し終えた組成物を細断してもよい。発泡中の組成物を細断する場合、細断された組成物は、押出された先の領域中で発泡を完了し得る。 In the extrusion and foaming process, the composition extruded into a region whose pressure is lower than the internal pressure of the manufacturing device immediately begins to foam. In the extrusion foaming process, the composition being foamed may be shredded, or the foamed composition may be shredded. If the foaming composition is shredded, the shredded composition may complete foaming in the extruded region.
 溶融混練工程で得られた組成物を押出す領域および当該組成物の細断方法によって、押出発泡工程(造粒工程)は、コールドカット法およびダイフェースカット法の2つに大別され得る。コールドカット法としては、ダイから押出された発泡剤を含有する組成物を発泡させ、水槽の中を通して冷却しながらストランド状の発泡体を引き取った後に細断する方法(ストランドカット法)が挙げられる。ダイフェースカット法はダイの孔から押出された組成物をダイの表面に接触しながら又は僅かに隙間を確保しながら回転するカッターで切断する方法である。 Depending on the region from which the composition obtained in the melt-kneading step is extruded and the method for shredding the composition, the extrusion foaming step (granulation step) can be roughly divided into two types: a cold cut method and a die face cut method. Examples of the cold cut method include a method in which a composition containing a foaming agent extruded from a die is foamed, the foam is cooled through a water tank, and the strand-shaped foam is taken out and shredded (strand cut method). . The die face cutting method is a method in which a composition extruded from a hole in a die is cut with a rotating cutter while contacting the surface of the die or while maintaining a slight gap.
 ダイフェースカット法は、さらに冷却方法の違いから次の3方式に分けられる。すなわち、アンダーウォータカット(以下、UWCと称する場合もある)法、ウォータリングカット(以下、WRCと称する場合もある)法、およびホットカット(以下、HCと称する場合もある)法である。UWC法は、ダイ先端に取り付けたチャンバー内に所定圧力に調整された冷却水をダイの樹脂吐出面に接するように充満し、ダイの孔から押出された組成物を水中で切断する方法である。また、WRC法は、ダイに連結された冷却ドラムの内周面に沿って冷却水が流れる冷却ドラムをダイから下流側に配置し、空気中にて前記カッターで切断された組成物が発泡しながら、もしくは発泡後に前記冷却水中で冷却される方法である。HC法は、空気中にて組成物をカッターで切断し、切断された組成物が発泡しながら、もしくは発泡後に、空気中にて冷却される方法である。前記HC法としては、水及び空気の混合ミストを噴霧する工程をさらに含むミストカット法も挙げられる。 The die face cutting method can be further divided into the following three methods depending on the cooling method. That is, they are an underground cut (hereinafter sometimes referred to as UWC) method, a watering cut (hereinafter sometimes referred to as WRC) method, and a hot cut (hereinafter sometimes referred to as HC) method. The UWC method is a method in which a chamber attached to the tip of a die is filled with cooling water adjusted to a predetermined pressure so as to be in contact with the resin discharge surface of the die, and the composition extruded from the holes of the die is cut underwater. . In addition, in the WRC method, a cooling drum is connected to the die and cooling water flows along the inner peripheral surface of the drum, which is placed downstream from the die, so that the composition cut by the cutter foams in the air. This method involves cooling in the cooling water while foaming or after foaming. The HC method is a method in which a composition is cut with a cutter in the air, and the cut composition is cooled in the air while or after foaming. The HC method also includes a mist cut method that further includes a step of spraying a mixed mist of water and air.
 押出発泡工程において、溶融混練工程で得られた組成物を液相中に押出す場合(例えばUWC)について、説明する。液相としては、特に限定されないが、安価および安全に製造できることから水であることが好ましい。液相の温度は、特に限定されないが、押出発泡粒子同士が互着したものが少ない押出発泡粒子を得やすいことから、20℃~90℃であることが好ましく、25℃~85℃であることが好ましく、30℃~80℃であることがより好ましく、35℃~80℃であることがさらに好ましく、40℃~80℃であることが特に好ましい。本明細書において、液相の温度は、液相と接するように設置された温度計によって測定され得る。領域内において組成物に対する液相の圧力は、特に限定されないが、得られる押出発泡粒子の連続気泡率を低く抑えやすく、かつ得られる押出発泡粒子同士の互着を低く抑えやすいことから、0.05MPa・G~0.60MPa・Gであることが好ましく、0.07MPa・G~0.55MPa・Gであることがより好ましく、0.10MPa・G~0.50MPa・Gであることがより好ましく、0.10MPa・G~0.45MPa・Gであることがさらに好ましく、0.10MPa・G~0.40MPa・Gであることが特に好ましい。本明細書において「MPa・G」は、MPaがゲージ圧を示していることを意図する。 In the extrusion foaming process, the case where the composition obtained in the melt-kneading process is extruded into the liquid phase (for example, UWC) will be explained. The liquid phase is not particularly limited, but water is preferred because it can be produced inexpensively and safely. The temperature of the liquid phase is not particularly limited, but it is preferably between 20°C and 90°C, and between 25°C and 85°C, since it is easier to obtain extruded foamed particles with fewer extruded foamed particles adhering to each other. The temperature is preferably 30°C to 80°C, even more preferably 35°C to 80°C, and particularly preferably 40°C to 80°C. In this specification, the temperature of the liquid phase can be measured by a thermometer placed in contact with the liquid phase. The pressure of the liquid phase on the composition within the region is not particularly limited, but it is easy to keep the open cell ratio of the obtained extruded foam particles low and also to keep the stickiness of the obtained extruded foam particles low, so it is 0. It is preferably from 0.05 MPa.G to 0.60 MPa.G, more preferably from 0.07 MPa.G to 0.55 MPa.G, and more preferably from 0.10 MPa.G to 0.50 MPa.G. , more preferably 0.10 MPa·G to 0.45 MPa·G, particularly preferably 0.10 MPa·G to 0.40 MPa·G. In this specification, "MPa.G" is intended to mean that MPa indicates gauge pressure.
 〔3.ポリプロピレン系樹脂押出発泡粒子〕
 本明細書において、「本製造方法によって得られるポリプロピレン系樹脂押出発泡粒子」を「本押出発泡粒子」と称する場合もある。
[3. Polypropylene resin extruded foam particles]
In this specification, "polypropylene resin extruded foamed particles obtained by this production method" may be referred to as "this extruded foamed particles."
 (連続気泡率)
 本押出発泡粒子は、連続気泡率が低いという利点を有する。本押出発泡粒子の連続気泡率は、低いほど好ましい。本押出発泡粒子の連続気泡率は、4.2%未満であることが好ましく、4.1%以下であることがより好ましく、4.0%以下であることがより好ましく、3.9%以下であることがより好ましく、3.8%以下であることがより好ましく、3.7%以下であることがより好ましく、3.6%以下であることがより好ましく、3.5%以下であることがさらに好ましく、3.4%以下であることが特に好ましい。
本押出発泡粒子の連続気泡率の下限値は特に限定されず、例えば0.0%以上である。当該構成によると、(a)押出発泡粒子の成形時に、セルが破泡して収縮することがほとんどないため、当該押出発泡粒子が成形性に優れるという利点、および(b)当該押出発泡粒子を用いて得られた発泡成形体において、形状の任意性、緩衝性、軽量性、圧縮強度および断熱性などの特徴がより発揮されるという利点を有する。ポリプロピレン系樹脂押出発泡粒子の連続気泡率の測定方法は、後述の実施例にて詳説する。
(Open cell rate)
The extruded foamed particles have the advantage of having a low open cell ratio. The lower the open cell ratio of the extruded foamed particles, the more preferable. The open cell ratio of the extruded foam particles is preferably less than 4.2%, more preferably 4.1% or less, more preferably 4.0% or less, and 3.9% or less. It is more preferably 3.8% or less, more preferably 3.7% or less, more preferably 3.6% or less, and 3.5% or less. It is more preferable that the content is 3.4% or less, and particularly preferably 3.4% or less.
The lower limit of the open cell ratio of the extruded foamed particles is not particularly limited, and is, for example, 0.0% or more. According to this configuration, (a) the extruded foamed particles have excellent moldability because the cells hardly break and shrink during molding of the extruded foamed particles, and (b) the extruded foamed particles have excellent moldability. The foamed molded article obtained using this method has the advantage that characteristics such as shape flexibility, cushioning properties, lightness, compressive strength, and heat insulation properties are better exhibited. The method for measuring the open cell ratio of extruded polypropylene resin foam particles will be explained in detail in Examples below.
 (発泡倍率)
 本押出発泡粒子の発泡倍率は、2.0倍~45.0倍であることが好ましく、2.5倍~40.0倍であることがより好ましく、2.5倍~35.0倍であることがより好ましく、3.0倍~30.0倍であることがより好ましく、3.5倍~25.0倍であることがより好ましく、3.5倍~20.0倍であることがより好ましく、3.5倍~15.0倍であることがより好ましく、3.5倍~10.0倍であることがさらに好ましく、4.0倍~8.0倍であることが特に好ましい。前記構成によると、当該押出発泡粒子を用いて得られたポリプロピレン系樹脂発泡成形体において、形状の任意性、緩衝性、軽量性、および断熱性などの特徴がより発揮される、という利点を有する。押出発泡粒子の製造により得られた押出発泡粒子の発泡倍率が前記範囲に至らなかった場合、得られた押出発泡粒子に対して、押出発泡粒子内を不活性ガスで加圧した後、当該押出発泡粒子を加熱して発泡倍率を高める方法(例えば、特開平10-237212号公報に記載の方法)も利用可能である。ポリプロピレン系樹脂押出発泡粒子の発泡倍率の測定方法は、後述の実施例にて詳説する。
(Foaming ratio)
The expansion ratio of the extruded foam particles is preferably 2.0 times to 45.0 times, more preferably 2.5 times to 40.0 times, and 2.5 times to 35.0 times. More preferably, it is 3.0 times to 30.0 times, more preferably 3.5 times to 25.0 times, and 3.5 times to 20.0 times. is more preferable, more preferably 3.5 times to 15.0 times, even more preferably 3.5 times to 10.0 times, particularly 4.0 times to 8.0 times. preferable. According to the above structure, there is an advantage that the polypropylene resin foam molded product obtained using the extruded foam particles exhibits characteristics such as shape arbitrariness, cushioning properties, lightness, and heat insulation properties. . If the expansion ratio of the extruded foamed particles obtained by manufacturing the extruded foamed particles does not reach the above range, the extruded foamed particles obtained are pressurized with an inert gas, and then the extruded foamed particles are A method of increasing the expansion ratio by heating expanded particles (for example, the method described in JP-A-10-237212) can also be used. The method for measuring the expansion ratio of extruded polypropylene resin foam particles will be explained in detail in Examples below.
 〔4.ポリプロピレン系樹脂発泡成形体の製造方法〕
 本発明の第1の実施形態に係るポリプロピレン系樹脂発泡成形体の製造方法は、〔2.ポリプロピレン系樹脂押出発泡粒子の製造方法〕の項に記載の製造方法により得られたポリプロピレン系樹脂押出発泡粒子、または、〔3.ポリプロピレン系樹脂押出発泡粒子〕の項に記載のポリプロピレン系樹脂押出発泡粒子を、金型が備える少なくとも2つの型から形成される成形空間内に充填した後、当該成形空間内の前記ポリプロピレン系樹脂押出発泡粒子を加熱する加熱工程を有する。
[4. Manufacturing method of polypropylene resin foam molding]
[2. Extruded polypropylene resin foam particles obtained by the manufacturing method described in section [3. After filling the extruded polypropylene resin foam particles described in the section [Extruded polypropylene resin foam particles] into a molding space formed by at least two molds provided in a mold, extruding the polypropylene resin in the molding space. It has a heating step of heating the expanded particles.
 本明細書において、「本発明の一実施形態に係るポリプロピレン系樹脂発泡成形体」を「本発泡成形体」と称する場合もある。また、金型を用いて製造して得られる発泡成形体は型内発泡成形体と称される場合もある。 In this specification, the "polypropylene resin foam molded article according to an embodiment of the present invention" may be referred to as the "present foam molded article". Moreover, a foamed molded product obtained by manufacturing using a mold is sometimes referred to as an in-mold foamed molded product.
 本発明の一実施形態に係るポリプロピレン系樹脂発泡成形体の製造方法は、前述した構成であるため、圧縮強度に優れ、融着性に優れ、および/または表面が美麗であるポリプロピレン系樹脂発泡成形体を提供できる、という利点を有する。 Since the method for producing a polypropylene resin foam molded article according to an embodiment of the present invention has the above-described configuration, the polypropylene resin foam molding has excellent compressive strength, excellent fusion properties, and/or a beautiful surface. It has the advantage of being able to provide the body.
 本発明の一実施形態に係るポリプロピレン系樹脂発泡成形体の製造方法において、使用される金型としては特に限定されない。金型は、少なくとも2つの型として、例えば、駆動し得ない固定型と駆動し得る移動型とを備え得る。固定型に対して移動型が近づくことにより、固定型と移動型との内部に成形空間が形成される。なお、成形空間内の押出発泡粒子が加熱されるときには固定型の型枠と移動型の型枠とは接触し得る(すなわち金型は密閉し得る)。一方、成形空間内に押出発泡粒子を充填するときには固定型の型枠と移動型の型枠とは接触していなくてもよく、固定型の型枠と移動型の型枠との間にわずかな隙間(クラッキングとも称する)が形成されていてもよい。 In the method for manufacturing a polypropylene resin foam molded article according to an embodiment of the present invention, the mold used is not particularly limited. The mold may include at least two molds, for example, a fixed mold that cannot be driven and a movable mold that can be driven. As the movable mold approaches the fixed mold, a molding space is formed inside the fixed mold and the movable mold. Note that when the extruded foam particles in the molding space are heated, the fixed mold and the movable mold can come into contact (that is, the mold can be sealed). On the other hand, when filling extruded foam particles into the molding space, the fixed formwork and the movable formwork do not need to be in contact with each other, and there is a slight gap between the fixed formwork and the movable formwork. A gap (also referred to as a crack) may be formed.
 本発明の一実施形態に係るポリプロピレン系樹脂発泡成形体の製造方法において、成形空間内にポリプロピレン系樹脂押出発泡粒子を充填する方法、および金型内のポリプロピレン系樹脂押出発泡粒子を加熱する方法は特に限定されない。これらの方法としては、例えば以下(b1)~(b4)のような方法が挙げられる。 In the method for manufacturing a polypropylene resin foam molded article according to an embodiment of the present invention, a method for filling extruded polypropylene resin foam particles into a molding space and a method for heating extruded polypropylene resin foam particles in a mold are as follows: Not particularly limited. Examples of these methods include methods (b1) to (b4) below.
 (b1)押出発泡粒子を容器内で無機ガスにより加圧処理して、当該押出発泡粒子内に無機ガスを含浸させ、押出発泡粒子に所定の粒子内圧を付与する。その後、該押出発泡粒子を金型の成形空間内に充填し、成形空間内の押出発泡粒子を水蒸気で加熱する方法;
 (b2)押出発泡粒子を金型の成形空間内に充填する。次いで、該成形空間内の体積を10%~75%減ずるように成形空間内の押出発泡粒子を圧縮した後、成形空間内の押出発泡粒子を水蒸気で加熱する方法;
 (b3)押出発泡粒子をガス圧力で圧縮して金型の成形空間内に充填する。その後、成形空間内の押出発泡粒子の回復力を利用して、成形空間内の押出発泡粒子を水蒸気で加熱する方法;
 (b4)特に前処理することなく、押出発泡粒子を金型の成形空間内に充填する。その後、成形空間内の押出発泡粒子を水蒸気で加熱する方法。
(b1) The extruded foam particles are pressurized with an inorganic gas in a container to impregnate the extruded foam particles with the inorganic gas and apply a predetermined internal pressure to the extruded foam particles. Thereafter, a method of filling the extruded foam particles into a molding space of a mold and heating the extruded foam particles in the molding space with steam;
(b2) Filling the molding space of the mold with extruded foam particles. Next, after compressing the extruded foam particles in the molding space so as to reduce the volume in the molding space by 10% to 75%, a method of heating the extruded foam particles in the molding space with steam;
(b3) The extruded foam particles are compressed by gas pressure and filled into the molding space of the mold. Thereafter, a method of heating the extruded foam particles in the molding space with water vapor using the recovery force of the extruded foam particles in the molding space;
(b4) Filling the molding space of the mold with extruded foam particles without any particular pretreatment. Then, the extruded foam particles in the molding space are heated with steam.
 前記加熱工程は、ポリプロピレン系樹脂押出発泡粒子を水蒸気で加熱する工程を有することが好ましい。 The heating step preferably includes a step of heating the extruded polypropylene resin foam particles with steam.
 本発明の一実施形態に係るポリプロピレン系樹脂発泡成形体の製造方法において、押出発泡粒子を加熱する水蒸気の圧力(以下、蒸気圧と称する場合がある)は、用いる押出発泡粒子の特性等によって異なり、一概には規定できない。 In the method for manufacturing a polypropylene resin foam molded article according to an embodiment of the present invention, the pressure of water vapor for heating extruded foam particles (hereinafter sometimes referred to as vapor pressure) varies depending on the characteristics of the extruded foam particles used, etc. , cannot be defined in general terms.
 前記(b1)法において無機ガスとしては、空気、窒素、酸素、二酸化炭素、ヘリウム、ネオン、アルゴン等からなる群より選ばれる少なくとも1種を使用できる。これら無機ガスの中でも、空気および/または二酸化炭素が好ましい。 In the above method (b1), at least one kind selected from the group consisting of air, nitrogen, oxygen, carbon dioxide, helium, neon, argon, etc. can be used as the inorganic gas. Among these inorganic gases, air and/or carbon dioxide are preferred.
 前記(b1)法における発泡粒子内圧は0.05MPa~0.30MPa(絶対圧)が好ましく、0.06MPa~0.25MPa(絶対圧)が好ましい。 The internal pressure of the expanded particles in the method (b1) is preferably 0.05 MPa to 0.30 MPa (absolute pressure), and preferably 0.06 MPa to 0.25 MPa (absolute pressure).
 前記(b1)法において、無機ガスを発泡粒子に含浸させる際の容器内の温度としては、10℃~90℃が好ましく、40℃~90℃がより好ましい。 In the method (b1), the temperature inside the container when impregnating the expanded particles with an inorganic gas is preferably 10°C to 90°C, more preferably 40°C to 90°C.
 本発明の一実施形態は、以下のような構成であってもよい。 An embodiment of the present invention may have the following configuration.
 〔1〕複数のスクリューを有する溶融混練部と、ダイを有する造粒部とを備える製造装置を使用し、分岐構造を有するポリプロピレン系樹脂および発泡剤を前記溶融混練部にて溶融混練する溶融混練工程と、前記溶融混練工程で得られた組成物を、前記ダイを通して前記製造装置の内圧よりも低圧である領域に吐出する押出発泡工程と、を含み、前記溶融混練部において、スクリューの有効長Lとスクリュー径Dとの比(L/D)が20~24である、ポリプロピレン系樹脂押出発泡粒子の製造方法。 [1] Melt-kneading in which a polypropylene resin having a branched structure and a blowing agent are melt-kneaded in the melt-kneading part using a manufacturing device equipped with a melt-kneading part having a plurality of screws and a granulation part having a die. and an extrusion foaming step of discharging the composition obtained in the melt-kneading step through the die into an area whose pressure is lower than the internal pressure of the manufacturing apparatus, and in the melt-kneading section, the effective length of the screw is A method for producing extruded polypropylene resin foam particles, wherein the ratio of L to screw diameter D (L/D) is 20 to 24.
 〔2〕前記製造装置は冷却部をさらに備える、〔1〕に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 [2] The method for producing extruded polypropylene resin foam particles according to [1], wherein the production apparatus further includes a cooling section.
 〔3〕前記冷却部はスタティックミキサーを備える、〔2〕に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 [3] The method for producing extruded polypropylene resin foam particles according to [2], wherein the cooling section includes a static mixer.
 〔4〕前記製造装置は輸送部をさらに備える、〔1〕~〔3〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
 
 〔5〕前記溶融混練部において、スクリューの混練エレメント長と前記スクリュー径Dとの比(混練エレメント長/D)が14未満であり、前記混練エレメントは、ニーディングディスク、切り欠きスクリュー、ローター、ギアミキシングエレメント、ピンエレメント、逆ねじフライトスクリュー、トーピードリング、およびシールリングからなる群から選ばれる1種以上である、〔1〕~〔4〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。
[4] The method for producing extruded polypropylene resin foam particles according to any one of [1] to [3], wherein the production apparatus further includes a transport section.

[5] In the melt-kneading section, the ratio of the kneading element length of the screw to the screw diameter D (kneading element length/D) is less than 14, and the kneading element includes a kneading disk, a notched screw, a rotor, The extruded polypropylene resin foam according to any one of [1] to [4], which is one or more selected from the group consisting of gear mixing elements, pin elements, reverse thread flight screws, torpedo rings, and seal rings. Method of manufacturing particles.
 〔6〕前記ダイは、孔径0.1mm~2.0mmである孔を有する、〔1〕~〔5〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 [6] The method for producing extruded polypropylene resin foam particles according to any one of [1] to [5], wherein the die has holes with a hole diameter of 0.1 mm to 2.0 mm.
 〔7〕前記分岐構造を有するポリプロピレン系樹脂の230℃におけるメルトフローレートが0.5g/10分~20.0g/10分であり、200℃における溶融張力が8.0cN以上である、〔1〕~〔6〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 [7] The polypropylene resin having a branched structure has a melt flow rate of 0.5 g/10 minutes to 20.0 g/10 minutes at 230°C, and a melt tension of 8.0 cN or more at 200°C, [1 ] to [6]. The method for producing extruded polypropylene resin foam particles according to any one of [6].
 〔8〕前記ポリプロピレン系樹脂押出発泡粒子の連続気泡率は、4.1%以下である、〔1〕~〔7〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 [8] The method for producing extruded polypropylene resin foam particles according to any one of [1] to [7], wherein the open cell ratio of the extruded polypropylene resin foam particles is 4.1% or less.
 〔9〕前記発泡剤は、無機ガスである、〔1〕~〔8〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 [9] The method for producing extruded polypropylene resin foam particles according to any one of [1] to [8], wherein the blowing agent is an inorganic gas.
 〔10〕前記発泡剤は、炭酸ガスである、〔1〕~〔9〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 [10] The method for producing extruded polypropylene resin foam particles according to any one of [1] to [9], wherein the blowing agent is carbon dioxide gas.
 〔11〕前記溶融混練工程において、気泡核形成剤をさらに添加する、〔1〕~〔10〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 [11] The method for producing extruded polypropylene resin foam particles according to any one of [1] to [10], wherein a cell nucleating agent is further added in the melt-kneading step.
 〔12〕前記ポリプロピレン系樹脂押出発泡粒子の発泡倍率は、3.5倍~10.0倍である、〔1〕~〔11〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 [12] Production of extruded polypropylene resin foam particles according to any one of [1] to [11], wherein the expansion ratio of the extruded polypropylene resin foam particles is 3.5 times to 10.0 times. Method.
 〔13〕前記分岐構造を有するポリプロピレン系樹脂の主鎖は、プロピレンの単独重合体、プロピレンとプロピレン以外の単量体とのブロック共重合体、およびプロピレンとプロピレン以外の単量体とのランダム共重合体からなる群から選ばれる1種以上である、〔1〕~〔12〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 [13] The main chain of the polypropylene resin having a branched structure may be a propylene homopolymer, a block copolymer of propylene and a monomer other than propylene, or a random copolymer of propylene and a monomer other than propylene. The method for producing extruded polypropylene resin foam particles according to any one of [1] to [12], which is one or more selected from the group consisting of polymers.
 〔14〕前記分岐構造を有するポリプロピレン系樹脂は、線状ポリプロピレン系樹脂と、共役ジエン化合物と、ラジカル重合開始剤と、を溶融混練して得られたものである、〔1〕~〔13〕のいずれか1つに記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 [14] The polypropylene resin having a branched structure is obtained by melt-kneading a linear polypropylene resin, a conjugated diene compound, and a radical polymerization initiator, [1] to [13] The method for producing extruded polypropylene resin foam particles according to any one of the above.
 〔15〕〔1〕~〔14〕のいずれか1つに記載の製造方法により得られたポリプロピレン系樹脂押出発泡粒子を、金型が備える少なくとも2つの型から形成される成形空間内に充填し、当該成形空間内の前記ポリプロピレン系樹脂押出発泡粒子を加熱する加熱工程を有する、ポリプロピレン系樹脂発泡成形体の製造方法。 [15] Filling the extruded polypropylene resin foam particles obtained by the production method according to any one of [1] to [14] into a molding space formed by at least two molds provided in a mold. . A method for manufacturing a polypropylene resin foam molded article, comprising a heating step of heating the extruded polypropylene resin foam particles in the molding space.
 以下に実施例によって本発明の一実施形態をより詳しく説明するが、本発明はこれら実施例によって何ら制限されるものではない。 An embodiment of the present invention will be described below in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.
 (測定および評価方法)
 [発泡倍率]
 以下の方法によって、ポリプロピレン系樹脂押出発泡粒子の発泡倍率を算出した:(1)押出発泡粒子の重量w(g)を測定した;(2)次に、重量の測定に用いた押出発泡粒子を、メスシリンダー中に入っているエタノール中に沈め、メスシリンダーの液面位置の上昇分に基づき押出発泡粒子の体積v(cm)を測定した;(3)重量w(g)を体積v(cm)で除し、押出発泡粒子の密度ρを算出した;(4)押出発泡粒子の代わりに基材樹脂(戻し樹脂)を用いて(1)~(3)と同様の操作を行うことにより、基材樹脂の密度ρを算出した;(5)押出発泡粒子の基材樹脂の密度ρを押出発泡粒子の密度ρで除し(ρ/ρ)、発泡倍率とした。
(Measurement and evaluation method)
[Foaming ratio]
The expansion ratio of the extruded foamed polypropylene resin particles was calculated by the following method: (1) The weight w (g) of the extruded foamed particles was measured; (2) Next, the extruded foamed particles used to measure the weight were measured. , the extruded foam particles were submerged in ethanol contained in a graduated cylinder, and the volume v (cm 3 ) of the extruded foam particles was measured based on the rise in the liquid level in the graduated cylinder; (3) the weight w (g) was expressed as the volume v ( cm 3 ) to calculate the density ρ 1 of the extruded foam particles; (4) Perform the same operations as (1) to (3) using the base resin (restored resin) instead of the extruded foam particles. By this, the density ρ 2 of the base resin was calculated; (5) The density ρ 2 of the base resin of the extruded foam particles was divided by the density ρ 1 of the extruded foam particles (ρ 21 ), and the expansion ratio and did.
 実施例および比較例では、押出発泡粒子を樹脂戻しして得られる樹脂塊の密度を、前記基材樹脂の密度と見做した。以下(b1)~(b5)を順に行い、得られた樹脂塊を押出発泡粒子の戻し樹脂とした:(b1)押出発泡粒子を、温度を160℃に調整した乾燥機に入れた;(b2)次いで、5~10分かけて真空ポンプを使用して、前記乾燥機内の圧力を-0.05MPa(ゲージ圧)~-0.10MPa(ゲージ圧)になるまで減圧した;(b3)その後、前記乾燥機内で30分間、押出発泡粒子を放置し、樹脂塊(戻し樹脂)を調製した;(b4)次いで、乾燥機内の温度を室温まで冷却した後、乾燥機内の圧力を常圧まで戻した;(b5)その後、乾燥機から前記樹脂塊を取り出した。 In the Examples and Comparative Examples, the density of the resin mass obtained by returning the extruded foam particles to the resin was regarded as the density of the base resin. The following steps (b1) to (b5) were performed in order, and the resulting resin mass was used as a return resin for extruded foam particles: (b1) The extruded foam particles were placed in a dryer whose temperature was adjusted to 160°C; (b2 ) Next, the pressure inside the dryer was reduced to -0.05 MPa (gauge pressure) to -0.10 MPa (gauge pressure) using a vacuum pump over a period of 5 to 10 minutes; (b3) After that, The extruded foam particles were left in the dryer for 30 minutes to prepare a resin mass (reconstituted resin); (b4) Next, after cooling the temperature in the dryer to room temperature, the pressure in the dryer was returned to normal pressure. (b5) Thereafter, the resin mass was taken out from the dryer.
 [連続気泡率]
 押出発泡粒子の連続気泡率は、空気比較式比重計[東京サイエンス(株)製、モデル1000]を用いて、ASTM D2856-87の手順C(PROSEDURE C)に記載の方法に従って、測定した。押出発泡粒子の連続気泡率は、具体的には、以下(1)~(3)を順に実施して算出した:(1)空気比較式比重計を用いて押出発泡粒子の体積Vc(cm)を測定した;(2)次いで、Vcを測定後の押出発泡粒子の全量を、メスシリンダーに入っているエタノール中に沈めた;(3)その後、メスシリンダーにおけるエタノールの位置の上昇量から、押出発泡粒子の見かけ上の体積Va(cm)を求めた;(4)以下の式により、押出発泡粒子の連続気泡率を算出した:
連続気泡率(%)=((Va-Vc)×100)/Va。
[Open cell rate]
The open cell ratio of the extruded foam particles was measured using an air comparison hydrometer [manufactured by Tokyo Science Co., Ltd., Model 1000] according to the method described in ASTM D2856-87 Procedure C (PROSEDURE C). Specifically, the open cell ratio of the extruded foam particles was calculated by performing the following (1) to (3) in order: (1) Using an air comparison type hydrometer, the volume Vc (cm 3 ) was measured; (2) Next, the entire amount of extruded foam particles after measuring Vc was submerged in ethanol contained in the graduated cylinder; (3) Then, from the amount of increase in the position of ethanol in the graduated cylinder, The apparent volume Va (cm 3 ) of the extruded foam particles was determined; (4) The open cell ratio of the extruded foam particles was calculated using the following formula:
Open cell rate (%) = ((Va-Vc) x 100)/Va.
 (製造装置)
 以下の実施例および比較例では、ポリプロピレン系樹脂押出発泡粒子の製造に使用する製造装置として、溶融混練部と冷却部と輸送部とダイバーターバルブと造粒部とが直列に連結された装置を使用した。溶融混練部としては、2つのスクリューを有し、一端に原料供給部を備え、かつスクリューの途中に発泡剤供給部を備える二軸押出機を使用した。また、溶融混練部の構成は、ニーディングディスク、順ねじフライトスクリュー、ニーディングディスク、逆ねじフライトスクリュー、順ねじフライトスクリュー、ニーディングディスク、切り欠きスクリューおよび順ねじフライトスクリューがこの順に連結された構成であった。溶融混練部において、スクリューの外径Dは26mmであった。スクリューの有効長(mm)は、各実施例および比較例で異なっていた。スクリューの混練エレメント長(mm)は、実施例1と、実施例2および比較例1と、で異なっていた。冷却部として、スタティックミキサーを使用した。造粒部は、孔径0.8mmの孔を3つ備えるダイを有するものであった。
(Manufacturing equipment)
In the following Examples and Comparative Examples, the manufacturing equipment used for manufacturing extruded polypropylene resin foam particles is an equipment in which a melt-kneading section, a cooling section, a transport section, a diverter valve, and a granulation section are connected in series. used. As the melt-kneading section, a twin-screw extruder having two screws, a raw material supply section at one end, and a blowing agent supply section in the middle of the screws was used. In addition, the structure of the melt-kneading section is a kneading disk, a forward flight screw, a kneading disk, a reverse flight screw, a forward flight screw, a kneading disk, a notch screw, and a forward flight screw connected in this order. It was the composition. In the melt-kneading section, the outer diameter D of the screw was 26 mm. The effective length (mm) of the screw was different for each example and comparative example. The kneading element length (mm) of the screw was different between Example 1, Example 2, and Comparative Example 1. A static mixer was used as the cooling section. The granulation section had a die with three holes with a hole diameter of 0.8 mm.
 (分岐構造を有するポリプロピレン系樹脂の製造)
 分岐状ポリプロピレン系樹脂として以下のように樹脂Aを製造した。まず、原料樹脂である線状ポリプロピレン系樹脂(F-724NPC(プライムポリマー製))を二軸押出機に供給した。次いで、前記原料樹脂100重量部に対してラジカル重合開始剤としてt-ブチルパーオキシイソプロピルモノカーボネート0.81重量部を二軸押出機に供給した。次いで、溶融混練された原料樹脂およびラジカル重合開始剤を含む二軸押出機に対して、原料樹脂100重量部に対して共役ジエン化合物としてイソプレン0.36重量部を供給し、二軸押出機内で樹脂混合物を調製した。樹脂混合物の二軸押出機への供給量は、70kg/hであった。なお、樹脂混合物の供給量とは、二軸押出機に共役ジエン化合物を供給した時点で二軸押出機内で調製される樹脂混合物の単位時間当たりの量を意図する。シリンダ温度200℃、スクリュー回転数230rpmで、調製された樹脂混合物を二軸押出機内で溶融混練し、分岐状ポリプロピレン系樹脂を得た。得られた分岐状ポリプロピレン系樹脂を、吐出量70kg/hでダイからストランド状に吐出した。吐出された分岐状ポリプロピレン系樹脂(ストランド)を水冷し、ペレット状(円柱状)に細断した。 原料樹脂をF227D(プライムポリマー製)、共役ジエン化合物の添加量を0.27重量部に変更したこと以外は上記と同様にして、樹脂Bを得た。
(Production of polypropylene resin with branched structure)
Resin A was produced as a branched polypropylene resin as follows. First, a linear polypropylene resin (F-724NPC (manufactured by Prime Polymer)), which is a raw material resin, was supplied to a twin-screw extruder. Next, 0.81 parts by weight of t-butylperoxyisopropyl monocarbonate as a radical polymerization initiator was supplied to the twin-screw extruder based on 100 parts by weight of the raw material resin. Next, 0.36 parts by weight of isoprene as a conjugated diene compound was supplied to a twin-screw extruder containing the melt-kneaded raw resin and a radical polymerization initiator for 100 parts by weight of the raw resin, and A resin mixture was prepared. The amount of resin mixture supplied to the twin screw extruder was 70 kg/h. Note that the amount of resin mixture supplied refers to the amount of resin mixture prepared within the twin-screw extruder at the time when the conjugated diene compound is supplied to the twin-screw extruder per unit time. The prepared resin mixture was melt-kneaded in a twin-screw extruder at a cylinder temperature of 200° C. and a screw rotation speed of 230 rpm to obtain a branched polypropylene resin. The obtained branched polypropylene resin was discharged from the die in the form of a strand at a discharge rate of 70 kg/h. The discharged branched polypropylene resin (strand) was cooled with water and shredded into pellets (cylindrical shapes). Resin B was obtained in the same manner as above except that the raw resin was changed to F227D (manufactured by Prime Polymer) and the amount of the conjugated diene compound added was changed to 0.27 parts by weight.
 得られた樹脂Aの230℃におけるMFRは3.0g/10分であり、溶融張力は10.2cNであった。得られた樹脂Bの230℃におけるMFRは、2.2g/10分であり、溶融張力は9.7cNであった。 The MFR of the obtained resin A at 230°C was 3.0 g/10 minutes, and the melt tension was 10.2 cN. The MFR of the obtained resin B at 230° C. was 2.2 g/10 minutes, and the melt tension was 9.7 cN.
 (分岐構造を有しないポリプロピレン系樹脂の製造)
 ランダムポリプロピレン樹脂(Borealis製、商品名RD734MO)60重量%と、カーボンブラック40重量%とを混合し、混合物を調製した。得られた混合物を、分岐構造を有しないポリプロピレン系樹脂(線状ポリプロピレン系樹脂)として、以下の実施例および比較例において使用した。
(Production of polypropylene resin without branched structure)
A mixture was prepared by mixing 60% by weight of random polypropylene resin (manufactured by Borealis, trade name RD734MO) and 40% by weight of carbon black. The resulting mixture was used as a polypropylene resin without a branched structure (linear polypropylene resin) in the following Examples and Comparative Examples.
 また、以下の実施例および比較例では、気泡核形成剤として、タルクを使用した。 Furthermore, in the following Examples and Comparative Examples, talc was used as a bubble nucleating agent.
 〔実施例1〕
 (溶融混練工程)
 分岐構造を有するポリプロピレン樹脂(分岐状ポリプロピレン系樹脂)として樹脂Aを75.55重量部、樹脂Bを20重量部、分岐構造を有しないポリプロピレン系樹脂(線状ポリプロピレン系樹脂)を4.25重量部、および気泡核形成剤としてタルクを0.2重量部ブレンドし、樹脂混合物を調製した。その後、樹脂混合物を、原料供給部から二軸押出機(溶融混練部)に供給し、シリンダ温度200℃およびスクリュー回転数120rpmにて、樹脂混合物の溶融混練を開始した。樹脂混合物の二軸押出機への供給量は、10kg/hであった。樹脂混合物の溶融混練の途中で、発泡剤として炭酸ガスを発泡剤供給部から二軸押出機内に圧入し、得られた組成物をさらに溶融混練した。発泡剤の二軸押出機への供給量は、0.25kg/hであった。スクリューの有効長L(mm)とスクリュー径D(mm)との比(L/D)は21であった。スクリューの混練エレメント長(mm)とスクリュー径D(mm)との比(L/D)は6であった。
[Example 1]
(melt kneading process)
75.55 parts by weight of resin A as a polypropylene resin having a branched structure (branched polypropylene resin), 20 parts by weight of resin B, and 4.25 parts by weight of a polypropylene resin without a branched structure (linear polypropylene resin) 1 part by weight, and 0.2 part by weight of talc as a cell nucleating agent to prepare a resin mixture. Thereafter, the resin mixture was supplied from the raw material supply section to a twin-screw extruder (melt-kneading section), and melt-kneading of the resin mixture was started at a cylinder temperature of 200° C. and a screw rotation speed of 120 rpm. The amount of resin mixture supplied to the twin screw extruder was 10 kg/h. During the melt-kneading of the resin mixture, carbon dioxide gas was forced into the twin-screw extruder as a blowing agent from the blowing agent supply section, and the resulting composition was further melt-kneaded. The amount of blowing agent supplied to the twin-screw extruder was 0.25 kg/h. The ratio (L/D) between the effective length L (mm) of the screw and the screw diameter D (mm) was 21. The ratio (L/D) of the screw kneading element length (mm) to the screw diameter D (mm) was 6.
 (押出発泡工程)
 溶融混練工程を経て得られた溶融混練された組成物を、造粒部が有するダイを通過させて、製造装置の内圧よりも低圧かつ液相として70℃の水で満たされた領域に、吐出量10.25kg/hで吐出した。当該領域において、組成物に対する水の圧力は、0.2MPa・Gであった。押し出された組成物を、水(液相)で満たされた領域中で、カッターにて細断して、球状または略球状のポリプロピレン系樹脂押出発泡粒子を得た。得られたポリプロピレン系樹脂押出発泡粒子を、遠心脱水機に供することにより回収した。各製造条件および製造結果を表1に示す。得られたポリプロピレン系樹脂押出発泡粒子について、上述の方法で発泡倍率および連続気泡率を評価した。その結果、連続気泡率は3.4%であり、その他の物性は表1に示す通りであった。
(Extrusion foaming process)
The melt-kneaded composition obtained through the melt-kneading process is passed through a die included in the granulation unit, and is discharged into an area filled with water at a temperature of 70°C as a liquid phase at a pressure lower than the internal pressure of the manufacturing equipment. It was discharged at a rate of 10.25 kg/h. In this region, the pressure of water on the composition was 0.2 MPa·G. The extruded composition was shredded with a cutter in a region filled with water (liquid phase) to obtain spherical or approximately spherical extruded polypropylene resin foam particles. The obtained extruded polypropylene resin foam particles were collected by subjecting them to a centrifugal dehydrator. Table 1 shows each manufacturing condition and manufacturing result. The obtained extruded polypropylene resin foam particles were evaluated for expansion ratio and open cell ratio using the methods described above. As a result, the open cell ratio was 3.4%, and other physical properties were as shown in Table 1.
 〔実施例2〕
 二軸押出機のスクリューの有効長Lと外径Dとの比(L/D)が22であり、かつスクリューの混練エレメント長(mm)とスクリュー径D(mm)との比(L/D)が10である溶融混練部を備える装置を使用した以外は、実施例1と同じ製法でポリプロピレン系樹脂押出発泡粒子および型内発泡成形体を得た。得られたポリプロピレン系樹脂押出発泡粒子および型内発泡成形体について、上述の方法で発泡倍率および連続気泡率を評価した。その結果、連続気泡率は3.7%であり、その他の物性は表1に示す通りであった。
[Example 2]
The ratio (L/D) between the effective length L and the outer diameter D of the screw of the twin screw extruder is 22, and the ratio (L/D) between the screw kneading element length (mm) and the screw diameter D (mm). Polypropylene resin extruded foam particles and in-mold foamed molded products were obtained by the same manufacturing method as in Example 1, except that an apparatus equipped with a melt-kneading section with ) of 10 was used. The obtained extruded polypropylene resin foam particles and in-mold foam molded articles were evaluated for expansion ratio and open cell ratio using the methods described above. As a result, the open cell ratio was 3.7%, and other physical properties were as shown in Table 1.
 〔比較例1〕
 二軸押出機のスクリューの有効長Lと外径Dとの比(L/D)が25であり、かつスクリューの混練エレメント長(mm)とスクリュー径D(mm)との比(L/D)が10である溶融混練部を備える装置を使用した以外は、実施例1と同じ製法でポリプロピレン系樹脂押出発泡粒子および型内発泡成形体を得た。得られたポリプロピレン系樹脂押出発泡粒子および型内発泡成形体について、上述の方法で発泡倍率および連続気泡率を評価した。その結果、連続気泡率は4.2%であり、その他の物性は表1に示す通りであった。
[Comparative example 1]
The ratio (L/D) between the effective length L and the outer diameter D of the screw of the twin screw extruder is 25, and the ratio (L/D) between the screw kneading element length (mm) and the screw diameter D (mm). Polypropylene resin extruded foam particles and in-mold foamed molded products were obtained by the same manufacturing method as in Example 1, except that an apparatus equipped with a melt-kneading section with ) of 10 was used. The obtained extruded polypropylene resin foam particles and in-mold foam molded articles were evaluated for expansion ratio and open cell ratio using the methods described above. As a result, the open cell ratio was 4.2%, and other physical properties were as shown in Table 1.
 〔結果〕
 表1より、実施例1および実施例2は、比較例1に比して、連続気泡率が低いことが示された。すなわち、実施例1および2では、スクリューの有効長L/外径Dの値がより大きな比較例1に比して、樹脂の劣化が低減されることが分かった。
〔result〕
Table 1 shows that Examples 1 and 2 have lower open cell ratios than Comparative Example 1. That is, it was found that in Examples 1 and 2, the deterioration of the resin was reduced compared to Comparative Example 1, in which the value of effective length L/outer diameter D of the screw was larger.
 本発明の一実施形態に係るポリプロピレン系樹脂押出発泡粒子は、低い連続気泡率を有するポリプロピレン系樹脂押出発泡粒子の製造方法を提供する。本製造方法により得られた押出発泡粒子等は、農業、漁業、林業、医学、衛生品、衣料、包装、その他の分野に好適に利用することができる。

 
The extruded foamed polypropylene resin particles according to one embodiment of the present invention provide a method for producing extruded foamed polypropylene resin particles having a low open cell ratio. The extruded foam particles obtained by this production method can be suitably used in agriculture, fisheries, forestry, medicine, sanitary products, clothing, packaging, and other fields.

Claims (13)

  1.  複数のスクリューを有する溶融混練部と、ダイを有する造粒部とを備える製造装置を使用し、
     分岐構造を有するポリプロピレン系樹脂および発泡剤を前記溶融混練部にて溶融混練する溶融混練工程と、
     前記溶融混練工程で得られた組成物を、前記ダイを通して前記製造装置の内圧よりも低圧である領域に吐出する押出発泡工程と、を含み、
     前記溶融混練部において、スクリューの有効長Lとスクリュー径Dとの比(L/D)が20~24である、ポリプロピレン系樹脂押出発泡粒子の製造方法。
    Using a manufacturing device equipped with a melt kneading section having a plurality of screws and a granulation section having a die,
    a melt-kneading step of melt-kneading a polypropylene resin having a branched structure and a blowing agent in the melt-kneading section;
    an extrusion foaming step in which the composition obtained in the melt-kneading step is discharged through the die into a region whose pressure is lower than the internal pressure of the manufacturing device,
    A method for producing extruded polypropylene resin foam particles, wherein in the melt-kneading section, the ratio (L/D) of the effective length L of the screw to the screw diameter D is 20 to 24.
  2.  前記製造装置は冷却部をさらに備える、請求項1に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 The method for producing extruded polypropylene resin foam particles according to claim 1, wherein the production apparatus further includes a cooling section.
  3.  前記冷却部はスタティックミキサーを備える、請求項2に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 The method for producing extruded polypropylene resin foam particles according to claim 2, wherein the cooling section includes a static mixer.
  4.  前記製造装置は輸送部をさらに備える、請求項1~3のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 The method for producing extruded polypropylene resin foam particles according to any one of claims 1 to 3, wherein the production apparatus further comprises a transport section.
  5.  前記溶融混練部において、スクリューの混練エレメント長と前記スクリュー径Dとの比(混練エレメント長/D)が14未満であり、前記混練エレメントは、ニーディングディスク、切り欠きスクリュー、ローター、ギアミキシングエレメント、ピンエレメント、逆ねじフライトスクリュー、トーピードリング、およびシールリングからなる群から選ばれる1種以上である、請求項1~4のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 In the melt-kneading section, the ratio of the kneading element length of the screw to the screw diameter D (kneading element length/D) is less than 14, and the kneading element includes a kneading disk, a notched screw, a rotor, a gear mixing element. , a pin element, a reverse threaded flight screw, a torpedo ring, and a seal ring.
  6.  前記ダイは、孔径0.1mm~2.0mmである孔を有する、請求項1~5のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 The method for producing extruded polypropylene resin foam particles according to any one of claims 1 to 5, wherein the die has holes with a hole diameter of 0.1 mm to 2.0 mm.
  7.  前記分岐構造を有するポリプロピレン系樹脂の230℃におけるメルトフローレートが0.5g/10分~20.0g/10分であり、200℃における溶融張力が8.0cN以上である、請求項1~6のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 Claims 1 to 6, wherein the polypropylene resin having a branched structure has a melt flow rate of 0.5 g/10 minutes to 20.0 g/10 minutes at 230°C, and a melt tension of 8.0 cN or more at 200°C. The method for producing extruded polypropylene resin foam particles according to any one of the above.
  8.  前記ポリプロピレン系樹脂押出発泡粒子の連続気泡率は、4.1%以下である、請求項1~7のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 The method for producing extruded polypropylene resin foam particles according to any one of claims 1 to 7, wherein the open cell ratio of the extruded polypropylene resin foam particles is 4.1% or less.
  9.  前記発泡剤は、無機ガスである、請求項1~8のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 The method for producing extruded polypropylene resin foam particles according to any one of claims 1 to 8, wherein the blowing agent is an inorganic gas.
  10.  前記発泡剤は、炭酸ガスである、請求項1~9のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 The method for producing extruded polypropylene resin foam particles according to any one of claims 1 to 9, wherein the blowing agent is carbon dioxide gas.
  11.  前記溶融混練工程において、気泡核形成剤をさらに添加する、請求項1~10のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 The method for producing extruded polypropylene resin foam particles according to any one of claims 1 to 10, wherein a cell nucleating agent is further added in the melt-kneading step.
  12.  前記ポリプロピレン系樹脂押出発泡粒子の発泡倍率は、3.5倍~10.0倍である、請求項1~11のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子の製造方法。 The method for producing extruded polypropylene resin foam particles according to any one of claims 1 to 11, wherein the expansion ratio of the extruded polypropylene resin foam particles is 3.5 times to 10.0 times.
  13.  請求項1~12のいずれか1項に記載の製造方法により得られたポリプロピレン系樹脂押出発泡粒子を、金型が備える少なくとも2つの型から形成される成形空間内に充填し、当該成形空間内の前記ポリプロピレン系樹脂押出発泡粒子を加熱する加熱工程を有する、ポリプロピレン系樹脂発泡成形体の製造方法。 The extruded polypropylene resin foam particles obtained by the production method according to any one of claims 1 to 12 are filled into a molding space formed by at least two molds included in a mold, and the molding space is filled with A method for producing a polypropylene resin foam molded article, comprising a heating step of heating the extruded polypropylene resin foam particles.
PCT/JP2023/010210 2022-03-17 2023-03-16 Method for producing polypropylene resin extruded foam particles WO2023176911A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-042916 2022-03-17
JP2022042916 2022-03-17

Publications (1)

Publication Number Publication Date
WO2023176911A1 true WO2023176911A1 (en) 2023-09-21

Family

ID=88023375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010210 WO2023176911A1 (en) 2022-03-17 2023-03-16 Method for producing polypropylene resin extruded foam particles

Country Status (1)

Country Link
WO (1) WO2023176911A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223733A (en) * 1983-06-02 1984-12-15 Mitsubishi Petrochem Co Ltd Expanded polypropylene resin particle and production thereof
JPH09302131A (en) * 1996-05-08 1997-11-25 Kanegafuchi Chem Ind Co Ltd Expanded particle composed of modified polypropylene resin composition and its production
JP2009256460A (en) * 2008-04-16 2009-11-05 Kaneka Corp Polypropylene-based resin pre-foamed pellets and polypropylene-based resin internal mold foamed molded article obtained from the polypropylene-based resin pre-foamed pellets
WO2022050375A1 (en) * 2020-09-04 2022-03-10 株式会社カネカ Extruded foam particles and method for producing same
CN114474498A (en) * 2022-01-27 2022-05-13 无锡会通轻质材料股份有限公司 EPP waste product recycling and re-foaming system and method
WO2022163627A1 (en) * 2021-01-26 2022-08-04 株式会社カネカ Method for producing polypropylene-based resin having branched structure, method for producing extrusion-foamed particles, and method for producing foamed molded article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223733A (en) * 1983-06-02 1984-12-15 Mitsubishi Petrochem Co Ltd Expanded polypropylene resin particle and production thereof
JPH09302131A (en) * 1996-05-08 1997-11-25 Kanegafuchi Chem Ind Co Ltd Expanded particle composed of modified polypropylene resin composition and its production
JP2009256460A (en) * 2008-04-16 2009-11-05 Kaneka Corp Polypropylene-based resin pre-foamed pellets and polypropylene-based resin internal mold foamed molded article obtained from the polypropylene-based resin pre-foamed pellets
WO2022050375A1 (en) * 2020-09-04 2022-03-10 株式会社カネカ Extruded foam particles and method for producing same
WO2022163627A1 (en) * 2021-01-26 2022-08-04 株式会社カネカ Method for producing polypropylene-based resin having branched structure, method for producing extrusion-foamed particles, and method for producing foamed molded article
CN114474498A (en) * 2022-01-27 2022-05-13 无锡会通轻质材料股份有限公司 EPP waste product recycling and re-foaming system and method

Similar Documents

Publication Publication Date Title
US10941265B2 (en) Polypropylene-type resin pre-expanded particles, and method for producing said pre-expanded particles
JP4011962B2 (en) Method for producing polypropylene resin extruded foam sheet, produced extruded foam sheet, and molded article comprising the foamed sheet
EP4112678A1 (en) Polypropylene-based resin foamed particles, method for producing same, and polypropylene-based resin foam molded body
WO2021131933A1 (en) Polypropylene resin composition, method for producing same, method for producing pre-foamed particles, and method for producing foam molded articles
WO2022163627A1 (en) Method for producing polypropylene-based resin having branched structure, method for producing extrusion-foamed particles, and method for producing foamed molded article
WO2023176911A1 (en) Method for producing polypropylene resin extruded foam particles
JP2004339365A (en) Modified polypropylene-based resin composition and foam thereof
JP2022152955A (en) Manufacturing method for extruded polypropylene resin foamed particles
CA2316932A1 (en) Foamed extrusion board of mixed resin comprising modified polypropylene resin and polystyrene resin
WO2022050375A1 (en) Extruded foam particles and method for producing same
WO2022210645A1 (en) Polypropylene resin extruded foam particles, method for producing same, and foam molded body
WO2022210647A1 (en) Method for producing polypropylene resin extruded foam particles
WO2022203036A1 (en) Polypropylene resin extruded foam particles, method for producing same, and foam molded body
WO2022210646A1 (en) Polypropylene resin extruded foam particles
WO2022191181A1 (en) Polypropylene resin composition for extrusion blowing, extrusion-blown particles, and molded foam
WO2023127914A1 (en) Method for producing polypropylene resin extruded foam particles
WO2022210648A1 (en) Method for manufacturing polypropylene resin extruded foam particles
WO2022154070A1 (en) Polypropylene resin extruded foam particles, method for producing same, and foam molded body
JP3563518B2 (en) Foam comprising modified polypropylene resin and method for producing the same
WO2023054223A1 (en) Polypropylene-based resin extruded foam particles, polypropylene-based resin foam molded body, and laminated foam body
JP3561078B2 (en) Foam comprising modified polypropylene resin composition and method for producing the same
JP2018145212A (en) Expandable polystyrene resin particle, pre-expanded particle and molded body
JPH09124827A (en) Foamed material consisting of modified polyolefinic resin and its production
JP2018059056A (en) Polypropylene-based resin, resin foam body, and resin molded product
JPH0940725A (en) Modified polypropylene resin, its production, pre-expanded particle made of the same and expanded molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770864

Country of ref document: EP

Kind code of ref document: A1