WO2023176576A1 - 情報処理装置、情報処理方法、および、コンピュータプログラム - Google Patents

情報処理装置、情報処理方法、および、コンピュータプログラム Download PDF

Info

Publication number
WO2023176576A1
WO2023176576A1 PCT/JP2023/008495 JP2023008495W WO2023176576A1 WO 2023176576 A1 WO2023176576 A1 WO 2023176576A1 JP 2023008495 W JP2023008495 W JP 2023008495W WO 2023176576 A1 WO2023176576 A1 WO 2023176576A1
Authority
WO
WIPO (PCT)
Prior art keywords
information processing
patient
processing device
information
model
Prior art date
Application number
PCT/JP2023/008495
Other languages
English (en)
French (fr)
Inventor
潤二 神山
大記 古川
昌宏 森瀬
秀夫 横田
Original Assignee
国立大学法人東海国立大学機構
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構, 国立研究開発法人理化学研究所 filed Critical 国立大学法人東海国立大学機構
Publication of WO2023176576A1 publication Critical patent/WO2023176576A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics

Definitions

  • the technology disclosed herein relates to information processing for predicting survival time when a patient suffering from a disease is treated with a predetermined treatment method.
  • Non-Patent Document 1 proposes a machine learning model that uses feature amounts of images of tumors to predict whether or not a tumor will shrink when immunotherapy is administered.
  • Survival time refers to the period until the occurrence of medical events (deterioration of the disease, recurrence of the disease, death, etc.), such as overall survival period (time until death), progression-free survival, etc. These include period (the period during which the cancer does not grow and its progression is suppressed by treatment), and disease-free survival period (the period from the time of cancer surgery until recurrence).
  • Non-Patent Document 1 is for predicting whether or not a tumor will shrink when immunotherapy is administered, but not for predicting survival time.
  • the problem with conventional techniques is that it is not possible to accurately predict the survival time of individual cancer patients when they are treated with a predetermined treatment method. Note that such problems are not limited to cancer but are common to diseases in general.
  • This specification discloses a technique that can solve the above-mentioned problems.
  • the information processing device disclosed in this specification is an information processing device for predicting survival time when a target patient suffering from a disease is treated with a predetermined treatment method, and the information processing device includes target patient information. It includes an acquisition section, a model acquisition section, and a prognosis prediction execution section.
  • the target patient information acquisition unit acquires target patient information including information indicating the background and disease state of the target patient.
  • the model acquisition unit acquires a prognosis prediction model.
  • the prognosis prediction model indicates information indicating the patient's background and disease state, and the treatment method administered to the patient, for each of a plurality of patients suffering from the disease and treated with the predetermined treatment method.
  • the prognosis prediction execution unit uses the target patient information and the prognosis prediction model to predict the survival time when the target patient is treated with the predetermined treatment method, and outputs the result of the prediction. do.
  • the survival time when a target patient is treated with a predetermined treatment method is predicted using target patient information including information indicating the target patient's background and disease state and a prognosis prediction model. can be executed and the result of the prediction can be output. Therefore, it is possible to predict the survival time for each individual patient when treated with a predetermined treatment method based on the patient's background and disease state. Therefore, according to the present information processing apparatus, it is possible to accurately predict the survival time when each patient is treated with a predetermined treatment method. Thereby, it is possible to provide useful information for determining whether or not to treat each patient using a predetermined treatment method.
  • the information processing device further includes a training data acquisition unit that acquires the training data, and the model acquisition unit creates the prognosis prediction model by the machine learning using the training data.
  • the present invention may be configured to acquire the prognosis prediction model. If this configuration is adopted, a prognosis prediction model can be obtained without using any other device, and survival time can be predicted using the model.
  • the predetermined treatment method includes a plurality of mutually different treatment methods
  • the training data includes information about a plurality of patients treated with mutually different treatment methods
  • the The prognosis prediction execution unit may be configured to execute the survival time prediction for each of a plurality of treatment methods.
  • the information indicating the patient's background and disease state may include an image feature amount of the disease focus. If this configuration is adopted, the survival time can be predicted for each individual patient based on the image feature amount of the lesion, and the accuracy of survival time prediction can be effectively improved.
  • the image feature amount may be configured to include at least a portion of a plurality of higher-order principal components extracted by principal component analysis of a plurality of image feature amount candidates. If this configuration is adopted, noise in the image feature amount can be effectively removed, and survival time prediction accuracy can be further effectively improved.
  • the image feature amount is configured to include some principal components selected from the plurality of higher-order principal components based on an evaluation index indicating accuracy of prediction of the survival time. Good too.
  • the selected part of the principal components includes a feature amount indicating non-uniformity of image shading of the lesion, a feature amount indicating the volume and/or surface area of the lesion, and a feature amount indicating the volume and/or surface area of the lesion; It may also be configured to include at least one of the following: a feature amount indicating the shape of the lesion;
  • the prognosis prediction model may be a model generated by the machine learning using random survival forest.
  • the predetermined treatment method may include drug therapy.
  • the predetermined disease may be cancer.
  • the predetermined disease may be lung cancer.
  • the information processing device disclosed in this specification uses an image feature amount used for predicting survival time when a patient suffering from a disease is treated with a predetermined treatment method as an image of a focus of the disease.
  • An information processing apparatus for extracting information from an image including an image feature acquisition section and a feature selection section.
  • the image feature acquisition unit acquires a plurality of image feature candidates from the image.
  • the feature selection unit extracts a plurality of higher-order principal components by principal component analysis of the image feature candidates, and extracts a principal component indicating non-uniformity of image shading of the lesion from the plurality of upper-order principal components, and At least one of a principal component indicating the volume and/or surface area of the lesion and a principal component indicating the shape of the lesion is selected as the image feature amount.
  • image features useful for predicting survival time when a patient suffering from a disease is treated with a predetermined treatment method can be extracted from an image of a disease focus. I can do it.
  • the information processing device disclosed in this specification is an information processing device that creates a prognosis prediction model for predicting survival time when a patient suffering from a disease is treated with a predetermined treatment method. and includes an original information acquisition section and a model acquisition section.
  • the original information acquisition unit acquires, for each of a plurality of patients who are suffering from the disease and who have been treated with the predetermined treatment method, information indicating the patient's background and disease state, and the treatment method administered to the patient.
  • the original information in which the information indicating the survival time of the patient is associated with the information indicating the survival time of the patient is obtained.
  • the model acquisition unit creates the prognosis prediction model by machine learning using at least some of the plurality of feature amounts included in the original information as training data.
  • the model acquisition unit selects features to be introduced into the prognosis prediction model based on an evaluation index indicating prediction accuracy of a model created by machine learning using some of the plurality of features included in the original information. Then, the prognosis prediction model configured by the selected feature amounts is created. According to the information processing device, it is possible to extract a feature quantity that highly contributes to improving the accuracy of prediction of survival time, and it is possible to create a prognosis prediction model with high prediction accuracy of survival time.
  • the technology disclosed in this specification can be realized in various forms, such as an information processing device, an information processing method, a computer program that implements these methods, and a temporary computer program that records the computer program. It can be realized in the form of a non-standard recording medium or the like.
  • An explanatory diagram conceptually showing the prognosis prediction model MO in this embodiment An explanatory diagram showing a schematic configuration of an information processing device 100 Flowchart showing prognosis prediction model acquisition processing in this embodiment Flowchart showing image feature amount IF acquisition processing Explanatory diagram conceptually showing the acquisition process of image feature amount IF Explanatory diagram conceptually showing how to create the improved model MOr Flowchart showing prognosis prediction processing in this embodiment Explanatory diagram showing the prediction accuracy of each model Explanatory diagram showing the 11-dimensional features introduced into the improved model MOr Explanatory diagram showing the composition of the three selected principal components An explanatory diagram showing the results of extracting the top three principal components with the highest contribution to improving the accuracy of survival period prediction for each pattern with various combinations of training data and test data.
  • Explanatory diagram showing the correct answer rate of survival period prediction using the prognosis prediction model MO of this example Explanatory diagram showing the results of survival period prediction using the prognosis prediction model MO of this example
  • Explanatory diagram showing the results of survival period prediction by initial treatment method using the prognosis prediction model MO of this example Explanatory diagram showing the results of survival period prediction using the prognosis prediction model MO of this example for one case
  • An explanatory diagram showing the results of survival period prediction using the prognosis prediction model MO of this example for each of multiple treatment methods targeting one other case An explanatory diagram showing the results of survival period prediction using the prognosis prediction model MO of this example for each of multiple treatment methods targeting one other case
  • FIG. 1 is an explanatory diagram conceptually showing the prognosis prediction model MO in this embodiment.
  • the prognosis prediction model MO is a model for predicting survival time when a patient suffering from a disease is treated with a predetermined treatment method.
  • the prognosis prediction model MO is a machine learning model that inputs information indicating the patient's background and disease state and information indicating the treatment method to be administered to the patient, and outputs predicted survival time.
  • Information indicating the patient's background and disease state can be obtained, for example, by interview, blood test, chest CT image, and the like.
  • survival time examples include survival period, progression-free survival period, and disease-free survival period.
  • a survival period is used as the survival time
  • the technology disclosed in this specification is applicable not only to the survival period but also to prediction of survival time in general.
  • the prediction of the survival period is performed by creating a predicted survival curve indicating the predicted survival probability SP, but the prediction of the survival period may be performed in other ways.
  • lung cancer is used as a specific example of the disease.
  • Treatment methods for lung cancer include drug therapy, including anticancer drugs (alkylating drugs, antimetabolites, microtubule inhibitors, etc.), molecular target drugs (tyrosine kinase inhibitors, mTOR inhibitors, Proteasome inhibitors, etc.), immunotherapy (immune checkpoint inhibitors, etc.), etc.
  • drug therapy is often more expensive than palliative treatment (palliative care).
  • the survival period prediction results can be used for various purposes. For example, if a result shows that the predicted survival period when a certain patient is treated with a certain drug therapy is not significantly different from the predicted survival period when palliative treatment is given, then the result is This may serve as a basis for deciding not to adopt treatment. Not adopting treatments that are not sufficiently effective contributes to reducing the burden on patients and medical costs.
  • the prognosis prediction model MO by predicting the survival period for existing drug therapies using the prognosis prediction model MO, it is possible to identify patients for whom existing drug therapies are not expected to have sufficient therapeutic effects, and to set target populations for new drug development. can do. For example, if it is found that the predicted survival period of a certain patient when treated with any of the existing drug treatments is equivalent to the predicted survival period when palliative treatment is given, then can be a target for new drug development.
  • Examples of information indicating the patient's background and disease state used for creating the prognosis prediction model MO and predicting the survival period using the prognosis prediction model MO include the following. Age, gender, height, weight, BMI, performance status, smoking index, histological type (adenocarcinoma, squamous cell carcinoma, other), complications (Charlson comorbidity index, COPD, interstitial pneumonia), distant metastatic site (lung, pleura, liver, brain, adrenal gland, bone), number of distant metastatic organs, TMN classification and stage, driver gene abnormality (EGFR gene mutation, ALK fusion gene, ROS1 fusion gene, BRAF gene mutation), PD-L1 expression (negative, weakly positive, strongly positive, unknown), complete blood count (white blood cell count, neutrophil-lymphocyte ratio, hemoglobin, platelet count, platelet-lymphocyte ratio), biochemistry (AST, ALT, ALP, LDH, CRP, albumin) , Na, creatinine clearance), image of the lesion (primary
  • examples of information indicating the treatment method to be administered to the patient include the following.
  • Initial treatment method platinum doublet, third-generation anticancer drug, immune checkpoint inhibitor, platinum doublet + immune checkpoint inhibitor, EGFR-TKI, ALK-TKI, palliative treatment
  • molecular target corresponding to genetic abnormality Presence of drug use, use of immune checkpoint inhibitors
  • FIG. 2 is an explanatory diagram showing a schematic configuration of the information processing device 100.
  • the information processing device 100 is configured by a computer (PC, server, etc.).
  • the information processing device 100 includes a control section 110, a storage section 120, a display section 130, an operation input section 140, and an interface section 150. These units are communicably connected to each other via a bus 190. Note that the information processing device 100 may include a speaker as an output means.
  • the display unit 130 of the information processing device 100 is configured with, for example, a liquid crystal display, and displays various images and information.
  • the operation input unit 140 includes, for example, a keyboard, a mouse, buttons, a microphone, a track pad, etc., and receives operations and instructions from the administrator. Note that the display unit 130 may function as the operation input unit 140 by including a touch panel.
  • the interface section 150 is configured with, for example, a LAN interface, a USB interface, etc., and communicates with other devices by wire or wirelessly.
  • the storage unit 120 of the information processing device 100 is composed of, for example, ROM, RAM, hard disk drive (HDD), etc., and stores various programs and data, and serves as a work area and temporary data storage area when executing various programs. It is also used as a storage area.
  • the storage unit 120 stores a prognosis prediction program CP, which is a computer program for executing prognosis prediction model acquisition processing and prognosis prediction processing, which will be described later.
  • the prognosis prediction program CP is provided, for example, in a state stored in a computer-readable recording medium (not shown) such as a CD-ROM, DVD-ROM, or USB memory, or is provided in a state where it is stored in a computer-readable recording medium (not shown) such as a CD-ROM, a DVD-ROM, or a USB memory, or is provided in a state where it is stored in an external device ( It is provided in a state that can be obtained from a server or other terminal device on a network, and is stored in the storage unit 120 in a state that can be operated on the information processing device 100.
  • a computer-readable recording medium such as a CD-ROM, DVD-ROM, or USB memory
  • an external device It is provided in a state that can be obtained from a server or other terminal device on a network, and is stored in the storage unit 120 in a state that can be operated on the information processing device 100.
  • the storage unit 120 of the information processing device 100 stores training data TD, prognosis prediction model MO, and target patient information Ip in advance or during execution of prognosis prediction model acquisition processing and prognosis prediction processing to be described later.
  • Prognosis prediction result data RD is stored. The contents of this information and data will be explained in conjunction with the explanation of prognosis prediction model acquisition processing and prognosis prediction processing, which will be described later.
  • the control unit 110 of the information processing device 100 is configured by, for example, a CPU, and controls the operation of the information processing device 100 by executing a computer program read from the storage unit 120.
  • the control unit 110 reads out and executes the prognosis prediction program CP from the storage unit 120, thereby controlling the original information acquisition unit 111 and the training data acquisition unit for executing prognosis prediction model acquisition processing and prognosis prediction processing, which will be described later.
  • 112 a model acquisition unit 113 , a target patient information acquisition unit 114 , an image feature acquisition unit 115 , a feature selection unit 116 , and a prognosis prediction execution unit 119 .
  • the functions of each of these parts will be explained in conjunction with the explanation of prognosis prediction model acquisition processing and prognosis prediction processing, which will be described later.
  • FIG. 3 is a flowchart showing prognosis prediction model acquisition processing in this embodiment.
  • the prognosis prediction model acquisition process is a process of acquiring a prognosis prediction model MO, which is a machine learning model used to predict the survival period when a target patient suffering from lung cancer is treated with a predetermined treatment method.
  • the information processing apparatus 100 acquires the prognosis prediction model MO by creating the prognosis prediction model MO by itself using predetermined machine learning.
  • the prognosis prediction model acquisition process is started in response to the user operating the operation input unit 140 of the information processing device 100 and inputting a start instruction.
  • the original information acquisition unit 111 (FIG. 2) of the information processing device 100 acquires information (hereinafter referred to as "original information Io") used to create the prognosis prediction model MO (S110).
  • the original information Io used to create the prognosis prediction model MO is information that becomes the base of training data TD used in machine learning to create the prognosis prediction model MO.
  • the original information Io includes information indicating the patient's background and disease state described above, and the treatment given to the patient, regarding multiple patients who are suffering from lung cancer and who have been treated with a prescribed treatment method. This is information in which information indicating the patient's survival period is associated with information indicating the patient's survival period.
  • the original information Io includes information about a plurality of patients who have been treated with different treatment methods.
  • the original information Io may include information that is used as a feature amount that makes up the training data TD as is, or may include information that is used as a feature amount that makes up the training data TD after being processed.
  • the original information Io includes an unprocessed chest CT image for acquiring the feature amount of the image of the lesion (primary tumor) that constitutes the training data TD.
  • the original information Io is acquired via the interface unit 150 or the operation input unit 140.
  • FIG. 4 is a flowchart showing the image feature amount IF acquisition process.
  • FIG. 5 is an explanatory diagram conceptually showing the acquisition process of the image feature amount IF.
  • the image feature value acquisition unit 115 acquires mask data MD indicating the region of the primary tumor in the chest CT image according to instructions inputted via the operation input unit 140 (S210 ).
  • the mask data MD can be acquired using image processing software such as 3D Slicer, for example.
  • 3D Slicer image processing software
  • when acquiring mask data MD in order to remove noise by accurately excluding air regions and accurately capturing tumors, it is necessary to ensure that the CT value in the chest CT image is below a predetermined threshold (for example, -400HU). Threshold processing may be performed to remove voxels.
  • the image feature acquisition unit 115 extracts an image feature IF (candidate for the image feature IF) from the region specified by the mask data MD in the chest CT image (i.e., the region of the primary tumor).
  • the image feature quantities IF include a feature quantity related to the CT value (i.e., image density) of the primary tumor, a feature quantity related to the shape and size of the primary tumor, and a texture quantity of the primary tumor.
  • the feature quantities related to the above are extracted. Extraction of the image feature amount IF can be performed using image processing software such as PyRadiomics, for example.
  • the image feature amount IF extracted in S220 is an example of a candidate image feature amount in the claims.
  • the feature amount related to the CT value of the primary tumor indicates the distribution of the CT value of the primary tumor, and includes, for example, the maximum value, minimum value, average value, median value, uniformity, etc. of the CT value.
  • 18 feature quantities are extracted as feature quantities related to the CT value of the primary tumor.
  • the feature values related to the shape and size of the primary tumor indicate the shape and size (volume, area, etc.) of the primary tumor, such as the maximum length, minimum length, flatness, area, sphericity, etc. of the primary tumor. can be mentioned.
  • 14 feature quantities are extracted as feature quantities related to the shape and size of the primary tumor.
  • Features related to the texture of the primary tumor indicate the internal pattern and non-uniformity of the primary tumor, and include those related to the gradation value co-occurrence matrix (GLCM) (for example, 24 items) and the gradation value run length matrix (24 items).
  • GLRLM for example, 16 items
  • tone value size zone matrix for example, 16 items
  • NLDM tone value neighborhood density difference matrix
  • GLSZM tone value size zone matrix
  • It is classified into those related to a value dependence matrix (GLDM) (for example, 14 items).
  • GLDM value dependence matrix
  • a total of 75 feature quantities are extracted as feature quantities related to the texture of the primary tumor.
  • the feature selection unit 116 (FIG. 2) of the information processing device 100 performs principal component analysis of the extracted image feature IF (S230).
  • S230 principal component analysis of the extracted image feature IF
  • the 107-dimensional image feature IF is reduced in dimension to the 9-dimensional image feature IF from the first principal component to the ninth principal component.
  • the training data acquisition unit 112 (FIG. 2) of the information processing device 100 acquires the training data TD, and the model acquisition unit 113 creates an initial model MOi by machine learning using the training data TD (S130). More specifically, the training data acquisition unit 112 creates the training data TD using some of the feature amounts included in the original information Io.
  • the model acquisition unit 113 uses as input data information indicating the patient's background and disease state included in the training data TD, and information indicating the treatment method administered to the patient, and uses the information indicating the patient's survival period included in the training data TD as input data.
  • An initial model MOi is created by using information indicating as an objective variable and executing machine learning to increase a predetermined evaluation index indicating accuracy of survival period prediction.
  • random survival forest is used.
  • training data is created by resampling (bootstrap), which randomly extracts data from a population while allowing overlap, and then uses the training data to train multiple weak learners ( The cumulative hazard function is predicted by each weak learner, and the average value thereof is used as the ensemble cumulative hazard function. Using this ensemble cumulative hazard function, it is possible to estimate an ensemble risk score, which is an index indicating the likelihood of a death event occurring.
  • random survival forest is similarly used as a machine learning algorithm in subsequent machine learning.
  • C-index Concordance index
  • OOB out-of-bag
  • the C-index is similarly used as an evaluation index in the subsequent machine learning.
  • the population of feature quantities used to create the initial model MOi is composed of feature quantities included in the original information Io that are clearly related to the survival period.
  • feature quantities that are clearly related to survival period include the following. Age (for example, under 75 years old/over 75 years old), gender, performance status (for example, 0-1/2-4), histological type (adenocarcinoma, squamous cell carcinoma, other), TMN classification (for example, , T: 1a to 1c/2a to 4, N: 0 to 1/2 to 3, M: 0/1a to 1c) and disease stage (for example, Stage: IIIA/IIIB to IIIC/IVA/ IVB), driver gene abnormality (EGFR gene mutation, ALK fusion gene, ROS1 fusion gene, BRAF gene mutation), PD-L1 expression (negative, weakly positive, strongly positive, unknown), initial treatment method (platinum doublet) , 3rd generation anticancer drugs, immune checkpoint inhibitors, platinum doublet + immune checkpoint inhibitors, EGFR-TKI, A
  • the model acquisition unit 113 creates an improved model MOr by machine learning using the training data TD (S140).
  • the improved model MOr is an improved version of the initial model MOi. Based on the initial model MOi, the improved model MOr selects features that have a high contribution to improving prediction accuracy from among the features included in the original information Io that may be related to the survival period. Created by sequentially selecting and adding. Examples of characteristic quantities that may be associated with survival period include the following: Height, weight, BMI, smoking index (e.g. classified as 30/750/1100), complications (Charlson comorbidity index, COPD, interstitial pneumonia), distant metastatic sites (lungs, pleura, liver, brain, adrenal glands, bones).
  • FIG. 6 is an explanatory diagram conceptually showing the method for creating the improved model MOr. For example, if four feature quantities FE (FE(A) to FE(D)) exist as candidates, each feature quantity is introduced into the initial model MOi and learning is performed, as shown in "Loop 1" in Figure 6. An evaluation index (C-index in this embodiment) indicating the prediction accuracy at each time is individually calculated, and a feature quantity with the highest prediction accuracy (feature quantity FE(B) in the example of FIG. 6) is extracted.
  • FE feature quantity with the highest prediction accuracy
  • a prognosis prediction model MO is created by adjusting the improved model MOr and fixing the model (S150).
  • Model adjustments include, for example, outlier processing and discretization based on clinical and basic medical knowledge, comprehensive hyperparameter tuning, and the like.
  • the prognosis prediction model MO created in this way is stored in the storage unit 120 of the information processing device 100. With the above steps, the prognosis prediction model MO acquisition process is completed.
  • FIG. 7 is a flowchart showing prognosis prediction processing in this embodiment.
  • the prognosis prediction process is a process that uses the prognosis prediction model MO to predict the survival period when a patient suffering from lung cancer is treated with a predetermined treatment method.
  • the prognosis prediction process is started in response to the user operating the operation input unit 140 of the information processing device 100 to input a start instruction.
  • the target patient information acquisition unit 114 (FIG. 2) of the information processing device 100 acquires target patient information Ip (S310).
  • the target patient information Ip is information indicating the above-mentioned background and disease state of the cancer patient who is the target of the prognosis prediction process.
  • the target patient information Ip is acquired via the interface unit 150 or the operation input unit 140 and stored in the storage unit 120.
  • the prognosis prediction execution unit 119 selects a treatment method (S320).
  • the prognosis prediction execution unit 119 selects one of a plurality of preset treatment options (anticancer drugs, molecular target drugs, immunotherapy, palliative treatment, etc.) according to instructions input via the operation input unit 140. , select a treatment method to predict prognosis.
  • multiple treatments may be selected.
  • the prognosis prediction execution unit 119 uses the target patient information Ip and the prognosis prediction model MO to predict the survival period when the target patient is treated with the selected treatment method (S330). That is, the prognosis prediction execution unit 119 inputs the target patient information Ip and the information specifying the selected treatment method to the prognosis prediction model MO, and thereby calculates the survival period prediction result outputted from the prognosis prediction model MO ( The predicted survival probability SP) shown in FIG. 1 is obtained. Note that if multiple treatments are selected in S320, the survival period for each treatment is predicted. The prognosis prediction execution unit 119 generates prognosis prediction result data RD, which is information indicating the prediction result of the survival period, and stores it in the storage unit 120 of the information processing device 100.
  • prognosis prediction result data RD is information indicating the prediction result of the survival period
  • the prognosis prediction execution unit 119 outputs the survival period prediction result based on the prognosis prediction result data RD (S340). For example, the prognosis prediction execution unit 119 causes the display unit 130 to display the survival period prediction result (for example, an image showing the predicted survival probability SP). Note that when multiple treatments are selected in S320, the survival period prediction results for each treatment are output sequentially or in parallel. With the above steps, the prognosis prediction process is completed.
  • the information processing apparatus 100 of the present embodiment is an information processing apparatus for predicting the survival period when a target patient suffering from lung cancer is treated with a predetermined treatment method. It includes an information acquisition section 114, a model acquisition section 113, and a prognosis prediction execution section 119.
  • the target patient information acquisition unit 114 acquires target patient information Ip including information indicating the target patient's background and disease state.
  • the model acquisition unit 113 acquires the prognosis prediction model MO.
  • the prognosis prediction model MO indicates information indicating the patient's background and disease state, and the treatment method administered to the patient, for each of a plurality of patients who have lung cancer and have been treated with the above-described prescribed treatment method.
  • the prognosis prediction execution unit 119 uses the target patient information Ip and the prognosis prediction model MO to predict the survival period when the target patient is treated with the above-mentioned predetermined treatment method, and outputs the survival period prediction result. do.
  • the target patient is given a predetermined treatment method using the target patient information Ip including information indicating the background and disease state of the target patient and the prognosis prediction model MO. It is possible to perform survival period prediction when treatment is administered and output the survival period prediction results. Therefore, it is possible to predict the survival period of each individual patient when treated with a predetermined treatment method based on the patient's background and disease state. Therefore, according to the information processing apparatus 100 of this embodiment, it is possible to accurately predict the survival period when each patient is treated with a predetermined treatment method. Thereby, it is possible to provide useful information for determining whether or not to treat each patient using a predetermined treatment method.
  • the information processing device 100 of this embodiment further includes a training data acquisition unit 112 that acquires training data TD. Furthermore, the model acquisition unit 113 acquires the prognosis prediction model MO by creating the prognosis prediction model MO by machine learning using the training data TD. According to the information processing device 100 of this embodiment, the prognosis prediction model MO can be obtained without using any other device, and the survival period can be predicted using the model.
  • the predetermined treatment method includes a plurality of mutually different treatment methods
  • the training data TD includes information about a plurality of patients treated with mutually different treatment methods.
  • the prognosis prediction execution unit 119 executes survival period prediction for each of the plurality of treatment methods. According to the information processing apparatus 100 of the present embodiment, it is possible to accurately predict the survival period of each patient when each patient is treated with each of a plurality of treatment methods. This can provide useful information for selecting a treatment method more suitable for each patient.
  • the information indicating the patient's background and disease state that constitutes the training data TD includes the image feature amount IF of the cancer focus (primary tumor).
  • the survival period can be predicted for each individual patient based on the image feature amount IF of the cancer focus, and the accuracy of predicting the survival period can be effectively improved. I can do it.
  • the image feature amount IF constituting the training data TD is composed of at least a portion of a plurality of higher-order principal components extracted by principal component analysis of a plurality of image feature amount candidates. ing. According to the information processing apparatus 100 of this embodiment, noise in the image feature amount IF can be effectively removed, and the prediction accuracy of the survival period can be further effectively improved.
  • the image feature amount IF constituting the training data TD is based on some principal components selected from a plurality of higher-order principal components based on an evaluation index indicating accuracy of survival period prediction. It is configured.
  • the survival period can be predicted using principal components that highly contribute to improving the accuracy of survival period prediction, and the prediction accuracy of survival period can be further effectively improved. can be done.
  • the selected principal components include a feature amount indicating non-uniformity of the image density of the lesion, a feature amount indicating the volume and/or surface area of the lesion, and and a feature amount indicating the shape of the lesion.
  • the survival period can be predicted using principal components that highly contribute to improving the accuracy of survival period prediction, and the prediction accuracy of survival period can be further effectively improved. can be done.
  • the prognosis prediction model MO is a model generated by machine learning using random survival forest. According to the information processing device 100 of the present embodiment, it is possible to obtain a prognosis prediction model MO that predicts the survival period with higher accuracy, and to more accurately predict the survival period when an individual patient is treated with a predetermined drug therapy. Can be predicted well.
  • the predetermined treatment method includes drug therapy. According to the information processing apparatus 100 of this embodiment, it is possible to accurately predict the survival period when each patient is treated with a predetermined drug therapy.
  • the information processing device 100 of the present embodiment extracts an image feature amount IF used for predicting the survival period when a patient suffering from lung cancer is treated with a predetermined treatment method from an image of a lesion of lung cancer.
  • the information processing apparatus includes an image feature acquisition section 115 and a feature selection section 116.
  • the image feature acquisition unit 115 acquires a plurality of image feature IF candidates from the image of the lesion.
  • the feature quantity selection unit 116 extracts a plurality of upper principal components by principal component analysis on the candidate image feature quantity IF, and extracts a principal component indicating the non-uniformity of the image density of the lesion and a principal component indicating the non-uniformity of the image density of the lesion from the plurality of upper principal components.
  • At least one of a principal component indicating the volume and/or surface area and a principal component indicating the shape of the lesion is selected as the image feature amount IF used for prediction.
  • image feature values useful for predicting the survival period when a patient suffering from lung cancer is treated with a predetermined treatment method from images of lung cancer lesions. IF can be extracted.
  • the information processing device 100 of the present embodiment is an information processing device that creates a prognosis prediction model MO for predicting the survival period when a patient suffering from lung cancer is treated with a predetermined treatment method, and includes: It includes an original information acquisition section 111 and a model acquisition section 113.
  • the raw information acquisition unit 111 displays, for each of a plurality of patients suffering from lung cancer and treated with a predetermined treatment method, information indicating the patient's background and disease state, and the treatment method administered to the patient.
  • the original information Io is obtained in which the information and the information indicating the patient's survival period are associated with each other.
  • the model acquisition unit 113 creates a prognosis prediction model MO by machine learning using at least some of the plurality of feature amounts included in the original information Io as training data TD.
  • the model acquisition unit 113 selects feature quantities to be introduced into the prognosis prediction model MO based on an evaluation index indicating the prediction accuracy of a model created by machine learning using some of the plurality of feature quantities included in the original information Io. Then, a prognosis prediction model MO is created using the selected feature amounts.
  • prognosis prediction model MO An example of the above-mentioned prognosis prediction model MO will be described below.
  • the prognosis prediction model MO of this example was created from January 2010 to December 2019, using non-small stage III or IV non-resectable or radically irradiable patients diagnosed at Nagoya University Hospital and Tousei Public Hospital. This was a retrospective observational study of patients with cellular lung cancer. Out of a total of 459 cases, 299 cases were used as training data (training cohort) to create a prognosis prediction model MO, and the remaining 160 cases were used as test data (test cohort) to verify the accuracy of the prognosis prediction model MO. did.
  • FIG. 8 is an explanatory diagram showing the prediction accuracy of each model.
  • Figure 8 shows the C-index values (values when using OOB data and values when using test data) as an evaluation index showing the accuracy of survival time prediction for multiple models created. ing.
  • the first temporary model MO1 shown in FIG. 8 is a model created by inputting all the collected original information Io, and is composed of 163-dimensional features (of which the image feature IF is 107-dimensional).
  • the second temporary model MO2 is a model in which the image feature amount IF is reduced from 107 dimensions to 9 dimensions by principal component analysis, resulting in a total of 65 dimensions.
  • the initial model MOi is a model composed of 30-dimensional feature quantities that are clearly related to the survival period among the feature quantities included in the original information Io.
  • the improved model MOr is based on the initial model MOi, and is designed to improve the accuracy of prognosis prediction from among the features included in the original information Io that may be related to the survival period.
  • the prognosis prediction model MO is a model created by making adjustments (outlier processing, discretization, hyperparameter tuning, etc.) to the improved model MOr and fixing the model.
  • the final fixed prognosis prediction model MO has a high C-index value of about 0.8 or higher both when using OOB data and when using test data. It can be said that high prediction accuracy has been achieved.
  • FIG. 9 is an explanatory diagram showing 11-dimensional feature amounts introduced into the improved model MOr.
  • the improved model MOr sequentially selects the feature with the highest prediction accuracy (C-index value) when introduced into the model and trained for each of the multiple feature quantities that are candidates for introduction. Created by repeating the process. As shown in FIG. 9, in this example, since the prediction accuracy of the model at the time when the 11th feature amount was introduced in Loop 11 was highest, the model at that time was used as the improved model MOr.
  • the 11 selected feature quantities include the three principal components (third, seventh, and eighth principal components) of the image feature quantity IF.
  • FIG. 10 is an explanatory diagram showing the configuration of the three selected principal components.
  • FIG. 10 shows the top six factors with the largest absolute values of factor loadings for each of the three selected principal components.
  • the shaded features indicate the volume and/or surface area of the lesion
  • the bold features indicate the shape of the lesion
  • the remaining features indicate the focus ( This is a feature amount indicating the heterogeneity of image gradation (CT value) of the primary tumor).
  • CT value image gradation
  • Figure 11 shows the results of extracting the top three principal components that have a high degree of contribution to improving the accuracy of survival period prediction (those on the left have a higher degree of contribution) for each pattern in which the combination of training data and test data has been variously changed.
  • FIG. In any pattern, part or all of the third, seventh, and eighth principal components of the image feature amount IF are included in the top three principal components with high contribution.
  • the feature amounts that indicate the heterogeneity of the image density (CT value) of the lesion (primary tumor), the feature amount that indicates the volume and/or surface area of the lesion, and the feature amount that indicates the shape of the lesion are: It can be said that the image feature amount IF has a high degree of contribution to improving the accuracy of survival period prediction using the prognosis prediction model MO.
  • FIG. 12 is an explanatory diagram showing the correct answer rate of survival period prediction using the prognosis prediction model MO of this example.
  • Figure 12 shows that the predicted survival probability at each time point is calculated for each case using the test data (excluding censored cases), and a case where the predicted survival probability is 50% or more is defined as "survival”. The percentage of correct answers for predicting survival time using the prognosis prediction model MO is shown, when a case where the probability is less than 50% is considered "death.”
  • the prognosis prediction model MO of this example shows a high prediction accuracy of about 80% or more even when long-term predictions of two years or more are included.
  • FIG. 13 is an explanatory diagram showing the results of survival period prediction using the prognosis prediction model MO of this example.
  • Column A of FIG. 13 shows the results of a Kaplan-Meier analysis using actual survival data for the test data. In this example, the median overall survival Tmed was 15.2 months.
  • column B of FIG. 13 the ensemble risk score of each case is calculated using the prognosis prediction model MO of this example, and the cases of the test data are divided into two groups (high risk group) using the median risk score of the training data as a threshold. Comparison of the survival curves of each group is shown.
  • the median overall survival time Tmed(H) for the high-risk group (solid line) is 6.4 months, and the median overall survival time Tmed(L) for the low-risk group (dashed line) is 42.3 months. , the P value was less than 0.001.
  • FIG. 14 is an explanatory diagram showing the results of survival period prediction for each initial treatment method using the prognosis prediction model MO of this example.
  • Column A of FIG. 14 shows the number of data n and C-index value for each initial treatment method, and columns B to E of FIG.
  • Survival curves of high-risk and low-risk groups for immunotherapy immunotherapy (immune checkpoint inhibitors ⁇ platinum doublet), molecular target drugs (EGFR-TKI, ALK-TKI), and palliative therapy The results of the comparison are shown.
  • the median overall survival time Tmed(H) for the high-risk group is 8.9 months
  • the median overall survival time Tmed(L) for the low-risk group is 31.9 months. month
  • the P value was less than 0.001.
  • the median overall survival time Tmed(H) for the high-risk group is 2.6 months, the median overall survival time Tmed(L) for the low-risk group is not applicable, and the P value is It was 0.004.
  • the median overall survival time Tmed(H) for the high-risk group is 9.6 months, and the median overall survival time Tmed(L) for the low-risk group is 60.6 months; P value was less than 0.001.
  • the median overall survival time Tmed(H) for the high-risk group is 0.9 months
  • the median overall survival time Tmed(L) for the low-risk group is 7.9 months, P The value was 0.002.
  • FIG. 15 is an explanatory diagram showing the results of survival period prediction using the prognosis prediction model MO of this example for one case.
  • FIG. 15 shows a survival curve predicted using the prognosis prediction model MO of this example and a survival curve predicted using a conventional biomarker. The details of this case are: 63-year-old male, PS1, adenocarcinoma, cT3N2M1c, Stage IVB, no genetic abnormality, PD-L1 ⁇ 50%, treatment method: immunotherapy (pembrolizumab).
  • the prognosis prediction model MO of the present example can realize survival period prediction with higher accuracy than conventional biomarkers, and can be said to have value as a new digital biomarker.
  • FIG. 16 is an explanatory diagram showing the results of survival period prediction using the prognosis prediction model MO of this example for each of a plurality of treatment methods targeting one other case.
  • FIG. 16 shows survival curves predicted using the prognosis prediction model MO of this example for each of the target treatment method A (platinum combination chemotherapy + immunotherapy) and comparative treatment method B (palliative treatment). ing.
  • the details of this case are: 73-year-old male, PS0, adenocarcinoma, cT2bN0M1c, Stage IVB, no genetic abnormality, PD-L1: 1-24%.
  • FIG. 17 is an explanatory diagram showing the results of survival period prediction using the prognosis prediction model MO of this example for each of a plurality of treatment methods targeting one other case.
  • FIG. 17 shows survival curves predicted using the prognosis prediction model MO of this example for each of the target treatment method A (third generation anticancer drug) and comparative treatment method B (palliative treatment). ing.
  • the details of this case are: 76-year-old male, PS3, squamous cell carcinoma, cT4N2M1c, Stage IVB, no genetic abnormality, PD-L1: unknown.
  • FIG. 18 is an explanatory diagram showing the results of survival period prediction using the prognosis prediction model MO of this example for each of a plurality of treatment methods targeting one other case.
  • FIG. 18 shows predictions made using the prognosis prediction model MO of this example for each of the first target treatment method A1 (pembrolizumab + anticancer drug combination) and the second target treatment method A2 (pembrolizumab single agent). The calculated survival curves are shown. Note that the first target treatment method A1 is considerably more expensive than the second target treatment method A2. The details of this case are: 72-year-old male, PS1, squamous cell carcinoma, cT4N2M1b, Stage IVA, no genetic abnormality, PD-L1: 50-74%.
  • the median overall survival time Tmed(A1) for the first target treatment method A1 predicted using the prognosis prediction model MO is equal to the median overall survival time Tmed(A2) for the second target treatment method A2. is predicted to be about the same. Therefore, this prediction result can serve as strong support for the decision to adopt the relatively inexpensive second target treatment method A2 instead of the first target treatment method A1.
  • FIG. 19 is an explanatory diagram showing a method for extracting patients for whom a sufficient therapeutic effect cannot be expected with existing treatment methods based on survival period prediction using the prognosis prediction model MO of this example.
  • Each column in Figure 19 shows the predicted survival period when treatment with a molecular target drug is applied to the test data, using different risk score thresholds for groups with low treatment efficacy (high risk group). The results are shown divided into groups with high therapeutic efficacy (low-risk group). Patients classified as high-risk groups can be targets for new drug development.
  • by changing the risk score threshold the number of patients classified into the high-risk group can be adjusted, and the population size of clinical trials and trials can be adjusted. can.
  • the configuration of the information processing device 100 in the above embodiment is merely an example, and can be modified in various ways.
  • the contents of the prognosis prediction model acquisition process and the prognosis prediction process in the above embodiment are merely examples, and can be modified in various ways.
  • the information processing device 100 obtains the prognosis prediction model MO by creating the prognosis prediction model MO, but the information processing device 100 acquires the prognosis prediction model MO by creating the prognosis prediction model MO. You may also obtain . In this case, the information processing device 100 does not need to have the training data acquisition unit 112.
  • the prognosis prediction model MO is created using a two-step method: first, an initial model MOi is created using predetermined features, and then an improved model MOr is created by adding features to the initial model MOi.
  • prognosis can be calculated using a three-step (or more than four-step) method of creating an improved model MOr and then creating a further improved model by adding features to the improved model MOr.
  • the prediction model MO may be created, or the prognosis prediction model MO may be created using a one-step method in which feature quantities to be adopted are determined at once.
  • the feature amounts, machine learning algorithm, and evaluation index used to create the prognosis prediction model MO in the above embodiment are merely examples, and can be modified in various ways.
  • feature values used to create the prognosis prediction model MO feature values other than the feature values exemplified in the above embodiments may be used, or some of the feature values exemplified in the above embodiments (for example, image features quantity IF) may not be used.
  • a machine learning algorithm used to create the prognosis prediction model MO an algorithm other than Random Survival Forest may be used.
  • an evaluation index other than the C-index may be used as an evaluation index representing the prediction accuracy of the prognosis prediction model MO.
  • the third, seventh, and eighth principal components selected from a plurality of high-order principal components extracted by principal component analysis are used as image feature values IF used to create the prognosis prediction model MO.
  • image feature values IF used to create the prognosis prediction model MO.
  • other principal components among the upper principal components may be used in place of or in addition to at least some of these.
  • all of the upper principal components may be used.
  • the above embodiment exemplifies information processing for predicting the survival period when a patient suffering from lung cancer is treated with a predetermined treatment method. However, it is also applicable to predicting the survival period when a patient suffering from cancer other than lung cancer is treated with a predetermined treatment method. Furthermore, the technology disclosed herein can be applied not only to cancer but also to predicting the survival period when a patient suffering from a disease other than cancer is treated with a predetermined treatment method. be.
  • a part of the configuration realized by hardware may be replaced with software, or conversely, a part of the configuration realized by software may be replaced by hardware.
  • Information processing device 110 Control unit 111: Original information acquisition unit 112: Training data acquisition unit 113: Model acquisition unit 114: Target patient information acquisition unit 115: Image feature acquisition unit 116: Feature selection unit 119: Prognosis prediction Execution unit 120: Storage unit 130: Display unit 140: Operation input unit 150: Interface unit 190: Bus

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

疾病に罹患した対象患者に所定の治療法による治療を施したときの生存時間を予測する情報処理装置は、対象患者情報取得部と、モデル取得部と、予後予測実行部と、を備える。対象患者情報取得部は、対象患者の背景および罹患状態を示す情報を含む対象患者情報を取得する。モデル取得部と、予後予測モデルを取得する。予後予測モデルは、疾病に罹患し、かつ、所定の治療法による治療を施された複数の患者のそれぞれについて、患者の背景および罹患状態を示す情報と、患者に施した治療法を示す情報と、患者の生存時間を示す情報と、が対応付けられた訓練データを用いた機械学習により生成されたモデルである。予後予測実行部は、対象患者情報と予後予測モデルとを用いて生存時間の予測を実行し、該予測の結果を出力する。

Description

情報処理装置、情報処理方法、および、コンピュータプログラム
 本明細書に開示される技術は、疾病に罹患した患者に所定の治療法による治療を施したときの生存時間を予測するための情報処理に関する。
 従来、がんに罹患した患者に対し、一律に所定の治療法による治療が施されていた。近年、例えばバイオマーカーを用いた患者のグループ分けを行い、グループごとに最適な治療法を選択するプレシジョンメディシンが広がりつつある。
 他方、医療分野において機械学習モデルの活用が模索されている。例えば、非特許文献1では、腫瘍の画像の特徴量を用いて、免疫療法を施した際に腫瘍が縮むか否かを予測する機械学習モデルが提案されている。
エス・トゥレベッシ(S.Trebeschi)、外17名、「非侵襲性のレディオミックバイオマーカーを用いたがん免疫療法に対する反応予測(Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers)」、腫瘍学論集(Annals of Oncology)、欧州医療腫瘍学会(European Society for Medical Oncology)、2019年3月21日、第30巻、998頁~1004頁
 個々のがん患者に所定の治療法による治療を施したときの生存時間を精度良く予測することができれば、該治療法による治療を行うか否かについての有力な判断材料とすることができるため、有用である。なお、生存時間(生存時間全般)とは、医療におけるイベント(疾病の憎悪、疾病の再発、死亡等)発生までの期間を意味し、例えば、全生存期間(死亡までの期間)、無増悪生存期間(治療によってがんが大きくならず進行が抑えられている期間)、無病生存期間(がんを手術してから再発するまでの期間)等が挙げられる。
 上述したプレシジョンメディシンでは、例えばバイオマーカーを用いて設定されたグループ毎に、所定の治療法による治療を施したときの生存時間を予測することが可能である。しかしながら、この予測は、あくまでグループについて一律に実行されるものであり、グループに属する個々の患者について個別に実行されるものではない。そのため、グループに属する個々の患者について、生存時間を精度良く予測することができないことがある。
 また、上述した非特許文献1に記載の技術は、免疫療法を施した際に腫瘍が縮むか否かを予測するものであり、生存時間を予測するものではない。
 このように、従来の技術では、個々のがん患者に所定の治療法による治療を施したときの生存時間を精度良く予測することができない、という課題がある。なお、このような課題は、がんに限らず、疾病一般に共通する課題である。
 本明細書では、上述した課題を解決することが可能な技術を開示する。
 本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。
(1)本明細書に開示される情報処理装置は、疾病に罹患した対象患者に所定の治療法による治療を施したときの生存時間を予測するための情報処理装置であって、対象患者情報取得部と、モデル取得部と、予後予測実行部とを備える。対象患者情報取得部は、対象患者の背景および罹患状態を示す情報を含む対象患者情報を取得する。モデル取得部は、予後予測モデルを取得する。予後予測モデルは、前記疾病に罹患し、かつ、前記所定の治療法による治療を施された複数の患者のそれぞれについて、患者の背景および罹患状態を示す情報と、患者に施した治療法を示す情報と、患者の生存時間を示す情報と、が対応付けられた訓練データを用いた機械学習により生成されたモデルである。予後予測実行部は、前記対象患者情報と前記予後予測モデルとを用いて、前記対象患者に前記所定の治療法による治療を施したときの生存時間の予測を実行し、前記予測の結果を出力する。
 本情報処理装置によれば、対象患者の背景および罹患状態を示す情報を含む対象患者情報と予後予測モデルとを用いて、対象患者に所定の治療法による治療を施したときの生存時間の予測を実行し、該予測の結果を出力することができる。そのため、個々の患者毎に、患者の背景および罹患状態に基づき、所定の治療法による治療を施したときの生存時間を予測することができる。従って、本実情報処理装置によれば、個々の患者に所定の治療法による治療を施したときの生存時間を精度良く予測することができる。これにより、個々の患者について所定の治療法による治療を行うか否かについての有力な判断材料を提供することができる。
(2)上記情報処理装置において、さらに、前記訓練データを取得する訓練データ取得部を備え、前記モデル取得部は、前記訓練データを用いた前記機械学習によって前記予後予測モデルを作成することにより、前記予後予測モデルを取得する構成としてもよい。本構成を採用すれば、他の装置を用いずとも予後予測モデルを取得することができ、該モデルを用いて生存時間の予測を実行することができる。
(3)上記情報処理装置において、前記所定の治療法は、互いに異なる複数の治療法を含み、前記訓練データは、互いに異なる治療法による治療が施された複数の患者についての情報を含み、前記予後予測実行部は、複数の治療法のそれぞれについて、前記生存時間の予測を実行する構成としてもよい。本構成を採用すれば、個々の患者に複数の治療法のそれぞれによる治療を施したときの生存時間を個別に精度良く予測することができる。これにより、個々の患者により適した治療法を選択するための有力な判断材料を提供することができる。
(4)上記情報処理装置において、前記患者の背景および罹患状態を示す情報は、前記疾病の病巣の画像特徴量を含む構成としてもよい。本構成を採用すれば、個々の患者毎に、病巣の画像特徴量に基づき生存時間を予測することができ、生存時間の予測精度を効果的に向上させることができる。
(5)上記情報処理装置において、前記画像特徴量は、複数の画像特徴量候補に対する主成分分析により抽出された複数の上位主成分の少なくとも一部により構成されている構成としてもよい。本構成を採用すれば、画像特徴量におけるノイズを効果的に除去することができ、生存時間の予測精度をさらに効果的に向上させることができる。
(6)上記情報処理装置において、前記画像特徴量は、前記生存時間の予測の精度を示す評価指標に基づき前記複数の上位主成分から選択された一部の主成分により構成されている構成としてもよい。本構成を採用すれば、生存時間の予測の精度の向上への寄与度の高い主成分を用いて生存時間を予測することができ、生存時間の予測精度をさらに効果的に向上させることができる。
(7)上記情報処理装置において、前記選択された一部の主成分は、前記病巣の画像濃淡の不均一性を示す特徴量と、前記病巣の体積および/または表面積を示す特徴量と、前記病巣の形状を示す特徴量と、の少なくとも1つを含む構成としてもよい。本構成を採用すれば、生存時間の予測の精度の向上への寄与度の高い主成分を用いて生存時間を予測することができ、生存時間の予測精度をさらに効果的に向上させることができる。
(8)上記情報処理装置において、前記予後予測モデルは、ランダムサバイバルフォレストを用いた前記機械学習により生成されたモデルである構成としてもよい。本構成を採用すれば、生存時間をより精度良く予測する予後予測モデルを得ることができ、個々の患者に所定の薬物療法による治療を施したときの生存時間をより精度良く予測することができる。
(9)上記情報処理装置において、前記所定の治療法は、薬物療法を含む構成としてもよい。本構成を採用すれば、個々の患者に所定の薬物療法による治療を施したときの生存時間を精度良く予測することができる。
(10)上記情報処理装置において、前記所定の疾患は、がんである構成としてもよい。本構成を採用すれば、個々のがん患者に所定の治療法による治療を施したときの生存時間を精度良く予測することができる。
(11)上記情報処理装置において、前記所定の疾患は、肺がんである構成としてもよい。本構成を採用すれば、個々の肺がん患者に所定の治療法による治療を施したときの生存時間を精度良く予測することができる。
(12)本明細書に開示される情報処理装置は、疾病に罹患した患者に所定の治療法による治療を施したときの生存時間の予測に用いられる画像特徴量を、前記疾病の病巣の画像から抽出するための情報処理装置であって、画像特徴量取得部と、特徴量選択部とを備える。画像特徴量取得部は、前記画像から、複数の画像特徴量の候補を取得する。特徴量選択部は、前記画像特徴量の候補に対する主成分分析により複数の上位主成分を抽出し、前記複数の上位主成分から、前記病巣の画像濃淡の不均一性を示す主成分と、前記病巣の体積および/または表面積を示す主成分と、前記病巣の形状を示す主成分と、の少なくとも1つを、前記画像特徴量として選択する。本情報処理装置によれば、疾病の病巣の画像から、疾病に罹患した患者に所定の治療法による治療を施したときの生存時間の予測を実行するために有用な画像特徴量を抽出することができる。
(13)本明細書に開示される情報処理装置は、疾病に罹患した患者に所定の治療法による治療を施したときの生存時間を予測するための予後予測モデルを作成する情報処理装置であって、原情報取得部と、モデル取得部とを備える。原情報取得部は、前記疾病に罹患し、かつ、前記所定の治療法による治療を施された複数の患者のそれぞれについて、患者の背景および罹患状態を示す情報と、患者に施した治療法を示す情報と、患者の生存時間を示す情報と、が対応付けられた原情報を取得する。モデル取得部は、前記原情報に含まれる複数の特徴量の少なくとも一部を訓練データとして用いた機械学習により前記予後予測モデルを作成する。モデル取得部は、前記原情報に含まれる前記複数の特徴量の一部を用いた機械学習により作成されるモデルの予測精度を示す評価指標に基づき、前記予後予測モデルに導入する特徴量を選択し、前記選択された特徴量により構成された前記予後予測モデルを作成する。本情報処理装置によれば、生存時間の予測の精度の向上への寄与度の高い特徴量を抽出することができ、生存時間の予測精度の高い予後予測モデルを作成することができる。
 なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、情報処理装置、情報処理方法、それらの方法を実現するコンピュータプログラム、そのコンピュータプログラムを記録した一時的でない記録媒体等の形態で実現することができる。
本実施形態における予後予測モデルMOを概念的に示す説明図 情報処理装置100の概略構成を示す説明図 本実施形態における予後予測モデル取得処理を示すフローチャート 画像特徴量IFの取得処理を示すフローチャート 画像特徴量IFの取得処理を概念的に示す説明図 改良モデルMOrの作成方法を概念的に示す説明図 本実施形態における予後予測処理を示すフローチャート 各モデルの予測精度を示す説明図 改良モデルMOrに導入された11次元の特徴量を示す説明図 選択された3つの主成分の構成を示す説明図 訓練データおよびテストデータの組合せを種々変更した各パターンについて、生存期間予測の精度向上に対する寄与度の高い上位3つの主成分を抽出した結果を示す説明図 本実施例の予後予測モデルMOを用いた生存期間予測の正答率を示す説明図 本実施例の予後予測モデルMOを用いた生存期間予測の結果を示す説明図 本実施例の予後予測モデルMOを用いた初回治療法別の生存期間予測の結果を示す説明図 1つの症例を対象とした本実施例の予後予測モデルMOを用いた生存期間予測の結果を示す説明図 他の1つの症例を対象とした複数の治療法のそれぞれについての本実施例の予後予測モデルMOを用いた生存期間予測の結果を示す説明図 他の1つの症例を対象とした複数の治療法のそれぞれについての本実施例の予後予測モデルMOを用いた生存期間予測の結果を示す説明図 他の1つの症例を対象とした複数の治療法のそれぞれについての本実施例の予後予測モデルMOを用いた生存期間予測の結果を示す説明図 本実施例の予後予測モデルMOを用いた生存期間予測に基づき既存治療法では十分な治療効果が見込めない患者の抽出方法を示す説明図
A.実施形態:
A-1.予後予測モデルMOの概要:
 はじめに、本実施形態における予後予測モデルMOの概要を説明する。図1は、本実施形態における予後予測モデルMOを概念的に示す説明図である。予後予測モデルMOは、疾病に罹患した患者に所定の治療法による治療を施したときの生存時間を予測するためのモデルである。予後予測モデルMOは、患者の背景および罹患状態を示す情報と、患者に施す治療法を示す情報とを入力とし、予測される生存時間を出力とする機械学習モデルである。患者の背景および罹患状態を示す情報は、例えば問診や血液検査、胸部CT画像の撮影等により得られる。生存時間としては、例えば、生存期間、無増悪生存期間、無病生存期間等が挙げられる。本実施形態では、生存時間として生存期間を用いた例について説明するが、本明細書に開示される技術は、生存期間に限らず、生存時間の予測一般に適用可能である。また、本実施形態では、生存期間の予測として、予測生存確率SPを示す予測生存曲線の作成が実行されるが、他の態様により生存期間の予測が実行されてもよい。
 本実施形態では、疾病の具体例として肺がんを用いる。肺がんの治療法としては、薬物療法があり、薬物療法としては、抗がん剤(アルキル化薬、代謝拮抗薬、微小管阻害薬等)、分子標的薬(チロシンキナーゼ阻害薬、mTOR阻害薬、プロテアソーム阻害薬等)、免疫療法(免疫チェックポイント阻害薬等)等がある。一般に、薬物療法は、緩和治療(緩和ケア)と比較して治療費が高額であることが多い。また、薬物療法間でも、治療費に大きな差があることが多い。
 予後予測モデルMOを用いることにより、個々のがん患者の背景および罹患状態に基づき、所定の治療法による治療を施したときの生存期間を精度良く予測することができる。生存期間の予測結果は、種々の用途に利用することができる。例えば、ある患者に対してある薬物療法による治療を施したときの予測生存期間が、緩和治療を施した際の予測生存期間と大差がないという結果が出た場合、該結果は該薬物療法による治療を採用しないという判断の材料となり得る。治療効果が十分ではない治療法を採用しないことは、患者の負担軽減や医療費の削減に資する。
 また、予後予測モデルMOを用いて複数の治療法についての生存期間を予測することにより、個々のがん患者により適した(より治療効果のある、および/または、より費用が低額な)治療法を選択することができる。例えば、費用が同程度の治療法Aおよび治療法Bについて、ある患者に対して治療法Aによる治療を施したときの予測生存期間が、治療法Bによる治療を施したときの予測生存期間より相当程度長いという結果が出た場合、該結果は治療法Aを採用するという判断の材料となり得る。また、例えば、比較的高価な治療法Aと比較的安価な治療法Bについて、ある患者に対して治療を施したときの予測生存期間が同等であるという結果が出た場合、該結果は治療法Bを採用するという判断の材料となり得る。
 また、予後予測モデルMOを用いて既存の薬物療法についての生存期間を予測することにより、既存の薬物療法では十分な治療効果が見込めない患者を抽出することができ、新薬開発のターゲット集団を設定することができる。例えば、既存の薬物療法のいずれについても、ある患者に対して治療を施したときの予測生存期間が、緩和治療を施した際の予測生存期間と同等であるという結果が出た場合、該患者は新薬開発のターゲットとなり得る。
 予後予測モデルMOの作成や予後予測モデルMOを用いた生存期間の予測に用いられる患者の背景および罹患状態を示す情報としては、例えば以下のものが挙げられる。
 年齢、性別、身長、体重、BMI、パフォーマンスステータス、喫煙指数、組織型(腺がん、扁平上皮がん、その他)、合併症(チャールソン併存疾患指数、COPD、間質性肺炎)、遠隔転移部位(肺、胸膜、肝、脳、副腎、骨)、遠隔転移臓器数、TMN分類および病期、ドライバー遺伝子異常(EGFR遺伝子変異、ALK融合遺伝子、ROS1融合遺伝子、BRAF遺伝子変異)、PD-L1発現(陰性、弱陽性、強陽性、不明)、血算(白血球数、好中球リンパ球比、ヘモグロビン、血小板数、血小板リンパ球比)、生化学(AST、ALT、ALP、LDH、CRP、アルブミン、Na、クレアチニンクリアランス)、病巣(原発腫瘍)の画像(画像特徴量)
 また、患者に施す治療法を示す情報としては、例えば以下のものが挙げられる。
 初回治療の方法(プラチナダブレット、第3世代抗がん剤、免疫チェックポイント阻害薬、プラチナダブレット+免疫チェックポイント阻害薬、EGFR-TKI、ALK-TKI、緩和治療)、遺伝子異常に対応する分子標的薬使用の有無、免疫チェックポイント阻害薬使用の有無
A-2.情報処理装置100の構成:
 次に、予後予測モデルMOの作成や予後予測モデルMOを用いた生存期間の予測を実行するための情報処理装置100の構成を説明する。図2は、情報処理装置100の概略構成を示す説明図である。情報処理装置100は、コンピュータ(PC、サーバ等)により構成されている。
 情報処理装置100は、制御部110と、記憶部120と、表示部130と、操作入力部140と、インターフェース部150とを備える。これらの各部は、バス190を介して互いに通信可能に接続されている。なお、情報処理装置100が出力手段としてのスピーカを備えていてもよい。
 情報処理装置100の表示部130は、例えば液晶ディスプレイ等により構成され、各種の画像や情報を表示する。操作入力部140は、例えばキーボードやマウス、ボタン、マイク、トラックパッド等により構成され、管理者の操作や指示を受け付ける。なお、表示部130がタッチパネルを備えることにより、操作入力部140として機能するとしてもよい。インターフェース部150は、例えばLANインターフェースやUSBインターフェース等により構成され、有線または無線により他の装置との通信を行う。
 情報処理装置100の記憶部120は、例えばROMやRAM、ハードディスクドライブ(HDD)等により構成され、各種のプログラムやデータを記憶したり、各種のプログラムを実行する際の作業領域やデータの一時的な記憶領域として利用されたりする。例えば、記憶部120には、後述する予後予測モデル取得処理や予後予測処理を実行するためのコンピュータプログラムである予後予測プログラムCPが格納されている。予後予測プログラムCPは、例えば、CD-ROMやDVD-ROM、USBメモリ等のコンピュータ読み取り可能な記録媒体(不図示)に格納された状態で提供され、あるいは、インターフェース部150を介して外部装置(ネットワーク上のサーバや他の端末装置)から取得可能な状態で提供され、情報処理装置100上で動作可能な状態で記憶部120に格納される。
 また、情報処理装置100の記憶部120には、予め、または、後述する予後予測モデル取得処理や予後予測処理の実行中に、訓練データTDと、予後予測モデルMOと、対象患者情報Ipと、予後予測結果データRDとが格納される。これらの情報やデータの内容については、後述する予後予測モデル取得処理および予後予測処理の説明に合わせて説明する。
 情報処理装置100の制御部110は、例えばCPU等により構成され、記憶部120から読み出したコンピュータプログラムを実行することにより、情報処理装置100の動作を制御する。例えば、制御部110は、記憶部120から予後予測プログラムCPを読み出して実行することにより、後述の予後予測モデル取得処理および予後予測処理を実行するための原情報取得部111と、訓練データ取得部112と、モデル取得部113と、対象患者情報取得部114と、画像特徴量取得部115と、特徴量選択部116と、予後予測実行部119として機能する。これら各部の機能については、後述の予後予測モデル取得処理および予後予測処理の説明に合わせて説明する。
A-3.予後予測モデル取得処理:
 次に、本実施形態の情報処理装置100により実行される予後予測モデル取得処理について説明する。図3は、本実施形態における予後予測モデル取得処理を示すフローチャートである。予後予測モデル取得処理は、肺がんに罹患した対象患者に所定の治療法による治療を施したときの生存期間を予測するために用いられる機械学習モデルである予後予測モデルMOを取得する処理である。本実施形態では、情報処理装置100は、自ら所定の機械学習によって予後予測モデルMOを作成することにより、予後予測モデルMOを取得する。予後予測モデル取得処理は、ユーザが情報処理装置100の操作入力部140を操作して開始指示を入力したことに応じて開始される。
 はじめに、情報処理装置100の原情報取得部111(図2)が、予後予測モデルMOの作成に用いられる情報(以下、「原情報Io」という。)を取得する(S110)。予後予測モデルMOの作成に用いられる原情報Ioは、予後予測モデルMOを作成するための機械学習に用いられる訓練データTDの母体となる情報である。原情報Ioは、具体的には、肺がんに罹患し、かつ、所定の治療法による治療を施された複数の患者について、上述した患者の背景および罹患状態を示す情報と、患者に施した治療法を示す情報と、患者の生存期間を示す情報と、が対応付けられた情報である。原情報Ioは、互いに異なる治療法が施された複数の患者についての情報を含んでいる。原情報Ioは、そのまま訓練データTDを構成する特徴量として用いられる情報を含んでいてもよいし、加工後に訓練データTDを構成する特徴量として用いられる情報を含んでいてもよい。例えば、本実施形態では、原情報Ioは、訓練データTDを構成する病巣(原発腫瘍)の画像の特徴量を取得するための、加工前の胸部CT画像を含んでいる。原情報Ioは、インターフェース部150を介してあるいは操作入力部140を介して取得される。
 次に、情報処理装置100の画像特徴量取得部115(図2)が、原情報Ioに含まれる胸部CT画像を対象として、原発腫瘍の画像の画像特徴量IFを取得するための処理を実行する(S120)。図4は、画像特徴量IFの取得処理を示すフローチャートである。また、図5は、画像特徴量IFの取得処理を概念的に示す説明図である。
 画像特徴量IFの取得処理では、はじめに、画像特徴量取得部115が、操作入力部140を介して入力された指示に従い、胸部CT画像における原発腫瘍の領域を示すマスクデータMDを取得する(S210)。マスクデータMDの取得は、例えば3D Slicerのような画像処理ソフトウェアを用いて実行することができる。また、マスクデータMDの取得の際に、空気領域を精度良く除外して腫瘍を精確にとらえることによってノイズを除去するために、胸部CT画像におけるCT値が所定の閾値(例えば-400HU)以下のボクセルを除去する閾値処理を行ってもよい。
 次に、画像特徴量取得部115は、胸部CT画像においてマスクデータMDにより指定された領域(すなわち、原発腫瘍の領域)を対象として、画像特徴量IF(画像特徴量IFの候補)を抽出する(S220)。図5に示すように、本実施形態では、画像特徴量IFとして、原発腫瘍のCT値(すなわち、画像濃淡)に関する特徴量と、原発腫瘍の形状および大きさに関する特徴量と、原発腫瘍のテクスチャに関する特徴量とが抽出される。画像特徴量IFの抽出は、例えば、PyRadiomicsのような画像処理ソフトウェアを用いて実行することができる。S220において抽出される画像特徴量IFは、特許請求の範囲における画像特徴量の候補の一例である。
 原発腫瘍のCT値に関する特徴量は、原発腫瘍のCT値の分布を示すものであり、例えば、CT値の最大値、最小値、平均値、中央値、均一性等が挙げられる。本実施形態では、原発腫瘍のCT値に関する特徴量として、18個の特徴量が抽出される。
 原発腫瘍の形状および大きさに関する特徴量は、原発腫瘍の形状や大きさ(体積、面積等)を示すものであり、例えば、原発腫瘍の最大長、最小長、平坦さ、面積、球形度等が挙げられる。本実施形態では、原発腫瘍の原発腫瘍の形状および大きさに関する特徴量として、14個の特徴量が抽出される。
 原発腫瘍のテクスチャに関する特徴量は、原発腫瘍の内部の模様や不均一性を示すものであり、階調値同時生起行列(GLCM)に関するもの(例えば24項目)と、階調値ランレングス行列(GLRLM)に関するもの(例えば16項目)と、階調値サイズゾーン行列(GLSZM)に関するもの(例えば16項目)と、階調値近傍濃度差行列(NGLDM)に関するもの(例えば5項目)と、階調値依存行列(GLDM)に関するもの(例えば14項目)とに分類される。本実施形態では、原発腫瘍のテクスチャに関する特徴量として、合計75個の特徴量が抽出される。
 次に、情報処理装置100の特徴量選択部116(図2)が、抽出された画像特徴量IFの主成分分析を行う(S230)。画像特徴量IFの主成分分析を行い、累積寄与率に基づき上位主成分を選択することにより、画像特徴量IFの次元を削減してノイズを除去することができる。図5に示すように、本実施形態では、107次元の画像特徴量IFが、第1主成分から第9主成分までの9次元の画像特徴量IFに次元削減される。以上の処理により、画像特徴量IFの取得が完了し、処理は図3のS130に戻る。
 次に、情報処理装置100の訓練データ取得部112(図2)が訓練データTDを取得し、モデル取得部113が訓練データTDを用いた機械学習により初期モデルMOiを作成する(S130)。より詳細には、訓練データ取得部112は、原情報Ioに含まれる特徴量の一部を用いて訓練データTDを作成する。また、モデル取得部113は、訓練データTDに含まれる患者の背景および罹患状態を示す情報と、患者に施した治療法を示す情報とを入力データとし、訓練データTDに含まれる患者の生存期間を示す情報を目的変数とし、生存期間予測の精度を示す所定の評価指標を高くするような機械学習を実行することにより、初期モデルMOiを作成する。
 初期モデルMOiの作成のための機械学習には、公知の種々の機械学習アルゴリムを利用可能であるが、本実施形態では、ランダムサバイバルフォレストが用いられる。ランダムサバイバルフォレストを用いた機械学習では、母集団から重複を許容してランダムにデータを抽出する再標本化(ブートストラップ)により訓練データを作成し、該訓練データを用いて複数の弱学習器(Tree)を作成し、各弱学習器によって累積ハザード関数を予測させ、それらの平均値をアンサンブル累積ハザード関数とする。このアンサンブル累積ハザード関数を用いて、死亡イベントの起きやすさを示す指標であるアンサンブルリスクスコアを推定することができる。なお、本実施形態では、以降の機械学習においても、同様に機械学習アルゴリムとしてランダムサバイバルフォレストが用いられる。
 また、生存期間予測の精度を示す評価指標としては、公知の種々の評価指標を利用可能であるが、本実施形態では、C-index(Concordance index)が用いられる。C-indexは、リスクスコアの小さい症例の方が生存期間が長いことが実際のデータでどれくらいの確率で正しいかを示す値であり、大きいほど(最大値:1)モデルの性能が良いことが示される指標である。また、評価指標の算出の際には、例えばブートストラップでサンプリングされなかったデータであるOOB(アウトオブバッグ)データが用いられる。なお、本実施形態では、以降の機械学習においても、同様に評価指標としてC-indexが用いられる。
 初期モデルMOiの作成に用いられる特徴量の母集団は、原情報Ioに含まれる特徴量のうち、生存期間との関連が明らかな特徴量から構成される。生存期間との関連が明らかな特徴量としては、例えば、以下のものが挙げられる。
 年齢(例えば75歳未満/75歳以上の別)、性別、パフォーマンスステータス(例えば0~1/2~4の別)、組織型(腺がん、扁平上皮がん、その他)、TMN分類(例えば、T:1a~1c/2a~4の別、N:0~1/2~3の別、M:0/1a~1cの別)および病期(例えばStage:IIIA/IIIB~IIIC/IVA/IVBの別)、ドライバー遺伝子異常(EGFR遺伝子変異、ALK融合遺伝子、ROS1融合遺伝子、BRAF遺伝子変異)、PD-L1発現(陰性、弱陽性、強陽性、不明)、初回治療の治療法(プラチナダブレット、第3世代抗がん剤、免疫チェックポイント阻害薬、プラチナダブレット+免疫チェックポイント阻害薬、EGFR-TKI、ALK-TKI、緩和治療)、遺伝子異常に対応する分子標的薬使用の有無、免疫チェックポイント阻害薬使用の有無
 次に、モデル取得部113は、訓練データTDを用いた機械学習により、改良モデルMOrを作成する(S140)。改良モデルMOrは、初期モデルMOiを改良したものである。改良モデルMOrは、初期モデルMOiをベースに、原情報Ioに含まれる特徴量のうち、生存期間と関連する可能性がある特徴量の中から、予測精度向上への寄与度の高い特徴量を逐次選択して追加することにより作成される。生存期間と関連する可能性がある特徴量としては、例えば、以下のものが挙げられる。
 身長、体重、BMI、喫煙指数(例えば30/750/1100で分類)、合併症(チャールソン併存疾患指数、COPD、間質性肺炎)、遠隔転移部位(肺、胸膜、肝、脳、副腎、骨)、遠隔転移臓器数、血算(白血球数(例えば8000未満/8000以上の別)、好中球リンパ球比(例えば5未満/5以上の別)、ヘモグロビン、血小板数、血小板リンパ球比)、生化学(AST、ALT、ALP、LDH(例えば181/209/262で分類)、CRP(例えば0.1未満/0.1~10/10以上の別)、アルブミン、Na(例えば134/137で分類)、クレアチニンクリアランス)、病巣(原発腫瘍)の画像(画像特徴量)
 図6は、改良モデルMOrの作成方法を概念的に示す説明図である。例えば4つの特徴量FE(FE(A)~FE(D))が候補として存在する場合、図6の「Loop1」に示されるように、各特徴量を初期モデルMOiに導入して学習を行ったときの予測精度を示す評価指標(本実施形態ではC-index)を個別に算出し、予測精度の最も高い特徴量(図6の例では特徴量FE(B))を抽出する。
 次に図6の「Loop2」に示されるように、「Loop1」で抽出された特徴量(特徴量FE(B))が追加された初期モデルMOiに対し、残りの各特徴量を導入して学習を行ったときの予測精度を示す評価指標を個別に算出し、精度が最も高くなる特徴量(図6の例では特徴量FE(C))を抽出する。さらに、図6の「Loop3」に示されるように、「Loop1」および「Loop2」で抽出された特徴量(特徴量FE(B)およびFE(C))が導入された初期モデルMOiに対し、残りの各特徴量を導入して学習を行ったときの予測精度を示す評価指標を個別に算出し、精度が最も高くなる特徴量(図6の例では特徴量FE(A))を抽出する。このような処理を繰り返し実行し、モデルの予測精度が最も高くなる特徴量の組合せを特定し、該組合せを初期モデルMOiに追加したモデルを改良モデルMOrとする。
 次に、改良モデルMOrの調整を行ってモデルを固定することにより、予後予測モデルMOを作成する(S150)。モデルの調整としては、例えば、臨床および基礎医学的知識に基づく外れ値処理および離散化、網羅的なハイパーパラメーターのチューニング等が挙げられる。このようにして作成された予後予測モデルMOは、情報処理装置100の記憶部120に格納される。以上により、予後予測モデルMOの取得処理が完了する。
A-4.予後予測処理:
 次に、本実施形態の情報処理装置100により実行される予後予測処理について説明する。図7は、本実施形態における予後予測処理を示すフローチャートである。予後予測処理は、予後予測モデルMOを用いて、肺がんに罹患した患者に所定の治療法による治療を施したときの生存期間を予測する処理である。予後予測処理は、ユーザが情報処理装置100の操作入力部140を操作して開始指示を入力したことに応じて開始される。
 予後予測処理では、はじめに、情報処理装置100の対象患者情報取得部114(図2)が、対象患者情報Ipを取得する(S310)。対象患者情報Ipは、予後予測処理の対象のがん患者についての上述した背景および罹患状態を示す情報である。対象患者情報Ipは、インターフェース部150を介してあるいは操作入力部140を介して取得され、記憶部120に格納される。
 次に、情報処理装置100の予後予測実行部119(図2)が、治療法を選択する(S320)。予後予測実行部119は、操作入力部140を介して入力された指示に従い、予め設定された複数の治療法の選択肢(抗がん剤、分子標的薬、免疫療法、緩和治療等)の中から、予後予測に用いる治療法を選択する。S320において、複数の治療法が選択されてもよい。
 次に、予後予測実行部119は、対象患者情報Ipと予後予測モデルMOとを用いて、対象患者に対して選択された治療法による治療を施したときの生存期間を予測する(S330)。すなわち、予後予測実行部119は、予後予測モデルMOに対して対象患者情報Ipおよび選択された治療法を特定する情報を入力することにより、予後予測モデルMOから出力される生存期間の予測結果(図1に示す予測生存確率SP)を取得する。なお、S320において複数の治療法が選択された場合には、それぞれの治療法についての生存期間が予測される。予後予測実行部119は、生存期間の予測結果を示す情報である予後予測結果データRDを生成し、情報処理装置100の記憶部120に格納する。
 次に、予後予測実行部119は、予後予測結果データRDに基づき、生存期間の予測結果を出力する(S340)。例えば、予後予測実行部119は、生存期間の予測結果(例えば、予測生存確率SPを示す画像)を表示部130に表示させる。なお、S320において複数の治療法が選択された場合には、それぞれの治療法についての生存期間の予測結果が、順次あるいは並列的に出力される。以上により、予後予測処理が完了する。
A-5.本実施形態の効果:
 以上説明したように、本実施形態の情報処理装置100は、肺がんに罹患した対象患者に所定の治療法による治療を施したときの生存期間を予測するための情報処理装置であって、対象患者情報取得部114と、モデル取得部113と、予後予測実行部119とを備える。対象患者情報取得部114は、対象患者の背景および罹患状態を示す情報を含む対象患者情報Ipを取得する。モデル取得部113は、予後予測モデルMOを取得する。予後予測モデルMOは、肺がんに罹患し、かつ、上記所定の治療法による治療を施された複数の患者のそれぞれについて、患者の背景および罹患状態を示す情報と、患者に施した治療法を示す情報と、患者の生存期間を示す情報と、が対応付けられた訓練データTDを用いた機械学習により生成されたモデルである。予後予測実行部119は、対象患者情報Ipと予後予測モデルMOとを用いて、対象患者に上記所定の治療法による治療を施したときの生存期間予測を実行し、生存期間予測の結果を出力する。
 このように、本実施形態の情報処理装置100によれば、対象患者の背景および罹患状態を示す情報を含む対象患者情報Ipと予後予測モデルMOとを用いて、対象患者に所定の治療法による治療を施したときの生存期間予測を実行し、生存期間予測の結果を出力することができる。そのため、個々の患者毎に、患者の背景および罹患状態に基づき、所定の治療法による治療を施したときの生存期間を予測することができる。従って、本実施形態の情報処理装置100によれば、個々の患者に所定の治療法による治療を施したときの生存期間を精度良く予測することができる。これにより、個々の患者について所定の治療法による治療を行うか否かについての有力な判断材料を提供することができる。
 また、本実施形態の情報処理装置100は、さらに、訓練データTDを取得する訓練データ取得部112を備える。また、モデル取得部113は、訓練データTDを用いた機械学習によって予後予測モデルMOを作成することにより、予後予測モデルMOを取得する。本実施形態の情報処理装置100によれば、他の装置を用いずとも予後予測モデルMOを取得することができ、該モデルを用いて生存期間の予測を実行することができる。
 また、本実施形態の情報処理装置100では、所定の治療法は、互いに異なる複数の治療法を含み、訓練データTDは、互いに異なる治療法による治療が施された複数の患者についての情報を含み、予後予測実行部119は、複数の治療法のそれぞれについて生存期間予測を実行する。本実施形態の情報処理装置100によれば、個々の患者に複数の治療法のそれぞれによる治療を施したときの生存期間を個別に精度良く予測することができる。これにより、個々の患者により適した治療法を選択するための有力な判断材料を提供することができる。
 また、本実施形態の情報処理装置100では、訓練データTDを構成する患者の背景および罹患状態を示す情報は、がんの病巣(原発腫瘍)の画像特徴量IFを含む。本実施形態の情報処理装置100によれば、個々の患者毎に、がんの病巣の画像特徴量IFに基づき生存期間を予測することができ、生存期間の予測精度を効果的に向上させることができる。
 また、本実施形態の情報処理装置100では、訓練データTDを構成する画像特徴量IFは、複数の画像特徴量候補に対する主成分分析により抽出された複数の上位主成分の少なくとも一部により構成されている。本実施形態の情報処理装置100によれば、画像特徴量IFにおけるノイズを効果的に除去することができ、生存期間の予測精度をさらに効果的に向上させることができる。
 また、本実施形態の情報処理装置100では、訓練データTDを構成する画像特徴量IFは、生存期間予測の精度を示す評価指標に基づき複数の上位主成分から選択された一部の主成分により構成されている。本実施形態の情報処理装置100によれば、生存期間予測の精度の向上への寄与度の高い主成分を用いて生存期間を予測することができ、生存期間の予測精度をさらに効果的に向上させることができる。なお、本実施形態の情報処理装置100では、上記選択された一部の主成分は、病巣の画像濃淡の不均一性を示す特徴量と、病巣の体積および/または表面積を示す特徴量と、病巣の形状を示す特徴量と、の少なくとも1つを含む。本実施形態の情報処理装置100によれば、生存期間予測の精度の向上への寄与度の高い主成分を用いて生存期間を予測することができ、生存期間の予測精度をさらに効果的に向上させることができる。
 また、本実施形態の情報処理装置100では、予後予測モデルMOは、ランダムサバイバルフォレストを用いた機械学習により生成されたモデルである。本実施形態の情報処理装置100によれば、生存期間をより精度良く予測する予後予測モデルMOを得ることができ、個々の患者に所定の薬物療法による治療を施したときの生存期間をより精度良く予測することができる。
 また、本実施形態の情報処理装置100では、所定の治療法は、薬物療法を含む。本実施形態の情報処理装置100によれば、個々の患者に所定の薬物療法による治療を施したときの生存期間を精度良く予測することができる。
 また、本実施形態の情報処理装置100は、肺がんに罹患した患者に所定の治療法による治療を施したときの生存期間の予測に用いられる画像特徴量IFを、肺がんの病巣の画像から抽出するための情報処理装置であって、画像特徴量取得部115と、特徴量選択部116とを備える。画像特徴量取得部115は、病巣の画像から、複数の画像特徴量IFの候補を取得する。特徴量選択部116は、画像特徴量IFの候補に対する主成分分析により複数の上位主成分を抽出し、複数の上位主成分から、病巣の画像濃淡の不均一性を示す主成分と、病巣の体積および/または表面積を示す主成分と、病巣の形状を示す主成分と、の少なくとも1つを、予測に用いる画像特徴量IFとして選択する。本実施形態の情報処理装置100によれば、肺がんの病巣の画像から、肺がんに罹患した患者に所定の治療法による治療を施したときの生存期間の予測を実行するために有用な画像特徴量IFを抽出することができる。
 また、本実施形態の情報処理装置100は、肺がんに罹患した患者に所定の治療法による治療を施したときの生存期間を予測するための予後予測モデルMOを作成する情報処理装置であって、原情報取得部111と、モデル取得部113とを備える。原情報取得部111は、肺がんに罹患し、かつ、所定の治療法による治療を施された複数の患者のそれぞれについて、患者の背景および罹患状態を示す情報と、患者に施した治療法を示す情報と、患者の生存期間を示す情報と、が対応付けられた原情報Ioを取得する。モデル取得部113は、原情報Ioに含まれる複数の特徴量の少なくとも一部を訓練データTDとして用いた機械学習により予後予測モデルMOを作成する。モデル取得部113は、原情報Ioに含まれる複数の特徴量の一部を用いた機械学習により作成されるモデルの予測精度を示す評価指標に基づき、予後予測モデルMOに導入する特徴量を選択し、選択された特徴量により構成された予後予測モデルMOを作成する。本実施形態の情報処理装置100によれば、生存期間予測の精度の向上への寄与度の高い特徴量を抽出することができ、生存期間の予測精度の高い予後予測モデルMOを作成することができる。
A-6.実施例:
 上述した予後予測モデルMOの実施例について、以下説明する。本実施例の予後予測モデルMOの作成は、2010年1月から2019年12月までに、名古屋大学医学部附属病院および公立陶生病院において診断された切除・根治照射不能III期あるいはIV期の非小細胞肺がん患者を対象とした後ろ向き観察研究により行った。合計459件の症例のうち、299件を訓練データ(訓練コホート)として用いて予後予測モデルMOを作成し、残りの160件をテストデータ(テストコホート)として用いて予後予測モデルMOの精度を検証した。
 図8は、各モデルの予測精度を示す説明図である。図8には、作成した複数のモデルについて、生存期間予測の精度を示す評価指標としてのC-indexの値(OOBデータを用いたときの値およびテストデータを用いたときの値)が示されている。
 図8に示す第1仮モデルMO1は、収集した原情報Ioをすべて投入して作成したモデルであり、163次元(うち、画像特徴量IFは107次元)の特徴量により構成されている。第2仮モデルMO2は、主成分分析によって画像特徴量IFを107次元から9次元に削減し、合計65次元としたモデルである。初期モデルMOiは、上述したように、原情報Ioに含まれる特徴量のうちの生存期間との関連が明らかな30次元の特徴量により構成されたモデルである。改良モデルMOrは、上述したように、初期モデルMOiをベースに、原情報Ioに含まれる特徴量のうちの生存期間と関連する可能性がある特徴量の中から、予後予測の精度の向上に寄与する11次元の特徴量を選択して導入することにより作成された合計41次元のモデルである。予後予測モデルMOは、改良モデルMOrに対する調整(外れ値処理、離散化、ハイパーパラメーターのチューニング等)を行ってモデルを固定することにより作成されたモデルである。
 図8に示すように、最終的に固定された予後予測モデルMOは、OOBデータを用いたとき、およびテストデータを用いたときの両方において、0.8程度以上の高いC-indexの値を得ており、高い予測精度を実現できていると言える。
 なお、改良モデルMOrに導入された11次元の特徴量について補足する。図9は、改良モデルMOrに導入された11次元の特徴量を示す説明図である。上述したように、改良モデルMOrは、導入候補の複数の特徴量のそれぞれについて、モデルに導入して学習を行ったときの予測精度(C-indexの値)が最も高い特徴量を逐次選択する処理を繰り返し実行することにより作成される。図9に示すように、本実施例では、Loop11において11番目の特徴量が導入された時点のモデルの予測精度が最も高かったため、その時点のモデルを改良モデルMOrとした。
 図9に示すように、選択された11個の特徴量には、画像特徴量IFの3つの主成分(第3、第7および第8主成分)が含まれる。図10は、選択された3つの主成分の構成を示す説明図である。図10には、選択された3つの主成分のそれぞれについて、因子負荷量の絶対値が大きい上位6個の因子が示されている。図中、網掛けされた特徴量は、病巣の体積および/または表面積を示す特徴量であり、太字で示す特徴量は、病巣の形状を示す特徴量であり、残りの特徴量は、病巣(原発腫瘍)の画像濃淡(CT値)の不均一性を示す特徴量である。選択された3つの主成分は、いずれも、主としてこれら3種類の特徴量により構成されている。
 図11は、訓練データおよびテストデータの組合せを種々変更した各パターンについて、生存期間予測の精度向上に対する寄与度の高い上位3つの主成分(左側に示すものほど寄与度が高い)を抽出した結果を示す説明図である。いずれのパターンにおいても、画像特徴量IFの第3、第7および第8主成分の一部または全部が、寄与度の高い上位3つの主成分に含まれている。以上のことから、病巣(原発腫瘍)の画像濃淡(CT値)の不均一性を示す特徴量と、病巣の体積および/または表面積を示す特徴量と、病巣の形状を示す特徴量とは、予後予測モデルMOを用いた生存期間予測の精度向上に対する寄与度の高い画像特徴量IFであると言える。
 図12は、本実施例の予後予測モデルMOを用いた生存期間予測の正答率を示す説明図である。図12には、テストデータ(ただし打ち切りの症例を除く)を用いて症例毎に各時点での予測生存確率を算出し、予測生存確率が50%以上である場合を「生存」とし、予測生存確率が50%未満である場合を「死亡」としたときの、予後予測モデルMOを用いた生存期間の予測結果の正答率が示されている。図12に示すように、本実施例の予後予測モデルMOは、2年以上の長期予測を含めても、概ね80%程度以上の高い予測精度を示している。
 図13は、本実施例の予後予測モデルMOを用いた生存期間予測の結果を示す説明図である。図13のA欄には、テストデータについての実際の生存期間データを用いたカプランマイヤー解析の結果が示されている。この例では、全生存期間の中央値Tmedは15.2ヶ月であった。図13のB欄には、本実施例の予後予測モデルMOを用いて各症例のアンサンブルリスクスコアを算出し、訓練データのリスクスコア中央値を閾値としてテストデータの症例を2群(ハイリスク群およびローリスク群)に分割したときの、各群の生存曲線を比較した結果が示されている。ハイリスク群(実線)についての全生存期間の中央値Tmed(H)は6.4ヶ月であり、ローリスク群(鎖線)についての全生存期間の中央値Tmed(L)は42.3ヶ月であり、P値は0.001未満であった。
 図14は、本実施例の予後予測モデルMOを用いた初回治療法別の生存期間予測の結果を示す説明図である。図14のA欄には、各初回治療法についてのデータ数nとC-indexの値が示されており、図14のBからE欄には、それぞれ、細胞障害性抗がん剤(プラチナダブレット+第3世代抗がん剤)、免疫療法(免疫チェックポイント阻害薬±プラチナダブレット)、分子標的薬(EGFR-TKI、ALK-TKI)、緩和治療について、ハイリスク群およびローリスク群の生存曲線を比較した結果が示されている。細胞障害性抗がん剤については、ハイリスク群の全生存期間の中央値Tmed(H)は8.9ヶ月であり、ローリスク群についての全生存期間の中央値Tmed(L)は31.9ヶ月であり、P値は0.001未満であった。免疫療法については、ハイリスク群の全生存期間の中央値Tmed(H)は2.6ヶ月であり、ローリスク群についての全生存期間の中央値Tmed(L)は該当無しであり、P値は0.004であった。分子標的薬については、ハイリスク群の全生存期間の中央値Tmed(H)は9.6ヶ月であり、ローリスク群についての全生存期間の中央値Tmed(L)は60.6ヶ月であり、P値は0.001未満であった。緩和治療については、ハイリスク群の全生存期間の中央値Tmed(H)は0.9ヶ月であり、ローリスク群についての全生存期間の中央値Tmed(L)は7.9ヶ月であり、P値は0.002であった。
 図15は、1つの症例を対象とした本実施例の予後予測モデルMOを用いた生存期間予測の結果を示す説明図である。図15には、本実施例の予後予測モデルMOを用いて予測された生存曲線と、従来のバイオマーカーを用いて予測された生存曲線とが示されている。この症例の詳細は、63歳男性、PS1、腺がん、cT3N2M1c、StageIVB、遺伝子異常なし、PD-L1≧50%、治療法:免疫療法(ペムブロリズマブ)である。予後予測モデルMOを用いて予測された全生存期間の中央値Tmed1は、従来のバイオマーカーを用いて予測された全生存期間の中央値Tmed2より、実際の生存期間Tact(=441日)に近い。このように、本実施例の予後予測モデルMOは、従来のバイオマーカーより高精度の生存期間予測を実現可能であり、新規のデジタルバイオマーカーとしての価値があると言える。
 図16は、他の1つの症例を対象とした複数の治療法のそれぞれについての本実施例の予後予測モデルMOを用いた生存期間予測の結果を示す説明図である。図16には、対象治療法A(プラチナ併用化学療法+免疫療法)と比較治療法B(緩和治療)のそれぞれについて、本実施例の予後予測モデルMOを用いて予測された生存曲線が示されている。この症例の詳細は、73歳男性、PS0、腺がん、cT2bN0M1c、StageIVB、遺伝子異常なし、PD-L1:1~24%である。予後予測モデルMOを用いて予測された対象治療法Aについての全生存期間の中央値Tmed(A)は、比較治療法Bについての全生存期間の中央値Tmed(B)より相当に長く、治療効果E(=Tmed(A)-Tmed(B))が大きいと予測されている。そのため、この予測結果は、対象治療法Aを採用するという判断の有力な裏付けとなり得る。
 図17は、他の1つの症例を対象とした複数の治療法のそれぞれについての本実施例の予後予測モデルMOを用いた生存期間予測の結果を示す説明図である。図17には、対象治療法A(第3世代抗がん剤)と比較治療法B(緩和治療)のそれぞれについて、本実施例の予後予測モデルMOを用いて予測された生存曲線が示されている。この症例の詳細は、76歳男性、PS3、扁平上皮がん、cT4N2M1c、StageIVB、遺伝子異常なし、PD-L1:不明である。予後予測モデルMOを用いて予測された対象治療法Aについての全生存期間の中央値Tmed(A)は、比較治療法Bについての全生存期間の中央値Tmed(B)と同程度であり、治療効果E(=Tmed(A)-Tmed(B))が小さいと予測されている。そのため、この予測結果は、対象治療法Aを採用しないという判断の有力な裏付けとなり得る。このように、本実施例の予後予測モデルMOを用いれば、ある治療法による治療を採用するか否かの有力な判断材料を提供することができる。
 図18は、他の1つの症例を対象とした複数の治療法のそれぞれについての本実施例の予後予測モデルMOを用いた生存期間予測の結果を示す説明図である。図18には、第1の対象治療法A1(ペムブロリズマブ+抗がん剤併用)と第2の対象治療法A2(ペムブロリズマブ単剤)のそれぞれについて、本実施例の予後予測モデルMOを用いて予測された生存曲線が示されている。なお、第1の対象治療法A1は第2の対象治療法A2と比較して費用が相当に高額である。この症例の詳細は、72歳男性、PS1、扁平上皮がん、cT4N2M1b、StageIVA、遺伝子異常なし、PD-L1:50~74%である。予後予測モデルMOを用いて予測された第1の対象治療法A1についての全生存期間の中央値Tmed(A1)は、第2の対象治療法A2についての全生存期間の中央値Tmed(A2)と同程度であると予測されている。そのため、この予測結果は、第1の対象治療法A1ではなく、比較的低額な第2の対象治療法A2を採用するという判断の有力な裏付けとなり得る。
 図19は、本実施例の予後予測モデルMOを用いた生存期間予測に基づき既存治療法では十分な治療効果が見込めない患者の抽出方法を示す説明図である。図19の各欄には、テストデータを対象とした分子標的薬による治療を施したときの予測生存期間を、それぞれ互いに異なるリスクスコアの閾値を用いて、治療効果が低い群(ハイリスク群)と治療効果が高い群(ローリスク群)とに分類した結果が示されている。ハイリスク群に分類される患者は、新薬開発のターゲットとなり得る。また、図19の各欄に示すように、リスクスコアの閾値を変更することにより、ハイリスク群に分類される患者数を調整することができ、臨床試験や治験の集団サイズを調整することができる。
B.変形例:
 本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
 上記実施形態における情報処理装置100の構成は、あくまで一例であり、種々変形可能である。また、上記実施形態における予後予測モデル取得処理および予後予測処理の内容は、あくまで一例であり、種々変形可能である。例えば、上記実施形態では、情報処理装置100が、予後予測モデルMOを作成することによって予後予測モデルMOを取得しているが、情報処理装置100が、他の装置により生成された予後予測モデルMOを取得するとしてもよい。この場合には、情報処理装置100が訓練データ取得部112を有する必要はない。
 上記実施形態では、まず所定の特徴量を用いて初期モデルMOiを作成し、その後に初期モデルMOiに特徴量を追加することによって改良モデルMOrを作成する、という2段階の方法によって予後予測モデルMOを作成しているが、これに代えて、改良モデルMOrの作成の後に改良モデルMOrに特徴量を追加することによってさらなる改良モデルを作成する、という3段階(または4段階以上)の方法によって予後予測モデルMOを作成してもよいし、採用する特徴量を一度に決定する1段階の方法によって予後予測モデルMOを作成してもよい。
 上記実施形態における予後予測モデルMOの作成に用いられる特徴量、機械学習アルゴリズムおよび評価指標は、あくまで一例であり、種々変形可能である。例えば、予後予測モデルMOの作成に用いられる特徴量として、上記実施形態において例示した特徴量以外の特徴量が用いられてもよいし、上記実施形態において例示した特徴量の一部(例えば画像特徴量IF)が用いられなくてもよい。また、予後予測モデルMOの作成に用いられる機械学習アルゴリズムとして、ランダムサバイバルフォレスト以外のアルゴリズムが用いられてもよい。また、予後予測モデルMOの予測精度を表す評価指標として、C-index以外の評価指標が用いられてもよい。
 上記実施形態では、予後予測モデルMOの作成に用いられる画像特徴量IFとして、主成分分析により抽出された複数の上位主成分から選択された第3、第7および第8主成分が用いられているが、これらの少なくとも一部に代えて、あるいはこれらに加えて、上位主成分のうちの他の主成分が用いられてもよい。また、上位主成分のすべてが用いられてもよい。また、必ずしも画像特徴量IFの主成分分析が行われる必要はない。
 上記実施形態では、肺がんに罹患した患者に所定の治療法による治療を施したときの生存期間を予測するための情報処理を例示しているが、本明細書に開示される技術は、肺がんに限らず、肺がん以外のがんに罹患した患者に所定の治療法による治療を施したときの生存期間の予測にも同様に適用可能である。さらに、本明細書に開示される技術は、がんに限らず、がん以外の疾病に罹患した患者に所定の治療法による治療を施したときの生存期間の予測にも同様に適用可能である。
 上記実施形態において、ハードウェアによって実現されている構成の一部をソフトウェアに置き換えるようにしてもよく、反対に、ソフトウェアによって実現されている構成の一部をハードウェアに置き換えるようにしてもよい。
100:情報処理装置 110:制御部 111:原情報取得部 112:訓練データ取得部 113:モデル取得部 114:対象患者情報取得部 115:画像特徴量取得部 116:特徴量選択部 119:予後予測実行部 120:記憶部 130:表示部 140:操作入力部 150:インターフェース部 190:バス

Claims (15)

  1.  疾病に罹患した対象患者に所定の治療法による治療を施したときの生存時間を予測するための情報処理装置であって、
     前記対象患者の背景および罹患状態を示す情報を含む対象患者情報を取得する対象患者情報取得部と、
     予後予測モデルを取得するモデル取得部であって、前記予後予測モデルは、前記疾病に罹患し、かつ、前記所定の治療法による治療を施された複数の患者のそれぞれについて、患者の背景および罹患状態を示す情報と、患者に施した治療法を示す情報と、患者の生存時間を示す情報と、が対応付けられた訓練データを用いた機械学習により生成されたモデルである、モデル取得部と、
     前記対象患者情報と前記予後予測モデルとを用いて、前記対象患者に前記所定の治療法による治療を施したときの生存時間の予測を実行し、前記予測の結果を出力する予後予測実行部と、
    を備える、情報処理装置。
  2.  請求項1に記載の情報処理装置であって、さらに、
     前記訓練データを取得する訓練データ取得部を備え、
     前記モデル取得部は、前記訓練データを用いた前記機械学習によって前記予後予測モデルを作成することにより、前記予後予測モデルを取得する、情報処理装置。
  3.  請求項1または請求項2に記載の情報処理装置であって、
     前記所定の治療法は、互いに異なる複数の治療法を含み、
     前記訓練データは、互いに異なる治療法による治療が施された複数の患者についての情報を含み、
     前記予後予測実行部は、複数の治療法のそれぞれについて、前記生存時間の予測を実行する、情報処理装置。
  4.  請求項1から請求項3までのいずれか一項に記載の情報処理装置であって、
     前記患者の背景および罹患状態を示す情報は、前記疾病の病巣の画像特徴量を含む、情報処理装置。
  5.  請求項4に記載の情報処理装置であって、
     前記画像特徴量は、複数の画像特徴量候補に対する主成分分析により抽出された複数の上位主成分の少なくとも一部により構成されている、情報処理装置。
  6.  請求項5に記載の情報処理装置であって、
     前記画像特徴量は、前記生存時間の予測の精度を示す評価指標に基づき前記複数の上位主成分から選択された一部の主成分により構成されている、情報処理装置。
  7.  請求項6に記載の情報処理装置であって、
     前記選択された一部の主成分は、前記病巣の画像濃淡の不均一性を示す特徴量と、前記病巣の体積および/または表面積を示す特徴量と、前記病巣の形状を示す特徴量と、の少なくとも1つを含む、情報処理装置。
  8.  請求項1から請求項7までのいずれか一項に記載の情報処理装置であって、
     前記予後予測モデルは、ランダムサバイバルフォレストを用いた前記機械学習により生成されたモデルである、情報処理装置。
  9.  請求項1から請求項8までのいずれか一項に記載の情報処理装置であって、
     前記所定の治療法は、薬物療法を含む、情報処理装置。
  10.  請求項9に記載の情報処理装置であって、
     前記所定の疾患は、がんである、情報処理装置。
  11.  請求項10に記載の情報処理装置であって、
     前記所定の疾患は、肺がんである、情報処理装置。
  12.  疾病に罹患した対象患者に所定の治療法による治療を施したときの生存時間を予測するための情報処理方法であって、
     前記対象患者の背景および罹患状態を示す情報を含む対象患者情報を取得する工程と、
     予後予測モデルを取得する工程であって、前記予後予測モデルは、前記疾病に罹患し、かつ、前記所定の治療法による治療を施された複数の患者のそれぞれについて、患者の背景および罹患状態を示す情報と、患者に施した治療法を示す情報と、患者の生存時間を示す情報と、が対応付けられた訓練データを用いた機械学習により生成されたモデルである、予後予測モデルを取得する工程と、
     前記対象患者情報と前記予後予測モデルとを用いて、前記対象患者に前記所定の治療法による治療を施したときの生存時間の予測を実行し、前記予測の結果を出力する工程と、
    を備える、情報処理方法。
  13.  疾病に罹患した対象患者に所定の治療法による治療を施したときの生存時間を予測するためのコンピュータプログラムであって、
     コンピュータに、
     前記対象患者の背景および罹患状態を示す情報を含む対象患者情報を取得する処理と、
     予後予測モデルを取得する処理であって、前記予後予測モデルは、前記疾病に罹患し、かつ、前記所定の治療法による治療を施された複数の患者のそれぞれについて、患者の背景および罹患状態を示す情報と、患者に施した治療法を示す情報と、患者の生存時間を示す情報と、が対応付けられた訓練データを用いた機械学習により生成されたモデルである、予後予測モデルを取得する処理と、
     前記対象患者情報と前記予後予測モデルとを用いて、前記対象患者に前記所定の治療法による治療を施したときの生存時間の予測を実行し、前記予測の結果を出力する処理と、
    を実行させる、コンピュータプログラム。
  14.  疾病に罹患した患者に所定の治療法による治療を施したときの生存時間の予測に用いられる画像特徴量を、前記疾病の病巣の画像から抽出するための情報処理装置であって、
     前記画像から、複数の画像特徴量候補を取得する画像特徴量取得部と、
     前記画像特徴量候補に対する主成分分析により複数の上位主成分を抽出し、前記複数の上位主成分から、前記病巣の画像濃淡の不均一性を示す主成分と、前記病巣の体積および/または表面積を示す主成分と、前記病巣の形状を示す主成分と、の少なくとも1つを、前記画像特徴量として選択する特徴量選択部と、
    を備える、情報処理装置。
  15.  疾病に罹患した患者に所定の治療法による治療を施したときの生存時間を予測するための予後予測モデルを作成する情報処理装置であって、
     前記疾病に罹患し、かつ、前記所定の治療法による治療を施された複数の患者のそれぞれについて、患者の背景および罹患状態を示す情報と、患者に施した治療法を示す情報と、患者の生存時間を示す情報と、が対応付けられた原情報を取得する原情報取得部と、
     前記原情報に含まれる複数の特徴量の少なくとも一部を訓練データとして用いた機械学習により前記予後予測モデルを作成するモデル取得部であって、前記モデル取得部は、前記原情報に含まれる前記複数の特徴量の一部を用いた機械学習により作成されるモデルの予測精度を示す評価指標に基づき、前記予後予測モデルに導入する特徴量を選択し、前記選択された特徴量により構成された前記予後予測モデルを作成する、モデル取得部と、
    を備える、情報処理装置。
PCT/JP2023/008495 2022-03-18 2023-03-07 情報処理装置、情報処理方法、および、コンピュータプログラム WO2023176576A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022043291 2022-03-18
JP2022-043291 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023176576A1 true WO2023176576A1 (ja) 2023-09-21

Family

ID=88023171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008495 WO2023176576A1 (ja) 2022-03-18 2023-03-07 情報処理装置、情報処理方法、および、コンピュータプログラム

Country Status (1)

Country Link
WO (1) WO2023176576A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004258978A (ja) * 2003-02-26 2004-09-16 Toshiba Corp バーチャルペーシェントシステム、情報提供システム及び医療情報提供方法
US20200069973A1 (en) * 2018-05-30 2020-03-05 Siemens Healthcare Gmbh Decision Support System for Individualizing Radiotherapy Dose
JP2021506326A (ja) * 2017-12-21 2021-02-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Pde4d7発現及び術前臨床変数に基づく術前リスクの層別化
JP2021507428A (ja) * 2017-10-13 2021-02-22 エーアイ テクノロジーズ インコーポレイテッド 眼科疾病及び障害の深層学習に基づく診断及び紹介
JP2021086558A (ja) * 2019-11-29 2021-06-03 キヤノンメディカルシステムズ株式会社 データ選別装置、学習装置及びプログラム
JP2022037803A (ja) * 2020-08-25 2022-03-09 株式会社鈴康 情報処理方法、診断支援装置及びコンピュータプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004258978A (ja) * 2003-02-26 2004-09-16 Toshiba Corp バーチャルペーシェントシステム、情報提供システム及び医療情報提供方法
JP2021507428A (ja) * 2017-10-13 2021-02-22 エーアイ テクノロジーズ インコーポレイテッド 眼科疾病及び障害の深層学習に基づく診断及び紹介
JP2021506326A (ja) * 2017-12-21 2021-02-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Pde4d7発現及び術前臨床変数に基づく術前リスクの層別化
US20200069973A1 (en) * 2018-05-30 2020-03-05 Siemens Healthcare Gmbh Decision Support System for Individualizing Radiotherapy Dose
JP2021086558A (ja) * 2019-11-29 2021-06-03 キヤノンメディカルシステムズ株式会社 データ選別装置、学習装置及びプログラム
JP2022037803A (ja) * 2020-08-25 2022-03-09 株式会社鈴康 情報処理方法、診断支援装置及びコンピュータプログラム

Similar Documents

Publication Publication Date Title
Li et al. Radiomics for the prediction of EGFR mutation subtypes in non‐small cell lung cancer
Coroller et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma
Yu et al. Development and validation of a predictive radiomics model for clinical outcomes in stage I non-small cell lung cancer
Yang et al. Use and outcomes of minimally invasive lobectomy for stage I non-small cell lung cancer in the National Cancer Data Base
US20210233241A1 (en) System and method for predicting the risk of future lung cancer
CN115036002B (zh) 一种基于多模态融合模型的治疗效果预测方法及终端设备
Bonvalot et al. Complete pathological response to neoadjuvant treatment is associated with better survival outcomes in patients with soft tissue sarcoma: Results of a retrospective multicenter study
Dono et al. Molecular characteristics and clinical features of multifocal glioblastoma
Soria et al. Predictive factors of the absence of residual disease at repeated transurethral resection of the bladder. Is there a possibility to avoid it in well-selected patients?
Hannan et al. Stereotactic Ablative Radiation for Systemic Therapy–naïve Oligometastatic Kidney Cancer
JP2023535456A (ja) 画像データ及び臨床データの深層学習解析を用いた免疫療法治療に対する反応予測
Han et al. The value of CT-based radiomics for predicting spread through air spaces in stage IA lung adenocarcinoma
WO2023176576A1 (ja) 情報処理装置、情報処理方法、および、コンピュータプログラム
Ohri et al. Stereotactic body radiation therapy for stage I non-small cell lung cancer: The importance of treatment planning algorithm and evaluation of a tumor control probability model
Dercle et al. Baseline radiomic signature to estimate overall survival in patients with NSCLC
Peeken et al. Treatment-related features improve machine learning prediction of prognosis in soft tissue sarcoma patients
US10734095B2 (en) Systems and methods for prioritizing variants of unknown significance
Ji et al. Prognostic score for de novo metastatic breast cancer with liver metastasis and its predictive value of locoregional treatment benefit
Welter et al. Lung segment geometry study: simulation of largest possible tumours that fit into bronchopulmonary segments
Leclercq et al. Active surveillance of low-grade prostate cancer using the SurACaP Criteria: A multi-institutional series with a median follow-up of 10 years
US20230027734A1 (en) System and Method for Predicting the Risk of Future Lung Cancer
Liu et al. Development and Validation of Nomograms to Assess Risk Factors and Overall Survival Prediction for Lung Metastasis in Young Patients with Osteosarcoma: A SEER‐Based Study
Sui et al. Immune landscape and prognostic gene signatures in gastric cancer: implications for cachexia and clinical outcomes
Gori et al. Follow-up of breast cancer: why is it necessary to start a Consensus in 2024?
Zheng et al. Development and validation of a computed tomography-based radiomics signature to predict “highest-risk” from patients with high-risk gastrointestinal stromal tumor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770532

Country of ref document: EP

Kind code of ref document: A1