WO2023176857A1 - Laminate, decorative film, article, decorative panel, and display device - Google Patents

Laminate, decorative film, article, decorative panel, and display device Download PDF

Info

Publication number
WO2023176857A1
WO2023176857A1 PCT/JP2023/009955 JP2023009955W WO2023176857A1 WO 2023176857 A1 WO2023176857 A1 WO 2023176857A1 JP 2023009955 W JP2023009955 W JP 2023009955W WO 2023176857 A1 WO2023176857 A1 WO 2023176857A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
liquid crystal
laminate
dichroic dye
mass
Prior art date
Application number
PCT/JP2023/009955
Other languages
French (fr)
Japanese (ja)
Inventor
寛 稲田
亮司 後藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023176857A1 publication Critical patent/WO2023176857A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present disclosure relates to a laminate, a decorative film, an article, a decorative panel, and a display device.
  • Japanese Patent No. 6647182 discloses a laminate including a dichroic dye layer in which a dichroic dye is oriented and fixed, and a reflective layer disposed on the dichroic dye layer, A laminate is described in which the dichroic dye layer is a layer in which the dichroic dye is fixed in a vertically aligned state, and the reflective layer is a layer in which a cholesteric liquid crystal phase is fixed.
  • JP 2018-045715A discloses a laminated layer including a dichroic dye layer in which a dichroic dye is oriented and fixed, and an absorbing layer or a reflective layer disposed on the dichroic dye layer. body is described.
  • JP-A-2015-102811 discloses that a self-luminous type light source that emits red light, green light, and blue light is provided on the light emitting surface side of the light source, and that An optical film that absorbs at least part of the light, and in which at least one of the directions parallel to the surface of the optical film is tilted by a predetermined angle with respect to the normal direction of the surface.
  • the transmittance of the blue light is lower than at least the transmittance of the green light in the inclined direction, or the transmittance of the red light in the normal direction is lower than the transmittance of the green light.
  • An optical film is described that is characterized by low
  • JP 2018-147761 A discloses a substrate having a light emitting layer, a circularly polarizing plate and a retardation layer disposed on the display surface side of the substrate, and the retardation layer has a light absorption rate.
  • Display devices are described that include dichroic dyes with their major axes oriented perpendicular to the display surface.
  • a problem to be solved by an embodiment of the present disclosure is to provide a laminate with low viewing angle dependence.
  • a problem to be solved by other embodiments of the present disclosure is to provide a decorative film, an article, a decorative panel, and a display device using the above-mentioned laminate.
  • Means for solving the above problems include the following aspects. ⁇ 1> A dichroic dye layer containing a dichroic dye and a layer expressing a structural color, the dichroic dye layer having an absorption peak wavelength A in a wavelength range of 400 nm or more and 700 nm or less. , the layer expressing the structural color has a reflection peak wavelength B in a wavelength range of 400 nm or more and 700 nm or less, and when viewed from the dichroic dye layer side at a viewing angle of -90° to 90°, the above wavelength A laminate having a wavelength band in which the absorption peak at wavelength A and the reflection peak at wavelength B at least partially overlap each other.
  • ⁇ 2> The laminate according to ⁇ 1>, wherein the layer expressing the structural color is a layer made of a dielectric multilayer film or a cholesteric liquid crystal layer.
  • ⁇ 3> The laminate according to ⁇ 1> or ⁇ 2>, wherein the angle ⁇ between the transmittance center axis of the dichroic dye layer and the normal direction of the laminate is 0° to 45°.
  • ⁇ 4> The laminate according to any one of ⁇ 1> to ⁇ 3>, wherein the layer expressing the structural color has two or more reflective regions having different selective reflection wavelengths.
  • ⁇ 5> The laminate according to any one of ⁇ 1> to ⁇ 4>, wherein the dichroic dye layer is a layer formed by polymerizing at least a liquid crystal compound having a polymerizable group.
  • the layer expressing the structural color is a cholesteric liquid crystal layer.
  • the cholesteric liquid crystal layer includes a chiral agent having a site that isomerizes upon irradiation with light.
  • ⁇ 8> Expresses a structural color, having a dichroic dye layer containing a dichroic dye (preferably the dichroic dye is oriented and fixed) and two or more reflective regions with different selective reflection wavelengths.
  • a laminate having a layer.
  • ⁇ 9> The laminate according to ⁇ 8>, wherein the angle ⁇ between the central transmittance axis of the dichroic dye layer and the normal direction of the laminate is 0° to 45°.
  • a decorative film comprising the laminate according to any one of ⁇ 1> to ⁇ 9>.
  • An article comprising the laminate according to any one of ⁇ 1> to ⁇ 9>.
  • ⁇ 12> A decorative panel comprising the decorative film according to ⁇ 10>.
  • ⁇ 13> A display device including the decorative panel according to ⁇ 12>.
  • a laminate with low viewing angle dependence can be provided. According to other embodiments of the present disclosure, it is possible to provide a decorative film, an article, a decorative panel, and a display device using the above-mentioned laminate.
  • FIG. 1 is a schematic cross-sectional view showing an example of a decorative film according to the present disclosure.
  • FIG. 2 is a diagram for explaining the overlap between the wavelength band of the half-width of the absorption peak of the dichroic dye layer and the wavelength band of the half-width of the reflection peak of the layer expressing structural color.
  • the notation that does not indicate substituted or unsubstituted includes not having a substituent as well as having a substituent.
  • alkyl group includes not only an alkyl group without a substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • Light in this disclosure means actinic rays or radiation.
  • active rays or “radiation” in the present disclosure include, for example, the bright line spectrum of a mercury lamp, far ultraviolet rays typified by excimer lasers, extreme ultraviolet (EUV) light, X-rays, and electron beams (EB). Beam) etc.
  • exposure in this disclosure refers not only to exposure to the bright line spectrum of a mercury lamp, far ultraviolet rays typified by excimer lasers, extreme ultraviolet rays, X-rays, and EUV light, but also to electron beams and ion beams. This also includes exposure to particle beams such as.
  • " ⁇ " is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
  • (meth)acrylate refers to acrylate and methacrylate
  • (meth)acrylic refers to acrylic and methacrylic
  • the weight average molecular weight (Mw) of the resin component, the number average molecular weight (Mn) of the resin component, and the degree of dispersion (also referred to as molecular weight distribution) (Mw/Mn) of the resin component are measured using a GPC (Gel Permeation Chromatography) apparatus.
  • the amount of each component in the composition means the total amount of the multiple substances present in the composition. do.
  • the term “step” is used not only to refer to an independent process but also to include any process that achieves its intended purpose even if it cannot be clearly distinguished from other processes.
  • total solid content refers to the total mass of the components excluding the solvent from the entire composition of the composition.
  • solid content refers to the components excluding the solvent from the entire composition of the composition, and may be solid or liquid at 25° C., for example.
  • “mass %” and “weight %” have the same meaning
  • “mass parts” and “weight parts” have the same meaning.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • a first embodiment of the laminate according to the present disclosure has a dichroic dye layer containing a dichroic dye and a layer expressing a structural color, and the dichroic dye layer has a wavelength of 400 nm or more and 700 nm.
  • the layer expressing the structural color has an absorption peak wavelength A in the following region, has a reflection peak wavelength B in a wavelength range of 400 nm or more and 700 nm or less, and has a viewing angle of ⁇ 90° from the dichroic dye layer side. When viewed at an angle of ⁇ 90°, the absorption peak at the wavelength A and the reflection peak at the wavelength B have a wavelength band in which at least a portion thereof overlaps with each other.
  • a second embodiment of the laminate according to the present disclosure includes a dichroic dye layer containing a dichroic dye and a layer expressing a structural color, which has two or more reflective regions with different selective reflection wavelengths.
  • the laminate includes a dichroic dye layer having an absorption peak wavelength A in a wavelength range of 400 nm to 700 nm, and a layer expressing a structural color having a reflection peak wavelength B in a wavelength range of 400 nm to 700 nm,
  • the absorption peak at the wavelength A and the absorption peak at the wavelength B A structure having a wavelength band in which the reflection peaks at least partially overlap with each other, or a dichroic dye layer in which a dichroic dye is oriented and fixed, and two or more reflection regions having different selective reflection wavelengths.
  • the dichroic dye layer has a layer that expresses color
  • the change in absorption amount depending on the viewing angle by the dichroic dye layer suppresses or offsets the change in color depending on the viewing angle due to the layer that expresses structural color, and improves the visual field. It is estimated that a laminate with small angular dependence can be obtained.
  • the dichroic dye layer has an absorption peak wavelength A in a wavelength range of 400 nm or more and 700 nm or less, and the layer expressing the structural color has a wavelength of 400 nm or more. It has a reflection peak wavelength B in a region of 700 nm or less, and when viewed from -90° to 90° from the dichroic dye layer side, the absorption peak at the wavelength A and the reflection peak at the wavelength B are different from each other. They have wavelength bands that at least partially overlap.
  • Absorption peak wavelength A in the wavelength range of 400 nm or more and 700 nm or less is the peak wavelength in the absorption waveform measured from at least one of the viewing angles between -90° and 90°; It is preferably the peak wavelength in the absorption waveform measured from at least one viewing angle of -30° or 30° to 90°, and the peak wavelength is preferably measured at a viewing angle of -80° to -45° or 45° to 80°. More preferably, the wavelength is the peak wavelength in the absorption waveform.
  • Reflection peak wavelength B in the wavelength range from 400 nm to 700 nm is the peak wavelength in the reflected waveform measured from at least one of the viewing angles of -90° to 90°; It is preferably the peak wavelength in the reflected waveform measured from at least one viewing angle of -30° or 30° to 90°, and measured at a viewing angle of -80° to -45° or 45° to 80°. More preferably, the wavelength is the peak wavelength of the reflected waveform.
  • wavelength bands that at least partially overlap with each other refers to wavelength bands that overlap at least partially at an angle when viewed from the dichroic dye layer side at -90° to 90°.
  • the absorption peak wavelength A and the reflection peak wavelength B do not need to be the same and may be different, and the entire wavelength band of the absorption peak at the absorption peak wavelength A and the reflection peak wavelength B It is not necessary that the entire wavelength band of the reflection peak overlaps, but it is sufficient that a part of the wavelength band overlaps. For example, as shown in FIG.
  • wavelength band B that is the half-width of the absorption peak of the dichroic dye layer at a viewing angle of 55°
  • wavelength band C overlaps with the band A.
  • the dichroic dye layer has an absorption peak wavelength A in a wavelength range of 400 nm or more and 700 nm or less
  • the layer expressing the structural color has a reflection peak wavelength B in a wavelength range of 400 nm or more and 700 nm or less, and when viewed from the dichroic dye layer side at -90° to 90°, the absorption at the wavelength A It is preferable that the peak and the reflection peak at wavelength B have wavelength bands that at least partially overlap with each other.
  • the laminate according to the present disclosure has the above wavelength when viewed from the dichroic dye layer side at a viewing angle of -80° to -45° or 45 to 80°. It is preferable that the absorption peak at wavelength A and the reflection peak at wavelength B have wavelength bands that at least partially overlap with each other. With the above aspect, it is possible to reduce the hue difference especially when viewed from an oblique direction. Note that when viewed from the dichroic dye layer side at a viewing angle of 0°, it is viewed from the normal direction of the dichroic dye layer (thickness direction of the dichroic dye layer).
  • the absorption peak in the present disclosure is measured by measuring the dichroic dye layer to be measured or the layer expressing a structural color at room temperature (23°C) in an air atmosphere using an automatic absolute reflectance measuring unit ARMN-735 and a spectrophotometer V.
  • the absorbance at 55° is measured using -670EX (manufactured by JASCO Corporation), and the transmittance is calculated from the obtained value.
  • the absorption peak wavelength is the wavelength (nm) at which the light intensity is minimum.
  • a first embodiment of the laminate according to the present disclosure has a dichroic dye layer containing a dichroic dye, and from the viewpoint of reducing viewing angle dependence, the dichroic dye layer has a dichroic dye layer. A layer in which the dye is oriented and fixed is preferable.
  • a second embodiment of the laminate according to the present disclosure has a dichroic dye layer containing a dichroic dye, and from the viewpoint of reducing viewing angle dependence, the dichroic dye layer has a dichroic dye layer. A layer in which the dye is oriented and fixed is preferable.
  • the dichroic dye is a dye that exhibits anisotropy in light absorption, and means a dye that has the property that the color of transmitted light differs depending on the molecular axis direction of the dye.
  • the angle ⁇ between the transmittance center axis of the dichroic dye layer and the normal direction of the laminate is set from the viewpoint of reducing viewing angle dependence especially when viewed from an oblique direction. , preferably 0° to 45°, more preferably 0° to 20°, even more preferably 0° to 10°, particularly preferably 0° to 5°.
  • the transmittance central axis of the dichroic dye layer refers to the angular direction in which the absorption of the dichroic dye layer is the smallest.
  • the thickness direction of the dichroic dye layer and the two colors are The angle formed with the orientation direction of the sexual dye is preferably 0° to 20°, more preferably 0° to 10°, particularly preferably 0° to 5°.
  • the angle ⁇ between the transmittance center axis of the dichroic dye layer and the normal direction of the laminate is preferably 0° to 20°, more preferably 0° to 10°, particularly preferably 0° to 5°.
  • the angle ⁇ between the transmittance center axis of the dichroic dye layer and the normal direction of the laminate.
  • the angle formed by the thickness direction of the dichroic dye layer and the orientation direction of the dichroic dye means the same angle.
  • the dichroic dye layer in the laminate according to the present disclosure contains a dichroic dye.
  • the dichroic dyes mentioned above are not particularly limited, but include, for example, acridine dyes, azine dyes, azomethine dyes, oxazine dyes, cyanine dyes, merocyanine dyes, squarylium dyes, naphthalene dyes, azo dyes, anthraquinone dyes, benzotriazole dyes, and benzophenone.
  • Dyes pyrazoline dyes, diphenylpolyene dyes, binaphthylpolyene dyes, stilbene dyes, benzothiazole dyes, thienothiazole dyes, benzimidazole dyes, coumarin dyes, nitrodiphenylamine dyes, polymethine dyes, naphthoquinone dyes, perylene dyes, quinophthalone dyes, stilbene dyes, Examples include indigo dyes.
  • dichroic dyes having a rod-shaped molecular shape are preferable, and specifically, azo dyes or anthraquinone dyes are more preferable. .
  • azo dye (1) preferred examples include those represented by the following formula (1) (hereinafter referred to as "azo dye (1)").
  • n is an integer of 1 to 4, and Ar 1 and Ar 3 each independently represent a group selected from the following group.
  • Ar 2 represents a group selected from the following group, and when n is 2 or more, Ar 2 may be the same or different from each other.
  • a 1 and A 2 each independently represent a group selected from the group below.
  • m is an integer from 0 to 10, and when there are two m's in the same group, the two m's may be the same or different from each other.
  • the positional isomerism of the substituents on both sides of the azo group of the azo dye (1) is preferably trans.
  • the azo dye (1) include compounds represented by the following formulas (1-1) to (1-58). In the following formulas (1-1) to (1-58), the positional isomerism of the substituents on both sides of the azo group is preferably trans.
  • the dichroic dye preferably has a polymerizable group.
  • the polymerizable group is preferably an acrylic group, a methacryl group, a vinyl group, a vinyloxy group, an epoxy group, or an oxetanyl group. From the viewpoint of reactivity, an acrylic group, an epoxy group, or an oxetanyl group is particularly preferred.
  • dichroic dyes having a polymerizable group include the following compounds.
  • anthraquinone dye a compound represented by formula (1-59) is preferred.
  • R 1 to R 8 each independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2, -SR x or a halogen atom, and R x has 1 to 1 carbon atoms. 4 alkyl group or an aryl group having 6 to 12 carbon atoms.
  • the dichroic dyes may be contained alone or in combination of two or more.
  • the content of the dichroic dye is preferably 0.5% to 50% by mass, and 1% to 30% by mass, based on the total mass of the dichroic dye layer, from the viewpoint of reducing viewing angle dependence. It is more preferably 2% by mass to 20% by mass.
  • the dichroic dye layer contains the above-mentioned dichroic dye (especially rod-shaped dichroic dye) and a polymerizable group because it can further increase the change in hue when viewed from the front and from an oblique direction. It is preferable that the layer is formed by polymerizing at least a liquid crystal compound, and it is more preferable that the dichroic dye and the liquid crystal compound are both fixed in an oriented state. Preferred examples of the liquid crystal compound include rod-like liquid crystal compounds.
  • rod-like liquid crystal compounds examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, and alkoxy-substituted phenylpyrimidines.
  • phenyldioxanes, tolans and alkenylcyclohexylbenzonitrile are preferably used.
  • the polymerizable group contained in the rod-like liquid crystal compound includes an ethylenically unsaturated group, an alkynyl group, an epoxy group, and an aziridinyl group, with an ethylenically unsaturated group or an alkynyl group being preferred, and an ethylenically unsaturated group being particularly preferred. preferable.
  • the polymerizable group can be introduced into the molecules of the liquid crystal compound by various methods.
  • the number of polymerizable groups that the liquid crystal compound has is preferably 1 to 6, more preferably 1 to 3.
  • a rod-shaped liquid crystal compound having a polymerizable group Makromol. Chem. , vol. 190, p. 2255 (1989), Advanced Materials vol. 5, p.
  • the content of the rod-like liquid crystal compound or its cured product is preferably 5% by mass to 99% by mass, and 10% by mass to 10% by mass, based on the total amount of the dichroic dye layer, from the viewpoint of reducing viewing angle dependence. It is more preferably 95% by mass, and particularly preferably 20% by mass to 90% by mass.
  • the composition for forming a dichroic dye layer used when forming the dichroic dye layer preferably contains a polymerization initiator.
  • the polymerization initiator used is preferably a photopolymerization initiator that can initiate a polymerization reaction by irradiation with ultraviolet rays.
  • photopolymerization initiators include ⁇ -carbonyl compounds (described in U.S. Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in U.S. Pat. No. 2,448,828), and ⁇ -hydrocarbon substituted aromatics. group acyloin compounds (described in U.S. Pat. No.
  • the composition for forming a dichroic dye layer may contain one or more types of polymerization initiators.
  • the content of the polymerization initiator is from the viewpoint of curability and strength, and the ratio of the total amount of the polymerization initiator to the total solid content of the composition for forming a dichroic dye layer is 0.05% by mass to 10% by mass. %, more preferably 0.05% by mass to 5% by mass or less, even more preferably 0.1% to 2% by mass, and 0.2% to 1% by mass. It is particularly preferable that there be.
  • the dichroic dye layer may contain a binder resin from the viewpoints of strength, scratch resistance, and suitability for molding.
  • the type of binder resin is not particularly limited. From the viewpoint of obtaining a desired color, the binder resin is preferably a transparent resin, and specifically, a resin having a total light transmittance of 80% or more is preferable. The total light transmittance can be measured with a spectrophotometer (eg, spectrophotometer "UV-2100" manufactured by Shimadzu Corporation).
  • binder resin examples include cellulose resin, acrylic resin, silicone resin, polyester, polyurethane, and polyolefin.
  • the binder resin may be a homopolymer or a copolymer. Among these, cellulose resin is preferred, and cellulose acetate is more preferred.
  • binder resin may be used alone, or two or more types may be used in combination.
  • the content of the binder resin is preferably 5% by mass to 95% by mass, and 10% by mass to 90% by mass, based on the total amount of the dichroic dye layer, from the viewpoints of strength, scratch resistance, and moldability. It is more preferable that the amount is 20% by mass to 60% by mass.
  • the dichroic dye layer may contain a polymerizable compound from the viewpoints of strength, scratch resistance, and suitability for molding.
  • the polymerizable compound is not particularly limited, and known polymerizable compounds can be used. Among these, ethylenically unsaturated compounds are preferred, and (meth)acrylate compounds are more preferred.
  • the polymerizable compound may be a monofunctional polymerizable compound or a polyfunctional polymerizable compound. Preferred examples of the polyfunctional polymerizable compound include crosslinking agents described below.
  • the content of the cured product of the polymerizable compound is preferably 5% by mass to 95% by mass, and 10% by mass, based on the total amount of the dichroic dye layer, from the viewpoints of strength, scratch resistance, and molding processability. It is more preferably 90% by mass, and particularly preferably 20% by mass to 60% by mass.
  • the composition for forming a dichroic dye layer used when forming the dichroic dye layer preferably contains a solvent from the viewpoint of workability in forming the dichroic dye layer.
  • the solvent include ketones (e.g., acetone, 2-butanone, methyl isobutyl ketone, cyclohexanone, etc.), ethers (e.g., dioxane, tetrahydrofuran, etc.), aliphatic hydrocarbons (e.g., hexane, etc.).
  • alicyclic hydrocarbons e.g., cyclohexane, etc.
  • aromatic hydrocarbons e.g., toluene, xylene, trimethylbenzene, etc.
  • halogenated carbons e.g., dichloromethane, dichloroethane, dichlorobenzene, chlorotoluene, etc.
  • esters e.g. methyl acetate, ethyl acetate, butyl acetate, etc.
  • water e.g. ethanol, isopropanol, butanol, cyclohexanol, etc.
  • cellosolves e.g.
  • cellosolve examples include acetates, sulfoxides (e.g., dimethyl sulfoxide), amides (e.g., dimethylformamide, dimethylacetamide, etc.), and these may be used alone or in combination of two or more. .
  • sulfoxides e.g., dimethyl sulfoxide
  • amides e.g., dimethylformamide, dimethylacetamide, etc.
  • the dichroic dye layer may contain additives other than those mentioned above.
  • additives include known additives, such as alignment agents and surfactants described below.
  • the method for forming the dichroic dye layer includes, for example, using a composition for forming a dichroic dye layer containing the dichroic dye described above, an arbitrary rod-like liquid crystal compound, a polymerization initiator, a solvent, and the like. , a method of obtaining a desired orientation state and then immobilizing it by polymerization.
  • polymerization conditions are not particularly limited, but in polymerization by light irradiation, it is preferable to use ultraviolet rays.
  • the irradiation amount is preferably 10 mJ/cm 2 to 50 J/cm 2 , more preferably 20 mJ/cm 2 to 5 J/cm 2 , even more preferably 30 mJ/cm 2 to 3 J/cm 2 . , 50 mJ/cm 2 to 1,000 mJ/cm 2 is particularly preferred. Moreover, in order to promote the polymerization reaction, it may be carried out under heating conditions. Note that, in the present disclosure, the dichroic dye layer can be formed on any base material in the laminate according to the present disclosure, which will be described later.
  • the thickness of the dichroic dye layer is not particularly limited, but from the viewpoint of reducing viewing angle dependence, it is preferably 0.05 ⁇ m to 10 ⁇ m, more preferably 0.1 ⁇ m to 8 ⁇ m, and 0.05 ⁇ m to 10 ⁇ m, more preferably 0.1 ⁇ m to 8 ⁇ m. It is more preferably 5 ⁇ m to 5 ⁇ m, and particularly preferably 1 ⁇ m to 3 ⁇ m. Note that the thickness of each layer can be measured by observing a cross section of each layer with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • a first embodiment of the laminate according to the present disclosure has a layer that exhibits a structural color, and from the viewpoint of reducing visibility and viewing angle dependence, two or more reflective regions with different selective reflection wavelengths are provided. It is preferable to have a layer that exhibits a structural color.
  • a second embodiment of the laminate according to the present disclosure includes a layer that exhibits structural color and has two or more reflective regions with different selective reflection wavelengths.
  • Structural color is the color that is produced when light interacts with the wavelength of visible light or fine structures at or below the wavelength of visible light through interference, diffraction, refraction, scattering, etc. It can also be found in many places in nature, such as insect shells, morpho butterflies, pearls, and the luster of opals.
  • the layer expressing a structural color has a center wavelength of selective reflection wavelength (hereinafter also referred to as “peak wavelength” or simply “selective reflection wavelength”) defined below.
  • the "center wavelength of the selective reflection wavelength” refers to the maximum value of the reflectance in a target object (member), and the maximum value (hereinafter also simply referred to as “maximum reflectance”) R max (% ), it refers to the average value of two wavelengths showing a half-value reflectance R 1/2 (%) expressed by the following formula.
  • one of the two wavelengths is the maximum wavelength in the wavelength range that includes wavelengths shorter than the wavelength that indicates R max
  • the other wavelength is the wavelength that is shorter than the wavelength that indicates R max .
  • the reflective region preferably selectively reflects at least a portion of light in the wavelength range of 380 nm to 820 nm from the viewpoint of visibility and reducing viewing angle dependence. Furthermore, from the viewpoint of reducing viewing angle dependence, at least one of the reflective regions preferably selectively reflects at least part of the light in the wavelength range of 600 nm to 820 nm, and More preferably, at least part of the light is selectively reflected. Further, from the viewpoint of reducing viewing angle dependence, at least two of the reflective regions preferably selectively reflect at least part of the light in the wavelength range of 600 nm to 820 nm, and More preferably, at least part of the light is selectively reflected.
  • Examples of layers that exhibit structural color include, but are not particularly limited to, organic multilayer layers, inorganic multilayer layers, cholesteric liquid crystal layers, and the like.
  • the layer expressing structural color is preferably a layer made of a dielectric multilayer film or a cholesteric liquid crystal layer, and is preferably a layer made of an organic dielectric multilayer film, an inorganic dielectric multilayer film, or a cholesteric liquid crystal layer.
  • a cholesteric liquid crystal layer is particularly preferred.
  • the layer made of the dielectric multilayer film but examples include a layer formed by alternately laminating two types of inorganic dielectrics, a layer formed by alternately laminating two types of organic dielectrics, etc. It will be done.
  • a layer having a structure in which a resin layer with a high refractive index (layer A) and a resin layer with a low refractive index (layer B) are stacked is preferably mentioned.
  • the layer B preferably has a refractive index lower than the layer A by 0.1 or more, and has a refractive index of 0.1 or more.
  • the layer has a low refractive index of 15 or more, it is even more preferable that the layer has a low refractive index of 0.2 or more, and it is particularly preferable that the layer has a low refractive index of 0.25 or more, and the refractive index is 0.25 or more. Most preferably, the layer is as low as 0.60 or less.
  • the refractive index of the layer A is preferably 1.5 or more, more preferably 1.6 or more, from the viewpoint of visibility of light color tone and suppression of color change due to viewing angle. It is more preferably 65 or more, and particularly preferably 1.70 or more. Further, the upper limit is preferably 2.3 or less, more preferably 1.9 or less.
  • the refractive index of the layer B is preferably 1.5 or less, more preferably less than 1.5, from the viewpoint of visibility of light color tone and suppression of color change due to viewing angle. It is more preferably 4 or less, particularly preferably 1.35 or less, and most preferably 1.32 or less. Further, the lower limit is preferably 1.1 or more, more preferably 1.2 or more, and particularly preferably 1.28 or more. In the present disclosure, unless otherwise specified, the refractive index is a value measured using an ellipsometer at 25° C. and a wavelength of 550 nm.
  • the resin used for each layer such as layer A and layer B is not particularly limited, and examples thereof include acrylic resin, polycarbonate resin, polyester resin, polyolefin resin, epoxy resin, urethane resin, silicone resin, and the like.
  • the number of layers in the organic multilayer film layer is not particularly limited as long as it is two or more layers, but is preferably 100 to 2000 layers, more preferably 500 to 1500 layers, and even more preferably 800 to 1000 layers.
  • the thickness of the above-mentioned layer A and the above-mentioned layer B is preferably 50 nm to 1,000 nm, and 80 nm to 800 nm, independently from the viewpoint of visibility of pale color tone and suppression of color change depending on the viewing angle. It is more preferably 100 nm to 500 nm, and particularly preferably 100 nm to 300 nm.
  • Inorganic multilayer film layer a layer having a structure in which two types of inorganic compounds are alternately laminated is preferably mentioned. Further, from the viewpoint of visibility of light color tone and suppression of color change depending on the viewing angle, it is preferable that the two types of inorganic compounds are compounds having different refractive indexes.
  • inorganic compounds include silicon dioxide, aluminum oxide, gallium oxide, tungsten oxide, magnesium oxide, barium fluoride, calcium fluoride, cerium fluoride, lanthanum fluoride, lithium fluoride, sodium fluoride, magnesium fluoride, Neodymium fluoride, ytterbium fluoride, yttrium fluoride, gadolinium fluoride, calcium carbonate, potassium bromide, titanium monoxide, titanium dioxide, niobium pentoxide, chromium oxide, cerium oxide, silicon, zirconium oxide, gallium arsenide, etc. It will be done.
  • niobium pentoxide Nb 2 O 5
  • titanium dioxide A combination of TiO 2 ) and silicon dioxide (SiO 2 ) or aluminum oxide (Al 2 O 3 ) is more preferred, and a combination of niobium pentoxide and silicon dioxide is particularly preferred.
  • the number of laminated layers in the inorganic multilayer film layer is not particularly limited as long as it is 2 or more layers, but is preferably 2 to 20 layers, more preferably 4 to 16 layers, and still more preferably 6 to 14 layers.
  • the thickness of each layer in the inorganic multilayer film layer is preferably 50 nm to 1,000 nm, and preferably 80 nm to 800 nm, from the viewpoint of visibility of pale color tone and suppression of color change due to viewing angle. is more preferable, further preferably from 100 nm to 500 nm, and particularly preferably from 100 nm to 300 nm.
  • the layer expressing structural color is preferably a cholesteric liquid crystal layer.
  • the cholesteric liquid crystal layer is a layer containing a cholesteric liquid crystal phase.
  • the cholesteric liquid crystal phase is confirmed by known means (eg, polarized light microscopy and scanning electron microscopy).
  • a cholesteric liquid crystal phase is formed by a plurality of liquid crystal compounds arranged in a spiral shape.
  • the alignment state of the liquid crystal compound in the cholesteric liquid crystal phase may be an alignment state that reflects right-handed circularly polarized light, left-handed circularly polarized light, or both right-handed circularly polarized light and left-handed circularly polarized light.
  • the alignment state of the liquid crystal compound in the cholesteric liquid crystal phase may be fixed.
  • the alignment state of the liquid crystal compound is fixed, for example, by polymerization or crosslinking of the liquid crystal compound.
  • the liquid crystallinity of the liquid crystal compound may be lost in part or all of the liquid crystal compound whose alignment state has been fixed.
  • the cholesteric liquid crystal layer contributes to the design of the decorative material.
  • the color of the decorative material and the degree of change in the color of the decorative material depending on the viewing angle are adjusted by the helical pitch in the cholesteric liquid crystal phase, the refractive index of the cholesteric liquid crystal layer, and the thickness of the cholesteric liquid crystal layer.
  • the helical pitch may be adjusted by the amount of chiral agent added. The relationship between the helical structure and the chiral agent is described, for example, in "Fujifilm Research Report, No. 50 (2005), pp. 60-63.”
  • the helical pitch may be adjusted by conditions such as temperature, illumination intensity, and irradiation time when fixing the cholesteric liquid crystal phase.
  • the laminate according to the present disclosure may include two or more cholesteric liquid crystal layers, and the compositions of the two or more cholesteric liquid crystal layers may be the same or different from each other.
  • the thickness of the cholesteric liquid crystal layer is preferably 0.3 ⁇ m to 15 ⁇ m, more preferably 0.5 ⁇ m to 9 ⁇ m, and even more preferably 0.6 ⁇ m to 7 ⁇ m.
  • the thicknesses of the two or more cholesteric liquid crystal layers are each independently within the range described above.
  • the components of the cholesteric liquid crystal layer are selected from known components of cholesteric liquid crystal layers, depending on the desired characteristics of the cholesteric liquid crystal layer, for example.
  • Examples of the components of the cholesteric liquid crystal layer include components of the liquid crystal composition described below.
  • some or all of the polymerizable compounds in the liquid crystal composition may form a polymer (including oligomers) in the cholesteric liquid crystal layer.
  • Examples of the polymerizable compound include compounds having a polymerizable group.
  • the cholesteric liquid crystal layer is preferably a layer formed by curing a composition containing a liquid crystal compound (hereinafter sometimes referred to as "liquid crystal composition").
  • liquid crystal composition a composition containing a liquid crystal compound
  • the liquid crystal composition includes a liquid crystal compound.
  • the type of liquid crystal compound may be selected from known compounds having cholesteric liquid crystal properties (ie, cholesteric liquid crystal compounds), depending on the characteristics of the intended cholesteric liquid crystal layer, for example.
  • the liquid crystal compound include liquid crystal compounds having at least one selected from the group consisting of ethylenically unsaturated groups and cyclic ether groups. From the viewpoint of improving moldability, the liquid crystal compound should include a cholesteric liquid crystal compound (hereinafter sometimes referred to as "specific liquid crystal compound") having one ethylenically unsaturated group or one cyclic ether group. is preferred.
  • the ethylenically unsaturated group in the specific liquid crystal compound examples include a (meth)acryloyloxy group, a (meth)acrylamide group, a vinyl group, a vinyl ester group, and a vinyl ether group.
  • the ethylenically unsaturated group is preferably a (meth)acryloyloxy group, a (meth)acrylamide group, or a vinyl group, and is preferably a (meth)acryloyloxy group or a (meth)acrylamide group. More preferred is a (meth)acryloyloxy group, even more preferred is an acryloyloxy group, and particularly preferred is an acryloyloxy group.
  • the cyclic ether group in the specific liquid crystal compound examples include an epoxy group and an oxetanyl group. From the viewpoint of reactivity, the cyclic ether group is preferably an epoxy group or an oxetanyl group, and more preferably an oxetanyl group.
  • the liquid crystal compound preferably contains a liquid crystal compound having one ethylenically unsaturated group. Further, the ratio of the total amount of the liquid crystal compound having one ethylenically unsaturated group to the total amount of solid content of the liquid crystal composition is preferably 25% by mass or more.
  • the specific liquid crystal compound may have a functional group (for example, a polymerizable group) other than the ethylenically unsaturated group.
  • a liquid crystal compound having one ethylenically unsaturated group may have one or more cyclic ether groups.
  • the specific liquid crystal compound may have a functional group (for example, a polymerizable group) other than the cyclic ether group.
  • a liquid crystal compound having one cyclic ether group may have one or more ethylenically unsaturated groups.
  • the liquid crystal compound has one ethylenically unsaturated group and no cyclic ether group, and one cyclic ether group and no ethylenically unsaturated group. It is preferable to include a liquid crystal compound having no ethylenic unsaturated group or a liquid crystal compound having one ethylenically unsaturated group and one cyclic ether group. Furthermore, it is preferable that the liquid crystal compound contains one ethylenically unsaturated group and no cyclic ether group.
  • the specific liquid crystal compound may be a rod-like liquid crystal compound or a discotic liquid crystal compound. From the viewpoint of ease of adjustment of the helical pitch in the cholesteric liquid crystal phase and suppression of changes in reflectance and color after molding, rod-like liquid crystal compounds are preferred.
  • Preferred rod-like liquid crystal compounds include, for example, azomethine compounds, azoxy compounds, cyanobiphenyl compounds, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexane compounds, cyano-substituted phenylpyrimidine compounds, alkoxy Examples include substituted phenylpyrimidine compounds, phenyldioxane compounds, tolan compounds, and alkenylcyclohexylbenzonitrile compounds.
  • the rod-shaped liquid crystal compound is not limited to a low-molecular compound, and may be a high-molecular compound.
  • Rod-shaped liquid crystal compounds are described, for example, in "Makromol. Chem., Vol. 190, p. 2255 (1989)", “Advanced Materials, Vol. 5, p. 107 (1993)", US Pat. No. 4,683,327, US Pat. No. 5,622,648. specification, US Patent No.
  • WO 95/22586 WO 95/24455
  • WO 97/00600 WO 98/23580
  • WO 98/52905 One ethylenic compound described in JP-A-1-272551, JP-A-6-16616, JP-A-7-110469, JP-A-11-80081 and JP-A-2001-328973 It may be selected from compounds with unsaturated groups and compounds with one cyclic ether group.
  • Preferred rod-like liquid crystal compounds are selected from, for example, compounds having one ethylenically unsaturated group and compounds having one cyclic ether group, which are described in Japanese Patent Publication No. 11-513019 and Japanese Patent Application Laid-Open No. 2007-279688. may be done.
  • Preferred discotic liquid crystal compounds are selected from, for example, compounds having one ethylenically unsaturated group and compounds having one cyclic ether group, which are described in JP-A-2007-108732 and JP-A-2010-244038. may be done.
  • the liquid crystal composition may contain one or more cholesteric liquid crystal compounds.
  • the ratio of the total amount of the specific liquid crystal compound to the total amount of solid content of the liquid crystal composition is preferably 25% by mass or more, and more preferably 30% by mass or more. , more preferably 40% by mass or more. Furthermore, the ratio of the total amount of the specific liquid crystal compound to the total amount of solid content of the liquid crystal composition is preferably 60% by mass to 99% by mass, more preferably 80% by mass to 98% by mass.
  • the liquid crystal composition may also contain other liquid crystal compounds.
  • Other liquid crystal compounds mean liquid crystal compounds other than the specific liquid crystal compound.
  • Other liquid crystal compounds include, for example, a liquid crystal compound that does not have an ethylenically unsaturated group and a cyclic ether group, a liquid crystal compound that has two or more ethylenically unsaturated groups and no cyclic ether group, and a liquid crystal compound that has two or more ethylenically unsaturated groups and no cyclic ether group. Examples include liquid crystal compounds having the above cyclic ether groups and no ethylenically unsaturated groups, and liquid crystal compounds having two or more ethylenically unsaturated groups and two or more cyclic ether groups.
  • liquid crystal compounds include liquid crystal compounds having no ethylenically unsaturated group and cyclic ether group, having two or more ethylenically unsaturated groups, In addition, it is preferably at least one selected from the group consisting of a liquid crystal compound having no cyclic ether group and a liquid crystal compound having two or more cyclic ether groups and no ethylenically unsaturated group.
  • liquid crystal compounds include liquid crystal compounds that do not have an ethylenically unsaturated group and a cyclic ether group, liquid crystal compounds that have two ethylenically unsaturated groups and no cyclic ether group, and liquid crystal compounds that have two ethylenically unsaturated groups and no cyclic ether group. It is more preferable that the liquid crystal compound is at least one selected from the group consisting of liquid crystal compounds having the following formula and having no ethylenically unsaturated group.
  • the other liquid crystal compound is at least selected from the group consisting of a liquid crystal compound having no ethylenically unsaturated group and no cyclic ether group, and a liquid crystal compound having two ethylenically unsaturated groups and no cyclic ether group. More preferably, it is one type.
  • Rod-shaped liquid crystal compounds among other liquid crystal compounds are described, for example, in "Makromol. Chem., Vol. 190, p. 2255 (1989)", “Advanced Materials, Vol. 5, p. 107 (1993)", and US Pat. No. 4,683,327. , US Pat. No. 5,622,648, US Pat. No. 5,770,107, WO 95/22586, WO 95/24455, WO 97/00600, WO 98/23580, International Described in Publication No. 98/52905, JP 1-272551, JP 6-16616, JP 7-110469, JP 11-80081, and JP 2001-328973 may be selected from compounds.
  • Preferred rod-like liquid crystal compounds among other liquid crystal compounds may be selected from, for example, compounds described in Japanese Patent Publication No. 11-513019 and Japanese Patent Application Laid-open No. 2007-279688.
  • Preferred discotic liquid crystal compounds among other liquid crystal compounds may be selected from, for example, the compounds described in JP-A No. 2007-108732 or JP-A No. 2010-244038.
  • the liquid crystal composition may contain one or more other liquid crystal compounds.
  • the ratio of the total amount of other liquid crystal compounds to the total solid content of the liquid crystal composition is preferably 70% by mass or less, more preferably 50% by mass or less, and even more preferably 30% by mass or less. , 20% by mass or less is particularly preferred. Note that the lower limit of the above ratio is 0% by mass.
  • the liquid crystal composition may contain one or more liquid crystal compounds.
  • the liquid crystal composition may include a specific liquid compound and another liquid crystal compound.
  • the ratio of the total amount of liquid crystal compounds to the total solid content of the liquid crystal composition is preferably 25% by mass or more, more preferably 30% by mass or more, and even more preferably 40% by mass or more. Further, the ratio of the total amount of liquid crystal compounds to the total amount of solid content of the liquid crystal composition is preferably 60% by mass to 99% by mass, more preferably 80% by mass to 98% by mass.
  • the liquid crystal composition preferably contains a chiral agent (that is, an optically active compound).
  • the type of chiral agent may be determined depending on, for example, the type of liquid crystal compound and the desired helical structure (for example, the twisting method of the helix and the helical pitch).
  • Examples of chiral agents include known compounds (for example, Liquid Crystal Device Handbook, Chapter 3, Section 4-3, Chiral Agents for TN (twisted nematic) and STN (Super-twisted nematic), p. 199, Japan Society for the Promotion of Science, Vol. 142 Committee, 1989), isosorbide derivatives and isomannide derivatives.
  • Chiral agents generally contain asymmetric carbon atoms.
  • axially asymmetric compounds and planar asymmetric compounds that do not contain asymmetric carbon atoms can be used as chiral agents.
  • Preferred examples of the axially asymmetric compound or planar asymmetric compound include binaphthyl compounds, helicene compounds, and paracyclophane compounds.
  • the liquid crystal composition may contain a chiral agent having a polymerizable group.
  • the polymerizable group is preferably an ethylenically unsaturated group or a cyclic ether group, and more preferably an ethylenically unsaturated group.
  • the preferred embodiment of the ethylenically unsaturated group in the chiral agent is the same as the preferred embodiment of the ethylenically unsaturated group in the specific liquid crystal compound described above.
  • the preferred embodiment of the cyclic ether group in the chiral agent is the same as the preferred embodiment of the cyclic ether group in the specific liquid crystal compound described above.
  • the type of polymerizable group in the chiral agent is preferably the same as the type of polymerizable group in the specific liquid crystal compound. Furthermore, the polymerizable group in the chiral agent is preferably the same as the polymerizable group in the specific liquid crystal compound.
  • a chiral agent having a polymerizable group is a chiral agent having one ethylenically unsaturated group and no cyclic ether group, and a chiral agent having one cyclic ether group, and It is preferable to include a chiral agent having no ethylenically unsaturated group or a chiral agent having one ethylenically unsaturated group and one cyclic ether group. Further, the chiral agent having a polymerizable group preferably includes a chiral agent having one ethylenically unsaturated group and no cyclic ether group.
  • the chiral agent may be a liquid crystal compound.
  • the cholesteric liquid crystal layer preferably contains a chiral agent (photosensitive chiral agent) having a site that isomerizes upon irradiation with light.
  • a photosensitive chiral agent whose helical inducing force changes upon irradiation with light will be described in detail. Note that the helical inducing force (HTP) of the chiral agent is a factor indicating the helical orientation ability expressed by the following formula (A).
  • HTP 1/(Length of helical pitch (unit: ⁇ m) x Concentration of chiral agent in liquid crystal compound (mass%)) [ ⁇ m ⁇ 1 ]
  • the photosensitive chiral agent whose helical inducing force changes upon light irradiation may be liquid crystalline or non-liquid crystalline.
  • Photosensitive chiral agents generally often contain asymmetric carbon atoms. Note that the photosensitive chiral agent may be an axially asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom.
  • the photosensitive chiral agent may be a chiral agent whose helical inducing force increases or decreases when irradiated with light.
  • chiral agents whose helical inducing force decreases upon irradiation with light are preferred.
  • "increase and decrease in helical inducing force” refers to an increase and decrease when the initial (before light irradiation) helical direction of the photosensitive chiral agent is defined as "positive".
  • photosensitive chiral agent examples include so-called photoreactive chiral agents.
  • a photoreactive chiral agent is a compound that has a chiral moiety and a photoreactive moiety whose structure changes upon irradiation with light, and for example, causes a large change in the twisting force of a liquid crystal compound depending on the amount of irradiation.
  • photoreactive sites whose structure changes upon light irradiation include photochromic compounds (Kingo Uchida, Masahiro Irie, Kagaku Kogyo, vol. 64, 640p, 1999, Kingo Uchida, Masahiro Irie, Fine Chemical, vol. 28 (9), 15 p. , 1999).
  • the above-mentioned structural change means decomposition, addition reaction, isomerization, racemization, [2+2] photocyclization, dimerization reaction, etc. caused by light irradiation to the photoreaction site, and the above-mentioned structural change is irreversible. There may be.
  • a chiral moiety for example, Hiroyuki Nohira, Chemistry Review, No. This corresponds to the asymmetric carbon described in 22 Chemistry of Liquid Crystals, 73p: 1994.
  • photosensitive chiral agents examples include photoreactive chiral agents described in paragraphs 0044 to 0047 of JP-A No. 2001-159709, optically active compounds described in paragraphs 0019 to 0043 of JP-A No. 2002-179669, and Optically active compounds described in paragraphs 0020 to 0044 of JP 2002-179633, optically active compounds described in paragraphs 0016 to 0040 of JP 2002-179670, and paragraphs 0017 to 0050 of JP 2002-179668.
  • optically active compounds described in paragraphs 0018 to 0044 of JP 2002-180051 optically active isosorbide derivatives described in paragraphs 0016 to 0055 of JP 2002-338575, JP 2002-080478; Photoreactive optically active compounds described in paragraphs 0023 to 0032 of JP-A No. 2002-080851, photoreactive chiral agents described in paragraphs 0019 to 0029 of JP-A No. 2002-179681, and paragraphs 0022 to 0049 of JP-A No. 2002-179681.
  • optically active compounds described in paragraphs 0015 to 0044 of JP 2002-302487 optically active polyesters described in paragraphs 0015 to 0050 of JP 2002-338668, JP 2003-055315 Binaphthol derivatives described in paragraphs 0019 to 0041 of JP-A No. 2003-073381, optically active fulgide compounds described in paragraphs 0008 to 0043 of JP-A No. 2003-306490, and optically active compounds described in paragraphs 0015 to 0057 of JP-A No. 2003-306490.
  • Isosorbide derivatives optically active isosorbide derivatives described in paragraphs 0015 to 0041 of JP 2003-306491, optically active isosorbide derivatives described in paragraphs 0015 to 0049 of JP 2003-313187, JP 2003-313188 optically active isomannide derivatives described in paragraphs 0015 to 0057 of JP 2003-313189, optically active isosorbide derivatives described in paragraphs 0015 to 0052 of JP 2003-313292, Examples include polyester/amide, optically active compounds described in paragraphs 0012 to 0053 of International Publication No. 2018/194157, and optically active compounds described in paragraphs 0020 to 0049 of JP 2002-179682.
  • the photoisomerization site having the photoisomerizable double bond is a cinnamoyl site, a chalcone site, an azobenzene site, or A stilbene moiety is preferred, and a cinnamoyl moiety, a chalcone moiety, or a stilbene moiety is more preferred in terms of low absorption of visible light.
  • the photoisomerization site corresponds to the above-mentioned photoreaction site whose structure changes upon irradiation with light.
  • photosensitive chiral agents have a high initial helical inducing force (before light irradiation) and a superior change in the helical inducing force upon light irradiation, and have a trans-type photoisomerizable double bond. It is preferable to have.
  • photosensitive chiral agents have a cis-type photoisomerizable double bond, which has a low initial helical inducing force (before light irradiation) and a better change in helical inducing force upon light irradiation. It is preferable to have.
  • the photosensitive chiral agent has any partial structure selected from the group consisting of a binaphthyl partial structure, an isosorbide partial structure (a partial structure derived from isosorbide), and an isomannide partial structure (a partial structure derived from isomannide).
  • a binaphthyl partial structure, an isosorbide partial structure, and an isomannide partial structure are each intended to have the following structures.
  • a portion in the binaphthyl partial structure where the solid line and the broken line are parallel represents a single bond or a double bond.
  • * represents a bonding position.
  • the photosensitive chiral agent may have a polymerizable group.
  • the type of polymerizable group is not particularly limited, and a functional group capable of an addition polymerization reaction is preferable, a polymerizable ethylenically unsaturated group or a ring polymerizable group is more preferable, and a (meth)acryloyl group, a vinyl group, a styryl group, Alternatively, an allyl group is more preferred.
  • Formula (C) R-LR R each independently represents a group having at least one moiety selected from the group consisting of a cinnamoyl moiety, a chalcone moiety, an azobenzene moiety, and a stilbene moiety.
  • L is a divalent linking group formed by removing two hydrogen atoms from the structure represented by formula (D) (a divalent linking group formed by removing two hydrogen atoms from the above binaphthyl partial structure) group), a divalent linking group represented by formula (E) (a divalent linking group consisting of the above isosorbide partial structure), or a divalent linking group represented by formula (F) (a divalent linking group consisting of the above isomannide partial structure) represents a divalent linking group consisting of In formula (E) and formula (F), * represents a bonding position.
  • photosensitive chiral agents are shown below. However, the type of photosensitive chiral agent is not limited to the following specific examples.
  • one kind of photosensitive chiral agent may be used alone, or two or more kinds of photosensitive chiral agents may be used.
  • the molar extinction coefficient of the photosensitive chiral agent is not particularly limited, but the molar extinction coefficient at the wavelength (for example, 365 nm) of the light irradiated in the torsional change step described below is 100 L/(mol cm) to 100,000 L/( mol ⁇ cm) is preferable, and 500 L/(mol ⁇ cm) to 50,000 L/(mol ⁇ cm) is more preferable.
  • the cholesteric liquid crystal layer may contain a polymerizable chiral agent as a chiral agent from the viewpoint of more easily fixing the helical structure of the cholesteric liquid crystal compound.
  • a polymerizable chiral agent means a chiral agent having a polymerizable group.
  • the polymerizable chiral agent referred to herein is one whose helical inducing force does not change due to light irradiation, and is distinguished from the photosensitive chiral agent.
  • Examples of the polymerizable group that the polymerizable chiral agent has include a radically polymerizable group and a cationic polymerizable group.
  • the polymerizable group is preferably an ethylenically unsaturated group, an epoxy group or an aziridinyl group, and more preferably an ethylenically unsaturated group.
  • the polymerizable chiral agent is preferably a compound containing an asymmetric carbon atom, but may be an axially asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom.
  • axially asymmetric compounds or planar asymmetric compounds include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the polymerizable chiral agent preferably contains the same type of polymerizable group as the polymerizable group that the cholesteric liquid crystal compound has.
  • the polymerizable chiral agent also contains a radically polymerizable group.
  • the polymerizable chiral agent is preferably an isosorbide derivative, an isomannide derivative, or a binaphthyl derivative.
  • isosorbide derivatives include "Paliocolor LC756" manufactured by BASF.
  • One type of polymerizable chiral agent may be used alone, or two or more types may be used in combination.
  • the liquid crystal composition may contain one or more chiral agents.
  • the content of the chiral agent may be determined, for example, depending on the structure of the liquid crystal compound and the desired helical pitch. From the viewpoint of ease of forming a cholesteric liquid crystal layer and ease of adjusting the helical pitch, the ratio of the total amount of chiral agent to the total amount of solid content of the liquid crystal composition is preferably 1% by mass to 20% by mass, and 2% by mass. % to 15% by weight, and even more preferably 3% to 10% by weight.
  • the helical pitch in the cholesteric liquid crystal phase and the selective reflection wavelength of the layer expressing structural color are easily adjusted not only by the type of liquid crystal compound but also by the content of the chiral agent. For example, when the content of the chiral agent in the liquid crystal composition is doubled, the helical pitch becomes 1/2, and the central value of the selective reflection wavelength may also become 1/2.
  • the liquid crystal composition contains a polymerization initiator.
  • the polymerization initiator accelerates the curing reaction of the liquid crystal composition.
  • the liquid crystal composition When the liquid crystal composition is cured by exposure, it is preferable that the liquid crystal composition contains a photopolymerization initiator.
  • the photopolymerization initiator include radical photopolymerization initiators and cationic photopolymerization initiators.
  • photopolymerization initiators include ⁇ -carbonyl compounds (e.g., US Pat. No. 2,367,661 and US Pat. No. 2,367,670), acyloin ether compounds (e.g., US Pat. No. 2,448,828), ⁇ - Hydrocarbon-substituted aromatic acyloin compounds (e.g., U.S. Pat. No. 2,722,512), polynuclear quinone compounds (e.g., U.S. Pat. No. 3,046,127 and U.S. Pat. No. 2,951,758), triarylimidazole dimers and p- Combinations with aminophenyl ketones (e.g., US Pat. No.
  • Preferred radical photopolymerization initiators include, for example, ⁇ -hydroxyalkylphenone compounds, ⁇ -aminoalkylphenone compounds, and acylphosphine oxide compounds.
  • Preferred photocationic polymerization initiators include, for example, iodonium salt compounds and sulfonium salt compounds.
  • the liquid crystal composition preferably contains a radical polymerization initiator or a cationic polymerization initiator, and more preferably contains a radical photopolymerization initiator or a cationic photopolymerization initiator.
  • the liquid crystal composition containing a liquid crystal compound having one ethylenically unsaturated group preferably contains a radical polymerization initiator, and more preferably contains a photoradical polymerization initiator.
  • a liquid crystal composition containing a liquid crystal compound having one cyclic ether group preferably contains a cationic polymerization initiator, and more preferably contains a photocationic polymerization initiator.
  • the liquid crystal composition may contain one or more types of polymerization initiators.
  • the content of the polymerization initiator may be determined, for example, depending on the structure of the specific liquid crystal compound and the desired helical pitch. From the viewpoint of ease of forming the cholesteric liquid crystal layer, ease of adjusting the helical pitch, polymerization rate, and strength of the cholesteric liquid crystal layer, the ratio of the total amount of polymerization initiator to the total amount of solid content of the liquid crystal composition is 0.05% by mass. It is preferably 10% by mass, more preferably 0.05% by mass to 5% by mass or less, even more preferably 0.1% to 2% by mass, and even more preferably 0.2% to 1% by mass. Particularly preferred is mass %.
  • the liquid crystal composition may contain a crosslinking agent.
  • Preferred crosslinking agents include, for example, compounds that are cured by external factors such as ultraviolet light, heat, and moisture.
  • crosslinking agent examples include the compounds shown below.
  • Polyfunctional acrylate compounds e.g., trimethylolpropane tri(meth)acrylate and pentaerythritol tri(meth)acrylate
  • Epoxy compounds e.g. glycidyl (meth)acrylate and ethylene glycol diglycidyl ether
  • Aziridine compounds e.g., 2,2-bishydroxymethylbutanol-tris[3-(1-aziridinyl)propionate] and 4,4-bis(ethyleneiminocarbonylamino)diphenylmethane
  • Isocyanate compounds e.g.
  • Alkoxysilane compounds e.g. vinyltrimethoxysilane and N-(2-aminoethyl)3-aminopropyltrimethoxysilane
  • the liquid crystal composition may contain one or more crosslinking agents.
  • the ratio of the total amount of crosslinking agent to the total amount of solid content of the liquid crystal composition is preferably 1% by mass to 20% by mass, and 3% by mass to 15% by mass. It is more preferable that there be.
  • the liquid crystal composition may contain a known catalyst depending on the reactivity of the crosslinking agent.
  • the combined use of a crosslinking agent and a catalyst can not only improve the strength and durability of the cholesteric liquid crystal layer, but also improve productivity.
  • the liquid crystal composition may contain a polyfunctional polymerizable compound.
  • a polyfunctional polymerizable compound means a compound having two or more polymerizable groups. It is preferable that the types of two or more polymerizable groups contained in the polyfunctional polymerizable compound are the same.
  • Examples of the polyfunctional polymerizable compound include a liquid crystal compound having two or more ethylenically unsaturated groups and no cyclic ether group, and a liquid crystal compound having two or more cyclic ether groups and no ethylenically unsaturated group.
  • Examples include crosslinking agents having the following.
  • Polyfunctional polymerizable compounds include liquid crystal compounds that have two or more ethylenically unsaturated groups and no cyclic ether groups, and liquid crystal compounds that have two or more cyclic ether groups and no ethylenically unsaturated groups. It is preferable to include at least one kind selected from the group consisting of a liquid crystal compound that does not have a chiral agent and a chiral agent that has two or more polymerizable groups, and more preferably a chiral agent that has two or more polymerizable groups.
  • the liquid crystal composition may contain one or more polyfunctional polymerizable compounds.
  • the ratio of the total amount of the polyfunctional polymerizable compound to the total amount of solid content of the liquid crystal composition is preferably 0.5% by mass to 50% by mass. It is preferably 1% by mass to 40% by mass, even more preferably 1.5% by mass to 30% by mass, and particularly preferably 2% by mass to 20% by mass.
  • the ratio of the total amount of polyfunctional polymerizable compounds to the total amount of solid content of the liquid crystal composition decreases, the crosslinking density of the cholesteric liquid crystal layer decreases. As a result, the stretchability of the cholesteric liquid crystal layer is improved, and the moldability is improved.
  • the alignment structure of the cholesteric liquid crystal layer is easily maintained after polymerization.
  • polyfunctional polymerizable compounds compounds having two or more ethylenically unsaturated groups, compounds having two or more cyclic ether groups, and compounds having one or more ethylenically unsaturated groups are used. It is preferable that the content of the compound having one or more cyclic ether groups is regulated.
  • the ratio of "total amount of compounds having a cyclic ether group” is preferably 0.5% to 50% by mass, more preferably 1% to 40% by mass, and 1.5% to 30% by mass. It is more preferably % by mass, and particularly preferably 2% by mass to 20% by mass.
  • the liquid crystal composition may contain other additives as necessary.
  • Other additives include, for example, surfactants, polymerization inhibitors, antioxidants, horizontal alignment agents, ultraviolet absorbers, light stabilizers, colorants, and metal oxide particles.
  • the liquid crystal composition may also contain one or more other additives.
  • the liquid crystal composition may contain a solvent.
  • the solvent is an organic solvent.
  • organic solvents include ketones (eg, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone), alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, and ethers. Ketones are preferable in consideration of the burden on the environment.
  • the liquid crystal composition may contain one or more solvents.
  • the content of the solvent may be determined, for example, depending on the coatability of the liquid crystal composition.
  • the ratio of the total solid content of the liquid crystal composition to the total amount of the liquid crystal composition is preferably 1% by mass to 90% by mass, more preferably 5% to 80% by mass, and 10% to 80% by mass. It is more preferable that it is mass %.
  • the ratio of the total amount of solvent to the total amount of solid content of the liquid crystal composition at the time of curing the liquid crystal composition is preferably 5% by mass or less, and 3% by mass or less. It is more preferably at most 2% by mass, even more preferably at most 2% by mass, and particularly preferably at most 1% by mass.
  • the ratio of the total amount of solvent in the cholesteric liquid crystal layer to the total amount of the cholesteric liquid crystal layer is preferably 5% by mass or less, more preferably 3% by mass or less, even more preferably 2% by mass or less, and 1 It is particularly preferable that it is less than % by mass.
  • the method for producing the liquid crystal composition is not limited.
  • a liquid crystal composition is manufactured, for example, by mixing a liquid crystal compound and a component other than the liquid crystal compound.
  • the mixing method may be selected from known mixing methods.
  • Curing of the liquid crystal composition is performed, for example, by exposure. Exposure is performed, for example, by irradiating the liquid crystal composition with light.
  • a preferable light source includes, for example, a light source that can irradiate light containing at least one type selected from the group consisting of 365 nm and 405 nm. Specific light sources include, for example, ultra-high-pressure mercury lamps, high-pressure mercury lamps, and metal halide lamps.
  • the exposure amount is preferably 5 mJ/cm 2 to 2,000 mJ/cm 2 , more preferably 10 mJ/cm 2 to 1,000 mJ/cm 2 .
  • the exposure method for example, the method described in paragraphs 0035 to 0051 of JP-A No. 2006-23696 may be applied.
  • the heating temperature is determined, for example, depending on the composition of the liquid crystal composition.
  • the heating temperature is, for example, 60°C to 120°C.
  • Examples of heating means include heaters, ovens, hot plates, infrared lamps, and infrared lasers.
  • Curing of the liquid crystal composition may be performed, for example, by heating.
  • the heating temperature is preferably 60°C to 200°C.
  • the heating time is preferably 5 minutes to 2 hours. Examples of the heating means include the heating means described above.
  • the liquid crystal composition may be dried by a known method before curing.
  • the liquid crystal composition may be left to dry or air-dried.
  • the liquid crystal composition may be dried by heating.
  • the thickness of the layer expressing structural color is not particularly limited, but from the viewpoint of obtaining a more appropriate reflectance, it is preferably 0.1 ⁇ m to 10 ⁇ m, more preferably 0.3 ⁇ m to 8 ⁇ m. , more preferably 0.5 ⁇ m to 6 ⁇ m.
  • the laminate may include a base material. This increases the strength of the laminate, making it easier to handle. Further, when the laminate includes a base material, the base material can be used as a member constituting a molded product formed by molding the laminate.
  • the layer expressing structural color may be provided directly on the base material, or may be provided via another layer.
  • the shape and material of the base material are not particularly limited, and may be appropriately selected as desired.
  • the base material is preferably a resin base material from the viewpoint of ease of molding.
  • Examples of the material of the resin base material include polyethylene (PE), polyethylene naphthalate (PEN), polyamide (PA), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinyl alcohol (PVA), and polyacrylonitrile (PAN).
  • PE polyethylene
  • PEN polyethylene naphthalate
  • PA polyamide
  • PET polyethylene terephthalate
  • PVT polyvinyl chloride
  • PVA polyvinyl alcohol
  • PAN polyacrylonitrile
  • polyimide PI
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • acrylic-polycarbonate resin polyacrylate, polymethacrylate, polypropylene (PP), polystyrene (PS), polyacrylonitrile-butadiene-styrene copolymer (ABS), cyclic olefin-copolymers (COC), cycloolefin polymers (COP), triacetyl cellulose (TAC), urethane resins, and urethane-acrylic resins.
  • the material of the base material is polyethylene terephthalate, acrylic resin, urethane resin, urethane-acrylic resin, polycarbonate, acrylic-polycarbonate resin, and Preferably, it is at least one resin selected from the group consisting of polypropylene.
  • the base material may be a laminate of a plurality of resin layers made of different materials.
  • the resin base material may contain additives as necessary.
  • additives include lubricants such as mineral oil, hydrocarbons, fatty acids, alcohols, fatty acid esters, fatty acid amides, metal soaps, natural waxes, and silicones; inorganic flame retardants such as magnesium hydroxide and aluminum hydroxide; and halogen-based retardants.
  • Organic flame retardants such as flame retardants and phosphorus flame retardants; organic or inorganic fillers such as metal powder, talc, calcium carbonate, potassium titanate, glass fiber, carbon fiber, and wood flour; antioxidants, ultraviolet inhibitors, and lubricants.
  • a dispersant a coupling agent, a foaming agent, a coloring agent, and a resin other than the main component resin.
  • the resin base material may be a commercially available product.
  • Commercially available products include, for example, the Technoloy (registered trademark) series (acrylic resin film, polycarbonate resin film, or acrylic resin/polycarbonate resin laminated film, manufactured by Sumitomo Chemical Co., Ltd.), ABS film (manufactured by Okamoto Co., Ltd.), and ABS sheet (Sekisui Molding Co., Ltd.).
  • the thickness of the base material is not particularly limited, but from the viewpoint of the strength of the laminate and the moldability when molding the laminate, it is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, and still more preferably 20 ⁇ m or more. preferable. Moreover, from the same viewpoint, the thickness of the base material is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 150 ⁇ m or less.
  • the laminate when the laminate includes a base material, the laminate may be obtained by peeling the base material from the laminate containing the base material.
  • the laminate may include a colored layer. This makes it easier to obtain a desired design.
  • the colored layer is a layer containing a coloring agent.
  • the number of colored layers may be one layer, or two or more layers.
  • the position of the colored layer is not particularly limited, and may be provided at any desired position.
  • a colored layer may be provided on a layer that exhibits structural color.
  • the laminate when the laminate includes a base material, it may be provided on the side opposite to the side on which the layer expressing the structural color of the base material is formed, and the base material may be peeled off from the laminate containing the base material. It may be formed into a laminate and provided on the laminate after peeling off the base material.
  • the color of the colored layer is not particularly limited, and can be appropriately selected depending on the use of the laminate.
  • Examples of the color of the colored layer include black, gray, white, red, orange, yellow, green, blue, purple, and brown.
  • the color of the colored layer may be a metallic color.
  • the colorant may be a pigment or a dye. From the viewpoint of durability, the colorant is preferably a pigment. In order to give the colored layer a metallic tone, metal particles, pearl pigments, etc. may be used as the coloring agent.
  • the pigment may be an inorganic pigment or an organic pigment.
  • inorganic pigments examples include white pigments such as titanium dioxide, zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide, and barium sulfate; carbon black, titanium black, titanium carbon, iron oxide, graphite, etc. black pigments; iron oxide, barium yellow, cadmium red, and chrome yellow.
  • inorganic pigments examples include the inorganic pigments described in paragraphs 0015 and 0114 of JP-A No. 2005-7765.
  • organic pigments examples include phthalocyanine pigments such as phthalocyanine blue and phthalocyanine green; azo pigments such as azo red, azo yellow, and azo orange; quinacridone pigments such as quinacridone red, shinkasha red, and shinkasha magenta; perylene red, Perylene pigments such as perylene maroon; carbazole violet, anthrapyridine, flavanthrone yellow, isoindoline yellow, induthrone blue, dibrom anthathurone red, anthraquinone red, and diketopyrrolopyrrole.
  • phthalocyanine pigments such as phthalocyanine blue and phthalocyanine green
  • azo pigments such as azo red, azo yellow, and azo orange
  • quinacridone pigments such as quinacridone red, shinkasha red, and shinkasha magenta
  • perylene red Perylene pigments such as perylene maroon
  • organic pigments include C.I. I. Pigment Red 177, 179, 224, 242, 254, 255, 264 and other red pigments, C.I. I. Pigment Yellow 138, 139, 150, 180, 185 and other yellow pigments; C.I. I. Pigment Orange 36, 38, 71, and other orange pigments; C.I. I. Pigment Green 7, 36, 58 and other green pigments; C.I. I. Pigment Blue 15:6 and other blue pigments; and C.I. I. Examples include purple pigments such as Pigment Violet 23.
  • organic pigments examples include organic pigments described in paragraph 0093 of JP-A No. 2009-256572.
  • the pigment may be a pigment that has light transmittance and light reflectivity (so-called glitter pigment).
  • bright pigments include metal bright pigments of aluminum, copper, zinc, iron, nickel, tin, aluminum oxide, and alloys thereof, interference mica pigments, white mica pigments, graphite pigments, and glass flake pigments. can be mentioned.
  • the glitter pigment may be uncolored or colored.
  • One type of colorant may be used alone, or two or more types may be used in combination.
  • an inorganic pigment and an organic pigment may be combined.
  • the content of the colorant is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 50% by mass, based on the total amount of the colored layer. , 10% by mass to 40% by mass is particularly preferred.
  • the colored layer preferably contains a binder resin from the viewpoints of strength, scratch resistance, and suitability for molding.
  • the type of binder resin is not particularly limited. From the viewpoint of obtaining a desired color, the binder resin is preferably a transparent resin, and specifically, a resin having a total light transmittance of 80% or more is preferable. The total light transmittance can be measured with a spectrophotometer (eg, spectrophotometer "UV-2100" manufactured by Shimadzu Corporation).
  • binder resin examples include acrylic resin, silicone resin, polyester, polyurethane, and polyolefin.
  • the binder resin may be a homopolymer or a copolymer.
  • binder resin One type of binder resin may be used alone, or two or more types may be used in combination.
  • the content of the binder resin is preferably 5% by mass to 70% by mass, more preferably 10% by mass to 60% by mass, and 20% by mass, based on the total amount of the colored layer. Particularly preferred is % by weight to 60% by weight.
  • the colored layer may contain a dispersant.
  • a dispersant included, the dispersibility of the colorant in the colored layer is improved. Therefore, the color of the resulting laminate can be more easily made uniform.
  • the dispersant can be appropriately selected depending on the type, shape, etc. of the colorant, and is preferably a polymer dispersant.
  • polymeric dispersants examples include silicone polymers, acrylic polymers, and polyester polymers.
  • the dispersant when it is desired to impart heat resistance to the laminate, is preferably a silicone polymer such as a grafted silicone polymer.
  • the weight average molecular weight of the dispersant is preferably 1,000 to 5,000,000, more preferably 2,000 to 3,000,000, and more preferably 2,500 to 3,000,000. It is particularly preferable. When the weight average molecular weight is 1,000 or more, the dispersibility of the colorant is further improved.
  • the dispersant may be a commercially available product.
  • Commercially available dispersants include EFKA 4300 (acrylic polymer dispersant) manufactured by BASF Japan; homogenol L-18, homogenol L-95, and homogenol L-100 manufactured by Kao; and homogenol L-100 manufactured by Japan Lubrizol. , Solsperse 20000, and Solsperses 24000; and DISPERBYK-110, DISPERBYK-164, DISPERBYK-180, and DISPERBYK-182 manufactured by BYK Chemie Japan. Note that "Homogenol,” “Solsperse,” and “DISPERBYK” are all registered trademarks.
  • One type of dispersant may be used alone, or two or more types may be used in combination.
  • the content of the dispersant is preferably 1 part by mass to 30 parts by mass based on 100 parts by mass of the colorant.
  • the colored layer may contain additives, if necessary, in addition to the above-mentioned components.
  • the additive is not particularly limited, and for example, the surfactants described in paragraph 0017 of Japanese Patent No. 4502784 and paragraphs 0060 to 0071 of JP2009-237362; and the surfactants described in paragraph 0018 of Japanese Patent No. 4502784.
  • Thermal polymerization inhibitors also referred to as polymerization inhibitors; preferred examples include phenothiazine
  • the thickness of the colored layer is not particularly limited, but from the viewpoint of visibility and three-dimensional moldability, it is preferably 0.5 ⁇ m or more, more preferably 3 ⁇ m or more, and even more preferably 3 ⁇ m to 50 ⁇ m. , 3 ⁇ m to 20 ⁇ m is particularly preferred.
  • each colored layer independently has a thickness within the above range.
  • the method for forming the colored layer examples include a method using a composition for forming a colored layer, a method of laminating colored films, and the like.
  • the method of forming the colored layer is preferably a method using a composition for forming a colored layer.
  • a method of forming a colored layer using a colored layer forming composition includes a method of coating a colored layer forming composition to form a colored layer, for example, a method of forming a colored layer by printing a colored layer forming composition.
  • Examples include a method of forming.
  • Examples of printing methods include screen printing, inkjet printing, flexo printing, gravure printing, and offset printing.
  • the composition for forming a colored layer may contain a colorant and, if necessary, at least one of a binder resin, a dispersant, and an additive.
  • the types of each component may be those described above for the colored layer.
  • the content of the coloring agent is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 50% by mass, and 10% by mass based on the total solid content of the composition for forming a colored layer. % to 40% by weight is particularly preferred.
  • the content of the binder resin is preferably 5% by mass to 70% by mass, more preferably 10% by mass to 60% by mass, and 20% by mass based on the total solid content of the composition for forming a colored layer. % to 60% by weight is particularly preferred.
  • the content of the dispersant is preferably 1 part by mass to 30 parts by mass based on 100 parts by mass of the colorant.
  • the colored layer may be a layer formed by curing a composition for forming a colored layer, for example, a composition for forming a colored layer containing a polymerizable compound and a polymerization initiator may be used.
  • the polymerizable compound and polymerization initiator are not particularly limited, and known polymerizable compounds and known polymerization initiators may be used.
  • One type of polymerizable compound may be used alone, or two or more types may be used in combination.
  • One type of polymerization initiator may be used alone, or two or more types may be used in combination.
  • the composition for forming a colored layer may contain an organic solvent from the viewpoint of making coating easier.
  • the organic solvent is not particularly limited, and any known organic solvent can be used. Examples of organic solvents include alcohols, esters, ethers, ketones, and aromatic hydrocarbons. One type of organic solvent may be used alone, or two or more types may be used in combination.
  • the content of the organic solvent is preferably 5% by mass to 90% by mass, more preferably 30% by mass to 70% by mass, based on the total amount of the composition for forming a colored layer.
  • composition for forming a colored layer commercially available paints such as NAX Real series, NAX Admira series, and NAX Multi series (manufactured by Nippon Paint Co., Ltd.); Rethan PG series (manufactured by Kansai Paint Co., Ltd.) may be used.
  • the method for preparing the composition for forming a colored layer is not particularly limited, and for example, the composition for forming a colored layer may be prepared by mixing each component such as a coloring agent.
  • the composition for forming a colored layer contains a pigment as a coloring agent, from the viewpoint of further increasing the uniform dispersibility and dispersion stability of the pigment, a pigment dispersion containing the pigment and a dispersant is prepared in advance, and the pigment dispersion is prepared in advance. It is preferable to prepare a composition for forming a colored layer by mixing other components with the above composition.
  • the laminate may have an alignment layer.
  • the alignment layer is used to more easily align the molecules of the cholesteric liquid crystal compound in the light reflecting portion when forming the laminate.
  • the alignment layer is provided by, for example, rubbing treatment with an organic compound (preferably a polymer), oblique vapor deposition of an inorganic compound, formation of a layer having microgrooves, or the like.
  • an alignment layer an alignment layer in which an alignment function is produced by application of an electric field, a magnetic field, or light irradiation is also known.
  • the thickness of the alignment layer is not particularly limited, but is preferably 0.01 ⁇ m to 10 ⁇ m.
  • the underlayer can be used as an alignment layer without providing a separate alignment layer.
  • alignment treatment for example, rubbing treatment
  • it can be made to function as an alignment layer.
  • An example of a base material that can be directly aligned is a layer made of polyethylene terephthalate (PET), which may be subjected to a rubbing process as described below.
  • the rubbing treatment alignment layer is formed, for example, by performing a rubbing treatment on the surface of the base to which the liquid crystal composition is applied.
  • the rubbing treatment can be performed, for example, by rubbing the surface of a film containing a polymer as a main component in a certain direction with paper or cloth.
  • a general method of rubbing treatment is described, for example, in "Liquid Crystal Handbook" (published by Maruzensha, October 30, 2000).
  • Examples of polymers for the alignment layer forming a film mainly composed of the above-mentioned polymers include methacrylate copolymers, styrene copolymers, polyolefins, and the like described in paragraph 0022 of JP-A-8-338913.
  • Examples include polyvinyl alcohol, modified polyvinyl alcohol, poly(N-methylolacrylamide), polyester, polyimide, vinyl acetate copolymer, carboxymethyl cellulose, and polycarbonate.
  • the polymer for alignment layer may be a silane coupling agent.
  • the alignment layer polymer is preferably a water-soluble polymer (for example, poly(N-methylolacrylamide), carboxymethyl cellulose, gelatin, polyvinyl alcohol, or modified polyvinyl alcohol), more preferably gelatin, polyvinyl alcohol, or modified polyvinyl alcohol, and polyvinyl alcohol. or modified polyvinyl alcohol is particularly preferred.
  • the rubbing density (L) is quantified by the following formula (A).
  • Formula (A) L Nl(1+2 ⁇ rn/60v)
  • N is the number of rubbings
  • l is the contact length of the rubbing roller
  • r is the radius of the roller
  • n is the number of revolutions per minute (rpm) of the roller
  • v is the stage movement speed (per second).
  • Methods for increasing the rubbing density include increasing the number of times of rubbing, increasing the contact length of the rubbing roller, increasing the radius of the roller, increasing the number of rotations of the roller, and decreasing the stage movement speed. can be mentioned.
  • methods for lowering the rubbing density include reducing the number of rubbings, shortening the contact length of the rubbing roller, decreasing the radius of the roller, decreasing the number of rotations of the roller, and increasing the stage movement speed.
  • One method is to do so.
  • the description in Japanese Patent No. 4052558 can also be referred to as the conditions for the rubbing process.
  • Examples of the photo-alignment material used in the photo-alignment layer formed by light irradiation include JP-A Nos. 2006-285197, 2007-76839, 2007-138138, and 2007-94071. Publications, JP 2007-121721, JP 2007-140465, JP 2007-156439, JP 2007-133184, JP 2009-109831, Japanese Patent No. 3883848, and patents Azo compound described in JP-A No. 4151746; aromatic ester compound described in JP-A No. 2002-229039; photo-alignable unit described in JP-A No. 2002-265541 and JP-A No. 2002-317013.
  • Maleimide and/or alkenyl-substituted nadimide compounds include photocrosslinkable silane derivatives described in Japanese Patent No. 4205195 and Japanese Patent No. 4205198; and Japanese Patent Application Publication No. 2003-520878, Japanese Patent No. 2004-529220, and Japanese Patent No. 4162850 Examples include photocrosslinkable polyimides, polyamides, and esters described in the above publication.
  • the photo-alignment material is preferably an azo compound, photo-crosslinkable polyimide, polyamide, or ester.
  • a layer formed from a photo-alignment material is irradiated with linearly polarized light or non-polarized light to produce a photo-alignment layer.
  • linearly polarized light irradiation is an operation for causing a photoreaction in a photoalignment material.
  • the wavelength of the light used varies depending on the photoalignment material used, and is not particularly limited as long as it is a wavelength necessary for the photoreaction.
  • the light used for light irradiation is preferably light with a peak wavelength of 200 nm to 700 nm, more preferably ultraviolet light with a peak wavelength of 400 nm or less.
  • the light sources used for light irradiation include known light sources, such as tungsten lamps, halogen lamps, xenon lamps, xenon flash lamps, mercury lamps, mercury-xenon lamps, carbon arc lamps, and various lasers (for example, semiconductor lasers, (helium neon laser, argon ion laser, helium cadmium laser, or YAG laser), light emitting diodes, and cathode ray tubes.
  • known light sources such as tungsten lamps, halogen lamps, xenon lamps, xenon flash lamps, mercury lamps, mercury-xenon lamps, carbon arc lamps, and various lasers (for example, semiconductor lasers, (helium neon laser, argon ion laser, helium cadmium laser, or YAG laser), light emitting diodes, and cathode ray tubes.
  • lasers for example, semiconductor lasers, (helium neon laser, argon ion laser, helium cadmium laser, or YAG laser
  • Methods for obtaining linearly polarized light include methods using a polarizing plate (for example, an iodine polarizing plate, a dichroic dye polarizing plate, or a wire grid polarizing plate), a method using a prism-based element (for example, a Glan-Thompson prism), or a method using a Brewster angle.
  • a polarizing plate for example, an iodine polarizing plate, a dichroic dye polarizing plate, or a wire grid polarizing plate
  • a prism-based element for example, a Glan-Thompson prism
  • a Brewster angle for example, a a Brewster angle
  • Examples include a method using a reflective polarizer and a method using light emitted from a polarized laser light source.
  • only light of a required wavelength may be selectively irradiated using a filter, a wavelength conversion element, or the like.
  • the irradiated light is linearly polarized light
  • a method of irradiating the light from the top or back surface of the alignment layer in a direction perpendicular to or oblique to the surface of the alignment layer can be mentioned.
  • the incident angle of light varies depending on the photo-alignment material, but is preferably 0° to 90° (perpendicular), more preferably 40° to 90°, with respect to the alignment layer.
  • the non-polarized light When using non-polarized light, the non-polarized light is irradiated obliquely from the top or back surface of the alignment layer.
  • the angle of incidence is preferably 10° to 80°, more preferably 20° to 60°, even more preferably 30° to 50°.
  • the irradiation time is preferably 1 minute to 60 minutes, more preferably 1 minute to 10 minutes.
  • the laminate may have layers other than the dichroic dye layer, the layer expressing structural color, the colored layer, and the alignment layer.
  • a protective layer includes a protective layer, an adhesive layer, an easy-to-adhesion layer, an ultraviolet absorbing layer, a self-healing layer, an antistatic layer, an antifouling layer, an electromagnetic shielding layer, a conductive layer, etc., which are known layers in a laminate. Can be mentioned.
  • compositions layer-forming composition
  • a composition layer-forming composition
  • these layers are applied in a layered manner and then dried.
  • each layer of the laminate is not limited.
  • Each layer of the laminate may be arranged as follows. "/" indicates a layer boundary. Further, it is assumed that the left side is the viewing side. Further, depending on the purpose of the laminate, each layer may have one layer alone, or two or more layers.
  • Dichroic dye layer/Layer that expresses structural color (2) Dichroic dye layer/Adhesive layer/Layer that expresses structural color (3) Dichroic dye layer/Layer that expresses structural color/Group Material (4) Dichroic dye layer/Adhesive layer/Layer that expresses structural color/Substrate (5) Dichroic dye layer/Layer that expresses structural color/Adhesive layer/Substrate (6) Dichroic dye Layer/Adhesive layer 1/Layer that expresses structural color/Adhesive layer 2/Substrate (7) Dichroic dye layer/Layer that expresses structural color/Adhesive layer/Colored layer (8) Dichroic dye layer/Adhesive Layer 1/Layer that expresses structural color/Adhesive layer 2/Substrate (9) Dichroic dye layer/Layer that expresses structural color/Substrate/Colored layer (10) Dichroic dye layer/Adhesive layer/S
  • FIG. 1 is a schematic cross-sectional view showing an example of the layer structure of a laminate according to the present disclosure.
  • the laminate 20 shown in FIG. 1 includes a colored layer 22, a base material 24 on the colored layer 22, a layer 26 that exhibits a structural color on the base material 24, and an adhesive layer on the layer 26 that develops a structural color. 28, and a dichroic dye layer 30 on the adhesive layer 28.
  • the laminate according to the present disclosure includes decorative films, decorative panels, electronic devices (e.g., wearable devices, and smartphones), home appliances, audio products, computers, displays, and automotive products. It can be used to decorate display devices such as Among them, the decorative film according to the present disclosure can be suitably used for decorating electronic devices (for example, wearable devices and smartphones). Furthermore, since the laminate according to the present disclosure has excellent three-dimensional moldability, it is suitable as a decorative film for molding used in molding such as three-dimensional molding and insert molding, and is suitable as a decorative film for three-dimensional molding. It is more suitable as
  • the method for manufacturing the cleaning body according to the present disclosure is not particularly limited, and a known method may be used or the cleaning body may be manufactured by applying a known method.
  • a step of preparing a liquid crystal material having a base material, a liquid crystal compound oriented in a cholesteric spiral, and a liquid crystal layer containing a photosensitive chiral agent. (hereinafter also referred to as "liquid crystal material preparation step"), the liquid crystal layer is irradiated with first light to spread a portion of the photosensitive chiral agent from the surface of the liquid crystal layer to the inside in the thickness direction.
  • first exposure step a step of deactivating
  • second exposure step a step of curing the uncured portion by irradiating with second light
  • first heating step a step of heating the liquid crystal layer to turn it into a cholesteric liquid crystal phase
  • the liquid crystal material preparation step is a step of preparing a liquid crystal material having a base material, a liquid crystal layer containing a cholesteric spirally oriented liquid crystal compound (cholesteric liquid crystal compound), and a photosensitive chiral agent.
  • the liquid crystal layer preferably contains a cholesteric liquid crystal compound that can be aligned in a cholesteric spiral and a photosensitive chiral agent, and may contain other components as necessary.
  • the method for preparing the liquid crystal composition is not particularly limited, and the liquid crystal composition may be prepared, for example, by a method of mixing components such as a cholesteric liquid crystal compound and a chiral agent. As each component, those mentioned above can be suitably used.
  • the method for applying the liquid crystal composition to the substrate is not particularly limited, and examples include spray coating, spin coating, blade coating, dip coating, casting, roll coating, bar coating, die coating, and mist coating.
  • method inkjet method, dispenser method, screen printing method, letterpress printing method, and intaglio printing method.
  • the liquid crystal composition may be applied to the substrate and then dried.
  • drying method include heating drying and reduced pressure drying.
  • the heating temperature and heating time may be adjusted as appropriate depending on the type of solvent. Further, heating drying may be performed as part of the first heating step described below.
  • the first heating step is a step of heating the liquid crystal layer to form a cholesteric liquid crystal phase.
  • a cholesteric liquid crystal compound When a cholesteric liquid crystal compound is heated, as the heating temperature increases, the cholesteric liquid crystal compound changes from a crystalline state to an oriented state, and further from an oriented state to an isotropic state.
  • the first heating step by heating the liquid crystal layer containing the cholesteric liquid crystal compound, the cholesteric liquid crystal compound is brought into an oriented state, and the liquid crystal layer is made into a cholesteric liquid crystal phase in which the cholesteric liquid crystal compound is oriented.
  • the heating temperature in the first heating step may be adjusted as appropriate depending on the type of cholesteric liquid crystal compound so that the cholesteric liquid crystal compound is in an oriented state.
  • the heating time in the first heating step may be adjusted as appropriate depending on the heating temperature and the like.
  • the heating means is not particularly limited, and an oven, a hot plate, etc. may be used.
  • the first exposure step is a step of irradiating the liquid crystal layer with first light to deactivate a portion of the photosensitive chiral agent from the surface of the liquid crystal layer toward the inside in the thickness direction.
  • the first light is irradiated from either the base material side or the surface layer side, and the light is absorbed by the photosensitive chiral agent contained in the liquid crystal layer, so that the light is absorbed on the side closer to the light source.
  • the amount of deactivation of the photosensitive chiral agent is made larger than the amount of deactivation of the photosensitive chiral agent on the side far from the light source, preferably in the layer thickness direction, from the surface of the liquid crystal layer on the side irradiated with the first light in a gradation pattern.
  • the amount of the above-mentioned photosensitive chiral agent that is active in the photosensitive material may be increased.
  • the amount of the photosensitive chiral agent increases in a gradation form from the surface of the liquid crystal layer on the side irradiated with the first light, the amount of the photosensitive chiral agent increases by the time the liquid crystal layer is cured in the second exposure step.
  • the first light may be irradiated only once, or may be irradiated two or more times.
  • the exposure conditions for example, exposure means, exposure wavelength, exposure amount, exposure atmosphere, etc. may be adjusted as appropriate for each exposure.
  • the type of first light is not particularly limited, but in consideration of the reactivity of the components contained in the liquid crystal layer, it is preferable to use ultraviolet light.
  • ultraviolet light sources include ultra-high pressure mercury lamps, high-pressure mercury lamps, metal halide lamps, and light emission diodes (LEDs).
  • the wavelength range of the first light is not particularly limited, but when the first light is ultraviolet light, it is preferably 400 nm or less, more preferably 360 nm or less, and even more preferably 300 nm or less. When using light of 300 nm or less, the light absorption of the cholesteric liquid crystal compound makes it easier to control photocuring in the thickness direction.
  • the wavelength range can be adjusted, for example, by using an optical filter, using two or more types of optical filters, or using a light source with a specific wavelength.
  • the exposure amount of the first light is not particularly limited, and when the first light is ultraviolet light, it is preferably 0.1 mJ/cm 2 to 2,000 mJ/cm 2 , for example. From the viewpoint of controlling photocuring in the in-plane direction, the parallelism of ultraviolet rays is preferably 20° or less, more preferably 10° or less.
  • the first exposure step is performed in a low oxygen atmosphere (oxygen concentration 1,000 ppm or less, that is, does not contain oxygen or exceeds 0 ppm and 1,000 ppm
  • the step may be carried out in an atmosphere containing oxygen (an atmosphere containing oxygen), and more preferably carried out in an atmosphere containing oxygen (atmosphere or an atmosphere containing 1000 ppm or more and less than 21% oxygen). Since radical polymerization is inhibited by oxygen, control of photocuring in the thickness direction becomes easier.
  • the first exposure step is performed in a low oxygen atmosphere (preferably an oxygen concentration of 1,000 ppm or less, that is, an atmosphere containing no oxygen or more than 0 ppm and 1,000 ppm or less of oxygen) from the viewpoint of promoting hardening of the liquid crystal layer. ), and more preferably under a nitrogen atmosphere.
  • a low oxygen atmosphere preferably an oxygen concentration of 1,000 ppm or less, that is, an atmosphere containing no oxygen or more than 0 ppm and 1,000 ppm or less of oxygen
  • the first exposure step is preferably performed at a temperature of 50°C or lower, more preferably 40°C or lower, and particularly preferably performed at a temperature of 0°C or higher and 35°C or lower, from the viewpoint of maintaining the change in the helical pitch of the liquid crystal layer. .
  • the first light may be irradiated through a first patterning mask having a plurality of regions having different transmittances of the first light.
  • a first patterning mask having a plurality of regions having different transmittances of the first light.
  • multiple regions of the liquid crystal layer can be exposed with different exposure doses, so multiple regions with different thicknesses are formed in a single layer in the in-plane direction, and the reflectance in the in-plane direction is can be controlled all at once.
  • the first light may be irradiated through a filter having a different transmittance depending on the wavelength.
  • the filter may be a filter that adjusts the exposure amount of the first light.
  • a mask may be used in which the transmittance of the wavelength absorbed by the photopolymerization initiator is lowered, for example, to 0%, so as not to generate polymerization initiation species from the photopolymerization initiator used.
  • Examples of the first patterning mask include a photomask in which a pattern is formed by etching a metal film, and a pattern printed using various printing methods (for example, printing with a laser printer or inkjet printer, gravure printing, and screen printing). Examples include photomasks.
  • a photomask patterned by etching a metal film can be obtained, for example, by forming a metal chromium film on a quartz substrate by sputtering and then patterning the film using a photoresist.
  • Preferred examples of the filter include those in which a dielectric multilayer film is deposited on a transparent substrate such as glass. Further, as the filter, for example, a known bandpass filter can be used.
  • the first patterning mask or filter When the first patterning mask or filter is used to irradiate the first light, the first patterning mask or filter may be placed on the opposite side of the base material to the side having the liquid crystal layer, and May be placed on the side.
  • the first patterning mask or filter When the first patterning mask or filter is disposed on the side of the base material that has the liquid crystal layer, the first patterning mask or filter may be brought into contact with the liquid crystal layer and the first light may be irradiated, and the liquid crystal layer and the first patterning mask may be placed in contact with each other. The first light may be irradiated with a gap provided between them.
  • the transmittance of the first light is not particularly limited, but from the viewpoint of curing the liquid crystal layer more easily, the higher the transmittance is, the more preferable.
  • first patterning mask or filter When irradiating the first light using the first patterning mask or filter, only one type of first patterning mask or filter may be used, or two or more types of the first patterning mask or filter may be used. Further, the first patterning mask and the filter may be used together.
  • the second exposure step is a step of curing the liquid crystal layer by irradiating second light.
  • the helical pitch of the liquid crystal layer that has changed in the first exposure step can be cured and fixed by irradiation with the second light.
  • the second exposure step not only the uncured portion but also the entire liquid crystal layer may be exposed.
  • the second light may be irradiated from the side of the base material having the liquid crystal layer.
  • the type of second light is not particularly limited, but in consideration of the reactivity of components that may be included in the liquid crystal compound, it is preferable to use ultraviolet light.
  • ultraviolet light sources include ultra-high pressure mercury lamps, high-pressure mercury lamps, metal halide lamps, and light emitting diodes (LEDs).
  • the wavelength range of the second light is not particularly limited, and for example, light in the wavelength range of 250 nm to 400 nm can be used.
  • the wavelength range can be adjusted, for example, by using an optical filter, using two or more types of optical filters, or using a light source with a specific wavelength.
  • the exposure amount of the second light is not particularly limited, and when the second light is ultraviolet light, it is preferably 5 mJ/cm 2 to 2,000 mJ/cm 2 , for example.
  • the second exposure step is performed in a low oxygen atmosphere (preferably an oxygen concentration of 1,000 ppm or less, that is, an atmosphere that does not contain oxygen or contains more than 0 ppm and 1,000 ppm or less of oxygen) in order to accelerate curing. It is preferable that the reaction be carried out under a nitrogen atmosphere, and more preferably that it be carried out under a nitrogen atmosphere.
  • a low oxygen atmosphere preferably an oxygen concentration of 1,000 ppm or less, that is, an atmosphere that does not contain oxygen or contains more than 0 ppm and 1,000 ppm or less of oxygen
  • the second exposure step is preferably performed at a temperature of 50°C or lower, more preferably 40°C or lower, and preferably performed at a temperature of 0°C or higher and 35°C or lower, from the viewpoint of maintaining the change in the helical pitch of the liquid crystal layer until curing. Particularly preferred.
  • the method for manufacturing a laminate according to the present disclosure includes a dichroic dye layer forming step of forming a dichroic dye layer.
  • the dichroic dye layer forming step is a step of applying and drying the composition for forming a dichroic dye layer on the layer expressing a structural color, and polymerizing it by light exposure, if necessary. It is preferable.
  • the conditions for polymerization by light exposure are preferably the same as in the second exposure step.
  • the method for manufacturing a decorative film according to the present disclosure may include steps other than the above steps, as necessary.
  • Other steps include, for example, a step of peeling off the base material from a decorative film produced in an embodiment that includes the base material, and a decorated film that does not include the base material can be produced.
  • other steps include a colored layer forming step, an alignment layer forming step, and another layer forming step.
  • the details and formation method of the colored layer and alignment layer are as described above. Further, the details of the other layers are as described above, and known methods may be used to form the other layers.
  • the laminate according to the present disclosure can be used for various purposes, and for example, the laminate can be molded and used as a molded product.
  • the decorative film according to the present disclosure includes the laminate according to the present disclosure, and may be formed by molding the laminate according to the present disclosure.
  • the article according to the present disclosure is an article provided with the laminate according to the present disclosure.
  • Such a laminate can be provided in a variety of articles. Such articles include, for example, electronic devices such as smartphones, mobile phones, and tablets, automobiles, electrical appliances, packaging containers, etc., and can be particularly preferably used for electronic devices.
  • display devices such as a display, a smartphone, a mobile phone, and a tablet are more preferably mentioned.
  • a retardation film may be provided between the laminate according to the present disclosure and a display member such as a display.
  • a display member such as a display.
  • the retardation film known ones can be used.
  • the means for molding the laminate according to the present disclosure to obtain a molded body is not particularly limited, and may be, for example, a known method such as three-dimensional molding or insert molding. Furthermore, the means for applying the laminate according to the present disclosure to an article is not particularly limited, and any known method may be used as appropriate depending on the type of article.
  • a decorative panel according to the present disclosure includes a decorative film according to the present disclosure.
  • the shape of the decorative panel is not limited. The shape of the decorative panel may be determined depending on the application, for example.
  • the decorative panel may be, for example, flat. Further, the decorative panel may have a curved surface.
  • Decorative panels can be used, for example, for the interior and exterior of various articles. Articles include those mentioned above (eg, electronic devices, automobiles, and electrical products).
  • the decorative panel can be manufactured, for example, by bonding the surface of the decorative film on the layer side that exhibits the structural color and the surface of the member that will become the surface layer portion of the decorative panel.
  • the member that forms the surface layer of the decorative panel include a glass panel.
  • the above-mentioned adhesive layer can be used to bond the decorative film and the member that will become the surface layer of the decorative panel.
  • a molded decorative film may be used alone as a decorative panel without combining the decorative film and other members.
  • a display device according to the present disclosure is a display device including a decorative panel according to the present disclosure. Examples of display devices include displays, smartphones, mobile phones, tablets, and the like.
  • a base material As a base material, a polyethylene terephthalate (PET) film (Cosmoshine (registered trademark) A4160, manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m and having an easily adhesive layer on one side was prepared and used as the transparent base material 1.
  • PET polyethylene terephthalate
  • A4160 Cosmoshine (registered trademark) A4160, manufactured by Toyobo Co., Ltd.
  • undercoat layer 1 coating solution having the following composition was continuously applied onto the surface of the transparent substrate 1 without an easy-adhesion layer using a #14 wire bar. It was dried with warm air at 60°C for 60 seconds and then with warm air at 100°C for 120 seconds.
  • Liquid crystal composition 1 having the composition described below was prepared.
  • Liquid crystal compound having the structure shown below 1 80 parts by mass Liquid crystal compound having the structure shown below 2: 10 parts by mass Compound 3 having the structure shown below: 10 parts by mass Chiral agent 1 (photosensitive chiral agent, shown below) structure): 3.75 parts by mass Chiral agent 2 (LC-756: manufactured by BASF): 3.75 parts by mass Photoinitiator (IRGACURE127: manufactured by BASF): 0.5 parts by mass Surfactant 1 (Compound having the structure shown below): 0.64 parts by mass Organic solvent 1 (methyl ethyl ketone): 205 parts by mass Organic solvent 2 (cyclohexanone): 10 parts by mass
  • Liquid crystal compound 1 The following compound
  • Liquid crystal compound 2 The following compound
  • Surfactant 1 The following compound
  • Liquid crystal composition 1 was applied to the surface of transparent substrate 1 with undercoat layer 1 using a #3 wire bar coater. Thereafter, it was dried at 80°C for 120 seconds, and then heated to 25°C using an ultraviolet irradiation device using a metal halide lamp (MAL625NAL, manufactured by GS Yuasa Co., Ltd.), and passed through a bandpass filter 1 having the following characteristics into Table 1. Ultraviolet rays were irradiated with the exposure amount adjusted so that the wavelength was as described.
  • MAL625NAL metal halide lamp
  • a film printed with black ink was used as a mask on a polyethylene terephthalate (PET) film so that two different wavelength reflection areas were created between the liquid crystal layer and the ultraviolet irradiation device as shown in Table 1. mediated. Thereafter, in an atmosphere with an oxygen concentration of 5% by mass or less, 90 mJ/cm 2 of ultraviolet rays are irradiated at 120°C using an ultraviolet irradiation device using a metal halide lamp (MAL625NAL, manufactured by GS Yuasa Co., Ltd.).
  • MAL625NAL metal halide lamp
  • the bandpass filter 1 has a dielectric multilayer film deposited on a glass substrate (TEMPAX Float t2.0 mm manufactured by SHOTT), and has a transmittance of 0% for wavelengths of 350 nm to 450 nm or more, and an average transmittance of 70% for wavelengths of 310 nm to 330 nm. ⁇ 75%.
  • Dichroic dye layer forming composition 1 was applied onto the surface of the substrate S-1 using a bar number selected so that the thickness after drying would be the thickness listed in Table 1. Thereafter, it was dried at 180°C for 20 seconds, and then rapidly cooled to 20°C. Next, after aging at 75°C for 30 seconds, it was rapidly cooled to 20°C. Thereafter, 500 mJ/cm 2 of ultraviolet rays were irradiated with an ultraviolet irradiation device using a metal halide lamp (MAL625NAL, manufactured by GS Yuasa Co., Ltd.) at 40°C in an atmosphere with an oxygen concentration of 5% by mass or less. A color pigment layer 1 was formed.
  • a metal halide lamp MAL625NAL, manufactured by GS Yuasa Co., Ltd.
  • composition 1 (dichroic dye concentration 6.6% by mass) - Dichroic dye 1: 5.07 parts by mass Liquid crystal compound 2: 45.3 parts by mass Liquid crystal compound 3: 23 parts by mass Photopolymerization initiator (ADEKA Arkles NCI-730, manufactured by ADEKA Corporation) Chloroform 3% by mass Solution: 39 parts by mass 1% by mass solution of surfactant 3 in chloroform: 39 parts by mass 2% by mass solution of alignment agent 1 in chloroform: 41 parts by mass 2% by mass solution of chloroform in alignment agent 2: 41 parts by mass Organic solvent 1 (chloroform ): 758 parts
  • Dichroic dye 1 The following compound
  • Liquid crystal compound 2 The following compound (The number to the right of the parentheses representing the structural unit represents the mass ratio, and the number to the right of the parentheses of the ethylene oxide unit represents the number of repetitions.)
  • Liquid crystal compound 3 The following compound
  • Surfactant 3 The following compound (The number at the bottom right of the parentheses representing the structural unit represents the mass ratio.)
  • Aligning agent 1 The following compound
  • Aligning agent 2 The following compound
  • Example 2 A laminate of Example 2 was produced in the same manner as Example 1 except that the thickness of the dichroic dye layer was changed to 1.8 ⁇ m.
  • Example 3 The laminate of Example 3 was prepared in the same manner as in Example 1, except that the layer expressing structural color was produced without using a mask, and Layer 1 having structural color was changed to Layer 2 having structural color. Created.
  • Example 4 A laminate (layer structure: base material S-1/dichroic dye layer 1/Adhesive layer/Dielectric multilayer film/Transparent base material 1) was produced.
  • the dielectric multilayer film was produced by adjusting the film thickness so that the reflection wavelength was the reflection peak wavelength shown in Table 1, with reference to Example 1 of JP-A-2008-200861.
  • Comparative example 1 A laminate of Comparative Example 1 was produced in the same manner as in Example 1, except that no dichroic dye layer was formed (layer structure: base material S-1/adhesive layer/layer 1 expressing structural color). /Transparent base material 1).
  • a laminate (layer structure: base material S-1/adhesive layer/dielectric multilayer film/transparent base material 1) was produced in the same manner as in Example 4, except that the dichroic dye layer was not formed.
  • a measuring device using an integrating sphere measures the spectral reflectance of the object to be measured and the spectral reflectance of a completely diffuse reflecting surface, calculates a * and b * based on the following formula, and calculates the following from a * and b * .
  • the hue angle h was calculated based on Equation 2.
  • an SR-3 (spectral radiance meter, manufactured by Topcon Technohouse Co., Ltd.) was used as the sensor, and the sample was measured at an angle of declination of 5° and 55°. Evaluation was made based on the difference (°) in hue angle from an angle of 55°. Note that the above 5° and 55° are angles with respect to the normal direction of the laminate.
  • the viewing angle was -90° to +90° (in this case, the normal direction of the laminate was 0°).
  • the overlap of the wavelength bands of the absorption peak at absorption peak wavelength A in the absorption area and the absorption peak at reflection peak wavelength B in the reflection area was measured.
  • the wavelength band overlap is between the wavelength band B of the half-width of the absorption peak of the dichroic dye layer at a viewing angle of 55° and the reflection peak of the layer expressing structural color at a viewing angle of 55°. Evaluation was made using a wavelength band C that overlaps the wavelength band A of the half-width.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

This laminate has: a dichroic dye layer containing a dichroic dye; and a layer that exhibits a structural color. The dichroic dye layer has an absorption peak wavelength A in a wavelength range of 400-700 nm. The layer that exhibits a structural color has a reflection peak wavelength B in the wavelength range of 400-700 nm. The laminate has a wavelength bandwidth in which an absorption peak at the wavelength A and a reflection peak at the wavelength B overlap at least partially, when the laminate is viewed from the dichroic dye layer side at a viewing angle of -90° to 90°. This decorative film, article, decorative panel, and display device employ the laminate.

Description

積層体、加飾フィルム、物品、加飾パネル、及び、表示装置Laminates, decorative films, articles, decorative panels, and display devices
 本開示は、積層体、加飾フィルム、物品、加飾パネル、及び、表示装置に関する。 The present disclosure relates to a laminate, a decorative film, an article, a decorative panel, and a display device.
 従来の積層体としては、特許第6647182号公報又は特開2018-045715号公報に記載されたものが知られている。
 特許第6647182号公報には、二色性色素が配向して固定化された二色性色素層と、上記二色性色素層上に配置された反射層と、を有する積層体であって、上記二色性色素層が、上記二色性色素が垂直配向した状態で固定化された層であり、上記反射層がコレステリック液晶相を固定した層である、積層体が記載されている。
 特開2018-045715号公報には、二色性色素が配向して固定化された二色性色素層と、上記二色性色素層上に配置された吸収層又は反射層と、を有する積層体が記載されている。
As a conventional laminate, those described in Japanese Patent No. 6647182 or Japanese Unexamined Patent Publication No. 2018-045715 are known.
Japanese Patent No. 6647182 discloses a laminate including a dichroic dye layer in which a dichroic dye is oriented and fixed, and a reflective layer disposed on the dichroic dye layer, A laminate is described in which the dichroic dye layer is a layer in which the dichroic dye is fixed in a vertically aligned state, and the reflective layer is a layer in which a cholesteric liquid crystal phase is fixed.
JP 2018-045715A discloses a laminated layer including a dichroic dye layer in which a dichroic dye is oriented and fixed, and an absorbing layer or a reflective layer disposed on the dichroic dye layer. body is described.
 従来の光学フィルムとしては、特開2015-102811号公報に記載されたものが知られている。
 特開2015-102811号公報には、赤色光、緑色光、及び青色光を発光する自発光型の光源の発光面側に設けられ、上記赤色光の、緑色光、及び青色光それぞれの帯域のうち、少なくも一部の光を吸収する光学フィルムであって、上記光学フィルムの表面に平行な方向のうち少なくとも一の方向について、上記表面の法線方向に対して所定の角度だけ傾斜した方向における上記青色光の透過率が、少なくとも上記傾斜した方向における上記緑色光の透過率に比べて低い、又は、上記法線方向における上記赤色光の透過率が、少なくとも上記緑色光の透過率に比べて低いことを特徴とする、光学フィルムが記載されている。
As a conventional optical film, one described in JP-A-2015-102811 is known.
JP-A-2015-102811 discloses that a self-luminous type light source that emits red light, green light, and blue light is provided on the light emitting surface side of the light source, and that An optical film that absorbs at least part of the light, and in which at least one of the directions parallel to the surface of the optical film is tilted by a predetermined angle with respect to the normal direction of the surface. The transmittance of the blue light is lower than at least the transmittance of the green light in the inclined direction, or the transmittance of the red light in the normal direction is lower than the transmittance of the green light. An optical film is described that is characterized by low
 従来の表示装置としては、特開2018-147761号公報に記載されたものが知られている。
 特開2018-147761号公報には、発光層を有する基板と、上記基板の表示面の側に配置された円偏光板及び位相差層と、を備え、上記位相差層は、光吸収率の大きい軸方向が表示面に対して垂直配向した二色性色素を含む表示装置が記載されている。
As a conventional display device, one described in Japanese Unexamined Patent Publication No. 2018-147761 is known.
JP 2018-147761 A discloses a substrate having a light emitting layer, a circularly polarizing plate and a retardation layer disposed on the display surface side of the substrate, and the retardation layer has a light absorption rate. Display devices are described that include dichroic dyes with their major axes oriented perpendicular to the display surface.
 本開示の一実施形態が解決しようとする課題は、視野角依存性が小さい積層体を提供することである。
 本開示の他の実施形態が解決しようとする課題は、上記積層体を用いた加飾フィルム、物品、加飾パネル、及び、表示装置を提供することである。
A problem to be solved by an embodiment of the present disclosure is to provide a laminate with low viewing angle dependence.
A problem to be solved by other embodiments of the present disclosure is to provide a decorative film, an article, a decorative panel, and a display device using the above-mentioned laminate.
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 二色性色素を含む二色性色素層と、構造色を発現する層とを有し、上記二色性色素層が、波長400nm以上700nm以下の領域における吸収ピーク波長Aを有し、上記構造色を発現する層が、波長400nm以上700nm以下の領域における反射ピーク波長Bを有し、上記二色性色素層側から視野角-90°~90°で視認した場合に、上記波長Aにおける吸収ピークと上記波長Bにおける反射ピークとが、互いに少なくとも一部が重なる波長帯域を有する積層体。
<2> 上記構造色を発現する層が、誘電体多層膜からなる層、又は、コレステリック液晶層である<1>に記載の積層体。
<3> 上記二色性色素層の透過率中心軸と積層体の法線方向とのなす角度θが、0°~45°である<1>又は<2>に記載の積層体。
<4> 上記構造色を発現する層が、選択反射波長の異なる2以上の反射領域を有する<1>~<3>のいずれか1つに記載の積層体。
<5> 上記二色性色素層が、重合性基を有する液晶化合物少なくとも重合してなる層である<1>~<4>のいずれか1つに記載の積層体。
<6> 上記構造色を発現する層が、コレステリック液晶層である<1>~<5>のいずれか1つに記載の積層体。
<7> 上記コレステリック液晶層が、光照射により異性化する部位を有するカイラル剤を含む<6>に記載の積層体。
<8> 二色性色素を含む(好ましくは二色性色素が配向して固定化された)二色性色素層と、選択反射波長の異なる2以上の反射領域を有する、構造色を発現する層と、を有する積層体。
<9> 二色性色素層の透過率中心軸と積層体の法線方向とのなす角度θが、0°~45°である<8>に記載の積層体。
<10> <1>~<9>のいずれか1つに記載の積層体を備える加飾フィルム。
<11> <1>~<9>のいずれか1つに記載の積層体を備える物品。
<12> <10>に記載の加飾フィルムを備える加飾パネル。
<13> <12>に記載の加飾パネルを備える表示装置。
Means for solving the above problems include the following aspects.
<1> A dichroic dye layer containing a dichroic dye and a layer expressing a structural color, the dichroic dye layer having an absorption peak wavelength A in a wavelength range of 400 nm or more and 700 nm or less. , the layer expressing the structural color has a reflection peak wavelength B in a wavelength range of 400 nm or more and 700 nm or less, and when viewed from the dichroic dye layer side at a viewing angle of -90° to 90°, the above wavelength A laminate having a wavelength band in which the absorption peak at wavelength A and the reflection peak at wavelength B at least partially overlap each other.
<2> The laminate according to <1>, wherein the layer expressing the structural color is a layer made of a dielectric multilayer film or a cholesteric liquid crystal layer.
<3> The laminate according to <1> or <2>, wherein the angle θ between the transmittance center axis of the dichroic dye layer and the normal direction of the laminate is 0° to 45°.
<4> The laminate according to any one of <1> to <3>, wherein the layer expressing the structural color has two or more reflective regions having different selective reflection wavelengths.
<5> The laminate according to any one of <1> to <4>, wherein the dichroic dye layer is a layer formed by polymerizing at least a liquid crystal compound having a polymerizable group.
<6> The laminate according to any one of <1> to <5>, wherein the layer expressing the structural color is a cholesteric liquid crystal layer.
<7> The laminate according to <6>, wherein the cholesteric liquid crystal layer includes a chiral agent having a site that isomerizes upon irradiation with light.
<8> Expresses a structural color, having a dichroic dye layer containing a dichroic dye (preferably the dichroic dye is oriented and fixed) and two or more reflective regions with different selective reflection wavelengths. A laminate having a layer.
<9> The laminate according to <8>, wherein the angle θ between the central transmittance axis of the dichroic dye layer and the normal direction of the laminate is 0° to 45°.
<10> A decorative film comprising the laminate according to any one of <1> to <9>.
<11> An article comprising the laminate according to any one of <1> to <9>.
<12> A decorative panel comprising the decorative film according to <10>.
<13> A display device including the decorative panel according to <12>.
 本開示の一実施形態によれば、視野角依存性が小さい積層体を提供することができる。
 本開示の他の実施形態によれば、上記積層体を用いた加飾フィルム、物品、加飾パネル、及び、表示装置を提供することができる。
According to an embodiment of the present disclosure, a laminate with low viewing angle dependence can be provided.
According to other embodiments of the present disclosure, it is possible to provide a decorative film, an article, a decorative panel, and a display device using the above-mentioned laminate.
図1は、本開示に係る加飾フィルムの一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a decorative film according to the present disclosure. 図2は、二色性色素層の吸収ピークの半値幅の波長帯域と、構造色を発現する層の反射ピークの半値幅の波長帯域との重なりを説明するための図である。FIG. 2 is a diagram for explaining the overlap between the wavelength band of the half-width of the absorption peak of the dichroic dye layer and the wavelength band of the half-width of the reflection peak of the layer expressing structural color.
 以下、本開示に係る積層体について説明する。但し、本開示は、以下の実施形態に何ら限定されるものではなく、本開示の目的の範囲内において、適宜変更を加えて実施することができる。本開示の実施形態について図面を参照して説明する場合、重複する構成要素及び符号については、説明を省略することがある。図面において同一の符号を用いて示す構成要素は、同一の構成要素であることを意味する。図面における寸法の比率は、必ずしも実際の寸法の比率を表すものではない。 Hereinafter, the laminate according to the present disclosure will be explained. However, the present disclosure is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the purpose of the present disclosure. When describing embodiments of the present disclosure with reference to the drawings, descriptions of overlapping components and symbols may be omitted. Components indicated using the same reference numerals in the drawings mean the same components. The proportions of dimensions in the drawings do not necessarily represent the proportions of actual dimensions.
 本開示における基(原子団)の表記について、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本開示における「光」とは、活性光線又は放射線を意味する。
 本開示における「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光:Extreme Ultraviolet)、X線、及び電子線(EB:Electron Beam)等を意味する。
 本開示における「露光」とは、特に断らない限り、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線、X線、及びEUV光等による露光のみならず、電子線、及びイオンビーム等の粒子線による露光も含む。
 本開示において、「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
Regarding the notation of a group (atomic group) in the present disclosure, the notation that does not indicate substituted or unsubstituted includes not having a substituent as well as having a substituent. For example, the term "alkyl group" includes not only an alkyl group without a substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
"Light" in this disclosure means actinic rays or radiation.
"Active rays" or "radiation" in the present disclosure include, for example, the bright line spectrum of a mercury lamp, far ultraviolet rays typified by excimer lasers, extreme ultraviolet (EUV) light, X-rays, and electron beams (EB). Beam) etc.
Unless otherwise specified, "exposure" in this disclosure refers not only to exposure to the bright line spectrum of a mercury lamp, far ultraviolet rays typified by excimer lasers, extreme ultraviolet rays, X-rays, and EUV light, but also to electron beams and ion beams. This also includes exposure to particle beams such as.
In the present disclosure, "~" is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
 本開示において、(メタ)アクリレートはアクリレート及びメタクリレートを表し、(メタ)アクリルはアクリル及びメタクリルを表す。
 本開示において、樹脂成分の重量平均分子量(Mw)、樹脂成分の数平均分子量(Mn)、及び樹脂成分の分散度(分子量分布ともいう)(Mw/Mn)は、GPC(Gel Permeation Chromatography)装置(東ソー(株)製HLC-8120GPC)によるGPC測定(溶媒:テトラヒドロフラン、流量(サンプル注入量):10μL、カラム:東ソー(株)製TSK gel Multipore HXL-M、カラム温度:40℃、流速:1.0mL/分、検出器:示差屈折率検出器(Refractive Index Detector))によるポリスチレン換算値として定義される。
In this disclosure, (meth)acrylate refers to acrylate and methacrylate, and (meth)acrylic refers to acrylic and methacrylic.
In the present disclosure, the weight average molecular weight (Mw) of the resin component, the number average molecular weight (Mn) of the resin component, and the degree of dispersion (also referred to as molecular weight distribution) (Mw/Mn) of the resin component are measured using a GPC (Gel Permeation Chromatography) apparatus. GPC measurement using (HLC-8120GPC manufactured by Tosoh Corporation) (solvent: tetrahydrofuran, flow rate (sample injection amount): 10 μL, column: TSK gel Multipore HXL-M manufactured by Tosoh Corporation, column temperature: 40°C, flow rate: 1 .0 mL/min, detector: Defined as a polystyrene equivalent value determined by a differential refractive index detector (Refractive Index Detector).
 本開示において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する該当する複数の物質の合計量を意味する。
 本明細書開示において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において「全固形分」とは、組成物の全組成から溶媒を除いた成分の総質量をいう。また、「固形分」とは、組成物の全組成から溶媒を除いた成分であり、例えば、25℃において固体であっても、液体であってもよい。
 本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 また、本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
In the present disclosure, if there are multiple substances corresponding to each component in the composition, unless otherwise specified, the amount of each component in the composition means the total amount of the multiple substances present in the composition. do.
In the present disclosure, the term "step" is used not only to refer to an independent process but also to include any process that achieves its intended purpose even if it cannot be clearly distinguished from other processes. .
In the present disclosure, "total solid content" refers to the total mass of the components excluding the solvent from the entire composition of the composition. Further, the "solid content" refers to the components excluding the solvent from the entire composition of the composition, and may be solid or liquid at 25° C., for example.
In the present disclosure, "mass %" and "weight %" have the same meaning, and "mass parts" and "weight parts" have the same meaning.
Furthermore, in the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
(積層体)
 本開示に係る積層体の第一の実施態様は、二色性色素を含む二色性色素層と、構造色を発現する層とを有し、上記二色性色素層が、波長400nm以上700nm以下の領域における吸収ピーク波長Aを有し、上記構造色を発現する層が、波長400nm以上700nm以下の領域における反射ピーク波長Bを有し、上記二色性色素層側から視野角-90°~90°で視認した場合に、上記波長Aにおける吸収ピークと上記波長Bにおける反射ピークとが、互いに少なくとも一部が重なる波長帯域を有する。
 本開示に係る積層体の第二の実施態様は、二色性色素を含む二色性色素層と、選択反射波長の異なる2以上の反射領域を有する、構造色を発現する層とを有する。
(laminate)
A first embodiment of the laminate according to the present disclosure has a dichroic dye layer containing a dichroic dye and a layer expressing a structural color, and the dichroic dye layer has a wavelength of 400 nm or more and 700 nm. The layer expressing the structural color has an absorption peak wavelength A in the following region, has a reflection peak wavelength B in a wavelength range of 400 nm or more and 700 nm or less, and has a viewing angle of −90° from the dichroic dye layer side. When viewed at an angle of ~90°, the absorption peak at the wavelength A and the reflection peak at the wavelength B have a wavelength band in which at least a portion thereof overlaps with each other.
A second embodiment of the laminate according to the present disclosure includes a dichroic dye layer containing a dichroic dye and a layer expressing a structural color, which has two or more reflective regions with different selective reflection wavelengths.
 なお、本明細書において、特に断りなく、単に「本開示に係る積層体」又は「積層体」という場合は、上記第一の実施態様及び上記第二の実施態様の両方について述べるものとする。 In this specification, unless otherwise specified, when the term "laminate according to the present disclosure" or "laminate" is used, both the first embodiment and the second embodiment are described.
 従来の構造色を発現する層を有する積層体は、Bragg反射の原理に基づき色が見えることから、斜めから見ると色味が短波シフトして見える視野角依存性を有するという問題が生じる場合があった。
 本発明者らが詳細に検討した結果、上記態様とすることにより、視野角依存性が小さい積層体が得られることを本発明者は見出した。
 二色性色素は、異方性のある媒質中に分散して配向させると、ある方向からは着色して見え、上記ある方向に対し垂直な方向からは他の色に着色又はほとんど無色に見える色素である。
 積層体において、波長400nm以上700nm以下の領域における吸収ピーク波長Aを有する二色性色素層と、波長400nm以上700nm以下の領域における反射ピーク波長Bを有する構造色を発現する層とを有し、上記二色性色素層側から-90°~90°(二色性色素層の法線方向からみた場合を0°とする)で視認した場合に、上記波長Aにおける吸収ピークと上記波長Bにおける反射ピークとが互いに少なくとも一部が重なる波長帯域を有するか、又は、二色性色素が配向して固定化された二色性色素層と、選択反射波長の異なる2以上の反射領域を有する構造色を発現する層とを有するため、上記二色性色素層による観察角度に応じた吸収量の変化により、構造色を発現する層による観察角度に応じた色の変化を抑制又は相殺し、視野角依存性が小さい積層体が得られると推定している。
Conventional laminates that have layers that express structural colors can be seen in color based on the principle of Bragg reflection, so when viewed from an angle, the problem may arise that the color has a viewing angle dependency that appears to be short-wave shifted. there were.
As a result of detailed studies by the present inventors, the present inventors have found that by adopting the above aspect, a laminate with low viewing angle dependence can be obtained.
When dichroic pigments are dispersed and oriented in an anisotropic medium, they appear colored when viewed from a certain direction, and appear colored in another color or almost colorless when viewed from a direction perpendicular to the above-mentioned direction. It is a pigment.
The laminate includes a dichroic dye layer having an absorption peak wavelength A in a wavelength range of 400 nm to 700 nm, and a layer expressing a structural color having a reflection peak wavelength B in a wavelength range of 400 nm to 700 nm, When viewed from the dichroic dye layer side at -90° to 90° (0° is when viewed from the normal direction of the dichroic dye layer), the absorption peak at the wavelength A and the absorption peak at the wavelength B A structure having a wavelength band in which the reflection peaks at least partially overlap with each other, or a dichroic dye layer in which a dichroic dye is oriented and fixed, and two or more reflection regions having different selective reflection wavelengths. Since the dichroic dye layer has a layer that expresses color, the change in absorption amount depending on the viewing angle by the dichroic dye layer suppresses or offsets the change in color depending on the viewing angle due to the layer that expresses structural color, and improves the visual field. It is estimated that a laminate with small angular dependence can be obtained.
〔吸収ピーク波長Aと反射ピーク波長Bとの関係〕
 本開示に係る積層体の第一の実施態様は、上記二色性色素層が、波長400nm以上700nm以下の領域における吸収ピーク波長Aを有し、上記構造色を発現する層が、波長400nm以上700nm以下の領域における反射ピーク波長Bを有し、上記二色性色素層側から-90°~90°で視認した場合に、上記波長Aにおける吸収ピークと上記波長Bにおける反射ピークとが、互いに少なくとも一部が重なる波長帯域を有する。
[Relationship between absorption peak wavelength A and reflection peak wavelength B]
In a first embodiment of the laminate according to the present disclosure, the dichroic dye layer has an absorption peak wavelength A in a wavelength range of 400 nm or more and 700 nm or less, and the layer expressing the structural color has a wavelength of 400 nm or more. It has a reflection peak wavelength B in a region of 700 nm or less, and when viewed from -90° to 90° from the dichroic dye layer side, the absorption peak at the wavelength A and the reflection peak at the wavelength B are different from each other. They have wavelength bands that at least partially overlap.
「波長400nm以上700nm以下の領域における吸収ピーク波長A」は、視野角-90°~90°における少なくともいずれかの視野角から測定された吸収波形でのピーク波長であり、視野角-90°~-30°又は30°~90°の少なくともいずれかの視野角から測定された吸収波形でのピーク波長であることが好ましく、視野角-80°~-45°又は45°~80°で測定された吸収波形でのピーク波長であることがさらに好ましい。
「波長400nm以上700nm以下の領域における反射ピーク波長B」とは、視野角-90°~90°の少なくともいずれかの視野角から測定された反射波形でのピーク波長であり、視野角-90°~-30°又は30°~90°の少なくともいずれかの視野角から測定された反射波形でのピーク波長であることが好ましく、視野角-80°~-45°又は45°~80°で測定された反射波形でのピーク波長であることがさらに好ましい。
"Absorption peak wavelength A in the wavelength range of 400 nm or more and 700 nm or less" is the peak wavelength in the absorption waveform measured from at least one of the viewing angles between -90° and 90°; It is preferably the peak wavelength in the absorption waveform measured from at least one viewing angle of -30° or 30° to 90°, and the peak wavelength is preferably measured at a viewing angle of -80° to -45° or 45° to 80°. More preferably, the wavelength is the peak wavelength in the absorption waveform.
"Reflection peak wavelength B in the wavelength range from 400 nm to 700 nm" is the peak wavelength in the reflected waveform measured from at least one of the viewing angles of -90° to 90°; It is preferably the peak wavelength in the reflected waveform measured from at least one viewing angle of -30° or 30° to 90°, and measured at a viewing angle of -80° to -45° or 45° to 80°. More preferably, the wavelength is the peak wavelength of the reflected waveform.
 なお、「互いに少なくとも一部が重なる波長帯域を有する」とは、上記二色性色素層側から-90°~90°で視認した場合における少なくとも一部の角度に重なりのある上記波長帯域を有していればよく、吸収ピーク波長Aと反射ピーク波長Bとが同じである必要はなく、異なっていてもよく、また、吸収ピーク波長Aにおける吸収ピークの波長帯域の全体と反射ピーク波長Bにおける反射ピークの波長帯域の全体とが重なっている必要はなく、その一部の波長帯域が重なっていればよい。例えば、図2に示すように、視野角55°における二色性色素層の吸収ピークの半値幅の波長帯域Bと、視野角55°における構造色を発現する層の反射ピークの半値幅の波長帯域Aと、が重なる波長帯域Cを有していることが好ましい。 Note that "having wavelength bands that at least partially overlap with each other" refers to wavelength bands that overlap at least partially at an angle when viewed from the dichroic dye layer side at -90° to 90°. The absorption peak wavelength A and the reflection peak wavelength B do not need to be the same and may be different, and the entire wavelength band of the absorption peak at the absorption peak wavelength A and the reflection peak wavelength B It is not necessary that the entire wavelength band of the reflection peak overlaps, but it is sufficient that a part of the wavelength band overlaps. For example, as shown in FIG. 2, there is a wavelength band B that is the half-width of the absorption peak of the dichroic dye layer at a viewing angle of 55°, and a wavelength that is the half-width of the reflection peak of the layer that expresses structural color at the viewing angle of 55°. It is preferable that the wavelength band C overlaps with the band A.
 また、本開示に係る積層体の第二の実施態様は、視野角依存性を小さくする観点から、上記二色性色素層が、波長400nm以上700nm以下の領域における吸収ピーク波長Aを有し、上記構造色を発現する層が、波長400nm以上700nm以下の領域における反射ピーク波長Bを有し、上記二色性色素層側から-90°~90°で視認した場合に、上記波長Aにおける吸収ピークと上記波長Bにおける反射ピークとが、互いに少なくとも一部が重なる波長帯域を有することが好ましい。 Further, in a second embodiment of the laminate according to the present disclosure, from the viewpoint of reducing viewing angle dependence, the dichroic dye layer has an absorption peak wavelength A in a wavelength range of 400 nm or more and 700 nm or less, The layer expressing the structural color has a reflection peak wavelength B in a wavelength range of 400 nm or more and 700 nm or less, and when viewed from the dichroic dye layer side at -90° to 90°, the absorption at the wavelength A It is preferable that the peak and the reflection peak at wavelength B have wavelength bands that at least partially overlap with each other.
 また、本開示に係る積層体は、視野角依存性を小さくする観点から、上記二色性色素層側から視野角-80°~-45°又は45~80°で視認した場合に、上記波長Aにおける吸収ピークと上記波長Bにおける反射ピークとが、互いに少なくとも一部が重なる波長帯域を有することが好ましい。上記態様であると、特に斜め方向から視認した場合の色相差を小さくすることができる。
 なお、上記二色性色素層側から視野角0°で視認した場合は、二色性色素層の法線方向(二色性色素層の厚さ方向)から視認した場合である。
Further, from the viewpoint of reducing viewing angle dependence, the laminate according to the present disclosure has the above wavelength when viewed from the dichroic dye layer side at a viewing angle of -80° to -45° or 45 to 80°. It is preferable that the absorption peak at wavelength A and the reflection peak at wavelength B have wavelength bands that at least partially overlap with each other. With the above aspect, it is possible to reduce the hue difference especially when viewed from an oblique direction.
Note that when viewed from the dichroic dye layer side at a viewing angle of 0°, it is viewed from the normal direction of the dichroic dye layer (thickness direction of the dichroic dye layer).
 本開示における吸収ピークは、測定対象となる二色性色素層又は構造色を発現する層等を、室温(23℃)、空気雰囲気下、自動絶対反射率測定ユニットARMN-735と分光光度計V-670EX(日本分光(株)製)を用いて55°の吸光度を測定し、得られた値から透過率を算出する。そして、吸収ピーク波長は、光の強度が極小となる波長(nm)である。 The absorption peak in the present disclosure is measured by measuring the dichroic dye layer to be measured or the layer expressing a structural color at room temperature (23°C) in an air atmosphere using an automatic absolute reflectance measuring unit ARMN-735 and a spectrophotometer V. The absorbance at 55° is measured using -670EX (manufactured by JASCO Corporation), and the transmittance is calculated from the obtained value. The absorption peak wavelength is the wavelength (nm) at which the light intensity is minimum.
〔二色性色素層〕
 本開示に係る積層体の第一の実施態様は、二色性色素を含む二色性色素層を有し、視野角依存性を小さくする観点から、上記二色性色素層が、二色性色素が配向して固定化された層であることが好ましい。
 本開示に係る積層体の第二の実施態様は、二色性色素を含む二色性色素層を有し、視野角依存性を小さくする観点から、上記二色性色素層が、二色性色素が配向して固定化された層であることが好ましい。
[Dichroic dye layer]
A first embodiment of the laminate according to the present disclosure has a dichroic dye layer containing a dichroic dye, and from the viewpoint of reducing viewing angle dependence, the dichroic dye layer has a dichroic dye layer. A layer in which the dye is oriented and fixed is preferable.
A second embodiment of the laminate according to the present disclosure has a dichroic dye layer containing a dichroic dye, and from the viewpoint of reducing viewing angle dependence, the dichroic dye layer has a dichroic dye layer. A layer in which the dye is oriented and fixed is preferable.
 ここで、二色性色素とは、光の吸収に異方性を示す色素であり、透過光の色が色素の分子軸方向によって異なる性質を有する色素を意味する。 Here, the dichroic dye is a dye that exhibits anisotropy in light absorption, and means a dye that has the property that the color of transmitted light differs depending on the molecular axis direction of the dye.
 本開示に係る積層体は、特に斜め方向から視認した場合の視野角依存性を小さくする観点から、上記二色性色素層の透過率中心軸と積層体の法線方向とのなす角度θが、0°~45°であることが好ましく、0°~20°であることがより好ましく、0°~10°であることが更に好ましく、0°~5°であることが特に好ましい。
 なお、二色性色素層の透過率中心軸とは、二色性色素層の吸収が最も小さくなる角度方向をいう。
 また、本開示に係る積層体は、特に斜め方向から視認した場合の視野角依存性を小さくする観点から、上記二色性色素層において、上記二色性色素層の厚さ方向と上記二色性色素の配向方向とのなす角度が、0°~20°であることが好ましく、0°~10°であることがより好ましく、0°~5°であることが特に好ましい。
 なお、上記二色性色素層が、二色性色素が配向して固定化された層である場合、上記二色性色素層の透過率中心軸と積層体の法線方向とのなす角度θと、上記二色性色素層の厚さ方向と上記二色性色素の配向方向とのなす角度とは同じ角度を意味する。
In the laminate according to the present disclosure, the angle θ between the transmittance center axis of the dichroic dye layer and the normal direction of the laminate is set from the viewpoint of reducing viewing angle dependence especially when viewed from an oblique direction. , preferably 0° to 45°, more preferably 0° to 20°, even more preferably 0° to 10°, particularly preferably 0° to 5°.
Note that the transmittance central axis of the dichroic dye layer refers to the angular direction in which the absorption of the dichroic dye layer is the smallest.
Further, in the laminate according to the present disclosure, from the viewpoint of reducing viewing angle dependence particularly when viewed from an oblique direction, in the dichroic dye layer, the thickness direction of the dichroic dye layer and the two colors are The angle formed with the orientation direction of the sexual dye is preferably 0° to 20°, more preferably 0° to 10°, particularly preferably 0° to 5°.
In addition, when the dichroic dye layer is a layer in which the dichroic dye is oriented and fixed, the angle θ between the transmittance center axis of the dichroic dye layer and the normal direction of the laminate. The angle formed by the thickness direction of the dichroic dye layer and the orientation direction of the dichroic dye means the same angle.
<二色性色素>
 本開示に係る積層体における二色性色素層は、二色性色素を含む。
 上記二色性色素としては特に限定はないが、例えば、アクリジン色素、アジン色素、アゾメチン色素、オキサジン色素、シアニン色素、メロシアニン色素、スクアリリウム色素、ナフタレン色素、アゾ色素、アントラキノン色素、ベンゾトリアゾール色素、ベンゾフェノン色素、ピラゾリン色素、ジフェニルポリエン色素、ビナフチルポリエン色素、スチルベン色素、ベンゾチアゾール色素、チエノチアゾール色素、ベンゾイミダゾール色素、クマリン色素、ニトロジフェニルアミン色素、ポリメチン色素、ナフトキノン色素、ペリレン色素、キノフタロン色素、スチルベン色素、インジゴ色素などが挙げられる。
<Dichroic dye>
The dichroic dye layer in the laminate according to the present disclosure contains a dichroic dye.
The dichroic dyes mentioned above are not particularly limited, but include, for example, acridine dyes, azine dyes, azomethine dyes, oxazine dyes, cyanine dyes, merocyanine dyes, squarylium dyes, naphthalene dyes, azo dyes, anthraquinone dyes, benzotriazole dyes, and benzophenone. Dyes, pyrazoline dyes, diphenylpolyene dyes, binaphthylpolyene dyes, stilbene dyes, benzothiazole dyes, thienothiazole dyes, benzimidazole dyes, coumarin dyes, nitrodiphenylamine dyes, polymethine dyes, naphthoquinone dyes, perylene dyes, quinophthalone dyes, stilbene dyes, Examples include indigo dyes.
 これらのうち、棒状の分子形状を有する二色性色素(以下、「棒状二色性色素」ともいう。)であることが好ましく、具体的には、アゾ色素又はアントラキノン色素であることがより好ましい。 Among these, dichroic dyes having a rod-shaped molecular shape (hereinafter also referred to as "rod-shaped dichroic dyes") are preferable, and specifically, azo dyes or anthraquinone dyes are more preferable. .
 アゾ色素としては、具体的には、例えば、下記式(1)で表されるもの(以下、「アゾ色素(1)」という。)が好適に挙げられる。 Specifically, preferred examples of the azo dye include those represented by the following formula (1) (hereinafter referred to as "azo dye (1)").
 上記式(1)中、nは1~4の整数であり、Ar及びArはそれぞれ独立に、下記の群より選択される基を表す。 In the above formula (1), n is an integer of 1 to 4, and Ar 1 and Ar 3 each independently represent a group selected from the following group.
 また、上記式(1)中、Arは、下記の群より選択される基を表し、nが2以上の場合は、Arは互いに同一であってもよく異なっていてもよい。 Moreover, in the above formula (1), Ar 2 represents a group selected from the following group, and when n is 2 or more, Ar 2 may be the same or different from each other.
 上記した基において、A及びAはそれぞれ独立に、下記の群より選択される基を表す。 In the above groups, A 1 and A 2 each independently represent a group selected from the group below.
 式中、mは0~10の整数であり、同一の基中にmが2つある場合、この2つのmは互いに同一であってもよく異なっていてもよい。 In the formula, m is an integer from 0 to 10, and when there are two m's in the same group, the two m's may be the same or different from each other.
 アゾ色素(1)のアゾ基の両側の置換基の位置異性は、トランスであることが好ましい。
 アゾ色素(1)としては、例えば、下記式(1-1)~式(1-58)で表される化合物などが挙げられる。なお、下記式(1-1)~式(1-58)中、アゾ基の両側の置換基の位置異性は、トランスであることが好ましい。
The positional isomerism of the substituents on both sides of the azo group of the azo dye (1) is preferably trans.
Examples of the azo dye (1) include compounds represented by the following formulas (1-1) to (1-58). In the following formulas (1-1) to (1-58), the positional isomerism of the substituents on both sides of the azo group is preferably trans.

 
 

 
 
 また、上記二色性色素は、重合性基を有していることが好ましく、例えば、重合性基としては、アクリル基、メタクリル基、ビニル基、ビニロキシ基、エポキシ基、又は、オキセタニル基が好ましく、反応性の観点からアクリル基、エポキシ基、又は、オキセタニル基が特に好ましい。 Further, the dichroic dye preferably has a polymerizable group. For example, the polymerizable group is preferably an acrylic group, a methacryl group, a vinyl group, a vinyloxy group, an epoxy group, or an oxetanyl group. From the viewpoint of reactivity, an acrylic group, an epoxy group, or an oxetanyl group is particularly preferred.
 重合性基を有する二色性色素の具体例としては、例えば、下記のような化合物等が挙げられる。 Specific examples of dichroic dyes having a polymerizable group include the following compounds.
 アントラキノン色素としては、式(1-59)で表される化合物が好ましい。 As the anthraquinone dye, a compound represented by formula (1-59) is preferred.

 

 
 式中、R~Rはそれぞれ独立に、水素原子、-R、-NH、-NHR、-NR2、-SR又はハロゲン原子を表し、Rは、炭素数1~4のアルキル基又は炭素数6~12のアリール基を表す。 In the formula, R 1 to R 8 each independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2, -SR x or a halogen atom, and R x has 1 to 1 carbon atoms. 4 alkyl group or an aryl group having 6 to 12 carbon atoms.
 二色性色素は、1種単独で含有されていても、又は2種以上を含有されていてもよい。
 二色性色素の含有量は、視野角依存性を小さくする観点から、二色性色素層の全質量に対し、0.5質量%~50質量%であることが好ましく、1質量%~30質量%であることがより好ましく、2質量%~20質量%であることが特に好ましい。
The dichroic dyes may be contained alone or in combination of two or more.
The content of the dichroic dye is preferably 0.5% to 50% by mass, and 1% to 30% by mass, based on the total mass of the dichroic dye layer, from the viewpoint of reducing viewing angle dependence. It is more preferably 2% by mass to 20% by mass.
 二色性色素層は、正面方向と斜め方向から見たときの色相の変化を更に大きくすることができる理由から、上述した二色性色素(特に棒状二色性色素)と、重合性基を有する液晶化合物とを少なくとも重合してなる層であることが好ましく、二色性色素及び液晶化合物がいずれも配向した状態で固定化された層であることがより好ましい。
 液晶化合物としては、棒状液晶化合物が好ましく挙げられる。
The dichroic dye layer contains the above-mentioned dichroic dye (especially rod-shaped dichroic dye) and a polymerizable group because it can further increase the change in hue when viewed from the front and from an oblique direction. It is preferable that the layer is formed by polymerizing at least a liquid crystal compound, and it is more preferable that the dichroic dye and the liquid crystal compound are both fixed in an oriented state.
Preferred examples of the liquid crystal compound include rod-like liquid crystal compounds.
<棒状液晶化合物>
 棒状液晶化合物としては、例えば、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類及びアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。
<Rod-shaped liquid crystal compound>
Examples of rod-like liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, and alkoxy-substituted phenylpyrimidines. , phenyldioxanes, tolans and alkenylcyclohexylbenzonitrile are preferably used.
 棒状液晶化合物が有する重合性基としては、エチレン性不飽和基、アルキニル基、エポキシ基、及び、アジリジニル基が含まれ、エチレン性不飽和基又はアルキニル基が好ましく、エチレン性不飽和性基が特に好ましい。
 重合性基は種々の方法で、液晶化合物の分子中に導入できる。液晶化合物が有する重合性基の個数は、好ましくは1個~6個、より好ましくは1個~3個である。
 重合性基を有する棒状液晶化合物としては、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開第95/22586号、国際公開第95/24455号、国際公開第97/00600号、国際公開第98/23580号、国際公開第98/52905号、特開平1-272551号公報、特開平6-16616号公報、特開平7-110469号公報、特開平11-80081号公報、特表平11-513019号公報の請求項1、特開2001-328973号公報、特開2005-289980号公報の段落0026~0098に記載された化合物などを用いることができる。
The polymerizable group contained in the rod-like liquid crystal compound includes an ethylenically unsaturated group, an alkynyl group, an epoxy group, and an aziridinyl group, with an ethylenically unsaturated group or an alkynyl group being preferred, and an ethylenically unsaturated group being particularly preferred. preferable.
The polymerizable group can be introduced into the molecules of the liquid crystal compound by various methods. The number of polymerizable groups that the liquid crystal compound has is preferably 1 to 6, more preferably 1 to 3.
As a rod-shaped liquid crystal compound having a polymerizable group, Makromol. Chem. , vol. 190, p. 2255 (1989), Advanced Materials vol. 5, p. 107 (1993), US Pat. No. 4,683,327, US Pat. No. 5,622,648, US Pat. , WO 95/24455, WO 97/00600, WO 98/23580, WO 98/52905, JP 1-272551, JP 6-16616, PT. Claim 1 of JP-A No. 7-110469, JP-A No. 11-80081, and Japanese Patent Publication No. 11-513019, and paragraphs 0026 to 0098 of JP-A No. 2001-328973 and JP-A No. 2005-289980 Compounds etc. can be used.
 棒状液晶化合物は、1種を単独で用いてよく、2種以上を併用してもよい。
 棒状液晶化合物又はその硬化物の含有量は、視野角依存性を小さくする観点から、二色性色素層の全量に対して、5質量%~99質量%であることが好ましく、10質量%~95質量%であることがより好ましく、20質量%~90質量%であることが特に好ましい。
One type of rod-like liquid crystal compound may be used alone, or two or more types may be used in combination.
The content of the rod-like liquid crystal compound or its cured product is preferably 5% by mass to 99% by mass, and 10% by mass to 10% by mass, based on the total amount of the dichroic dye layer, from the viewpoint of reducing viewing angle dependence. It is more preferably 95% by mass, and particularly preferably 20% by mass to 90% by mass.
<重合開始剤>
 二色性色素層の形成時に用いる二色性色素層形成用組成物は、重合開始剤を含有していることが好ましい。
 使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であるのが好ましい。
 光重合開始剤としては、例えば、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジン及びフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)及びオキサジアゾール化合物(米国特許第4212970号明細書記載)、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報、特開平10-29997号公報記載)等が挙げられる。
<Polymerization initiator>
The composition for forming a dichroic dye layer used when forming the dichroic dye layer preferably contains a polymerization initiator.
The polymerization initiator used is preferably a photopolymerization initiator that can initiate a polymerization reaction by irradiation with ultraviolet rays.
Examples of photopolymerization initiators include α-carbonyl compounds (described in U.S. Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in U.S. Pat. No. 2,448,828), and α-hydrocarbon substituted aromatics. group acyloin compounds (described in U.S. Pat. No. 2,722,512), polynuclear quinone compounds (described in U.S. Pat. 3549367), acridine and phenazine compounds (described in JP-A-60-105667, US Pat. No. 4,239,850), oxadiazole compounds (described in US Pat. No. 4,212,970), acylphosphines Oxide compounds (described in Japanese Patent Publication No. 63-40799, Japanese Patent Publication No. 5-29234, Japanese Patent Application Laid-Open No. 10-95788, and Japanese Patent Application Publication No. 10-29997) can be mentioned.
 二色性色素層形成用組成物は、1種又は2種以上の重合開始剤を含んでもよい。
 重合開始剤の含有量は、硬化性、及び、強度の観点から、二色性色素層形成用組成物の固形分の総量に対する重合開始剤の総量の割合は、0.05質量%~10質量%であることが好ましく、0.05質量%~5質量%以下であることがより好ましく、0.1質量%~2質量%であることが更に好ましく、0.2質量%~1質量%であることが特に好ましい。
The composition for forming a dichroic dye layer may contain one or more types of polymerization initiators.
The content of the polymerization initiator is from the viewpoint of curability and strength, and the ratio of the total amount of the polymerization initiator to the total solid content of the composition for forming a dichroic dye layer is 0.05% by mass to 10% by mass. %, more preferably 0.05% by mass to 5% by mass or less, even more preferably 0.1% to 2% by mass, and 0.2% to 1% by mass. It is particularly preferable that there be.
<バインダー樹脂>
 二色性色素層は、強度、耐傷性及び成型加工適正の観点から、バインダー樹脂を含んでいてもよい。バインダー樹脂の種類は、特に制限されない。バインダー樹脂は、所望の色を得る観点から、透明な樹脂であることが好ましく、具体的には、全光透過率が80%以上の樹脂であることが好ましい。全光透過率は、分光光度計(例えば、島津製作所社製の分光光度計「UV-2100」)により測定することができる。
<Binder resin>
The dichroic dye layer may contain a binder resin from the viewpoints of strength, scratch resistance, and suitability for molding. The type of binder resin is not particularly limited. From the viewpoint of obtaining a desired color, the binder resin is preferably a transparent resin, and specifically, a resin having a total light transmittance of 80% or more is preferable. The total light transmittance can be measured with a spectrophotometer (eg, spectrophotometer "UV-2100" manufactured by Shimadzu Corporation).
 バインダー樹脂としては、例えば、セルロース樹脂、アクリル樹脂、シリコーン樹脂、ポリエステル、ポリウレタン、ポリオレフィン等が挙げられる。バインダー樹脂は、単独重合体であってよく、共重合体であってもよい。
 中でも、セルロース樹脂が好ましく、セルロースアセテートがより好ましい。
Examples of the binder resin include cellulose resin, acrylic resin, silicone resin, polyester, polyurethane, and polyolefin. The binder resin may be a homopolymer or a copolymer.
Among these, cellulose resin is preferred, and cellulose acetate is more preferred.
 バインダー樹脂は、1種を単独で用いてよく、2種以上を併用してもよい。
 バインダー樹脂の含有量は、強度、耐傷性及び成型加工性の観点から、二色性色素層の全量に対して、5質量%~95質量%であることが好ましく、10質量%~90質量%であることがより好ましく、20質量%~60質量%であることが特に好ましい。
One type of binder resin may be used alone, or two or more types may be used in combination.
The content of the binder resin is preferably 5% by mass to 95% by mass, and 10% by mass to 90% by mass, based on the total amount of the dichroic dye layer, from the viewpoints of strength, scratch resistance, and moldability. It is more preferable that the amount is 20% by mass to 60% by mass.
<重合性化合物>
 二色性色素層は、強度、耐傷性及び成型加工適正の観点から、重合性化合物を含んでいてもよい。
 重合性化合物としては、特に制限はなく、公知の重合性化合物を用いることができる。中でも、エチレン性不飽和化合物が好ましく、(メタ)アクリレート化合物がより好ましい。
 また、重合性化合物は、単官能重合性化合物であっても、多官能重合性化合物であってもよい。多官能重合性化合物としては、後述する架橋剤が好適に挙げられる。
<Polymerizable compound>
The dichroic dye layer may contain a polymerizable compound from the viewpoints of strength, scratch resistance, and suitability for molding.
The polymerizable compound is not particularly limited, and known polymerizable compounds can be used. Among these, ethylenically unsaturated compounds are preferred, and (meth)acrylate compounds are more preferred.
Further, the polymerizable compound may be a monofunctional polymerizable compound or a polyfunctional polymerizable compound. Preferred examples of the polyfunctional polymerizable compound include crosslinking agents described below.
 重合性化合物は、1種を単独で用いてよく、2種以上を併用してもよい。
 重合性化合物の硬化物の含有量は、強度、耐傷性及び成型加工性の観点から、二色性色素層の全量に対して、5質量%~95質量%であることが好ましく、10質量%~90質量%であることがより好ましく、20質量%~60質量%であることが特に好ましい。
One type of polymerizable compound may be used alone, or two or more types may be used in combination.
The content of the cured product of the polymerizable compound is preferably 5% by mass to 95% by mass, and 10% by mass, based on the total amount of the dichroic dye layer, from the viewpoints of strength, scratch resistance, and molding processability. It is more preferably 90% by mass, and particularly preferably 20% by mass to 60% by mass.
<溶媒>
 二色性色素層の形成時に用いる二色性色素層形成用組成物は、二色性色素層を形成する作業性等の観点から、溶媒を含有するのが好ましい。
 溶媒としては、具体的には、例えば、ケトン類(例えば、アセトン、2-ブタノン、メチルイソブチルケトン、シクロヘキサノンなど)、エーテル類(例えば、ジオキサン、テトラヒドロフランなど)、脂肪族炭化水素類(例えば、ヘキサンなど)、脂環式炭化水素類(例えば、シクロヘキサンなど)、芳香族炭化水素類(例えば、トルエン、キシレン、トリメチルベンゼンなど)、ハロゲン化炭素類(例えば、ジクロロメタン、ジクロロエタン、ジクロロベンゼン、クロロトルエンなど)、エステル類(例えば、酢酸メチル、酢酸エチル、酢酸ブチルなど)、水、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、シクロヘキサノールなど)、セロソルブ類(例えば、メチルセロソルブ、エチルセロソルブなど)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシドなど)、アミド類(例えば、ジメチルホルムアミド、ジメチルアセトアミドなど)等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
<Solvent>
The composition for forming a dichroic dye layer used when forming the dichroic dye layer preferably contains a solvent from the viewpoint of workability in forming the dichroic dye layer.
Specifically, examples of the solvent include ketones (e.g., acetone, 2-butanone, methyl isobutyl ketone, cyclohexanone, etc.), ethers (e.g., dioxane, tetrahydrofuran, etc.), aliphatic hydrocarbons (e.g., hexane, etc.). ), alicyclic hydrocarbons (e.g., cyclohexane, etc.), aromatic hydrocarbons (e.g., toluene, xylene, trimethylbenzene, etc.), halogenated carbons (e.g., dichloromethane, dichloroethane, dichlorobenzene, chlorotoluene, etc.) ), esters (e.g. methyl acetate, ethyl acetate, butyl acetate, etc.), water, alcohols (e.g. ethanol, isopropanol, butanol, cyclohexanol, etc.), cellosolves (e.g. methyl cellosolve, ethyl cellosolve, etc.), cellosolve Examples include acetates, sulfoxides (e.g., dimethyl sulfoxide), amides (e.g., dimethylformamide, dimethylacetamide, etc.), and these may be used alone or in combination of two or more. .
 また、二色性色素層は、上述した以外の添加剤を含んでいてもよい。
 添加剤としては、公知の添加剤が挙げられ、例えば、後述する配向剤、界面活性剤等が挙げられる。
Further, the dichroic dye layer may contain additives other than those mentioned above.
Examples of the additive include known additives, such as alignment agents and surfactants described below.
<二色性色素層の形成方法>
 上記二色性色素層の形成方法としては、例えば、上述した二色性色素、並びに、任意の棒状液晶化合物、重合開始剤及び溶媒などを含有する二色性色素層形成用組成物を用いて、所望の配向状態とした後に、重合により固定化する方法などが挙げられる。
 ここで、重合条件は特に限定されないが、光照射による重合においては、紫外線を用いることが好ましい。照射量は、10mJ/cm~50J/cmであることが好ましく、20mJ/cm~5J/cmであることがより好ましく、30mJ/cm~3J/cmであることが更に好ましく、50mJ/cm~1,000mJ/cmであることが特に好ましい。
 また、重合反応を促進するため、加熱条件下で実施してもよい。
 なお、本開示においては、二色性色素層は、後述する本開示に係る積層体における任意の基材上に形成することができる。
<Method for forming dichroic dye layer>
The method for forming the dichroic dye layer includes, for example, using a composition for forming a dichroic dye layer containing the dichroic dye described above, an arbitrary rod-like liquid crystal compound, a polymerization initiator, a solvent, and the like. , a method of obtaining a desired orientation state and then immobilizing it by polymerization.
Here, polymerization conditions are not particularly limited, but in polymerization by light irradiation, it is preferable to use ultraviolet rays. The irradiation amount is preferably 10 mJ/cm 2 to 50 J/cm 2 , more preferably 20 mJ/cm 2 to 5 J/cm 2 , even more preferably 30 mJ/cm 2 to 3 J/cm 2 . , 50 mJ/cm 2 to 1,000 mJ/cm 2 is particularly preferred.
Moreover, in order to promote the polymerization reaction, it may be carried out under heating conditions.
Note that, in the present disclosure, the dichroic dye layer can be formed on any base material in the laminate according to the present disclosure, which will be described later.
 二色性色素層の厚さは、特に限定されないが、視野角依存性を小さくする観点から、0.05μm~10μmであることが好ましく、0.1μm~8μmであることがより好ましく、0.5μm~5μmであることが更に好ましく、1μm~3μmであることが特に好ましい。
 なお、各層の厚さは、各層の断面を走査電子顕微鏡(SEM;Scaning Electron Microscope)で観察して測定することができる。
The thickness of the dichroic dye layer is not particularly limited, but from the viewpoint of reducing viewing angle dependence, it is preferably 0.05 μm to 10 μm, more preferably 0.1 μm to 8 μm, and 0.05 μm to 10 μm, more preferably 0.1 μm to 8 μm. It is more preferably 5 μm to 5 μm, and particularly preferably 1 μm to 3 μm.
Note that the thickness of each layer can be measured by observing a cross section of each layer with a scanning electron microscope (SEM).
〔構造色を発現する層〕
 本開示に係る積層体の第一の実施態様は、構造色を発現する層を有し、視認性、及び、視野角依存性を小さくする観点から、選択反射波長の異なる2以上の反射領域を有する構造色を発現する層を有することが好ましい。
 本開示に係る積層体の第二の実施態様は、選択反射波長の異なる2以上の反射領域を有する、構造色を発現する層を有する。
 「構造色」とは、可視光の波長又は可視光の波長以下の微細構造と光とが干渉、回折、屈折、散乱などの相互作用することにより生じる色であり、魚の虹彩、クジャクの羽、昆虫の甲殻、モルフォ蝶、真珠、オパールの光沢など自然界にも多く見られる。
[Layer that expresses structural color]
A first embodiment of the laminate according to the present disclosure has a layer that exhibits a structural color, and from the viewpoint of reducing visibility and viewing angle dependence, two or more reflective regions with different selective reflection wavelengths are provided. It is preferable to have a layer that exhibits a structural color.
A second embodiment of the laminate according to the present disclosure includes a layer that exhibits structural color and has two or more reflective regions with different selective reflection wavelengths.
"Structural color" is the color that is produced when light interacts with the wavelength of visible light or fine structures at or below the wavelength of visible light through interference, diffraction, refraction, scattering, etc. It can also be found in many places in nature, such as insect shells, morpho butterflies, pearls, and the luster of opals.
 構造色を発現する層は、以下で定義される選択反射波長の中心波長(以下、「ピーク波長」又は単に「選択反射波長」ともいう。)を有することが好ましい。
 本開示において「選択反射波長の中心波長」とは、対象となる物(部材)における反射率の極大値、かつ、最大値(以下、単に「最大反射率」ともいう。)をRmax(%)とした場合、下記の式で表される半値反射率R1/2(%)を示す2つの波長の平均値のことをいう。但し、上記2つの波長のうち一方の波長は、Rmaxを示す波長よりも短い波長を含む波長域における最大波長とし、上記2つの波長のうち他方の波長は、上記Rmaxを示す波長よりも長い波長を含む波長域における最小波長とする。
 半値反射率を求める式:R1/2=Rmax÷2
It is preferable that the layer expressing a structural color has a center wavelength of selective reflection wavelength (hereinafter also referred to as "peak wavelength" or simply "selective reflection wavelength") defined below.
In the present disclosure, the "center wavelength of the selective reflection wavelength" refers to the maximum value of the reflectance in a target object (member), and the maximum value (hereinafter also simply referred to as "maximum reflectance") R max (% ), it refers to the average value of two wavelengths showing a half-value reflectance R 1/2 (%) expressed by the following formula. However, one of the two wavelengths is the maximum wavelength in the wavelength range that includes wavelengths shorter than the wavelength that indicates R max , and the other wavelength is the wavelength that is shorter than the wavelength that indicates R max . The minimum wavelength in the wavelength range that includes long wavelengths.
Formula for calculating half-value reflectance: R 1/2 = R max ÷ 2
 上記反射領域としては、視認性、及び、視野角依存性を小さくする観点から、波長380nm~820nmの範囲の少なくとも一部の光を選択的に反射することが好ましい。
 また、上記反射領域のうちの少なくとも1つは、視野角依存性を小さくする観点から、波長600nm~820nmの範囲の少なくとも一部の光を選択的に反射することが好ましく、波長700nm~820nmの範囲の少なくとも一部の光を選択的に反射することがより好ましい。
 更に、上記反射領域のうちの少なくとも2つは、視野角依存性を小さくする観点から、波長600nm~820nmの範囲の少なくとも一部の光を選択的に反射することが好ましく、波長700nm~820nmの範囲の少なくとも一部の光を選択的に反射することがより好ましい。
The reflective region preferably selectively reflects at least a portion of light in the wavelength range of 380 nm to 820 nm from the viewpoint of visibility and reducing viewing angle dependence.
Furthermore, from the viewpoint of reducing viewing angle dependence, at least one of the reflective regions preferably selectively reflects at least part of the light in the wavelength range of 600 nm to 820 nm, and More preferably, at least part of the light is selectively reflected.
Further, from the viewpoint of reducing viewing angle dependence, at least two of the reflective regions preferably selectively reflect at least part of the light in the wavelength range of 600 nm to 820 nm, and More preferably, at least part of the light is selectively reflected.
 構造色を発現する層の例としては、特に制限はないが、有機多層膜層、無機多層膜層、コレステリック液晶層等が挙げられる。中でも、構造色を発現する層は、誘電体多層膜からなる層、又は、コレステリック液晶層であることが好ましく、有機誘電体多層膜、無機誘電体多層膜からなる層、又は、コレステリック液晶層であることがより好ましく、コレステリック液晶層であることが特に好ましい。
 誘電体多層膜からなる層としては、特に制限はないが、2種の無機誘電体が交互に積層してなる層、及び、2種の有機誘電体が交互に積層してなる層等が挙げられる。
Examples of layers that exhibit structural color include, but are not particularly limited to, organic multilayer layers, inorganic multilayer layers, cholesteric liquid crystal layers, and the like. Among these, the layer expressing structural color is preferably a layer made of a dielectric multilayer film or a cholesteric liquid crystal layer, and is preferably a layer made of an organic dielectric multilayer film, an inorganic dielectric multilayer film, or a cholesteric liquid crystal layer. A cholesteric liquid crystal layer is particularly preferred.
There are no particular limitations on the layer made of the dielectric multilayer film, but examples include a layer formed by alternately laminating two types of inorganic dielectrics, a layer formed by alternately laminating two types of organic dielectrics, etc. It will be done.
<<有機多層膜層>>
 有機多層膜層としては、屈折率の高い樹脂層(層A)と屈折率の低い樹脂層(層B)とを積層した構造を有する層が好適に挙げられる。
 淡い色調の視認性、及び、視認角度による色味変化抑制の観点から、上記層Bは、上記層Aよりも、屈折率が0.1以上低い層であることが好ましく、屈折率が0.15以上低い層であることがより好ましく、屈折率が0.2以上低い層であることが更に好ましく、屈折率が0.25以上低い層であることが特に好ましく、屈折率が0.25以上0.60以下低い層であることが最も好ましい。
 上記層Aの屈折率は、淡い色調の視認性、及び、視認角度による色味変化抑制の観点から、1.5以上であることが好ましく、1.6以上であることがより好ましく、1.65以上であることが更に好ましく、1.70以上であることが特に好ましい。また、上限は、2.3以下であることが好ましく、1.9以下であることがより好ましい。
 上記層Bの屈折率は、淡い色調の視認性、及び、視認角度による色味変化抑制の観点から、1.5以下であることが好ましく、1.5未満であることがより好ましく、1.4以下であることが更に好ましく、1.35以下であることが特に好ましく、1.32以下であることが最も好ましい。また、下限は、1.1以上であることが好ましく、1.2以上であることがより好ましく、1.28以上であることが特に好ましい。
 本開示において、特段の断りがない限り、屈折率は、25℃において波長550nmでエリプソメーターを用いて測定した値である。
<<Organic multilayer film layer>>
As the organic multilayer film layer, a layer having a structure in which a resin layer with a high refractive index (layer A) and a resin layer with a low refractive index (layer B) are stacked is preferably mentioned.
From the viewpoint of visibility of pale colors and suppression of color change due to viewing angle, the layer B preferably has a refractive index lower than the layer A by 0.1 or more, and has a refractive index of 0.1 or more. It is more preferable that the layer has a low refractive index of 15 or more, it is even more preferable that the layer has a low refractive index of 0.2 or more, and it is particularly preferable that the layer has a low refractive index of 0.25 or more, and the refractive index is 0.25 or more. Most preferably, the layer is as low as 0.60 or less.
The refractive index of the layer A is preferably 1.5 or more, more preferably 1.6 or more, from the viewpoint of visibility of light color tone and suppression of color change due to viewing angle. It is more preferably 65 or more, and particularly preferably 1.70 or more. Further, the upper limit is preferably 2.3 or less, more preferably 1.9 or less.
The refractive index of the layer B is preferably 1.5 or less, more preferably less than 1.5, from the viewpoint of visibility of light color tone and suppression of color change due to viewing angle. It is more preferably 4 or less, particularly preferably 1.35 or less, and most preferably 1.32 or less. Further, the lower limit is preferably 1.1 or more, more preferably 1.2 or more, and particularly preferably 1.28 or more.
In the present disclosure, unless otherwise specified, the refractive index is a value measured using an ellipsometer at 25° C. and a wavelength of 550 nm.
 上記層A及び層B等の各層に用いられる樹脂としては、特に制限はないが、例えば、アクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリオレフィン樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂等が挙げられる。
 有機多層膜層における積層数は、2層以上であれば特に制限はないが、好ましくは100~2000層、より好ましくは500~1500層、更に好ましくは800~1000層である。
 上記層A及び上記層Bの厚さはそれぞれ独立に、淡い色調の視認性、及び、視認角度による色味変化抑制の観点から、50nm~1,000nmであることが好ましく、80nm~800nmであることがより好ましく、100nm~500nmであることが更に好ましく、100nm~300nmであることが特に好ましい。
The resin used for each layer such as layer A and layer B is not particularly limited, and examples thereof include acrylic resin, polycarbonate resin, polyester resin, polyolefin resin, epoxy resin, urethane resin, silicone resin, and the like.
The number of layers in the organic multilayer film layer is not particularly limited as long as it is two or more layers, but is preferably 100 to 2000 layers, more preferably 500 to 1500 layers, and even more preferably 800 to 1000 layers.
The thickness of the above-mentioned layer A and the above-mentioned layer B is preferably 50 nm to 1,000 nm, and 80 nm to 800 nm, independently from the viewpoint of visibility of pale color tone and suppression of color change depending on the viewing angle. It is more preferably 100 nm to 500 nm, and particularly preferably 100 nm to 300 nm.
<<無機多層膜層>>
 無機多層膜層としては、2種の無機化合物を交互に積層した構造を有する層が好適に挙げられる。
 また、淡い色調の視認性、及び、視認角度による色味変化抑制の観点から、2種の無機化合物は、屈折率の異なる化合物であることが好ましい。
 無機化合物としては、例えば、二酸化ケイ素、酸化アルミニウム、酸化ガリウム、酸化タングステン、酸化マグネシウム、フッ化バリウム、フッ化カルシウム、フッ化セリウム、フッ化ランタン、フッ化リチウム、フッ化ナトリウム、フッ化マグネシウム、フッ化ネオジム、フッ化イッテルビウム、フッ化イットリウム、フッ化ガドリニウム、炭酸カルシウム、臭化カリウム、一酸化チタン、二酸化チタン、五酸化ニオブ、酸化クロム、酸化セリウム、シリコン、酸化ジルコニウム、ガリウム砒素などが挙げられる。
 中でも、2種の無機化合物としては、淡い色調の視認性、及び、視認角度による色味変化抑制の観点から、無機酸化物の組み合わせが好ましく、五酸化ニオブ(Nb)又は二酸化チタン(TiO)と、二酸化ケイ素(SiO)又は酸化アルミニウム(Al)との組み合わせがより好ましく、五酸化ニオブと、二酸化ケイ素との組み合わせが特に好ましい。
<<Inorganic multilayer film layer>>
As the inorganic multilayer film layer, a layer having a structure in which two types of inorganic compounds are alternately laminated is preferably mentioned.
Further, from the viewpoint of visibility of light color tone and suppression of color change depending on the viewing angle, it is preferable that the two types of inorganic compounds are compounds having different refractive indexes.
Examples of inorganic compounds include silicon dioxide, aluminum oxide, gallium oxide, tungsten oxide, magnesium oxide, barium fluoride, calcium fluoride, cerium fluoride, lanthanum fluoride, lithium fluoride, sodium fluoride, magnesium fluoride, Neodymium fluoride, ytterbium fluoride, yttrium fluoride, gadolinium fluoride, calcium carbonate, potassium bromide, titanium monoxide, titanium dioxide, niobium pentoxide, chromium oxide, cerium oxide, silicon, zirconium oxide, gallium arsenide, etc. It will be done.
Among these, as the two types of inorganic compounds, a combination of inorganic oxides is preferable from the viewpoint of visibility of pale color tone and suppression of color change depending on the viewing angle, and niobium pentoxide (Nb 2 O 5 ) or titanium dioxide ( A combination of TiO 2 ) and silicon dioxide (SiO 2 ) or aluminum oxide (Al 2 O 3 ) is more preferred, and a combination of niobium pentoxide and silicon dioxide is particularly preferred.
 無機多層膜層における積層数は、2層以上であれば特に制限はないが、好ましくは2層~20層、より好ましくは4層~16層、更に好ましくは6層~14層である。
 無機多層膜層における各層の厚さはそれぞれ独立に、淡い色調の視認性、及び、視認角度による色味変化抑制の観点から、50nm~1,000nmであることが好ましく、80nm~800nmであることがより好ましく、100nm~500nmであることが更に好ましく、100nm~300nmであることが特に好ましい。
The number of laminated layers in the inorganic multilayer film layer is not particularly limited as long as it is 2 or more layers, but is preferably 2 to 20 layers, more preferably 4 to 16 layers, and still more preferably 6 to 14 layers.
The thickness of each layer in the inorganic multilayer film layer is preferably 50 nm to 1,000 nm, and preferably 80 nm to 800 nm, from the viewpoint of visibility of pale color tone and suppression of color change due to viewing angle. is more preferable, further preferably from 100 nm to 500 nm, and particularly preferably from 100 nm to 300 nm.
<<コレステリック液晶層>>
 構造色を発現する層は、コレステリック液晶層であることが好ましい。コレステリック液晶層は、コレステリック液晶相を含む層である。コレステリック液晶相は、公知の手段(例えば、偏光顕微鏡及び走査型電子顕微鏡)によって確認される。
<<Cholesteric liquid crystal layer>>
The layer expressing structural color is preferably a cholesteric liquid crystal layer. The cholesteric liquid crystal layer is a layer containing a cholesteric liquid crystal phase. The cholesteric liquid crystal phase is confirmed by known means (eg, polarized light microscopy and scanning electron microscopy).
 コレステリック液晶相は、複数の液晶化合物が螺旋状に並ぶことによって形成されることが知られている。コレステリック液晶相における液晶化合物の配向状態は、右円偏光、左円偏光又は右円偏光及び左円偏光の両方を反射する配向状態であってもよい。コレステリック液晶相における液晶化合物の配向状態は、固定化されていてもよい。液晶化合物の配向状態は、例えば、液晶化合物の重合又は架橋によって固定化される。配向状態が固定化された液晶化合物の一部又は全部において、液晶化合物の液晶性は失われてもよい。 It is known that a cholesteric liquid crystal phase is formed by a plurality of liquid crystal compounds arranged in a spiral shape. The alignment state of the liquid crystal compound in the cholesteric liquid crystal phase may be an alignment state that reflects right-handed circularly polarized light, left-handed circularly polarized light, or both right-handed circularly polarized light and left-handed circularly polarized light. The alignment state of the liquid crystal compound in the cholesteric liquid crystal phase may be fixed. The alignment state of the liquid crystal compound is fixed, for example, by polymerization or crosslinking of the liquid crystal compound. The liquid crystallinity of the liquid crystal compound may be lost in part or all of the liquid crystal compound whose alignment state has been fixed.
 コレステリック液晶層は、加飾用材料の意匠に寄与する。例えば、加飾用材料の色及び観察角度に応じた加飾用材料の色の変化の度合いは、コレステリック液晶相における螺旋ピッチ、コレステリック液晶層の屈折率及びコレステリック液晶層の厚さによって調整される。螺旋ピッチは、カイラル剤の添加量によって調整されてもよい。螺旋構造とカイラル剤との関係は、例えば、「富士フイルム研究報告、No.50(2005年)、p.60-63」に記載されている。また、螺旋ピッチは、コレステリック液晶相を固定する際の温度、照度及び照射時間といった条件によって調整されてもよい。 The cholesteric liquid crystal layer contributes to the design of the decorative material. For example, the color of the decorative material and the degree of change in the color of the decorative material depending on the viewing angle are adjusted by the helical pitch in the cholesteric liquid crystal phase, the refractive index of the cholesteric liquid crystal layer, and the thickness of the cholesteric liquid crystal layer. . The helical pitch may be adjusted by the amount of chiral agent added. The relationship between the helical structure and the chiral agent is described, for example, in "Fujifilm Research Report, No. 50 (2005), pp. 60-63." Moreover, the helical pitch may be adjusted by conditions such as temperature, illumination intensity, and irradiation time when fixing the cholesteric liquid crystal phase.
 本開示に係る積層体は、2つ以上のコレステリック液晶層を含んでもよい、2つ以上のコレステリック液晶層の組成は、同じであっても互いに異なっていてもよい。 The laminate according to the present disclosure may include two or more cholesteric liquid crystal layers, and the compositions of the two or more cholesteric liquid crystal layers may be the same or different from each other.
 反射率の観点から、コレステリック液晶層の厚さは、0.3μm~15μmであることが好ましく、0.5μm~9μmであることがより好ましく、0.6μm~7μmであることが更に好ましい。積層体が2つ以上のコレステリック液晶層を含む場合、2つ以上のコレステリック液晶層の厚さは、それぞれ独立に、既述した範囲内であることが好ましい。 From the viewpoint of reflectance, the thickness of the cholesteric liquid crystal layer is preferably 0.3 μm to 15 μm, more preferably 0.5 μm to 9 μm, and even more preferably 0.6 μm to 7 μm. When the laminate includes two or more cholesteric liquid crystal layers, it is preferable that the thicknesses of the two or more cholesteric liquid crystal layers are each independently within the range described above.
 コレステリック液晶層の成分は、例えば、目的とするコレステリック液晶層の特性に応じて、公知のコレステリック液晶層の成分から選択される。コレステリック液晶層の成分としては、例えば、後述する液晶組成物の成分が挙げられる。ただし、コレステリック液晶層が液晶組成物の硬化を経て形成される場合、液晶組成物における重合性化合物の一部又は全部は、コレステリック液晶層において重合体(オリゴマーを含む。)を形成してもよい。重合性化合物としては、例えば、重合性基を有する化合物が挙げられる。 The components of the cholesteric liquid crystal layer are selected from known components of cholesteric liquid crystal layers, depending on the desired characteristics of the cholesteric liquid crystal layer, for example. Examples of the components of the cholesteric liquid crystal layer include components of the liquid crystal composition described below. However, when the cholesteric liquid crystal layer is formed through curing of the liquid crystal composition, some or all of the polymerizable compounds in the liquid crystal composition may form a polymer (including oligomers) in the cholesteric liquid crystal layer. . Examples of the polymerizable compound include compounds having a polymerizable group.
 コレステリック液晶層は、液晶化合物を含む組成物(以下、「液晶組成物」という場合がある。)を硬化してなる層であることが好ましい。以下、液晶組成物の態様を具体的に説明する。 The cholesteric liquid crystal layer is preferably a layer formed by curing a composition containing a liquid crystal compound (hereinafter sometimes referred to as "liquid crystal composition"). Hereinafter, aspects of the liquid crystal composition will be specifically explained.
 液晶組成物は、液晶化合物を含む。液晶化合物の種類は、例えば、目的とするコレステリック液晶層の特性に応じて、コレステリック液晶性を有する公知の化合物(すなわち、コレステリック液晶化合物)から選択されてもよい。液晶化合物としては、例えば、エチレン性不飽和基及び環状エーテル基からなる群より選択される少なくとも1種を有する液晶化合物が挙げられる。成型性の向上の観点から、液晶化合物は、エチレン性不飽和基を1つ有するか又は環状エーテル基を1つ有するコレステリック液晶化合物(以下、「特定液晶化合物」という場合がある。)を含むことが好ましい。 The liquid crystal composition includes a liquid crystal compound. The type of liquid crystal compound may be selected from known compounds having cholesteric liquid crystal properties (ie, cholesteric liquid crystal compounds), depending on the characteristics of the intended cholesteric liquid crystal layer, for example. Examples of the liquid crystal compound include liquid crystal compounds having at least one selected from the group consisting of ethylenically unsaturated groups and cyclic ether groups. From the viewpoint of improving moldability, the liquid crystal compound should include a cholesteric liquid crystal compound (hereinafter sometimes referred to as "specific liquid crystal compound") having one ethylenically unsaturated group or one cyclic ether group. is preferred.
 特定液晶化合物におけるエチレン性不飽和基としては、例えば、(メタ)アクリロイルオキシ基、(メタ)アクリルアミド基、ビニル基、ビニルエステル基及びビニルエーテル基が挙げられる。反応性の観点から、エチレン性不飽和基は、(メタ)アクリロイルオキシ基、(メタ)アクリルアミド基又はビニル基であることが好ましく、(メタ)アクリロイルオキシ基又は(メタ)アクリルアミド基であることがより好ましく、(メタ)アクリロイルオキシ基であることが更に好ましく、アクリロイルオキシ基であることが特に好ましい。 Examples of the ethylenically unsaturated group in the specific liquid crystal compound include a (meth)acryloyloxy group, a (meth)acrylamide group, a vinyl group, a vinyl ester group, and a vinyl ether group. From the viewpoint of reactivity, the ethylenically unsaturated group is preferably a (meth)acryloyloxy group, a (meth)acrylamide group, or a vinyl group, and is preferably a (meth)acryloyloxy group or a (meth)acrylamide group. More preferred is a (meth)acryloyloxy group, even more preferred is an acryloyloxy group, and particularly preferred is an acryloyloxy group.
 特定液晶化合物における環状エーテル基としては、例えば、エポキシ基及びオキセタニル基が挙げられる。反応性の観点から、環状エーテル基は、エポキシ基又はオキセタニル基であることが好ましく、オキセタニル基であることがより好ましい。 Examples of the cyclic ether group in the specific liquid crystal compound include an epoxy group and an oxetanyl group. From the viewpoint of reactivity, the cyclic ether group is preferably an epoxy group or an oxetanyl group, and more preferably an oxetanyl group.
 反応性及び成型性の向上の観点から、液晶化合物は、1つのエチレン性不飽和基を有する液晶化合物を含むことが好ましい。さらに、液晶組成物の固形分の総量に対する1つのエチレン性不飽和基を有する液晶化合物の総量の割合は、25質量%以上であることが好ましい。 From the viewpoint of improving reactivity and moldability, the liquid crystal compound preferably contains a liquid crystal compound having one ethylenically unsaturated group. Further, the ratio of the total amount of the liquid crystal compound having one ethylenically unsaturated group to the total amount of solid content of the liquid crystal composition is preferably 25% by mass or more.
 分子内に含まれるエチレン性不飽和基の数が1つである場合、特定液晶化合物は、エチレン性不飽和基以外の官能基(例えば、重合性基)を有してもよい。例えば、1つのエチレン性不飽和基を有する液晶化合物は、1つ以上の環状エーテル基を有してもよい。 When the number of ethylenically unsaturated groups contained in the molecule is one, the specific liquid crystal compound may have a functional group (for example, a polymerizable group) other than the ethylenically unsaturated group. For example, a liquid crystal compound having one ethylenically unsaturated group may have one or more cyclic ether groups.
 分子内に含まれる環状エーテル基の数が1つである場合、特定液晶化合物は、環状エーテル基以外の官能基(例えば、重合性基)を有してもよい。例えば、1つの環状エーテル基を有する液晶化合物は、1つ以上のエチレン性不飽和基を有してもよい。 When the number of cyclic ether groups contained in the molecule is one, the specific liquid crystal compound may have a functional group (for example, a polymerizable group) other than the cyclic ether group. For example, a liquid crystal compound having one cyclic ether group may have one or more ethylenically unsaturated groups.
 成型性の向上の観点から、液晶化合物は、1つのエチレン性不飽和基を有し、かつ、環状エーテル基を有しない液晶化合物、1つの環状エーテル基を有し、かつ、エチレン性不飽和基を有しない液晶化合物又は1つのエチレン性不飽和基と1つの環状エーテル基とを有する液晶化合物を含むことが好ましい。さらに、液晶化合物は、1つのエチレン性不飽和基を有し、かつ、環状エーテル基を有しない液晶化合物を含むことが好ましい。 From the viewpoint of improving moldability, the liquid crystal compound has one ethylenically unsaturated group and no cyclic ether group, and one cyclic ether group and no ethylenically unsaturated group. It is preferable to include a liquid crystal compound having no ethylenic unsaturated group or a liquid crystal compound having one ethylenically unsaturated group and one cyclic ether group. Furthermore, it is preferable that the liquid crystal compound contains one ethylenically unsaturated group and no cyclic ether group.
 特定液晶化合物は、棒状液晶化合物又は円盤状液晶化合物であってもよい。コレステリック液晶相における螺旋ピッチの調整容易性並びに成型後における反射率変化抑制及び色味変化抑制の観点から、棒状液晶化合物が好ましい。 The specific liquid crystal compound may be a rod-like liquid crystal compound or a discotic liquid crystal compound. From the viewpoint of ease of adjustment of the helical pitch in the cholesteric liquid crystal phase and suppression of changes in reflectance and color after molding, rod-like liquid crystal compounds are preferred.
 好ましい棒状液晶化合物としては、例えば、アゾメチン系化合物、アゾキシ系化合物、シアノビフェニル系化合物、シアノフェニルエステル、安息香酸エステル、シクロヘキサンカルボン酸フェニルエステル、シアノフェニルシクロヘキサン系化合物、シアノ置換フェニルピリミジン系化合物、アルコキシ置換フェニルピリミジン系化合物、フェニルジオキサン系化合物、トラン系化合物及びアルケニルシクロヘキシルベンゾニトリル系化合物が挙げられる。棒状液晶化合物は、低分子化合物に限られず、高分子化合物であってもよい。 Preferred rod-like liquid crystal compounds include, for example, azomethine compounds, azoxy compounds, cyanobiphenyl compounds, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexane compounds, cyano-substituted phenylpyrimidine compounds, alkoxy Examples include substituted phenylpyrimidine compounds, phenyldioxane compounds, tolan compounds, and alkenylcyclohexylbenzonitrile compounds. The rod-shaped liquid crystal compound is not limited to a low-molecular compound, and may be a high-molecular compound.
 棒状液晶化合物は、例えば、「Makromol. Chem., 190巻、2255頁(1989年)」、「Advanced Materials 5巻、107頁(1993年)」、米国特許第4683327号明細書、米国特許第5622648号明細書、米国特許第5770107号明細書、国際公開第95/22586号、国際公開第95/24455号、国際公開第97/00600号、国際公開第98/23580号、国際公開第98/52905号、特開平1-272551号公報、特開平6-16616号公報、特開平7-110469号公報、特開平11-80081号公報及び特開2001-328973号公報に記載された、1つのエチレン性不飽和基を有する化合物及び1つの環状エーテル基を有する化合物から選択されてもよい。好ましい棒状液晶化合物は、例えば、特表平11-513019号公報及び特開2007-279688号公報に記載された、1つのエチレン性不飽和基を有する化合物及び1つの環状エーテル基を有する化合物から選択されてもよい。 Rod-shaped liquid crystal compounds are described, for example, in "Makromol. Chem., Vol. 190, p. 2255 (1989)", "Advanced Materials, Vol. 5, p. 107 (1993)", US Pat. No. 4,683,327, US Pat. No. 5,622,648. specification, US Patent No. 5770107, WO 95/22586, WO 95/24455, WO 97/00600, WO 98/23580, WO 98/52905 One ethylenic compound described in JP-A-1-272551, JP-A-6-16616, JP-A-7-110469, JP-A-11-80081 and JP-A-2001-328973 It may be selected from compounds with unsaturated groups and compounds with one cyclic ether group. Preferred rod-like liquid crystal compounds are selected from, for example, compounds having one ethylenically unsaturated group and compounds having one cyclic ether group, which are described in Japanese Patent Publication No. 11-513019 and Japanese Patent Application Laid-Open No. 2007-279688. may be done.
 好ましい円盤状液晶化合物は、例えば、特開2007-108732号公報及び特開2010-244038号公報に記載された、1つのエチレン性不飽和基を有する化合物及び1つの環状エーテル基を有する化合物から選択されてもよい。 Preferred discotic liquid crystal compounds are selected from, for example, compounds having one ethylenically unsaturated group and compounds having one cyclic ether group, which are described in JP-A-2007-108732 and JP-A-2010-244038. may be done.
 特定液晶化合物の具体例を以下に示す。ただし、特定液晶化合物の種類は、以下の具体例に制限されるものではない。 Specific examples of specific liquid crystal compounds are shown below. However, the type of specific liquid crystal compound is not limited to the following specific examples.
 液晶組成物は、1種又は2種以上のコレステリック液晶化合物を含んでもよい。 The liquid crystal composition may contain one or more cholesteric liquid crystal compounds.
 延伸性及び熱耐久性の向上の観点から、液晶組成物の固形分の総量に対する特定液晶化合物の総量の割合は、25質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることが更に好ましい。さらに、液晶組成物の固形分の総量に対する特定液晶化合物の総量の割合は、60質量%~99質量%であることが好ましく、80質量%~98質量%であることがより好ましい。 From the viewpoint of improving stretchability and heat durability, the ratio of the total amount of the specific liquid crystal compound to the total amount of solid content of the liquid crystal composition is preferably 25% by mass or more, and more preferably 30% by mass or more. , more preferably 40% by mass or more. Furthermore, the ratio of the total amount of the specific liquid crystal compound to the total amount of solid content of the liquid crystal composition is preferably 60% by mass to 99% by mass, more preferably 80% by mass to 98% by mass.
 液晶組成物は、他の液晶化合物を含んでもよい。他の液晶化合物とは、特定液晶化合物以外の液晶化合物を意味する。他の液晶化合物としては、例えば、エチレン性不飽和基及び環状エーテル基を有しない液晶化合物、2つ以上のエチレン性不飽和基を有し、かつ、環状エーテル基を有しない液晶化合物、2つ以上の環状エーテル基を有し、かつ、エチレン性不飽和基を有しない液晶化合物及び2つ以上のエチレン性不飽和基及び2つ以上の環状エーテル基を有する液晶化合物が挙げられる。 The liquid crystal composition may also contain other liquid crystal compounds. Other liquid crystal compounds mean liquid crystal compounds other than the specific liquid crystal compound. Other liquid crystal compounds include, for example, a liquid crystal compound that does not have an ethylenically unsaturated group and a cyclic ether group, a liquid crystal compound that has two or more ethylenically unsaturated groups and no cyclic ether group, and a liquid crystal compound that has two or more ethylenically unsaturated groups and no cyclic ether group. Examples include liquid crystal compounds having the above cyclic ether groups and no ethylenically unsaturated groups, and liquid crystal compounds having two or more ethylenically unsaturated groups and two or more cyclic ether groups.
 成型後における反射率変化抑制及び色味変化抑制の観点から、他の液晶化合物は、エチレン性不飽和基及び環状エーテル基を有しない液晶化合物、2つ以上のエチレン性不飽和基を有し、かつ、環状エーテル基を有しない液晶化合物及び2つ以上の環状エーテル基を有し、かつ、エチレン性不飽和基を有しない液晶化合物からなる群より選択される少なくとも1種であることが好ましい。他の液晶化合物は、エチレン性不飽和基及び環状エーテル基を有しない液晶化合物、2つのエチレン性不飽和基を有し、かつ、環状エーテル基を有しない液晶化合物、及び、2つの環状エーテル基を有し、かつ、エチレン性不飽和基を有しない液晶化合物からなる群より選択される少なくとも1種であることがより好ましい。他の液晶化合物は、エチレン性不飽和基及び環状エーテル基を有しない液晶化合物及び2つのエチレン性不飽和基を有し、かつ、環状エーテル基を有しない液晶化合物からなる群より選択される少なくとも1種であることが更に好ましい。 From the viewpoint of suppressing reflectance changes and color changes after molding, other liquid crystal compounds include liquid crystal compounds having no ethylenically unsaturated group and cyclic ether group, having two or more ethylenically unsaturated groups, In addition, it is preferably at least one selected from the group consisting of a liquid crystal compound having no cyclic ether group and a liquid crystal compound having two or more cyclic ether groups and no ethylenically unsaturated group. Other liquid crystal compounds include liquid crystal compounds that do not have an ethylenically unsaturated group and a cyclic ether group, liquid crystal compounds that have two ethylenically unsaturated groups and no cyclic ether group, and liquid crystal compounds that have two ethylenically unsaturated groups and no cyclic ether group. It is more preferable that the liquid crystal compound is at least one selected from the group consisting of liquid crystal compounds having the following formula and having no ethylenically unsaturated group. The other liquid crystal compound is at least selected from the group consisting of a liquid crystal compound having no ethylenically unsaturated group and no cyclic ether group, and a liquid crystal compound having two ethylenically unsaturated groups and no cyclic ether group. More preferably, it is one type.
 他の液晶化合物における棒状液晶化合物は、例えば、「Makromol. Chem.,190巻、2255頁(1989年)」、「Advanced Materials 5巻、107頁(1993年)」、米国特許第4683327号明細書、米国特許第5622648号明細書、米国特許第5770107号明細書、国際公開第95/22586号、国際公開第95/24455号、国際公開第97/00600号、国際公開第98/23580号、国際公開第98/52905号、特開平1-272551号公報、特開平6-16616号公報、特開平7-110469号公報、特開平11-80081号公報及び特開2001-328973号公報に記載された化合物から選択されてもよい。他の液晶化合物における好ましい棒状液晶化合物は、例えば、特表平11-513019号公報及び特開2007-279688号公報に記載された化合物から選択されてもよい。 Rod-shaped liquid crystal compounds among other liquid crystal compounds are described, for example, in "Makromol. Chem., Vol. 190, p. 2255 (1989)", "Advanced Materials, Vol. 5, p. 107 (1993)", and US Pat. No. 4,683,327. , US Pat. No. 5,622,648, US Pat. No. 5,770,107, WO 95/22586, WO 95/24455, WO 97/00600, WO 98/23580, International Described in Publication No. 98/52905, JP 1-272551, JP 6-16616, JP 7-110469, JP 11-80081, and JP 2001-328973 may be selected from compounds. Preferred rod-like liquid crystal compounds among other liquid crystal compounds may be selected from, for example, compounds described in Japanese Patent Publication No. 11-513019 and Japanese Patent Application Laid-open No. 2007-279688.
 他の液晶化合物における好ましい円盤状液晶化合物は、例えば、特開2007-108732号公報又は特開2010-244038号公報に記載された化合物から選択されてもよい。 Preferred discotic liquid crystal compounds among other liquid crystal compounds may be selected from, for example, the compounds described in JP-A No. 2007-108732 or JP-A No. 2010-244038.
 他の液晶化合物の具体例を以下に示す。ただし、他の液晶化合物の種類は、以下の具体例に制限されるものではない。 Specific examples of other liquid crystal compounds are shown below. However, the types of other liquid crystal compounds are not limited to the following specific examples.
 液晶組成物は、1種又は2種以上の他の液晶化合物を含んでもよい。 The liquid crystal composition may contain one or more other liquid crystal compounds.
 液晶組成物の固形分の総量に対する他の液晶化合物の総量の割合は、70質量%以下であることが好ましく、50質量%以下であることがより好ましく、30質量%以下であることが更に好ましく、20質量%以下であることが特に好ましい。なお、上記した割合の下限は、0質量%である。 The ratio of the total amount of other liquid crystal compounds to the total solid content of the liquid crystal composition is preferably 70% by mass or less, more preferably 50% by mass or less, and even more preferably 30% by mass or less. , 20% by mass or less is particularly preferred. Note that the lower limit of the above ratio is 0% by mass.
 液晶組成物は、1種又は2種以上の液晶化合物を含んでもよい。液晶組成物は、特定液用化合物と、他の液晶化合物と、を含んでもよい。 The liquid crystal composition may contain one or more liquid crystal compounds. The liquid crystal composition may include a specific liquid compound and another liquid crystal compound.
 液晶組成物の固形分の総量に対する液晶化合物の総量の割合は、25質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることが更に好ましい。さらに、液晶組成物の固形分の総量に対する液晶化合物の総量の割合は、60質量%~99質量%であることが好ましく、80質量%~98質量%であることがより好ましい。 The ratio of the total amount of liquid crystal compounds to the total solid content of the liquid crystal composition is preferably 25% by mass or more, more preferably 30% by mass or more, and even more preferably 40% by mass or more. Further, the ratio of the total amount of liquid crystal compounds to the total amount of solid content of the liquid crystal composition is preferably 60% by mass to 99% by mass, more preferably 80% by mass to 98% by mass.
-カイラル剤-
 コレステリック液晶層形成の容易性及び螺旋ピッチの調整容易性の観点から、液晶組成物は、カイラル剤(すなわち、光学活性化合物)を含むことが好ましい。
-Chiral agent-
From the viewpoint of ease of forming a cholesteric liquid crystal layer and ease of adjusting the helical pitch, the liquid crystal composition preferably contains a chiral agent (that is, an optically active compound).
 カイラル剤の種類は、例えば、液晶化合物の種類及び目的の螺旋構造(例えば、螺旋のよじれ方法及び螺旋ピッチ)に応じて決定されてもよい。カイラル剤としては、例えば、公知の化合物(例えば、液晶デバイスハンドブック、第3章4-3項、TN(twisted nematic)、STN(Super-twisted nematic)用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載された化合物)、イソソルビド誘導体及びイソマンニド誘導体が挙げられる。 The type of chiral agent may be determined depending on, for example, the type of liquid crystal compound and the desired helical structure (for example, the twisting method of the helix and the helical pitch). Examples of chiral agents include known compounds (for example, Liquid Crystal Device Handbook, Chapter 3, Section 4-3, Chiral Agents for TN (twisted nematic) and STN (Super-twisted nematic), p. 199, Japan Society for the Promotion of Science, Vol. 142 Committee, 1989), isosorbide derivatives and isomannide derivatives.
 カイラル剤は、一般に不斉炭素原子を含む。ただし、不斉炭素原子を含まない軸性不斉化合物及び面性不斉化合物をカイラル剤として用いることができる。軸性不斉化合物又は面性不斉化合物の例には、ビナフチル化合物、ヘリセン化合物又はパラシクロファン化合物が好ましく挙げられる。 Chiral agents generally contain asymmetric carbon atoms. However, axially asymmetric compounds and planar asymmetric compounds that do not contain asymmetric carbon atoms can be used as chiral agents. Preferred examples of the axially asymmetric compound or planar asymmetric compound include binaphthyl compounds, helicene compounds, and paracyclophane compounds.
 熱耐久性の向上の観点から、液晶組成物は、重合性基を有するカイラル剤を含んでもよい。反応性及び熱耐久性の向上の観点から、重合性基は、エチレン性不飽和基又は環状エーテル基であることが好ましく、エチレン性不飽和基であることがより好ましい。カイラル剤におけるエチレン性不飽和基の好ましい態様は、既述した特定液晶化合物におけるエチレン性不飽和基の好ましい態様と同じである。カイラル剤における環状エーテル基の好ましい態様は、既述した特定液晶化合物における環状エーテル基の好ましい態様と同じである。 From the viewpoint of improving thermal durability, the liquid crystal composition may contain a chiral agent having a polymerizable group. From the viewpoint of improving reactivity and heat durability, the polymerizable group is preferably an ethylenically unsaturated group or a cyclic ether group, and more preferably an ethylenically unsaturated group. The preferred embodiment of the ethylenically unsaturated group in the chiral agent is the same as the preferred embodiment of the ethylenically unsaturated group in the specific liquid crystal compound described above. The preferred embodiment of the cyclic ether group in the chiral agent is the same as the preferred embodiment of the cyclic ether group in the specific liquid crystal compound described above.
 カイラル剤が重合性基を有する場合、反応性及び熱耐久性の向上の観点から、カイラル剤における重合性基の種類は、特定液晶化合物における重合性基の種類と同じであることが好ましい。さらに、カイラル剤における重合性基は、特定液晶化合物における重合性基と同じであることが好ましい。 When the chiral agent has a polymerizable group, from the viewpoint of improving reactivity and thermal durability, the type of polymerizable group in the chiral agent is preferably the same as the type of polymerizable group in the specific liquid crystal compound. Furthermore, the polymerizable group in the chiral agent is preferably the same as the polymerizable group in the specific liquid crystal compound.
 成型性の向上の観点から、重合性基を有するカイラル剤は、1つのエチレン性不飽和基を有し、かつ、環状エーテル基を有しないカイラル剤、1つの環状エーテル基を有し、かつ、エチレン性不飽和基を有しないカイラル剤又は1つのエチレン性不飽和基と1つの環状エーテル基とを有するカイラル剤を含むことが好ましい。さらに、重合性基を有するカイラル剤は、1つのエチレン性不飽和基を有し、かつ、環状エーテル基を有しないカイラル剤を含むことが好ましい。 From the viewpoint of improving moldability, a chiral agent having a polymerizable group is a chiral agent having one ethylenically unsaturated group and no cyclic ether group, and a chiral agent having one cyclic ether group, and It is preferable to include a chiral agent having no ethylenically unsaturated group or a chiral agent having one ethylenically unsaturated group and one cyclic ether group. Further, the chiral agent having a polymerizable group preferably includes a chiral agent having one ethylenically unsaturated group and no cyclic ether group.
 カイラル剤は、液晶化合物であってもよい。 The chiral agent may be a liquid crystal compound.
--感光性カイラル剤--
 コレステリック液晶層は、光照射により異性化する部位を有するカイラル剤(感光性カイラル剤)を含むことが好ましい。
 光照射により螺旋誘起力が変化する感光性カイラル剤について詳述する。
 なお、カイラル剤の螺旋誘起力(HTP)は、下記式(A)で表される螺旋配向能力を示すファクターである。
 式(A) HTP=1/(螺旋ピッチの長さ(単位:μm)×液晶化合物に対するカイラル剤の濃度(質量%))[μm-1
 螺旋ピッチの長さとは、コレステリック液晶相の螺旋構造のピッチP(=螺旋の周期)の長さをいい、液晶便覧(丸善株式会社出版)の196ページに記載の方法で測定できる。
--Photosensitive chiral agent--
The cholesteric liquid crystal layer preferably contains a chiral agent (photosensitive chiral agent) having a site that isomerizes upon irradiation with light.
A photosensitive chiral agent whose helical inducing force changes upon irradiation with light will be described in detail.
Note that the helical inducing force (HTP) of the chiral agent is a factor indicating the helical orientation ability expressed by the following formula (A).
Formula (A) HTP=1/(Length of helical pitch (unit: μm) x Concentration of chiral agent in liquid crystal compound (mass%)) [μm −1 ]
The length of the helical pitch refers to the length of the pitch P (=period of the helix) of the helical structure of the cholesteric liquid crystal phase, and can be measured by the method described on page 196 of Liquid Crystal Handbook (published by Maruzen Co., Ltd.).
 光照射により螺旋誘起力が変化する感光性カイラル剤は、液晶性であっても、非液晶性であってもよい。感光性カイラル剤は、一般に不斉炭素原子を含む場合が多い。なお、感光性カイラル剤は、不斉炭素原子を含まない軸性不斉化合物又は面性不斉化合物であってもよい。 The photosensitive chiral agent whose helical inducing force changes upon light irradiation may be liquid crystalline or non-liquid crystalline. Photosensitive chiral agents generally often contain asymmetric carbon atoms. Note that the photosensitive chiral agent may be an axially asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom.
 感光性カイラル剤は、光照射によって螺旋誘起力が増加するカイラル剤であってもよいし、減少するカイラル剤であってもよい。中でも、光照射により螺旋誘起力が減少するカイラル剤であることが好ましい。
 なお、本明細書において「螺旋誘起力の増加及び減少」とは、感光性カイラル剤の初期(光照射前)の螺旋方向を「正」としたときの増減を表す。したがって、光照射により螺旋誘起力が減少し続け、0を超えて螺旋方向が「負」となった場合(つまり、初期(光照射前)の螺旋方向とは逆の螺旋方向の螺旋を誘起する場合)にも、「螺旋誘起力が減少するカイラル剤」に該当する。
The photosensitive chiral agent may be a chiral agent whose helical inducing force increases or decreases when irradiated with light. Among these, chiral agents whose helical inducing force decreases upon irradiation with light are preferred.
In this specification, "increase and decrease in helical inducing force" refers to an increase and decrease when the initial (before light irradiation) helical direction of the photosensitive chiral agent is defined as "positive". Therefore, if the helical inducing force continues to decrease due to light irradiation and exceeds 0 and the helical direction becomes "negative" (in other words, a spiral in the opposite helical direction to the initial (before light irradiation) helical direction is induced) case) also falls under the category of "chiral agents whose helical inducing force decreases."
 感光性カイラル剤としては、いわゆる光反応型カイラル剤が挙げられる。光反応型カイラル剤とは、カイラル部位と光照射によって構造変化する光反応部位を有し、例えば、照射量に応じて液晶化合物の捩れ力を大きく変化させる化合物である。
 光照射によって構造変化する光反応部位の例としては、フォトクロミック化合物(内田欣吾、入江正浩、化学工業、vol.64、640p,1999、内田欣吾、入江正浩、ファインケミカル、vol.28(9)、15p,1999)などが挙げられる。また、上記構造変化とは、光反応部位への光照射により生ずる、分解、付加反応、異性化、ラセミ化、[2+2]光環化及び2量化反応などを意味し、上記構造変化は不可逆的であっ
てもよい。また、カイラル部位としては、例えば、野平博之、化学総説、No.22液晶の化学、73p:1994に記載の不斉炭素などが相当する。
Examples of the photosensitive chiral agent include so-called photoreactive chiral agents. A photoreactive chiral agent is a compound that has a chiral moiety and a photoreactive moiety whose structure changes upon irradiation with light, and for example, causes a large change in the twisting force of a liquid crystal compound depending on the amount of irradiation.
Examples of photoreactive sites whose structure changes upon light irradiation include photochromic compounds (Kingo Uchida, Masahiro Irie, Kagaku Kogyo, vol. 64, 640p, 1999, Kingo Uchida, Masahiro Irie, Fine Chemical, vol. 28 (9), 15 p. , 1999). In addition, the above-mentioned structural change means decomposition, addition reaction, isomerization, racemization, [2+2] photocyclization, dimerization reaction, etc. caused by light irradiation to the photoreaction site, and the above-mentioned structural change is irreversible. There may be. Further, as a chiral moiety, for example, Hiroyuki Nohira, Chemistry Review, No. This corresponds to the asymmetric carbon described in 22 Chemistry of Liquid Crystals, 73p: 1994.
 感光性カイラル剤としては、例えば、特開2001-159709号公報の段落0044~0047に記載の光反応型カイラル剤、特開2002-179669号公報の段落0019~0043に記載の光学活性化合物、特開2002-179633号公報の段落0020~0044に記載の光学活性化合物、特開2002-179670号公報の段落0016~0040に記載の光学活性化合物、特開2002-179668号公報の段落0017~0050に記載の光学活性化合物、特開2002-180051号公報の段落0018~0044に記載の光学活性化合物、特開2002-338575号公報の段落0016~0055に記載の光学活性イソソルビド誘導体、特開2002-080478号公報の段落0023~0032に記載の光反応型光学活性化合物、特開2002-080851号公報の段落0019~0029に記載の光反応型カイラル剤、特開2002-179681号公報の段落0022~0049に記載の光学活性化合物、特開2002-302487号公報の段落0015~0044に記載の光学活性化合物、特開2002-338668号公報の段落0015~0050に記載の光学活性ポリエステル、特開2003-055315号公報の段落0019~0041に記載のビナフトール誘導体、特開2003-073381号公報の段落0008~0043に記載の光学活性フルギド化合物、特開2003-306490号公報の段落0015~0057に記載の光学活性イソソルビド誘導体、特開2003-306491号公報の段落0015~0041に記載の光学活性イソソルビド誘導体、特開2003-313187号公報の段落0015~0049に記載の光学活性イソソルビド誘導体、特開2003-313188号公報の段落0015~0057に記載の光学活性イソマンニド誘導体、特開2003-313189号公報の段落0015~0049に記載の光学活性イソソルビド誘導体、特開2003-313292号公報の段落0015~0052に記載の光学活性ポリエステル/アミド、国際公開第2018/194157号の段落0012~0053に記載の光学活性化合物、及び、特開2002-179682号公報の段落0020~0049に記載の光学活性化合物などが挙げられる。 Examples of photosensitive chiral agents include photoreactive chiral agents described in paragraphs 0044 to 0047 of JP-A No. 2001-159709, optically active compounds described in paragraphs 0019 to 0043 of JP-A No. 2002-179669, and Optically active compounds described in paragraphs 0020 to 0044 of JP 2002-179633, optically active compounds described in paragraphs 0016 to 0040 of JP 2002-179670, and paragraphs 0017 to 0050 of JP 2002-179668. optically active compounds described in paragraphs 0018 to 0044 of JP 2002-180051, optically active isosorbide derivatives described in paragraphs 0016 to 0055 of JP 2002-338575, JP 2002-080478; Photoreactive optically active compounds described in paragraphs 0023 to 0032 of JP-A No. 2002-080851, photoreactive chiral agents described in paragraphs 0019 to 0029 of JP-A No. 2002-179681, and paragraphs 0022 to 0049 of JP-A No. 2002-179681. optically active compounds described in paragraphs 0015 to 0044 of JP 2002-302487, optically active polyesters described in paragraphs 0015 to 0050 of JP 2002-338668, JP 2003-055315 Binaphthol derivatives described in paragraphs 0019 to 0041 of JP-A No. 2003-073381, optically active fulgide compounds described in paragraphs 0008 to 0043 of JP-A No. 2003-306490, and optically active compounds described in paragraphs 0015 to 0057 of JP-A No. 2003-306490. Isosorbide derivatives, optically active isosorbide derivatives described in paragraphs 0015 to 0041 of JP 2003-306491, optically active isosorbide derivatives described in paragraphs 0015 to 0049 of JP 2003-313187, JP 2003-313188 optically active isomannide derivatives described in paragraphs 0015 to 0057 of JP 2003-313189, optically active isosorbide derivatives described in paragraphs 0015 to 0052 of JP 2003-313292, Examples include polyester/amide, optically active compounds described in paragraphs 0012 to 0053 of International Publication No. 2018/194157, and optically active compounds described in paragraphs 0020 to 0049 of JP 2002-179682.
 感光性カイラル剤としては、中でも、光異性化部位を少なくとも有する化合物が好ましく、光異性化部位は光異性化可能な二重結合を有することがより好ましい。上記光異性化可能な二重結合を有する光異性化部位としては、光異性化が起こりやすく、かつ、光照射前後の螺旋誘起力差が大きいという点で、シンナモイル部位、カルコン部位、アゾベンゼン部位又はスチルベン部位が好ましく、更に可視光の吸収が小さいという点で、シンナモイル部位、カルコン部位又はスチルベン部位がより好ましい。なお、光異性化部位は、上述した光照射によって構造変化する光反応部位に該当する。 Among the photosensitive chiral agents, compounds having at least a photoisomerization site are preferable, and it is more preferable that the photoisomerization site has a photoisomerizable double bond. The photoisomerization site having the photoisomerizable double bond is a cinnamoyl site, a chalcone site, an azobenzene site, or A stilbene moiety is preferred, and a cinnamoyl moiety, a chalcone moiety, or a stilbene moiety is more preferred in terms of low absorption of visible light. Note that the photoisomerization site corresponds to the above-mentioned photoreaction site whose structure changes upon irradiation with light.
 また、感光性カイラル剤は、初期(光照射前)の螺旋誘起力が高く、かつ、光照射による螺旋誘起力の変化量がより優れる点で、トランス型の光異性化可能な二重結合を有していることが好ましい。
 また、感光性カイラル剤は、初期(光照射前)の螺旋誘起力が低く、かつ、光照射による螺旋誘起力の変化量がより優れる点で、シス型の光異性化可能な二重結合を有していることが好ましい。
In addition, photosensitive chiral agents have a high initial helical inducing force (before light irradiation) and a superior change in the helical inducing force upon light irradiation, and have a trans-type photoisomerizable double bond. It is preferable to have.
In addition, photosensitive chiral agents have a cis-type photoisomerizable double bond, which has a low initial helical inducing force (before light irradiation) and a better change in helical inducing force upon light irradiation. It is preferable to have.
 感光性カイラル剤は、ビナフチル部分構造、イソソルビド部分構造(イソソルビドに由来する部分構造)、及び、イソマンニド部分構造(イソマンニドに由来する部分構造)よりなる群から選ばれるいずれかの部分構造を有していることが好ましい。なお、ビナフチル部分構造、イソソルビド部分構造、及び、イソマンニド部分構造とは、各々以下の構造を意図する。
 ビナフチル部分構造中の実線と破線が平行している部分は、一重結合又は二重結合を表す。なお、以下に示す構造において、*は、結合位置を表す。
The photosensitive chiral agent has any partial structure selected from the group consisting of a binaphthyl partial structure, an isosorbide partial structure (a partial structure derived from isosorbide), and an isomannide partial structure (a partial structure derived from isomannide). Preferably. Note that the binaphthyl partial structure, isosorbide partial structure, and isomannide partial structure are each intended to have the following structures.
A portion in the binaphthyl partial structure where the solid line and the broken line are parallel represents a single bond or a double bond. In addition, in the structure shown below, * represents a bonding position.
 感光性カイラル剤は、重合性基を有していてもよい。重合性基の種類は特に制限されず、付加重合反応が可能な官能基が好ましく、重合性エチレン性不飽和基又は環重合性基がより好ましく、(メタ)アクリロイル基、ビニル基、スチリル基、又は、アリル基が更に好ましい。 The photosensitive chiral agent may have a polymerizable group. The type of polymerizable group is not particularly limited, and a functional group capable of an addition polymerization reaction is preferable, a polymerizable ethylenically unsaturated group or a ring polymerizable group is more preferable, and a (meth)acryloyl group, a vinyl group, a styryl group, Alternatively, an allyl group is more preferred.
 感光性カイラル剤としては、式(C)で表される化合物が好ましい。
 式(C)  R-L-R
 Rは、それぞれ独立に、シンナモイル部位、カルコン部位、アゾベンゼン部位、及び、スチルベン部位からなる群から選択される少なくとも1つの部位を有する基を表す。
 Lは、式(D)で表される構造から2個の水素原子を除いた形成される2価の連結基(上記ビナフチル部分構造から2個の水素原子を除いて形成される2価の連結基)、式(E)で表される2価の連結基(上記イソソルビド部分構造からなる2価の連結基)、又は、式(F)で表される2価の連結基(上記イソマンニド部分構造からなる2価の連結基)を表す。
 式(E)及び式(F)中、*は結合位置を表す。
As the photosensitive chiral agent, a compound represented by formula (C) is preferred.
Formula (C) R-LR
R each independently represents a group having at least one moiety selected from the group consisting of a cinnamoyl moiety, a chalcone moiety, an azobenzene moiety, and a stilbene moiety.
L is a divalent linking group formed by removing two hydrogen atoms from the structure represented by formula (D) (a divalent linking group formed by removing two hydrogen atoms from the above binaphthyl partial structure) group), a divalent linking group represented by formula (E) (a divalent linking group consisting of the above isosorbide partial structure), or a divalent linking group represented by formula (F) (a divalent linking group consisting of the above isomannide partial structure) represents a divalent linking group consisting of
In formula (E) and formula (F), * represents a bonding position.

 

 
 感光性カイラル剤の具体例を以下に示す。ただし、感光性カイラル剤の種類は、以下の具体例に制限されるものではない。 Specific examples of photosensitive chiral agents are shown below. However, the type of photosensitive chiral agent is not limited to the following specific examples.
 構造色を発現する層の形成には、感光性カイラル剤を1種単独で用いる態様であっても、2種以上用いる態様であってもよい。 To form a layer that exhibits structural color, one kind of photosensitive chiral agent may be used alone, or two or more kinds of photosensitive chiral agents may be used.
 感光性カイラル剤のモル吸光係数は、特に制限されないが、後述する捩れ変化工程で照射される光の波長(例えば、365nm)におけるモル吸光係数は100L/(mol・cm)~100,000L/(mol・cm)が好ましく、500L/(mol・cm)~50,000L/(mol・cm)がより好ましい。 The molar extinction coefficient of the photosensitive chiral agent is not particularly limited, but the molar extinction coefficient at the wavelength (for example, 365 nm) of the light irradiated in the torsional change step described below is 100 L/(mol cm) to 100,000 L/( mol·cm) is preferable, and 500 L/(mol·cm) to 50,000 L/(mol·cm) is more preferable.
--重合性カイラル剤--
 コレステリック液晶層は、コレステリック液晶化合物の螺旋構造をより容易に固定する観点から、カイラル剤として、重合性カイラル剤を含んでよい。重合性カイラル剤は、重合性基を有するカイラル剤を意味する。ここでいう重合性カイラル剤は、光照射により螺旋誘起力が変化しないものとし、感光性カイラル剤とは区別される。
--Polymerizable chiral agent--
The cholesteric liquid crystal layer may contain a polymerizable chiral agent as a chiral agent from the viewpoint of more easily fixing the helical structure of the cholesteric liquid crystal compound. A polymerizable chiral agent means a chiral agent having a polymerizable group. The polymerizable chiral agent referred to herein is one whose helical inducing force does not change due to light irradiation, and is distinguished from the photosensitive chiral agent.
 重合性カイラル剤が有する重合性基としては、例えば、ラジカル重合性基及びカチオン重合性基が挙げられる。重合性基は、エチレン性不飽和基、エポキシ基又はアジリジニル基であることが好ましく、エチレン性不飽和基であることがより好ましい。 Examples of the polymerizable group that the polymerizable chiral agent has include a radically polymerizable group and a cationic polymerizable group. The polymerizable group is preferably an ethylenically unsaturated group, an epoxy group or an aziridinyl group, and more preferably an ethylenically unsaturated group.
 重合性カイラル剤は、不斉炭素原子を含む化合物であることが好ましいが、不斉炭素原子を含まない軸性不斉化合物又は面性不斉化合物であってもよい。軸性不斉化合物又は面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファン及びこれらの誘導体が含まれる。 The polymerizable chiral agent is preferably a compound containing an asymmetric carbon atom, but may be an axially asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom. Examples of axially asymmetric compounds or planar asymmetric compounds include binaphthyl, helicene, paracyclophane, and derivatives thereof.
 コレステリック液晶層が重合性基を有するコレステリック液晶化合物を含む場合、重合性カイラル剤は、コレステリック液晶化合物が有する重合性基と同種の重合性基を含むことが好ましい。例えば、コレステリック液晶化合物がラジカル重合性基を有する場合、重合性カイラル剤もラジカル重合性基を含むことが好ましい。これにより、重合性基を有するコレステリック液晶化合物と重合性カイラル剤とが重合したポリマーが形成され、コレステリック液晶化合物の螺旋構造をより容易に固定することができる。 When the cholesteric liquid crystal layer contains a cholesteric liquid crystal compound having a polymerizable group, the polymerizable chiral agent preferably contains the same type of polymerizable group as the polymerizable group that the cholesteric liquid crystal compound has. For example, when the cholesteric liquid crystal compound has a radically polymerizable group, it is preferable that the polymerizable chiral agent also contains a radically polymerizable group. As a result, a polymer in which the cholesteric liquid crystal compound having a polymerizable group and the polymerizable chiral agent are polymerized is formed, and the helical structure of the cholesteric liquid crystal compound can be more easily fixed.
 重合性カイラル剤は、イソソルビド誘導体、イソマンニド誘導体、又はビナフチル誘導
体であることが好ましい。イソソルビド誘導体の市販品としては、例えば、BASF社製の「パリオカラー LC756」が挙げられる。
The polymerizable chiral agent is preferably an isosorbide derivative, an isomannide derivative, or a binaphthyl derivative. Examples of commercially available isosorbide derivatives include "Paliocolor LC756" manufactured by BASF.
 重合性カイラル剤は、1種を単独で用いてよく、2種以上を併用してもよい。 One type of polymerizable chiral agent may be used alone, or two or more types may be used in combination.
 液晶組成物は、1種又は2種以上のカイラル剤を含んでもよい。 The liquid crystal composition may contain one or more chiral agents.
 カイラル剤の含有量は、例えば、液晶化合物の構造及び目的とする螺旋ピッチに応じて決定されてもよい。コレステリック液晶層形成の容易性及び螺旋ピッチの調整容易性の観点から、液晶組成物の固形分の総量に対するカイラル剤の総量の割合は、1質量%~20質量%であることが好ましく、2質量%~15質量%であることがより好ましく、3質量%~10質量%であることが更に好ましい。 The content of the chiral agent may be determined, for example, depending on the structure of the liquid crystal compound and the desired helical pitch. From the viewpoint of ease of forming a cholesteric liquid crystal layer and ease of adjusting the helical pitch, the ratio of the total amount of chiral agent to the total amount of solid content of the liquid crystal composition is preferably 1% by mass to 20% by mass, and 2% by mass. % to 15% by weight, and even more preferably 3% to 10% by weight.
 コレステリック液晶相における螺旋ピッチ及び構造色を発現する層の選択反射波長は、液晶化合物の種類だけでなく、カイラル剤の含有量によっても容易に調整される。例えば、液晶組成物におけるカイラル剤の含有量が2倍になると、螺旋ピッチは1/2となり、選択反射波長の中心値も1/2となる場合がある。 The helical pitch in the cholesteric liquid crystal phase and the selective reflection wavelength of the layer expressing structural color are easily adjusted not only by the type of liquid crystal compound but also by the content of the chiral agent. For example, when the content of the chiral agent in the liquid crystal composition is doubled, the helical pitch becomes 1/2, and the central value of the selective reflection wavelength may also become 1/2.
 液晶組成物は、重合開始剤を含むことが好ましい。重合開始剤は、液晶組成物の硬化反応を促進する。 It is preferable that the liquid crystal composition contains a polymerization initiator. The polymerization initiator accelerates the curing reaction of the liquid crystal composition.
 液晶組成物が露光により硬化される場合、液晶組成物は、光重合開始剤を含むことが好ましい。光重合開始剤としては、例えば、光ラジカル重合開始剤及び光カチオン重合開始剤が挙げられる。 When the liquid crystal composition is cured by exposure, it is preferable that the liquid crystal composition contains a photopolymerization initiator. Examples of the photopolymerization initiator include radical photopolymerization initiators and cationic photopolymerization initiators.
 光重合開始剤としては、例えば、α-カルボニル化合物(例えば、米国特許第2367661号明細書及び米国特許第2367670号明細書)、アシロインエーテル化合物(例えば、米国特許第2448828号明細書)、α-炭化水素置換芳香族アシロイン化合物(例えば、米国特許第2722512号明細書)、多核キノン化合物(例えば、米国特許第3046127号明細書及び米国特許第2951758号明細書)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(例えば、米国特許第3549367号明細書)、オキサジアゾール化合物(例えば、米国特許第4212970号明細書)、アクリジン化合物及びフェナジン化合物(例えば、特開昭60-105667号公報及び米国特許第4239850号明細書)が挙げられる。 Examples of photopolymerization initiators include α-carbonyl compounds (e.g., US Pat. No. 2,367,661 and US Pat. No. 2,367,670), acyloin ether compounds (e.g., US Pat. No. 2,448,828), α - Hydrocarbon-substituted aromatic acyloin compounds (e.g., U.S. Pat. No. 2,722,512), polynuclear quinone compounds (e.g., U.S. Pat. No. 3,046,127 and U.S. Pat. No. 2,951,758), triarylimidazole dimers and p- Combinations with aminophenyl ketones (e.g., US Pat. No. 3,549,367), oxadiazole compounds (e.g., US Pat. No. 4,212,970), acridine compounds and phenazine compounds (e.g., JP-A-60-105667) and US Pat. No. 4,239,850).
 好ましい光ラジカル重合開始剤としては、例えば、α-ヒドロキシアルキルフェノン化合物、α-アミノアルキルフェノン化合物及びアシルホスフィンオキサイド化合物が挙げられる。 Preferred radical photopolymerization initiators include, for example, α-hydroxyalkylphenone compounds, α-aminoalkylphenone compounds, and acylphosphine oxide compounds.
 好ましい光カチオン重合開始剤としては、例えば、ヨードニウム塩化合物及びスルホニウム塩化合物が挙げられる。 Preferred photocationic polymerization initiators include, for example, iodonium salt compounds and sulfonium salt compounds.
 液晶組成物は、ラジカル重合開始剤又はカチオン重合開始剤を含むことが好ましく、光ラジカル重合開始剤又は光カチオン重合開始剤を含むことがより好ましい。 The liquid crystal composition preferably contains a radical polymerization initiator or a cationic polymerization initiator, and more preferably contains a radical photopolymerization initiator or a cationic photopolymerization initiator.
 熱耐久性の向上の観点から、1つのエチレン性不飽和基を有する液晶化合物を含む液晶組成物は、ラジカル重合開始剤を含むことが好ましく、光ラジカル重合開始剤を含むことがより好ましい。 From the viewpoint of improving thermal durability, the liquid crystal composition containing a liquid crystal compound having one ethylenically unsaturated group preferably contains a radical polymerization initiator, and more preferably contains a photoradical polymerization initiator.
 熱耐久性の向上の観点から、1つの環状エーテル基を有する液晶化合物を含む液晶組成
物は、カチオン重合開始剤を含むことが好ましく、光カチオン重合開始剤を含むことがより好ましい。
From the viewpoint of improving thermal durability, a liquid crystal composition containing a liquid crystal compound having one cyclic ether group preferably contains a cationic polymerization initiator, and more preferably contains a photocationic polymerization initiator.
 液晶組成物は、1種又は2種以上の重合開始剤を含んでもよい。 The liquid crystal composition may contain one or more types of polymerization initiators.
 重合開始剤の含有量は、例えば、特定液晶化合物の構造及び目的とする螺旋ピッチに応じて決定されてもよい。コレステリック液晶層形成の容易性、螺旋ピッチの調整容易性、重合速度及びコレステリック液晶層の強度の観点から、液晶組成物の固形分の総量に対する重合開始剤の総量の割合は、0.05質量%~10質量%であることが好ましく、0.05質量%~5質量%以下であることがより好ましく、0.1質量%~2質量%であることが更に好ましく、0.2質量%~1質量%であることが特に好ましい。 The content of the polymerization initiator may be determined, for example, depending on the structure of the specific liquid crystal compound and the desired helical pitch. From the viewpoint of ease of forming the cholesteric liquid crystal layer, ease of adjusting the helical pitch, polymerization rate, and strength of the cholesteric liquid crystal layer, the ratio of the total amount of polymerization initiator to the total amount of solid content of the liquid crystal composition is 0.05% by mass. It is preferably 10% by mass, more preferably 0.05% by mass to 5% by mass or less, even more preferably 0.1% to 2% by mass, and even more preferably 0.2% to 1% by mass. Particularly preferred is mass %.
 硬化後のコレステリック液晶層の強度向上及び耐久性向上の観点から、液晶組成物は、架橋剤を含んでもよい。好ましい架橋剤としては、例えば、紫外線、熱及び湿気といった外的要因により硬化する化合物が挙げられる。 From the viewpoint of improving the strength and durability of the cholesteric liquid crystal layer after curing, the liquid crystal composition may contain a crosslinking agent. Preferred crosslinking agents include, for example, compounds that are cured by external factors such as ultraviolet light, heat, and moisture.
 架橋剤としては、例えば、以下に示される化合物が挙げられる。
 (1)多官能アクリレート化合物(例えば、トリメチロールプロパントリ(メタ)アクリレート及びペンタエリスリトールトリ(メタ)アクリレート)
 (2)エポキシ化合物(例えば、グリシジル(メタ)アクリレート及びエチレングリコールジグリシジルエーテル)
 (3)アジリジン化合物(例えば、2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]及び4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン)
 (4)イソシアネート化合物(例えば、ヘキサメチレンジイソシアネート及びビウレット型イソシアネート)
 (5)オキサゾリン基を側鎖に有するポリオキサゾリン化合物
 (6)アルコキシシラン化合物(例えば、ビニルトリメトキシシラン及びN-(2-アミノエチル)3-アミノプロピルトリメトキシシラン)
Examples of the crosslinking agent include the compounds shown below.
(1) Polyfunctional acrylate compounds (e.g., trimethylolpropane tri(meth)acrylate and pentaerythritol tri(meth)acrylate)
(2) Epoxy compounds (e.g. glycidyl (meth)acrylate and ethylene glycol diglycidyl ether)
(3) Aziridine compounds (e.g., 2,2-bishydroxymethylbutanol-tris[3-(1-aziridinyl)propionate] and 4,4-bis(ethyleneiminocarbonylamino)diphenylmethane)
(4) Isocyanate compounds (e.g. hexamethylene diisocyanate and biuret-type isocyanate)
(5) Polyoxazoline compounds having oxazoline groups in their side chains (6) Alkoxysilane compounds (e.g. vinyltrimethoxysilane and N-(2-aminoethyl)3-aminopropyltrimethoxysilane)
 液晶組成物は、1種又は2種以上の架橋剤を含んでもよい。 The liquid crystal composition may contain one or more crosslinking agents.
 コレステリック液晶層の強度及び耐久性の観点から、液晶組成物の固形分の総量に対する架橋剤の総量の割合は、1質量%~20質量%であることが好ましく、3質量%~15質量%であることがより好ましい。 From the viewpoint of strength and durability of the cholesteric liquid crystal layer, the ratio of the total amount of crosslinking agent to the total amount of solid content of the liquid crystal composition is preferably 1% by mass to 20% by mass, and 3% by mass to 15% by mass. It is more preferable that there be.
 液晶組成物は、架橋剤の反応性に応じて公知の触媒を含んでもよい。架橋剤及び触媒の併用は、コレステリック液晶層の強度及び耐久性の向上に加えて、生産性を向上できる。 The liquid crystal composition may contain a known catalyst depending on the reactivity of the crosslinking agent. The combined use of a crosslinking agent and a catalyst can not only improve the strength and durability of the cholesteric liquid crystal layer, but also improve productivity.
 液晶組成物は、多官能重合性化合物を含んでもよい。多官能重合性化合物とは、2つ以上の重合性基を有する化合物を意味する。多官能重合性化合物に含まれる2つ以上の重合性基の種類は、同じであることが好ましい。 The liquid crystal composition may contain a polyfunctional polymerizable compound. A polyfunctional polymerizable compound means a compound having two or more polymerizable groups. It is preferable that the types of two or more polymerizable groups contained in the polyfunctional polymerizable compound are the same.
 多官能重合性化合物としては、例えば、2つ以上のエチレン性不飽和基を有し、かつ、環状エーテル基を有しない液晶化合物、2つ以上の環状エーテル基を有し、かつ、エチレン性不飽和基を有しない液晶化合物、2つ以上のエチレン性不飽和基と2つ以上の環状エーテル基とを有する液晶化合物及び2つ以上の重合性基を有するカイラル剤及び2つ以上の重合性基を有する架橋剤が挙げられる。多官能重合性化合物は、2つ以上のエチレン性不飽和基を有し、かつ、環状エーテル基を有しない液晶化合物、2つ以上の環状エーテル基を有し、かつ、エチレン性不飽和基を有しない液晶化合物及び2つ以上の重合性基を有するカイラル剤からなる群より選択される少なくとも1種を含むことが好ましく、2つ以上の重合性基を有するカイラル剤を含むことがより好ましい。 Examples of the polyfunctional polymerizable compound include a liquid crystal compound having two or more ethylenically unsaturated groups and no cyclic ether group, and a liquid crystal compound having two or more cyclic ether groups and no ethylenically unsaturated group. Liquid crystal compounds having no saturated groups, liquid crystal compounds having two or more ethylenically unsaturated groups and two or more cyclic ether groups, chiral agents having two or more polymerizable groups, and two or more polymerizable groups Examples include crosslinking agents having the following. Polyfunctional polymerizable compounds include liquid crystal compounds that have two or more ethylenically unsaturated groups and no cyclic ether groups, and liquid crystal compounds that have two or more cyclic ether groups and no ethylenically unsaturated groups. It is preferable to include at least one kind selected from the group consisting of a liquid crystal compound that does not have a chiral agent and a chiral agent that has two or more polymerizable groups, and more preferably a chiral agent that has two or more polymerizable groups.
 液晶組成物は、1種又は2種以上の多官能重合性化合物を含んでもよい。 The liquid crystal composition may contain one or more polyfunctional polymerizable compounds.
 成型性の向上と重合後の配向構造変化の抑制の観点から、液晶組成物の固形分の総量に対する多官能重合性化合物の総量の割合は、0.5質量%~50質量%であることが好ましく、1質量%~40質量%であることがより好ましく、1.5質量%~30質量%であることが更に好ましく、2質量%~20質量%であることが特に好ましい。液晶組成物の固形分の総量に対する多官能重合性化合物の総量の割合が小さくなると、コレステリック液晶層の架橋密度が小さくなる。この結果、コレステリック液晶層の延伸性が向上し、成型性が向上する。液晶組成物の固形分の総量に対する多官能重合性化合物の総量の割合が大きくなると、重合後にコレステリック液晶層の配向構造が維持されやすくなる。成型性の向上の観点から、多官能重合性化合物の中でも、2つ以上のエチレン性不飽和基を有する化合物、2つ以上の環状エーテル基を有する化合物及び1つ以上のエチレン性不飽和基と1つ以上の環状エーテル基とを有する化合物の含有量が規制されることが好ましい。すなわち、液晶組成物の固形分の総量に対する「2つ以上のエチレン性不飽和基を有する化合物、2つ以上の環状エーテル基を有する化合物及び1つ以上のエチレン性不飽和基と1つ以上の環状エーテル基とを有する化合物の総量」の割合は、0.5質量%~50質量%であることが好ましく、1質量%~40質量%であることがより好ましく、1.5質量%~30質量%であることが更に好ましく、2質量%~20質量%であることが特に好ましい。 From the viewpoint of improving moldability and suppressing changes in orientation structure after polymerization, the ratio of the total amount of the polyfunctional polymerizable compound to the total amount of solid content of the liquid crystal composition is preferably 0.5% by mass to 50% by mass. It is preferably 1% by mass to 40% by mass, even more preferably 1.5% by mass to 30% by mass, and particularly preferably 2% by mass to 20% by mass. As the ratio of the total amount of polyfunctional polymerizable compounds to the total amount of solid content of the liquid crystal composition decreases, the crosslinking density of the cholesteric liquid crystal layer decreases. As a result, the stretchability of the cholesteric liquid crystal layer is improved, and the moldability is improved. When the ratio of the total amount of the polyfunctional polymerizable compound to the total amount of solid content of the liquid crystal composition increases, the alignment structure of the cholesteric liquid crystal layer is easily maintained after polymerization. From the viewpoint of improving moldability, among polyfunctional polymerizable compounds, compounds having two or more ethylenically unsaturated groups, compounds having two or more cyclic ether groups, and compounds having one or more ethylenically unsaturated groups are used. It is preferable that the content of the compound having one or more cyclic ether groups is regulated. In other words, "compounds having two or more ethylenically unsaturated groups, compounds having two or more cyclic ether groups, and compounds having one or more ethylenically unsaturated groups and one or more The ratio of "total amount of compounds having a cyclic ether group" is preferably 0.5% to 50% by mass, more preferably 1% to 40% by mass, and 1.5% to 30% by mass. It is more preferably % by mass, and particularly preferably 2% by mass to 20% by mass.
 液晶組成物は、必要に応じて、他の添加剤を含んでもよい。他の添加剤としては、例えば、界面活性剤、重合禁止剤、酸化防止剤、水平配向剤、紫外線吸収剤、光安定化剤、着色剤及び金属酸化物粒子が挙げられる。液晶組成物は、1種又は2種以上の他の添加剤を含んでもよい。 The liquid crystal composition may contain other additives as necessary. Other additives include, for example, surfactants, polymerization inhibitors, antioxidants, horizontal alignment agents, ultraviolet absorbers, light stabilizers, colorants, and metal oxide particles. The liquid crystal composition may also contain one or more other additives.
 液晶組成物は、溶剤を含んでもよい。溶剤は、有機溶剤であることが好ましい。有機溶剤としては、例えば、ケトン類(例えば、メチルエチルケトン、メチルイソブチルケトン及びシクロヘキサノン)、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類及びエーテル類が挙げられる。環境への負荷を考慮した場合、ケトン類が好ましい。 The liquid crystal composition may contain a solvent. Preferably, the solvent is an organic solvent. Examples of organic solvents include ketones (eg, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone), alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, and ethers. Ketones are preferable in consideration of the burden on the environment.
 液晶組成物は、1種又は2種以上の溶剤を含んでもよい。 The liquid crystal composition may contain one or more solvents.
 溶剤の含有量は、例えば、液晶組成物の塗布性に応じて決定されてもよい。 The content of the solvent may be determined, for example, depending on the coatability of the liquid crystal composition.
 液晶組成物の総量に対する液晶組成物の固形分の総量の割合は、1質量%~90質量%であることが好ましく、5質量%~80質量%であることがより好ましく、10質量%~80質量%であることが更に好ましい。 The ratio of the total solid content of the liquid crystal composition to the total amount of the liquid crystal composition is preferably 1% by mass to 90% by mass, more preferably 5% to 80% by mass, and 10% to 80% by mass. It is more preferable that it is mass %.
 コレステリック液晶層の形成過程で液晶組成物が硬化される場合、液晶組成物の硬化時における液晶組成物の固形分の総量に対する溶剤の総量の割合は、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、2質量%以下であることが更に好ましく、1質量%以下であることが特に好ましい。 When the liquid crystal composition is cured in the process of forming a cholesteric liquid crystal layer, the ratio of the total amount of solvent to the total amount of solid content of the liquid crystal composition at the time of curing the liquid crystal composition is preferably 5% by mass or less, and 3% by mass or less. It is more preferably at most 2% by mass, even more preferably at most 2% by mass, and particularly preferably at most 1% by mass.
 コレステリック液晶層の総量に対するコレステリック液晶層における溶剤の総量の割合は、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、2質量%以下であることが更に好ましく、1質量%以下であることが特に好ましい。 The ratio of the total amount of solvent in the cholesteric liquid crystal layer to the total amount of the cholesteric liquid crystal layer is preferably 5% by mass or less, more preferably 3% by mass or less, even more preferably 2% by mass or less, and 1 It is particularly preferable that it is less than % by mass.
 液晶組成物の製造方法は、制限されない。液晶組成物は、例えば、液晶化合物と、液晶化合物以外の成分との混合によって製造される。混合方法は、公知の混合方法から選択されてもよい。 The method for producing the liquid crystal composition is not limited. A liquid crystal composition is manufactured, for example, by mixing a liquid crystal compound and a component other than the liquid crystal compound. The mixing method may be selected from known mixing methods.
 液晶組成物の硬化は、例えば、露光により実施される。露光は、例えば、液晶組成物に光を照射することによって実施される。好ましい光源としては、例えば、365nm及び405nmからなる群より選択される少なくとも1種を含む光を照射できる光源が挙げられる。具体的な光源としては、例えば、超高圧水銀灯、高圧水銀灯及びメタルハライドランプが挙げられる。露光量は、5mJ/cm~2,000mJ/cmであることが好ましく、10mJ/cm~1,000mJ/cmであることがより好ましい。露光方法として、例えば、特開2006-23696号公報の段落0035~段落0051に記載された方法が適用されてもよい。 Curing of the liquid crystal composition is performed, for example, by exposure. Exposure is performed, for example, by irradiating the liquid crystal composition with light. A preferable light source includes, for example, a light source that can irradiate light containing at least one type selected from the group consisting of 365 nm and 405 nm. Specific light sources include, for example, ultra-high-pressure mercury lamps, high-pressure mercury lamps, and metal halide lamps. The exposure amount is preferably 5 mJ/cm 2 to 2,000 mJ/cm 2 , more preferably 10 mJ/cm 2 to 1,000 mJ/cm 2 . As the exposure method, for example, the method described in paragraphs 0035 to 0051 of JP-A No. 2006-23696 may be applied.
 液晶化合物の配列を容易にするため、液晶組成物を加熱しながら露光することが好ましい。加熱温度は、例えば、液晶組成物の組成に応じて決定される。加熱温度は、例えば、60℃~120℃である。加熱手段としては、例えば、ヒーター、オーブン、ホットプレート、赤外線ランプ及び赤外線レーザーが挙げられる。 In order to facilitate alignment of the liquid crystal compound, it is preferable to expose the liquid crystal composition while heating it. The heating temperature is determined, for example, depending on the composition of the liquid crystal composition. The heating temperature is, for example, 60°C to 120°C. Examples of heating means include heaters, ovens, hot plates, infrared lamps, and infrared lasers.
 液晶組成物の硬化は、例えば、加熱により実施されてもよい。加熱温度は、60℃~200℃~であることが好ましい。加熱時間は、5分間~2時間であることが好ましい。加熱手段としては、例えば、既述した加熱手段が挙げられる。 Curing of the liquid crystal composition may be performed, for example, by heating. The heating temperature is preferably 60°C to 200°C. The heating time is preferably 5 minutes to 2 hours. Examples of the heating means include the heating means described above.
 液晶組成物は、硬化前に、公知の方法によって乾燥されてもよい。液晶組成物は、放置又は風乾によって乾燥されてもよい。液晶組成物は、加熱によって乾燥されてもよい。 The liquid crystal composition may be dried by a known method before curing. The liquid crystal composition may be left to dry or air-dried. The liquid crystal composition may be dried by heating.
 また、構造色を発現する層の厚さは、特に限定されないが、より適切な反射率を得る観点から、0.1μm~10μmであることが好ましく、0.3μm~8μmであることがより好ましく、0.5μm~6μmであることが更に好ましい。 Further, the thickness of the layer expressing structural color is not particularly limited, but from the viewpoint of obtaining a more appropriate reflectance, it is preferably 0.1 μm to 10 μm, more preferably 0.3 μm to 8 μm. , more preferably 0.5 μm to 6 μm.
〔基材〕
 積層体は、基材を含んでよい。これにより、積層体の強度を高めることができるため取り扱いがより容易となる。また、積層体が基材を含む場合、積層体を成型してなる成型体を構成する部材として基材を用いることができる。
〔Base material〕
The laminate may include a base material. This increases the strength of the laminate, making it easier to handle. Further, when the laminate includes a base material, the base material can be used as a member constituting a molded product formed by molding the laminate.
 積層体が基材を含む態様において、構造色を発現する層は、基材上に直接設けられていてよく、他の層を介して設けられていてもよい。 In an embodiment in which the laminate includes a base material, the layer expressing structural color may be provided directly on the base material, or may be provided via another layer.
 基材の形状及び材質は、特に限定されず、所望に応じ適宜選択すればよい。積層体を成型する場合、成型容易性の観点から、基材は、樹脂基材であることが好ましい。 The shape and material of the base material are not particularly limited, and may be appropriately selected as desired. When molding a laminate, the base material is preferably a resin base material from the viewpoint of ease of molding.
 樹脂基材の材質として、例えば、ポリエチレン(PE)、ポリエチレンナフタレート(PEN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリアクリルニトリル(PAN)、ポリイミド(PI)、ポリメタクリル酸メチル(PMMA)、ポリカーボネート(PC)、アクリル-ポリカーボネート樹脂、ポリアクリレート、ポリメタクリレート、ポリプロピレン(PP)、ポリスチレン(PS)、ポリアクリロニトリル-ブタジエン-スチレン共重合体(ABS)、環状オレフィン-コポリマー(COC)、シクロオレフィンポリマー(COP)、トリアセチルセルロース(TAC)、ウレタン樹脂、及びウレタン-アクリル樹脂が挙げられる。積層体の強度の観点、また、積層体を成型する場合の成型加工性の観点から、基材の材質は、ポリエチレンテレフタレート、アクリル樹脂、ウレタン樹脂、ウレタン-アクリル樹脂、ポリカーボネート、アクリル-ポリカーボネート樹脂及びポリプロピレンからなる群より選択される少なくとも1種の樹脂であることが好ましい。基材は、材質が異なる複数の樹脂層の積層体であってよい。 Examples of the material of the resin base material include polyethylene (PE), polyethylene naphthalate (PEN), polyamide (PA), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinyl alcohol (PVA), and polyacrylonitrile (PAN). ), polyimide (PI), polymethyl methacrylate (PMMA), polycarbonate (PC), acrylic-polycarbonate resin, polyacrylate, polymethacrylate, polypropylene (PP), polystyrene (PS), polyacrylonitrile-butadiene-styrene copolymer (ABS), cyclic olefin-copolymers (COC), cycloolefin polymers (COP), triacetyl cellulose (TAC), urethane resins, and urethane-acrylic resins. From the viewpoint of the strength of the laminate and the moldability when molding the laminate, the material of the base material is polyethylene terephthalate, acrylic resin, urethane resin, urethane-acrylic resin, polycarbonate, acrylic-polycarbonate resin, and Preferably, it is at least one resin selected from the group consisting of polypropylene. The base material may be a laminate of a plurality of resin layers made of different materials.
 樹脂基材は、必要に応じ、添加剤を含有していてよい。添加剤としては、例えば、鉱油、炭化水素、脂肪酸、アルコール、脂肪酸エステル、脂肪酸アミド、金属石けん、天然ワックス、シリコーン等の潤滑剤;水酸化マグネシウム、水酸化アルミニウム等の無機難燃剤;ハロゲン系難燃剤、リン系難燃剤等の有機難燃剤;金属粉、タルク、炭酸カルシウム、チタン酸カリウム、ガラス繊維、カーボン繊維、木粉等の有機又は無機の充填剤;酸化防止剤、紫外線防止剤、滑剤、分散剤、カップリング剤、発泡剤、着色剤、及び主成分の樹脂以外の樹脂が挙げられる。 The resin base material may contain additives as necessary. Examples of additives include lubricants such as mineral oil, hydrocarbons, fatty acids, alcohols, fatty acid esters, fatty acid amides, metal soaps, natural waxes, and silicones; inorganic flame retardants such as magnesium hydroxide and aluminum hydroxide; and halogen-based retardants. Organic flame retardants such as flame retardants and phosphorus flame retardants; organic or inorganic fillers such as metal powder, talc, calcium carbonate, potassium titanate, glass fiber, carbon fiber, and wood flour; antioxidants, ultraviolet inhibitors, and lubricants. , a dispersant, a coupling agent, a foaming agent, a coloring agent, and a resin other than the main component resin.
 樹脂基材は、市販品であってよい。市販品としては、例えば、テクノロイ(登録商標)シリーズ(アクリル樹脂フィルム、ポリカーボネート樹脂フィルム、又はアクリル樹脂/ポリカーボネート樹脂積層フィルム、住友化学社製)、ABSフィルム(オカモト社製)、ABSシート(積水成型工業社製)、テフレックス(登録商標)シリーズ(PETフィルム、帝人フィルムソリューション社製)、ルミラー(登録商標)易成型タイプ(PETフィルム、東レ社製)、及びピュアサーモ(ポリプロピレンフィルム、出光ユニテック社製)が挙げられる。 The resin base material may be a commercially available product. Commercially available products include, for example, the Technoloy (registered trademark) series (acrylic resin film, polycarbonate resin film, or acrylic resin/polycarbonate resin laminated film, manufactured by Sumitomo Chemical Co., Ltd.), ABS film (manufactured by Okamoto Co., Ltd.), and ABS sheet (Sekisui Molding Co., Ltd.). (manufactured by Kogyo Co., Ltd.), Teflex (registered trademark) series (PET film, manufactured by Teijin Film Solutions Co., Ltd.), Lumirror (registered trademark) easy molding type (PET film, manufactured by Toray Industries, Ltd.), and Pure Thermo (polypropylene film, manufactured by Idemitsu Unitech Co., Ltd.) (manufactured by).
 基材の厚さは、特に限定されないが、積層体の強度の観点、また、積層体を成型する場合の成型加工性の観点から、1μm以上が好ましく、10μm以上がより好ましく、20μm以上が更に好ましい。また、同様の観点から、基材の厚さは、300μm以下が好ましく、200μm以下がより好ましく、150μm以下が更に好ましい。 The thickness of the base material is not particularly limited, but from the viewpoint of the strength of the laminate and the moldability when molding the laminate, it is preferably 1 μm or more, more preferably 10 μm or more, and still more preferably 20 μm or more. preferable. Moreover, from the same viewpoint, the thickness of the base material is preferably 300 μm or less, more preferably 200 μm or less, and even more preferably 150 μm or less.
 例えば、積層体が基材を含む場合、基材を含む積層体から基材を剥離したものを積層体としてよい。 For example, when the laminate includes a base material, the laminate may be obtained by peeling the base material from the laminate containing the base material.
[着色層]
 積層体は、着色層を含んでよい。これにより、所望の意匠を得ることがより容易となる。着色層は、着色剤を含む層である。着色層は、1層であってよく、2層以上であってもよい。
[Colored layer]
The laminate may include a colored layer. This makes it easier to obtain a desired design. The colored layer is a layer containing a coloring agent. The number of colored layers may be one layer, or two or more layers.
 積層体において、着色層の位置は、特に限定されず、所望の位置に設けてよい。例えば、着色層は、構造色を発現する層上に設けられてもよい。また、積層体が基材を含む場合、基材の構造色を発現する層が形成されている側とは反対側に設けられてよく、また、基材を含む積層体から基材を剥離したものを積層体とし、基材剥離後の積層体に設けられてよい。 In the laminate, the position of the colored layer is not particularly limited, and may be provided at any desired position. For example, a colored layer may be provided on a layer that exhibits structural color. In addition, when the laminate includes a base material, it may be provided on the side opposite to the side on which the layer expressing the structural color of the base material is formed, and the base material may be peeled off from the laminate containing the base material. It may be formed into a laminate and provided on the laminate after peeling off the base material.
 着色層の色は、特に限定されず、積層体の用途等に応じて適宜選択することができる。着色層の色としては、例えば、黒、灰、白、赤、橙、黄、緑、青、紫、茶等が挙げられる。また、着色層の色は、金属調の色であってもよい。 The color of the colored layer is not particularly limited, and can be appropriately selected depending on the use of the laminate. Examples of the color of the colored layer include black, gray, white, red, orange, yellow, green, blue, purple, and brown. Moreover, the color of the colored layer may be a metallic color.
-着色剤-
 着色剤は、顔料であってよく、染料であってもよい。耐久性の観点から、着色剤は、顔料であることが好ましい。着色層を金属調とするために、着色剤として、金属粒子、パール顔料等を用いてもよい。
-Coloring agent-
The colorant may be a pigment or a dye. From the viewpoint of durability, the colorant is preferably a pigment. In order to give the colored layer a metallic tone, metal particles, pearl pigments, etc. may be used as the coloring agent.
 顔料は、無機顔料であってもよく、有機顔料であってもよい。 The pigment may be an inorganic pigment or an organic pigment.
 無機顔料としては、例えば、二酸化チタン、酸化亜鉛、リトポン、軽質炭酸カルシウム、ホワイトカーボン、酸化アルミニウム、水酸化アルミニウム、硫酸バリウム等の白色顔料;カーボンブラック、チタンブラック、チタンカーボン、酸化鉄、黒鉛等の黒色顔料;酸化鉄、バリウムイエロー、カドミウムレッド、及びクロムイエローが挙げられる。 Examples of inorganic pigments include white pigments such as titanium dioxide, zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide, and barium sulfate; carbon black, titanium black, titanium carbon, iron oxide, graphite, etc. black pigments; iron oxide, barium yellow, cadmium red, and chrome yellow.
 無機顔料としては、特開2005-7765号公報の段落0015及び段落0114に記載の無機顔料も挙げられる。 Examples of inorganic pigments include the inorganic pigments described in paragraphs 0015 and 0114 of JP-A No. 2005-7765.
 有機顔料としては、例えば、フタロシアニンブルー、フタロシアニングリーン等のフタロシアニン系顔料;アゾレッド、アゾイエロー、アゾオレンジ等のアゾ系顔料;キナクリドンレッド、シンカシャレッド、シンカシャマゼンタ等のキナクリドン系顔料;ペリレンレッド、ペリレンマルーン等のペリレン系顔料;カルバゾールバイオレット、アントラピリジン、フラバンスロンイエロー、イソインドリンイエロー、インダスロンブルー、ジブロムアンザスロンレッド、アントラキノンレッド、及びジケトピロロピロールが挙げられる。 Examples of organic pigments include phthalocyanine pigments such as phthalocyanine blue and phthalocyanine green; azo pigments such as azo red, azo yellow, and azo orange; quinacridone pigments such as quinacridone red, shinkasha red, and shinkasha magenta; perylene red, Perylene pigments such as perylene maroon; carbazole violet, anthrapyridine, flavanthrone yellow, isoindoline yellow, induthrone blue, dibrom anthathurone red, anthraquinone red, and diketopyrrolopyrrole.
 有機顔料の具体例としては、C.I.Pigment Red 177、179、224、242、254、255、264等の赤色顔料、C.I.Pigment Yellow 138、139、150、180、185等の黄色顔料;C.I.Pigment Orange 36、38、71等の橙色顔料;C.I.Pigment Green 7、36、58等の緑色顔料;C.I.Pigment Blue 15:6等の青色顔料;及び、C.I.Pigment Violet 23等の紫色顔料が挙げられる。 Specific examples of organic pigments include C.I. I. Pigment Red 177, 179, 224, 242, 254, 255, 264 and other red pigments, C.I. I. Pigment Yellow 138, 139, 150, 180, 185 and other yellow pigments; C.I. I. Pigment Orange 36, 38, 71, and other orange pigments; C.I. I. Pigment Green 7, 36, 58 and other green pigments; C.I. I. Pigment Blue 15:6 and other blue pigments; and C.I. I. Examples include purple pigments such as Pigment Violet 23.
 有機顔料としては、特開2009-256572号公報の段落0093に記載の有機顔料も挙げられる。 Examples of organic pigments include organic pigments described in paragraph 0093 of JP-A No. 2009-256572.
 顔料は、光透過性及び光反射性を有する顔料(いわゆる、光輝性顔料)であってもよい。光輝性顔料としては、例えば、アルミニウム、銅、亜鉛、鉄、ニッケル、スズ、酸化アルミニウム、及びこれらの合金の金属製光輝性顔料、干渉マイカ顔料、ホワイトマイカ顔料、グラファイト顔料、並びに、ガラスフレーク顔料が挙げられる。光輝性顔料は、無着色のものであってよく、着色されたものであってもよい。 The pigment may be a pigment that has light transmittance and light reflectivity (so-called glitter pigment). Examples of bright pigments include metal bright pigments of aluminum, copper, zinc, iron, nickel, tin, aluminum oxide, and alloys thereof, interference mica pigments, white mica pigments, graphite pigments, and glass flake pigments. can be mentioned. The glitter pigment may be uncolored or colored.
 着色剤は、1種を単独で用いてよく、2種以上を併用してもよい。2種以上の着色剤を用いる場合、無機顔料と有機顔料と組み合わせてもよい。 One type of colorant may be used alone, or two or more types may be used in combination. When using two or more types of colorants, an inorganic pigment and an organic pigment may be combined.
 着色剤の含有量は、目的とする色発現の観点から、着色層の全量に対して、1質量%~50質量%であることが好ましく、5質量%~50質量%であることがより好ましく、10質量%~40質量%であることが特に好ましい。 From the viewpoint of desired color expression, the content of the colorant is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 50% by mass, based on the total amount of the colored layer. , 10% by mass to 40% by mass is particularly preferred.
-バインダー樹脂-
 着色層は、強度、耐傷性、及び成型加工適正の観点から、バインダー樹脂を含むことが好ましい。バインダー樹脂の種類は、特に制限されない。バインダー樹脂は、所望の色を得る観点から、透明な樹脂であることが好ましく、具体的には、全光透過率が80%以上の樹脂であることが好ましい。全光透過率は、分光光度計(例えば、島津製作所社製の分光光度計「UV-2100」)により測定することができる。
-Binder resin-
The colored layer preferably contains a binder resin from the viewpoints of strength, scratch resistance, and suitability for molding. The type of binder resin is not particularly limited. From the viewpoint of obtaining a desired color, the binder resin is preferably a transparent resin, and specifically, a resin having a total light transmittance of 80% or more is preferable. The total light transmittance can be measured with a spectrophotometer (eg, spectrophotometer "UV-2100" manufactured by Shimadzu Corporation).
 バインダー樹脂としては、例えば、アクリル樹脂、シリコーン樹脂、ポリエステル、ポリウレタン、及びポリオレフィンが挙げられる。バインダー樹脂は、単独重合体であってよく、共重合体であってもよい。 Examples of the binder resin include acrylic resin, silicone resin, polyester, polyurethane, and polyolefin. The binder resin may be a homopolymer or a copolymer.
 バインダー樹脂は、1種を単独で用いてよく、2種以上を併用してもよい。 One type of binder resin may be used alone, or two or more types may be used in combination.
 バインダー樹脂の含有量は、成型加工性の観点から、着色層の全量に対して、5質量%~70質量%であることが好ましく、10質量%~60質量%であることがより好ましく、20質量%~60質量%であることが特に好ましい。 From the viewpoint of moldability, the content of the binder resin is preferably 5% by mass to 70% by mass, more preferably 10% by mass to 60% by mass, and 20% by mass, based on the total amount of the colored layer. Particularly preferred is % by weight to 60% by weight.
-分散剤-
 着色層に含まれる着色剤、特に顔料の分散性を向上する観点から、着色層は、分散剤を含有してよい。分散剤が含まれると、着色層における着色剤の分散性が向上する。そのため、得られる積層体の色をより容易に均一にすることができる。
-Dispersant-
From the viewpoint of improving the dispersibility of the colorant contained in the colored layer, especially the pigment, the colored layer may contain a dispersant. When a dispersant is included, the dispersibility of the colorant in the colored layer is improved. Therefore, the color of the resulting laminate can be more easily made uniform.
 分散剤は、着色剤の種類、形状等に応じて適宜選択することができ、高分子分散剤であることが好ましい。 The dispersant can be appropriately selected depending on the type, shape, etc. of the colorant, and is preferably a polymer dispersant.
 高分子分散剤としては、例えば、シリコーンポリマー、アクリルポリマー、及びポリエステルポリマーが挙げられる。例えば、積層体に耐熱性を付与したい場合には、分散剤は、グラフト型シリコーンポリマー等のシリコーンポリマーであることが好ましい。 Examples of polymeric dispersants include silicone polymers, acrylic polymers, and polyester polymers. For example, when it is desired to impart heat resistance to the laminate, the dispersant is preferably a silicone polymer such as a grafted silicone polymer.
 分散剤の重量平均分子量は、1,000~5,000,000であることが好ましく、2,000~3,000,000であることがより好ましく、2,500~3,000,000であることが特に好ましい。重量平均分子量が1,000以上であると、着色剤の分散性がより向上する。 The weight average molecular weight of the dispersant is preferably 1,000 to 5,000,000, more preferably 2,000 to 3,000,000, and more preferably 2,500 to 3,000,000. It is particularly preferable. When the weight average molecular weight is 1,000 or more, the dispersibility of the colorant is further improved.
 分散剤は、市販品であってよい。分散剤の市販品としては、BASFジャパン社製のEFKA 4300(アクリル系高分子分散剤);花王社製のホモゲノールL-18、ホモゲノールL-95、及びホモゲノールL-100;日本ルーブリゾール社製の、ソルスパース20000、及びソルスパース24000;並びにビックケミー・ジャパン社製のDISPERBYK-110、DISPERBYK-164、DISPERBYK-180、及びDISPERBYK-182が挙げられる。なお、「ホモゲノール」、「ソルスパース」、及び「DISPERBYK」はいずれも登録商標である。 The dispersant may be a commercially available product. Commercially available dispersants include EFKA 4300 (acrylic polymer dispersant) manufactured by BASF Japan; homogenol L-18, homogenol L-95, and homogenol L-100 manufactured by Kao; and homogenol L-100 manufactured by Japan Lubrizol. , Solsperse 20000, and Solsperses 24000; and DISPERBYK-110, DISPERBYK-164, DISPERBYK-180, and DISPERBYK-182 manufactured by BYK Chemie Japan. Note that "Homogenol," "Solsperse," and "DISPERBYK" are all registered trademarks.
 分散剤は、1種を単独で用いてよく、2種以上を併用してもよい。 One type of dispersant may be used alone, or two or more types may be used in combination.
 分散剤の含有量は、着色剤100質量部に対して、1質量部~30質量部であることが好ましい。 The content of the dispersant is preferably 1 part by mass to 30 parts by mass based on 100 parts by mass of the colorant.
-添加剤-
 着色層は、上記の成分以外に、必要に応じて添加剤を含んでいてもよい。添加剤は、特に限定されず、例えば、特許第4502784号公報の段落0017、及び特開2009-237362号公報の段落0060~0071に記載の界面活性剤;特許第4502784号公報の段落0018に記載の熱重合防止剤(重合禁止剤ともいう。フェノチアジンが好ましく挙げられる。);並びに、特開2000-310706号公報の段落0058~0071に記載の添加剤が挙げられる。
-Additive-
The colored layer may contain additives, if necessary, in addition to the above-mentioned components. The additive is not particularly limited, and for example, the surfactants described in paragraph 0017 of Japanese Patent No. 4502784 and paragraphs 0060 to 0071 of JP2009-237362; and the surfactants described in paragraph 0018 of Japanese Patent No. 4502784. Thermal polymerization inhibitors (also referred to as polymerization inhibitors; preferred examples include phenothiazine); and additives described in paragraphs 0058 to 0071 of JP-A No. 2000-310706.
-厚さ-
 着色層の厚さは、特に限定されないが、視認性及び立体成型性の観点から、0.5μm以上であることが好ましく、3μm以上であることがより好ましく、3μm~50μmであることが更に好ましく、3μm~20μmであることが特に好ましい。
 着色層が2層以上である場合、各着色層がそれぞれ独立に、上記厚さの範囲であることが好ましい。
-thickness-
The thickness of the colored layer is not particularly limited, but from the viewpoint of visibility and three-dimensional moldability, it is preferably 0.5 μm or more, more preferably 3 μm or more, and even more preferably 3 μm to 50 μm. , 3 μm to 20 μm is particularly preferred.
When there are two or more colored layers, it is preferable that each colored layer independently has a thickness within the above range.
-着色層の形成方法-
 着色層の形成方法としては、例えば、着色層形成用組成物を用いる方法、着色されたフィルムを貼り合せる方法等が挙げられる。中でも、着色層の形成方法は、着色層形成用組成物を用いる方法が好ましい。
-Method for forming colored layer-
Examples of the method for forming the colored layer include a method using a composition for forming a colored layer, a method of laminating colored films, and the like. Among these, the method of forming the colored layer is preferably a method using a composition for forming a colored layer.
 着色層形成用組成物を用いて着色層を形成する方法としては、着色層形成用組成物を塗布して着色層を形成する方法、例えば、着色層形成用組成物を印刷して着色層を形成する方法が挙げられる。印刷方法としては、例えば、スクリーン印刷、インクジェット印刷、フレキソ印刷、グラビア印刷、及びオフセット印刷が挙げられる。 A method of forming a colored layer using a colored layer forming composition includes a method of coating a colored layer forming composition to form a colored layer, for example, a method of forming a colored layer by printing a colored layer forming composition. Examples include a method of forming. Examples of printing methods include screen printing, inkjet printing, flexo printing, gravure printing, and offset printing.
 着色層形成用組成物は、着色剤と、必要に応じて、バインダー樹脂、分散剤及び添加剤の少なくとも1つとを含むものであってよい。各成分の種類は、着色層について上述したものであってよい。
 着色剤の含有量は、着色層形成用組成物の全固形分量に対して、1質量%~50質量%であることが好ましく、5質量%~50質量%であることがより好ましく、10質量%~40質量%であることが特に好ましい。
 バインダー樹脂の含有量は、着色層形成用組成物の全固形分量に対して、5質量%~70質量%であることが好ましく、10質量%~60質量%であることがより好ましく、20質量%~60質量%であることが特に好ましい。
 分散剤の含有量は、着色剤100質量部に対して、1質量部~30質量部であることが好ましい。
The composition for forming a colored layer may contain a colorant and, if necessary, at least one of a binder resin, a dispersant, and an additive. The types of each component may be those described above for the colored layer.
The content of the coloring agent is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 50% by mass, and 10% by mass based on the total solid content of the composition for forming a colored layer. % to 40% by weight is particularly preferred.
The content of the binder resin is preferably 5% by mass to 70% by mass, more preferably 10% by mass to 60% by mass, and 20% by mass based on the total solid content of the composition for forming a colored layer. % to 60% by weight is particularly preferred.
The content of the dispersant is preferably 1 part by mass to 30 parts by mass based on 100 parts by mass of the colorant.
 着色層は、着色層形成用組成物を硬化してなる層であってもよく、例えば、重合性化合物及び重合開始剤を含む着色層形成用組成物を用いてよい。重合性化合物及び重合開始剤は、特に限定されず、公知の重合性化合物及び公知の重合開始剤を用いてよい。重合性化合物は、1種を単独で用いてよく、2種以上を併用してもよい。重合開始剤は、1種を単独で用いてよく、2種以上を併用してもよい。 The colored layer may be a layer formed by curing a composition for forming a colored layer, for example, a composition for forming a colored layer containing a polymerizable compound and a polymerization initiator may be used. The polymerizable compound and polymerization initiator are not particularly limited, and known polymerizable compounds and known polymerization initiators may be used. One type of polymerizable compound may be used alone, or two or more types may be used in combination. One type of polymerization initiator may be used alone, or two or more types may be used in combination.
 着色層形成用組成物は、塗布をより容易にする観点から、有機溶剤を含んでよい。有機溶剤は、特に限定されず、公知の有機溶剤を適用することができる。有機溶剤としては、例えば、アルコール、エステル、エーテル、ケトン、及び芳香族炭化水素が挙げられる。有機溶剤は、1種を単独で用いてよく、2種以上を併用してもよい。 The composition for forming a colored layer may contain an organic solvent from the viewpoint of making coating easier. The organic solvent is not particularly limited, and any known organic solvent can be used. Examples of organic solvents include alcohols, esters, ethers, ketones, and aromatic hydrocarbons. One type of organic solvent may be used alone, or two or more types may be used in combination.
 有機溶剤の含有量は、着色層形成用組成物の全量に対して、5質量%~90質量%であることが好ましく、30質量%~70質量%であることがより好ましい。 The content of the organic solvent is preferably 5% by mass to 90% by mass, more preferably 30% by mass to 70% by mass, based on the total amount of the composition for forming a colored layer.
 着色層形成用組成物として、例えば、naxレアルシリーズ、naxアドミラシリーズ、及びnaxマルチシリーズ(日本ペイント社製);レタンPGシリーズ(関西ペイント社製)等の市販の塗料を用いてよい。 As the composition for forming a colored layer, commercially available paints such as NAX Real series, NAX Admira series, and NAX Multi series (manufactured by Nippon Paint Co., Ltd.); Rethan PG series (manufactured by Kansai Paint Co., Ltd.) may be used.
 着色層形成用組成物の調製方法は、特に限定されず、例えば、着色剤等の各成分を混合することにより着色層形成用組成物を調製してよい。また、着色層形成用組成物が着色剤として顔料を含む場合、顔料の均一分散性及び分散安定性をより高める観点から、顔料と分散剤とを含む顔料分散液を予め調製し、顔料分散液に他の成分を混合することにより、着色層形成用組成物を調製することが好ましい。 The method for preparing the composition for forming a colored layer is not particularly limited, and for example, the composition for forming a colored layer may be prepared by mixing each component such as a coloring agent. In addition, when the composition for forming a colored layer contains a pigment as a coloring agent, from the viewpoint of further increasing the uniform dispersibility and dispersion stability of the pigment, a pigment dispersion containing the pigment and a dispersant is prepared in advance, and the pigment dispersion is prepared in advance. It is preferable to prepare a composition for forming a colored layer by mixing other components with the above composition.
[配向層]
 積層体は、配向層を有していてもよい。配向層は、積層体の形成の際、光反射部中のコレステリック液晶化合物の分子をより容易に配向させるために用いられる。
[Orientation layer]
The laminate may have an alignment layer. The alignment layer is used to more easily align the molecules of the cholesteric liquid crystal compound in the light reflecting portion when forming the laminate.
 配向層は、例えば、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成等によって設けられる。配向層としては、電場の付与、磁場の付与、又は光照射により配向機能が生じる配向層も知られている。 The alignment layer is provided by, for example, rubbing treatment with an organic compound (preferably a polymer), oblique vapor deposition of an inorganic compound, formation of a layer having microgrooves, or the like. As the alignment layer, an alignment layer in which an alignment function is produced by application of an electric field, a magnetic field, or light irradiation is also known.
 配向層の厚さは、特に限定されないが、0.01μm~10μmであることが好ましい。 The thickness of the alignment layer is not particularly limited, but is preferably 0.01 μm to 10 μm.
 基材、下地の種類によっては、配向層を別途設けることなく、下地を配向層とすることができる。
 例えば、基材を直接配向処理(例えば、ラビング処理)することで、配向層として機能させることができる。直接配向処理可能な基材としては、例えば、ポリエチレンテレフタレート(PET)からなる層が挙げられ、後述の要領でラビング処理を施してよい。
Depending on the type of base material and underlayer, the underlayer can be used as an alignment layer without providing a separate alignment layer.
For example, by directly subjecting the base material to alignment treatment (for example, rubbing treatment), it can be made to function as an alignment layer. An example of a base material that can be directly aligned is a layer made of polyethylene terephthalate (PET), which may be subjected to a rubbing process as described below.
 以下、好ましい例として、ラビング処理配向層及び光配向層について説明する。 Hereinafter, a rubbing treatment alignment layer and a photo alignment layer will be explained as preferred examples.
-ラビング処理配向層-
 ラビング処理配向層は、例えば、液晶組成物が塗布される下地の表面に対して、ラビング処理を行うことにより形成される。ラビング処理は、例えば、ポリマーを主成分とする膜の表面を、紙又は布で一定方向に擦ることにより行うことができる。ラビング処理の一般的な方法については、例えば、「液晶便覧」(丸善社発行、平成12年10月30日)に記載されている。
-Rubbing alignment layer-
The rubbing treatment alignment layer is formed, for example, by performing a rubbing treatment on the surface of the base to which the liquid crystal composition is applied. The rubbing treatment can be performed, for example, by rubbing the surface of a film containing a polymer as a main component in a certain direction with paper or cloth. A general method of rubbing treatment is described, for example, in "Liquid Crystal Handbook" (published by Maruzensha, October 30, 2000).
 上記のようなポリマーを主成分とする膜を形成する配向層用ポリマーとしては、例えば、特開平8-338913号公報の段落0022に記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコール、変性ポリビニルアルコール、ポリ(N-メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、及びポリカーボネートが挙げられる。また、配向層用ポリマーは、シランカップリング剤であってもよい。配向層用ポリマーは、水溶性ポリマー(例えば、ポリ(N-メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、又は変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコール又は変性ポリビニルアルコールがより好ましく、ポリビニルアルコール又は変性ポリビニルアルコールが特に好ましい。 Examples of polymers for the alignment layer forming a film mainly composed of the above-mentioned polymers include methacrylate copolymers, styrene copolymers, polyolefins, and the like described in paragraph 0022 of JP-A-8-338913. Examples include polyvinyl alcohol, modified polyvinyl alcohol, poly(N-methylolacrylamide), polyester, polyimide, vinyl acetate copolymer, carboxymethyl cellulose, and polycarbonate. Moreover, the polymer for alignment layer may be a silane coupling agent. The alignment layer polymer is preferably a water-soluble polymer (for example, poly(N-methylolacrylamide), carboxymethyl cellulose, gelatin, polyvinyl alcohol, or modified polyvinyl alcohol), more preferably gelatin, polyvinyl alcohol, or modified polyvinyl alcohol, and polyvinyl alcohol. or modified polyvinyl alcohol is particularly preferred.
 ラビング密度を変える方法としては、「液晶便覧」(丸善社発行)に記載されている方法を用いることができる。ラビング密度(L)は、下記式(A)で定量化されている。
  式(A)  L=Nl(1+2πrn/60v)
 式(A)中、Nはラビング回数、lはラビングローラーの接触長、rはローラーの半径、nはローラーの回転数(rpm;revolutions per minute)、vはステージ移動速度(秒速)である。
As a method for changing the rubbing density, the method described in "Liquid Crystal Handbook" (published by Maruzensha) can be used. The rubbing density (L) is quantified by the following formula (A).
Formula (A) L=Nl(1+2πrn/60v)
In formula (A), N is the number of rubbings, l is the contact length of the rubbing roller, r is the radius of the roller, n is the number of revolutions per minute (rpm) of the roller, and v is the stage movement speed (per second).
 ラビング密度を高くする方法としては、ラビング回数を増やす方法、ラビングローラーの接触長を長くする方法、ローラーの半径を大きくする方法、ローラーの回転数を大きくする方法、及びステージ移動速度を遅くする方法が挙げられる。一方、ラビング密度を低くする方法としては、ラビング回数を減らす方法、ラビングローラーの接触長を短くする方法、ローラーの半径を小さくする方法、ローラーの回転数を小さくする方法、及びステージ移動速度を速くする方法が挙げられる。また、ラビング処理の際の条件としては、特許第4052558号公報の記載を参照することもできる。 Methods for increasing the rubbing density include increasing the number of times of rubbing, increasing the contact length of the rubbing roller, increasing the radius of the roller, increasing the number of rotations of the roller, and decreasing the stage movement speed. can be mentioned. On the other hand, methods for lowering the rubbing density include reducing the number of rubbings, shortening the contact length of the rubbing roller, decreasing the radius of the roller, decreasing the number of rotations of the roller, and increasing the stage movement speed. One method is to do so. Moreover, the description in Japanese Patent No. 4052558 can also be referred to as the conditions for the rubbing process.
-光配向層-
 光照射により形成される光配向層に用いられる光配向材料としては、例えば、特開2006-285197号公報、特開2007-76839号公報、特開2007-138138号公報、特開2007-94071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特許第3883848号公報、及び特許第4151746号公報に記載のアゾ化合物;特開2002-229039号公報に記載の芳香族エステル化合物;特開2002-265541号公報、及び特開2002-317013号公報に記載の光配向性単位を有するマレイミド及び/又はアルケニル置換ナジイミド化合物;特許第4205195号及び特許第4205198号公報に記載の光架橋性シラン誘導体;並びに、特表2003-520878号公報、特表2004-529220号公報、及び特許第4162850号公報に記載の光架橋性ポリイミド、ポリアミド、又は、エステルが挙げられる。中でも、光配向材料は、アゾ化合物、光架橋性ポリイミド、ポリアミド、又はエステルであることが好ましい。
-Photo alignment layer-
Examples of the photo-alignment material used in the photo-alignment layer formed by light irradiation include JP-A Nos. 2006-285197, 2007-76839, 2007-138138, and 2007-94071. Publications, JP 2007-121721, JP 2007-140465, JP 2007-156439, JP 2007-133184, JP 2009-109831, Japanese Patent No. 3883848, and patents Azo compound described in JP-A No. 4151746; aromatic ester compound described in JP-A No. 2002-229039; photo-alignable unit described in JP-A No. 2002-265541 and JP-A No. 2002-317013. Maleimide and/or alkenyl-substituted nadimide compounds; photocrosslinkable silane derivatives described in Japanese Patent No. 4205195 and Japanese Patent No. 4205198; and Japanese Patent Application Publication No. 2003-520878, Japanese Patent No. 2004-529220, and Japanese Patent No. 4162850 Examples include photocrosslinkable polyimides, polyamides, and esters described in the above publication. Among these, the photo-alignment material is preferably an azo compound, photo-crosslinkable polyimide, polyamide, or ester.
 光配向材料から形成した層に、直線偏光照射又は非偏光照射を施し、光配向層を製造する。 A layer formed from a photo-alignment material is irradiated with linearly polarized light or non-polarized light to produce a photo-alignment layer.
 本開示において、「直線偏光照射」とは、光配向材料に光反応を生じさせるための操作である。用いる光の波長は、用いる光配向材料により異なり、その光反応に必要な波長であれば特に限定されるものではない。光照射に用いる光は、ピーク波長が200nm~700nmの光であることが好ましく、ピーク波長が400nm以下の紫外線であることがより好ましい。 In the present disclosure, "linearly polarized light irradiation" is an operation for causing a photoreaction in a photoalignment material. The wavelength of the light used varies depending on the photoalignment material used, and is not particularly limited as long as it is a wavelength necessary for the photoreaction. The light used for light irradiation is preferably light with a peak wavelength of 200 nm to 700 nm, more preferably ultraviolet light with a peak wavelength of 400 nm or less.
 光照射に用いる光源としては、公知の光源、例えば、タングステンランプ、ハロゲンランプ、キセノンランプ、キセノンフラッシュランプ、水銀ランプ、水銀キセノンランプ、カーボンアークランプ等のランプ、各種のレーザー(例えば、半導体レーザー、ヘリウムネオンレーザー、アルゴンイオンレーザー、ヘリウムカドミウムレーザー、又はYAGレーザー)、発光ダイオード、及び陰極線管が挙げられる。 The light sources used for light irradiation include known light sources, such as tungsten lamps, halogen lamps, xenon lamps, xenon flash lamps, mercury lamps, mercury-xenon lamps, carbon arc lamps, and various lasers (for example, semiconductor lasers, (helium neon laser, argon ion laser, helium cadmium laser, or YAG laser), light emitting diodes, and cathode ray tubes.
 直線偏光を得る方法としては、偏光板(例えば、ヨウ素偏光板、二色色素偏光板、又はワイヤーグリッド偏光板)を用いる方法、プリズム系素子(例えば、グラントムソンプリズム)又はブリュースター角を利用した反射型偏光子を用いる方法、及び偏光を有するレーザー光源から出射される光を用いる方法が挙げられる。また、フィルタ又は波長変換素子等を用いて必要とする波長の光のみを選択的に照射してもよい。 Methods for obtaining linearly polarized light include methods using a polarizing plate (for example, an iodine polarizing plate, a dichroic dye polarizing plate, or a wire grid polarizing plate), a method using a prism-based element (for example, a Glan-Thompson prism), or a method using a Brewster angle. Examples include a method using a reflective polarizer and a method using light emitted from a polarized laser light source. Alternatively, only light of a required wavelength may be selectively irradiated using a filter, a wavelength conversion element, or the like.
 照射する光が直線偏光の場合、配向層の上面若しくは裏面から、配向層表面に対して垂直方向、又は斜め方向に光を照射する方法が挙げられる。光の入射角度は、光配向材料によって異なるが、配向層に対して、0°~90°(垂直)であることが好ましく、40°~90°であることがより好ましい。 When the irradiated light is linearly polarized light, a method of irradiating the light from the top or back surface of the alignment layer in a direction perpendicular to or oblique to the surface of the alignment layer can be mentioned. The incident angle of light varies depending on the photo-alignment material, but is preferably 0° to 90° (perpendicular), more preferably 40° to 90°, with respect to the alignment layer.
 非偏光を利用する場合には、配向層の上面若しくは裏面から、斜め方向に非偏光を照射する。入射角度は、10°~80°であることが好ましく、20°~60°であることがより好ましく、30°~50°であることが更に好ましい。照射時間は、1分~60分であることが好ましく、1分~10分であることがより好ましい。 When using non-polarized light, the non-polarized light is irradiated obliquely from the top or back surface of the alignment layer. The angle of incidence is preferably 10° to 80°, more preferably 20° to 60°, even more preferably 30° to 50°. The irradiation time is preferably 1 minute to 60 minutes, more preferably 1 minute to 10 minutes.
[その他の層]
 積層体は、二色性色素層、構造色を発現する層、着色層及び配向層以外のその他の層を有していてもよい。
[Other layers]
The laminate may have layers other than the dichroic dye layer, the layer expressing structural color, the colored layer, and the alignment layer.
 その他の層としては、積層体において公知の層である、保護層、粘着層、易接着層、紫外線吸収層、自己修復層、帯電防止層、防汚層、防電磁波層、導電性層等が挙げられる。 Other layers include a protective layer, an adhesive layer, an easy-to-adhesion layer, an ultraviolet absorbing layer, a self-healing layer, an antistatic layer, an antifouling layer, an electromagnetic shielding layer, a conductive layer, etc., which are known layers in a laminate. Can be mentioned.
 その他の層は公知の方法により形成することができる。例えば、これらの層に含まれる成分を含む組成物(層形成用組成物)を層状に付与し、乾燥する方法が挙げられる。 Other layers can be formed by known methods. For example, a method may be mentioned in which a composition (layer-forming composition) containing the components contained in these layers is applied in a layered manner and then dried.
<各層の配置>
 積層体の各層の配置は制限されない。積層体の各層は、次のように配置されてもよい。「/」は、層の境界を示す。また、左側が視認側であるものとする。また、積層体の用途に応じ、各層はそれぞれ独立に、1層単独で有していてもよいし、2層以上有していてもよい。
 (1)二色性色素層/構造色を発現する層
 (2)二色性色素層/粘着層/構造色を発現する層
 (3)二色性色素層/構造色を発現する層/基材
 (4)二色性色素層/粘着層/構造色を発現する層/基材
 (5)二色性色素層/構造色を発現する層/粘着層/基材
 (6)二色性色素層/粘着層1/構造色を発現する層/粘着層2/基材
 (7)二色性色素層/構造色を発現する層/粘着層/着色層
 (8)二色性色素層/粘着層1/構造色を発現する層/粘着層2/基材
 (9)二色性色素層/構造色を発現する層/基材/着色層
 (10)二色性色素層/粘着層/構造色を発現する層/基材/着色層
 (11)二色性色素層/粘着層1/構造色を発現する層/基材/粘着層2/着色層
 (12)二色性色素層1/粘着層1/構造色を発現する層/基材1/粘着層2/二色性色素層2/基材2
 また、積層体をディスプレイの加飾フィルム等として用いる場合は、例えば、以下の配置が挙げられる。
 (13)基材1/二色性色素層/粘着層/構造色を発現する層/基材2/位相差フィルム/ディスプレイ
<Arrangement of each layer>
The arrangement of each layer of the laminate is not limited. Each layer of the laminate may be arranged as follows. "/" indicates a layer boundary. Further, it is assumed that the left side is the viewing side. Further, depending on the purpose of the laminate, each layer may have one layer alone, or two or more layers.
(1) Dichroic dye layer/Layer that expresses structural color (2) Dichroic dye layer/Adhesive layer/Layer that expresses structural color (3) Dichroic dye layer/Layer that expresses structural color/Group Material (4) Dichroic dye layer/Adhesive layer/Layer that expresses structural color/Substrate (5) Dichroic dye layer/Layer that expresses structural color/Adhesive layer/Substrate (6) Dichroic dye Layer/Adhesive layer 1/Layer that expresses structural color/Adhesive layer 2/Substrate (7) Dichroic dye layer/Layer that expresses structural color/Adhesive layer/Colored layer (8) Dichroic dye layer/Adhesive Layer 1/Layer that expresses structural color/Adhesive layer 2/Substrate (9) Dichroic dye layer/Layer that expresses structural color/Substrate/Colored layer (10) Dichroic dye layer/Adhesive layer/Structure Layer that develops color/base material/colored layer (11) Dichroic dye layer/adhesive layer 1/layer that develops structural color/substrate/adhesive layer 2/colored layer (12) Dichroic dye layer 1/ Adhesive layer 1/layer expressing structural color/substrate 1/adhesive layer 2/dichroic dye layer 2/substrate 2
Further, when the laminate is used as a decorative film for a display, for example, the following arrangement can be mentioned.
(13) Substrate 1/dichroic dye layer/adhesive layer/layer expressing structural color/substrate 2/retardation film/display
 積層体の上記(10)の例について図1を用いて説明する。
 図1は、本開示に係る積層体の層構成の一例を示す概略断面図である。
 図1に示される積層体20は、着色層22と、着色層22上に基材24と、基材24上に構造色を発現する層26と、構造色を発現する層26上に粘着層28と、粘着層28上に二色性色素層30と、を有する。
The example of the above (10) of the laminate will be explained using FIG. 1.
FIG. 1 is a schematic cross-sectional view showing an example of the layer structure of a laminate according to the present disclosure.
The laminate 20 shown in FIG. 1 includes a colored layer 22, a base material 24 on the colored layer 22, a layer 26 that exhibits a structural color on the base material 24, and an adhesive layer on the layer 26 that develops a structural color. 28, and a dichroic dye layer 30 on the adhesive layer 28.
 本開示に係る積層体の用途としては、特に制限はなく、例えば、加飾フィルム、加飾パネル、電子デバイス(例えば、ウエアラブルデバイス、及びスマートフォン)、家電製品、オーディオ製品、コンピュータ、ディスプレイ、車載製品等の表示装置の加飾に用いることができる。中でも、本開示に係る加飾フィルムは、電子デバイス(例えば、ウエアラブルデバイス、及びスマートフォン)の加飾に好適に用いることができる。
 また、本開示に係る積層体は、立体成型性にも優れることから、例えば、立体成型及びインサート成型のような成型に用いられる、成型用加飾フィルムとして好適であり、立体成型用加飾フィルムとしてより好適である。
There are no particular limitations on the uses of the laminate according to the present disclosure, and examples include decorative films, decorative panels, electronic devices (e.g., wearable devices, and smartphones), home appliances, audio products, computers, displays, and automotive products. It can be used to decorate display devices such as Among them, the decorative film according to the present disclosure can be suitably used for decorating electronic devices (for example, wearable devices and smartphones).
Furthermore, since the laminate according to the present disclosure has excellent three-dimensional moldability, it is suitable as a decorative film for molding used in molding such as three-dimensional molding and insert molding, and is suitable as a decorative film for three-dimensional molding. It is more suitable as
<積層体の製造方法>
 本開示に係る清掃体の製造方法は、特に制限はなく、公知の方法を用いてもよいし、公知の方法を応用して作製してもよい。例えば、構造色を発現する層がコレステリック液晶層である場合には、基材と、コレステリック螺旋状に配向した液晶化合物、及び、感光性カイラル剤を含む液晶層とを有する液晶材料を準備する工程(以下、「液晶材料準備工程」ともいう。)、上記液晶層に、第1光を照射して、上記液晶層の表面から厚さ方向の内
部に向けて上記感光性カイラル剤の一部を失活させる工程(以下、「第1露光工程」ともいう。)、及び、第2光を照射して上記未硬化部を硬化させる工程(以下、「第2露光工程」ともいう。)を含むことが好ましい例として挙げられる 。上記方法であると、厚さ方向において、コレステリック液晶構造の螺旋ピッチが徐々に(グラデーション状に)変化している部分を有する構造色を発現する層を有する加飾フィルムを容易に作製することができる。
 以下、上記の例について、詳細に説明する。
<Method for manufacturing laminate>
The method for manufacturing the cleaning body according to the present disclosure is not particularly limited, and a known method may be used or the cleaning body may be manufactured by applying a known method. For example, when the layer expressing structural color is a cholesteric liquid crystal layer, a step of preparing a liquid crystal material having a base material, a liquid crystal compound oriented in a cholesteric spiral, and a liquid crystal layer containing a photosensitive chiral agent. (hereinafter also referred to as "liquid crystal material preparation step"), the liquid crystal layer is irradiated with first light to spread a portion of the photosensitive chiral agent from the surface of the liquid crystal layer to the inside in the thickness direction. It includes a step of deactivating (hereinafter also referred to as "first exposure step") and a step of curing the uncured portion by irradiating with second light (hereinafter also referred to as "second exposure step"). is mentioned as a preferable example. With the above method, it is possible to easily produce a decorative film that has a layer that exhibits a structural color that has a portion in which the helical pitch of the cholesteric liquid crystal structure changes gradually (gradation-like) in the thickness direction. can.
The above example will be described in detail below.
 また、上記した本開示に係る積層体の製造方法の例においては、上記液晶層を加熱してコレステリック液晶相とする工程(以下、「第1加熱工程」ともいう。)を含むことが好ましい。 Further, in the example of the method for manufacturing a laminate according to the present disclosure described above, it is preferable to include a step of heating the liquid crystal layer to turn it into a cholesteric liquid crystal phase (hereinafter also referred to as "first heating step").
[液晶材料準備工程]
 液晶材料準備工程は、基材と、コレステリック螺旋状に配向した液晶化合物(コレステリック液晶化合物)、及び、感光性カイラル剤を含む液晶層とを有する液晶材料を準備する工程である。
[Liquid crystal material preparation process]
The liquid crystal material preparation step is a step of preparing a liquid crystal material having a base material, a liquid crystal layer containing a cholesteric spirally oriented liquid crystal compound (cholesteric liquid crystal compound), and a photosensitive chiral agent.
-基材-
 基材は、上述したものを用いることができる。
-Base material-
As the base material, those mentioned above can be used.
-液晶層-
 液晶層は、コレステリック螺旋状に配向可能なコレステリック液晶化合物、及び、感光性カイラル剤を含むことが好ましく、必要に応じて、他の成分を含んでよい。
-Liquid crystal layer-
The liquid crystal layer preferably contains a cholesteric liquid crystal compound that can be aligned in a cholesteric spiral and a photosensitive chiral agent, and may contain other components as necessary.
 液晶組成物の調製方法は、特に限定されず、例えば、コレステリック液晶化合物、カイラル剤等の各成分を混合する方法により液晶組成物を調製してよい。
 各成分としては、上述したものを好適に用いることができる。
The method for preparing the liquid crystal composition is not particularly limited, and the liquid crystal composition may be prepared, for example, by a method of mixing components such as a cholesteric liquid crystal compound and a chiral agent.
As each component, those mentioned above can be suitably used.
 液晶組成物を基材に付与する方法は、特に限定されず、例えば、スプレーコート法、スピンコート法、ブレードコート法、ディップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法、ミスト法、インクジェット法、ディスペンサー法、スクリーン印刷法、凸版印刷法、及び凹版印刷法が挙げられる。 The method for applying the liquid crystal composition to the substrate is not particularly limited, and examples include spray coating, spin coating, blade coating, dip coating, casting, roll coating, bar coating, die coating, and mist coating. method, inkjet method, dispenser method, screen printing method, letterpress printing method, and intaglio printing method.
 液晶組成物が溶剤を含む場合、液晶組成物を基材に付与した後に乾燥してよい。乾燥方法として、例えば、加熱乾燥、及び減圧乾燥が挙げられる。加熱乾燥する場合、加熱温度及び加熱時間は、溶剤の種類に応じて適宜調節してよい。また、加熱乾燥は、下記の第1加熱工程の一部として行ってもよい。 When the liquid crystal composition contains a solvent, the liquid crystal composition may be applied to the substrate and then dried. Examples of the drying method include heating drying and reduced pressure drying. When drying by heating, the heating temperature and heating time may be adjusted as appropriate depending on the type of solvent. Further, heating drying may be performed as part of the first heating step described below.
[第1加熱工程]
 第1加熱工程は、上記液晶層を加熱してコレステリック液晶相とする工程である。コレステリック液晶化合物を加熱すると、加熱温度が高くなるにつれて、コレステリック液晶化合物は、結晶状態から配向状態となり、更に、配向状態から等方状態となる。第1加熱工程では、コレステリック液晶化合物を含む液晶層を加熱することにより、コレステリック液晶化合物を配向状態として、液晶層をコレステリック液晶化合物が配向したコレステリック液晶相とする。
[First heating step]
The first heating step is a step of heating the liquid crystal layer to form a cholesteric liquid crystal phase. When a cholesteric liquid crystal compound is heated, as the heating temperature increases, the cholesteric liquid crystal compound changes from a crystalline state to an oriented state, and further from an oriented state to an isotropic state. In the first heating step, by heating the liquid crystal layer containing the cholesteric liquid crystal compound, the cholesteric liquid crystal compound is brought into an oriented state, and the liquid crystal layer is made into a cholesteric liquid crystal phase in which the cholesteric liquid crystal compound is oriented.
 コレステリック液晶化合物の上記状態の変化との加熱温度との関係は、コレステリック液晶化合物の種類により異なる。そのため、第1加熱工程における加熱温度は、コレステリック液晶化合物が配向状態となるように、コレステリック液晶化合物の種類に応じて、適宜調節してよい。第1加熱工程における加熱時間は、加熱温度等に応じて適宜調節してよい。また、加熱手段は、特に限定されず、オーブン、ホットプレート等を用いてよい。 The relationship between the change in the state of the cholesteric liquid crystal compound and the heating temperature differs depending on the type of cholesteric liquid crystal compound. Therefore, the heating temperature in the first heating step may be adjusted as appropriate depending on the type of cholesteric liquid crystal compound so that the cholesteric liquid crystal compound is in an oriented state. The heating time in the first heating step may be adjusted as appropriate depending on the heating temperature and the like. Further, the heating means is not particularly limited, and an oven, a hot plate, etc. may be used.
[第1露光工程]
 第1露光工程は、上記液晶層に、第1光を照射して、上記液晶層の表面から厚さ方向の内部に向けて上記感光性カイラル剤の一部を失活させる工程である。
 第1露光工程では、例えば、第1光を基材側、もしくは、表層側のいずれかから照射し、液晶層に含まれる感光性カイラル剤によって光を吸収させることで、光源に近い側での上記感光性カイラル剤の失活量を、光源に遠い側での上記感光性カイラル剤の失活量より大きくする、好ましくは層厚方向において、第1光の照射側の液晶層表面からグラデーション状に活性な上記感光性カイラル剤の量が多くなる態様とすることができる。
 第1光の照射側の液晶層表面からグラデーション状に活性な上記感光性カイラル剤の量が多くなる態様であると、第2露光工程での液晶層の硬化までに、上記感光性カイラル剤の量に応じたコレステリック液晶構造の螺旋の巻き直しが生じ、螺旋ピッチがグラデーション状に変化した液晶層が得られる。
 また、第1露光工程において、第1光の照射を1回のみ行ってもよいし、2回以上行ってもよい。2回以上露光を行う場合、各露光において、露光条件(例えば、露光手段、露光波長、露光量、露光雰囲気等)を適宜調整してもよい。
[First exposure step]
The first exposure step is a step of irradiating the liquid crystal layer with first light to deactivate a portion of the photosensitive chiral agent from the surface of the liquid crystal layer toward the inside in the thickness direction.
In the first exposure step, for example, the first light is irradiated from either the base material side or the surface layer side, and the light is absorbed by the photosensitive chiral agent contained in the liquid crystal layer, so that the light is absorbed on the side closer to the light source. The amount of deactivation of the photosensitive chiral agent is made larger than the amount of deactivation of the photosensitive chiral agent on the side far from the light source, preferably in the layer thickness direction, from the surface of the liquid crystal layer on the side irradiated with the first light in a gradation pattern. The amount of the above-mentioned photosensitive chiral agent that is active in the photosensitive material may be increased.
In an embodiment in which the amount of the active photosensitive chiral agent increases in a gradation form from the surface of the liquid crystal layer on the side irradiated with the first light, the amount of the photosensitive chiral agent increases by the time the liquid crystal layer is cured in the second exposure step. The helical rewinding of the cholesteric liquid crystal structure occurs in accordance with the amount, and a liquid crystal layer in which the helical pitch changes in a gradation manner is obtained.
Furthermore, in the first exposure step, the first light may be irradiated only once, or may be irradiated two or more times. When exposure is performed two or more times, the exposure conditions (for example, exposure means, exposure wavelength, exposure amount, exposure atmosphere, etc.) may be adjusted as appropriate for each exposure.
 第1光の種類は、特に限定されないが、液晶層に含まれる成分の反応性を考慮すると、紫外線を用いることが好ましい。紫外線の光源としては、例えば、超高圧水銀灯、高圧水銀灯、メタルハライドランプ、及び発光ダイオード(LED;Light Emission Diode)が挙げられる。 The type of first light is not particularly limited, but in consideration of the reactivity of the components contained in the liquid crystal layer, it is preferable to use ultraviolet light. Examples of ultraviolet light sources include ultra-high pressure mercury lamps, high-pressure mercury lamps, metal halide lamps, and light emission diodes (LEDs).
 第1光の波長範囲は、特に限定されないが、第1光が紫外線である場合、400nm以下が好ましく、360nm以下がより好ましく、300nm以下が更に好ましい。300nm以下の光を用いる場合、コレステリック液晶化合物の光吸収により、厚み方向における光硬化の制御がより容易となる。波長範囲は、例えば、光学フィルタを用いる方法、2種以上の光学フィルタを用いる方法、又は特定波長の光源を用いる方法により調整することができる。 The wavelength range of the first light is not particularly limited, but when the first light is ultraviolet light, it is preferably 400 nm or less, more preferably 360 nm or less, and even more preferably 300 nm or less. When using light of 300 nm or less, the light absorption of the cholesteric liquid crystal compound makes it easier to control photocuring in the thickness direction. The wavelength range can be adjusted, for example, by using an optical filter, using two or more types of optical filters, or using a light source with a specific wavelength.
 第1光の露光量は、特に限定されず、第1光が紫外線である場合、例えば、0.1mJ/cm~2,000mJ/cmであることが好ましい。面内方向における光硬化の制御の観点から、紫外線の平行度は20°以下であることが好ましく、10°以下であることがより好ましい。 The exposure amount of the first light is not particularly limited, and when the first light is ultraviolet light, it is preferably 0.1 mJ/cm 2 to 2,000 mJ/cm 2 , for example. From the viewpoint of controlling photocuring in the in-plane direction, the parallelism of ultraviolet rays is preferably 20° or less, more preferably 10° or less.
 第1露光工程は、基材の液晶層を有する側と反対側から露光する場合には、低酸素雰囲気(酸素濃度1,000ppm以下、すなわち、酸素を含まないか、0ppm超1,000ppm以下の酸素を含む雰囲気)で行ってよく、酸素を含む雰囲気下(大気又は1000ppm以上21%未満の酸素を含む雰囲気下)で行われることがより好ましい。酸素によってラジカル重合が阻害されるため、厚み方向における光硬化の制御がより容易となる。 The first exposure step is performed in a low oxygen atmosphere (oxygen concentration 1,000 ppm or less, that is, does not contain oxygen or exceeds 0 ppm and 1,000 ppm The step may be carried out in an atmosphere containing oxygen (an atmosphere containing oxygen), and more preferably carried out in an atmosphere containing oxygen (atmosphere or an atmosphere containing 1000 ppm or more and less than 21% oxygen). Since radical polymerization is inhibited by oxygen, control of photocuring in the thickness direction becomes easier.
 第1露光工程は、液晶層の硬化を促進させる観点から、低酸素雰囲気下(好ましくは、酸素濃度1,000ppm以下、すなわち、酸素を含まないか、0ppm超1,000ppm以下の酸素を含む雰囲気)で行われることが好ましく、窒素雰囲気下で行われることがより好ましい。 The first exposure step is performed in a low oxygen atmosphere (preferably an oxygen concentration of 1,000 ppm or less, that is, an atmosphere containing no oxygen or more than 0 ppm and 1,000 ppm or less of oxygen) from the viewpoint of promoting hardening of the liquid crystal layer. ), and more preferably under a nitrogen atmosphere.
 第1露光工程は、液晶層の螺旋ピッチの変化を維持させる観点から、50℃以下で行うことが好ましく、40℃以下で行うことがより好ましく、0℃以上35℃以下で行うことが特に好ましい。 The first exposure step is preferably performed at a temperature of 50°C or lower, more preferably 40°C or lower, and particularly preferably performed at a temperature of 0°C or higher and 35°C or lower, from the viewpoint of maintaining the change in the helical pitch of the liquid crystal layer. .
 第1露光工程において、第1光の透過率が互いに異なる複数の領域を有する第1パターニングマスクを介して第1光を照射してよい。これにより、液晶層の複数の領域を異なる露光量で露光することができるため、上記領域の厚さが互いに異なる複数の領域を単一層内に面内方向に形成し、面内方向の反射率を一括して制御することができる。
 また、第1露光工程において、波長に応じ透過率が異なるフィルタを介して第1光を照射してよい。更に、上記フィルタとしては、第1光の露光量を調整するフィルタであってもよい。
 例えば、使用する光重合開始剤から重合開始種を生じさせないように、光重合開始剤が吸収する波長の透過率を下げた、例えば、0%としたマスクが挙げられる。
In the first exposure step, the first light may be irradiated through a first patterning mask having a plurality of regions having different transmittances of the first light. As a result, multiple regions of the liquid crystal layer can be exposed with different exposure doses, so multiple regions with different thicknesses are formed in a single layer in the in-plane direction, and the reflectance in the in-plane direction is can be controlled all at once.
Further, in the first exposure step, the first light may be irradiated through a filter having a different transmittance depending on the wavelength. Furthermore, the filter may be a filter that adjusts the exposure amount of the first light.
For example, a mask may be used in which the transmittance of the wavelength absorbed by the photopolymerization initiator is lowered, for example, to 0%, so as not to generate polymerization initiation species from the photopolymerization initiator used.
 第1パターニングマスクとしては、例えば、金属膜をエッチングすることによりパターン形成されたフォトマスク、及び各種印刷方法(例えば、レーザープリンタ又はインクジェットプリンターによる印刷、グラビア印刷、スクリーン印刷)を用いてパターン印刷されたフォトマスクが挙げられる。金属膜をエッチングすることによりパターン形成されたフォトマスクは、例えば、石英基板上に金属クロム膜をスパッタで形成した後、フォトレジストを用いてパターニングすることにより得られる。
 上記フィルタとしては、ガラス等の透明基板上に、誘電体多層膜を蒸着したもの等が好適に挙げられる。また、上記フィルタとしては、例えば、公知のバンドパスフィルタを用いることができる。
Examples of the first patterning mask include a photomask in which a pattern is formed by etching a metal film, and a pattern printed using various printing methods (for example, printing with a laser printer or inkjet printer, gravure printing, and screen printing). Examples include photomasks. A photomask patterned by etching a metal film can be obtained, for example, by forming a metal chromium film on a quartz substrate by sputtering and then patterning the film using a photoresist.
Preferred examples of the filter include those in which a dielectric multilayer film is deposited on a transparent substrate such as glass. Further, as the filter, for example, a known bandpass filter can be used.
 第1パターニングマスク又はフィルタを用いて第1光を照射する場合、第1パターニングマスク又はフィルタは、基材の液晶層を有する側とは反対側に配置してよく、基材の液晶層を有する側に配置してよい。 When the first patterning mask or filter is used to irradiate the first light, the first patterning mask or filter may be placed on the opposite side of the base material to the side having the liquid crystal layer, and May be placed on the side.
 第1パターニングマスク又はフィルタを基材の液晶層を有する側に配置する場合、液晶層に第1パターニングマスク又はフィルタを接触させて第1光を照射してよく、液晶層と第1パターニングマスクとの間に間隙を設けて第1光を照射してもよい。 When the first patterning mask or filter is disposed on the side of the base material that has the liquid crystal layer, the first patterning mask or filter may be brought into contact with the liquid crystal layer and the first light may be irradiated, and the liquid crystal layer and the first patterning mask may be placed in contact with each other. The first light may be irradiated with a gap provided between them.
 第1パターニングマスク又はフィルタを基材の液晶層を有する側とは反対側に配置する場合、基材を介して第1光で液晶層を露光するため、透光性の基材を用いることが好ましい。
 基材の透光性について、第1光の透過率は、特に限定されないが、液晶層をより容易に硬化させる観点から、高い程好ましい。
When placing the first patterning mask or filter on the opposite side of the base material to the side that has the liquid crystal layer, it is recommended to use a translucent base material because the liquid crystal layer is exposed to the first light through the base material. preferable.
Regarding the light transmittance of the base material, the transmittance of the first light is not particularly limited, but from the viewpoint of curing the liquid crystal layer more easily, the higher the transmittance is, the more preferable.
 第1パターニングマスク又はフィルタを用いて第1光を照射する場合、第1パターニングマスク又はフィルタは、1種のみ用いてよく、2種以上用いてもよい。
 また、第1パターニングマスクとフィルタとを併用してもよい。
When irradiating the first light using the first patterning mask or filter, only one type of first patterning mask or filter may be used, or two or more types of the first patterning mask or filter may be used.
Further, the first patterning mask and the filter may be used together.
[第2露光工程]
 第2露光工程は、第2光を照射して上記液晶層を硬化させる工程である。
 第1露光工程において変化した液晶層の螺旋ピッチを、第2光の照射により硬化し、固定することができる。
[Second exposure process]
The second exposure step is a step of curing the liquid crystal layer by irradiating second light.
The helical pitch of the liquid crystal layer that has changed in the first exposure step can be cured and fixed by irradiation with the second light.
 第2露光工程において、未硬化部だけでなく、液晶層全体を露光してよい。例えば、基材の液晶層を有する側から、第2光を照射してよい。 In the second exposure step, not only the uncured portion but also the entire liquid crystal layer may be exposed. For example, the second light may be irradiated from the side of the base material having the liquid crystal layer.
 第2光の種類は、特に限定されないが、液晶化合物に含まれ得る成分の反応性を考慮すると、紫外線を用いることが好ましい。紫外線の光源としては、例えば、超高圧水銀灯、高圧水銀灯、メタルハライドランプ、及び発光ダイオード(LED)が挙げられる。 The type of second light is not particularly limited, but in consideration of the reactivity of components that may be included in the liquid crystal compound, it is preferable to use ultraviolet light. Examples of ultraviolet light sources include ultra-high pressure mercury lamps, high-pressure mercury lamps, metal halide lamps, and light emitting diodes (LEDs).
 第2光の波長範囲は、特に限定されず、例えば、250nm~400nmの波長範囲の光を用いることができる。波長範囲は、例えば、光学フィルタを用いる方法、2種以上の光学フィルタを用いる方法、又は特定波長の光源を用いる方法により調整することができる。 The wavelength range of the second light is not particularly limited, and for example, light in the wavelength range of 250 nm to 400 nm can be used. The wavelength range can be adjusted, for example, by using an optical filter, using two or more types of optical filters, or using a light source with a specific wavelength.
 第2光の露光量は、特に限定されず、第2光が紫外線である場合、例えば、5mJ/cm~2,000mJ/cmであることが好ましい。 The exposure amount of the second light is not particularly limited, and when the second light is ultraviolet light, it is preferably 5 mJ/cm 2 to 2,000 mJ/cm 2 , for example.
 第2露光工程は、硬化を促進させる観点から、低酸素雰囲気下(好ましくは、酸素濃度1,000ppm以下、すなわち、酸素を含まないか、0ppm超1,000ppm以下の酸素を含む雰囲気)で行われることが好ましく、窒素雰囲気下で行われることがより好ましい。 The second exposure step is performed in a low oxygen atmosphere (preferably an oxygen concentration of 1,000 ppm or less, that is, an atmosphere that does not contain oxygen or contains more than 0 ppm and 1,000 ppm or less of oxygen) in order to accelerate curing. It is preferable that the reaction be carried out under a nitrogen atmosphere, and more preferably that it be carried out under a nitrogen atmosphere.
 第2露光工程は、液晶層の螺旋ピッチの変化を硬化まで維持させる観点から、50℃以下で行うことが好ましく、40℃以下で行うことがより好ましく、0℃以上35℃以下で行うことが特に好ましい。 The second exposure step is preferably performed at a temperature of 50°C or lower, more preferably 40°C or lower, and preferably performed at a temperature of 0°C or higher and 35°C or lower, from the viewpoint of maintaining the change in the helical pitch of the liquid crystal layer until curing. Particularly preferred.
〔二色性色素層形成工程〕
 本開示に係る積層体の製造方法は、二色性色素層を形成する二色性色素層形成工程を含む。
 二色性色素層形成工程は、上述したように、構造色を発現する層上に、二色性色素層形成用組成物を塗布乾燥し、必要に応じて、光露光により重合する工程であることが好ましい。
 光露光により重合の条件としては、上記第2露光工程と同様に行うことが好ましい。
[Dichroic dye layer formation process]
The method for manufacturing a laminate according to the present disclosure includes a dichroic dye layer forming step of forming a dichroic dye layer.
As mentioned above, the dichroic dye layer forming step is a step of applying and drying the composition for forming a dichroic dye layer on the layer expressing a structural color, and polymerizing it by light exposure, if necessary. It is preferable.
The conditions for polymerization by light exposure are preferably the same as in the second exposure step.
[その他の工程]
 本開示に係る加飾フィルムの製造方法は、必要に応じて、上記工程以外の他工程を含んでいてもよい。その他の工程としては、例えば、基材を含む態様で製造した加飾フィルムから基材を剥離する工程が挙げられ、基材を含まない態様の加飾フィルムを製造することができる。
 また、その他の工程としては、着色層形成工程、配向層形成工程、及びその他の層の形成工程が挙げられる。着色層及び配向層の詳細及び形成方法は上述の通りである。また、その他の層の詳細は上述の通りであり、その他の層の形成方法として、公知の方法を用いてよい。
[Other processes]
The method for manufacturing a decorative film according to the present disclosure may include steps other than the above steps, as necessary. Other steps include, for example, a step of peeling off the base material from a decorative film produced in an embodiment that includes the base material, and a decorated film that does not include the base material can be produced.
Further, other steps include a colored layer forming step, an alignment layer forming step, and another layer forming step. The details and formation method of the colored layer and alignment layer are as described above. Further, the details of the other layers are as described above, and known methods may be used to form the other layers.
<加飾フィルム、物品、加飾パネル、表示装置>
 本開示に係る積層体は、種々の用途に用いることができ、例えば、積層体を成型して成型体として用いることができる。
 本開示に係る加飾フィルムは、本開示に係る積層体を備えるものであり、本開示に係る積層体を成型してなるものであってもよい。
 本開示に係る物品は、本開示に係る積層体を備えた物品である。
 このような積層体は、様々な物品に備えることができる。
 そのような物品としては、例えば、スマートフォン、携帯電話、及びタブレット等の電子デバイス、自動車、電化製品、包装容器等が挙げられ、とりわけ、電子デバイスに好適に用いることができる。電子デバイスとしては、ディスプレイ、スマートフォン、携帯電話、及びタブレット等の表示装置がより好適に挙げられる。中でも、通常のディスプレイ、又は、スマートフォン、家電製品、オーディオ製品、コンピュータ、車載製品等の表示装置におけるディスプレイに特に好適に用いることができる。
 また、ディスプレイ、スマートフォン等の表示装置に本開示に係る積層体を用いる場合、本開示に係る積層体とディスプレイ等の表示部材との間に、位相差フィルムを設けてもよい。
 位相差フィルムとしては、公知のものを用いることができる。
<Decorative films, articles, decorative panels, display devices>
The laminate according to the present disclosure can be used for various purposes, and for example, the laminate can be molded and used as a molded product.
The decorative film according to the present disclosure includes the laminate according to the present disclosure, and may be formed by molding the laminate according to the present disclosure.
The article according to the present disclosure is an article provided with the laminate according to the present disclosure.
Such a laminate can be provided in a variety of articles.
Such articles include, for example, electronic devices such as smartphones, mobile phones, and tablets, automobiles, electrical appliances, packaging containers, etc., and can be particularly preferably used for electronic devices. As the electronic device, display devices such as a display, a smartphone, a mobile phone, and a tablet are more preferably mentioned. Among these, it can be particularly suitably used for ordinary displays or displays in display devices such as smartphones, home appliances, audio products, computers, and in-vehicle products.
Moreover, when using the laminate according to the present disclosure in a display device such as a display or a smartphone, a retardation film may be provided between the laminate according to the present disclosure and a display member such as a display.
As the retardation film, known ones can be used.
 本開示に係る積層体を成型して成型体を得るための手段は、特に限定されず、例えば、立体成型、インサート成型等の公知の方法であってよい。また、本開示に係る積層体を物品に適用するための手段も特に限定されず、物品の種類に応じて、公知の方法を適宜用いてよい。 The means for molding the laminate according to the present disclosure to obtain a molded body is not particularly limited, and may be, for example, a known method such as three-dimensional molding or insert molding. Furthermore, the means for applying the laminate according to the present disclosure to an article is not particularly limited, and any known method may be used as appropriate depending on the type of article.
 本開示に係る加飾パネルは、本開示に係る加飾フィルムを備える。
 加飾パネルの形状は制限されない。加飾パネルの形状は、例えば、用途に応じて決定すればよい。加飾パネルは、例えば、平板状であってもよい。また、加飾パネルは、曲面を有してもよい。
 加飾パネルは、例えば、種々の物品の内外装に用いることができる。物品については、上記の物品(例えば、電子デバイス、自動車及び電気製品)が挙げられる。
A decorative panel according to the present disclosure includes a decorative film according to the present disclosure.
The shape of the decorative panel is not limited. The shape of the decorative panel may be determined depending on the application, for example. The decorative panel may be, for example, flat. Further, the decorative panel may have a curved surface.
Decorative panels can be used, for example, for the interior and exterior of various articles. Articles include those mentioned above (eg, electronic devices, automobiles, and electrical products).
 加飾パネルは、例えば、加飾フィルムの構造色を発現する層側の表面と加飾パネルの表層部となる部材の表面とを接着させることで製造することができる。加飾パネルの表層部となる部材としては、例えば、ガラスパネルが挙げられる。加飾フィルムと加飾パネルの表層部となる部材との接着には、例えば、上述した粘着層を用いることができる。加飾フィルムと他の部材とを組み合わせず、例えば、成型された加飾フィルムを単独で加飾パネルとして用いてもよい。
 本開示に係る表示装置は、本開示に係る加飾パネルを備えた表示装置である。
 表示装置については、ディスプレイ、スマートフォン、携帯電話、及びタブレット等が挙げられる。
The decorative panel can be manufactured, for example, by bonding the surface of the decorative film on the layer side that exhibits the structural color and the surface of the member that will become the surface layer portion of the decorative panel. Examples of the member that forms the surface layer of the decorative panel include a glass panel. For example, the above-mentioned adhesive layer can be used to bond the decorative film and the member that will become the surface layer of the decorative panel. For example, a molded decorative film may be used alone as a decorative panel without combining the decorative film and other members.
A display device according to the present disclosure is a display device including a decorative panel according to the present disclosure.
Examples of display devices include displays, smartphones, mobile phones, tablets, and the like.
 以下、実施例により本開示を詳細に説明する。ただし、本開示は、以下の実施例に制限されるものではない。 Hereinafter, the present disclosure will be explained in detail with reference to Examples. However, the present disclosure is not limited to the following examples.
<実施例1>
〔基材の準備〕
 基材として、片面に易接着層を有する厚さ100μmのポリエチレンテレフタレート(PET)フィルム(コスモシャイン(登録商標)A4160、東洋紡(株)製)を用意し、透明基材1として使用した。
<Example 1>
[Preparation of base material]
As a base material, a polyethylene terephthalate (PET) film (Cosmoshine (registered trademark) A4160, manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm and having an easily adhesive layer on one side was prepared and used as the transparent base material 1.
〔下塗り層1の形成〕
 透明基材1の易接着層の無い面上に、下記の組成の下塗り層1塗布液を#14のワイヤーバーで連続的に塗布した。60℃の温風で60秒、更に100℃の温風で120秒乾燥した。
[Formation of undercoat layer 1]
An undercoat layer 1 coating solution having the following composition was continuously applied onto the surface of the transparent substrate 1 without an easy-adhesion layer using a #14 wire bar. It was dried with warm air at 60°C for 60 seconds and then with warm air at 100°C for 120 seconds.
-下塗り層1塗布液の組成-
 下記の変性ポリビニルアルコール(カッコ右下の数値は質量%を表す):10質量部
 水:371質量部
 メタノール:119質量部
 グルタルアルデヒド:0.5質量部
 光重合開始剤(イルガキュアー2959、IGM Resins社製):0.3質量部
-Composition of undercoat layer 1 coating liquid-
The following modified polyvinyl alcohol (the numbers in the lower right brackets represent mass %): 10 parts by mass Water: 371 parts by mass Methanol: 119 parts by mass Glutaraldehyde: 0.5 parts by mass Photopolymerization initiator (Irgacure 2959, IGM Resins ): 0.3 part by mass
〔構造色を有する層1(コレステリック液晶層1、赤-IRパターン)の形成〕
 下記に記載の組成を有する液晶組成物1を調製した。
[Formation of layer 1 with structural color (cholesteric liquid crystal layer 1, red-IR pattern)]
Liquid crystal composition 1 having the composition described below was prepared.
-液晶組成物1の組成-
 下記に示す構造を有する液晶化合物1:80質量部
 下記に示す構造を有する液晶化合物2:10質量部
 下記に示す構造を有する化合物3:10質量部
 カイラル剤1(感光性カイラル剤、下記に示す構造を有する化合物):3.75質量部
 カイラル剤2(LC-756:BASF社製):3.75質量部
 光重合開始剤(IRGACURE127:BASF社製):0.5質量部
 界面活性剤1(下記に示す構造を有する化合物):0.64質量部
 有機溶剤1(メチルエチルケトン):205質量部
 有機溶剤2(シクロヘキサノン):10質量部
-Composition of liquid crystal composition 1-
Liquid crystal compound having the structure shown below 1: 80 parts by mass Liquid crystal compound having the structure shown below 2: 10 parts by mass Compound 3 having the structure shown below: 10 parts by mass Chiral agent 1 (photosensitive chiral agent, shown below) structure): 3.75 parts by mass Chiral agent 2 (LC-756: manufactured by BASF): 3.75 parts by mass Photoinitiator (IRGACURE127: manufactured by BASF): 0.5 parts by mass Surfactant 1 (Compound having the structure shown below): 0.64 parts by mass Organic solvent 1 (methyl ethyl ketone): 205 parts by mass Organic solvent 2 (cyclohexanone): 10 parts by mass
 液晶化合物1:下記化合物 Liquid crystal compound 1: The following compound
 液晶化合物2:下記化合物 Liquid crystal compound 2: The following compound
 化合物3:下記化合物 Compound 3: The following compound
 カイラル剤1:下記化合物 Chiral agent 1: The following compound
 界面活性剤1:下記化合物 Surfactant 1: The following compound
 下塗り層1付き透明基材1の表面に、液晶組成物1を#3のワイヤーバーコーターで塗布した。その後、80℃で120秒乾燥し、25℃にてメタルハライドランプ(MAL625NAL、(株)GSユアサ製)を用いた紫外線照射装置にて、下記の特性を有するバンドパスフィルタ1を介して表1に記載の波長になるように露光量を調整して紫外線を照射した。この照射の際、液晶層と紫外線照射装置の間に表1に記載のように2つの異なる波長の反射領域ができるように、ポリエチレンテレフタレート(PET)フィルムに、黒インクで印刷したフィルムをマスクとして介した。
 その後、酸素濃度5質量%以下の雰囲気下、120℃にてメタルハライドランプ(MAL625NAL、(株)GSユアサ製)を用いた紫外線照射装置にて、90mJ/cmの紫外線を照射することで、液晶層を硬化させ、更に、同様の露光を低酸素濃度下(1,000ppm以下)で行うことで、液晶層を完全に硬化させ、2つの異なる波長の反射領域を有する、構造色を発現する層1を形成した。
 バンドパスフィルタ1は、ガラス基板(SHOTT社製TEMPAX Float t2.0mm)上に、誘電体多層膜を蒸着し、波長350nm~450nm以上の透過率0%、310nm~330nmの平均透過率が70%~75%としたものである。
Liquid crystal composition 1 was applied to the surface of transparent substrate 1 with undercoat layer 1 using a #3 wire bar coater. Thereafter, it was dried at 80°C for 120 seconds, and then heated to 25°C using an ultraviolet irradiation device using a metal halide lamp (MAL625NAL, manufactured by GS Yuasa Co., Ltd.), and passed through a bandpass filter 1 having the following characteristics into Table 1. Ultraviolet rays were irradiated with the exposure amount adjusted so that the wavelength was as described. During this irradiation, a film printed with black ink was used as a mask on a polyethylene terephthalate (PET) film so that two different wavelength reflection areas were created between the liquid crystal layer and the ultraviolet irradiation device as shown in Table 1. mediated.
Thereafter, in an atmosphere with an oxygen concentration of 5% by mass or less, 90 mJ/cm 2 of ultraviolet rays are irradiated at 120°C using an ultraviolet irradiation device using a metal halide lamp (MAL625NAL, manufactured by GS Yuasa Co., Ltd.). By curing the layer and further performing similar exposure at a low oxygen concentration (1,000 ppm or less), the liquid crystal layer is completely cured, and a layer that expresses structural color has two different wavelength reflection regions. 1 was formed.
The bandpass filter 1 has a dielectric multilayer film deposited on a glass substrate (TEMPAX Float t2.0 mm manufactured by SHOTT), and has a transmittance of 0% for wavelengths of 350 nm to 450 nm or more, and an average transmittance of 70% for wavelengths of 310 nm to 330 nm. ~75%.
〔基材S-1の作製〕
(ポリイミド粉末の製造)
 撹拌器、窒素注入装置、滴下漏斗、温度調節器及び冷却器を取り付けた1Lの反応器に、窒素気流下、N,N-ジメチルアセトアミド(DMAc)832gを加えた後、反応器の温度を25℃にした。ここに、ビストリフルオロメチルベンジジン(TFDB)64.046g(0.2mol)を加えて溶解した。得られた溶液を25℃に維持しながら、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)31.09g(0.07mol)とビフェニルテトラカルボン酸二無水物(BPDA)8.83g(0.03mol)を投入し、一定時間撹拌して反応させた。その後、塩化テレフタロイル(TPC)20.302g(0.1mol)を添加して、固形分濃度13質量%のポリアミック酸溶液を得た。次いで、このポリアミック酸溶液にピリジン25.6g、無水酢酸33.1gを投入して30分撹拌し、さらに70℃で1時間撹拌した後、常温に冷却した。ここにメタノール20Lを加え、沈澱した固形分を濾過して粉砕した。その後、100℃下、真空で6時間乾燥させて、111gのポリイミド粉末を得た。
[Preparation of base material S-1]
(Production of polyimide powder)
After adding 832 g of N,N-dimethylacetamide (DMAc) to a 1 L reactor equipped with a stirrer, nitrogen injector, dropping funnel, temperature controller, and condenser under a nitrogen stream, the temperature of the reactor was increased to 25°C. It was set to ℃. To this, 64.046 g (0.2 mol) of bistrifluoromethylbenzidine (TFDB) was added and dissolved. While maintaining the resulting solution at 25°C, 31.09 g (0.07 mol) of 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and biphenyltetracarboxylic dianhydride were added. 8.83 g (0.03 mol) of BPDA was added thereto, and the mixture was stirred for a certain period of time to react. Thereafter, 20.302 g (0.1 mol) of terephthaloyl chloride (TPC) was added to obtain a polyamic acid solution with a solid content concentration of 13% by mass. Next, 25.6 g of pyridine and 33.1 g of acetic anhydride were added to this polyamic acid solution, stirred for 30 minutes, further stirred at 70° C. for 1 hour, and then cooled to room temperature. 20 L of methanol was added thereto, and the precipitated solid content was filtered and pulverized. Thereafter, it was dried in vacuum at 100° C. for 6 hours to obtain 111 g of polyimide powder.
(基材S-1の作製)
 100gの上記ポリイミド粉末を670gのN,N-ジメチルアセトアミド(DMAc)に溶かして13質量%の溶液を得た。得られた溶液をステンレス板に流延し、130℃の熱風で30分乾燥させた。その後フィルムをステンレス板から剥離して、フレームにピンで固定し、フィルムが固定されたフレームを真空オーブンに入れ、100℃から300℃まで加熱温度を徐々に上げながら2時間加熱し、その後、徐々に冷却した。冷却後のフィルムをフレームから分離した後、最終熱処理工程として、さらに300℃で30分間熱処理して、ポリイミドフィルムからなる、厚み50μmの基材S-1を得た。
(Preparation of base material S-1)
100 g of the above polyimide powder was dissolved in 670 g of N,N-dimethylacetamide (DMAc) to obtain a 13% by mass solution. The obtained solution was cast onto a stainless steel plate and dried with hot air at 130°C for 30 minutes. After that, the film was peeled off from the stainless steel plate and fixed to the frame with pins, and the frame with the film fixed was placed in a vacuum oven and heated for 2 hours while gradually increasing the heating temperature from 100°C to 300°C. It was cooled to After the cooled film was separated from the frame, it was further heat treated at 300° C. for 30 minutes as a final heat treatment step to obtain a 50 μm thick base material S-1 made of polyimide film.
〔二色性色素層1の形成〕
 基材S-1の表面に、二色性色素層形成用組成物1を、乾燥後の厚みが表1に記載の厚さになるようにバー番手を選定し、それを用いて塗布した。その後、180℃で20秒乾燥したのち、20℃に急冷した。次に、75℃で30秒熟成した後、20℃に急冷した。その後、酸素濃度5質量%以下の雰囲気下、かつ40℃にてメタルハライドランプ(MAL625NAL、(株)GSユアサ製)を用いた紫外線照射装置にて、500mJ/cmの紫外線を照射し、二色性色素層1を形成した。
[Formation of dichroic dye layer 1]
Dichroic dye layer forming composition 1 was applied onto the surface of the substrate S-1 using a bar number selected so that the thickness after drying would be the thickness listed in Table 1. Thereafter, it was dried at 180°C for 20 seconds, and then rapidly cooled to 20°C. Next, after aging at 75°C for 30 seconds, it was rapidly cooled to 20°C. Thereafter, 500 mJ/cm 2 of ultraviolet rays were irradiated with an ultraviolet irradiation device using a metal halide lamp (MAL625NAL, manufactured by GS Yuasa Co., Ltd.) at 40°C in an atmosphere with an oxygen concentration of 5% by mass or less. A color pigment layer 1 was formed.
-二色性色素層形成用組成物1(二色性色素濃度6.6質量%)-
 二色性色素1:5.07質量部
 液晶化合物2:45.3質量部
 液晶化合物3:23質量部
 光重合開始剤(アデカアークルズ NCI-730、ADEKA(株)製)のクロロホルム3質量%溶液:39質量部
 界面活性剤3のクロロホルム1質量%溶液:39質量部
 配向剤1のクロロホルム2質量%溶液:41質量部
 配向剤2のクロロホルム2質量%溶液:41質量部
 有機溶剤1(クロロホルム):758量部
- Dichroic dye layer forming composition 1 (dichroic dye concentration 6.6% by mass) -
Dichroic dye 1: 5.07 parts by mass Liquid crystal compound 2: 45.3 parts by mass Liquid crystal compound 3: 23 parts by mass Photopolymerization initiator (ADEKA Arkles NCI-730, manufactured by ADEKA Corporation) Chloroform 3% by mass Solution: 39 parts by mass 1% by mass solution of surfactant 3 in chloroform: 39 parts by mass 2% by mass solution of alignment agent 1 in chloroform: 41 parts by mass 2% by mass solution of chloroform in alignment agent 2: 41 parts by mass Organic solvent 1 (chloroform ): 758 parts
 二色性色素1:下記化合物 Dichroic dye 1: The following compound
 液晶化合物2:下記化合物(構成単位を表す括弧の右の数値は、質量比を表し、エチレンオキサイド単位の括弧の右の数値は、繰り返し数を表す。) Liquid crystal compound 2: The following compound (The number to the right of the parentheses representing the structural unit represents the mass ratio, and the number to the right of the parentheses of the ethylene oxide unit represents the number of repetitions.)
 液晶化合物3:下記化合物 Liquid crystal compound 3: The following compound
 界面活性剤3:下記化合物(構成単位を表す括弧の右下の数値は、質量比を表す。) Surfactant 3: The following compound (The number at the bottom right of the parentheses representing the structural unit represents the mass ratio.)
 配向剤1:下記化合物 Aligning agent 1: The following compound
 配向剤2:下記化合物 Aligning agent 2: The following compound
〔積層体の形成〕
 光学フイルム用粘着シート(M3D49、(株)美舘イメージング製)を用いて、形成した二色性色素層1と構造色を発現する層1を貼合し、積層体(層構成:基材S-1/二色性色素層1/粘着層/構造色を発現する層1/透明基材1)を作製した。
[Formation of laminate]
Using an adhesive sheet for optical films (M3D49, manufactured by Bidate Imaging Co., Ltd.), the formed dichroic dye layer 1 and layer 1 expressing structural color were laminated to form a laminate (layer structure: base material S). -1/dichroic dye layer 1/adhesive layer/layer expressing structural color 1/transparent base material 1) was prepared.
<実施例2>
 二色性色素層の厚さを1.8μmに変更した以外は、実施例1と同様にして、実施例2の積層体を作製した。
<Example 2>
A laminate of Example 2 was produced in the same manner as Example 1 except that the thickness of the dichroic dye layer was changed to 1.8 μm.
<実施例3>
 構造色を発現する層をマスクを用いずに作製し、構造色を有する層1を、構造色を有する層2に変更した以外は、実施例1と同様にして、実施例3の積層体を作製した。
<Example 3>
The laminate of Example 3 was prepared in the same manner as in Example 1, except that the layer expressing structural color was produced without using a mask, and Layer 1 having structural color was changed to Layer 2 having structural color. Created.
<実施例4>
 構造色を有する層1を、誘電体多層膜である構造色を有する層3に変更した以外は、実施例3と同様にして積層体(層構成:基材S-1/二色性色素層1/粘着層/誘電体多層膜/透明基材1)を作製した。誘電体多層膜は、特開2008-200861号公報の実施例1を参考に、反射波長が表1に記載の反射ピーク波長になるように膜厚を調整して作製した。
<Example 4>
A laminate (layer structure: base material S-1/dichroic dye layer 1/Adhesive layer/Dielectric multilayer film/Transparent base material 1) was produced. The dielectric multilayer film was produced by adjusting the film thickness so that the reflection wavelength was the reflection peak wavelength shown in Table 1, with reference to Example 1 of JP-A-2008-200861.
<比較例1>
 二色性色素層を形成しなかった以外は、実施例1と同様にして、比較例1の積層体を作製した(層構成:基材S-1/粘着層/構造色を発現する層1/透明基材1)。
<Comparative example 1>
A laminate of Comparative Example 1 was produced in the same manner as in Example 1, except that no dichroic dye layer was formed (layer structure: base material S-1/adhesive layer/layer 1 expressing structural color). /Transparent base material 1).
<比較例2>
 二色性色素層を形成しなかった以外は、実施例3と同様にして積層体(層構成:基材S-1/粘着層/構造色を発現する層1/透明基材1)を作製した。
<Comparative example 2>
A laminate (layer structure: base material S-1/adhesive layer/layer 1 expressing structural color/transparent base material 1) was produced in the same manner as in Example 3, except that the dichroic dye layer was not formed. did.
<比較例3>
 二色性色素層を形成しなかった以外は、実施例4と同様にして積層体(層構成:基材S-1/粘着層/誘電体多層膜/透明基材1)を作製した。
<Comparative example 3>
A laminate (layer structure: base material S-1/adhesive layer/dielectric multilayer film/transparent base material 1) was produced in the same manner as in Example 4, except that the dichroic dye layer was not formed.
〔色味測定(視野角依存性評価)〕
 積分球を利用した測定装置により、測定物体の分光反射率と完全拡散反射面の分光反射率を測定し、下記の式に基づき、a及びbを算出し、a及びbから下記式2に基づき色相角hを算出した。
[Color measurement (viewing angle dependency evaluation)]
A measuring device using an integrating sphere measures the spectral reflectance of the object to be measured and the spectral reflectance of a completely diffuse reflecting surface, calculates a * and b * based on the following formula, and calculates the following from a * and b * . The hue angle h was calculated based on Equation 2.
 色相角h=tan-1(b/a)    式2 Hue angle h=tan -1 (b * /a * ) Equation 2
 この際、センサーには、SR-3(分光放射輝度計、(株)トプコンテクノハウス製)を用い、サンプルを5°と55°とに偏角してそれぞれ測定し、視野角5°と視野角55°との色相角の差(°)で評価した。
 なお、上記5°及び55°は、積層体の法線方向に対する角度である。
At this time, an SR-3 (spectral radiance meter, manufactured by Topcon Technohouse Co., Ltd.) was used as the sensor, and the sample was measured at an angle of declination of 5° and 55°. Evaluation was made based on the difference (°) in hue angle from an angle of 55°.
Note that the above 5° and 55° are angles with respect to the normal direction of the laminate.
〔二色性色素層の55°の吸収スペクトルの測定〕
 自動絶対反射率測定ユニットARMN-735及び分光光度計V-670 EX(日本分光(株)製)を用いて、積層体の法線方向に対し55°傾いた角度の方向からの吸光度を測定し、そこから透過率を算出した。
[Measurement of 55° absorption spectrum of dichroic dye layer]
Using an automatic absolute reflectance measuring unit ARMN-735 and a spectrophotometer V-670 EX (manufactured by JASCO Corporation), the absorbance was measured from a direction inclined at an angle of 55° with respect to the normal direction of the laminate. , from which the transmittance was calculated.
〔構造色を発現する層の反射波長の測定〕
 自動絶対反射率測定ユニットARMN-735及び分光光度計V-670 EX(日本分光(株)製)を用いて、積層体の法線方向に対し5°及び55°傾いた角度の方向からの反射スペクトルを測定し、そのピークトップをそれぞれ反射波長(視野角85°)及び反射波長(視野角35°)とした。
[Measurement of reflection wavelength of layer expressing structural color]
Using an automatic absolute reflectance measurement unit ARMN-735 and a spectrophotometer V-670 EX (manufactured by JASCO Corporation), reflections from directions inclined at 5° and 55° with respect to the normal direction of the laminate were measured. The spectra were measured, and the peak tops were defined as the reflection wavelength (viewing angle 85°) and the reflection wavelength (viewing angle 35°), respectively.
〔ピークの重なりの測定〕
 自動絶対反射率測定ユニットARMN-735及び分光光度計V-670 EX(日本分光(株)製)を用い、視野角-90°~+90°(この場合、積層体の法線方向が0°である。)における、吸収領域(Absorption area)での吸収ピーク波長Aの吸収ピークと、反射領域(Reflection area)での反射ピーク波長Bの吸収ピークと、の波長帯域の重なりを測定した。波長帯域の重なりは、図2に示すように、視野角55°における二色性色素層の吸収ピークの半値幅の波長帯域Bと、視野角55°における構造色を発現する層の反射ピークの半値幅の波長帯域Aと、が重なる波長帯域Cをもって評価した。
[Measurement of peak overlap]
Using an automatic absolute reflectance measurement unit ARMN-735 and a spectrophotometer V-670 EX (manufactured by JASCO Corporation), the viewing angle was -90° to +90° (in this case, the normal direction of the laminate was 0°). ), the overlap of the wavelength bands of the absorption peak at absorption peak wavelength A in the absorption area and the absorption peak at reflection peak wavelength B in the reflection area was measured. As shown in Figure 2, the wavelength band overlap is between the wavelength band B of the half-width of the absorption peak of the dichroic dye layer at a viewing angle of 55° and the reflection peak of the layer expressing structural color at a viewing angle of 55°. Evaluation was made using a wavelength band C that overlaps the wavelength band A of the half-width.
 評価結果を、まとめて表1に示す。 The evaluation results are summarized in Table 1.
 表1に示すように、実施例の積層体は、比較例の積層体と比べ、視野角依存性が小さい積層体であった。 As shown in Table 1, the laminates of Examples had less viewing angle dependence than the laminates of Comparative Examples.
 2022年3月15日に出願された日本国特許出願2022-040583号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2022-040583 filed on March 15, 2022 is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard were specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.

Claims (13)

  1.  二色性色素を含む二色性色素層と、
     構造色を発現する層と、を有し、
     前記二色性色素層が、波長400nm以上700nm以下の領域における吸収ピーク波長Aを有し、
     前記構造色を発現する層が、波長400nm以上700nm以下の領域における反射ピーク波長Bを有し、
     前記二色性色素層側から視野角-90°~90°で視認した場合に、前記波長Aにおける吸収ピークと前記波長Bにおける反射ピークとが、互いに少なくとも一部が重なる波長帯域を有する
     積層体。
    a dichroic pigment layer containing a dichroic pigment;
    It has a layer that expresses a structural color,
    The dichroic dye layer has an absorption peak wavelength A in a wavelength range of 400 nm or more and 700 nm or less,
    The layer expressing the structural color has a reflection peak wavelength B in a wavelength range of 400 nm or more and 700 nm or less,
    A laminate having a wavelength band in which the absorption peak at wavelength A and the reflection peak at wavelength B at least partially overlap each other when viewed from the side of the dichroic dye layer at a viewing angle of -90° to 90°. .
  2.  前記構造色を発現する層が、誘電体多層膜からなる層、又は、コレステリック液晶層である請求項1に記載の積層体。 The laminate according to claim 1, wherein the layer expressing structural color is a layer made of a dielectric multilayer film or a cholesteric liquid crystal layer.
  3.  前記二色性色素層の透過率中心軸と積層体の法線方向とのなす角度θが、0°~45°である請求項1又は請求項2に記載の積層体。 The laminate according to claim 1 or 2, wherein the angle θ between the central axis of transmittance of the dichroic dye layer and the normal direction of the laminate is 0° to 45°.
  4.  前記構造色を発現する層が、選択反射波長の異なる2以上の反射領域を有する請求項1~請求項3のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the layer expressing the structural color has two or more reflective regions having different selective reflection wavelengths.
  5.  前記二色性色素層が、重合性基を有する液晶化合物を少なくとも重合してなる層である請求項1~請求項4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the dichroic dye layer is a layer formed by polymerizing at least a liquid crystal compound having a polymerizable group.
  6.  前記構造色を発現する層が、コレステリック液晶層である請求項1~請求項5のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the layer expressing structural color is a cholesteric liquid crystal layer.
  7.  前記コレステリック液晶層が、光照射により異性化する部位を有するカイラル剤を含む請求項6に記載の積層体。 The laminate according to claim 6, wherein the cholesteric liquid crystal layer contains a chiral agent having a site that isomerizes upon irradiation with light.
  8.  二色性色素を含む二色性色素層と、
     選択反射波長の異なる2以上の反射領域を有する、構造色を発現する層と、
    を有する積層体。
    a dichroic pigment layer containing a dichroic pigment;
    a layer that exhibits structural color and has two or more reflective regions with different selective reflection wavelengths;
    A laminate having.
  9.  前記二色性色素層の透過率中心軸と積層体の法線方向とのなす角度θが、0°~45°である請求項8に記載の積層体。 The laminate according to claim 8, wherein the angle θ between the transmittance center axis of the dichroic dye layer and the normal direction of the laminate is 0° to 45°.
  10.  請求項1~請求項9のいずれか1項に記載の積層体を備える加飾フィルム。 A decorative film comprising the laminate according to any one of claims 1 to 9.
  11.  請求項1~請求項9のいずれか1項に記載の積層体を備える物品。 An article comprising the laminate according to any one of claims 1 to 9.
  12.  請求項10に記載の加飾フィルムを備える加飾パネル。 A decorative panel comprising the decorative film according to claim 10.
  13.  請求項12に記載の加飾パネルを備える表示装置。 A display device comprising the decorative panel according to claim 12.
PCT/JP2023/009955 2022-03-15 2023-03-14 Laminate, decorative film, article, decorative panel, and display device WO2023176857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-040583 2022-03-15
JP2022040583 2022-03-15

Publications (1)

Publication Number Publication Date
WO2023176857A1 true WO2023176857A1 (en) 2023-09-21

Family

ID=88023861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009955 WO2023176857A1 (en) 2022-03-15 2023-03-14 Laminate, decorative film, article, decorative panel, and display device

Country Status (1)

Country Link
WO (1) WO2023176857A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017205987A (en) * 2016-05-20 2017-11-24 富士フイルム株式会社 Decorative sheet and article
JP2018045175A (en) * 2016-09-16 2018-03-22 富士フイルム株式会社 Laminate and article
WO2021095881A1 (en) * 2019-11-13 2021-05-20 富士フイルム株式会社 Decorative film, molded article, and electronic device
WO2022009508A1 (en) * 2020-07-06 2022-01-13 富士フイルム株式会社 Liquid crystal film, method for producing liquid crystal film, decorative film and case panel for electronic devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017205987A (en) * 2016-05-20 2017-11-24 富士フイルム株式会社 Decorative sheet and article
JP2018045175A (en) * 2016-09-16 2018-03-22 富士フイルム株式会社 Laminate and article
WO2021095881A1 (en) * 2019-11-13 2021-05-20 富士フイルム株式会社 Decorative film, molded article, and electronic device
WO2022009508A1 (en) * 2020-07-06 2022-01-13 富士フイルム株式会社 Liquid crystal film, method for producing liquid crystal film, decorative film and case panel for electronic devices

Similar Documents

Publication Publication Date Title
TW394852B (en) Reflective film
JP6343349B2 (en) Polymerizable composition containing polymerizable compound, film, and half mirror for projected image display
TWI377223B (en) Biaxial film iii
CN108885293B (en) Method for manufacturing reflective layer and reflective layer
JP2018077538A (en) Elliptically polarizing plate
WO2016143883A1 (en) Polymerizable composition, film, and half mirror for projection image display
TWI359986B (en) Cholesteric liquid crystal optical bodies and meth
WO2016088708A1 (en) Mirror having image display function
WO2018146995A1 (en) Decorative film
JP7177273B2 (en) DECORATIVE MOLDED PRODUCT, METHOD FOR MANUFACTURING DECORATIVE MOLDED BODY, DECORATIVE PANEL, AND ELECTRONIC DEVICE
JPWO2020004155A1 (en) Identification medium, authenticity determination method, and article
WO2019073974A1 (en) Reflective sheet, decorative sheet, and reflective sheet production method
JP2013129690A (en) Composition and optical film
JP6910481B2 (en) Laminate
JP7058204B2 (en) Manufacturing methods for optical films, liquid crystal displays, interiors for automobiles, and optical films
WO2016088707A1 (en) Mirror having image display function
JP7270762B2 (en) Decorative films, moldings, and electronic devices
WO2023176857A1 (en) Laminate, decorative film, article, decorative panel, and display device
JP2018124431A (en) Decorative film
WO2017047673A1 (en) Polymerizable composition containing polymerizable liquid crystal compound, film, and method for producing film
WO2017047674A1 (en) Polymerizable liquid crystal compound, polymerizable composition, and film
WO2022059292A1 (en) Decorative film, method for manufacturing decorative film, molded object, electronic device, and automobile exterior plate
WO2022009508A1 (en) Liquid crystal film, method for producing liquid crystal film, decorative film and case panel for electronic devices
WO2024053437A1 (en) Display device
WO2023032644A1 (en) Decorative film, molded body, and article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770810

Country of ref document: EP

Kind code of ref document: A1