WO2023176682A1 - Inductor component - Google Patents

Inductor component Download PDF

Info

Publication number
WO2023176682A1
WO2023176682A1 PCT/JP2023/009037 JP2023009037W WO2023176682A1 WO 2023176682 A1 WO2023176682 A1 WO 2023176682A1 JP 2023009037 W JP2023009037 W JP 2023009037W WO 2023176682 A1 WO2023176682 A1 WO 2023176682A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
welded
coil
central axis
inductor component
Prior art date
Application number
PCT/JP2023/009037
Other languages
French (fr)
Japanese (ja)
Inventor
健司 奈良
達哉 佐々木
信 長谷川
勇治 五十嵐
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023176682A1 publication Critical patent/WO2023176682A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores

Definitions

  • the present disclosure relates to inductor components.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2021-150314
  • This inductor component has an annular core, a resin cap that partially covers the core, and a coil wound around the core and the cap.
  • the coil has a plurality of pin members, and the ends of adjacent pin members have welds welded together.
  • a cap exists between the weld and the core.
  • the conventional inductor component is provided with a cap, there is a problem in that the cross-sectional area of the core is reduced by the thickness of the cap, and the obtainable inductance is reduced.
  • the core size is increased in order to obtain the target inductance, there is a problem in that the product size increases.
  • an object of the present disclosure is to provide an inductor component that can suppress the increase in product size and ensure high inductance.
  • an inductor component that is one aspect of the present disclosure includes: a circular core; and a coil wound around the core,
  • the core has a first part containing MnZn-based ferrite and a second part containing NiZn-based ferrite,
  • the coil includes a conductor member and a covering member that covers a part of the conductor member, At least a portion of the second portion faces an uncovered region of the coil that is not covered by the covering member.
  • the expression "the second part is opposite to the non-covered area” means that another member such as a resin member may be present between the second part and the non-covered area, and the second part and the non-covered area It refers to the relative relationship between
  • the electrical conductivity of the NiZn-based ferrite in the second portion is lower than the electrical conductivity of the MnZn-based ferrite in the first portion, and the surface resistance of the second portion is higher than the surface resistance of the first portion. Since the second portion of the core faces the uncovered area of the coil, insulation between the core and the coil can be ensured. Therefore, a conventional resin cap covering the core is not required, and the cross-sectional area of the core can be secured by the thickness of the cap. This ensures high inductance. Therefore, it is possible to suppress the increase in product size and ensure high inductance.
  • the impedance peak when a toroidal coil is created using the MnZn ferrite of the first part, there is an impedance peak around 1 MHz, and when a toroidal coil is created using the NiZn ferrite of the second part, the impedance peak is around 1 MHz. Impedance peaks exist in high frequency ranges. Since MnZn-based ferrite and NiZn-based ferrite are combined, the frequency characteristics of the core are the sum of their respective frequency characteristics, and high impedance can be obtained over a wide band.
  • the inductor component a bottom plate portion on which the core and the coil are placed; further comprising a resin member disposed on the bottom plate portion, The resin member contacts the second portion and the bottom plate to fix the core to the bottom plate.
  • the stress in the resin member is reduced to the second portion because the resin member is in contact with the second portion. It is transmitted to the part.
  • the NiZn-based ferrite of the second portion has a lower magnetic permeability and is less affected by magnetostriction than the MnZn-based ferrite of the first portion, so that deterioration in the characteristics of the core due to magnetostriction can be reduced.
  • the coil has a plurality of pin members, the ends of adjacent pin members have welded parts welded to each other, and the welded parts are included in the conductor member and are located in the uncovered area. , At least a portion of the second portion faces the weld.
  • insulation between the core and the welded portion of the coil can be ensured.
  • the plurality of pin members include a first pin member and a second pin member,
  • the first pin member and the second pin member constitute one turn
  • the welded portion includes, in adjacent turns, a first welded portion where a first pin member of one turn and a second pin member of the one turn are welded to each other, and a first welded portion where a first pin member of the one turn is welded to each other; the pin member and the second pin member of the other turn have a second welded portion welded to each other;
  • the core has a first surface, a second surface that intersects the first surface, and a third surface that faces the second surface and intersects the first surface,
  • the first welded portion is located above at least one of the first surface and the second surface
  • the second welded portion is located above at least one of the first surface and the third surface,
  • the second portion is provided over the first surface, a portion of the second surface, and a portion of the third surface.
  • the insulation between the core and the coil can be improved.
  • intersecting the first surface and the second surface may mean that the first surface and the second surface intersect directly; for example, the first surface and the second surface may be connected via a curved portion.
  • the extended surface of the first surface and the extended surface of the second surface may intersect.
  • Located above the first surface means to be located above the surface of the first surface in a direction orthogonal to the first surface. Note that the first welded portion being located above the first surface means that the first welded portion is present without directly contacting the first surface. The same applies to the second surface, the third surface, the fourth surface, and the second welded portion.
  • the core has a fourth surface opposite to the first surface, At least a portion of the first portion is provided on the fourth surface that does not face the welded portion.
  • the first portion on the fourth surface it is possible to improve the insulation between the core and the coil.
  • the core further includes a connecting member connecting the first part and the second part,
  • the elastic modulus of the connecting member is 1.0 MPa or more and 50 MPa or less.
  • the elastic modulus of the connecting member is low, for example, when the resin member is in contact with the second portion, even if the stress of the resin member is transmitted to the second portion, the stress of the second portion is It is relieved by the connecting member. Thereby, stress transmitted from the second portion to the first portion can be reduced, and reduction in inductance due to magnetostriction can be reduced.
  • the first portion is L-shaped and includes a first wall portion extending in a direction parallel to the central axis, and a first base portion extending in a direction perpendicular to the central axis
  • the second portion is L-shaped and includes a second wall portion extending in a direction parallel to the central axis, and a second base portion extending in a direction perpendicular to the central axis
  • the first wall portion and the second wall portion are arranged in a direction perpendicular to the central axis such that the inner surface of the first wall portion and the inner surface of the second wall portion are in contact with each other
  • the first base part and the second base part are arranged on opposite sides of the first wall part and the second wall part in a direction parallel to the central axis.
  • first wall portion and the second wall portion are arranged in a direction perpendicular to the central axis, it is possible to suppress misalignment of the first portion and the second portion in the direction perpendicular to the central axis.
  • first wall portion and the second wall portion are arranged in a direction perpendicular to the central axis, and the first base portion and the second base portion are arranged on opposite sides in a direction parallel to the central axis.
  • the cross-sectional shape of the core which is a combination of the first part and the second part, can be rectangular.
  • the first wall portion is located closer to the central axis than the second wall portion.
  • the first wall portion is located closer to the center axis than the second wall portion, it is possible to increase the volume of the first portion in the region on the inner peripheral side of the core where the magnetic path length is short. can. As a result, the characteristics of MnZn-based ferrite appear strongly, and the impedance near 1 MHz can be increased.
  • the volume of the second portion can be increased in the region on the outer peripheral side of the core.
  • the NiZn-based ferrite of the second portion has a lower magnetic permeability and is less affected by magnetostriction than the MnZn-based ferrite of the first portion, so that deterioration in the characteristics of the core due to magnetostriction can be reduced.
  • the area on the inner circumferential side of the core is larger than the area on the outer circumferential side of the core.
  • the area on the inner circumferential side of the core is larger than the area on the outer circumferential side of the core, so the magnetic path length on the inner circumferential side of the core is short.
  • the volume of the first portion can be increased in the region. As a result, the characteristics of MnZn-based ferrite appear strongly, and the impedance near 1 MHz can be increased.
  • the ratio of the first part to the second part since the area on the inner circumferential side of the core is larger than the area on the outer circumferential side of the core, it is possible to increase the volume of the second part in the area on the outer circumferential side of the core. can.
  • the resin member adheres to the second part of the NiZn-based ferrite, which is less affected by magnetostriction. It becomes difficult for the resin member to adhere to the first portion of the MnZn-based ferrite, which has a large influence.
  • the NiZn-based ferrite of the second portion has a lower magnetic permeability and is less affected by magnetostriction than the MnZn-based ferrite of the first portion, so that deterioration in the characteristics of the core due to magnetostriction can be reduced.
  • the volume ratio of the first portion to the second portion is 6:4 to 8:2.
  • the volume ratio of MnZn-based ferrite and NiZn-based ferrite is 6:4.
  • the ratio is ⁇ 8:2
  • a constant high impedance can be obtained over a wide band.
  • a circular core a coil wound around the core; a bottom plate portion on which the core and the coil are placed; and a resin member disposed on the bottom plate portion
  • the core has a first part containing MnZn-based ferrite and a second part containing NiZn-based ferrite, The resin member contacts the second portion and the bottom plate to fix the core to the bottom plate.
  • the impedance peak exists near 1 MHz, and a toroidal coil is created using the NiZn-based ferrite of the second part.
  • the impedance peak exists in a frequency range higher than 1 MHz. Since MnZn-based ferrite and NiZn-based ferrite are combined, the frequency characteristics of the core are the sum of their respective frequency characteristics, and high impedance can be obtained over a wide band.
  • NiZn-based ferrite of the second portion has a lower magnetic permeability and is less affected by magnetostriction than the MnZn-based ferrite of the first portion, so that deterioration in the characteristics of the core due to magnetostriction can be reduced.
  • another object of the present disclosure is to provide an inductor component that can obtain high impedance over a wide band.
  • the inductor component that is one aspect of the present disclosure, it is possible to suppress increase in product size and ensure high inductance.
  • FIG. 1 is a top perspective view showing an inductor component according to a first embodiment of the present invention.
  • FIG. 3 is a bottom perspective view of the inductor component.
  • FIG. 3 is a downward perspective view showing the inside of the inductor component.
  • FIG. 3 is an exploded perspective view of an inductor component.
  • FIG. 3 is a cross-sectional view of an inductor component.
  • FIG. 3 is a cross-sectional view of an inductor component. It is a graph showing the relationship between frequency and impedance when changing the volume ratio of MnZn-based ferrite and NiZn-based ferrite.
  • FIG. 7 is a cross-sectional view of an inductor component according to a second embodiment.
  • FIG. 7 is a cross-sectional view of an inductor component according to a third embodiment. It is a sectional view of an inductor component of a 4th embodiment. It is a sectional view of an inductor component of a 5th embodiment. It is a sectional view of an inductor component of a 6th embodiment. It is a sectional view of an inductor component of a 7th embodiment.
  • FIG. 1 is a top perspective view showing an inductor component according to an embodiment of the present invention.
  • FIG. 2 is a bottom perspective view of the inductor component.
  • FIG. 3 is a bottom perspective view showing the inside of the inductor component.
  • FIG. 4 is an exploded perspective view of the inductor component.
  • the inductor component 1 includes a case 2, an inductor element L housed in the case 2, and first to fourth external parts attached to the case 2 and connected to the inductor element L. It has electrodes 51 to 54 and a resin member 90 placed inside the case 2.
  • the inductor component 1 is, for example, a common mode choke coil.
  • the inductor element L has an annular core 3 and a first coil 41 and a second coil 42 wound around the core 3.
  • the case 2 has a bottom plate part 21 and a box part 22 that covers the bottom plate part 21.
  • the case 2 is made of a material that has strength and heat resistance, and is preferably made of a material that is flame retardant.
  • the case 2 is made of a resin such as PPS (polyphenylene sulfide), LCP (liquid crystal polymer), or PPA (polyphthalamide), or ceramics.
  • the bottom plate part 21 includes a bottom part 210 including a first main surface 210a and a second main surface 210b facing each other, and a side wall part 211 provided along the outer periphery of the bottom part 210 on the first main surface 210a of the bottom part 210.
  • the bottom plate part 21 has a recess 215, and the recess 215 is surrounded by the bottom part 210 and the side wall part 211.
  • the side wall portion 211 is provided continuously in the circumferential direction, but may be provided intermittently in the circumferential direction.
  • the bottom portion 210 has a plurality of openings 216 passing through the first main surface 210a and the second main surface 210b.
  • the plurality of openings 216 are provided at positions corresponding to the first to fourth external electrodes 51 to 54. In this embodiment, there are three openings 216, but the number can be increased or decreased as desired.
  • An inductor element L is arranged on the bottom plate part 21. That is, the core 3 is arranged in the bottom plate part 21 so that the central axis C of the core 3 is orthogonal to the first main surface 210a of the bottom part 210.
  • the central axis C of the core 3 refers to the central axis of the inner diameter hole of the core 3.
  • the shape of the case 2 (the bottom plate part 21 and the box part 22) is rectangular when viewed from the direction of the central axis C of the core 3. In this embodiment, the shape of case 2 is rectangular.
  • the lateral direction of the case 2 viewed from the direction of the central axis C of the core 3 is defined as the X direction
  • the longitudinal direction of the case 2 viewed from the direction of the central axis C of the core 3 is defined as the Y direction
  • the lateral direction and the longitudinal direction are defined as the Y direction.
  • the height direction of case 2, which is a direction perpendicular to both, is defined as the Z direction.
  • the bottom plate part 21 and the box part 22 of the case 2 are arranged facing each other in the Z direction, the bottom plate part 21 is on the lower side and the box part 22 is on the upper side, the upper side is in the forward direction of the Z direction, and the lower side is in the Z direction.
  • the direction is the opposite direction.
  • the direction from the first main surface 210a toward the core 3 is defined as the upward direction.
  • the bottom plate portion 21 of the case 2 has a square shape, the length of the case 2 in the X direction and the length of the case 2 in the Y direction are the same.
  • the box part 22 is attached to the bottom plate part 21 so as to cover the inductor element L. That is, the core 3 and the coils 41 and 42 are surrounded by the box part 22 and are not exposed to the outside. Therefore, the inductor element L can be protected from the outside.
  • the first to fourth external electrodes 51 to 54 are attached to the bottom plate portion 21.
  • the first external electrode 51 and the second external electrode 52 are located at two corners of the bottom plate 21 facing each other in the Y direction, and the third external electrode 53 and the fourth external electrode 54 are located opposite in the Y direction of the bottom plate 21. It is located in two corners.
  • the first external electrode 51 and the third external electrode 53 face each other in the X direction, and the second external electrode 52 and the fourth external electrode 54 face each other in the X direction.
  • the core 3 is a toroidal core, and the shape of the core 3 is oval (track shape) when viewed from the direction of the central axis C.
  • the core 3 When viewed from the direction of the central axis C, the core 3 includes a pair of longitudinal parts 31 extending along the long axis and facing each other in the short axis direction, and a pair of short sides 31 extending along the short axis and facing each other in the long axis direction. portion 32.
  • the shape of the core 3 may be rectangular, elliptical, or circular when viewed from the central axis C direction.
  • the core 3 has a first end surface 301 and a second end surface 302 that face each other in the direction of the central axis C, and an inner circumferential surface 303 and an outer circumferential surface 304.
  • Inner peripheral surface 303 intersects first end surface 301 .
  • the outer circumferential surface 304 faces the inner circumferential surface 303 and intersects with the first end surface 301.
  • the second end surface 302 faces the first end surface 301.
  • the first end surface 301 is the lower end surface of the core 3 and faces the first main surface 210a of the bottom plate portion 21.
  • the second end surface 302 is the upper end surface of the core 3 and faces the inner surface of the box portion 22.
  • the core 3 is housed in the case 2 so that the long axis direction of the core 3 coincides with the Y direction.
  • the first end surface 301 is the first surface described in the claims
  • the second end surface 302 is the fourth surface described in the claims
  • the inner peripheral surface 303 is the fourth surface described in the claims.
  • the second surface described in the claims and the outer peripheral surface 304 respectively correspond to the third surface described in the claims.
  • the shape of the cross section perpendicular to the circumferential direction when viewed from the direction of the central axis C of the core 3 is rectangular.
  • the first end surface 301 and the second end surface 302 are arranged perpendicularly to the direction of the central axis C of the core 3.
  • the inner circumferential surface 303 and the outer circumferential surface 304 are arranged parallel to the direction of the central axis C of the core 3.
  • vertical (orthogonal) includes not only a completely vertical state but also a substantially vertical (orthogonal) state.
  • parallel is not limited to a completely parallel state, but also includes a substantially parallel state.
  • the resin member 90 is disposed within the recess 215 of the bottom plate portion 21 and contacts the bottom plate portion 21 and the inductor element L.
  • a material for the resin member 90 for example, thermosetting epoxy resin can be used.
  • the first coil 41 is wound around the core 3 between the first external electrode 51 and the second external electrode 52. One end of the first coil 41 is connected to the first external electrode 51. The other end of the first coil 41 is connected to the second external electrode 52.
  • the second coil 42 is wound around the core 3 between the third external electrode 53 and the fourth external electrode 54. One end of the second coil 42 is connected to the third external electrode 53. The other end of the second coil 42 is connected to the fourth external electrode 54.
  • the first coil 41 and the second coil 42 are wound helically around the core 3 along the circumferential direction of the core 3 as viewed from the direction of the central axis C of the core 3. Specifically, the first coil 41 is wound around one longitudinal part 31 of the core 3 along the longitudinal direction of the core 3, and the second coil 42 is wound around the other longitudinal part 31 of the core 3. 3 along the long axis direction.
  • the winding axis of the first coil 41 and the winding axis of the second coil 42 run in parallel.
  • the first coil 41 and the second coil 42 are symmetrical with respect to the long axis of the core 3.
  • the number of turns of the first coil 41 and the number of turns of the second coil 42 are the same.
  • the winding direction of the first coil 41 around the core 3 and the winding direction of the second coil 42 around the core 3 are opposite directions. In other words, the winding direction of the first coil 41 from the first external electrode 51 to the second external electrode 52 is opposite to the winding direction of the second coil 42 from the third external electrode 53 to the fourth external electrode 54. direction.
  • a common mode current flows from the first external electrode 51 to the second external electrode 52 in the first coil 41, and from the third external electrode 53 to the fourth external electrode 54 in the second coil 42, That is, the first to fourth external electrodes 51 to 54 are connected so that the current flows in the same direction.
  • a common mode current flows through the first coil 41
  • a first magnetic flux is generated by the first coil 41 in the core 3.
  • a common mode current flows through the second coil 42
  • a second magnetic flux is generated in the core 3 in a direction in which the first magnetic flux and the core 3 strengthen each other. Therefore, the first coil 41 and core 3 and the second coil 42 and core 3 act as inductance components, and noise is removed from the common mode current.
  • the first coil 41 is formed by connecting a plurality of pin members by, for example, welding such as laser welding or spot welding. Note that FIG. 3 does not show a state in which a plurality of pin members are actually welded, but a state in which a plurality of pin members are assembled.
  • the plurality of pin members are not printed wiring or conductive wires, but are rod-shaped members.
  • the pin member has rigidity. Specifically, in a cross section perpendicular to the circumferential direction of the core 3, the pin member extends around the outer circumference of the core passing through the first end surface 301, second end surface 302, inner circumferential surface 303, and outer circumferential surface 304 of the core 3. Because it is shorter than the length of a 100-minute length and has high rigidity, it is difficult to bend.
  • the plurality of pin members include a bent pin member 410 that is bent into a substantially U-shape, and straight pin members 411 and 412 that extend substantially linearly. Note that the straight pin members 411 and 412 are also referred to as a first pin member, and the bent pin member 410 is also referred to as a second pin member.
  • the first coil 41 includes, in order from one end to the other end, a first straight pin member 411 on one end side (one side), a plurality of sets of bent pin members 410 and a second straight pin member 412, and a second straight pin member 412 on the other end side (on the other side). and a first straight pin member 411.
  • the lengths of the first linear pin member 411 and the second linear pin member 412 are different.
  • the spring index of the bending pin member 410 as shown in FIG.
  • the spring index Ks of member 410 is smaller than 3.6.
  • the spring index Ks can be expressed by the radius of curvature R1, R2 of the bending pin member/the wire diameter r of the bending pin member. In this way, the bending pin member 410 has high rigidity and is difficult to bend.
  • the bent pin members 410 and the second straight pin members 412 are alternately connected by welding, such as laser welding or spot welding, for example.
  • One end of a second straight pin member 412 is connected to one end of the bending pin member 410, and the other end of the second straight pin member 412 is connected to one end of another bending pin member 410.
  • the plurality of bent pin members 410 and the second straight pin members 412 are connected, and the connected plurality of bent pin members 410 and the second straight pin members 412 are connected to the core 3 in a spiral shape. Placed. In other words, one set of bending pin member 410 and second straight pin member 412 constitutes one turn.
  • the bending pin member 410 is arranged in parallel along each of the second end surface 302, inner peripheral surface 303, and outer peripheral surface 304 of the core 3.
  • the second straight pin member 412 is arranged parallel to the first end surface 301 of the core 3 .
  • the first linear pin member 411 is arranged parallel to the first end surface 301 of the core 3 .
  • the bending pin members 410 of adjacent turns are fixed to each other by an adhesive member 70. Thereby, the state in which the plurality of bending pin members 410 are attached to the core 3 can be made stable. Similarly, the adjacent first straight pin member 411 and second straight pin member 412 are fixed by the adhesive member 70, and the adjacent second straight pin member 412 is fixed by the adhesive member 70. Thereby, the attachment state of the plurality of first straight pin members 411 and second straight pin members 412 to the core 3 can be made stable.
  • the first external electrode 51 is connected to one first straight pin member 411, and the first straight pin member 411 is connected to one end of the bent pin member 410 of the turn next to the first straight pin member 411. Connected.
  • One first straight pin member 411 has a mounting piece 411c.
  • the first external electrode 51 has a mounting portion 51 a that fits into the case 2 .
  • the attachment piece 411c of the first straight pin member 411 is connected to the attachment portion 51a of the first external electrode 51. Specifically, the attachment portion 51a passes through the first opening 216 and is connected to the attachment piece 411c. In short, the first coil 41 and the first external electrode 51 are electrically connected via the first opening 216.
  • the second external electrode 52 is connected to the other first straight pin member 411, and the other first straight pin member 411 is connected to one end of the second straight pin member 412 of the turn next to the other first straight pin member 411. connected to.
  • the attachment piece 411c of the other first linear pin member 411 is connected to the attachment portion 52a of the second external electrode 52. Specifically, the attachment portion 52a passes through the second opening 216 and is connected to the attachment piece 411c. In short, the first coil 41 and the second external electrode 52 are electrically connected via the second opening 216.
  • the second coil 42 is composed of a plurality of pin members. That is, the second coil 42 includes, in order from one end to the other, a first straight pin member 421 on one end (one side), a plurality of sets of bent pin members 420 and a second straight pin member 422, and a second straight pin member 422 on the other end (one side). the other) first straight pin member 421. Bent pin members 420 and second straight pin members 422 are alternately connected and wound around the core 3 . That is, the plurality of bent pin members 420 and the second straight pin members 422 are connected, and the connected plurality of bent pin members 420 and the second straight pin members 422 are spirally wound around the core 3. .
  • the third external electrode 53 is connected to one first straight pin member 421, and one first straight pin member 421 is connected to one end of the bent pin member 420 of the turn next to the one first straight pin member 421. Connected.
  • the attachment piece 421c of the first straight pin member 421 is connected to the attachment portion 53a of the third external electrode 53. Specifically, the attachment portion 53a passes through the first opening 216 and is connected to the attachment piece 421c. In short, the second coil 42 and the third external electrode 53 are electrically connected via the first opening 216.
  • the fourth external electrode 54 is connected to the other first straight pin member 421, and the other first straight pin member 421 is connected to one end of the second straight pin member 412 of the turn next to the other first straight pin member 421. connected to.
  • the attachment piece 421c of the other first linear pin member 421 is connected to the attachment portion 54a of the fourth external electrode 54. Specifically, the attachment portion 54a passes through the third opening 216 and is connected to the attachment piece 421c. In short, the second coil 42 and the fourth external electrode 54 are electrically connected via the third opening 216.
  • the first coil 41 and the second coil 42 each include a conductor portion and a coating covering a portion of the conductor portion.
  • the conductor portion is, for example, a copper wire
  • the coating is, for example, a polyamide-imide resin.
  • the thickness of the coating is, for example, 0.02 to 0.04 mm.
  • the first linear pin members 411, 421 are composed of conductor portions 411a, 421a without a coating.
  • the second straight pin members 412, 422 are composed of conductor portions 412a, 422a without a coating.
  • the bending pin members 410, 420 are composed of conductor portions 410a, 420a and coatings 410b, 420b.
  • the conductor portions 410a, 420a are exposed from the coatings 410b, 420b. That is, the first straight pin members 411, 421, the second straight pin members 412, 422, and the bent pin members 410, 420 are welded to each other at the exposed conductor parts 411a, 421a, 412a, 422a, 410a, 420a. has been done.
  • the first coil 41 and the second coil 42 have a conductor member and a covering member that covers a part of the conductor member.
  • the conductor member includes conductor portions 411a, 421a, 412a, 422a, 410a, and 420a, and a welding portion for welding the conductor portions.
  • the covering member includes coatings 410b and 420b. The conductor member that is not covered by the covering member, that is, the conductor portion and welded portion exposed from the film (without a film) corresponds to an uncoated region of the coil that is not covered by the covering member.
  • FIG. 6 is a cross-sectional view of the inductor component 1 including the central axis C of the core 3, and more specifically, an XZ cross-sectional view passing through the center of the inductor component 1 in the Y direction.
  • the box portion 22 is omitted.
  • the ends of adjacent pin members have welded parts welded to each other.
  • a welded part refers to a part that melts during welding and then hardens.
  • the first coil 41 has a first welded portion w11 and a second welded portion w12. More specifically, in adjacent turns in the first coil 41, the second straight pin member 412 and the bent pin member 410 of one turn are connected to one conductor portion 412a of the second straight pin member 412.
  • the conductor portions 410a of the pin members 410 are welded to each other to form a first welded portion w11, and the second straight pin member 412 and the bent pin member 410 of the other turn are connected to the other turn of the second straight pin member 412.
  • the conductor portion 412a and the conductor portion 410a of the bending pin member are welded together to form a second welded portion w12.
  • the first welded portion w11 is located above the first end surface 301 of the core 3. Being located above the first end surface 301 means being above the surface of the first end surface 301, and does not mean above or below in the drawing. Note that the first welded portion w11 may be located above the inner peripheral surface 303 of the core 3, or may be located above the first end surface 301 and the inner peripheral surface 303 of the core 3.
  • the second welding portion w12 is located above the first end surface 301 of the core 3. Note that the second welded portion w12 may be located above the outer peripheral surface 304 of the core 3, or may be located above the first end surface 301 and the outer peripheral surface 304 of the core 3.
  • FIG. 6 shows a turn made up of the second straight pin member 412 and the bending pin member 410 of the first coil 41, a turn made of the first straight pin member 411 and the bending pin member 410 The same applies to constructed turns.
  • the first straight pin member 411 is welded at the conductor portion 410a of the bent pin member 410 connected to the conductor portion 411a to form a first welded portion w11 or a second welded portion w12.
  • the second coil 42 has a first weld part w21 and a second weld part w22.
  • the second straight pin member 422 and the bent pin member 420 of one turn are connected to one conductor portion of the second straight pin member 422.
  • the other conductor portion 422a of the bent pin member is welded to the conductor portion 420a of the bending pin member to form a second weld portion w22.
  • the first straight pin member 421 is welded at the conductor portion 420a of the bent pin member 420 connected to the conductor portion 421a, forming a first welded portion w21 or a second welded portion w22.
  • the first welded portion w21 and the second welded portion w22 of the second coil 42 have the same configuration as the first welded portion w11 and the second welded portion w12 of the first coil 41, and the description thereof will be omitted.
  • the core 3 has a first portion 310 containing MnZn-based ferrite and a second portion 320 containing NiZn-based ferrite.
  • the composition of the MnZn-based ferrite is, for example, 51% Fe, 4% O, 12% Mn, and 12% Zn.
  • the composition of the NiZn-based ferrite is, for example, 45% Fe, 3% O, 8% Ni, and 18% Zn.
  • At least a portion of the second portion 320 faces an uncoated region of the first coil 41 and the second coil 42 that is not covered with the covering member. Specifically, at least a portion of the second portion 320 faces the first linear pin member 411, the second linear pin member 422, the first welds w11, w21, and the second welds w12, w22. .
  • the first portion 310 and the second portion 320 are each rectangular in cross section including the central axis C.
  • the first portion 310 and the second portion 320 are arranged above and below in the Z direction.
  • the second portion 320 is located on the lower side in the Z direction, that is, on the uncovered region side of the first coil 41 and the second coil 42.
  • the electrical conductivity of the NiZn-based ferrite of the second portion 320 is lower than the electrical conductivity of the MnZn-based ferrite of the first portion 310, and the surface resistance of the second portion 320 is the surface resistance of the first portion 310. higher than For example, the electrical conductivity of MnZn-based ferrite is 3.33 (S/m), and the electrical conductivity of NiZn-based ferrite is 1 ⁇ 10 ⁇ 6 (S/m).
  • the second portion 320 of the core 3 is opposed to the uncovered areas of the coils 41 and 42, insulation between the core 3 and the coils 41 and 42 can be ensured. Therefore, a conventional resin cap covering the core 3 is not required, and the cross-sectional area of the core 3 can be secured by the thickness of the cap. This ensures high inductance. Therefore, it is possible to suppress the increase in product size and ensure high inductance.
  • all of the uncovered regions face the second portion 320, so that insulation between the core 3 and the coils 41, 42 can be further ensured.
  • at least a portion of the non-covered region may face the second portion 320.
  • all of the welded portions face the second portion 320, so that insulation between the core 3 and the coils 41, 42 can be further ensured. Note that at least a portion of may be opposed to the second portion 320.
  • the second portion 320 is provided over the first end surface 301, a portion of the inner circumferential surface 303, and a portion of the outer circumferential surface 304. Thereby, the insulation between the core 3 and the coils 41 and 42 can be improved.
  • at least a portion of the first portion 310 is provided on the second end surface 302 where the welded portion is not opposed. Thereby, by providing the first portion 310 on the second end surface 302, the insulation between the core 3 and the coils 41 and 42 can be improved.
  • the resin member 90 contacts the second portion 320 and the bottom plate portion 21 to fix the core 3 to the bottom plate portion 21. According to this, when stress occurs during curing and shrinkage of the resin member 90 or stress due to thermal expansion of the resin member 90 at high temperatures, the resin member 90 is in contact with the second portion 320, so that stress on the resin member 90 is generated. is transmitted to the second portion 320.
  • the NiZn-based ferrite of the second portion 320 has a lower magnetic permeability than the MnZn-based ferrite of the first portion 310 and is less affected by magnetostriction, so deterioration of the characteristics of the core 3 due to magnetostriction can be reduced.
  • the initial magnetic permeability of MnZn-based ferrite is 8,500
  • the initial magnetic permeability of NiZn-based ferrite is 800.
  • NiZn-based ferrite can reduce the rate of decrease in inductance and impedance due to magnetostriction compared to MnZn-based ferrite.
  • the resin member 90 is fixed in the recess 215, fixes the inductor element L to the bottom plate part 21, and covers at least part of the uncovered areas of the coils 41 and 42. Preferably, resin member 90 covers all uncovered areas of coils 41 and 42.
  • the resin member 90 is made of, for example, a thermosetting resin, it is fixed to the inductor element L and the bottom plate portion 21 by curing. Further, in the manufacturing process of the inductor component 1, when filling the recess 215 with the liquid resin member 90, the liquid resin member 90 can be retained in the recess 215, and the resin member 90 can hold the inductor element L into the bottom plate portion 21. can be securely fixed.
  • the core 3 further includes a connecting member 80 that connects the first portion 310 and the second portion 320.
  • the elastic modulus (specifically, bending elastic modulus) of the connecting member 80 is 1.0 MPa or more and 50 MPa or less.
  • the connection member 80 is made of, for example, urethane resin or silicone resin. According to this, since the elastic modulus of the connecting member 80 is low, for example, when the resin member 90 is in contact with the second portion 320, even if the stress of the resin member 90 is transmitted to the second portion 320, the second portion The stress at 320 is relieved by the connecting member 80. Thereby, stress transmitted from the second portion 320 to the first portion 310 can be reduced, and reduction in inductance due to magnetostriction can be reduced. Note that the first portion 310 and the second portion 320 may be directly connected without providing the connecting member 80.
  • the volume ratio of the first portion 310 and the second portion 320 is 6:4 to 8:2.
  • the volume ratio of MnZn ferrite and NiZn ferrite is 6:4 to 8. :2
  • a constant high impedance can be obtained over a wide band.
  • the cross-sectional area is measured from a cross-section including the central axis C, the circumference of the oval shape of the core 3 is multiplied by this cross-sectional area to determine the volume, and the volume ratio is determined from each volume.
  • FIG. 7 shows the relationship between frequency and impedance.
  • FIG. 7 shows the relationship when the volume ratio of MnZn-based ferrite and NiZn-based ferrite is changed.
  • Graph L1 is shown by a solid line and shows the relationship when the volume ratio of MnZn-based ferrite and NiZn-based ferrite is 7:3.
  • Graph L2 is indicated by a dashed line and shows the relationship when the volume ratio of MnZn-based ferrite and NiZn-based ferrite is 8:2.
  • Graph L3 is indicated by a two-dot chain line, and shows the relationship when the volume ratio of MnZn-based ferrite and NiZn-based ferrite is 6:4.
  • Graph L4 is indicated by a dotted line and shows the relationship when the volume ratio of MnZn-based ferrite and NiZn-based ferrite is 5:5.
  • Graph L5 is indicated by a three-dot chain line and shows a comparative example when the core is made of MnZn-based ferrite.
  • Graph L6 is indicated by a three-dot chain line and shows a comparative example in which the core is made of NiZn-based ferrite.
  • the graph L5 has an impedance peak around 1 MHz
  • the graph L6 has an impedance peak around 20 MHz.
  • impedance peaks exist near 1 MHz and 20 MHz, respectively.
  • graph L1 can make the peak around 1 MHz equal to the peak around 20 MHz, and can obtain a constant high impedance in a wide frequency band.
  • graph L2 compared to graph L1, the peak around 1 MHz is higher, while the peak around 20 MHz is lower.
  • graph L3, compared to graph L1 the peak around 1 MHz is lower, while the peak around 20 MHz is higher.
  • graph L4 compared to graph L1, the peak around 1 MHz is lower, while the peak around 20 MHz is higher.
  • graph L4, compared to graph L3, the peak around 1 MHz is lower, while the peak around 20 MHz is higher.
  • graph L1 graph L2, and graph L3, that is, when the volume ratio of MnZn ferrite to NiZn ferrite is 6:4 to 8:2, a constant high impedance is achieved in a wide band. You can see what you can get. More preferably, in the case of graph L1, that is, when the volume ratio of MnZn-based ferrite to NiZn-based ferrite is 7:3, it can be seen that a constant high impedance can be obtained more significantly over a wide band.
  • the first coil 41 and the second coil 42 are wound around the core 3 so that their winding axes run parallel to each other, and the exposed conductor parts 411a, 412a, 410a of the first coil 41 are At least a portion of the exposed conductor portions 421a, 422a, and 420a of the second coil 42 are arranged on the first end surface 301 side of the core 3.
  • each pin member of the first coil 41 is welded, and each pin member of the second coil 42 is welded, with the first end surface 301 of the core 3 facing upward.
  • the core 3 and the coils 41, 42 are placed in the recess 215 of the bottom plate part 21 so that the conductor parts exposed from the coating in the coils 41, 42 are located on the first main surface 210a side. Place it inside.
  • the liquid resin member 90 is filled into the recess 215 by, for example, a potting method.
  • the liquid resin member 90 remains in the recess 215 and spreads over the conductor portions and parts of the core 30 exposed from the coatings of the coils 41 and 42.
  • a tape is attached to the second main surface 210b of the bottom portion 210 so as to close the opening 216.
  • thermosetting epoxy resin is used as the material for the resin member 90, and has an elastic modulus of 7 GPa, and is cured by heating at 120° C. for 30 minutes as a curing condition.
  • the inductor component 1 is manufactured by covering the box part 22 and storing it in the case 2.
  • the number of steps for manufacturing the inductor component 1 can be reduced, and the inductor component 1 can be manufactured more easily.
  • FIG. 8A is a cross-sectional view of the inductor component of the second embodiment.
  • FIG. 8A shows an XZ cross section of the core of the inductor component.
  • the second embodiment differs from the first embodiment in the configuration of the core. This difference will be explained below.
  • the other configurations are the same as those in the first embodiment, and their explanation will be omitted.
  • the first portion 310 and the second portion 320 of the core 3A are each L-shaped in a cross section including the central axis C of the core 3A.
  • the first portion 310 includes a first wall portion 311 extending in a direction parallel to the central axis C, and a first base portion 312 extending in a direction perpendicular to the central axis C (hereinafter also referred to as the radial direction).
  • the first base portion 312 is a portion extending in the radial direction from the inner peripheral surface 303 to the outer peripheral surface 304 of the core 3A, and the first wall portion 311 extends from the upper surface of the first base portion 312 along the central axis C. It is an extended part.
  • the first wall portion 311 and the first base portion 312 are formed in an annular shape centered on the central axis C. The boundary between the first wall portion 311 and the first base portion 312 is indicated by a two-dot chain line.
  • the second portion 320 has a second wall portion 321 extending in a direction parallel to the central axis C, and a second base portion 322 extending in a direction perpendicular to the central axis C.
  • the second base portion 322 is a portion extending in the radial direction from the inner peripheral surface 303 to the outer peripheral surface 304 of the core 3A, and the second wall portion 321 extends from the upper surface of the second base portion 322 along the central axis C. It is an extended part.
  • the second wall portion 321 and the second base portion 322 are formed in an annular shape centered on the central axis C. The boundary between the second wall portion 321 and the second base portion 322 is indicated by a two-dot chain line.
  • the first wall portion 311 and the second wall portion 321 are arranged in a direction perpendicular to the central axis C such that the inner surface 311a of the first wall portion 311 and the inner surface 321a of the second wall portion 321 are in contact with each other.
  • the inner side surface 311a of the first wall section 311 refers to the inner side (notch side ).
  • the inner side surface 321a of the second wall portion 321 refers to the inner side (notch side ).
  • the first base portion 312 and the second base portion 322 are arranged on opposite sides of the first wall portion 311 and the second wall portion 321 in a direction parallel to the central axis C.
  • the first wall portion 311 and the second wall portion 321 are arranged in a direction perpendicular to the central axis C, so that Positional shift can be suppressed. Further, the first wall portion 311 and the second wall portion 321 are arranged in a direction perpendicular to the central axis C, and the first base portion 312 and the second base portion 322 are arranged on opposite sides in a direction parallel to the central axis C. Since the first portion 310 and the second portion 320 are arranged, the cross-sectional shape of the core 3A, which is a combination of the first portion 310 and the second portion 320, can be made rectangular.
  • the first wall portion 311 is located closer to the central axis C than the second wall portion 321.
  • the first wall portion 311 is provided on the inner peripheral surface 303 side of the core 3A, and the second wall portion 321 is provided on the outer peripheral surface 304 side of the core 3A.
  • the area on the inner circumferential side of the core 3A is larger than the area on the outer circumferential side of the core 3A.
  • the inner peripheral side region of the core 3A refers to the region on the inner peripheral surface 303 side of the center line M in the width direction (direction perpendicular to the central axis C) of the core 3A in a cross section including the central axis C of the core 3A.
  • the region on the outer peripheral side of the core 3A refers to the region closer to the outer peripheral surface 304 than the center line M in the width direction of the core 3A in a cross section including the central axis C of the core 3A.
  • the first wall portion 311 is located closer to the central axis C than the second wall portion 321, so that the volume of the first portion 310 is reduced in the region where the magnetic path length is short on the inner peripheral side of the core 3A.
  • the characteristics of MnZn-based ferrite appear strongly, and the impedance near 1 MHz can be increased.
  • FIG. 8B shows the relationship between frequency and impedance.
  • Graph L1 is indicated by a solid line and shows the relationship when the first portion 310 and second portion 320 of the core 3A have an L-shape, as shown in the second embodiment of FIG. 8A.
  • Graph L2 is indicated by a dotted line and shows the relationship when the shapes of the first portion 310 and the second portion 320 of the core 3 are rectangular, as shown in the first embodiment of FIG.
  • Graph L1 and graph L2 both show the relationship when the volume ratio of MnZn-based ferrite and NiZn-based ferrite is 5:5.
  • the graph L1 can improve the impedance around 1 MHz compared to the graph L2. That is, in the graph L1, the volume of the first portion 310 is larger in the region on the inner peripheral side of the core 3A than in the graph L2, so the characteristics of MnZn-based ferrite appear more strongly.
  • the first wall portion 311 is located closer to the central axis C than the second wall portion 321, it is possible to increase the volume of the second portion 320 in the area on the outer peripheral side of the core 3A. can.
  • the resin is applied to the second portion 320 of NiZn-based ferrite, which is less affected by magnetostriction. While the member 90 adheres, it becomes difficult for the resin member 90 to adhere to the first portion 310 of MnZn-based ferrite, which is largely affected by magnetostriction.
  • the liquid resin member 90 is applied to the outer circumferential side of the core 3A, the amount of the resin member 90 on the outer circumferential side of the core 3A increases, and the resin member 90 wets the outer circumferential surface 304 of the core 3A. It is difficult for the resin member 90 to enter the inner peripheral side of the core 3A, and the amount of the resin member 90 is reduced, making it difficult for the resin member 90 to wet the inner peripheral surface 303 of the core 3A.
  • the NiZn-based ferrite of the second portion 320 has a lower magnetic permeability than the MnZn-based ferrite of the first portion 310 and is less affected by magnetostriction, so that deterioration of the characteristics of the core 3A due to magnetostriction can be reduced.
  • FIG. 9 is a cross-sectional view of an inductor component according to the third embodiment.
  • FIG. 9 shows an XZ cross section of the core of the inductor component.
  • the third embodiment differs from the second embodiment in the configuration of the core. This difference will be explained below.
  • the other configurations are the same as those in the second embodiment, and their explanation will be omitted.
  • the first portion 310 and the second portion 320 of the core 3B are each L-shaped in a cross section including the central axis C of the core 3B.
  • the first portion 310 has a first wall portion 311 and a first base portion 312 .
  • the second portion 320 has a second wall portion 321 and a second base portion 322.
  • the second wall portion 321 is located closer to the central axis C than the first wall portion 311, unlike the inductor component 1A of the second embodiment (see FIG. 8A).
  • the area on the outer circumferential side of the core 3B is larger than the area on the inner circumferential side of the core 3B.
  • the second wall portion 321 is located closer to the central axis C than the first wall portion 311, the volume of the second portion 320 is can be increased. As a result, the characteristics of NiZn-based ferrite appear strongly, and the impedance near 20 MHz can be increased.
  • FIG. 10 is a cross-sectional view of an inductor component according to the fourth embodiment.
  • FIG. 10 shows an XZ cross section of the core of the inductor component.
  • the fourth embodiment differs from the second embodiment in the configuration of the core. This difference will be explained below.
  • the other configurations are the same as those in the second embodiment, and their explanation will be omitted.
  • the first portion 310 of the core 3C has a T-shape
  • the second portion 320 of the core 3C has a T-shape. is U-shaped.
  • the first portion 310 has a first base portion 313 and a convex portion 314 provided on the lower surface of the first base portion 313.
  • the first base portion 313 is provided on the second end surface 302, the inner peripheral surface 303, and the outer peripheral surface 304.
  • the convex portion 314 extends downward from the lower surface of the first base portion 313 and is located on the center line M.
  • the outer surface shape of the cross section of the convex portion 314 is rectangular, but may be polygonal or curved.
  • the first base portion 313 and the convex portion 314 are formed in an annular shape centered on the central axis C.
  • the second portion 320 has a second base portion 323.
  • the second base portion 323 is provided on the first end surface 301, the inner peripheral surface 303, and the outer peripheral surface 304.
  • a recess 324 is provided on the upper surface of the second base portion 323 .
  • the recess 324 extends downward from the upper surface of the second base portion 323 and is located on the center line M.
  • the inner surface shape of the cross section of the recess 324 is rectangular, but may be polygonal or curved.
  • the height dimension of the second base part 323 in the Z direction is larger than the height dimension of the first base part 313 in the Z direction.
  • the second base portion 323 and the recessed portion 324 are formed in an annular shape centered on the central axis C.
  • the area of the second portion 320 is larger than the area of the first portion 310 in the inner circumference side region of the core 3C and the outer circumference side region of the core 3C. It's also big. According to this, in the region on the inner circumferential side of the core 3C, the area of the second portion 320 is larger than the area of the first portion 310, so that in the region on the inner circumferential side of the core 3C where the magnetic path length is short, The volume of portion 320 can be increased. As a result, the characteristics of NiZn-based ferrite appear strongly, and the impedance near 20 MHz can be increased.
  • the second portion 320 has a larger area than the first portion 310 in the inner and outer peripheral regions of the core 3C.
  • the volume can be increased.
  • the resin member 90 when applying the liquid resin member 90, even if the resin member 90 wets the inner circumferential surface 303 and the outer circumferential surface 304 of the core 3C, the resin member is applied to the second portion 320 of NiZn-based ferrite, which is less affected by magnetostriction.
  • the NiZn-based ferrite of the second portion 320 has a lower magnetic permeability than the MnZn-based ferrite of the first portion 310 and is less affected by magnetostriction, so that deterioration of the characteristics of the core 3C due to magnetostriction can be reduced.
  • FIG. 11 is a cross-sectional view of an inductor component according to the fifth embodiment.
  • FIG. 11 shows an XZ cross section of the core of the inductor component.
  • the fifth embodiment differs from the fourth embodiment in the core configuration. This difference will be explained below.
  • the other configurations are the same as those of the fourth embodiment, and the explanation thereof will be omitted.
  • the first portion 310 of the core 3D is U-shaped
  • the second portion 320 of the core 3D is U-shaped. is T-shaped.
  • the first portion 310 has a first base portion 313.
  • the first base portion 313 is provided on the second end surface 302, the inner peripheral surface 303, and the outer peripheral surface 304.
  • a recess 315 is provided on the lower surface of the first base portion 313 .
  • the recessed portion 315 extends upward from the lower surface of the first base portion 313 .
  • the second portion 320 includes a second base portion 323 and a convex portion 325 provided on the lower surface of the second base portion 323.
  • the second base portion 323 is provided on the first end surface 301, the inner peripheral surface 303, and the outer peripheral surface 304.
  • the convex portion 325 extends upward from the upper surface of the second base portion 323.
  • the height dimension of the second base part 323 in the Z direction is smaller than the height dimension of the first base part 313 in the Z direction.
  • the area of the first portion 310 is larger than the area of the second portion 320 in the inner peripheral side region of the core 3D and the outer peripheral side region of the core 3D. It's also big. According to this, in the region on the inner circumferential side of the core 3D, the area of the first portion 310 is larger than the area of the second portion 320, so in the region on the inner circumferential side of the core 3D where the magnetic path length is short, the first portion 310 The volume of portion 310 can be increased. As a result, the characteristics of MnZn-based ferrite appear strongly, and the impedance near 1 MHz can be increased.
  • FIG. 12 is a cross-sectional view of an inductor component according to the sixth embodiment.
  • FIG. 12 shows an XZ cross section of the core of the inductor component.
  • the sixth embodiment differs from the second embodiment in the configuration of the core. This difference will be explained below.
  • the other configurations are the same as those in the second embodiment, and their explanation will be omitted.
  • the first portion 310 and the second portion 320 of the core 3E are each rectangular in a cross section including the central axis C of the core 3E.
  • the first portion 310 has a first wall portion 316.
  • the second portion 320 has a second wall 326 .
  • the first wall portion 316 and the second wall portion 326 are formed in an annular shape centered on the central axis C.
  • the first wall portion 316 is arranged closer to the central axis C than the second wall portion 326 is.
  • the second wall portion 326 is provided on the outer peripheral side of the first wall portion 316. That is, the first wall portion 316 is located in an area on the inner peripheral side of the core 3E, and the second wall portion 326 is located in an area on the outer peripheral side of the core 3E.
  • a plurality of wire members constituting one turn bent into an annular shape may be used in the coil, and in this case, the welding part connecting two wire members of adjacent turns is arranged on the outer peripheral side of the core 3E. .
  • the second portion 320 faces the welded portion, insulation between the core 3E and the coil can be ensured.
  • the area on the inner circumferential side of the core 3E is larger than the area on the outer circumferential side of the core 3E. According to this, the volume of the first portion 310 can be increased in the region on the inner peripheral side of the core 3E where the magnetic path length is short. As a result, the characteristics of MnZn-based ferrite appear strongly, and the impedance near 1 MHz can be increased.
  • the volume of the second portion 320 can be increased in the region on the outer peripheral side of the core 3E.
  • the resin is applied to the second portion 320 of NiZn-based ferrite, which is less affected by magnetostriction. While the member 90 adheres, it becomes difficult for the resin member 90 to adhere to the first portion 310 of MnZn-based ferrite, which is largely affected by magnetostriction. Therefore, even if stress is generated in the resin member 90, the stress in the resin member 90 is transmitted to the second portion 320 instead of the first portion 310.
  • the NiZn-based ferrite of the second portion 320 has a lower magnetic permeability than the MnZn-based ferrite of the first portion 310 and is less affected by magnetostriction, so that deterioration of the characteristics of the core 3E due to magnetostriction can be reduced.
  • FIG. 13 is a cross-sectional view of an inductor component according to the seventh embodiment.
  • FIG. 13 shows an XZ cross section of the core of the inductor component.
  • the seventh embodiment differs from the sixth embodiment in the configuration of the core. This difference will be explained below.
  • the other configurations are the same as those in the sixth embodiment, and their explanation will be omitted.
  • the first portion 310 and the second portion 320 of the core 3F are each rectangular in a cross section including the central axis C of the core 3F.
  • the first portion 310 has a first wall 316 .
  • the second portion 320 has a second wall 326 .
  • the second wall portion 326 is arranged closer to the central axis C than the first wall portion 316.
  • the first wall portion 316 is provided on the outer peripheral side of the second wall portion 326. That is, the second wall portion 326 is located in an area on the inner peripheral side of the core 3F, and the first wall portion 316 is located in an area on the outer peripheral side of the core 3F.
  • a plurality of wire members constituting one turn bent into an annular shape may be used in the coil, and in this case, the welding part connecting two wire members of adjacent turns is arranged on the inner circumferential side of the core 3F. do. Thereby, since the second portion 320 faces the welded portion, insulation between the core 3F and the coil can be ensured.
  • the area on the inner circumferential side of the core 3F is larger than the area on the outer circumferential side of the core 3F. According to this, the volume of the second portion 320 can be increased in the region where the magnetic path length is short on the inner peripheral side of the core 3F. As a result, the characteristics of NiZn-based ferrite appear strongly, and the impedance near 20 MHz can be increased.
  • the inductor component of the eighth embodiment includes an annular core 3, coils 41 and 42 wound around the core 3, and a bottom plate portion 21 on which the core 3 and the coils 41 and 42 are placed. , and a resin member 90 disposed on the bottom plate portion 21.
  • the core 3 has a first portion 310 containing MnZn-based ferrite and a second portion 320 containing NiZn-based ferrite.
  • the resin member 90 contacts the second portion 320 and the bottom plate portion 21 to fix the core 3 to the bottom plate portion 21 .
  • the coil does not necessarily have a conductor member and a covering member that covers a part of the conductor member. Furthermore, it is not essential that at least a portion of the second portion faces an uncoated region of the coil that is not covered by the covering member. Note that the configuration of each member is the same as that of the inductor component of the first embodiment, so a description thereof will be omitted.
  • the NiZn-based ferrite of the second portion 320 has a lower magnetic permeability than the MnZn-based ferrite of the first portion 310 and is less affected by magnetostriction, so deterioration of the characteristics of the core 3 due to magnetostriction can be reduced.
  • another object of the present disclosure is to provide an inductor component that can obtain high impedance over a wide band.
  • the present disclosure is not limited to the above-described embodiments, and design changes can be made without departing from the gist of the present disclosure.
  • the features of the first to eighth embodiments may be combined in various ways.
  • the shape of the case and the shape of the core are not limited to this embodiment, and can be changed in design.
  • the number of coils is not limited to this embodiment, and the design can be changed. Further, it is not necessary to provide a box portion of the case.
  • the coil is made up of a plurality of bent pin members and a straight pin member, and one turn is made up of the bent pin members and the straight pin member, but the coil is made up of a plurality of wire members.
  • the wire member may be bent into an annular shape to form one turn.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

This inductor component comprises an annular core and a coil wound around the core, wherein: the core has a first portion including MnZn-based ferrite and a second portion including NiZn-based ferrite; the coil has a conductor member, and a covering member that covers a portion of the conductor member; and at least a portion of the second portion faces an uncovered region of the coil, the uncovered region being not covered by the covering member.

Description

インダクタ部品inductor parts
 本開示は、インダクタ部品に関する。 The present disclosure relates to inductor components.
 従来、インダクタ部品としては、特開2021-150314号公報(特許文献1)に記載されたものがある。このインダクタ部品は、環状のコアと、コアの一部を覆う樹脂製のキャップと、コアおよびキャップに巻回されたコイルとを有する。コイルは、複数のピン部材を有し、隣り合うピン部材の端部は、互いに溶接された溶接部を有する。キャップは、溶接部とコアとの間に存在する。このように、キャップを設けることにより、溶接部とコアとを絶縁することができる。 Conventionally, as an inductor component, there is one described in Japanese Patent Application Laid-Open No. 2021-150314 (Patent Document 1). This inductor component has an annular core, a resin cap that partially covers the core, and a coil wound around the core and the cap. The coil has a plurality of pin members, and the ends of adjacent pin members have welds welded together. A cap exists between the weld and the core. By providing the cap in this manner, the welded portion and the core can be insulated.
特開2021-150314号公報JP 2021-150314 Publication
 ところで、前記従来のインダクタ部品では、キャップを設けているため、キャップの厚み分だけコアの断面積が減少し、取得できるインダクタンスが減少する問題がある。または、目標のインダクタンスを取得するために、コアのサイズを大きくすると、製品サイズが大きくなる問題がある。 However, since the conventional inductor component is provided with a cap, there is a problem in that the cross-sectional area of the core is reduced by the thickness of the cap, and the obtainable inductance is reduced. Alternatively, if the core size is increased in order to obtain the target inductance, there is a problem in that the product size increases.
 そこで、本開示は、製品サイズの大型化を抑制し、高いインダクタンスを確保することができるインダクタ部品を提供することにある。 Therefore, an object of the present disclosure is to provide an inductor component that can suppress the increase in product size and ensure high inductance.
 前記課題を解決するため、本開示の一態様であるインダクタ部品は、
 環状のコアと、
 前記コアに巻回されたコイルと
を備え、
 前記コアは、MnZn系フェライトを含む第1部分と、NiZn系フェライトを含む第2部分とを有し、
 前記コイルは、導体部材と、前記導体部材の一部を覆う被覆部材とを有し、
 前記第2部分の少なくとも一部は、前記コイルにおける前記被覆部材に覆われていない非被覆領域に対向している。
In order to solve the above problems, an inductor component that is one aspect of the present disclosure includes:
a circular core;
and a coil wound around the core,
The core has a first part containing MnZn-based ferrite and a second part containing NiZn-based ferrite,
The coil includes a conductor member and a covering member that covers a part of the conductor member,
At least a portion of the second portion faces an uncovered region of the coil that is not covered by the covering member.
 ここで、第2部分は非被覆領域に対向しているとは、第2部分と非被覆領域の間に樹脂部材などの他の部材が存在していてもよく、第2部分と非被覆領域の相対的な関係をいう。 Here, the expression "the second part is opposite to the non-covered area" means that another member such as a resin member may be present between the second part and the non-covered area, and the second part and the non-covered area It refers to the relative relationship between
 前記態様によれば、第2部分のNiZn系フェライトの導電率は、第1部分のMnZn系フェライトの導電率よりも小さく、第2部分の表面抵抗は、第1部分の表面抵抗よりも高い。コアの第2部分をコイルの非被覆領域に対向させているので、コアとコイルの絶縁を確保できる。このため、コアを覆う従来のような樹脂製のキャップを不要とでき、キャップの厚み分コアの断面積を確保できる。これにより、高いインダクタンスを確保できる。したがって、製品サイズの大型化を抑制し、高いインダクタンスを確保できる。 According to the aspect, the electrical conductivity of the NiZn-based ferrite in the second portion is lower than the electrical conductivity of the MnZn-based ferrite in the first portion, and the surface resistance of the second portion is higher than the surface resistance of the first portion. Since the second portion of the core faces the uncovered area of the coil, insulation between the core and the coil can be ensured. Therefore, a conventional resin cap covering the core is not required, and the cross-sectional area of the core can be secured by the thickness of the cap. This ensures high inductance. Therefore, it is possible to suppress the increase in product size and ensure high inductance.
 また、第1部分のMnZn系フェライトを用いてトロイダルコイルを作成した場合は、1MHz付近にインピーダンスのピークが存在し、第2部分のNiZn系フェライトを用いてトロイダルコイルを作成した場合は、1MHzより高い周波数域にインピーダンスのピークが存在する。MnZn系フェライトとNiZn系フェライトを組み合わせているので、コアの周波数特性はそれぞれの周波数特性の合算となり、広帯域で高いインピーダンスが得られる。 In addition, when a toroidal coil is created using the MnZn ferrite of the first part, there is an impedance peak around 1 MHz, and when a toroidal coil is created using the NiZn ferrite of the second part, the impedance peak is around 1 MHz. Impedance peaks exist in high frequency ranges. Since MnZn-based ferrite and NiZn-based ferrite are combined, the frequency characteristics of the core are the sum of their respective frequency characteristics, and high impedance can be obtained over a wide band.
 好ましくは、インダクタ部品の一実施形態では、
 前記コアおよび前記コイルを載置する底板部と、
 前記底板部に配置される樹脂部材と
をさらに備え、
 前記樹脂部材は、前記第2部分および前記底板部に接触して、前記コアを前記底板部に固定する。
Preferably, in one embodiment of the inductor component:
a bottom plate portion on which the core and the coil are placed;
further comprising a resin member disposed on the bottom plate portion,
The resin member contacts the second portion and the bottom plate to fix the core to the bottom plate.
 前記実施形態によれば、樹脂部材の硬化収縮時の応力や高温時の樹脂部材の熱膨張による応力が発生すると、樹脂部材は第2部分に接触しているため、樹脂部材の応力は第2部分に伝わる。第2部分のNiZn系フェライトは、第1部分のMnZn系フェライトと比べて、透磁率が低く磁歪の影響が小さいため、コアの磁歪による特性の低下を低減できる。 According to the embodiment, when stress occurs due to curing and shrinkage of the resin member or stress due to thermal expansion of the resin member at high temperatures, the stress in the resin member is reduced to the second portion because the resin member is in contact with the second portion. It is transmitted to the part. The NiZn-based ferrite of the second portion has a lower magnetic permeability and is less affected by magnetostriction than the MnZn-based ferrite of the first portion, so that deterioration in the characteristics of the core due to magnetostriction can be reduced.
 好ましくは、インダクタ部品の一実施形態では、
 前記コイルは、複数のピン部材を有し、隣り合うピン部材の端部は、互いに溶接された溶接部を有し、前記溶接部は、前記導体部材に含まれ、前記非被覆領域に位置し、
 前記第2部分の少なくとも一部は、前記溶接部に対向している。
Preferably, in one embodiment of the inductor component:
The coil has a plurality of pin members, the ends of adjacent pin members have welded parts welded to each other, and the welded parts are included in the conductor member and are located in the uncovered area. ,
At least a portion of the second portion faces the weld.
 前記実施形態によれば、コアとコイルの溶接部との絶縁を確保できる。 According to the embodiment, insulation between the core and the welded portion of the coil can be ensured.
 好ましくは、インダクタ部品の一実施形態では、
 前記複数のピン部材は、第1のピン部材と第2のピン部材とを有し、
 前記第1のピン部材と前記第2のピン部材とによって、1ターンを構成し、
 前記溶接部は、隣り合うターンにおいて、一方のターンの第1のピン部材と前記一方のターンの第2のピン部材とが互いに溶接された第1溶接部と、前記一方のターンの第1のピン部材と他方のターンの第2のピン部材とが互いに溶接された第2溶接部とを有し、
 前記コアは、第1面と、前記第1面に交差する第2面と、前記第2面に対向し前記第1面に交差する第3面とを有し、
 前記第1溶接部は、前記第1面および前記第2面の少なくとも一方の上方に位置し、
 前記第2溶接部は、前記第1面および前記第3面の少なくとも一方の上方に位置し、
 前記第2部分は、前記第1面と、前記第2面の一部と、前記第3面の一部とにわたって設けられる。
Preferably, in one embodiment of the inductor component:
The plurality of pin members include a first pin member and a second pin member,
The first pin member and the second pin member constitute one turn,
The welded portion includes, in adjacent turns, a first welded portion where a first pin member of one turn and a second pin member of the one turn are welded to each other, and a first welded portion where a first pin member of the one turn is welded to each other; the pin member and the second pin member of the other turn have a second welded portion welded to each other;
The core has a first surface, a second surface that intersects the first surface, and a third surface that faces the second surface and intersects the first surface,
The first welded portion is located above at least one of the first surface and the second surface,
The second welded portion is located above at least one of the first surface and the third surface,
The second portion is provided over the first surface, a portion of the second surface, and a portion of the third surface.
 前記実施形態によれば、コアとコイルとの絶縁性をより良好にすることができる。 According to the embodiment, the insulation between the core and the coil can be improved.
 なお、第1面と第2面とが交差するとは、第1面と第2面とが直接に交差していてもよく、例えば、第1面および第2面が曲線部分を介して接続している場合には、第1面の延長面と第2面の延長面とが交差していてもよい。 Note that intersecting the first surface and the second surface may mean that the first surface and the second surface intersect directly; for example, the first surface and the second surface may be connected via a curved portion. In this case, the extended surface of the first surface and the extended surface of the second surface may intersect.
 第1面の上方に位置するとは、第1面に対して直交する方向において、第1面の表面よりも上側に位置することをいう。なお、第1溶接部が、第1面の上方に位置するとは、第1溶接部が第1面に直接は接触せずに存在することをいう。第2面、第3面、第4面、および、第2溶接部についても同様である。 "Located above the first surface" means to be located above the surface of the first surface in a direction orthogonal to the first surface. Note that the first welded portion being located above the first surface means that the first welded portion is present without directly contacting the first surface. The same applies to the second surface, the third surface, the fourth surface, and the second welded portion.
 好ましくは、インダクタ部品の一実施形態では、
 前記コアは、前記第1面に対向する第4面を有し、
 前記第1部分の少なくとも一部は、前記溶接部が対向していない前記第4面に設けられる。
Preferably, in one embodiment of the inductor component:
The core has a fourth surface opposite to the first surface,
At least a portion of the first portion is provided on the fourth surface that does not face the welded portion.
 前記実施形態によれば、第1部分を第4面に設けることで、コアとコイルとの絶縁性をより良好にすることができる。 According to the embodiment, by providing the first portion on the fourth surface, it is possible to improve the insulation between the core and the coil.
 好ましくは、インダクタ部品の一実施形態では、
 前記コアは、さらに、前記第1部分と前記第2部分を接続する接続部材を備え、
 前記接続部材の弾性率は、1.0MPa以上50MPa以下である。
Preferably, in one embodiment of the inductor component:
The core further includes a connecting member connecting the first part and the second part,
The elastic modulus of the connecting member is 1.0 MPa or more and 50 MPa or less.
 前記実施形態によれば、接続部材の弾性率は低いので、例えば、第2部分に樹脂部材が接触しているとき、樹脂部材の応力が第2部分に伝わっても、第2部分の応力は接続部材により緩和される。これにより、第2部分から第1部分に伝わる応力を減少し、磁歪によるインダクタンスの低下を低減できる。 According to the embodiment, since the elastic modulus of the connecting member is low, for example, when the resin member is in contact with the second portion, even if the stress of the resin member is transmitted to the second portion, the stress of the second portion is It is relieved by the connecting member. Thereby, stress transmitted from the second portion to the first portion can be reduced, and reduction in inductance due to magnetostriction can be reduced.
 好ましくは、インダクタ部品の一実施形態では、
 前記コアの中心軸を含む断面において、
 前記第1部分は、L字形状であって、前記中心軸に平行な方向に延在する第1壁部と、前記中心軸に直交する方向に延在する第1ベース部とを有し、
 前記第2部分は、L字形状であって、前記中心軸に平行な方向に延在する第2壁部と、前記中心軸に直交する方向に延在する第2ベース部とを有し、
 前記第1壁部と前記第2壁部は、前記第1壁部の内側面と前記第2壁部の内側面が接触するように、前記中心軸に直交する方向に配置され、
 前記第1ベース部と前記第2ベース部は、前記第1壁部および前記第2壁部に対して、前記中心軸に平行な方向の反対側に配置される。
Preferably, in one embodiment of the inductor component:
In a cross section including the central axis of the core,
The first portion is L-shaped and includes a first wall portion extending in a direction parallel to the central axis, and a first base portion extending in a direction perpendicular to the central axis,
The second portion is L-shaped and includes a second wall portion extending in a direction parallel to the central axis, and a second base portion extending in a direction perpendicular to the central axis,
The first wall portion and the second wall portion are arranged in a direction perpendicular to the central axis such that the inner surface of the first wall portion and the inner surface of the second wall portion are in contact with each other,
The first base part and the second base part are arranged on opposite sides of the first wall part and the second wall part in a direction parallel to the central axis.
 前記実施形態によれば、第1壁部と第2壁部は、中心軸に直交する方向に配置されるので、第1部分と第2部分の中心軸に直交する方向の位置ずれを抑制できる。また、第1壁部と第2壁部は、中心軸に直交する方向に配置され、第1ベース部と第2ベース部は、中心軸に平行な方向の反対側に配置されるので、第1部分と第2部分を組み合わせたコアの断面形状を矩形とできる。 According to the embodiment, since the first wall portion and the second wall portion are arranged in a direction perpendicular to the central axis, it is possible to suppress misalignment of the first portion and the second portion in the direction perpendicular to the central axis. . Further, the first wall portion and the second wall portion are arranged in a direction perpendicular to the central axis, and the first base portion and the second base portion are arranged on opposite sides in a direction parallel to the central axis. The cross-sectional shape of the core, which is a combination of the first part and the second part, can be rectangular.
 好ましくは、インダクタ部品の一実施形態では、前記第1壁部は、前記第2壁部よりも前記中心軸側に位置する。 Preferably, in one embodiment of the inductor component, the first wall portion is located closer to the central axis than the second wall portion.
 前記実施形態によれば、第1壁部は第2壁部よりも中心軸側に位置するので、コアの内周側の、磁路長が短い領域において第1部分の体積を多くすることができる。これにより、MnZn系フェライトの特性が強くあらわれ、1MHz付近のインピーダンスを高くできる。 According to the embodiment, since the first wall portion is located closer to the center axis than the second wall portion, it is possible to increase the volume of the first portion in the region on the inner peripheral side of the core where the magnetic path length is short. can. As a result, the characteristics of MnZn-based ferrite appear strongly, and the impedance near 1 MHz can be increased.
 また、第1壁部は第2壁部よりも中心軸側に位置するので、コアの外周側の領域において第2部分の体積を多くすることができる。これにより、コアの外周側に樹脂部材を塗布する場合、樹脂部材がコアの外周面を濡れ上がっても、磁歪の影響が小さいNiZn系フェライトの第2部分に樹脂部材が付着する一方、磁歪の影響が大きいMnZn系フェライトの第1部分には樹脂部材が付着し難くなる。したがって、樹脂部材に応力が発生しても、樹脂部材の応力は第1部分でなく第2部分に伝わる。第2部分のNiZn系フェライトは、第1部分のMnZn系フェライトと比べて、透磁率が低く磁歪の影響が小さいため、コアの磁歪による特性の低下を低減できる。 Furthermore, since the first wall portion is located closer to the central axis than the second wall portion, the volume of the second portion can be increased in the region on the outer peripheral side of the core. As a result, when applying a resin member to the outer peripheral side of the core, even if the resin member wets the outer peripheral surface of the core, the resin member adheres to the second part of the NiZn-based ferrite, which is less affected by magnetostriction. It becomes difficult for the resin member to adhere to the first portion of the MnZn-based ferrite, which has a large influence. Therefore, even if stress is generated in the resin member, the stress in the resin member is transmitted to the second portion instead of the first portion. The NiZn-based ferrite of the second portion has a lower magnetic permeability and is less affected by magnetostriction than the MnZn-based ferrite of the first portion, so that deterioration in the characteristics of the core due to magnetostriction can be reduced.
 好ましくは、インダクタ部品の一実施形態では、前記第1部分の前記第2部分に対する割合に関して、前記コアの内周側の領域が、前記コアの外周側の領域よりも多い。 Preferably, in one embodiment of the inductor component, in terms of the ratio of the first portion to the second portion, the area on the inner circumferential side of the core is larger than the area on the outer circumferential side of the core.
 前記実施形態によれば、第1部分の第2部分に対する割合に関して、コアの内周側の領域が、コアの外周側の領域よりも多いので、コアの内周側の、磁路長が短い領域において第1部分の体積を多くすることができる。これにより、MnZn系フェライトの特性が強くあらわれ、1MHz付近のインピーダンスを高くできる。 According to the embodiment, in terms of the ratio of the first part to the second part, the area on the inner circumferential side of the core is larger than the area on the outer circumferential side of the core, so the magnetic path length on the inner circumferential side of the core is short. The volume of the first portion can be increased in the region. As a result, the characteristics of MnZn-based ferrite appear strongly, and the impedance near 1 MHz can be increased.
 また、第1部分の第2部分に対する割合に関して、コアの内周側の領域が、コアの外周側の領域よりも多いので、コアの外周側の領域において第2部分の体積を多くすることができる。これにより、コアの外周側に樹脂部材を塗布する場合、樹脂部材がコアの外周面を濡れ上がっても、磁歪の影響が小さいNiZn系フェライトの第2部分に樹脂部材が付着する一方、磁歪の影響が大きいMnZn系フェライトの第1部分には樹脂部材が付着し難くなる。したがって、樹脂部材に応力が発生しても、樹脂部材の応力は第1部分でなく第2部分に伝わる。第2部分のNiZn系フェライトは、第1部分のMnZn系フェライトと比べて、透磁率が低く磁歪の影響が小さいため、コアの磁歪による特性の低下を低減できる。 In addition, regarding the ratio of the first part to the second part, since the area on the inner circumferential side of the core is larger than the area on the outer circumferential side of the core, it is possible to increase the volume of the second part in the area on the outer circumferential side of the core. can. As a result, when applying a resin member to the outer peripheral side of the core, even if the resin member wets the outer peripheral surface of the core, the resin member adheres to the second part of the NiZn-based ferrite, which is less affected by magnetostriction. It becomes difficult for the resin member to adhere to the first portion of the MnZn-based ferrite, which has a large influence. Therefore, even if stress is generated in the resin member, the stress in the resin member is transmitted to the second portion instead of the first portion. The NiZn-based ferrite of the second portion has a lower magnetic permeability and is less affected by magnetostriction than the MnZn-based ferrite of the first portion, so that deterioration in the characteristics of the core due to magnetostriction can be reduced.
 好ましくは、インダクタ部品の一実施形態では、前記第1部分と前記第2部分の体積比は、6:4~8:2である。 Preferably, in one embodiment of the inductor component, the volume ratio of the first portion to the second portion is 6:4 to 8:2.
 前記実施形態によれば、MnZn系フェライトの透磁率は7000~10000程度であり、NiZn系フェライトの透磁率は500~800程度である場合、MnZn系フェライトとNiZn系フェライトの体積比が6:4~8:2のとき、広帯域で一定の高いインピーダンスが得られる。 According to the embodiment, when the magnetic permeability of MnZn-based ferrite is about 7,000 to 10,000 and the magnetic permeability of NiZn-based ferrite is about 500-800, the volume ratio of MnZn-based ferrite and NiZn-based ferrite is 6:4. When the ratio is ~8:2, a constant high impedance can be obtained over a wide band.
 前記課題を解決するため、本開示の一実施形態では、
 環状のコアと、
 前記コアに巻回されたコイルと、
 前記コアおよび前記コイルを載置する底板部と、
 前記底板部に配置される樹脂部材と
を備え、
 前記コアは、MnZn系フェライトを含む第1部分と、NiZn系フェライトを含む第2部分とを有し、
 前記樹脂部材は、前記第2部分および前記底板部に接触して、前記コアを前記底板部に固定する。
In order to solve the above problem, in one embodiment of the present disclosure,
a circular core;
a coil wound around the core;
a bottom plate portion on which the core and the coil are placed;
and a resin member disposed on the bottom plate portion,
The core has a first part containing MnZn-based ferrite and a second part containing NiZn-based ferrite,
The resin member contacts the second portion and the bottom plate to fix the core to the bottom plate.
 前記実施形態によれば、第1部分のMnZn系フェライトを用いてトロイダルコイルを作成した場合は、1MHz付近にインピーダンスのピークが存在し、第2部分のNiZn系フェライトを用いてトロイダルコイルを作成した場合は、1MHzより高い周波数域にインピーダンスのピークが存在する。MnZn系フェライトとNiZn系フェライトを組み合わせているので、コアの周波数特性はそれぞれの周波数特性の合算となり、広帯域で高いインピーダンスが得られる。 According to the embodiment, when a toroidal coil is created using the MnZn-based ferrite of the first part, an impedance peak exists near 1 MHz, and a toroidal coil is created using the NiZn-based ferrite of the second part. In this case, the impedance peak exists in a frequency range higher than 1 MHz. Since MnZn-based ferrite and NiZn-based ferrite are combined, the frequency characteristics of the core are the sum of their respective frequency characteristics, and high impedance can be obtained over a wide band.
 また、樹脂部材の硬化収縮時の応力や高温時の樹脂部材の熱膨張による応力が発生すると、樹脂部材は第2部分に接触しているため、樹脂部材の応力は第2部分に伝わる。第2部分のNiZn系フェライトは、第1部分のMnZn系フェライトと比べて、透磁率が低く磁歪の影響が小さいため、コアの磁歪による特性の低下を低減できる。 Furthermore, when stress occurs during curing and shrinkage of the resin member or stress due to thermal expansion of the resin member at high temperatures, the stress in the resin member is transmitted to the second portion because the resin member is in contact with the second portion. The NiZn-based ferrite of the second portion has a lower magnetic permeability and is less affected by magnetostriction than the MnZn-based ferrite of the first portion, so that deterioration in the characteristics of the core due to magnetostriction can be reduced.
 これに対して、特開2021-150314号公報に記載の従来のインダクタ部品では、コアにフェライトを用いている。従来の他の課題として、コアにMnZn系フェライトを用いると、1MHz付近にインピーダンスのピークが存在するため、より高い周波数域で高いインピーダンスが得られない問題がある。 On the other hand, in the conventional inductor component described in JP-A-2021-150314, ferrite is used for the core. Another conventional problem is that when MnZn-based ferrite is used for the core, there is an impedance peak around 1 MHz, so high impedance cannot be obtained in higher frequency ranges.
 そこで、本開示の他の目的は、広帯域で高いインピーダンスが得られるインダクタ部品を提供することにある。 Therefore, another object of the present disclosure is to provide an inductor component that can obtain high impedance over a wide band.
 本開示の一態様であるインダクタ部品によれば、製品サイズの大型化を抑制し、高いインダクタンスを確保できる。 According to the inductor component that is one aspect of the present disclosure, it is possible to suppress increase in product size and ensure high inductance.
本発明の第1実施形態のインダクタ部品を示す上方斜視図である。FIG. 1 is a top perspective view showing an inductor component according to a first embodiment of the present invention. インダクタ部品の下方斜視図である。FIG. 3 is a bottom perspective view of the inductor component. インダクタ部品の内部を示す下方斜視図である。FIG. 3 is a downward perspective view showing the inside of the inductor component. インダクタ部品の分解斜視図である。FIG. 3 is an exploded perspective view of an inductor component. インダクタ部品の断面図である。FIG. 3 is a cross-sectional view of an inductor component. インダクタ部品の断面図である。FIG. 3 is a cross-sectional view of an inductor component. MnZn系フェライトとNiZn系フェライトの体積比を変化させたときの周波数とインピーダンスの関係を示すグラフである。It is a graph showing the relationship between frequency and impedance when changing the volume ratio of MnZn-based ferrite and NiZn-based ferrite. 第2実施形態のインダクタ部品の断面図である。FIG. 7 is a cross-sectional view of an inductor component according to a second embodiment. コアの第1部分および第2部分の形状がL字形状または矩形であるときの周波数とインピーダンスの関係を示すグラフである。It is a graph showing the relationship between frequency and impedance when the shapes of the first portion and the second portion of the core are L-shaped or rectangular. 第3実施形態のインダクタ部品の断面図である。FIG. 7 is a cross-sectional view of an inductor component according to a third embodiment. 第4実施形態のインダクタ部品の断面図である。It is a sectional view of an inductor component of a 4th embodiment. 第5実施形態のインダクタ部品の断面図である。It is a sectional view of an inductor component of a 5th embodiment. 第6実施形態のインダクタ部品の断面図である。It is a sectional view of an inductor component of a 6th embodiment. 第7実施形態のインダクタ部品の断面図である。It is a sectional view of an inductor component of a 7th embodiment.
 以下、本開示の一態様であるインダクタ部品を図示の実施の形態により詳細に説明する。なお、図面は一部模式的なものを含み、実際の寸法や比率を反映していない場合がある。 Hereinafter, an inductor component that is one aspect of the present disclosure will be described in detail with reference to illustrated embodiments. Note that some of the drawings are schematic and may not reflect actual dimensions and proportions.
 <第1実施形態>
 (インダクタ部品の構成)
 図1は、本発明の一実施形態のインダクタ部品を示す上方斜視図である。図2は、インダクタ部品の下方斜視図である。図3は、インダクタ部品の内部を示す下方斜視図である。図4は、インダクタ部品の分解斜視図である。
<First embodiment>
(Configuration of inductor parts)
FIG. 1 is a top perspective view showing an inductor component according to an embodiment of the present invention. FIG. 2 is a bottom perspective view of the inductor component. FIG. 3 is a bottom perspective view showing the inside of the inductor component. FIG. 4 is an exploded perspective view of the inductor component.
 図1から図4に示すように、インダクタ部品1は、ケース2と、ケース2内に収納されたインダクタ素子Lと、ケース2に取り付けられ、インダクタ素子Lに接続された第1~第4外部電極51~54と、ケース2内に配置された樹脂部材90とを有する。インダクタ部品1は、例えば、コモンモードチョークコイルなどである。インダクタ素子Lは、環状のコア3と、コア3に巻回された第1コイル41および第2コイル42とを有する。 As shown in FIGS. 1 to 4, the inductor component 1 includes a case 2, an inductor element L housed in the case 2, and first to fourth external parts attached to the case 2 and connected to the inductor element L. It has electrodes 51 to 54 and a resin member 90 placed inside the case 2. The inductor component 1 is, for example, a common mode choke coil. The inductor element L has an annular core 3 and a first coil 41 and a second coil 42 wound around the core 3.
 ケース2は、底板部21と、底板部21を覆う箱部22とを有する。ケース2は、強度と耐熱性を有する材料から構成され、好ましくは、難燃性を有する材料から構成される。ケース2は、例えば、PPS(ポリフェニレンサルファイド)、LCP(液晶ポリマー)、PPA(ポリフタルアミド)などの樹脂、または、セラミックスから構成される。 The case 2 has a bottom plate part 21 and a box part 22 that covers the bottom plate part 21. The case 2 is made of a material that has strength and heat resistance, and is preferably made of a material that is flame retardant. The case 2 is made of a resin such as PPS (polyphenylene sulfide), LCP (liquid crystal polymer), or PPA (polyphthalamide), or ceramics.
 底板部21は、互いに対向する第1主面210aおよび第2主面210bを含む底部210と、底部210の第1主面210a上で底部210の外周に沿って設けられた側壁部211とを有する。底板部21は、凹部215を有し、凹部215は、底部210および側壁部211に囲まれて構成される。側壁部211は、周方向に連続的に設けられているが、周方向に間欠的に設けられていてもよい。底部210は、第1主面210aおよび第2主面210bを貫通する複数の開口部216を有する。複数の開口部216は、第1~第4外部電極51~54に対応する位置に設けられている。この実施形態では、開口部216は、3つであるが、数量の増減は、自由である。 The bottom plate part 21 includes a bottom part 210 including a first main surface 210a and a second main surface 210b facing each other, and a side wall part 211 provided along the outer periphery of the bottom part 210 on the first main surface 210a of the bottom part 210. have The bottom plate part 21 has a recess 215, and the recess 215 is surrounded by the bottom part 210 and the side wall part 211. The side wall portion 211 is provided continuously in the circumferential direction, but may be provided intermittently in the circumferential direction. The bottom portion 210 has a plurality of openings 216 passing through the first main surface 210a and the second main surface 210b. The plurality of openings 216 are provided at positions corresponding to the first to fourth external electrodes 51 to 54. In this embodiment, there are three openings 216, but the number can be increased or decreased as desired.
 底板部21には、インダクタ素子Lが配置されている。つまり、底板部21には、コア3の中心軸Cが底部210の第1主面210aに直交するように、コア3が配置されている。コア3の中心軸Cとは、コア3の内径孔部の中心軸をいう。ケース2(底板部21および箱部22)の形状は、コア3の中心軸C方向からみて、矩形である。この実施形態では、ケース2の形状は、長方形である。 An inductor element L is arranged on the bottom plate part 21. That is, the core 3 is arranged in the bottom plate part 21 so that the central axis C of the core 3 is orthogonal to the first main surface 210a of the bottom part 210. The central axis C of the core 3 refers to the central axis of the inner diameter hole of the core 3. The shape of the case 2 (the bottom plate part 21 and the box part 22) is rectangular when viewed from the direction of the central axis C of the core 3. In this embodiment, the shape of case 2 is rectangular.
 ここで、コア3の中心軸C方向からみたケース2の短手方向をX方向とし、コア3の中心軸C方向からみたケース2の長手方向をY方向とし、上記短手方向および上記長手方向の双方に垂直な方向であるケース2の高さ方向をZ方向とする。ケース2の底板部21と箱部22とは、Z方向に向かい合って配置されており、底板部21は下側、箱部22は上側にあり、上側をZ方向の順方向、下側をZ方向の逆方向とする。つまり、第1主面210aに直交する高さ方向において、第1主面210aからコア3に向かう方向を上方向とする。なお、ケース2の底板部21の形状が正方形である場合、ケース2のX方向の長さとケース2のY方向の長さは、同一となる。 Here, the lateral direction of the case 2 viewed from the direction of the central axis C of the core 3 is defined as the X direction, the longitudinal direction of the case 2 viewed from the direction of the central axis C of the core 3 is defined as the Y direction, and the lateral direction and the longitudinal direction are defined as the Y direction. The height direction of case 2, which is a direction perpendicular to both, is defined as the Z direction. The bottom plate part 21 and the box part 22 of the case 2 are arranged facing each other in the Z direction, the bottom plate part 21 is on the lower side and the box part 22 is on the upper side, the upper side is in the forward direction of the Z direction, and the lower side is in the Z direction. The direction is the opposite direction. That is, in the height direction perpendicular to the first main surface 210a, the direction from the first main surface 210a toward the core 3 is defined as the upward direction. Note that when the bottom plate portion 21 of the case 2 has a square shape, the length of the case 2 in the X direction and the length of the case 2 in the Y direction are the same.
 箱部22は、インダクタ素子Lを覆うように底板部21に取り付けられる。つまり、コア3およびコイル41,42は、箱部22に囲まれて、外側に露出しない。したがって、インダクタ素子Lを外部から保護できる。 The box part 22 is attached to the bottom plate part 21 so as to cover the inductor element L. That is, the core 3 and the coils 41 and 42 are surrounded by the box part 22 and are not exposed to the outside. Therefore, the inductor element L can be protected from the outside.
 第1~第4外部電極51~54は、底板部21に取り付けられている。第1外部電極51と第2外部電極52は、底板部21のY方向に対向する2つの隅に位置し、第3外部電極53と第4外部電極54は、底板部21のY方向に対向する2つの隅に位置している。第1外部電極51と第3外部電極53は、X方向に対向し、第2外部電極52と第4外部電極54は、X方向に対向している。 The first to fourth external electrodes 51 to 54 are attached to the bottom plate portion 21. The first external electrode 51 and the second external electrode 52 are located at two corners of the bottom plate 21 facing each other in the Y direction, and the third external electrode 53 and the fourth external electrode 54 are located opposite in the Y direction of the bottom plate 21. It is located in two corners. The first external electrode 51 and the third external electrode 53 face each other in the X direction, and the second external electrode 52 and the fourth external electrode 54 face each other in the X direction.
 コア3は、トロイダルコアであり、コア3の形状は、中心軸C方向からみて、長円形(トラック形状)である。コア3は、中心軸C方向からみて、長軸に沿って延在し短軸方向に対向する一対の長手部分31と、短軸に沿って延在し長軸方向に対向する一対の短手部分32とを含む。なお、コア3の形状は、中心軸C方向からみて、長方形、楕円形または円形であってもよい。 The core 3 is a toroidal core, and the shape of the core 3 is oval (track shape) when viewed from the direction of the central axis C. When viewed from the direction of the central axis C, the core 3 includes a pair of longitudinal parts 31 extending along the long axis and facing each other in the short axis direction, and a pair of short sides 31 extending along the short axis and facing each other in the long axis direction. portion 32. Note that the shape of the core 3 may be rectangular, elliptical, or circular when viewed from the central axis C direction.
 コア3は、中心軸C方向に対向する第1端面301および第2端面302と、内周面303および外周面304とを有する。内周面303は、第1端面301に交差する。外周面304は、内周面303に対向し第1端面301に交差する。第2端面302は、第1端面301に対向する。第1端面301は、コア3の下側の端面であり、底板部21の第1主面210aと向かい合う。第2端面302は、コア3の上側の端面であり、箱部22の内面と向かい合う。コア3は、コア3の長軸方向がY方向に一致するように、ケース2に収納される。 The core 3 has a first end surface 301 and a second end surface 302 that face each other in the direction of the central axis C, and an inner circumferential surface 303 and an outer circumferential surface 304. Inner peripheral surface 303 intersects first end surface 301 . The outer circumferential surface 304 faces the inner circumferential surface 303 and intersects with the first end surface 301. The second end surface 302 faces the first end surface 301. The first end surface 301 is the lower end surface of the core 3 and faces the first main surface 210a of the bottom plate portion 21. The second end surface 302 is the upper end surface of the core 3 and faces the inner surface of the box portion 22. The core 3 is housed in the case 2 so that the long axis direction of the core 3 coincides with the Y direction.
 なお、この実施形態では、第1端面301は、特許請求の範囲に記載の第1面に、第2端面302は、特許請求の範囲に記載の第4面に、内周面303は、特許請求の範囲に記載の第2面に、外周面304は、特許請求の範囲に記載の第3面に、それぞれ相当する。 In this embodiment, the first end surface 301 is the first surface described in the claims, the second end surface 302 is the fourth surface described in the claims, and the inner peripheral surface 303 is the fourth surface described in the claims. The second surface described in the claims and the outer peripheral surface 304 respectively correspond to the third surface described in the claims.
 コア3の中心軸C方向からみた周方向に直交する断面の形状は、矩形である。第1端面301および第2端面302は、コア3の中心軸C方向に垂直に配置されている。内周面303および外周面304は、コア3の中心軸C方向に平行に配置されている。この明細書で、「垂直(直交)」とは、完全に垂直となる状態に限らず、実質的に垂直(直交)である状態も含む。また、「平行」とは、完全に平行となる状態に限らず、実質的に平行である状態も含む。 The shape of the cross section perpendicular to the circumferential direction when viewed from the direction of the central axis C of the core 3 is rectangular. The first end surface 301 and the second end surface 302 are arranged perpendicularly to the direction of the central axis C of the core 3. The inner circumferential surface 303 and the outer circumferential surface 304 are arranged parallel to the direction of the central axis C of the core 3. In this specification, "vertical (orthogonal)" includes not only a completely vertical state but also a substantially vertical (orthogonal) state. Moreover, "parallel" is not limited to a completely parallel state, but also includes a substantially parallel state.
 樹脂部材90は、底板部21の凹部215内に配置され、底板部21およびインダクタ素子Lに接触する。樹脂部材90の材料としては、例えば、熱硬化性のエポキシ系の樹脂を用いることができる。 The resin member 90 is disposed within the recess 215 of the bottom plate portion 21 and contacts the bottom plate portion 21 and the inductor element L. As a material for the resin member 90, for example, thermosetting epoxy resin can be used.
 第1コイル41は、第1外部電極51と第2外部電極52との間で、コア3に巻回されている。第1コイル41の一端は、第1外部電極51に接続される。第1コイル41の他端は、第2外部電極52に接続される。 The first coil 41 is wound around the core 3 between the first external electrode 51 and the second external electrode 52. One end of the first coil 41 is connected to the first external electrode 51. The other end of the first coil 41 is connected to the second external electrode 52.
 第2コイル42は、第3外部電極53と第4外部電極54との間で、コア3に巻回されている。第2コイル42の一端は、第3外部電極53に接続される。第2コイル42の他端は、第4外部電極54に接続される。 The second coil 42 is wound around the core 3 between the third external electrode 53 and the fourth external electrode 54. One end of the second coil 42 is connected to the third external electrode 53. The other end of the second coil 42 is connected to the fourth external electrode 54.
 第1コイル41および第2コイル42は、コア3の中心軸C方向からみたコア3の周方向に沿って、コア3に螺旋状に卷回される。具体的に述べると、第1コイル41は、コア3の一方の長手部分31にコア3の長軸方向に沿って巻回され、第2コイル42は、コア3の他方の長手部分31にコア3の長軸方向に沿って巻回される。第1コイル41の巻回軸と第2コイル42の巻回軸は、並走する。第1コイル41および第2コイル42は、コア3の長軸に対して、対称となる。 The first coil 41 and the second coil 42 are wound helically around the core 3 along the circumferential direction of the core 3 as viewed from the direction of the central axis C of the core 3. Specifically, the first coil 41 is wound around one longitudinal part 31 of the core 3 along the longitudinal direction of the core 3, and the second coil 42 is wound around the other longitudinal part 31 of the core 3. 3 along the long axis direction. The winding axis of the first coil 41 and the winding axis of the second coil 42 run in parallel. The first coil 41 and the second coil 42 are symmetrical with respect to the long axis of the core 3.
 第1コイル41の巻数と第2コイル42の巻数とは、同じである。第1コイル41のコア3に対する巻回方向と第2コイル42のコア3に対する巻回方向とは、逆方向となる。つまり、第1コイル41の第1外部電極51から第2外部電極52に向かう巻回方向と、第2コイル42の第3外部電極53から第4外部電極54に向かう巻回方向とは、逆方向となる。 The number of turns of the first coil 41 and the number of turns of the second coil 42 are the same. The winding direction of the first coil 41 around the core 3 and the winding direction of the second coil 42 around the core 3 are opposite directions. In other words, the winding direction of the first coil 41 from the first external electrode 51 to the second external electrode 52 is opposite to the winding direction of the second coil 42 from the third external electrode 53 to the fourth external electrode 54. direction.
 そして、コモンモードの電流が、第1コイル41において第1外部電極51から第2外部電極52に向かって流れ、第2コイル42において第3外部電極53から第4外部電極54に向かって流れ、つまり、電流の流れる向きが同じになるように、第1から第4外部電極51~54が接続される。コモンモードの電流が第1コイル41に流れると、コア3内には、第1コイル41による第1磁束が発生する。コモンモードの電流が第2コイル42に流れると、コア3内には、第1磁束とコア3内で強め合う方向に第2磁束が発生する。このため、第1コイル41とコア3、および、第2コイル42とコア3は、インダクタンス成分として働き、コモンモードの電流に対してノイズが除去される。 Then, a common mode current flows from the first external electrode 51 to the second external electrode 52 in the first coil 41, and from the third external electrode 53 to the fourth external electrode 54 in the second coil 42, That is, the first to fourth external electrodes 51 to 54 are connected so that the current flows in the same direction. When a common mode current flows through the first coil 41, a first magnetic flux is generated by the first coil 41 in the core 3. When a common mode current flows through the second coil 42, a second magnetic flux is generated in the core 3 in a direction in which the first magnetic flux and the core 3 strengthen each other. Therefore, the first coil 41 and core 3 and the second coil 42 and core 3 act as inductance components, and noise is removed from the common mode current.
 第1コイル41は、複数のピン部材が、例えばレーザ溶接やスポット溶接などの溶接により接続されてなる。なお、図3は、複数のピン部材が実際に溶接されている状態を表しているのでなく、複数のピン部材が組付けられている状態を表している。 The first coil 41 is formed by connecting a plurality of pin members by, for example, welding such as laser welding or spot welding. Note that FIG. 3 does not show a state in which a plurality of pin members are actually welded, but a state in which a plurality of pin members are assembled.
 複数のピン部材は、プリント配線や導線でなく、棒状部材である。ピン部材は、剛性を有する。具体的に述べると、コア3の周方向に直交する断面において、ピン部材は、コア3の第1端面301、第2端面302、内周面303および外周面304を通過するコアの外周の一周分の長さよりも短く、また、剛性自体も高いため、折り曲げにくくなっている。 The plurality of pin members are not printed wiring or conductive wires, but are rod-shaped members. The pin member has rigidity. Specifically, in a cross section perpendicular to the circumferential direction of the core 3, the pin member extends around the outer circumference of the core passing through the first end surface 301, second end surface 302, inner circumferential surface 303, and outer circumferential surface 304 of the core 3. Because it is shorter than the length of a 100-minute length and has high rigidity, it is difficult to bend.
 複数のピン部材は、略U字状に折り曲げられた折曲ピン部材410と、略直線状に延在された直線ピン部材411,412とを含む。なお、直線ピン部材411,412を、第1のピン部材ともいい、折曲ピン部材410を、第2のピン部材ともいう。 The plurality of pin members include a bent pin member 410 that is bent into a substantially U-shape, and straight pin members 411 and 412 that extend substantially linearly. Note that the straight pin members 411 and 412 are also referred to as a first pin member, and the bent pin member 410 is also referred to as a second pin member.
 第1コイル41は、一端から他端に順に、一端側(一方)の第1直線ピン部材411と、複数組の折曲ピン部材410および第2直線ピン部材412と、他端側(他方)の第1直線ピン部材411とを含む。第1直線ピン部材411と第2直線ピン部材412の長さは、異なる。折曲ピン部材410のばね指数に関して説明すると、図5に示すように、折曲ピン部材410をコア3の第2端面302、内周面303および外周面304に沿って配置したときに、コア3の外周面304の角部に位置する折曲ピン部材410の曲率半径R1、および、コア3の内周面303の角部に位置する折曲ピン部材410の曲率半径R2において、折曲ピン部材410のばね指数Ksは、3.6よりも小さい。ばね指数Ksは、折曲ピン部材の曲率半径R1、R2/折曲ピン部材の線径rで表せる。このように、折曲ピン部材410は、剛性が高く、折り曲げにくいものである。 The first coil 41 includes, in order from one end to the other end, a first straight pin member 411 on one end side (one side), a plurality of sets of bent pin members 410 and a second straight pin member 412, and a second straight pin member 412 on the other end side (on the other side). and a first straight pin member 411. The lengths of the first linear pin member 411 and the second linear pin member 412 are different. Regarding the spring index of the bending pin member 410, as shown in FIG. The radius of curvature R1 of the bending pin member 410 located at the corner of the outer peripheral surface 304 of the core 3, and the radius of curvature R2 of the bending pin member 410 located at the corner of the inner peripheral surface 303 of the core 3, the bending pin The spring index Ks of member 410 is smaller than 3.6. The spring index Ks can be expressed by the radius of curvature R1, R2 of the bending pin member/the wire diameter r of the bending pin member. In this way, the bending pin member 410 has high rigidity and is difficult to bend.
 折曲ピン部材410および第2直線ピン部材412は、例えばレーザ溶接やスポット溶接などの溶接により交互に接続される。折曲ピン部材410の一端に第2直線ピン部材412の一端を接続し、第2直線ピン部材412の他端を他の折曲ピン部材410の一端に接続する。これを繰り返すことにより、複数の折曲ピン部材410および第2直線ピン部材412は、接続され、接続された複数の折曲ピン部材410および第2直線ピン部材412は、コア3に螺旋状に配置される。つまり、1組の折曲ピン部材410および第2直線ピン部材412によって、1ターンを構成する。 The bent pin members 410 and the second straight pin members 412 are alternately connected by welding, such as laser welding or spot welding, for example. One end of a second straight pin member 412 is connected to one end of the bending pin member 410, and the other end of the second straight pin member 412 is connected to one end of another bending pin member 410. By repeating this, the plurality of bent pin members 410 and the second straight pin members 412 are connected, and the connected plurality of bent pin members 410 and the second straight pin members 412 are connected to the core 3 in a spiral shape. Placed. In other words, one set of bending pin member 410 and second straight pin member 412 constitutes one turn.
 折曲ピン部材410は、コア3の第2端面302、内周面303および外周面304のそれぞれの面に沿って平行に配置されている。第2直線ピン部材412は、コア3の第1端面301に沿って平行に配置されている。第1直線ピン部材411は、コア3の第1端面301に沿って平行に配置されている。 The bending pin member 410 is arranged in parallel along each of the second end surface 302, inner peripheral surface 303, and outer peripheral surface 304 of the core 3. The second straight pin member 412 is arranged parallel to the first end surface 301 of the core 3 . The first linear pin member 411 is arranged parallel to the first end surface 301 of the core 3 .
 隣のターンの折曲ピン部材410同士は、接着部材70により、固定されている。これにより、複数の折曲ピン部材410のコア3への取り付け状態を安定なものとできる。同様に、隣り合う第1直線ピン部材411と第2直線ピン部材412は、接着部材70により、固定され、隣り合う第2直線ピン部材412は、接着部材70により、固定されている。これにより、複数の第1直線ピン部材411および第2直線ピン部材412のコア3への取り付け状態を安定なものとできる。 The bending pin members 410 of adjacent turns are fixed to each other by an adhesive member 70. Thereby, the state in which the plurality of bending pin members 410 are attached to the core 3 can be made stable. Similarly, the adjacent first straight pin member 411 and second straight pin member 412 are fixed by the adhesive member 70, and the adjacent second straight pin member 412 is fixed by the adhesive member 70. Thereby, the attachment state of the plurality of first straight pin members 411 and second straight pin members 412 to the core 3 can be made stable.
 第1外部電極51は、一方の第1直線ピン部材411に接続され、一方の第1直線ピン部材411は、一方の第1直線ピン部材411に隣のターンの折曲ピン部材410の一端に接続される。一方の第1直線ピン部材411は、取付片411cを有する。第1外部電極51は、ケース2内に入り込む取付部51aを有する。一方の第1直線ピン部材411の取付片411cは、第1外部電極51の取付部51aに接続される。具体的に述べると、取付部51aは、第1の開口部216を貫通して、取付片411cに接続される。要するに、第1コイル41と第1外部電極51は、第1の開口部216を経由して電気的に接続される。 The first external electrode 51 is connected to one first straight pin member 411, and the first straight pin member 411 is connected to one end of the bent pin member 410 of the turn next to the first straight pin member 411. Connected. One first straight pin member 411 has a mounting piece 411c. The first external electrode 51 has a mounting portion 51 a that fits into the case 2 . The attachment piece 411c of the first straight pin member 411 is connected to the attachment portion 51a of the first external electrode 51. Specifically, the attachment portion 51a passes through the first opening 216 and is connected to the attachment piece 411c. In short, the first coil 41 and the first external electrode 51 are electrically connected via the first opening 216.
 第2外部電極52は、他方の第1直線ピン部材411に接続され、他方の第1直線ピン部材411は、他方の第1直線ピン部材411に隣のターンの第2直線ピン部材412の一端に接続される。他方の第1直線ピン部材411の取付片411cは、第2外部電極52の取付部52aに接続される。具体的に述べると、取付部52aは、第2の開口部216を貫通して、取付片411cに接続される。要するに、第1コイル41と第2外部電極52は、第2の開口部216を経由して電気的に接続される。 The second external electrode 52 is connected to the other first straight pin member 411, and the other first straight pin member 411 is connected to one end of the second straight pin member 412 of the turn next to the other first straight pin member 411. connected to. The attachment piece 411c of the other first linear pin member 411 is connected to the attachment portion 52a of the second external electrode 52. Specifically, the attachment portion 52a passes through the second opening 216 and is connected to the attachment piece 411c. In short, the first coil 41 and the second external electrode 52 are electrically connected via the second opening 216.
 第2コイル42は、第1コイル41と同様に、複数のピン部材から構成される。つまり、第2コイル42は、一端から他端に順に、一端側(一方)の第1直線ピン部材421と、複数組の折曲ピン部材420および第2直線ピン部材422と、他端側(他方)の第1直線ピン部材421とを含む。コア3には、折曲ピン部材420および第2直線ピン部材422が交互に接続されて巻回されている。つまり、複数の折曲ピン部材420および第2直線ピン部材422は、接続され、接続された複数の折曲ピン部材420および第2直線ピン部材422は、コア3に螺旋状に巻回される。 The second coil 42, like the first coil 41, is composed of a plurality of pin members. That is, the second coil 42 includes, in order from one end to the other, a first straight pin member 421 on one end (one side), a plurality of sets of bent pin members 420 and a second straight pin member 422, and a second straight pin member 422 on the other end (one side). the other) first straight pin member 421. Bent pin members 420 and second straight pin members 422 are alternately connected and wound around the core 3 . That is, the plurality of bent pin members 420 and the second straight pin members 422 are connected, and the connected plurality of bent pin members 420 and the second straight pin members 422 are spirally wound around the core 3. .
 第3外部電極53は、一方の第1直線ピン部材421に接続され、一方の第1直線ピン部材421は、一方の第1直線ピン部材421に隣のターンの折曲ピン部材420の一端に接続される。一方の第1直線ピン部材421の取付片421cは、第3外部電極53の取付部53aに接続される。具体的に述べると、取付部53aは、第1の開口部216を貫通して、取付片421cに接続される。要するに、第2コイル42と第3外部電極53は、第1の開口部216を経由して電気的に接続される。 The third external electrode 53 is connected to one first straight pin member 421, and one first straight pin member 421 is connected to one end of the bent pin member 420 of the turn next to the one first straight pin member 421. Connected. The attachment piece 421c of the first straight pin member 421 is connected to the attachment portion 53a of the third external electrode 53. Specifically, the attachment portion 53a passes through the first opening 216 and is connected to the attachment piece 421c. In short, the second coil 42 and the third external electrode 53 are electrically connected via the first opening 216.
 第4外部電極54は、他方の第1直線ピン部材421に接続され、他方の第1直線ピン部材421は、他方の第1直線ピン部材421に隣のターンの第2直線ピン部材412の一端に接続される。他方の第1直線ピン部材421の取付片421cは、第4外部電極54の取付部54aに接続される。具体的に述べると、取付部54aは、第3の開口部216を貫通して、取付片421cに接続される。要するに、第2コイル42と第4外部電極54は、第3の開口部216を経由して電気的に接続される。 The fourth external electrode 54 is connected to the other first straight pin member 421, and the other first straight pin member 421 is connected to one end of the second straight pin member 412 of the turn next to the other first straight pin member 421. connected to. The attachment piece 421c of the other first linear pin member 421 is connected to the attachment portion 54a of the fourth external electrode 54. Specifically, the attachment portion 54a passes through the third opening 216 and is connected to the attachment piece 421c. In short, the second coil 42 and the fourth external electrode 54 are electrically connected via the third opening 216.
 図3に示すように、第1コイル41および第2コイル42(ピン部材410~412,420~422)は、それぞれ、導体部と導体部の一部を覆う被膜とを含む。導体部は、例えば、銅線であり、被膜は、例えば、ポリアミドイミド樹脂である。被膜の厚みは、例えば、0.02~0.04mmである。 As shown in FIG. 3, the first coil 41 and the second coil 42 (pin members 410 to 412, 420 to 422) each include a conductor portion and a coating covering a portion of the conductor portion. The conductor portion is, for example, a copper wire, and the coating is, for example, a polyamide-imide resin. The thickness of the coating is, for example, 0.02 to 0.04 mm.
 第1直線ピン部材411,421は、被膜のない導体部411a,421aから構成される。第2直線ピン部材412,422は、被膜のない導体部412a,422aから構成される。折曲ピン部材410,420は、導体部410a,420aと被膜410b,420bから構成される。 The first linear pin members 411, 421 are composed of conductor portions 411a, 421a without a coating. The second straight pin members 412, 422 are composed of conductor portions 412a, 422a without a coating. The bending pin members 410, 420 are composed of conductor portions 410a, 420a and coatings 410b, 420b.
 折曲ピン部材410,420の一端および他端において、導体部410a,420aは、被膜410b,420bから露出している。つまり、第1直線ピン部材411,421、第2直線ピン部材412,422および折曲ピン部材410,420は、互いに、露出している導体部411a,421a,412a,422a,410a,420aにおいて溶接されている。 At one end and the other end of the bending pin members 410, 420, the conductor portions 410a, 420a are exposed from the coatings 410b, 420b. That is, the first straight pin members 411, 421, the second straight pin members 412, 422, and the bent pin members 410, 420 are welded to each other at the exposed conductor parts 411a, 421a, 412a, 422a, 410a, 420a. has been done.
 このように、第1コイル41および第2コイル42は、導体部材と、導体部材の一部を覆う被覆部材とを有する。導体部材は、導体部411a,421a,412a,422a,410a,420aと、導体部を溶接する溶接部とを含む。被覆部材は、被膜410b,420bを含む。そして、この被覆部材に覆われていない導体部材、つまり、被膜から露出している(被膜のない)導体部および溶接部は、コイルにおける被覆部材に覆われていない非被覆領域に相当する。 In this way, the first coil 41 and the second coil 42 have a conductor member and a covering member that covers a part of the conductor member. The conductor member includes conductor portions 411a, 421a, 412a, 422a, 410a, and 420a, and a welding portion for welding the conductor portions. The covering member includes coatings 410b and 420b. The conductor member that is not covered by the covering member, that is, the conductor portion and welded portion exposed from the film (without a film) corresponds to an uncoated region of the coil that is not covered by the covering member.
 図6は、コア3の中心軸Cを含むインダクタ部品1の断面図であり、詳しくは、インダクタ部品1のY方向の中心を通過するXZ断面図である。図6では、箱部22を省略して描いている。 FIG. 6 is a cross-sectional view of the inductor component 1 including the central axis C of the core 3, and more specifically, an XZ cross-sectional view passing through the center of the inductor component 1 in the Y direction. In FIG. 6, the box portion 22 is omitted.
 図6に示すように、第1コイル41において、隣り合うピン部材の端部は互いに溶接された溶接部を有する。溶接部とは、溶接の際に一度溶解し、その後固まった部分を示す。具体的には、第1コイル41は、第1溶接部w11および第2溶接部w12を有する。より具体的には、第1コイル41における隣り合うターンにおいて、一方のターンの第2直線ピン部材412と折曲ピン部材410とは、第2直線ピン部材412の一方の導体部412aと折曲ピン部材410の導体部410aが互いに溶接された第1溶接部w11を形成し、上記第2直線ピン部材412と他方のターンの折曲ピン部材410とは、第2直線ピン部材412の他方の導体部412aと該折曲ピン部材の導体部410aとが互いに溶接された第2溶接部w12を形成する。 As shown in FIG. 6, in the first coil 41, the ends of adjacent pin members have welded parts welded to each other. A welded part refers to a part that melts during welding and then hardens. Specifically, the first coil 41 has a first welded portion w11 and a second welded portion w12. More specifically, in adjacent turns in the first coil 41, the second straight pin member 412 and the bent pin member 410 of one turn are connected to one conductor portion 412a of the second straight pin member 412. The conductor portions 410a of the pin members 410 are welded to each other to form a first welded portion w11, and the second straight pin member 412 and the bent pin member 410 of the other turn are connected to the other turn of the second straight pin member 412. The conductor portion 412a and the conductor portion 410a of the bending pin member are welded together to form a second welded portion w12.
 第1溶接部w11は、コア3の第1端面301の上方に位置する。第1端面301の上方に位置するとは、第1端面301の表面に対して上方にあることをいい、図面上の上下を意味しない。なお、第1溶接部w11は、コア3の内周面303の上方に位置していてもよく、コア3の第1端面301および内周面303の上方に位置していてもよい。 The first welded portion w11 is located above the first end surface 301 of the core 3. Being located above the first end surface 301 means being above the surface of the first end surface 301, and does not mean above or below in the drawing. Note that the first welded portion w11 may be located above the inner peripheral surface 303 of the core 3, or may be located above the first end surface 301 and the inner peripheral surface 303 of the core 3.
 第2溶接部w12は、コア3の第1端面301の上方に位置する。なお、第2溶接部w12は、コア3の外周面304の上方に位置していてもよく、コア3の第1端面301および外周面304の上方に位置していてもよい。 The second welding portion w12 is located above the first end surface 301 of the core 3. Note that the second welded portion w12 may be located above the outer peripheral surface 304 of the core 3, or may be located above the first end surface 301 and the outer peripheral surface 304 of the core 3.
 なお、図6では、第1コイル41の第2直線ピン部材412と折曲ピン部材410とから構成されたターンについて記載しているが、第1直線ピン部材411と折曲ピン部材410とから構成されたターンにおいても同様である。具体的に説明すると、第1直線ピン部材411は、導体部411aと接続した折曲ピン部材410の導体部410aにおいて溶接され、第1溶接部w11または第2溶接部w12を形成する。 Note that, although FIG. 6 shows a turn made up of the second straight pin member 412 and the bending pin member 410 of the first coil 41, a turn made of the first straight pin member 411 and the bending pin member 410 The same applies to constructed turns. Specifically, the first straight pin member 411 is welded at the conductor portion 410a of the bent pin member 410 connected to the conductor portion 411a to form a first welded portion w11 or a second welded portion w12.
 第2コイル42は、第1溶接部w21および第2溶接部w22を有する。第2コイル42においても、第1コイル41と同様に、隣り合うターンにおいて、一方のターンの第2直線ピン部材422と折曲ピン部材420とは、第2直線ピン部材422の一方の導体部422aと折曲ピン部材420の導体部420aにおいて溶接され、第1溶接部w21を形成し、上記第2直線ピン部材422と他方のターンの折曲ピン部材420とは、第2直線ピン部材422の他方の導体部422aと該折曲ピン部材の導体部420aにおいて溶接され、第2溶接部w22を形成する。また、第1直線ピン部材421は、導体部421aと接続した折曲ピン部材420の導体部420aにおいて溶接され、第1溶接部w21または第2溶接部w22を形成する。第2コイル42の第1溶接部w21および第2溶接部w22については、第1コイル41の第1溶接部w11および第2溶接部w12と同様の構成を有し、その説明は省略する。 The second coil 42 has a first weld part w21 and a second weld part w22. In the second coil 42, similarly to the first coil 41, in adjacent turns, the second straight pin member 422 and the bent pin member 420 of one turn are connected to one conductor portion of the second straight pin member 422. 422a and the conductor portion 420a of the bending pin member 420 to form a first welded portion w21, and the second straight pin member 422 and the bending pin member 420 of the other turn are welded to each other at the conductor portion 420a of the bending pin member 420. The other conductor portion 422a of the bent pin member is welded to the conductor portion 420a of the bending pin member to form a second weld portion w22. Further, the first straight pin member 421 is welded at the conductor portion 420a of the bent pin member 420 connected to the conductor portion 421a, forming a first welded portion w21 or a second welded portion w22. The first welded portion w21 and the second welded portion w22 of the second coil 42 have the same configuration as the first welded portion w11 and the second welded portion w12 of the first coil 41, and the description thereof will be omitted.
 コア3は、MnZn系フェライトを含む第1部分310と、NiZn系フェライトを含む第2部分320とを有する。MnZn系フェライトの組成は、例えば、Fe51%,O24%,Mn12%,Zn12%である。NiZn系フェライトの組成は、例えば、Fe45%,O23%,Ni8%,Zn18%である。 The core 3 has a first portion 310 containing MnZn-based ferrite and a second portion 320 containing NiZn-based ferrite. The composition of the MnZn-based ferrite is, for example, 51% Fe, 4% O, 12% Mn, and 12% Zn. The composition of the NiZn-based ferrite is, for example, 45% Fe, 3% O, 8% Ni, and 18% Zn.
 第2部分320の少なくとも一部は、第1コイル41および第2コイル42における被覆部材に覆われていない非被覆領域に対向している。具体的に述べると、第2部分320の少なくとも一部は、第1直線ピン部材411、第2直線ピン部材422、第1溶接部w11,w21、第2溶接部w12,w22に対向している。 At least a portion of the second portion 320 faces an uncoated region of the first coil 41 and the second coil 42 that is not covered with the covering member. Specifically, at least a portion of the second portion 320 faces the first linear pin member 411, the second linear pin member 422, the first welds w11, w21, and the second welds w12, w22. .
 第1部分310および第2部分320は、それぞれ、中心軸Cを含む断面において、矩形である。第1部分310と第2部分320は、Z方向の上下に配置されている。第2部分320は、Z方向の下側、つまり、第1コイル41および第2コイル42の非被覆領域側に位置している。 The first portion 310 and the second portion 320 are each rectangular in cross section including the central axis C. The first portion 310 and the second portion 320 are arranged above and below in the Z direction. The second portion 320 is located on the lower side in the Z direction, that is, on the uncovered region side of the first coil 41 and the second coil 42.
 上記構成によれば、第2部分320のNiZn系フェライトの導電率は、第1部分310のMnZn系フェライトの導電率よりも小さく、第2部分320の表面抵抗は、第1部分310の表面抵抗よりも高い。例えば、MnZn系フェライトの導電率は3.33(S/m)であり、NiZn系フェライトの導電率は1×10-6(S/m)である。 According to the above configuration, the electrical conductivity of the NiZn-based ferrite of the second portion 320 is lower than the electrical conductivity of the MnZn-based ferrite of the first portion 310, and the surface resistance of the second portion 320 is the surface resistance of the first portion 310. higher than For example, the electrical conductivity of MnZn-based ferrite is 3.33 (S/m), and the electrical conductivity of NiZn-based ferrite is 1×10 −6 (S/m).
 そして、コア3の第2部分320をコイル41,42の非被覆領域に対向させているので、コア3とコイル41,42の絶縁を確保できる。このため、コア3を覆う従来のような樹脂製のキャップを不要とでき、キャップの厚み分コア3の断面積を確保できる。これにより、高いインダクタンスを確保できる。したがって、製品サイズの大型化を抑制し、高いインダクタンスを確保できる。
 好ましくは、非被覆領域の全てが、第2部分320に対向しており、コア3とコイル41,42の絶縁をより確保できる。なお、非被覆領域の少なくとも一部が、第2部分320に対向していてもよい。
 好ましくは、溶接部の全てが、第2部分320に対向しており、コア3とコイル41,42の絶縁をより確保できる。なお、の少なくとも一部が、第2部分320に対向していてもよい。
Since the second portion 320 of the core 3 is opposed to the uncovered areas of the coils 41 and 42, insulation between the core 3 and the coils 41 and 42 can be ensured. Therefore, a conventional resin cap covering the core 3 is not required, and the cross-sectional area of the core 3 can be secured by the thickness of the cap. This ensures high inductance. Therefore, it is possible to suppress the increase in product size and ensure high inductance.
Preferably, all of the uncovered regions face the second portion 320, so that insulation between the core 3 and the coils 41, 42 can be further ensured. Note that at least a portion of the non-covered region may face the second portion 320.
Preferably, all of the welded portions face the second portion 320, so that insulation between the core 3 and the coils 41, 42 can be further ensured. Note that at least a portion of may be opposed to the second portion 320.
 また、第1部分310のMnZn系フェライトを用いてトロイダルコイルを作成した場合は、1MHz付近にインピーダンスのピークが存在し、第2部分320のNiZn系フェライトを用いてトロイダルコイルを作成した場合は、1MHzより高い周波数域にインピーダンスのピークが存在する。MnZn系フェライトとNiZn系フェライトを組み合わせているので、コア3の周波数特性はそれぞれの周波数特性の合算となり、広帯域で高いインピーダンスが得られる。 Furthermore, when a toroidal coil is created using the MnZn ferrite of the first portion 310, there is an impedance peak around 1 MHz, and when a toroidal coil is created using the NiZn ferrite of the second portion 320, An impedance peak exists in a frequency range higher than 1 MHz. Since MnZn-based ferrite and NiZn-based ferrite are combined, the frequency characteristics of the core 3 are the sum of their respective frequency characteristics, and high impedance can be obtained over a wide band.
 図6に示すように、第2部分320は、第1端面301と、内周面303の一部と、外周面304の一部とにわたって設けられる。これにより、コア3とコイル41,42との絶縁性をより良好にすることができる。一方、第1部分310の少なくとも一部は、溶接部が対向していない第2端面302に設けられる。これにより、第1部分310を第2端面302に設けることで、コア3とコイル41,42との絶縁性をより良好にすることができる。 As shown in FIG. 6, the second portion 320 is provided over the first end surface 301, a portion of the inner circumferential surface 303, and a portion of the outer circumferential surface 304. Thereby, the insulation between the core 3 and the coils 41 and 42 can be improved. On the other hand, at least a portion of the first portion 310 is provided on the second end surface 302 where the welded portion is not opposed. Thereby, by providing the first portion 310 on the second end surface 302, the insulation between the core 3 and the coils 41 and 42 can be improved.
 図6に示すように、樹脂部材90は、第2部分320および底板部21に接触して、コア3を底板部21に固定する。これによれば、樹脂部材90の硬化収縮時の応力や高温時の樹脂部材90の熱膨張による応力が発生すると、樹脂部材90は第2部分320に接触しているため、樹脂部材90の応力は第2部分320に伝わる。第2部分320のNiZn系フェライトは、第1部分310のMnZn系フェライトと比べて、透磁率が低く磁歪の影響が小さいため、コア3の磁歪による特性の低下を低減できる。具体的に述べると、例えば、MnZn系フェライトの初透磁率は8500であり、NiZn系フェライトの初透磁率は800である。この場合、NiZn系フェライトは、MnZn系フェライトと比べて、磁歪によるインダクタンスおよびインピーダンスの低下率を小さくできる。 As shown in FIG. 6, the resin member 90 contacts the second portion 320 and the bottom plate portion 21 to fix the core 3 to the bottom plate portion 21. According to this, when stress occurs during curing and shrinkage of the resin member 90 or stress due to thermal expansion of the resin member 90 at high temperatures, the resin member 90 is in contact with the second portion 320, so that stress on the resin member 90 is generated. is transmitted to the second portion 320. The NiZn-based ferrite of the second portion 320 has a lower magnetic permeability than the MnZn-based ferrite of the first portion 310 and is less affected by magnetostriction, so deterioration of the characteristics of the core 3 due to magnetostriction can be reduced. Specifically, for example, the initial magnetic permeability of MnZn-based ferrite is 8,500, and the initial magnetic permeability of NiZn-based ferrite is 800. In this case, NiZn-based ferrite can reduce the rate of decrease in inductance and impedance due to magnetostriction compared to MnZn-based ferrite.
 樹脂部材90は、凹部215内に固定されて、インダクタ素子Lを底板部21に固定し、かつ、コイル41,42における非被覆領域の少なくとも一部を覆う。好ましくは、樹脂部材90は、コイル41,42における非被覆領域の全てを覆う。 The resin member 90 is fixed in the recess 215, fixes the inductor element L to the bottom plate part 21, and covers at least part of the uncovered areas of the coils 41 and 42. Preferably, resin member 90 covers all uncovered areas of coils 41 and 42.
 樹脂部材90は、例えば熱硬化性樹脂からなるため、硬化によりインダクタ素子Lおよび底板部21に固定される。また、インダクタ部品1の製造工程において、液状の樹脂部材90を凹部215内に充填する際、液状の樹脂部材90を凹部215内に留めることができ、樹脂部材90によりインダクタ素子Lを底板部21に確実に固定することができる。 Since the resin member 90 is made of, for example, a thermosetting resin, it is fixed to the inductor element L and the bottom plate portion 21 by curing. Further, in the manufacturing process of the inductor component 1, when filling the recess 215 with the liquid resin member 90, the liquid resin member 90 can be retained in the recess 215, and the resin member 90 can hold the inductor element L into the bottom plate portion 21. can be securely fixed.
 好ましくは、コア3は、さらに、第1部分310と第2部分320を接続する接続部材80を有する。接続部材80の弾性率(詳しくは曲げ弾性率)は、1.0MPa以上50MPa以下である。接続部材80は、例えば、ウレタン系樹脂またはシリコン系樹脂である。これによれば、接続部材80の弾性率は低いので、例えば、第2部分320に樹脂部材90が接触しているとき、樹脂部材90の応力が第2部分320に伝わっても、第2部分320の応力は接続部材80により緩和される。これにより、第2部分320から第1部分310に伝わる応力を減少し、磁歪によるインダクタンスの低下を低減できる。なお、接続部材80を設けないで、第1部分310と第2部分320を直接に接続してもよい。 Preferably, the core 3 further includes a connecting member 80 that connects the first portion 310 and the second portion 320. The elastic modulus (specifically, bending elastic modulus) of the connecting member 80 is 1.0 MPa or more and 50 MPa or less. The connection member 80 is made of, for example, urethane resin or silicone resin. According to this, since the elastic modulus of the connecting member 80 is low, for example, when the resin member 90 is in contact with the second portion 320, even if the stress of the resin member 90 is transmitted to the second portion 320, the second portion The stress at 320 is relieved by the connecting member 80. Thereby, stress transmitted from the second portion 320 to the first portion 310 can be reduced, and reduction in inductance due to magnetostriction can be reduced. Note that the first portion 310 and the second portion 320 may be directly connected without providing the connecting member 80.
 好ましくは、第1部分310と第2部分320の体積比は、6:4~8:2である。これによれば、MnZn系フェライトの透磁率は7000~10000程度であり、NiZn系フェライトの透磁率は500~800程度である場合、MnZn系フェライトとNiZn系フェライトの体積比が6:4~8:2のとき、広帯域で一定の高いインピーダンスが得られる。体積比の測定としては、中心軸Cを含む断面から断面積を測定し、この断面積にコア3の長円形の周長を積算して体積を求め、それぞれの体積から体積比を求める。 Preferably, the volume ratio of the first portion 310 and the second portion 320 is 6:4 to 8:2. According to this, when the magnetic permeability of MnZn ferrite is about 7,000 to 10,000 and the magnetic permeability of NiZn ferrite is about 500 to 800, the volume ratio of MnZn ferrite and NiZn ferrite is 6:4 to 8. :2, a constant high impedance can be obtained over a wide band. To measure the volume ratio, the cross-sectional area is measured from a cross-section including the central axis C, the circumference of the oval shape of the core 3 is multiplied by this cross-sectional area to determine the volume, and the volume ratio is determined from each volume.
 ここで、図7に周波数とインピーダンスの関係を示す。図7は、MnZn系フェライトとNiZn系フェライトの体積比を変化させたときの関係を示す。 Here, FIG. 7 shows the relationship between frequency and impedance. FIG. 7 shows the relationship when the volume ratio of MnZn-based ferrite and NiZn-based ferrite is changed.
 グラフL1は、実線で示され、MnZn系フェライトとNiZn系フェライトの体積比が7:3であるときの関係を示す。グラフL2は、一点鎖線で示され、MnZn系フェライトとNiZn系フェライトの体積比が8:2であるときの関係を示す。 Graph L1 is shown by a solid line and shows the relationship when the volume ratio of MnZn-based ferrite and NiZn-based ferrite is 7:3. Graph L2 is indicated by a dashed line and shows the relationship when the volume ratio of MnZn-based ferrite and NiZn-based ferrite is 8:2.
 グラフL3は、二点鎖線で示され、MnZn系フェライトとNiZn系フェライトの体積比が6:4であるときの関係を示す。グラフL4は、点線で示され、MnZn系フェライトとNiZn系フェライトの体積比が5:5であるときの関係を示す。 Graph L3 is indicated by a two-dot chain line, and shows the relationship when the volume ratio of MnZn-based ferrite and NiZn-based ferrite is 6:4. Graph L4 is indicated by a dotted line and shows the relationship when the volume ratio of MnZn-based ferrite and NiZn-based ferrite is 5:5.
 グラフL5は、三点鎖線で示され、コアがMnZn系フェライトからなるときの比較例を示す。グラフL6は、三点鎖線で示され、コアがNiZn系フェライトからなるときの比較例を示す。 Graph L5 is indicated by a three-dot chain line and shows a comparative example when the core is made of MnZn-based ferrite. Graph L6 is indicated by a three-dot chain line and shows a comparative example in which the core is made of NiZn-based ferrite.
 図7から分かるように、グラフL5は、1MHz付近にインピーダンスのピークが存在し、グラフL6は、20MHz付近にインピーダンスのピークが存在する。これに対して、グラフL1、グラフL2、グラフL3、グラフL4は、それぞれ、1MHz付近と20MHz付近にインピーダンスのピークが存在する。 As can be seen from FIG. 7, the graph L5 has an impedance peak around 1 MHz, and the graph L6 has an impedance peak around 20 MHz. On the other hand, in graphs L1, L2, L3, and L4, impedance peaks exist near 1 MHz and 20 MHz, respectively.
 グラフL1は、グラフL2、グラフL3、グラフL4と比べて、1MHz付近のピークと20MHz付近のピークを同等にでき、広い周波数帯域で一定の高いインピーダンスを得ることができる。グラフL2は、グラフL1と比べて、1MHz付近のピークが高くなる一方、20MHz付近のピークが低くなる。グラフL3は、グラフL1と比べて、1MHz付近のピークが低くなる一方、20MHz付近のピークが高くなる。グラフL4は、グラフL1と比べて、1MHz付近のピークが低くなる一方、20MHz付近のピークが高くなる。グラフL4は、グラフL3と比べて、1MHz付近のピークが低くなる一方、20MHz付近のピークが高くなる。
 以上より、好ましくは、グラフL1、グラフL2、グラフL3の場合、つまり、MnZn系フェライトとNiZn系フェライトの体積比が6:4~8:2のとき、顕著に、広帯域で一定の高いインピーダンスが得られることがわかる。さらに好ましくは、グラフL1の場合、つまり、MnZn系フェライトとNiZn系フェライトの体積比が7:3のとき、より顕著に、広帯域で一定の高いインピーダンスが得られることがわかる。
Compared with graphs L2, L3, and L4, graph L1 can make the peak around 1 MHz equal to the peak around 20 MHz, and can obtain a constant high impedance in a wide frequency band. In graph L2, compared to graph L1, the peak around 1 MHz is higher, while the peak around 20 MHz is lower. In graph L3, compared to graph L1, the peak around 1 MHz is lower, while the peak around 20 MHz is higher. In graph L4, compared to graph L1, the peak around 1 MHz is lower, while the peak around 20 MHz is higher. In graph L4, compared to graph L3, the peak around 1 MHz is lower, while the peak around 20 MHz is higher.
From the above, preferably, in the case of graph L1, graph L2, and graph L3, that is, when the volume ratio of MnZn ferrite to NiZn ferrite is 6:4 to 8:2, a constant high impedance is achieved in a wide band. You can see what you can get. More preferably, in the case of graph L1, that is, when the volume ratio of MnZn-based ferrite to NiZn-based ferrite is 7:3, it can be seen that a constant high impedance can be obtained more significantly over a wide band.
 (インダクタ部品の製造方法)
 次に、インダクタ部品1の製造方法について説明する。
(Method of manufacturing inductor parts)
Next, a method for manufacturing the inductor component 1 will be explained.
 図3に示すように、コア3に互いの巻回軸が並走するように第1コイル41および第2コイル42を巻回して、第1コイル41の露出する導体部411a,412a,410aの少なくとも一部と第2コイル42の露出する導体部421a,422a,420aの少なくとも一部を、コア3の第1端面301側に配置する。 As shown in FIG. 3, the first coil 41 and the second coil 42 are wound around the core 3 so that their winding axes run parallel to each other, and the exposed conductor parts 411a, 412a, 410a of the first coil 41 are At least a portion of the exposed conductor portions 421a, 422a, and 420a of the second coil 42 are arranged on the first end surface 301 side of the core 3.
 その後、コア3の第1端面301を上向きのまま、第1コイル41のそれぞれのピン部材を溶接し、第2コイル42のそれぞれのピン部材を溶接する。 Thereafter, each pin member of the first coil 41 is welded, and each pin member of the second coil 42 is welded, with the first end surface 301 of the core 3 facing upward.
 その後、図6に示すように、コア3およびコイル41,42を、コイル41,42における被膜から露出している導体部が第1主面210a側に位置するように、底板部21の凹部215内に配置する。そして、液状の樹脂部材90を、例えばポッティング工法により、凹部215内に充填する。このとき、液状の樹脂部材90は、凹部215内に留まり、コイル41,42における被膜から露出している導体部やコア30の一部に濡れ広がっていく。なお、液状の樹脂部材90が、開口部216から漏れないため、底部210の第2主面210bに開口部216を塞ぐようにテープを貼り付ける。 Thereafter, as shown in FIG. 6, the core 3 and the coils 41, 42 are placed in the recess 215 of the bottom plate part 21 so that the conductor parts exposed from the coating in the coils 41, 42 are located on the first main surface 210a side. Place it inside. Then, the liquid resin member 90 is filled into the recess 215 by, for example, a potting method. At this time, the liquid resin member 90 remains in the recess 215 and spreads over the conductor portions and parts of the core 30 exposed from the coatings of the coils 41 and 42. Note that in order to prevent the liquid resin member 90 from leaking from the opening 216, a tape is attached to the second main surface 210b of the bottom portion 210 so as to close the opening 216.
 その後、熱を加えて、液状の樹脂部材90を硬化させる。これにより、樹脂部材90によりコア3およびコイル41,42を底板部21に固定することができ、また、樹脂部材90によりコイル41,42における被膜から露出している導体部を覆うことができる。また、樹脂部材90により開口部216を埋めることができる。樹脂部材90の材料として、熱硬化性エポキシ樹脂を用い、このとき、弾性率は、7GPaであり、硬化条件として、30分間、120℃の加熱で硬化する。 Thereafter, heat is applied to harden the liquid resin member 90. Thereby, the core 3 and the coils 41 and 42 can be fixed to the bottom plate part 21 by the resin member 90, and the conductor parts of the coils 41 and 42 exposed from the coating can be covered by the resin member 90. Further, the opening 216 can be filled with the resin member 90. A thermosetting epoxy resin is used as the material for the resin member 90, and has an elastic modulus of 7 GPa, and is cured by heating at 120° C. for 30 minutes as a curing condition.
 その後、箱部22を被せてケース2内に収納して、インダクタ部品1を製造する。このような製造方法を用いることにより、インダクタ部品1の製造の工程数を低減することができ、インダクタ部品1をより容易に製造できる。 Thereafter, the inductor component 1 is manufactured by covering the box part 22 and storing it in the case 2. By using such a manufacturing method, the number of steps for manufacturing the inductor component 1 can be reduced, and the inductor component 1 can be manufactured more easily.
 <第2実施形態>
 図8Aは、第2実施形態のインダクタ部品の断面図である。図8Aでは、インダクタ部品のコアのXZ断面を示す。第2実施形態では、第1実施形態と比較して、コアの構成が相違する。この相違する点について以下に説明する。その他の構成は第1実施形態と同じ構成であり、その説明を省略する。
<Second embodiment>
FIG. 8A is a cross-sectional view of the inductor component of the second embodiment. FIG. 8A shows an XZ cross section of the core of the inductor component. The second embodiment differs from the first embodiment in the configuration of the core. This difference will be explained below. The other configurations are the same as those in the first embodiment, and their explanation will be omitted.
 図8Aに示すように、第2実施形態のインダクタ部品1Aでは、コア3Aの中心軸Cを含む断面において、コア3Aの第1部分310および第2部分320は、それぞれ、L字形状である。 As shown in FIG. 8A, in the inductor component 1A of the second embodiment, the first portion 310 and the second portion 320 of the core 3A are each L-shaped in a cross section including the central axis C of the core 3A.
 第1部分310は、中心軸Cに平行な方向に延在する第1壁部311と、中心軸Cに直交する方向(以下、径方向ともいう)に延在する第1ベース部312とを有する。第1ベース部312は、コア3Aの内周面303から外周面304まで径方向に延在する部分であり、第1壁部311は、第1ベース部312の上面から中心軸Cに沿って延在する部分である。第1壁部311および第1ベース部312は、中心軸Cを中心とした環状に形成される。第1壁部311と第1ベース部312との境界を二点鎖線で示す。 The first portion 310 includes a first wall portion 311 extending in a direction parallel to the central axis C, and a first base portion 312 extending in a direction perpendicular to the central axis C (hereinafter also referred to as the radial direction). have The first base portion 312 is a portion extending in the radial direction from the inner peripheral surface 303 to the outer peripheral surface 304 of the core 3A, and the first wall portion 311 extends from the upper surface of the first base portion 312 along the central axis C. It is an extended part. The first wall portion 311 and the first base portion 312 are formed in an annular shape centered on the central axis C. The boundary between the first wall portion 311 and the first base portion 312 is indicated by a two-dot chain line.
 第2部分320は、中心軸Cに平行な方向に延在する第2壁部321と、中心軸Cに直交する方向に延在する第2ベース部322とを有する。第2ベース部322は、コア3Aの内周面303から外周面304まで径方向に延在する部分であり、第2壁部321は、第2ベース部322の上面から中心軸Cに沿って延在する部分である。第2壁部321および第2ベース部322は、中心軸Cを中心とした環状に形成される。第2壁部321と第2ベース部322との境界を二点鎖線で示す。 The second portion 320 has a second wall portion 321 extending in a direction parallel to the central axis C, and a second base portion 322 extending in a direction perpendicular to the central axis C. The second base portion 322 is a portion extending in the radial direction from the inner peripheral surface 303 to the outer peripheral surface 304 of the core 3A, and the second wall portion 321 extends from the upper surface of the second base portion 322 along the central axis C. It is an extended part. The second wall portion 321 and the second base portion 322 are formed in an annular shape centered on the central axis C. The boundary between the second wall portion 321 and the second base portion 322 is indicated by a two-dot chain line.
 第1壁部311と第2壁部321は、第1壁部311の内側面311aと第2壁部321の内側面321aが接触するように、中心軸Cに直交する方向に配置される。第1壁部311の内側面311aとは、第1壁部311の中心軸Cに直交する方向に対向する2つの側面のうち、第1壁部311の断面L字形状の内側(切り欠き側)の面である。第2壁部321の内側面321aとは、第2壁部321の中心軸Cに直交する方向に対向する2つの側面のうち、第2壁部321の断面L字形状の内側(切り欠き側)の面である。第1ベース部312と第2ベース部322は、第1壁部311および第2壁部321に対して、中心軸Cに平行な方向の反対側に配置される。 The first wall portion 311 and the second wall portion 321 are arranged in a direction perpendicular to the central axis C such that the inner surface 311a of the first wall portion 311 and the inner surface 321a of the second wall portion 321 are in contact with each other. The inner side surface 311a of the first wall section 311 refers to the inner side (notch side ). The inner side surface 321a of the second wall portion 321 refers to the inner side (notch side ). The first base portion 312 and the second base portion 322 are arranged on opposite sides of the first wall portion 311 and the second wall portion 321 in a direction parallel to the central axis C.
 上記構成によれば、第1壁部311と第2壁部321は、中心軸Cに直交する方向に配置されるので、第1部分310と第2部分320の中心軸Cに直交する方向の位置ずれを抑制できる。また、第1壁部311と第2壁部321は、中心軸Cに直交する方向に配置され、第1ベース部312と第2ベース部322は、中心軸Cに平行な方向の反対側に配置されるので、第1部分310と第2部分320を組み合わせたコア3Aの断面形状を矩形にできる。 According to the above configuration, the first wall portion 311 and the second wall portion 321 are arranged in a direction perpendicular to the central axis C, so that Positional shift can be suppressed. Further, the first wall portion 311 and the second wall portion 321 are arranged in a direction perpendicular to the central axis C, and the first base portion 312 and the second base portion 322 are arranged on opposite sides in a direction parallel to the central axis C. Since the first portion 310 and the second portion 320 are arranged, the cross-sectional shape of the core 3A, which is a combination of the first portion 310 and the second portion 320, can be made rectangular.
 図8Aに示すように、第1壁部311は、第2壁部321よりも中心軸C側に位置する。第1壁部311は、コア3Aの内周面303側に設けられ、第2壁部321は、コア3Aの外周面304側に設けられる。 As shown in FIG. 8A, the first wall portion 311 is located closer to the central axis C than the second wall portion 321. The first wall portion 311 is provided on the inner peripheral surface 303 side of the core 3A, and the second wall portion 321 is provided on the outer peripheral surface 304 side of the core 3A.
 言い換えると、第1部分310の第2部分320に対する割合に関して、コア3Aの内周側の領域が、コア3Aの外周側の領域よりも多い。コア3Aの内周側の領域とは、コア3Aの中心軸Cを含む断面において、コア3Aの幅方向(中心軸Cに直交する方向)の中心線Mよりも内周面303側の領域をいい、コア3Aの外周側の領域とは、コア3Aの中心軸Cを含む断面において、コア3Aの幅方向の中心線Mよりも外周面304側の領域をいう。 In other words, regarding the ratio of the first portion 310 to the second portion 320, the area on the inner circumferential side of the core 3A is larger than the area on the outer circumferential side of the core 3A. The inner peripheral side region of the core 3A refers to the region on the inner peripheral surface 303 side of the center line M in the width direction (direction perpendicular to the central axis C) of the core 3A in a cross section including the central axis C of the core 3A. The region on the outer peripheral side of the core 3A refers to the region closer to the outer peripheral surface 304 than the center line M in the width direction of the core 3A in a cross section including the central axis C of the core 3A.
 上記構成によれば、第1壁部311は第2壁部321よりも中心軸C側に位置するので、コア3Aの内周側の、磁路長が短い領域において第1部分310の体積を多くすることができる。これにより、MnZn系フェライトの特性が強くあらわれ、1MHz付近のインピーダンスを高くできる。 According to the above configuration, the first wall portion 311 is located closer to the central axis C than the second wall portion 321, so that the volume of the first portion 310 is reduced in the region where the magnetic path length is short on the inner peripheral side of the core 3A. Can be many. As a result, the characteristics of MnZn-based ferrite appear strongly, and the impedance near 1 MHz can be increased.
 ここで、図8Bに周波数とインピーダンスの関係を示す。グラフL1は、実線で示され、図8Aの第2実施形態に示す、コア3Aの第1部分310および第2部分320の形状がL字形状であるときの関係を示す。グラフL2は、点線で示され、図6の第1実施形態に示す、コア3の第1部分310および第2部分320の形状が矩形であるときの関係を示す。グラフL1およびグラフL2は、ともに、MnZn系フェライトとNiZn系フェライトの体積比が5:5であるときの関係を示す。図8Bから分かるように、グラフL1は、グラフL2と比べて、1MHz付近のインピーダンスを向上できる。つまり、グラフL1は、グラフL2と比べて、コア3Aの内周側の領域において第1部分310の体積が多いため、MnZn系フェライトの特性が強くあらわれる。 Here, FIG. 8B shows the relationship between frequency and impedance. Graph L1 is indicated by a solid line and shows the relationship when the first portion 310 and second portion 320 of the core 3A have an L-shape, as shown in the second embodiment of FIG. 8A. Graph L2 is indicated by a dotted line and shows the relationship when the shapes of the first portion 310 and the second portion 320 of the core 3 are rectangular, as shown in the first embodiment of FIG. Graph L1 and graph L2 both show the relationship when the volume ratio of MnZn-based ferrite and NiZn-based ferrite is 5:5. As can be seen from FIG. 8B, the graph L1 can improve the impedance around 1 MHz compared to the graph L2. That is, in the graph L1, the volume of the first portion 310 is larger in the region on the inner peripheral side of the core 3A than in the graph L2, so the characteristics of MnZn-based ferrite appear more strongly.
 また、図8Aに示すように、第1壁部311は第2壁部321よりも中心軸C側に位置するので、コア3Aの外周側の領域において第2部分320の体積を多くすることができる。これにより、コア3Aの外周側に液状の樹脂部材90を塗布する場合、樹脂部材90がコア3Aの外周面304を濡れ上がっても、磁歪の影響が小さいNiZn系フェライトの第2部分320に樹脂部材90が付着する一方、磁歪の影響が大きいMnZn系フェライトの第1部分310には樹脂部材90が付着し難くなる。つまり、コア3Aの外周側に液状の樹脂部材90を塗布するため、コア3Aの外周側の樹脂部材90の量は多くなり、樹脂部材90がコア3Aの外周面304を濡れ上がるが、コア3Aの内周側では樹脂部材90が進入し難く樹脂部材90の量は少なくなり、樹脂部材90がコア3Aの内周面303を濡れ上がり難くなる。 Further, as shown in FIG. 8A, since the first wall portion 311 is located closer to the central axis C than the second wall portion 321, it is possible to increase the volume of the second portion 320 in the area on the outer peripheral side of the core 3A. can. As a result, when applying the liquid resin member 90 to the outer peripheral side of the core 3A, even if the resin member 90 wets the outer peripheral surface 304 of the core 3A, the resin is applied to the second portion 320 of NiZn-based ferrite, which is less affected by magnetostriction. While the member 90 adheres, it becomes difficult for the resin member 90 to adhere to the first portion 310 of MnZn-based ferrite, which is largely affected by magnetostriction. That is, since the liquid resin member 90 is applied to the outer circumferential side of the core 3A, the amount of the resin member 90 on the outer circumferential side of the core 3A increases, and the resin member 90 wets the outer circumferential surface 304 of the core 3A. It is difficult for the resin member 90 to enter the inner peripheral side of the core 3A, and the amount of the resin member 90 is reduced, making it difficult for the resin member 90 to wet the inner peripheral surface 303 of the core 3A.
 したがって、樹脂部材90に応力が発生しても、樹脂部材90の応力は第1部分310ではなく第2部分320に伝わる。第2部分320のNiZn系フェライトは、第1部分310のMnZn系フェライトと比べて、透磁率が低く磁歪の影響が小さいため、コア3Aの磁歪による特性の低下を低減できる。 Therefore, even if stress occurs in the resin member 90, the stress in the resin member 90 is transmitted to the second portion 320 instead of the first portion 310. The NiZn-based ferrite of the second portion 320 has a lower magnetic permeability than the MnZn-based ferrite of the first portion 310 and is less affected by magnetostriction, so that deterioration of the characteristics of the core 3A due to magnetostriction can be reduced.
 <第3実施形態>
 図9は、第3実施形態のインダクタ部品の断面図である。図9では、インダクタ部品のコアのXZ断面を示す。第3実施形態では、第2実施形態と比較して、コアの構成が相違する。この相違する点について以下に説明する。その他の構成は第2実施形態と同じ構成であり、その説明を省略する。
<Third embodiment>
FIG. 9 is a cross-sectional view of an inductor component according to the third embodiment. FIG. 9 shows an XZ cross section of the core of the inductor component. The third embodiment differs from the second embodiment in the configuration of the core. This difference will be explained below. The other configurations are the same as those in the second embodiment, and their explanation will be omitted.
 図9に示すように、第3実施形態のインダクタ部品1Bでは、コア3Bの中心軸Cを含む断面において、コア3Bの第1部分310および第2部分320は、それぞれ、L字形状である。第1部分310は、第1壁部311と第1ベース部312とを有する。第2部分320は、第2壁部321と第2ベース部322とを有する。 As shown in FIG. 9, in the inductor component 1B of the third embodiment, the first portion 310 and the second portion 320 of the core 3B are each L-shaped in a cross section including the central axis C of the core 3B. The first portion 310 has a first wall portion 311 and a first base portion 312 . The second portion 320 has a second wall portion 321 and a second base portion 322.
 第3実施形態のインダクタ部品1Bでは、第2実施形態のインダクタ部品1A(図8A参照)と異なり、第2壁部321は、第1壁部311よりも中心軸C側に位置する。言い換えると、第1部分310の第2部分320に対する割合に関して、コア3Bの外周側の領域が、コア3Bの内周側の領域よりも多い。 In the inductor component 1B of the third embodiment, the second wall portion 321 is located closer to the central axis C than the first wall portion 311, unlike the inductor component 1A of the second embodiment (see FIG. 8A). In other words, regarding the ratio of the first portion 310 to the second portion 320, the area on the outer circumferential side of the core 3B is larger than the area on the inner circumferential side of the core 3B.
 上記構成によれば、第2壁部321は、第1壁部311よりも中心軸C側に位置するので、コア3Bの内周側の、磁路長が短い領域において第2部分320の体積を多くすることができる。これにより、NiZn系フェライトの特性が強くあらわれ、20MHz付近のインピーダンスを高くできる。 According to the above configuration, since the second wall portion 321 is located closer to the central axis C than the first wall portion 311, the volume of the second portion 320 is can be increased. As a result, the characteristics of NiZn-based ferrite appear strongly, and the impedance near 20 MHz can be increased.
 <第4実施形態>
 図10は、第4実施形態のインダクタ部品の断面図である。図10では、インダクタ部品のコアのXZ断面を示す。第4実施形態では、第2実施形態と比較して、コアの構成が相違する。この相違する点について以下に説明する。その他の構成は第2実施形態と同じ構成であり、その説明を省略する。
<Fourth embodiment>
FIG. 10 is a cross-sectional view of an inductor component according to the fourth embodiment. FIG. 10 shows an XZ cross section of the core of the inductor component. The fourth embodiment differs from the second embodiment in the configuration of the core. This difference will be explained below. The other configurations are the same as those in the second embodiment, and their explanation will be omitted.
 図10に示すように、第4実施形態のインダクタ部品1Cでは、コア3Cの中心軸Cを含む断面において、コア3Cの第1部分310は、T字形状であり、コア3Cの第2部分320は、U字形状である。 As shown in FIG. 10, in the inductor component 1C of the fourth embodiment, in a cross section including the central axis C of the core 3C, the first portion 310 of the core 3C has a T-shape, and the second portion 320 of the core 3C has a T-shape. is U-shaped.
 第1部分310は、第1ベース部313と、第1ベース部313の下面に設けられた凸部314とを有する。第1ベース部313は、第2端面302、内周面303および外周面304に設けられている。凸部314は、第1ベース部313の下面から下方に延在し、中心線M上に位置する。凸部314の断面の外面形状は、矩形であるが、多角形や曲面であってもよい。第1ベース部313および凸部314は、中心軸Cを中心とした環状に形成される。 The first portion 310 has a first base portion 313 and a convex portion 314 provided on the lower surface of the first base portion 313. The first base portion 313 is provided on the second end surface 302, the inner peripheral surface 303, and the outer peripheral surface 304. The convex portion 314 extends downward from the lower surface of the first base portion 313 and is located on the center line M. The outer surface shape of the cross section of the convex portion 314 is rectangular, but may be polygonal or curved. The first base portion 313 and the convex portion 314 are formed in an annular shape centered on the central axis C.
 第2部分320は、第2ベース部323を有する。第2ベース部323は、第1端面301、内周面303および外周面304に設けられている。第2ベース部323の上面には、凹部324が設けられている。凹部324は、第2ベース部323の上面から下方に延在し、中心線M上に位置する。凹部324の断面の内面形状は、矩形であるが、多角形や曲面であってもよい。第2ベース部323のZ方向の高さ寸法は、第1ベース部313のZ方向の高さ寸法よりも大きい。第2ベース部323および凹部324は、中心軸Cを中心とした環状に形成される。 The second portion 320 has a second base portion 323. The second base portion 323 is provided on the first end surface 301, the inner peripheral surface 303, and the outer peripheral surface 304. A recess 324 is provided on the upper surface of the second base portion 323 . The recess 324 extends downward from the upper surface of the second base portion 323 and is located on the center line M. The inner surface shape of the cross section of the recess 324 is rectangular, but may be polygonal or curved. The height dimension of the second base part 323 in the Z direction is larger than the height dimension of the first base part 313 in the Z direction. The second base portion 323 and the recessed portion 324 are formed in an annular shape centered on the central axis C.
 第1部分310の凸部314が第2部分320の凹部324に嵌め込まれた状態で、第1部分310と第2部分320は組み合わされて、コア3Cの断面形状は矩形となる。これにより、1部分310と第2部分320の中心軸Cに直交する方向の位置ずれを抑制できる。 With the convex portion 314 of the first portion 310 fitted into the recess 324 of the second portion 320, the first portion 310 and the second portion 320 are combined, and the cross-sectional shape of the core 3C becomes rectangular. Thereby, positional deviation in the direction orthogonal to the central axis C between the first portion 310 and the second portion 320 can be suppressed.
 図10に示すように、中心軸Cを含む断面において、コア3Cの内周側の領域、および、コア3Cの外周側の領域では、第2部分320の面積は、第1部分310の面積よりも大きい。これによれば、コア3Cの内周側の領域では、第2部分320の面積は第1部分310の面積よりも大きいので、コア3Cの内周側の、磁路長が短い領域において第2部分320の体積を多くすることができる。これにより、NiZn系フェライトの特性が強くあらわれ、20MHz付近のインピーダンスを高くできる。 As shown in FIG. 10, in the cross section including the central axis C, the area of the second portion 320 is larger than the area of the first portion 310 in the inner circumference side region of the core 3C and the outer circumference side region of the core 3C. It's also big. According to this, in the region on the inner circumferential side of the core 3C, the area of the second portion 320 is larger than the area of the first portion 310, so that in the region on the inner circumferential side of the core 3C where the magnetic path length is short, The volume of portion 320 can be increased. As a result, the characteristics of NiZn-based ferrite appear strongly, and the impedance near 20 MHz can be increased.
 また、コア3Cの内周側および外周側の領域では、第2部分320の面積は第1部分310の面積よりも大きいので、コア3Cの内周側および外周側の領域において第2部分320の体積を多くすることができる。これにより、液状の樹脂部材90を塗布する場合、樹脂部材90がコア3Cの内周面303および外周面304を濡れ上がっても、磁歪の影響が小さいNiZn系フェライトの第2部分320に樹脂部材90が付着する一方、磁歪の影響が大きいMnZn系フェライトの第1部分310には樹脂部材90が付着し難くなる。したがって、樹脂部材90に応力が発生しても、樹脂部材90の応力は第1部分310ではなく第2部分320に伝わる。第2部分320のNiZn系フェライトは、第1部分310のMnZn系フェライトと比べて、透磁率が低く磁歪の影響が小さいため、コア3Cの磁歪による特性の低下を低減できる。 Furthermore, since the area of the second portion 320 is larger than the area of the first portion 310 in the inner and outer peripheral regions of the core 3C, the second portion 320 has a larger area than the first portion 310 in the inner and outer peripheral regions of the core 3C. The volume can be increased. As a result, when applying the liquid resin member 90, even if the resin member 90 wets the inner circumferential surface 303 and the outer circumferential surface 304 of the core 3C, the resin member is applied to the second portion 320 of NiZn-based ferrite, which is less affected by magnetostriction. On the other hand, it becomes difficult for the resin member 90 to adhere to the first portion 310 of MnZn-based ferrite, which is largely affected by magnetostriction. Therefore, even if stress is generated in the resin member 90, the stress in the resin member 90 is transmitted to the second portion 320 instead of the first portion 310. The NiZn-based ferrite of the second portion 320 has a lower magnetic permeability than the MnZn-based ferrite of the first portion 310 and is less affected by magnetostriction, so that deterioration of the characteristics of the core 3C due to magnetostriction can be reduced.
 <第5実施形態>
 図11は、第5実施形態のインダクタ部品の断面図である。図11では、インダクタ部品のコアのXZ断面を示す。第5実施形態では、第4実施形態と比較して、コアの構成が相違する。この相違する点について以下に説明する。その他の構成は第4実施形態と同じ構成であり、その説明を省略する。
<Fifth embodiment>
FIG. 11 is a cross-sectional view of an inductor component according to the fifth embodiment. FIG. 11 shows an XZ cross section of the core of the inductor component. The fifth embodiment differs from the fourth embodiment in the core configuration. This difference will be explained below. The other configurations are the same as those of the fourth embodiment, and the explanation thereof will be omitted.
 図11に示すように、第5実施形態のインダクタ部品1Dでは、コア3Dの中心軸Cを含む断面において、コア3Dの第1部分310は、U字形状であり、コア3Dの第2部分320は、T字形状である。 As shown in FIG. 11, in the inductor component 1D of the fifth embodiment, in a cross section including the central axis C of the core 3D, the first portion 310 of the core 3D is U-shaped, and the second portion 320 of the core 3D is U-shaped. is T-shaped.
 第1部分310は、第1ベース部313を有する。第1ベース部313は、第2端面302、内周面303および外周面304に設けられている。第1ベース部313の下面には、凹部315が設けられている。凹部315は、第1ベース部313の下面から上方に延在する。 The first portion 310 has a first base portion 313. The first base portion 313 is provided on the second end surface 302, the inner peripheral surface 303, and the outer peripheral surface 304. A recess 315 is provided on the lower surface of the first base portion 313 . The recessed portion 315 extends upward from the lower surface of the first base portion 313 .
 第2部分320は、第2ベース部323と、第2ベース部323の下面に設けられた凸部325とを有する。第2ベース部323は、第1端面301、内周面303および外周面304に設けられている。凸部325は、第2ベース部323の上面から上方に延在する。第2ベース部323のZ方向の高さ寸法は、第1ベース部313のZ方向の高さ寸法よりも小さい。 The second portion 320 includes a second base portion 323 and a convex portion 325 provided on the lower surface of the second base portion 323. The second base portion 323 is provided on the first end surface 301, the inner peripheral surface 303, and the outer peripheral surface 304. The convex portion 325 extends upward from the upper surface of the second base portion 323. The height dimension of the second base part 323 in the Z direction is smaller than the height dimension of the first base part 313 in the Z direction.
 第2部分320の凸部325が第1部分310の凹部315に嵌め込まれた状態で、第1部分310と第2部分320は組み合わされて、コア3Dの断面形状は矩形となる。これにより、1部分310と第2部分320の中心軸Cに直交する方向の位置ずれを抑制できる。 With the convex portion 325 of the second portion 320 fitted into the recess 315 of the first portion 310, the first portion 310 and the second portion 320 are combined, and the cross-sectional shape of the core 3D becomes rectangular. Thereby, positional deviation in the direction orthogonal to the central axis C between the first portion 310 and the second portion 320 can be suppressed.
 図11に示すように、中心軸Cを含む断面において、コア3Dの内周側の領域、および、コア3Dの外周側の領域では、第1部分310の面積は、第2部分320の面積よりも大きい。これによれば、コア3Dの内周側の領域では、第1部分310の面積は第2部分320の面積よりも大きいので、コア3Dの内周側の、磁路長が短い領域において第1部分310の体積を多くすることができる。これにより、MnZn系フェライトの特性が強くあらわれ、1MHz付近のインピーダンスを高くできる。 As shown in FIG. 11, in the cross section including the central axis C, the area of the first portion 310 is larger than the area of the second portion 320 in the inner peripheral side region of the core 3D and the outer peripheral side region of the core 3D. It's also big. According to this, in the region on the inner circumferential side of the core 3D, the area of the first portion 310 is larger than the area of the second portion 320, so in the region on the inner circumferential side of the core 3D where the magnetic path length is short, the first portion 310 The volume of portion 310 can be increased. As a result, the characteristics of MnZn-based ferrite appear strongly, and the impedance near 1 MHz can be increased.
 <第6実施形態>
 図12は、第6実施形態のインダクタ部品の断面図である。図12では、インダクタ部品のコアのXZ断面を示す。第6実施形態では、第2実施形態と比較して、コアの構成が相違する。この相違する点について以下に説明する。その他の構成は第2実施形態と同じ構成であり、その説明を省略する。
<Sixth embodiment>
FIG. 12 is a cross-sectional view of an inductor component according to the sixth embodiment. FIG. 12 shows an XZ cross section of the core of the inductor component. The sixth embodiment differs from the second embodiment in the configuration of the core. This difference will be explained below. The other configurations are the same as those in the second embodiment, and their explanation will be omitted.
 図12に示すように、第6実施形態のインダクタ部品1Eでは、コア3Eの中心軸Cを含む断面において、コア3Eの第1部分310および第2部分320は、それぞれ、矩形である。 As shown in FIG. 12, in the inductor component 1E of the sixth embodiment, the first portion 310 and the second portion 320 of the core 3E are each rectangular in a cross section including the central axis C of the core 3E.
 第1部分310は、第1壁部316を有する。第2部分320は、第2壁部326を有する。第1壁部316および第2壁部326は、中心軸Cを中心とした環状に形成される。第1壁部316は、第2壁部326よりも中心軸C側に配置されている。第2壁部326は、第1壁部316の外周側に設けられている。つまり、第1壁部316は、コア3Eの内周側の領域に位置し、第2壁部326は、コア3Eの外周側の領域に位置する。これにより、1部分310と第2部分320の中心軸Cに直交する方向の位置ずれを抑制できる。 The first portion 310 has a first wall portion 316. The second portion 320 has a second wall 326 . The first wall portion 316 and the second wall portion 326 are formed in an annular shape centered on the central axis C. The first wall portion 316 is arranged closer to the central axis C than the second wall portion 326 is. The second wall portion 326 is provided on the outer peripheral side of the first wall portion 316. That is, the first wall portion 316 is located in an area on the inner peripheral side of the core 3E, and the second wall portion 326 is located in an area on the outer peripheral side of the core 3E. Thereby, positional deviation in the direction orthogonal to the central axis C between the first portion 310 and the second portion 320 can be suppressed.
 ここで、コイルに、環状に折り曲げられた1ターンを構成するワイヤ部材を複数用いてもよく、このとき、隣り合うターンの2つのワイヤ部材を接続する溶接部をコア3Eの外周側に配置する。これにより、第2部分320は溶接部に対向しているので、コア3Eとコイルの絶縁を確保できる。 Here, a plurality of wire members constituting one turn bent into an annular shape may be used in the coil, and in this case, the welding part connecting two wire members of adjacent turns is arranged on the outer peripheral side of the core 3E. . Thereby, since the second portion 320 faces the welded portion, insulation between the core 3E and the coil can be ensured.
 図12に示すように、第1部分310の第2部分320に対する割合に関して、コア3Eの内周側の領域が、コア3Eの外周側の領域よりも多い。これによれば、コア3Eの内周側の、磁路長が短い領域において第1部分310の体積を多くすることができる。これにより、MnZn系フェライトの特性が強くあらわれ、1MHz付近のインピーダンスを高くできる。 As shown in FIG. 12, regarding the ratio of the first portion 310 to the second portion 320, the area on the inner circumferential side of the core 3E is larger than the area on the outer circumferential side of the core 3E. According to this, the volume of the first portion 310 can be increased in the region on the inner peripheral side of the core 3E where the magnetic path length is short. As a result, the characteristics of MnZn-based ferrite appear strongly, and the impedance near 1 MHz can be increased.
 また、コア3Eの外周側の領域において第2部分320の体積を多くすることができる。これにより、コア3Eの外周側に液状の樹脂部材90を塗布する場合、樹脂部材90がコア3Eの外周面304を濡れ上がっても、磁歪の影響が小さいNiZn系フェライトの第2部分320に樹脂部材90が付着する一方、磁歪の影響が大きいMnZn系フェライトの第1部分310には樹脂部材90が付着し難くなる。したがって、樹脂部材90に応力が発生しても、樹脂部材90の応力は第1部分310ではなく第2部分320に伝わる。第2部分320のNiZn系フェライトは、第1部分310のMnZn系フェライトと比べて、透磁率が低く磁歪の影響が小さいため、コア3Eの磁歪による特性の低下を低減できる。 Furthermore, the volume of the second portion 320 can be increased in the region on the outer peripheral side of the core 3E. As a result, when applying the liquid resin member 90 to the outer peripheral side of the core 3E, even if the resin member 90 wets the outer peripheral surface 304 of the core 3E, the resin is applied to the second portion 320 of NiZn-based ferrite, which is less affected by magnetostriction. While the member 90 adheres, it becomes difficult for the resin member 90 to adhere to the first portion 310 of MnZn-based ferrite, which is largely affected by magnetostriction. Therefore, even if stress is generated in the resin member 90, the stress in the resin member 90 is transmitted to the second portion 320 instead of the first portion 310. The NiZn-based ferrite of the second portion 320 has a lower magnetic permeability than the MnZn-based ferrite of the first portion 310 and is less affected by magnetostriction, so that deterioration of the characteristics of the core 3E due to magnetostriction can be reduced.
 <第7実施形態>
 図13は、第7実施形態のインダクタ部品の断面図である。図13では、インダクタ部品のコアのXZ断面を示す。第7実施形態では、第6実施形態と比較して、コアの構成が相違する。この相違する点について以下に説明する。その他の構成は第6実施形態と同じ構成であり、その説明を省略する。
<Seventh embodiment>
FIG. 13 is a cross-sectional view of an inductor component according to the seventh embodiment. FIG. 13 shows an XZ cross section of the core of the inductor component. The seventh embodiment differs from the sixth embodiment in the configuration of the core. This difference will be explained below. The other configurations are the same as those in the sixth embodiment, and their explanation will be omitted.
 図13に示すように、第7実施形態のインダクタ部品1Fでは、コア3Fの中心軸Cを含む断面において、コア3Fの第1部分310および第2部分320は、それぞれ、矩形である。第1部分310は、第1壁部316を有する。第2部分320は、第2壁部326を有する。 As shown in FIG. 13, in the inductor component 1F of the seventh embodiment, the first portion 310 and the second portion 320 of the core 3F are each rectangular in a cross section including the central axis C of the core 3F. The first portion 310 has a first wall 316 . The second portion 320 has a second wall 326 .
 第7実施形態のインダクタ部品1Fでは、第6実施形態のインダクタ部品1E(図12参照)と異なり、第2壁部326は、第1壁部316よりも中心軸C側に配置されている。第1壁部316は、第2壁部326の外周側に設けられている。つまり、第2壁部326は、コア3Fの内周側の領域に位置し、第1壁部316は、コア3Fの外周側の領域に位置する。これにより、1部分310と第2部分320の中心軸Cに直交する方向の位置ずれを抑制できる。 In the inductor component 1F of the seventh embodiment, unlike the inductor component 1E of the sixth embodiment (see FIG. 12), the second wall portion 326 is arranged closer to the central axis C than the first wall portion 316. The first wall portion 316 is provided on the outer peripheral side of the second wall portion 326. That is, the second wall portion 326 is located in an area on the inner peripheral side of the core 3F, and the first wall portion 316 is located in an area on the outer peripheral side of the core 3F. Thereby, positional deviation in the direction orthogonal to the central axis C between the first portion 310 and the second portion 320 can be suppressed.
 ここで、コイルに、環状に折り曲げられた1ターンを構成するワイヤ部材を複数用いてもよく、このとき、隣り合うターンの2つのワイヤ部材を接続する溶接部をコア3Fの内周側に配置する。これにより、第2部分320は溶接部に対向しているので、コア3Fとコイルの絶縁を確保できる。 Here, a plurality of wire members constituting one turn bent into an annular shape may be used in the coil, and in this case, the welding part connecting two wire members of adjacent turns is arranged on the inner circumferential side of the core 3F. do. Thereby, since the second portion 320 faces the welded portion, insulation between the core 3F and the coil can be ensured.
 図13に示すように、第2部分320の第1部分310に対する割合に関して、コア3Fの内周側の領域が、コア3Fの外周側の領域よりも多い。これによれば、コア3Fの内周側の、磁路長が短い領域において第2部分320の体積を多くすることができる。これにより、NiZn系フェライトの特性が強くあらわれ、20MHz付近のインピーダンスを高くできる。 As shown in FIG. 13, regarding the ratio of the second portion 320 to the first portion 310, the area on the inner circumferential side of the core 3F is larger than the area on the outer circumferential side of the core 3F. According to this, the volume of the second portion 320 can be increased in the region where the magnetic path length is short on the inner peripheral side of the core 3F. As a result, the characteristics of NiZn-based ferrite appear strongly, and the impedance near 20 MHz can be increased.
 <第8実施形態>
 次に、図6を参照して、第8実施形態のインダクタ部品について説明する。図6を参照して、第8実施形態のインダクタ部品では、環状のコア3と、コア3に巻回されたコイル41,42と、コア3およびコイル41,42を載置する底板部21と、底板部21に配置される樹脂部材90とを備える。コア3は、MnZn系フェライトを含む第1部分310と、NiZn系フェライトを含む第2部分320とを有する。樹脂部材90は、第2部分320および底板部21に接触して、コア3を底板部21に固定する。
 本実施形態では、コイルは、導体部材と、導体部材の一部を覆う被覆部材とを有していることは必須ではない。また、第2部分の少なくとも一部は、コイルにおける被覆部材に覆われていない非被覆領域に対向していることも必須ではない。
 なお、各部材の構成は、第1実施形態のインダクタ部品と同様であるため、その説明を省略する。
<Eighth embodiment>
Next, referring to FIG. 6, an inductor component according to an eighth embodiment will be described. Referring to FIG. 6, the inductor component of the eighth embodiment includes an annular core 3, coils 41 and 42 wound around the core 3, and a bottom plate portion 21 on which the core 3 and the coils 41 and 42 are placed. , and a resin member 90 disposed on the bottom plate portion 21. The core 3 has a first portion 310 containing MnZn-based ferrite and a second portion 320 containing NiZn-based ferrite. The resin member 90 contacts the second portion 320 and the bottom plate portion 21 to fix the core 3 to the bottom plate portion 21 .
In this embodiment, the coil does not necessarily have a conductor member and a covering member that covers a part of the conductor member. Furthermore, it is not essential that at least a portion of the second portion faces an uncoated region of the coil that is not covered by the covering member.
Note that the configuration of each member is the same as that of the inductor component of the first embodiment, so a description thereof will be omitted.
 上記構成によれば、第1部分310のMnZn系フェライトを用いてトロイダルコイルを作成した場合は、1MHz付近にインピーダンスのピークが存在し、第2部分320のNiZn系フェライトを用いてトロイダルコイルを作成した場合は、1MHzより高い周波数域にインピーダンスのピークが存在する。MnZn系フェライトとNiZn系フェライトを組み合わせているので、コア3の周波数特性はそれぞれの周波数特性の合算となり、広帯域で高いインピーダンスが得られる。 According to the above configuration, when a toroidal coil is created using the MnZn-based ferrite of the first portion 310, an impedance peak exists near 1 MHz, and when a toroidal coil is created using the NiZn-based ferrite of the second portion 320. In this case, an impedance peak exists in a frequency range higher than 1 MHz. Since MnZn-based ferrite and NiZn-based ferrite are combined, the frequency characteristics of the core 3 are the sum of their respective frequency characteristics, and high impedance can be obtained over a wide band.
 また、樹脂部材90の硬化収縮時の応力や高温時の樹脂部材90の熱膨張による応力が発生すると、樹脂部材90は第2部分320に接触しているため、樹脂部材90の応力は第2部分320に伝わる。第2部分320のNiZn系フェライトは、第1部分310のMnZn系フェライトと比べて、透磁率が低く磁歪の影響が小さいため、コア3の磁歪による特性の低下を低減できる。 Further, when stress occurs due to curing and shrinkage of the resin member 90 or stress due to thermal expansion of the resin member 90 at high temperatures, since the resin member 90 is in contact with the second portion 320, the stress in the resin member 90 is reduced to the second portion 320. This is transmitted to portion 320. The NiZn-based ferrite of the second portion 320 has a lower magnetic permeability than the MnZn-based ferrite of the first portion 310 and is less affected by magnetostriction, so deterioration of the characteristics of the core 3 due to magnetostriction can be reduced.
 これに対して、特開2021-150314号公報に記載の従来のインダクタ部品では、コアにフェライトを用いている。従来の他の課題として、コアにMnZn系フェライトを用いると、1MHz付近にインピーダンスのピークが存在するため、より高い周波数域で高いインピーダンスが得られない問題がある。 On the other hand, in the conventional inductor component described in JP-A-2021-150314, ferrite is used for the core. Another conventional problem is that when MnZn-based ferrite is used for the core, there is an impedance peak around 1 MHz, so high impedance cannot be obtained in higher frequency ranges.
 そこで、本開示の他の目的は、広帯域で高いインピーダンスが得られるインダクタ部品を提供することにある。 Therefore, another object of the present disclosure is to provide an inductor component that can obtain high impedance over a wide band.
 なお、本開示は上述の実施形態に限定されず、本開示の要旨を逸脱しない範囲で設計変更可能である。例えば、第1から第8実施形態のそれぞれの特徴点を様々に組み合わせてもよい。ケースの形状やコアの形状は、本実施形態に限定されず、設計変更可能である。また、コイルの数量は、本実施形態に限定されず、設計変更可能である。また、ケースの箱部を設けなくてもよい。 Note that the present disclosure is not limited to the above-described embodiments, and design changes can be made without departing from the gist of the present disclosure. For example, the features of the first to eighth embodiments may be combined in various ways. The shape of the case and the shape of the core are not limited to this embodiment, and can be changed in design. Further, the number of coils is not limited to this embodiment, and the design can be changed. Further, it is not necessary to provide a box portion of the case.
 前記実施形態では、コイルは、複数の折曲ピン部材および直線ピン部材から構成され、折曲ピン部材および直線ピン部材によって1ターンを構成しているが、コイルは、複数のワイヤ部材から構成され、ワイヤ部材を環状に折り曲げて1ターンを構成するようにしてもよい。 In the embodiment described above, the coil is made up of a plurality of bent pin members and a straight pin member, and one turn is made up of the bent pin members and the straight pin member, but the coil is made up of a plurality of wire members. Alternatively, the wire member may be bent into an annular shape to form one turn.
 本願は、2022年3月16日付けで日本国にて出願された特願2022-041606に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2022-041606 filed in Japan on March 16, 2022, and the entire content thereof is incorporated herein by reference.
 1、1A~1F インダクタ部品
 2 ケース
 21 底板部
 22 箱部
 3、3A~3F コア
 301 第1端面(下面)
 302 第2端面(上面)
 303 内周面
 304 外周面
 310 第1部分
 311 第1壁部
 311a 内側面
 312 第1ベース部
 313 第1ベース部
 314 凸部
 315 凹部
 316 第1壁部
 320 第2部分
 321 第2壁部
 321a 内側面
 322 第2ベース部
 323 第2ベース部
 324 凹部
 325 凸部
 326 第2壁部
 41 第1コイル
 410 折曲ピン部材
 410a 導体部
 410b 被膜
 411、412 第1、第2直線ピン部材
 411a、412a 導体部
 411c 取付片
 42 第2コイル
 420 折曲ピン部材
 420a 導体部
 420b 被膜
 421、422 第1、第2直線ピン部材
 421a、422a 導体部
 421c 取付片
 51~54 第1~第4外部電極
 51a~54a 取付部
 80 接続部材
 90 樹脂部材
 C 中心軸
 M 中心線
 L インダクタ素子
1, 1A to 1F Inductor parts 2 Case 21 Bottom plate part 22 Box part 3, 3A to 3F Core 301 First end surface (bottom surface)
302 Second end surface (top surface)
303 Inner circumferential surface 304 Outer circumferential surface 310 First portion 311 First wall portion 311a Inner surface 312 First base portion 313 First base portion 314 Convex portion 315 Recessed portion 316 First wall portion 320 Second portion 321 Second wall portion 321a Inside Side surface 322 Second base part 323 Second base part 324 Recessed part 325 Convex part 326 Second wall part 41 First coil 410 Bent pin member 410a Conductor part 410b Coating 411, 412 First and second straight pin members 411a, 412a Conductor Part 411c Mounting piece 42 Second coil 420 Bent pin member 420a Conductor part 420b Coating 421, 422 First and second straight pin members 421a, 422a Conductor part 421c Mounting piece 51 to 54 First to fourth external electrodes 51a to 54a Mounting part 80 Connection member 90 Resin member C Center axis M Center line L Inductor element

Claims (10)

  1.  環状のコアと、
     前記コアに巻回されたコイルと
    を備え、
     前記コアは、MnZn系フェライトを含む第1部分と、NiZn系フェライトを含む第2部分とを有し、
     前記コイルは、導体部材と、前記導体部材の一部を覆う被覆部材とを有し、
     前記第2部分の少なくとも一部は、前記コイルにおける前記被覆部材に覆われていない非被覆領域に対向している、インダクタ部品。
    a circular core;
    and a coil wound around the core,
    The core has a first part containing MnZn-based ferrite and a second part containing NiZn-based ferrite,
    The coil includes a conductor member and a covering member that covers a part of the conductor member,
    An inductor component, wherein at least a portion of the second portion faces an uncovered region of the coil that is not covered by the covering member.
  2.  前記コアおよび前記コイルを載置する底板部と、
     前記底板部に配置される樹脂部材と
    をさらに備え、
     前記樹脂部材は、前記第2部分および前記底板部に接触して、前記コアを前記底板部に固定する、請求項1に記載のインダクタ部品。
    a bottom plate portion on which the core and the coil are placed;
    further comprising a resin member disposed on the bottom plate portion,
    The inductor component according to claim 1, wherein the resin member contacts the second portion and the bottom plate portion to fix the core to the bottom plate portion.
  3.  前記コイルは、複数のピン部材を有し、隣り合うピン部材の端部は、互いに溶接された溶接部を有し、前記溶接部は、前記導体部材に含まれ、前記非被覆領域に位置し、
     前記第2部分の少なくとも一部は、前記溶接部に対向している、請求項1または2に記載のインダクタ部品。
    The coil has a plurality of pin members, the ends of adjacent pin members have welded parts welded to each other, and the welded parts are included in the conductor member and are located in the uncovered area. ,
    The inductor component according to claim 1 or 2, wherein at least a portion of the second portion faces the welded portion.
  4.  前記複数のピン部材は、第1のピン部材と第2のピン部材とを有し、
     前記第1のピン部材と前記第2のピン部材とによって、1ターンを構成し、
     前記溶接部は、隣り合うターンにおいて、一方のターンの第1のピン部材と前記一方のターンの第2のピン部材とが互いに溶接された第1溶接部と、前記一方のターンの第1のピン部材と他方のターンの第2のピン部材とが互いに溶接された第2溶接部とを有し、
     前記コアは、第1面と、前記第1面に交差する第2面と、前記第2面に対向し前記第1面に交差する第3面とを有し、
     前記第1溶接部は、前記第1面および前記第2面の少なくとも一方の上方に位置し、
     前記第2溶接部は、前記第1面および前記第3面の少なくとも一方の上方に位置し、
     前記第2部分は、前記第1面と、前記第2面の一部と、前記第3面の一部とにわたって設けられる、請求項3に記載のインダクタ部品。
    The plurality of pin members include a first pin member and a second pin member,
    The first pin member and the second pin member constitute one turn,
    The welded portion includes, in adjacent turns, a first welded portion where a first pin member of one turn and a second pin member of the one turn are welded to each other, and a first welded portion where a first pin member of the one turn is welded to each other; the pin member and the second pin member of the other turn have a second welded portion welded to each other;
    The core has a first surface, a second surface that intersects the first surface, and a third surface that faces the second surface and intersects the first surface,
    The first welded portion is located above at least one of the first surface and the second surface,
    The second welded portion is located above at least one of the first surface and the third surface,
    The inductor component according to claim 3, wherein the second portion is provided over the first surface, a portion of the second surface, and a portion of the third surface.
  5.  前記コアは、前記第1面に対向する第4面を有し、
     前記第1部分の少なくとも一部は、前記溶接部が対向していない前記第4面に設けられる、請求項4に記載のインダクタ部品。
    The core has a fourth surface opposite to the first surface,
    The inductor component according to claim 4, wherein at least a portion of the first portion is provided on the fourth surface that is not opposed to the welded portion.
  6.  前記コアは、さらに、前記第1部分と前記第2部分を接続する接続部材を備え、
     前記接続部材の弾性率は、1.0MPa以上50MPa以下である、請求項1から5の何れか一つに記載のインダクタ部品。
    The core further includes a connecting member connecting the first part and the second part,
    The inductor component according to any one of claims 1 to 5, wherein the connecting member has an elastic modulus of 1.0 MPa or more and 50 MPa or less.
  7.  前記コアの中心軸を含む断面において、
     前記第1部分は、L字形状であって、前記中心軸に平行な方向に延在する第1壁部と、前記中心軸に直交する方向に延在する第1ベース部とを有し、
     前記第2部分は、L字形状であって、前記中心軸に平行な方向に延在する第2壁部と、前記中心軸に直交する方向に延在する第2ベース部とを有し、
     前記第1壁部と前記第2壁部は、前記第1壁部の内側面と前記第2壁部の内側面が接触するように、前記中心軸に直交する方向に配置され、
     前記第1ベース部と前記第2ベース部は、前記第1壁部および前記第2壁部に対して、前記中心軸に平行な方向の反対側に配置される、請求項1から6の何れか一つに記載のインダクタ部品。
    In a cross section including the central axis of the core,
    The first portion is L-shaped and includes a first wall portion extending in a direction parallel to the central axis, and a first base portion extending in a direction perpendicular to the central axis,
    The second portion is L-shaped and includes a second wall portion extending in a direction parallel to the central axis, and a second base portion extending in a direction perpendicular to the central axis,
    The first wall portion and the second wall portion are arranged in a direction perpendicular to the central axis such that the inner surface of the first wall portion and the inner surface of the second wall portion are in contact with each other,
    Any one of claims 1 to 6, wherein the first base part and the second base part are arranged on opposite sides of the first wall part and the second wall part in a direction parallel to the central axis. Inductor parts listed in one of the above.
  8.  前記第1壁部は、前記第2壁部よりも前記中心軸側に位置する、請求項7に記載のインダクタ部品。 The inductor component according to claim 7, wherein the first wall portion is located closer to the central axis than the second wall portion.
  9.  前記第1部分の前記第2部分に対する割合に関して、前記コアの内周側の領域が、前記コアの外周側の領域よりも多い、請求項1から8の何れか一つに記載のインダクタ部品。 The inductor component according to any one of claims 1 to 8, wherein in terms of the ratio of the first portion to the second portion, the area on the inner circumferential side of the core is larger than the area on the outer circumferential side of the core.
  10.  前記第1部分と前記第2部分の体積比は、6:4~8:2である、請求項1から9の何れか一つに記載のインダクタ部品。 The inductor component according to any one of claims 1 to 9, wherein the volume ratio of the first part and the second part is 6:4 to 8:2.
PCT/JP2023/009037 2022-03-16 2023-03-09 Inductor component WO2023176682A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022041606 2022-03-16
JP2022-041606 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023176682A1 true WO2023176682A1 (en) 2023-09-21

Family

ID=88023294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009037 WO2023176682A1 (en) 2022-03-16 2023-03-09 Inductor component

Country Status (1)

Country Link
WO (1) WO2023176682A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142814U (en) * 1984-08-23 1986-03-19 株式会社村田製作所 inductor
JP2006100465A (en) * 2004-09-29 2006-04-13 Tdk Corp Coil and filter circuit using it
JP2007042678A (en) * 2005-07-29 2007-02-15 Tdk Corp Coil and filter circuit
JP2021132105A (en) * 2020-02-19 2021-09-09 株式会社村田製作所 Inductor component and manufacturing method thereof
JP2021150314A (en) * 2020-03-16 2021-09-27 株式会社村田製作所 Inductor component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142814U (en) * 1984-08-23 1986-03-19 株式会社村田製作所 inductor
JP2006100465A (en) * 2004-09-29 2006-04-13 Tdk Corp Coil and filter circuit using it
JP2007042678A (en) * 2005-07-29 2007-02-15 Tdk Corp Coil and filter circuit
JP2021132105A (en) * 2020-02-19 2021-09-09 株式会社村田製作所 Inductor component and manufacturing method thereof
JP2021150314A (en) * 2020-03-16 2021-09-27 株式会社村田製作所 Inductor component

Similar Documents

Publication Publication Date Title
CN110364334B (en) Surface mount inductor
CN111161944A (en) Surface mount inductor
CN111161943A (en) Surface mount inductor
CN111161942A (en) Surface mount inductor
CN112530661B (en) Inductance component and method for manufacturing inductance component
US20210257154A1 (en) Inductor component and method for manufacturing the same
WO2023176682A1 (en) Inductor component
CN113410023B (en) Inductance component
JP7279457B2 (en) inductor
CN113284697B (en) Inductor component and method for manufacturing same
CN113284698B (en) Inductor component and method for manufacturing same
WO2023042512A1 (en) Electronic component
CN112652447B (en) Inductor
WO2023176738A1 (en) Coil component and method for manufacturing coil component
JP7247941B2 (en) Inductor component and manufacturing method thereof
JP7524982B2 (en) Inductors
WO2024057897A1 (en) Inductor component and method for manufacturing same
WO2024180924A1 (en) Coil component and method for manufacturing same
WO2024180925A1 (en) Coil component
US20240282506A1 (en) Coil device
US20210035730A1 (en) Inductor
US20240282505A1 (en) Coil device
US20240321499A1 (en) Coil device
JP2022149637A (en) Coil component and manufacturing method of coil component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770638

Country of ref document: EP

Kind code of ref document: A1