WO2023176563A1 - Wiring circuit substrate - Google Patents

Wiring circuit substrate Download PDF

Info

Publication number
WO2023176563A1
WO2023176563A1 PCT/JP2023/008415 JP2023008415W WO2023176563A1 WO 2023176563 A1 WO2023176563 A1 WO 2023176563A1 JP 2023008415 W JP2023008415 W JP 2023008415W WO 2023176563 A1 WO2023176563 A1 WO 2023176563A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
printed circuit
vibrator
support layer
magnet
Prior art date
Application number
PCT/JP2023/008415
Other languages
French (fr)
Japanese (ja)
Inventor
真弥 井上
博司 山崎
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023176563A1 publication Critical patent/WO2023176563A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes

Definitions

  • the present invention relates to a printed circuit board.
  • Patent Document 1 describes an actuator that includes a multilayer substrate, a magnet, and a movable body.
  • the multilayer substrate includes a laminate and a coil formed in the laminate. When a predetermined current is passed through the coil, a magnetic field radiated from the coil causes the magnet and the movable body to be displaced in a direction perpendicular to the stacking direction of the stacked bodies on the multilayer board.
  • An object of the present invention is to provide a printed circuit board that can be used as an actuator and can be made thinner.
  • a printed circuit board includes a metal support layer, an insulating layer disposed on the metal support layer, and a conductor layer disposed on the insulating layer, and includes a part of the metal support layer. constitutes a vibrator.
  • the vibrator since the vibrator is constituted by a part of the metal support layer, the printed circuit board can be used alone as an actuator. Further, the vibrator can be formed in the manufacturing process of the printed circuit board, and there is no need to provide a structure for adding the vibrator to the printed circuit board. This allows the printed circuit board to be made thinner while configuring the printed circuit board as an actuator.
  • the thickness of the vibrator may be smaller than the thickness of a portion of the metal support layer that is different from the vibrator. In this case, the vibrator can be easily configured to vibrate.
  • the vibrator may have a meandering shape or a spiral shape. In this case, the vibrator can be easily configured to vibrate.
  • a part of the conductor layer may constitute a coil.
  • the printed circuit board can be easily used as an actuator by passing a current through a portion of the conductor layer.
  • a magnet may be attached to the vibrator.
  • the vibrator can be easily vibrated by the magnetic force between the conductor layer and the magnet.
  • the vibrator may include a magnet support layer to which a magnet is attached, and a connection piece that connects the magnet support layer and a portion of the metal support layer that is different from the vibrator. In this case, the magnet support layer in the vibrator can be efficiently vibrated.
  • the vibrator may form a coil.
  • the printed circuit board can be easily used as an actuator.
  • a magnet may be attached at a position spaced apart from the vibrator by a predetermined distance. In this case, the vibrator can be easily vibrated by the magnetic force between the vibrator and the magnet.
  • a printed circuit board that can be used as an actuator can be made thinner.
  • FIG. 1 is a schematic cross-sectional view of a touch panel including a printed circuit board according to a first embodiment of the present invention.
  • FIG. 2 is a plan view of the printed circuit board of FIG.
  • FIG. 3 is a cross-sectional view taken along line AA of the printed circuit board of FIG.
  • FIG. 4 is a diagram for explaining the operation of the printed circuit board of FIG. 2.
  • FIG. 5 is a process cross-sectional view for explaining an example of a method for manufacturing a printed circuit board.
  • FIG. 6 is a process cross-sectional view for explaining an example of a method for manufacturing a printed circuit board.
  • FIG. 7 is a process cross-sectional view for explaining an example of a method for manufacturing a printed circuit board.
  • FIG. 1 is a schematic cross-sectional view of a touch panel including a printed circuit board according to a first embodiment of the present invention.
  • FIG. 2 is a plan view of the printed circuit board of FIG.
  • FIG. 3 is a cross-
  • FIG. 8 is a process cross-sectional view for explaining an example of a method for manufacturing a printed circuit board.
  • FIG. 9 is a process cross-sectional view for explaining an example of a method for manufacturing a printed circuit board.
  • FIG. 10 is a process cross-sectional view for explaining an example of a method for manufacturing a printed circuit board.
  • FIG. 11 is a plan view of a printed circuit board according to a first modification.
  • FIG. 12 is a diagram for explaining the operation of the printed circuit board of FIG. 11.
  • FIG. 13 is a plan view of a printed circuit board according to a second modification.
  • FIG. 14 is a diagram for explaining the operation of the printed circuit board of FIG. 13.
  • FIG. 15 is a plan view of a printed circuit board according to the second embodiment of the invention.
  • FIG. 16 is a diagram for explaining the operation of the printed circuit board of FIG. 15.
  • a printed circuit board according to an embodiment of the present invention will be described with reference to the drawings.
  • a printed circuit board is provided in a touch panel as a haptic (tactile technology) element, but the embodiments are not limited thereto.
  • the printed circuit board can be provided as an actuator in various products.
  • FIG. 1 is a schematic cross-sectional view of a touch panel including a printed circuit board according to a first embodiment of the present invention.
  • the touch panel 200 includes a printed circuit board 100, a rear panel 110, adhesive layers 120 and 130, a display 140, a protective layer 150, and a drive circuit 160.
  • the touch panel 200 is, for example, a capacitive touch panel, and is mounted on a television, a mobile phone, a personal digital assistant, or other display device.
  • Adhesive layers 120 and 130 include double-sided tape.
  • Protective layer 150 is, for example, a cover glass and is attached to the surface of display 140. Details of the printed circuit board 100 will be described later.
  • the drive circuit 160 includes, for example, an integrated circuit.
  • the drive circuit 160 may be mounted on the printed circuit board 100.
  • the printed circuit board 100 and the drive circuit 160 are electrically connected by wiring 170.
  • the wiring 170 may be a circuit board such as a flexible printed circuit board.
  • the user of the touch panel 200 touches the protective layer 150 of the touch panel 200 with a finger or a touch pen (finger in the example of FIG. 1).
  • the capacitance between a plurality of electrodes (not shown) provided on the printed circuit board 100 changes.
  • the drive circuit 160 detects a change in the capacitance of the printed circuit board 100, it causes an alternating current to flow through the wiring 170 to a conductor layer 30 of the printed circuit board 100, which will be described later. This causes the printed circuit board 100 to vibrate. As a result, the user can perceive that the touch panel 200 has been touched.
  • FIG. 2 is a plan view of the printed circuit board 100 of FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line AA of the printed circuit board 100 of FIG.
  • the printed circuit board 100 includes a metal support layer 10, a base insulating layer 20, a conductor layer 30, a magnet 40, and a cover insulating layer 50. Note that in FIG. 2, illustration of the cover insulating layer 50 is omitted. Also in FIG. 4 and the like described later, illustration of the cover insulating layer 50 is omitted as appropriate.
  • the metal support layer 10 is made of stainless steel, for example.
  • Metal support layer 10 includes an insulator support layer 11 and a vibrator 12.
  • the insulator support layer 11 has a rectangular frame shape.
  • the length of each side of the insulator support layer 11 in plan view is, for example, 30 mm or more and 50 mm or less.
  • the user can visually recognize the rear panel 110 in FIG. 1 through the area surrounded by the insulator support layer 11 (hereinafter referred to as a hollow area).
  • the width of the insulator support layer 11 is preferably small so as not to obstruct the visibility of the rear panel 110. In this example, the width of the insulator support layer 11 is 18 ⁇ m.
  • the vibrator 12 includes a magnet support layer 12a and a plurality of (four in this example) connecting pieces 12b.
  • the magnet support layer 12a is arranged approximately at the center of the hollow region.
  • Each connection piece 12b has a meandering shape and connects the magnet support layer 12a and the insulator support layer 11.
  • the thickness of the vibrator 12 may be smaller than the thickness of the insulator support layer 11.
  • the thickness of the insulator support layer 11 is 100 ⁇ m or more and 150 ⁇ m or less, and the thickness of the vibrator 12 is 15 ⁇ m or more and 60 ⁇ m or less.
  • the base insulating layer 20 is made of polyimide, for example.
  • the base insulating layer 20 has substantially the same rectangular frame shape as the insulator support layer 11 and is formed on the insulator support layer 11 .
  • the thickness of the base insulating layer 20 is, for example, 5 ⁇ m or more and 10 ⁇ m or less.
  • the conductor layer 30 is made of copper, for example, and constitutes wiring and electrodes. A portion of the wiring in the conductor layer 30 is a coil, which is formed on the base insulating layer 20 so as to surround the hollow region. The illustration of the conductor layer 30 other than the coil portion is omitted.
  • the thickness of the conductor layer 30 is, for example, 5 ⁇ m or more and 30 ⁇ m or less. Both ends of the coil of the conductor layer 30 are drawn out of the base insulating layer 20 and connected to the drive circuit 160 via the wiring 170 in FIG.
  • the magnet 40 is a permanent magnet and is attached to one surface of the magnet support layer 12a of the vibrator 12. In the example of FIG. 3, the north pole of the magnet 40 is attached to the magnet support layer 12a.
  • the magnet 40 may be indirectly attached to the magnet support layer 12a via another member such as an adhesive layer or a resin layer.
  • the cover insulating layer 50 is made of polyimide, for example.
  • the cover insulating layer 50 has substantially the same rectangular frame shape as the base insulating layer 20 and is formed on the base insulating layer 20 so as to cover the conductor layer 30 .
  • the thickness of the cover insulating layer 50 is, for example, 8 ⁇ m or more and 50 ⁇ m or less.
  • FIG. 4 is a diagram for explaining the operation of printed circuit board 100 of FIG. 2. As shown by the arrow in the upper part of FIG. 4, the drive circuit 160 causes an alternating current to flow through the conductor layer 30 of the printed circuit board 100 through the wiring 170, so that the coil of the conductor layer 30 becomes an electromagnet.
  • FIGS. 5 to 10 are process cross-sectional views for explaining an example of a method for manufacturing the printed circuit board 100.
  • 5 to 10 correspond to cross-sectional views taken along the line AA of the printed circuit board 100 in FIG.
  • a rectangular metal plate 10A made of stainless steel is prepared, and masks 101 are formed on the outer periphery of both sides of the metal plate 10A.
  • the material of the metal plate 10A is not limited to stainless steel, but may be other metals such as aluminum.
  • an etching solution the portion of the metal plate 10A exposed from the mask 101 is etched for a relatively short period of time (hereinafter referred to as half etching).
  • a thick part 10a and a thin part 10b having a smaller thickness than the thick part 10a are formed in the metal plate 10A.
  • half etching is performed on both sides of the metal plate 10A at the same time, but the embodiment is not limited to this.
  • Half etching may be sequentially performed on each side of the metal plate 10A.
  • half etching may be performed only on one surface of the metal plate 10A, and no half etching may be performed on the other surface of the metal plate 10A.
  • the mask 101 is removed from the metal plate 10A.
  • a mask (not shown) is formed on the metal plate 10A so that unnecessary parts are exposed, and the parts of the metal plate 10A exposed from the mask are etched (hereinafter referred to as full etching) using an etching solution.
  • full etching the parts of the metal plate 10A exposed from the mask are etched (hereinafter referred to as full etching) using an etching solution.
  • the thick portion 10a becomes the insulator support layer 11
  • the vibrator 12 consisting of the magnet support layer 12a and the connecting piece 12b is It is formed in the thin portion 10b.
  • the metal support layer 10 is formed.
  • the metal support layer 10 is formed by performing half etching on the metal plate 10A and then performing full etching, but the embodiment is not limited to this.
  • the metal support layer 10 may be formed by performing half etching after the entire etching is performed on the metal plate 10A. After the complete etching is complete, the mask is removed from the metal support layer 10.
  • a base insulating layer 20 is formed on the upper surface of the insulator support layer 11.
  • the base insulating layer 20 may be formed by applying a photosensitive resin precursor to the metal support layer 10 and partially exposing the photosensitive resin precursor to ultraviolet light.
  • the material of the base insulating layer 20 is polyimide, but it may be other resin such as epoxy.
  • a conductor layer 30 is formed on the base insulating layer 20, and a cover insulating layer 50 is formed on the base insulating layer 20 so as to cover the conductor layer 30.
  • the conductor layer 30 may be formed using an additive method, a semi-additive method, or another method such as a subtractive method.
  • the procedure for forming the cover insulating layer 50 is the same as the step for forming the base insulating layer 20.
  • a magnet 40 is attached to the upper surface of the magnet support layer 12a of the vibrator 12. Thereby, the printed circuit board 100 is completed.
  • the vibrator 12 is constituted by a part of the metal support layer 10. Therefore, the printed circuit board 100 can be used alone as an actuator. Specifically, a part of the conductor layer 30 constitutes a coil, and a magnet 40 is attached to the magnet support layer 12a of the vibrator 12. In this case, by passing a current through a portion of the conductor layer 30, magnetic force is generated between the conductor layer 30 and the magnet 40. Thereby, the magnet support layer 12a can be easily and efficiently vibrated. Therefore, the printed circuit board 100 can be easily used as an actuator.
  • the vibrator 12 can be formed during the manufacturing process of the printed circuit board 100, and the user does not need to assemble each component of the printed circuit board 100. Therefore, the actuator can be constructed with high dimensional accuracy. Further, there is no need to provide a structure for adding the vibrator 12 to the printed circuit board 100. As a result, the printed circuit board 100 can be made thinner while configuring the printed circuit board 100 as an actuator.
  • the thickness of the vibrator 12 in the metal support layer 10 is smaller than the thickness of the insulator support layer 11. Further, the vibrator 12 has a meandering shape. Thereby, the vibrator 12 can be easily configured to vibrate. Alternatively, the vibrator 12 may have a spiral shape. In this case, the vibrator 12 functions as a spiral spring or a bamboo spring. Therefore, the vibrator 12 can be easily configured to vibrate.
  • the vibrator 12 includes four connecting pieces 12b having a meandering shape, but the embodiment is not limited to this.
  • the vibrator 12 may include less than four connecting pieces 12b. Further, if the vibrator 12 is capable of sufficiently vibrating, the connecting piece 12b does not need to have a meandering shape.
  • different points from the printed circuit board 100 of FIG. 2 will be explained regarding the printed circuit board 100 according to the modified example.
  • FIG. 11 is a plan view of a printed circuit board 100 according to a first modification.
  • the vibrator 12 includes a magnet support layer 12a and one connection piece 12b.
  • the magnet support layer 12a has a disk shape
  • the connecting piece 12b has a belt shape.
  • FIG. 12 is a diagram for explaining the operation of the printed circuit board 100 of FIG. 11.
  • an alternating current is passed through the conductor layer 30.
  • the state shown in the middle row of FIG. 12 in which the magnet 40 receives an upward magnetic force
  • the state shown in the lower row of FIG. 12, in which the magnet 40 receives a downward magnetic force alternately occur.
  • the vibrator 12 vibrates in the vertical direction with respect to the insulator support layer 11.
  • FIG. 13 is a plan view of a printed circuit board 100 according to a second modification.
  • the vibrator 12 includes a magnet support layer 12a and two connecting pieces 12b.
  • the magnet support layer 12a has a rectangular plate shape
  • each connecting piece 12b has a band shape.
  • the two connecting pieces 12b connect the magnet support layer 12a and the insulator support layer 11 while facing each other with the magnet support layer 12a in between.
  • FIG. 14 is a diagram for explaining the operation of the printed circuit board 100 of FIG. 13.
  • an alternating current is passed through the conductor layer 30.
  • the vibrator 12 vibrates in the vertical direction with respect to the insulator support layer 11.
  • the magnet 40 may be attached to an area of the magnet support layer 12a that does not overlap with the area sandwiched between the two connecting pieces 12b. In this case, when a current flows through the conductor layer 30, the magnet support layer 12a vibrates in a half-rotation shape about the two connecting pieces 12b as rotational axes. This allows the vibrator 12 to vibrate more greatly.
  • a coil is formed in a part of the conductor layer 30, but the embodiment is not limited to this.
  • a coil may be formed in a part of the metal support layer 10.
  • FIG. 15 is a plan view of a printed circuit board 100 according to the second embodiment of the present invention.
  • the printed circuit board 100 includes a metal support layer 10, a base insulating layer 20, a conductor layer 30, magnets 40A to 40D, and a cover insulating layer 50.
  • illustration of the cover insulating layer 50 is omitted.
  • a part of the metal support layer 10 is a coil having a substantially rectangular frame shape.
  • the illustration of the metal support layer 10 other than the coil portion is omitted.
  • the length of each side of the coil in the metal support layer 10 in plan view is, for example, 30 mm or more and 50 mm or less.
  • metal support layer 10 includes insulator support layers 13, 14, 15 and vibrators 16, 17.
  • Each of the insulator support layers 13 to 15 has a band shape extending in one direction.
  • the insulator support layers 14 and 15 are arranged in a line and face the insulator support layer 13.
  • Each vibrator 16, 17 has a meandering shape.
  • the vibrator 16 connects one end of the insulator support layer 13 and the outer end of the insulator support layer 14 .
  • the vibrator 17 connects the other end of the insulator support layer 13 and the outer end of the insulator support layer 15 .
  • the thickness of each vibrator 16, 17 may be smaller than the thickness of each insulator support layer 13-15. Furthermore, if each of the vibrators 16 and 17 can sufficiently vibrate, each of the vibrators 16 and 17 does not need to have a meandering shape.
  • the base insulating layer 20 is made of a transparent resin such as polyester, acrylic, polypropylene, polystyrene, cellulose, or cycloolefin polymer.
  • the base insulating layer 20 has openings 21 and 22 corresponding to the vibrators 16 and 17 of the metal support layer 10, respectively, and is formed on the insulator support layer 11 of the metal support layer 10. Vibrators 16 and 17 are exposed within openings 21 and 22, respectively.
  • the base insulating layer 20 may be formed of an opaque resin such as polyimide.
  • an opening 23 for viewing the rear panel 110 of FIG. 1 is formed in the central region of the base insulating layer 20.
  • the opening 23 may be formed in the base insulating layer 20 in order to improve the visibility of the rear panel 110.
  • the printed circuit board 100 is not required to have translucency, the opening 23 may not be formed in the base insulating layer 20 regardless of the material of the base insulating layer 20.
  • the conductor layer 30 includes two electrodes 31 and 32 that are electrically isolated from each other, and is formed on the base insulating layer 20. Illustration of the conductor layer 30 other than the electrodes 31 and 32 is omitted. Electrode 31 penetrates base insulating layer 20 and is connected to the inner end of insulator support layer 14 . Electrode 32 penetrates base insulating layer 20 and is connected to the inner end of insulator support layer 15 . Further, the electrodes 31 and 32 are connected to the drive circuit 160 via the wiring 170 in FIG.
  • a plurality of magnets 40A to 40D are attached at positions spaced apart from the vibrators 16 and 17 by a predetermined distance.
  • the magnet 40 may be attached to any part other than the vibrators 16 and 17. Also, some of the magnets 40 may be attached to the inside of the coil, and other magnets 40 may be attached to the outside of the coil.
  • magnets 40A to 40D are mounted on the base insulating layer 20.
  • Magnet 40A and magnet 40B are located near vibrator 16 and face each other with vibrator 16 in between.
  • Magnet 40C and magnet 40D are located near vibrator 17 and face each other with vibrator 17 in between.
  • the polarity directions of all magnets 40A to 40D are the same.
  • the S pole of each magnet 40A to 40D faces to the left in the paper, and the N pole faces to the right in the paper.
  • FIG. 16 is a diagram for explaining the operation of the printed circuit board 100 of FIG. 15. As shown by the arrow in the upper part of FIG. 16, the drive circuit 160 in FIG. The coil of the support layer 10 becomes an electromagnet.
  • a magnetic force is generated between the vibrator 16 and the magnets 40A, 40B, and a magnetic force is generated between the vibrator 17 and the magnets 40C, 40D.
  • the vibrator 16 receives an upward magnetic force and the vibrator 17 receives a downward magnetic force.
  • the method for manufacturing the insulator support layers 13 to 15 in this embodiment is the same as the method for manufacturing the insulator support layer 11 in the first embodiment. Furthermore, the method for manufacturing the vibrators 16 and 17 in this embodiment is the same as the method for manufacturing the vibrator 12 in the first embodiment. Therefore, the method for manufacturing the printed circuit board 100 according to the present embodiment is the same as the first one, except that a step of electrically connecting the conductor layer 30 and the metal support layer 10 through the base insulating layer 20 is added. This method is similar to the method for manufacturing printed circuit board 100 according to the embodiment.
  • the metal support layer 10 forms a coil, and the vibrators 16 and 17 become part of the coil.
  • Magnets 40A and 40B are attached to positions spaced apart from the vibrator 16 by a predetermined distance.
  • Magnets 40C and 40D are attached to positions spaced apart from the vibrator 17 by a predetermined distance.
  • the insulator support layers 14 and 15 of the metal support layer 10 are connected to the wiring 170 via the electrodes 31 and 32 of the conductor layer 30, but the embodiment is limited to this. Not done.
  • the insulator support layers 14 and 15 of the metal support layer 10 may be directly connected to the wiring 170 without using the electrodes 31 and 32 of the conductor layer 30.
  • the thickness of the vibrators 12, 16, 17 is smaller than the thickness of the insulator support layers 11, 13 to 15, but the embodiments are limited to this. Not done. When the vibrators 12, 16, 17 can vibrate sufficiently, the thickness of the vibrators 12, 16, 17 may be equal to the thickness of the insulator support layers 11, 13-15. Therefore, in the manufacturing process of printed circuit board 100, the half etching shown in FIGS. 5 and 6 does not need to be performed.
  • the conductor layer 30 or the metal support layer 10 is formed as a one-turn coil, but the embodiments are not limited to this.
  • the conductor layer 30 or the metal support layer 10 may be formed as a coil with multiple turns. In this case, the coils may be concentrically routed on the same plane, or may be stacked in the thickness direction of printed circuit board 100.
  • the printed circuit board 100 includes the magnet 40, but the embodiment is not limited to this.
  • the printed circuit board 100 only needs to have a magnet attachment part to which the magnet 40 can be attached, and does not need to include the magnet 40. In this case, by attaching the magnet 40 to the magnet attachment part, the printed circuit board 100 can be used as an actuator.
  • the magnet support layer 12a of the vibrator 12 is the magnet attachment part.
  • a portion of the base insulating layer 20 close to the vibrators 16 and 17 is a magnet attachment portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

This wiring circuit substrate comprises a metal support layer, a base insulation layer, and a conductor layer. The metal support layer is formed of a metal material. The base insulation layer is disposed on the metal support layer. The conductor layer is disposed on the base insulation layer. An oscillator is constituted by a section of the metal support layer.

Description

配線回路基板wiring circuit board
 本発明は、配線回路基板に関する。 The present invention relates to a printed circuit board.
 回路基板を用いてアクチュエータが構成されることがある。例えば、特許文献1には、多層基板、磁石および可動体を備えるアクチュエータが記載されている。多層基板は、積層体と、積層体に形成されるコイルとを含む。コイルに所定の電流が流されると、コイルから放射される磁界により、磁石および可動体が多層基板における積層体の積層方向とは直交する方向に変位する。 An actuator may be constructed using a circuit board. For example, Patent Document 1 describes an actuator that includes a multilayer substrate, a magnet, and a movable body. The multilayer substrate includes a laminate and a coil formed in the laminate. When a predetermined current is passed through the coil, a magnetic field radiated from the coil causes the magnet and the movable body to be displaced in a direction perpendicular to the stacking direction of the stacked bodies on the multilayer board.
特許第6913155号Patent No. 6913155
 アクチュエータを薄型化することにより、アクチュエータを種々の製品に応用することが可能である。しかしながら、特許文献1のアクチュエータを薄型化することは困難である。 By making the actuator thinner, it is possible to apply the actuator to various products. However, it is difficult to make the actuator of Patent Document 1 thinner.
 本発明の目的は、アクチュエータとして使用可能でかつ薄型化可能な配線回路基板を提供することである。 An object of the present invention is to provide a printed circuit board that can be used as an actuator and can be made thinner.
 (1)本発明の一局面に従う配線回路基板は、金属支持層と、金属支持層上に配置される絶縁層と、絶縁層上に配置される導体層とを備え、金属支持層の一部は振動子を構成する。 (1) A printed circuit board according to one aspect of the present invention includes a metal support layer, an insulating layer disposed on the metal support layer, and a conductor layer disposed on the insulating layer, and includes a part of the metal support layer. constitutes a vibrator.
 この場合、金属支持層の一部により振動子が構成されるので、配線回路基板を単体でアクチュエータとして使用することができる。また、振動子は、配線回路基板の製造工程で形成可能であり、振動子を追加するための構成を配線回路基板に設ける必要がない。これにより、配線回路基板をアクチュエータとして構成しつつ、配線回路基板を薄型化することができる。 In this case, since the vibrator is constituted by a part of the metal support layer, the printed circuit board can be used alone as an actuator. Further, the vibrator can be formed in the manufacturing process of the printed circuit board, and there is no need to provide a structure for adding the vibrator to the printed circuit board. This allows the printed circuit board to be made thinner while configuring the printed circuit board as an actuator.
 (2)振動子の厚みは、金属支持層における振動子とは異なる部分の厚みよりも小さくてもよい。この場合、振動子を容易に振動可能に構成することができる。 (2) The thickness of the vibrator may be smaller than the thickness of a portion of the metal support layer that is different from the vibrator. In this case, the vibrator can be easily configured to vibrate.
 (3)振動子は蛇行形状または渦巻形状を有してもよい。この場合、振動子を容易に振動可能に構成することができる。 (3) The vibrator may have a meandering shape or a spiral shape. In this case, the vibrator can be easily configured to vibrate.
 (4)導体層の一部はコイルを構成してもよい。この場合、導体層の一部に電流を流すことにより、配線回路基板を容易にアクチュエータとして使用することができる。 (4) A part of the conductor layer may constitute a coil. In this case, the printed circuit board can be easily used as an actuator by passing a current through a portion of the conductor layer.
 (5)振動子に磁石が取り付けられてもよい。この場合、導体層と磁石との間の磁力により振動子を容易に振動させることができる。 (5) A magnet may be attached to the vibrator. In this case, the vibrator can be easily vibrated by the magnetic force between the conductor layer and the magnet.
 (6)振動子は、磁石が取り付けられる磁石支持層と、磁石支持層と金属支持層における振動子とは異なる部分とを連結する連結片とを含んでもよい。この場合、振動子における磁石支持層を効率的に振動させることができる。 (6) The vibrator may include a magnet support layer to which a magnet is attached, and a connection piece that connects the magnet support layer and a portion of the metal support layer that is different from the vibrator. In this case, the magnet support layer in the vibrator can be efficiently vibrated.
 (7)振動子はコイルを形成してもよい。この場合、振動子に電流を流すことにより、配線回路基板を容易にアクチュエータとして使用することができる。 (7) The vibrator may form a coil. In this case, by passing a current through the vibrator, the printed circuit board can be easily used as an actuator.
 (8)振動子から所定距離だけ離間した位置に磁石が取り付けられてもよい。この場合、振動子と磁石との間の磁力により振動子を容易に振動させることができる。 (8) A magnet may be attached at a position spaced apart from the vibrator by a predetermined distance. In this case, the vibrator can be easily vibrated by the magnetic force between the vibrator and the magnet.
 本発明によれば、アクチュエータとして使用可能な配線回路基板を薄型化することができる。 According to the present invention, a printed circuit board that can be used as an actuator can be made thinner.
図1は本発明の第1の実施の形態に係る配線回路基板を含むタッチパネルの模式的断面図である。FIG. 1 is a schematic cross-sectional view of a touch panel including a printed circuit board according to a first embodiment of the present invention. 図2は図1の配線回路基板の平面図である。FIG. 2 is a plan view of the printed circuit board of FIG. 図3は図2の配線回路基板のA-A線断面図である。FIG. 3 is a cross-sectional view taken along line AA of the printed circuit board of FIG. 図4は図2の配線回路基板の動作を説明するための図である。FIG. 4 is a diagram for explaining the operation of the printed circuit board of FIG. 2. 図5は配線回路基板の製造方法の一例を説明するための工程断面図である。FIG. 5 is a process cross-sectional view for explaining an example of a method for manufacturing a printed circuit board. 図6は配線回路基板の製造方法の一例を説明するための工程断面図である。FIG. 6 is a process cross-sectional view for explaining an example of a method for manufacturing a printed circuit board. 図7は配線回路基板の製造方法の一例を説明するための工程断面図である。FIG. 7 is a process cross-sectional view for explaining an example of a method for manufacturing a printed circuit board. 図8は配線回路基板の製造方法の一例を説明するための工程断面図である。FIG. 8 is a process cross-sectional view for explaining an example of a method for manufacturing a printed circuit board. 図9は配線回路基板の製造方法の一例を説明するための工程断面図である。FIG. 9 is a process cross-sectional view for explaining an example of a method for manufacturing a printed circuit board. 図10は配線回路基板の製造方法の一例を説明するための工程断面図である。FIG. 10 is a process cross-sectional view for explaining an example of a method for manufacturing a printed circuit board. 図11は第1の変形例に係る配線回路基板の平面図である。FIG. 11 is a plan view of a printed circuit board according to a first modification. 図12は図11の配線回路基板の動作を説明するための図である。FIG. 12 is a diagram for explaining the operation of the printed circuit board of FIG. 11. 図13は第2の変形例に係る配線回路基板の平面図である。FIG. 13 is a plan view of a printed circuit board according to a second modification. 図14は図13の配線回路基板の動作を説明するための図である。FIG. 14 is a diagram for explaining the operation of the printed circuit board of FIG. 13. 図15は本発明の第2の実施の形態に係る配線回路基板の平面図である。FIG. 15 is a plan view of a printed circuit board according to the second embodiment of the invention. 図16は図15の配線回路基板の動作を説明するための図である。FIG. 16 is a diagram for explaining the operation of the printed circuit board of FIG. 15.
 以下、本発明の実施の形態に係る配線回路基板について図面を参照しながら説明する。以下の本発明の実施の形態においては、配線回路基板は、ハプティクス(触覚技術)素子としてタッチパネルに設けられるが、実施の形態はこれに限定されない。配線回路基板は、種々の製品にアクチュエータとして設けることが可能である。 Hereinafter, a printed circuit board according to an embodiment of the present invention will be described with reference to the drawings. In the following embodiments of the present invention, a printed circuit board is provided in a touch panel as a haptic (tactile technology) element, but the embodiments are not limited thereto. The printed circuit board can be provided as an actuator in various products.
 <1>第1の実施の形態
 (1)タッチパネル
 図1は、本発明の第1の実施の形態に係る配線回路基板を含むタッチパネルの模式的断面図である。図1に示すように、タッチパネル200は、配線回路基板100、リアパネル110、接着層120,130、ディスプレイ140、保護層150および駆動回路160を含む。なお、タッチパネル200は、例えば静電容量方式のタッチパネルであり、テレビ、携帯電話機、携帯情報端末またはその他の表示装置に搭載される。
<1> First Embodiment (1) Touch Panel FIG. 1 is a schematic cross-sectional view of a touch panel including a printed circuit board according to a first embodiment of the present invention. As shown in FIG. 1, the touch panel 200 includes a printed circuit board 100, a rear panel 110, adhesive layers 120 and 130, a display 140, a protective layer 150, and a drive circuit 160. Note that the touch panel 200 is, for example, a capacitive touch panel, and is mounted on a television, a mobile phone, a personal digital assistant, or other display device.
 配線回路基板100の一方の面の周縁部は、接着層120を介してリアパネル110に接着される。配線回路基板100の他方の面の周縁部は、接着層130を介してディスプレイ140に接着される。接着層120,130は、両面テープを含む。保護層150は、例えばカバーガラスであり、ディスプレイ140の表面に取り付けられる。配線回路基板100の詳細については後述する。 The peripheral edge of one side of the printed circuit board 100 is adhered to the rear panel 110 via the adhesive layer 120. The peripheral edge of the other side of the printed circuit board 100 is adhered to the display 140 via the adhesive layer 130. Adhesive layers 120 and 130 include double-sided tape. Protective layer 150 is, for example, a cover glass and is attached to the surface of display 140. Details of the printed circuit board 100 will be described later.
 駆動回路160は、例えば集積回路を含む。駆動回路160は、配線回路基板100上に実装されてもよい。配線回路基板100と駆動回路160とは、配線170により電気的に接続される。配線170は、フレキシブル配線回路基板等の回路基板であってもよい。 The drive circuit 160 includes, for example, an integrated circuit. The drive circuit 160 may be mounted on the printed circuit board 100. The printed circuit board 100 and the drive circuit 160 are electrically connected by wiring 170. The wiring 170 may be a circuit board such as a flexible printed circuit board.
 タッチパネル200の使用者は、指またはタッチペン(図1の例では指)でタッチパネル200の保護層150を接触する。この場合、配線回路基板100に設けられた図示しない複数の電極間の静電容量が変化する。駆動回路160は、配線回路基板100の静電容量の変化を検出した場合、配線170を通して配線回路基板100の後述する導体層30に交流電流を流す。これにより、配線回路基板100が振動する。その結果、使用者は、タッチパネル200を接触したことを知覚することができる。 The user of the touch panel 200 touches the protective layer 150 of the touch panel 200 with a finger or a touch pen (finger in the example of FIG. 1). In this case, the capacitance between a plurality of electrodes (not shown) provided on the printed circuit board 100 changes. When the drive circuit 160 detects a change in the capacitance of the printed circuit board 100, it causes an alternating current to flow through the wiring 170 to a conductor layer 30 of the printed circuit board 100, which will be described later. This causes the printed circuit board 100 to vibrate. As a result, the user can perceive that the touch panel 200 has been touched.
 (2)配線回路基板の構成
 図2は、図1の配線回路基板100の平面図である。図3は、図2の配線回路基板100のA-A線断面図である。図2および図3に示すように、配線回路基板100は、金属支持層10、ベース絶縁層20、導体層30、磁石40およびカバー絶縁層50を含む。なお、図2においては、カバー絶縁層50の図示が省略されている。後述する図4等においても、カバー絶縁層50の図示は適宜省略される。
(2) Structure of the printed circuit board FIG. 2 is a plan view of the printed circuit board 100 of FIG. 1. FIG. 3 is a cross-sectional view taken along line AA of the printed circuit board 100 of FIG. As shown in FIGS. 2 and 3, the printed circuit board 100 includes a metal support layer 10, a base insulating layer 20, a conductor layer 30, a magnet 40, and a cover insulating layer 50. Note that in FIG. 2, illustration of the cover insulating layer 50 is omitted. Also in FIG. 4 and the like described later, illustration of the cover insulating layer 50 is omitted as appropriate.
 金属支持層10は、例えばステンレス鋼からなる。金属支持層10は、絶縁体支持層11および振動子12を含む。絶縁体支持層11は、矩形枠状を有する。平面視における絶縁体支持層11の各辺の長さは、例えば30mm以上50mm以下である。使用者は、絶縁体支持層11により取り囲まれる領域(以下、中空領域と呼ぶ。)を通して図1のリアパネル110を視認することができる。リアパネル110の視認を妨げないように、絶縁体支持層11の幅は小さいことが好ましい。本例では、絶縁体支持層11の幅は18μmである。 The metal support layer 10 is made of stainless steel, for example. Metal support layer 10 includes an insulator support layer 11 and a vibrator 12. The insulator support layer 11 has a rectangular frame shape. The length of each side of the insulator support layer 11 in plan view is, for example, 30 mm or more and 50 mm or less. The user can visually recognize the rear panel 110 in FIG. 1 through the area surrounded by the insulator support layer 11 (hereinafter referred to as a hollow area). The width of the insulator support layer 11 is preferably small so as not to obstruct the visibility of the rear panel 110. In this example, the width of the insulator support layer 11 is 18 μm.
 振動子12は、磁石支持層12aおよび複数(本例では4個)の連結片12bを含む。磁石支持層12aは、中空領域の略中央部に配置される。磁石支持層12aは円板形状を有するが、実施の形態はこれに限定されない。各連結片12bは、蛇行形状を有し、磁石支持層12aと絶縁体支持層11とを連結する。振動子12の厚みは、絶縁体支持層11の厚みよりも小さくてもよい。例えば、絶縁体支持層11の厚みは100μm以上150μm以下であり、振動子12の厚みは15μm以上60μm以下である。 The vibrator 12 includes a magnet support layer 12a and a plurality of (four in this example) connecting pieces 12b. The magnet support layer 12a is arranged approximately at the center of the hollow region. Although the magnet support layer 12a has a disk shape, the embodiment is not limited thereto. Each connection piece 12b has a meandering shape and connects the magnet support layer 12a and the insulator support layer 11. The thickness of the vibrator 12 may be smaller than the thickness of the insulator support layer 11. For example, the thickness of the insulator support layer 11 is 100 μm or more and 150 μm or less, and the thickness of the vibrator 12 is 15 μm or more and 60 μm or less.
 ベース絶縁層20は、例えばポリイミドからなる。ベース絶縁層20は、絶縁体支持層11と略同一の矩形枠状を有し、絶縁体支持層11上に形成される。ベース絶縁層20の厚みは、例えば5μm以上10μm以下である。導体層30は、例えば銅からなり、配線および電極を構成する。導体層30における配線の一部はコイルであり、中空領域を取り囲むようにベース絶縁層20上に形成される。コイル部分以外の導体層30の図示は省略されている。導体層30の厚みは、例えば5μm以上30μm以下である。導体層30のコイルの両端部は、ベース絶縁層20の外方に引き出され、図1の配線170を介して駆動回路160に接続される。 The base insulating layer 20 is made of polyimide, for example. The base insulating layer 20 has substantially the same rectangular frame shape as the insulator support layer 11 and is formed on the insulator support layer 11 . The thickness of the base insulating layer 20 is, for example, 5 μm or more and 10 μm or less. The conductor layer 30 is made of copper, for example, and constitutes wiring and electrodes. A portion of the wiring in the conductor layer 30 is a coil, which is formed on the base insulating layer 20 so as to surround the hollow region. The illustration of the conductor layer 30 other than the coil portion is omitted. The thickness of the conductor layer 30 is, for example, 5 μm or more and 30 μm or less. Both ends of the coil of the conductor layer 30 are drawn out of the base insulating layer 20 and connected to the drive circuit 160 via the wiring 170 in FIG.
 磁石40は、永久磁石であり、振動子12の磁石支持層12aの一方の面に取り付けられる。図3の例では、磁石40のN極が磁石支持層12aに取り付けられる。磁石40は、接着層または樹脂層等の他の部材を介して間接的に磁石支持層12aに取り付けられてもよい。カバー絶縁層50は、例えばポリイミドからなる。カバー絶縁層50は、ベース絶縁層20と略同一の矩形枠状を有し、導体層30を覆うようにベース絶縁層20上に形成される。カバー絶縁層50の厚みは、例えば8μm以上50μm以下である。 The magnet 40 is a permanent magnet and is attached to one surface of the magnet support layer 12a of the vibrator 12. In the example of FIG. 3, the north pole of the magnet 40 is attached to the magnet support layer 12a. The magnet 40 may be indirectly attached to the magnet support layer 12a via another member such as an adhesive layer or a resin layer. The cover insulating layer 50 is made of polyimide, for example. The cover insulating layer 50 has substantially the same rectangular frame shape as the base insulating layer 20 and is formed on the base insulating layer 20 so as to cover the conductor layer 30 . The thickness of the cover insulating layer 50 is, for example, 8 μm or more and 50 μm or less.
 (3)配線回路基板の動作
 図4は、図2の配線回路基板100の動作を説明するための図である。図4上段に矢印で示すように、駆動回路160が配線170を通して配線回路基板100の導体層30に交流電流を流すことにより、導体層30のコイルが電磁石化する。
(3) Operation of printed circuit board FIG. 4 is a diagram for explaining the operation of printed circuit board 100 of FIG. 2. As shown by the arrow in the upper part of FIG. 4, the drive circuit 160 causes an alternating current to flow through the conductor layer 30 of the printed circuit board 100 through the wiring 170, so that the coil of the conductor layer 30 becomes an electromagnet.
 この場合、導体層30と磁石40との間に磁力が発生し、導体層30に流れる電流の方向が切り替わるごとに、磁石40が上方に磁力を受ける図4中段の状態と、磁石40が下方に磁力を受ける図4下段の状態とが交互に発生する。これにより、振動子12が絶縁体支持層11に対して上下方向に振動する。 In this case, a magnetic force is generated between the conductor layer 30 and the magnet 40, and each time the direction of the current flowing through the conductor layer 30 is switched, the magnet 40 receives the magnetic force upward, and the state shown in the middle of FIG. The state shown in the bottom row of FIG. 4, in which the magnetic force is applied to the magnetic field, occurs alternately. As a result, the vibrator 12 vibrates in the vertical direction with respect to the insulator support layer 11.
 (4)配線回路基板の製造方法
 図5~図10は、配線回路基板100の製造方法の一例を説明するための工程断面図である。図5~図10は、図2の配線回路基板100のA-A線断面図に対応する。まず、図5に示すように、ステンレス鋼からなる矩形状の金属板10Aを準備し、金属板10Aの両面の外周縁上にマスク101を形成する。金属板10Aの材料は、ステンレス鋼に限らず、アルミニウム等の他の金属であってもよい。次に、エッチング液を用いてマスク101から露出する金属板10Aの部分に比較的短い時間だけエッチング(以下、ハーフエッチングと呼ぶ。)を行う。
(4) Method for manufacturing a printed circuit board FIGS. 5 to 10 are process cross-sectional views for explaining an example of a method for manufacturing the printed circuit board 100. 5 to 10 correspond to cross-sectional views taken along the line AA of the printed circuit board 100 in FIG. First, as shown in FIG. 5, a rectangular metal plate 10A made of stainless steel is prepared, and masks 101 are formed on the outer periphery of both sides of the metal plate 10A. The material of the metal plate 10A is not limited to stainless steel, but may be other metals such as aluminum. Next, using an etching solution, the portion of the metal plate 10A exposed from the mask 101 is etched for a relatively short period of time (hereinafter referred to as half etching).
 ハーフエッチングにより、図6に示すように、金属板10Aに厚肉部10aと、厚肉部10aよりも小さい厚みを有する薄肉部10bとが形成される。本例では、金属板10Aの両面に同時にハーフエッチングが行われるが、実施の形態はこれに限定されない。金属板10Aの片面ずつに順次ハーフエッチングが行われてもよい。あるいは、金属板10Aの一方の面のみにハーフエッチングが行われ、金属板10Aの他方の面にハーフエッチングが行われなくてもよい。ハーフエッチングの終了後、金属板10Aからマスク101が除去される。 By half etching, as shown in FIG. 6, a thick part 10a and a thin part 10b having a smaller thickness than the thick part 10a are formed in the metal plate 10A. In this example, half etching is performed on both sides of the metal plate 10A at the same time, but the embodiment is not limited to this. Half etching may be sequentially performed on each side of the metal plate 10A. Alternatively, half etching may be performed only on one surface of the metal plate 10A, and no half etching may be performed on the other surface of the metal plate 10A. After the half etching is completed, the mask 101 is removed from the metal plate 10A.
 続いて、不要部分が露出するように金属板10Aに図示しないマスクを形成し、エッチング液を用いてマスクから露出する金属板10Aの部分にエッチング(以下、全エッチングと呼ぶ。)を行う。この場合、図7に示すように、金属板10Aの不要部分が除去されることにより、厚肉部10aが絶縁体支持層11となり、磁石支持層12aと連結片12bとからなる振動子12が薄肉部10bに形成される。これにより、金属支持層10が形成される。 Next, a mask (not shown) is formed on the metal plate 10A so that unnecessary parts are exposed, and the parts of the metal plate 10A exposed from the mask are etched (hereinafter referred to as full etching) using an etching solution. In this case, as shown in FIG. 7, by removing unnecessary parts of the metal plate 10A, the thick portion 10a becomes the insulator support layer 11, and the vibrator 12 consisting of the magnet support layer 12a and the connecting piece 12b is It is formed in the thin portion 10b. Thereby, the metal support layer 10 is formed.
 本例では、金属板10Aにハーフエッチングが行われた後、全エッチングが行われることにより金属支持層10が形成されるが、実施の形態はこれに限定されない。金属板10Aに全エッチングが行われた後、ハーフエッチングが行われることにより金属支持層10が形成されてもよい。全エッチングの終了後、金属支持層10からマスクが除去される。 In this example, the metal support layer 10 is formed by performing half etching on the metal plate 10A and then performing full etching, but the embodiment is not limited to this. The metal support layer 10 may be formed by performing half etching after the entire etching is performed on the metal plate 10A. After the complete etching is complete, the mask is removed from the metal support layer 10.
 その後、図8に示すように、絶縁体支持層11の上面にベース絶縁層20を形成する。ベース絶縁層20は、金属支持層10に感光性樹脂前駆体を塗布し、紫外線を用いて感光性樹脂前駆体を部分的に露光することにより形成されてもよい。本例では、ベース絶縁層20の材料は、ポリイミドであるが、エポキシ等の他の樹脂であってもよい。 Thereafter, as shown in FIG. 8, a base insulating layer 20 is formed on the upper surface of the insulator support layer 11. The base insulating layer 20 may be formed by applying a photosensitive resin precursor to the metal support layer 10 and partially exposing the photosensitive resin precursor to ultraviolet light. In this example, the material of the base insulating layer 20 is polyimide, but it may be other resin such as epoxy.
 次に、図9に示すように、ベース絶縁層20上に導体層30を形成し、導体層30を覆うようにベース絶縁層20上にカバー絶縁層50を形成する。導体層30は、アディティブ法を用いて形成してもよく、セミアディティブ法を用いて形成してもよく、サブトラクティブ法等の他の方法を用いて形成してもよい。カバー絶縁層50の形成手順は、ベース絶縁層20の形成工程と同じ手順である。最後に、図10に示すように、振動子12の磁石支持層12aの上面に磁石40を取り付ける。これにより、配線回路基板100が完成する。 Next, as shown in FIG. 9, a conductor layer 30 is formed on the base insulating layer 20, and a cover insulating layer 50 is formed on the base insulating layer 20 so as to cover the conductor layer 30. The conductor layer 30 may be formed using an additive method, a semi-additive method, or another method such as a subtractive method. The procedure for forming the cover insulating layer 50 is the same as the step for forming the base insulating layer 20. Finally, as shown in FIG. 10, a magnet 40 is attached to the upper surface of the magnet support layer 12a of the vibrator 12. Thereby, the printed circuit board 100 is completed.
 (5)効果
 本実施に係る配線回路基板100においては、金属支持層10の一部により振動子12が構成される。そのため、配線回路基板100を単体でアクチュエータとして使用することができる。具体的には、導体層30の一部がコイルを構成し、振動子12の磁石支持層12aに磁石40が取り付けられる。この場合、導体層30の一部に電流を流すことにより、導体層30と磁石40との間の磁力が発生する。これにより、磁石支持層12aを容易にかつ効率的に振動させることができる。したがって、配線回路基板100を容易にアクチュエータとして使用することができる。
(5) Effect In the printed circuit board 100 according to the present embodiment, the vibrator 12 is constituted by a part of the metal support layer 10. Therefore, the printed circuit board 100 can be used alone as an actuator. Specifically, a part of the conductor layer 30 constitutes a coil, and a magnet 40 is attached to the magnet support layer 12a of the vibrator 12. In this case, by passing a current through a portion of the conductor layer 30, magnetic force is generated between the conductor layer 30 and the magnet 40. Thereby, the magnet support layer 12a can be easily and efficiently vibrated. Therefore, the printed circuit board 100 can be easily used as an actuator.
 振動子12は、配線回路基板100の製造工程で形成可能であり、使用者は配線回路基板100の各部品を組み立てる必要がない。そのため、高い寸法精度でアクチュエータを構成することができる。また、振動子12を追加するための構成を配線回路基板100に設ける必要がない。その結果、配線回路基板100をアクチュエータとして構成しつつ、配線回路基板100を薄型化することができる。 The vibrator 12 can be formed during the manufacturing process of the printed circuit board 100, and the user does not need to assemble each component of the printed circuit board 100. Therefore, the actuator can be constructed with high dimensional accuracy. Further, there is no need to provide a structure for adding the vibrator 12 to the printed circuit board 100. As a result, the printed circuit board 100 can be made thinner while configuring the printed circuit board 100 as an actuator.
 金属支持層10における振動子12の厚みは、絶縁体支持層11の厚みよりも小さい。また、振動子12は蛇行形状を有する。これにより、振動子12を容易に振動可能に構成することができる。あるいは、振動子12は渦巻形状を有してもよい。この場合、振動子12は、渦巻バネまたは竹の子バネとして機能する。そのため、振動子12を容易に振動可能に構成することができる。 The thickness of the vibrator 12 in the metal support layer 10 is smaller than the thickness of the insulator support layer 11. Further, the vibrator 12 has a meandering shape. Thereby, the vibrator 12 can be easily configured to vibrate. Alternatively, the vibrator 12 may have a spiral shape. In this case, the vibrator 12 functions as a spiral spring or a bamboo spring. Therefore, the vibrator 12 can be easily configured to vibrate.
 (6)変形例
 本実施の形態において、振動子12は蛇行形状を有する4個の連結片12bを含むが、実施の形態はこれに限定されない。振動子12は4個未満の連結片12bを含んでもよい。また、振動子12が十分に振動可能である場合には、連結片12bは蛇行形状を有さなくてもよい。以下、変形例に係る配線回路基板100について、図2の配線回路基板100と異なる点を説明する。
(6) Modification In this embodiment, the vibrator 12 includes four connecting pieces 12b having a meandering shape, but the embodiment is not limited to this. The vibrator 12 may include less than four connecting pieces 12b. Further, if the vibrator 12 is capable of sufficiently vibrating, the connecting piece 12b does not need to have a meandering shape. Hereinafter, different points from the printed circuit board 100 of FIG. 2 will be explained regarding the printed circuit board 100 according to the modified example.
 図11は、第1の変形例に係る配線回路基板100の平面図である。図11に示すように、振動子12は、磁石支持層12aと、1個の連結片12bとを含む。本例では、磁石支持層12aは円板形状を有し、連結片12bは帯状を有する。 FIG. 11 is a plan view of a printed circuit board 100 according to a first modification. As shown in FIG. 11, the vibrator 12 includes a magnet support layer 12a and one connection piece 12b. In this example, the magnet support layer 12a has a disk shape, and the connecting piece 12b has a belt shape.
 図12は、図11の配線回路基板100の動作を説明するための図である。図12上段に矢印で示すように、導体層30に交流電流が流される。導体層30に流れる電流の方向が切り替わるごとに、磁石40が上方に磁力を受ける図12中段の状態と、磁石40が下方に磁力を受ける図12下段の状態とが交互に発生する。これにより、振動子12が絶縁体支持層11に対して上下方向に振動する。 FIG. 12 is a diagram for explaining the operation of the printed circuit board 100 of FIG. 11. As shown by the arrow in the upper part of FIG. 12, an alternating current is passed through the conductor layer 30. Each time the direction of the current flowing through the conductor layer 30 is switched, the state shown in the middle row of FIG. 12, in which the magnet 40 receives an upward magnetic force, and the state shown in the lower row of FIG. 12, in which the magnet 40 receives a downward magnetic force, alternately occur. As a result, the vibrator 12 vibrates in the vertical direction with respect to the insulator support layer 11.
 図13は、第2の変形例に係る配線回路基板100の平面図である。図13に示すように、振動子12は、磁石支持層12aと、2個の連結片12bを含む。本例では、磁石支持層12aは矩形板形状を有し、各連結片12bは帯状を有する。2個の連結片12bは、磁石支持層12aを挟んで対向する状態で、磁石支持層12aと絶縁体支持層11とを連結する。 FIG. 13 is a plan view of a printed circuit board 100 according to a second modification. As shown in FIG. 13, the vibrator 12 includes a magnet support layer 12a and two connecting pieces 12b. In this example, the magnet support layer 12a has a rectangular plate shape, and each connecting piece 12b has a band shape. The two connecting pieces 12b connect the magnet support layer 12a and the insulator support layer 11 while facing each other with the magnet support layer 12a in between.
 図14は、図13の配線回路基板100の動作を説明するための図である。図14上段に矢印で示すように、導体層30に交流電流が流される。導体層30に流れる電流の方向が切り替わるごとに、磁石40が上方に磁力を受ける図14中段の状態と、磁石40が下方に磁力を受ける図14下段の状態とが交互に発生する。これにより、振動子12が絶縁体支持層11に対して上下方向に振動する。 FIG. 14 is a diagram for explaining the operation of the printed circuit board 100 of FIG. 13. As shown by the arrow in the upper part of FIG. 14, an alternating current is passed through the conductor layer 30. Each time the direction of the current flowing through the conductor layer 30 is switched, the state shown in the middle part of FIG. 14, in which the magnet 40 receives an upward magnetic force, and the state shown in the lower part of FIG. 14, in which the magnet 40 receives a downward magnetic force, alternately occur. As a result, the vibrator 12 vibrates in the vertical direction with respect to the insulator support layer 11.
 第2の変形例において、磁石40は、磁石支持層12aにおいて、2個の連結片12bにより挟まれる領域とは重ならない領域に取り付けられてもよい。この場合、導体層30に電流が流れたとき、2個の連結片12bを回転軸として半回転状に磁石支持層12aが振動する。これにより、振動子12をより大きく振動させることができる。 In the second modification, the magnet 40 may be attached to an area of the magnet support layer 12a that does not overlap with the area sandwiched between the two connecting pieces 12b. In this case, when a current flows through the conductor layer 30, the magnet support layer 12a vibrates in a half-rotation shape about the two connecting pieces 12b as rotational axes. This allows the vibrator 12 to vibrate more greatly.
 <2>第2の実施の形態
 第1の実施の形態において、導体層30の一部にコイルが形成されるが、実施の形態はこれに限定されない。金属支持層10の一部にコイルが形成されてもよい。以下、第2の実施の形態に係る配線回路基板100について、第1の実施の形態に係る配線回路基板100と異なる点を説明する。
<2> Second Embodiment In the first embodiment, a coil is formed in a part of the conductor layer 30, but the embodiment is not limited to this. A coil may be formed in a part of the metal support layer 10. Hereinafter, the differences between the printed circuit board 100 according to the second embodiment and the printed circuit board 100 according to the first embodiment will be explained.
 (1)配線回路基板の構成
 図15は、本発明の第2の実施の形態に係る配線回路基板100の平面図である。図5に示すように、第1の実施の形態と同様に、配線回路基板100は、金属支持層10、ベース絶縁層20、導体層30、磁石40A~40Dおよびカバー絶縁層50を含む。図15においては、カバー絶縁層50の図示が省略されている。
(1) Configuration of printed circuit board FIG. 15 is a plan view of a printed circuit board 100 according to the second embodiment of the present invention. As shown in FIG. 5, similarly to the first embodiment, the printed circuit board 100 includes a metal support layer 10, a base insulating layer 20, a conductor layer 30, magnets 40A to 40D, and a cover insulating layer 50. In FIG. 15, illustration of the cover insulating layer 50 is omitted.
 金属支持層10の一部は、略矩形枠状を有するコイルである。コイル部分以外の金属支持層10の図示は省略されている。平面視における金属支持層10におけるコイルの各辺の長さは、例えば30mm以上50mm以下である。本例では、金属支持層10は、絶縁体支持層13,14,15および振動子16,17を含む。各絶縁体支持層13~15は一方向に延びる帯状を有する。絶縁体支持層14,15は、一列に並ぶように配置された状態で絶縁体支持層13と対向する。 A part of the metal support layer 10 is a coil having a substantially rectangular frame shape. The illustration of the metal support layer 10 other than the coil portion is omitted. The length of each side of the coil in the metal support layer 10 in plan view is, for example, 30 mm or more and 50 mm or less. In this example, metal support layer 10 includes insulator support layers 13, 14, 15 and vibrators 16, 17. Each of the insulator support layers 13 to 15 has a band shape extending in one direction. The insulator support layers 14 and 15 are arranged in a line and face the insulator support layer 13.
 各振動子16,17は蛇行形状を有する。振動子16は、絶縁体支持層13の一端部と絶縁体支持層14の外端部とを連結する。振動子17は、絶縁体支持層13の他端部と絶縁体支持層15の外端部とを連結する。各振動子16,17の厚みは、各絶縁体支持層13~15の厚みよりも小さくてもよい。また、各振動子16,17が十分に振動可能である場合には、各振動子16,17は蛇行形状を有さなくてもよい。 Each vibrator 16, 17 has a meandering shape. The vibrator 16 connects one end of the insulator support layer 13 and the outer end of the insulator support layer 14 . The vibrator 17 connects the other end of the insulator support layer 13 and the outer end of the insulator support layer 15 . The thickness of each vibrator 16, 17 may be smaller than the thickness of each insulator support layer 13-15. Furthermore, if each of the vibrators 16 and 17 can sufficiently vibrate, each of the vibrators 16 and 17 does not need to have a meandering shape.
 ベース絶縁層20は、例えばポリエステル、アクリル、ポリプロピレン、ポリスチレン、セルロースまたはシクロオレフィンポリマ等の透明樹脂からなる。ベース絶縁層20は、金属支持層10の振動子16,17にそれぞれ対応する開口部21,22を有し、金属支持層10の絶縁体支持層11上に形成される。振動子16,17は、開口部21,22内でそれぞれ露出する。 The base insulating layer 20 is made of a transparent resin such as polyester, acrylic, polypropylene, polystyrene, cellulose, or cycloolefin polymer. The base insulating layer 20 has openings 21 and 22 corresponding to the vibrators 16 and 17 of the metal support layer 10, respectively, and is formed on the insulator support layer 11 of the metal support layer 10. Vibrators 16 and 17 are exposed within openings 21 and 22, respectively.
 ベース絶縁層20は、ポリイミド等の不透明樹脂により形成されてもよい。この場合、図15に一点鎖線で示すように、ベース絶縁層20の中央領域に図1のリアパネル110を視認するための開口部23が形成される。ベース絶縁層20が透明樹脂により形成される場合でも、リアパネル110の視認性を向上させるために、ベース絶縁層20に開口部23が形成されてもよい。一方で、配線回路基板100に透光性が要求されない場合には、ベース絶縁層20の材料に関わらず、ベース絶縁層20に開口部23が形成されなくてもよい。 The base insulating layer 20 may be formed of an opaque resin such as polyimide. In this case, as shown by the dashed line in FIG. 15, an opening 23 for viewing the rear panel 110 of FIG. 1 is formed in the central region of the base insulating layer 20. Even when the base insulating layer 20 is formed of transparent resin, the opening 23 may be formed in the base insulating layer 20 in order to improve the visibility of the rear panel 110. On the other hand, if the printed circuit board 100 is not required to have translucency, the opening 23 may not be formed in the base insulating layer 20 regardless of the material of the base insulating layer 20.
 導体層30は、互いに電気的に分離された2つの電極31,32を含み、ベース絶縁層20上に形成される。電極31,32以外の導体層30の図示は省略されている。電極31は、ベース絶縁層20を貫通して絶縁体支持層14の内端部に接続される。電極32は、ベース絶縁層20を貫通して絶縁体支持層15の内端部に接続される。また、電極31,32は、図1の配線170を介して駆動回路160に接続される。 The conductor layer 30 includes two electrodes 31 and 32 that are electrically isolated from each other, and is formed on the base insulating layer 20. Illustration of the conductor layer 30 other than the electrodes 31 and 32 is omitted. Electrode 31 penetrates base insulating layer 20 and is connected to the inner end of insulator support layer 14 . Electrode 32 penetrates base insulating layer 20 and is connected to the inner end of insulator support layer 15 . Further, the electrodes 31 and 32 are connected to the drive circuit 160 via the wiring 170 in FIG.
 磁石40A~40Dは、振動子16,17から所定距離だけ離間した位置に複数取り付けられる。磁石40は、振動子16,17以外の任意の部分に取り付けられてもよい。また、一部の磁石40はコイルの内側に取り付けられ、他の磁石40はコイルの外側に取り付けられてもよい。 A plurality of magnets 40A to 40D are attached at positions spaced apart from the vibrators 16 and 17 by a predetermined distance. The magnet 40 may be attached to any part other than the vibrators 16 and 17. Also, some of the magnets 40 may be attached to the inside of the coil, and other magnets 40 may be attached to the outside of the coil.
 本例では、4個の磁石40A~40Dがベース絶縁層20上に取り付けられる。磁石40Aと磁石40Bとは、振動子16の近傍に位置し、振動子16を挟んで対向する。磁石40Cと磁石40Dとは、振動子17の近傍に位置し、振動子17を挟んで対向する。全ての磁石40A~40Dの極性の向きは同一である。図15の例では、各磁石40A~40DのS極が紙面左方を向き、N極が紙面右方を向いている。 In this example, four magnets 40A to 40D are mounted on the base insulating layer 20. Magnet 40A and magnet 40B are located near vibrator 16 and face each other with vibrator 16 in between. Magnet 40C and magnet 40D are located near vibrator 17 and face each other with vibrator 17 in between. The polarity directions of all magnets 40A to 40D are the same. In the example of FIG. 15, the S pole of each magnet 40A to 40D faces to the left in the paper, and the N pole faces to the right in the paper.
 (2)配線回路基板の構成
 図16は、図15の配線回路基板100の動作を説明するための図である。図16上段に矢印で示すように、図1の駆動回路160が配線170および図15の導体層30の電極31,32を通して配線回路基板100の配線回路基板100に交流電流を流すことにより、金属支持層10のコイルが電磁石化する。
(2) Structure of the printed circuit board FIG. 16 is a diagram for explaining the operation of the printed circuit board 100 of FIG. 15. As shown by the arrow in the upper part of FIG. 16, the drive circuit 160 in FIG. The coil of the support layer 10 becomes an electromagnet.
 この場合、振動子16と磁石40A,40Bとの間に磁力が発生するとともに、振動子17と磁石40C,40Dとの間に磁力が発生する。金属支持層10に流れる電流の方向が切り替わるごとに、振動子16が上方に磁力を受け、振動子17が下方に磁力を受ける図16中段の状態と、振動子16が下方に磁力を受け、振動子17が上方に磁力を受ける図16下段の状態とが交互に発生する。これにより、振動子16,17が絶縁体支持層13~15に対して上下方向に振動する。 In this case, a magnetic force is generated between the vibrator 16 and the magnets 40A, 40B, and a magnetic force is generated between the vibrator 17 and the magnets 40C, 40D. Each time the direction of the current flowing through the metal support layer 10 is switched, the vibrator 16 receives an upward magnetic force and the vibrator 17 receives a downward magnetic force. The state shown in the lower part of FIG. 16, in which the vibrator 17 receives an upward magnetic force, occurs alternately. As a result, the vibrators 16 and 17 vibrate in the vertical direction with respect to the insulator support layers 13 to 15.
 (3)配線回路基板の製造方法
 本実施の形態における絶縁体支持層13~15の製造方法は、第1の実施の形態における絶縁体支持層11の製造方法と同様である。また、本実施の形態における振動子16,17の製造方法は、第1の実施の形態における振動子12の製造方法と同様である。したがって、本実施の形態に係る配線回路基板100の製造方法は、ベース絶縁層20を通して導体層30と金属支持層10とを電気的に接続する工程が追加される点を除いて、第1の実施の形態に係る配線回路基板100の製造方法と同様である。
(3) Method for manufacturing wired circuit board The method for manufacturing the insulator support layers 13 to 15 in this embodiment is the same as the method for manufacturing the insulator support layer 11 in the first embodiment. Furthermore, the method for manufacturing the vibrators 16 and 17 in this embodiment is the same as the method for manufacturing the vibrator 12 in the first embodiment. Therefore, the method for manufacturing the printed circuit board 100 according to the present embodiment is the same as the first one, except that a step of electrically connecting the conductor layer 30 and the metal support layer 10 through the base insulating layer 20 is added. This method is similar to the method for manufacturing printed circuit board 100 according to the embodiment.
 (4)効果
 本実施の形態に係る配線回路基板100においては、金属支持層10がコイルを形成し、振動子16,17はコイルの一部となる。振動子16から所定距離だけ離間した位置に磁石40A,40Bが取り付けられる。振動子17から所定距離だけ離間した位置に磁石40C,40Dが取り付けられる。
(4) Effects In the printed circuit board 100 according to the present embodiment, the metal support layer 10 forms a coil, and the vibrators 16 and 17 become part of the coil. Magnets 40A and 40B are attached to positions spaced apart from the vibrator 16 by a predetermined distance. Magnets 40C and 40D are attached to positions spaced apart from the vibrator 17 by a predetermined distance.
 この場合、金属支持層10に電流を流すことにより、振動子16と磁石40A,40Bとの間に磁力が発生し、振動子17と磁石40C,40Dとの間に磁力が発生する。これにより、振動子16,17を容易に振動させることができる。その結果、配線回路基板100を容易にアクチュエータとして使用することができる。 In this case, by passing a current through the metal support layer 10, a magnetic force is generated between the vibrator 16 and the magnets 40A, 40B, and a magnetic force is generated between the vibrator 17 and the magnets 40C, 40D. Thereby, the vibrators 16 and 17 can be easily vibrated. As a result, printed circuit board 100 can be easily used as an actuator.
 (5)変形例
 本実施の形態において、金属支持層10の絶縁体支持層14,15は導体層30の電極31,32を介して配線170に接続されるが、実施の形態はこれに限定されない。金属支持層10の絶縁体支持層14,15は、導体層30の電極31,32を介さずに配線170に直接接続されてもよい。
(5) Modification In this embodiment, the insulator support layers 14 and 15 of the metal support layer 10 are connected to the wiring 170 via the electrodes 31 and 32 of the conductor layer 30, but the embodiment is limited to this. Not done. The insulator support layers 14 and 15 of the metal support layer 10 may be directly connected to the wiring 170 without using the electrodes 31 and 32 of the conductor layer 30.
 <3>他の実施の形態
 (1)上記実施の形態において、振動子12,16,17の厚みは絶縁体支持層11,13~15の厚みよりも小さいが、実施の形態はこれに限定されない。振動子12,16,17が十分に振動可能である場合には、振動子12,16,17の厚みは絶縁体支持層11,13~15の厚みと等しくてもよい。したがって、配線回路基板100の製造工程において、図5および図6のハーフエッチングが行われなくてもよい。
<3> Other embodiments (1) In the above embodiments, the thickness of the vibrators 12, 16, 17 is smaller than the thickness of the insulator support layers 11, 13 to 15, but the embodiments are limited to this. Not done. When the vibrators 12, 16, 17 can vibrate sufficiently, the thickness of the vibrators 12, 16, 17 may be equal to the thickness of the insulator support layers 11, 13-15. Therefore, in the manufacturing process of printed circuit board 100, the half etching shown in FIGS. 5 and 6 does not need to be performed.
 (2)上記実施の形態において、導体層30または金属支持層10は1回巻のコイルとして形成されるが、実施の形態はこれに限定されない。導体層30または金属支持層10は、複数回巻のコイルとして形成されてもよい。この場合において、コイルは、同一平面上で同心状に引き回されてもよいし、配線回路基板100の厚み方向に積層されてもよい。 (2) In the above embodiments, the conductor layer 30 or the metal support layer 10 is formed as a one-turn coil, but the embodiments are not limited to this. The conductor layer 30 or the metal support layer 10 may be formed as a coil with multiple turns. In this case, the coils may be concentrically routed on the same plane, or may be stacked in the thickness direction of printed circuit board 100.
 (3)上記実施の形態において、配線回路基板100は磁石40を含むが、実施の形態はこれに限定されない。配線回路基板100は、磁石40を取り付け可能な磁石取付部を有すればよく、磁石40を含まなくてもよい。この場合、磁石取付部に磁石40が取り付けられることにより、配線回路基板100をアクチュエータとして使用することができる。なお、第1の実施の形態では、振動子12の磁石支持層12aが磁石取付部である。第2の実施の形態では、振動子16,17に近接するベース絶縁層20の部分が磁石取付部である。 (3) In the above embodiment, the printed circuit board 100 includes the magnet 40, but the embodiment is not limited to this. The printed circuit board 100 only needs to have a magnet attachment part to which the magnet 40 can be attached, and does not need to include the magnet 40. In this case, by attaching the magnet 40 to the magnet attachment part, the printed circuit board 100 can be used as an actuator. Note that in the first embodiment, the magnet support layer 12a of the vibrator 12 is the magnet attachment part. In the second embodiment, a portion of the base insulating layer 20 close to the vibrators 16 and 17 is a magnet attachment portion.

Claims (8)

  1. 金属支持層と、
     前記金属支持層上に配置される絶縁層と、
     前記絶縁層上に配置される導体層とを備え、
     前記金属支持層の一部は振動子を構成する、配線回路基板。
    a metal support layer;
    an insulating layer disposed on the metal support layer;
    a conductor layer disposed on the insulating layer,
    A printed circuit board, in which a part of the metal support layer constitutes a vibrator.
  2. 前記振動子の厚みは、前記金属支持層における前記振動子とは異なる部分の厚みよりも小さい、請求項1記載の配線回路基板。 The printed circuit board according to claim 1, wherein the thickness of the vibrator is smaller than the thickness of a portion of the metal support layer that is different from the vibrator.
  3. 前記振動子は蛇行形状または螺旋形状を有する、請求項1または2記載の配線回路基板。 3. The printed circuit board according to claim 1, wherein the vibrator has a meandering shape or a spiral shape.
  4. 前記導体層の一部はコイルを構成する、請求項1~3のいずれか一項に記載の配線回路基板。 The printed circuit board according to claim 1, wherein a portion of the conductor layer constitutes a coil.
  5. 前記振動子に磁石が取り付けられる、請求項4記載の配線回路基板。 The printed circuit board according to claim 4, wherein a magnet is attached to the vibrator.
  6. 前記振動子は、
     前記磁石が取り付けられる磁石支持層と、
     前記磁石支持層と前記金属支持層における前記振動子とは異なる部分とを連結する連結片とを含む、請求項5記載の配線回路基板。
    The vibrator is
    a magnet support layer to which the magnet is attached;
    The printed circuit board according to claim 5, further comprising a connecting piece that connects the magnet support layer and a portion of the metal support layer that is different from the vibrator.
  7. 前記振動子はコイルを形成する、請求項1~3のいずれか一項に記載の配線回路基板。 The printed circuit board according to claim 1, wherein the vibrator forms a coil.
  8. 前記振動子から所定距離だけ離間した位置に磁石が取り付けられる、請求項7記載の配線回路基板。 The printed circuit board according to claim 7, wherein a magnet is attached at a position spaced apart from the vibrator by a predetermined distance.
PCT/JP2023/008415 2022-03-18 2023-03-06 Wiring circuit substrate WO2023176563A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-044550 2022-03-18
JP2022044550A JP2023138058A (en) 2022-03-18 2022-03-18 Wiring circuit substrate

Publications (1)

Publication Number Publication Date
WO2023176563A1 true WO2023176563A1 (en) 2023-09-21

Family

ID=88023063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008415 WO2023176563A1 (en) 2022-03-18 2023-03-06 Wiring circuit substrate

Country Status (2)

Country Link
JP (1) JP2023138058A (en)
WO (1) WO2023176563A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004252337A (en) * 2003-02-21 2004-09-09 Denso Corp Optical scanner and method of manufacturing the same
JP2010288435A (en) * 2009-05-11 2010-12-24 Mitsumi Electric Co Ltd Actuator and optical scanning device using the same
US20120197442A1 (en) * 2011-01-26 2012-08-02 University Of Florida Research Foundation Inc. Method and apparatus for improving shock resistance of mems structures
JP2012176450A (en) * 2011-02-25 2012-09-13 Nippon Signal Co Ltd:The Planar actuator and method of manufacturing the same
JP2013156487A (en) * 2012-01-31 2013-08-15 Seiko Epson Corp Mirror device, method for manufacturing mirror device, optical scanner and image forming apparatus
JP2014063152A (en) * 2012-08-27 2014-04-10 Canon Electronics Inc Rocking element, actuator device, optical scanner, metallic thin film body, and method for producing optical scanner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004252337A (en) * 2003-02-21 2004-09-09 Denso Corp Optical scanner and method of manufacturing the same
JP2010288435A (en) * 2009-05-11 2010-12-24 Mitsumi Electric Co Ltd Actuator and optical scanning device using the same
US20120197442A1 (en) * 2011-01-26 2012-08-02 University Of Florida Research Foundation Inc. Method and apparatus for improving shock resistance of mems structures
JP2012176450A (en) * 2011-02-25 2012-09-13 Nippon Signal Co Ltd:The Planar actuator and method of manufacturing the same
JP2013156487A (en) * 2012-01-31 2013-08-15 Seiko Epson Corp Mirror device, method for manufacturing mirror device, optical scanner and image forming apparatus
JP2014063152A (en) * 2012-08-27 2014-04-10 Canon Electronics Inc Rocking element, actuator device, optical scanner, metallic thin film body, and method for producing optical scanner

Also Published As

Publication number Publication date
JP2023138058A (en) 2023-09-29

Similar Documents

Publication Publication Date Title
JP5570640B2 (en) Piezoelectric element and electronic device
RU2451324C2 (en) Haptic response apparatus for electronic device
US10496173B2 (en) Manipulation feeling imparting input device
US20070046642A1 (en) Touch panel having a speaker function
US10126819B2 (en) Vibration generating device and manipulation feeling imparting input device using the vibration generating device
JP2010157037A (en) Panel member having oscillating element
JP2005275632A (en) Input panel and input device
US9313578B2 (en) Sensor device integrated with ultrasonic transducer and microphone and manufacturing method thereof
US9558875B1 (en) Electronic device with signal line routing to minimize vibrations
WO2019001068A1 (en) Flexible touch-control screen and method for manufacturing same
WO2014046160A1 (en) Touch panel, and touch panel production method
KR20150103612A (en) Digitizer
CN102637086A (en) Touch panel
JP2004334740A (en) Coordinate input device
WO2023176563A1 (en) Wiring circuit substrate
US10468956B2 (en) Electrical component with moving mass and flexible cables
TW201535195A (en) Three-dimensional shape touch panel, method of driving touch panel, and method of calibrating touch panel
JP2016164694A (en) Touch sensor and manufacturing method therefor
KR20140133413A (en) Touch Sensor and Electronic Device having the same
KR20110127930A (en) Transparent electromagnet film and thin film speaker device by using the same film
KR20090011668A (en) Pointing device and electronic device having the same
JP2009118075A (en) Planar speaker
JP2009117889A (en) Planar speaker
KR20110117737A (en) Film speaker device by using transparent electro-magnet
JP2017076187A (en) Method for producing metal pattern substrate, metal pattern substrate, and display device with touch position detection function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770519

Country of ref document: EP

Kind code of ref document: A1