WO2023176491A1 - Multilayer body - Google Patents

Multilayer body Download PDF

Info

Publication number
WO2023176491A1
WO2023176491A1 PCT/JP2023/007924 JP2023007924W WO2023176491A1 WO 2023176491 A1 WO2023176491 A1 WO 2023176491A1 JP 2023007924 W JP2023007924 W JP 2023007924W WO 2023176491 A1 WO2023176491 A1 WO 2023176491A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
porous layer
layer
laminate
conductive layer
Prior art date
Application number
PCT/JP2023/007924
Other languages
French (fr)
Japanese (ja)
Inventor
秀典 大西
稜 伊藤
将行 程野
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023176491A1 publication Critical patent/WO2023176491A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties

Definitions

  • the present invention relates to a laminate.
  • Patent Document 1 describes a porous low dielectric polymer film useful as a sheet for millimeter wave antennas, and describes a laminate including this low dielectric polymer film and a conductive layer. .
  • a low dielectric polymer film fine pores are dispersed and formed in a film made of a polymer material.
  • the low dielectric polymer film has pores with a predetermined average pore diameter and has a predetermined porosity.
  • the porous structure in the low dielectric polymer film is a closed cell structure.
  • Porous low dielectric polymer films are produced by insolubilizing a porosity agent such as polyoxyethylene dimethyl ether in a polyimide precursor, and converting the polyimide precursor to polyimide after extracting the porosity agent using supercritical carbon dioxide. (imidization).
  • a porosity agent such as polyoxyethylene dimethyl ether
  • polyimide precursor converting the polyimide precursor to polyimide after extracting the porosity agent using supercritical carbon dioxide. (imidization).
  • the present invention provides a laminate that is advantageous from the viewpoint of dielectric properties even if a residue containing a metal element is generated due to the manufacturing process.
  • the present invention a dielectric porous layer containing an organic polymer; a metal layer disposed along one main surface of the dielectric porous layer, The content of the metal element in the dielectric porous layer is in the range of 0.0001% to 1.0% based on the number of atoms.
  • a laminate is provided.
  • the above laminate is advantageous from the viewpoint of dielectric properties even if a residue containing a metal element is generated due to the manufacturing process.
  • FIG. 1 is a sectional view showing an example of a laminate according to the present invention.
  • FIG. 2A is a cross-sectional view showing another example of the laminate according to the present invention.
  • FIG. 2B is a sectional view showing still another example of the laminate according to the present invention.
  • FIG. 2C is a sectional view showing still another example of the laminate according to the present invention.
  • FIG. 3 is a scanning electron microscope (SEM) photograph of a cross section of a porous body according to an example.
  • FIG. 4 is a SEM photograph of a cross section of a porous body according to a comparative example.
  • the laminate 1a includes a dielectric porous layer 10 and a conductive layer 20.
  • Dielectric porous layer 10 includes an organic polymer.
  • Conductive layer 20 is arranged along one main surface of dielectric porous layer 10 .
  • the conductive layer 20 may be in contact with the dielectric porous layer 10 in the thickness direction of the dielectric porous layer 10, or the conductive layer 20 and the dielectric porous layer 10 may be in contact with each other in the thickness direction of the dielectric porous layer 10. Another layer may be interposed between them.
  • the metal element content C M in the dielectric porous layer 10 is in the range of 0.0001% to 1.0% based on the number of atoms.
  • the metal element content C M is determined, for example, based on the results of elemental analysis performed on a cross section of the dielectric porous layer 10 according to scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX). be done.
  • SEM-EDX scanning electron microscopy-energy dispersive X-ray spectroscopy
  • the dielectric porous layer 10 is manufactured using, for example, a porosity-forming agent containing a metal element.
  • the dielectric porous layer 10 can be manufactured by extracting the porosity-forming agent into a predetermined solvent from a composition obtained by kneading an organic polymer or a precursor of the organic polymer and a porosity-forming agent.
  • the composition can be formed into a sheet by, for example, at least one treatment selected from the group consisting of pressing, rolling, and stretching.
  • Such a method is advantageous because it allows for a wide variety of adjustable porous structures in the dielectric porous layer 10 by appropriately selecting a porosity-forming agent and a solvent.
  • a process at high temperature and high pressure such as extraction of a porosity agent using supercritical carbon dioxide, is not necessarily required, the manufacturing process of the dielectric porous layer 10 can be easily simplified. Easy to reduce costs.
  • the dielectric properties of the porous layer may change due to the action of the remaining metal elements.
  • the present inventors have determined that the content of the metal element in the dielectric porous layer 10 is adjusted to 1.0% or less based on the number of atoms. It was found that the dielectric properties can be easily adjusted to a desired range. On the other hand, when the content of the metal element in the dielectric porous layer 10 is brought closer to 0% within the range of 1.0% or less, in other words, the residue containing the metal element in the dielectric porous layer 10 is completely removed. Attempts to remove it may place an undue burden on the manufacturing of the dielectric porous layer 10. However, if the content of the metal element in the dielectric porous layer 10 is 0.0001% or more in the range of 1.0% or less based on the number of atoms, an excessive burden will be placed on manufacturing the dielectric porous layer 10. Hateful.
  • the product containing the porous layer may suffer from electrical insulation, poor continuity, and electrical connection due to corrosion due to the action of the remaining metal element. Losses may occur.
  • the metal element content C M in the dielectric porous layer 10 is in the range of 0.0001% to 1.0% based on the number of atoms, the laminate 1a has an electrically insulating state, poor conductivity, and electrical connection loss is less likely to occur.
  • the metal element content C M is preferably 0.8% or less, more preferably 0.6% or less, even more preferably 0.4% or less, and particularly preferably 0.2% or less. be.
  • the content C M of the metal element may be 0.0002% or more, 0.0005% or more, 0.001% or more, or 0.002% or more. It may be 0.005% or more, or 0.01% or more.
  • the metal element content C M has a lower limit of any one of 0.0001%, 0.0002%, and 0.0005%, and a lower limit of 1.0%, 0.8%, 0.6%, It may be included in any of the ranges determined by all combinations with the upper limit of either 0.4% or 0.2%.
  • the organic polymer contained in the dielectric porous layer 10 is not limited to a specific polymer.
  • the organic polymer is, for example, a liquid crystal polymer.
  • the dielectric porous layer 10 tends to have desired dielectric properties.
  • liquid crystal polymers are advantageous from the viewpoints of moldability, heat resistance, low linear expansion, chemical resistance, gas barrier properties, and vibration damping properties.
  • the liquid crystal polymer is not limited to a specific polymer as long as it exhibits liquid crystallinity.
  • the liquid crystal polymer is, for example, a thermoplastic polymer exhibiting liquid crystallinity.
  • the liquid crystal polymer is, for example, an aromatic liquid crystal polyester.
  • As the liquid crystal polymer for example, liquid crystal polymers described in JP 2020-147670A and JP 2004-189867A may be used.
  • a commercially available liquid crystal polymer may be used. Examples of commercially available products are UENO LCP 8100 series (low melting point type) and UENO LCP 5000 series (high strength type) manufactured by Ueno Pharmaceutical Co., Ltd. "UENO LCP" is a registered trademark of Ueno Pharmaceutical Co., Ltd.
  • the melting point of the liquid crystal polymer is not limited to a specific value.
  • the melting point of the liquid crystal polymer is, for example, 170°C or higher, may be 180°C or higher, may be 200°C or higher, may be 250°C or higher, may be 280°C or higher, and may be 300°C or higher.
  • the temperature may be higher than °C.
  • the melting point of the liquid crystal polymer is, for example, 370° C. or lower.
  • the melting point of the liquid crystal polymer can range, for example, between any one of 170°C, 180°C, 200°C, 250°C, 280°C, and 300°C and 370°C.
  • the melting point of the liquid crystal polymer can be determined, for example, based on the results of differential scanning calorimetry (DSC).
  • the organic polymer contained in the dielectric porous layer 10 may be a polymer other than the liquid crystal polymer.
  • Organic polymers are, for example, thermoplastic polymers.
  • thermoplastic polymers include thermoplastic polyimide, polystyrene, polyolefin, acrylic resin, polyacrylonitrile, maleimide resin, epoxy resin, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinyl alcohol, polyamide, polyvinyl chloride, polyacetal, These are polyphenylene ether, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyether sulfone, polyether ether ketone, polyacrylic sulfone, thermoplastic fluorinated polyimide, thermoplastic polyurethane, polyetherimide, polymethylpentene, cellulose, and ionomer.
  • the metal element contained in the dielectric porous layer 10 is not limited to a specific element. This metallic element can originate, for example, from the porogen used in the manufacture of the dielectric porous layer 10.
  • the porosity agent may be an inorganic salt, a ceramic, a metal oxide, a metal hydroxide, or a metal carbide. However, it may be a metal nitride, a metal boride, or another metal compound.
  • the dielectric porous layer 10 contains, for example, at least one element selected from the group consisting of an alkali metal element such as sodium, an alkaline earth metal element such as calcium, chromium, aluminum, and a metal element that can be contained in ceramics.
  • the solvent for extracting the porosity agent in the production of the dielectric porous layer 10 is not limited to a specific solvent.
  • the solvent may be water, an acidic solvent, or an alkaline solvent.
  • acidic solvents are hydrochloric acid, sulfuric acid, nitric acid, and acidic aqueous solutions such as aqueous iron chloride solutions.
  • alkaline solvents are aqueous sodium hydroxide and organic basic aqueous solutions.
  • the average pore diameter dp in the dielectric porous layer 10 is not limited to a specific value.
  • the average pore diameter dp is, for example, 15 ⁇ m or less.
  • a plating film is likely to be uniformly formed on the dielectric porous layer 10.
  • residues containing metal elements are less likely to fall off in the dielectric porous layer 10, and foreign matter is less likely to be generated.
  • the dielectric porous layer 10 tends to have desired dielectric properties.
  • the average pore diameter dp can be determined, for example, by image analysis of a SEM photograph of a cross section of the dielectric porous layer 10. For example, in a SEM image of a cross section of the dielectric porous layer 10, the average pore diameter dp can be determined by determining the maximum diameter of 50 or more randomly selected pores and arithmetic averaging the maximum diameters.
  • the average pore diameter dp may be 14 ⁇ m or less, 13 ⁇ m or less, or 12 ⁇ m or less.
  • the average pore diameter dp is, for example, 1 ⁇ m or more, may be 2 ⁇ m or more, may be 4 ⁇ m or more, may be 6 ⁇ m or more, may be 8 ⁇ m or more, or may be 10 ⁇ m or more.
  • the average pore diameter dp is all combinations of a lower limit value that is any one of 1 ⁇ m, 2 ⁇ m, 4 ⁇ m, 6 ⁇ m, 8 ⁇ m, and 10 ⁇ m and an upper limit value that is any one of 15 ⁇ m, 14 ⁇ m, 13 ⁇ m, and 12 ⁇ m. may be included in any of the ranges defined by.
  • the porosity P 10 of the dielectric porous layer 10 is not limited to a specific value.
  • the porosity P 10 is, for example, 50% or more.
  • the dielectric porous layer 10 tends to have desired dielectric properties.
  • the laminate 1a tends to be lightweight.
  • the porosity P10 may be 52% or more, 54% or more, 56% or more, 58% or more, or 60% or more. good.
  • the porosity P 10 is, for example, 90% or less. In this case, the dielectric porous layer 10 tends to have desired strength (rigidity).
  • the porosity P 10 may be in a range between 90% and any one of 50%, 52%, 54%, 56%, 58%, and 60%.
  • the dielectric constant ⁇ 10 of the dielectric porous layer 10 at 10 GHz is not limited to a specific value.
  • the dielectric constant ⁇ 10 is, for example, 2.2 or less. Thereby, for example, when the laminate 1a is used for communication using radio waves with a high frequency of 1 GHz or more, transmission loss tends to be reduced.
  • the dielectric constant ⁇ 10 is preferably 2.1 or less, more preferably 2.0 or less, still more preferably 1.9 or less, and particularly preferably 1.8 or less.
  • the dielectric constant ⁇ 10 is, for example, 1.1 or more.
  • the dielectric constant ⁇ 10 may, for example, be in a range between 1.1 and any one of 2.2, 2.1, 2.0, 1.9, and 1.8. .
  • the dielectric loss tangent tan ⁇ 10 of the dielectric porous layer 10 at 10 GHz is not limited to a specific value.
  • the dielectric loss tangent tan ⁇ 10 is, for example, 0.0017 or less.
  • the dielectric constant ⁇ 10 may be 0.0016 or less, 0.0015 or less, or 0.0014 or less.
  • the amount of change ⁇ 10 in the dielectric constant of the dielectric porous layer 10 at 10 GHz before and after the high temperature and high humidity environment test is not limited to a specific value.
  • the amount of change ⁇ 10 is the relative permittivity ⁇ 11 of the dielectric porous layer 10 at 10 GHz after the high temperature and high humidity environment test, and the relative permittivity ⁇ 10 of the dielectric porous layer 10 at 10 GHz before the high temperature and high humidity environment test.
  • the absolute value of the difference is
  • the high temperature and high humidity environment test is performed, for example, by leaving the laminate 1a or the dielectric porous layer 10 in an environment with a temperature of 85° C. and a relative humidity of 85% for 168 hours.
  • the amount of change ⁇ 10 is, for example, 0.2 or less, preferably 0.15 or less, and more preferably 0.1 or less.
  • the amount of change ⁇ tan ⁇ 10 in the dielectric loss tangent of the dielectric porous layer 10 at 10 GHz before and after the high temperature and high humidity environment test is not limited to a specific value.
  • the amount of change ⁇ tan ⁇ 10 is the difference between the dielectric loss tangent tan ⁇ 11 at 10 GHz of the dielectric porous layer 10 after the high temperature and high humidity environment test and the dielectric loss tangent tan ⁇ 10 at 10 GHz of the dielectric porous layer 10 before the high temperature and high humidity environment test.
  • is.
  • the amount of change ⁇ tan ⁇ 10 is, for example, 0.0005 or less, preferably 0.0004 or less, and more preferably 0.0003 or less.
  • the thickness t 10 of the dielectric porous layer 10 is not limited to a specific value.
  • the thickness t 10 is, for example, 1 ⁇ m to 240 ⁇ m. When the thickness t 10 is 1 ⁇ m or more, the dielectric porous layer 10 can be easily handled. If the thickness t 10 is 240 ⁇ m or less, the bending rigidity of the dielectric porous layer 10 tends to be low.
  • the thickness t10 may be 2 ⁇ m or more, 5 ⁇ m or more, 10 ⁇ m or more, 20 ⁇ m or more, 30 ⁇ m or more, 40 ⁇ m or more. It may be 50 ⁇ m or more, or 100 ⁇ m or more.
  • the thickness t 10 may be 230 ⁇ m or less, 220 ⁇ m or less, 210 ⁇ m or less, or 200 ⁇ m or less.
  • the thickness t 10 has a lower limit of any one of 1 ⁇ m, 2 ⁇ m, 5 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, and 100 ⁇ m, and a lower limit of any one of 240 ⁇ m, 230 ⁇ m, 220 ⁇ m, 210 ⁇ m, and 200 ⁇ m. It may be included in any range determined by all combinations with a certain upper limit.
  • the laminate 1a includes, for example, a non-porous layer 30.
  • the non-porous layer 30 is disposed between the dielectric porous layer 10 and the conductive layer 20 in the thickness direction of the dielectric porous layer 10.
  • the non-porous layer 30 allows the conductive layer 20 to be firmly fixed in the stacked body 1a. Furthermore, when the laminate 1a is subjected to a treatment using a predetermined liquid, the liquid is difficult to penetrate into the dielectric porous layer 10 of the laminate 1a. Thereby, a product including the laminate 1a can easily exhibit desired dielectric properties.
  • the non-porous layer 30 contains, for example, a predetermined organic polymer.
  • the organic polymer contained in the non-porous layer 30 may be the same type of polymer as the organic polymer contained in the dielectric porous layer 10, or may be a different type of polymer.
  • the organic polymer contained in non-porous layer 30 is preferably the same type of polymer as the organic polymer contained in dielectric porous layer 10. Examples of the organic polymer contained in the non-porous layer 30 are the same as those contained in the dielectric porous layer 10.
  • the thickness of the non-porous layer 30 is not limited to a specific value.
  • the non-porous layer 30 has a thickness of, for example, 0.1 ⁇ m to 20 ⁇ m.
  • the dielectric constant ⁇ 30 of the non-porous layer 30 at 10 GHz is not limited to a specific value.
  • the dielectric constant ⁇ 30 is, for example, 2.1 to 4.0.
  • the dielectric loss tangent tan ⁇ 30 of the non-porous layer 30 at 10 GHz is not limited to a specific value.
  • the dielectric loss tangent tan ⁇ 30 is, for example, 0.0005 to 0.02.
  • another layer such as an adhesive layer may be disposed between the dielectric porous layer 10 and the conductive layer 20 in the thickness direction of the dielectric porous layer 10.
  • Non-porous layer 30 may function as an adhesive layer.
  • the conductive layer 20 is not limited to a specific layer as long as it has conductivity.
  • the conductive layer 20 includes, for example, metal.
  • the metal contained in the conductive layer 20 is not limited to a specific metal.
  • the conductive layer 20 contains copper, for example.
  • the conductive layer 20 may be a metal foil, a plating layer, a vapor deposition layer, or a sputtering layer.
  • the conductive layer 20 includes, for example, a first conductive layer 21 and a second conductive layer 22.
  • the dielectric porous layer 10 is arranged between the first conductive layer 21 and the second conductive layer 22 in the thickness direction of the dielectric porous layer 10 .
  • the laminate 1a may include only one conductive layer 20.
  • the conductive layer 20 may be formed to form a predetermined wiring pattern.
  • a predetermined wiring pattern is formed by patterning the conductive layer 20 by a method including photolithography and etching, or a method such as laser patterning.
  • laminate 1a is not limited to a specific use.
  • Laminated body 1a may be provided, for example, as a printed wiring board or a member for a printed wiring board.
  • the laminate 1a may be used as a substrate in a wireless communication antenna.
  • the laminate 1a can be modified from various viewpoints.
  • the laminate 1a may be modified, for example, to include a plurality of dielectric porous layers 10 arranged in the thickness direction of the dielectric porous layer 10.
  • the conductive layer 20 may be placed between the pair of dielectric porous layers 10.
  • the laminate 1a may be modified as a laminate 1b shown in FIG. 2A, a laminate 1c shown in FIG. 2B, or a laminate 1d shown in FIG. 2C.
  • Each of the laminates 1b, 1c, and 1d has the same structure as the laminate 1a, except for parts that are specifically explained.
  • Components of the laminate 1b, 1c, and 1d that are the same as or correspond to the components of the laminate 1a are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the explanation regarding the laminate 1a also applies to the laminate 1b, the laminate 1c, and the laminate 1d unless technically contradictory.
  • each of the laminate 1b, 1c, and 1d includes a conductive portion 23.
  • the conductive part 23 electrically connects the first conductive layer 21 and the second conductive layer 22.
  • the conductive portion 23 is formed to form a blind via.
  • the conductive portion 23 is formed to form a filled via.
  • the conductive portion 23 is formed to form a through-hole via.
  • the conductive portion 23 includes, for example, metal such as copper.
  • the conductive portion 23 can be formed, for example, by forming a through hole or a non-through hole in the laminate 1a using a laser, and then plating the inside of the through hole or non-through hole.
  • the conductive portion 23 may be formed to form a buried via.
  • Example 1 Liquid crystal polymer UENO LCP A5000 manufactured by Ueno Pharmaceutical Co., Ltd. and sodium sulfate were kneaded using a kneading device Labo Plastomill 4C150 manufactured by Toyo Seiki Co., Ltd. The melting point of this liquid crystal polymer was 280°C. This melting point was measured according to the differential scanning calorimetry method using a differential scanning calorimeter SDT650 manufactured by TA Instruments Japan. In differential scanning calorimetry, the temperature increase rate was 10° C./min, and the liquid crystal polymer was heated in a nitrogen atmosphere. Sodium sulfate before kneading existed as secondary particles formed by agglomeration of primary particles.
  • the particle size of the primary particles of sodium sulfate was 1 to 10 ⁇ m, and the particle size of the secondary particles of sodium sulfate was 10 to 50 ⁇ m.
  • Labo Plastomill is a registered trademark manufactured by Toyo Seiki Co., Ltd.
  • the ratio of the volume of sodium sulfate to the sum of the volume of the kneaded liquid crystal polymer and the volume of sodium sulfate was 0.6.
  • the temperature inside the kneading device during kneading of the liquid crystal polymer and sodium sulfate was 350°C.
  • the rotational speed of the screw in the kneading device was adjusted to 30 rpm (revolutions per minute).
  • a kneaded product of liquid crystal polymer and sodium sulfate was formed into a sheet using a manual hydraulic vacuum press 11FD manufactured by Imoto Seisakusho Co., Ltd., to obtain a non-porous sheet according to Example 1.
  • the thickness of the non-porous sheet according to Example 1 was 100 ⁇ m to 200 ⁇ m.
  • the temperature in pressing the kneaded material was 350°C, and the pressing pressure was 4 to 10 MPa.
  • Sodium sulfate was extracted from the nonporous sheet according to Example 1 using ultrapure water as a solvent using Sartorius' experimental device MSE224S-0000-DI.
  • the temperature of ultrapure water was adjusted to 80°C.
  • the pressure around the non-porous sheet when ultrapure water was sent around the non-porous sheet was adjusted to 10 MPa in terms of gauge pressure.
  • the extraction time which is the time during which the nonporous sheet was impregnated with ultrapure water, was 50 minutes. Thereafter, the sheet obtained by extracting sodium sulfate into ultrapure water was dried to obtain a porous body according to Example 1.
  • Comparative Example 1 A porous body according to Comparative Example 1 was obtained in the same manner as in Example 1 except for the following points. According to FIG. 4, it is understood that in Comparative Example 1, the sodium sulfate before kneading had a broader particle size distribution than the particle size distribution of sodium sulfate before kneading in Example 1. For example, it is understood that the sodium sulfate before kneading in Comparative Example 1 contained many particles having a particle size of more than 50 ⁇ m or particles having a particle size of less than 10 ⁇ m.
  • the presence of sodium was confirmed due to the sodium sulfate used as a porosity-forming agent.
  • the content of sodium in the porous body according to Example 1 is in the range of 0.0001% to 1.0% based on the number of atoms, and the relative permittivity and dielectric loss tangent of the porous body before and after the high temperature and high humidity environment test are was low.
  • the content of sodium in the porous body according to Comparative Example 1 was as high as 23.0% based on the number of atoms, which was relatively high.
  • Comparative Example 1 sodium sulfide having a relatively small particle size existed independently in the non-porous sheet, and it is thought that such sodium sulfide remained without being extracted. Further, the porous body according to Comparative Example 1 exhibited a relatively high dielectric constant. It is thought that the porous body according to Example 1 had less residue containing metal elements, and the relative permittivity and dielectric loss tangent of the porous body were low.
  • the pore diameter in the porous body according to Example 1 was small, and as shown in Table 1, the average pore diameter was 15 ⁇ m or less. For this reason, it is thought that when this porous body is subjected to a treatment such as plating, a plating film is likely to be uniformly formed.
  • a treatment such as plating
  • FIG. 4 in the porous body according to Comparative Example 2, huge pores were confirmed in some places, and the average pore diameter was as high as 37.4 ⁇ m.

Abstract

A multilayer body 1a according to the present invention is provided with a dielectric porous layer 10 and a conductive layer 20. The dielectric porous layer 10 contains an organic polymer. The conductive layer 20 and the dielectric porous layer 10 extend side by side in the thickness direction of the dielectric porous layer 10. The content of metal elements in the dielectric porous layer 10 is within the range of 0.0001% to 1.0% based on the number of atoms.

Description

積層体laminate
 本発明は、積層体に関する。 The present invention relates to a laminate.
 従来、多孔質のポリマーフィルムの少なくとも一方の面に導電層を設けた積層体が知られている。 Conventionally, a laminate in which a conductive layer is provided on at least one surface of a porous polymer film is known.
 例えば、特許文献1には、ミリ波アンテナ用のシートとして有用な多孔質の低誘電性ポリマーフィルムが記載されており、この低誘電性ポリマーフィルムと導電層とを含む積層体が記載されている。低誘電性ポリマーフィルムにおいて、ポリマー材料からなるフィルムに微細な空孔が分散形成されている。低誘電性ポリマーフィルムは、所定の平均孔径の空孔を有し、所定の空孔率を有している。低誘電性ポリマーフィルムにおける多孔質の構造は独泡構造である。多孔質の低誘電性ポリマーフィルムは、ポリオキシエチレンジメチルエーテル等の多孔化剤をポリイミド前駆体中で不溶化させて、超臨界二酸化炭素を用いて多孔化剤を抽出した後にポリイミド前駆体をポリイミドに変換(イミド化)することによって作製されている。 For example, Patent Document 1 describes a porous low dielectric polymer film useful as a sheet for millimeter wave antennas, and describes a laminate including this low dielectric polymer film and a conductive layer. . In a low dielectric polymer film, fine pores are dispersed and formed in a film made of a polymer material. The low dielectric polymer film has pores with a predetermined average pore diameter and has a predetermined porosity. The porous structure in the low dielectric polymer film is a closed cell structure. Porous low dielectric polymer films are produced by insolubilizing a porosity agent such as polyoxyethylene dimethyl ether in a polyimide precursor, and converting the polyimide precursor to polyimide after extracting the porosity agent using supercritical carbon dioxide. (imidization).
特開2019-123851号公報JP2019-123851A
 特許文献1に記載の技術では、超臨界二酸化炭素を用いた多孔化剤の抽出を伴う多孔化がなされており、多孔化剤は金属元素を含んでいない。特許文献1では、多孔質の低誘電性ポリマーフィルムの製造において金属元素を含む残留物が生じることは想定されていない。 In the technique described in Patent Document 1, porosity is created by extraction of a pore-forming agent using supercritical carbon dioxide, and the porosity-forming agent does not contain a metal element. In Patent Document 1, it is not assumed that a residue containing a metal element is generated in the production of a porous low dielectric polymer film.
 そこで、本発明は、製造プロセスに起因して金属元素を含む残留物が生じても、誘電特性の観点から有利な積層体を提供する。 Therefore, the present invention provides a laminate that is advantageous from the viewpoint of dielectric properties even if a residue containing a metal element is generated due to the manufacturing process.
 本発明は、
 有機ポリマーを含む誘電性多孔質層と、
 前記誘電性多孔質層の一方の主面に沿って配置されている金属層と、を備え、
 前記誘電性多孔質層における金属元素の含有量は、原子数基準で、0.0001%~1.0%の範囲にある、
 積層体を提供する。
The present invention
a dielectric porous layer containing an organic polymer;
a metal layer disposed along one main surface of the dielectric porous layer,
The content of the metal element in the dielectric porous layer is in the range of 0.0001% to 1.0% based on the number of atoms.
A laminate is provided.
 上記の積層体は、製造プロセスに起因して金属元素を含む残留物が生じても、誘電特性の観点から有利である。 The above laminate is advantageous from the viewpoint of dielectric properties even if a residue containing a metal element is generated due to the manufacturing process.
図1は、本発明に係る積層体の一例を示す断面図である。FIG. 1 is a sectional view showing an example of a laminate according to the present invention. 図2Aは、本発明に係る積層体の別の一例を示す断面図である。FIG. 2A is a cross-sectional view showing another example of the laminate according to the present invention. 図2Bは、本発明に係る積層体のさらに別の一例を示す断面図である。FIG. 2B is a sectional view showing still another example of the laminate according to the present invention. 図2Cは、本発明に係る積層体のさらに別の一例を示す断面図である。FIG. 2C is a sectional view showing still another example of the laminate according to the present invention. 図3は、実施例に係る多孔質体の断面の走査型電子顕微鏡(SEM)写真である。FIG. 3 is a scanning electron microscope (SEM) photograph of a cross section of a porous body according to an example. 図4は、比較例に係る多孔質体の断面のSEM写真である。FIG. 4 is a SEM photograph of a cross section of a porous body according to a comparative example.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、下記の説明は、本発明を例示的に説明するものであり、本発明は以下の実施形態に限定されるわけではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the following description is for explaining the present invention by way of example, and the present invention is not limited to the following embodiments.
 図1に示す通り、積層体1aは、誘電性多孔質層10と、導電層20とを備えている。誘電性多孔質層10は有機ポリマーを含んでいる。導電層20は、誘電性多孔質層10の一方の主面に沿って配置されている。導電層20は誘電性多孔質層10の厚み方向において誘電性多孔質層10に接触していてもよいし、誘電性多孔質層10の厚み方向において導電層20と誘電性多孔質層10との間に別の層が介在していてもよい。誘電性多孔質層10における金属元素の含有量CMは、原子数基準で、0.0001%~1.0%の範囲にある。金属元素の含有量CMは、例えば、走査型電子顕微鏡‐エネルギー分散型X線分光法(SEM‐EDX)に従って誘電性多孔質層10の断面に対してなされた元素分析の結果に基づいて決定される。 As shown in FIG. 1, the laminate 1a includes a dielectric porous layer 10 and a conductive layer 20. Dielectric porous layer 10 includes an organic polymer. Conductive layer 20 is arranged along one main surface of dielectric porous layer 10 . The conductive layer 20 may be in contact with the dielectric porous layer 10 in the thickness direction of the dielectric porous layer 10, or the conductive layer 20 and the dielectric porous layer 10 may be in contact with each other in the thickness direction of the dielectric porous layer 10. Another layer may be interposed between them. The metal element content C M in the dielectric porous layer 10 is in the range of 0.0001% to 1.0% based on the number of atoms. The metal element content C M is determined, for example, based on the results of elemental analysis performed on a cross section of the dielectric porous layer 10 according to scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX). be done.
 誘電性多孔質層10は、例えば、金属元素を含む多孔化剤を用いて製造される。例えば、有機ポリマー又は有機ポリマーの前駆体と、多孔化剤との混練によって得られた組成物から多孔化剤を所定の溶媒に抽出させることによって誘電性多孔質層10が製造されうる。組成物は、例えば、プレス、圧延、及び延伸からなる群より選ばれる少なくとも1つの処理によってシート状に成形されうる。このような方法は、多孔化剤及び溶媒を適宜選択することによって、誘電性多孔質層10において調整可能な多孔質構造のバリエーションが豊富となり有利である。また、超臨界二酸化炭素による多孔化剤の抽出のような高温高圧でのプロセスを必ずしも必要としないので、誘電性多孔質層10の製造プロセスが簡素になりやすく、誘電性多孔質層10の製造コストを低減しやすい。 The dielectric porous layer 10 is manufactured using, for example, a porosity-forming agent containing a metal element. For example, the dielectric porous layer 10 can be manufactured by extracting the porosity-forming agent into a predetermined solvent from a composition obtained by kneading an organic polymer or a precursor of the organic polymer and a porosity-forming agent. The composition can be formed into a sheet by, for example, at least one treatment selected from the group consisting of pressing, rolling, and stretching. Such a method is advantageous because it allows for a wide variety of adjustable porous structures in the dielectric porous layer 10 by appropriately selecting a porosity-forming agent and a solvent. In addition, since a process at high temperature and high pressure, such as extraction of a porosity agent using supercritical carbon dioxide, is not necessarily required, the manufacturing process of the dielectric porous layer 10 can be easily simplified. Easy to reduce costs.
 一方、金属元素を有する多孔化剤を用いた場合、多孔化剤に由来する金属元素を多孔質層から完全に除去することは難しい。このような金属元素の残留により、多孔質層の誘電特性を所望の状態に調整できない可能性がある。例えば、多孔質層の初期の誘電特性が所望の範囲から外れる可能性がある。もしくは、多孔質層が所定の環境に曝されたときに、残留した金属元素の作用によって多孔質層の誘電特性が変化する可能性がある。 On the other hand, when a porosity-forming agent containing a metal element is used, it is difficult to completely remove the metal element derived from the porosity-forming agent from the porous layer. Due to such residual metal elements, it may be impossible to adjust the dielectric properties of the porous layer to a desired state. For example, the initial dielectric properties of the porous layer may fall outside of the desired range. Alternatively, when the porous layer is exposed to a certain environment, the dielectric properties of the porous layer may change due to the action of the remaining metal elements.
 そこで、本発明者らは、鋭意検討を重ねた結果、誘電性多孔質層10における金属元素の含有量を原子数基準で1.0%以下に調整することによって、誘電性多孔質層10の誘電特性が所望の範囲に調整されやすいことを突き止めた。一方、誘電性多孔質層10における金属元素の含有量を1.0%以下の範囲で0%に近づけていくと、換言すると、誘電性多孔質層10における金属元素を含む残留物を完全に除去しようとすると、誘電性多孔質層10の製造に過剰な負担が生じうる。しかし、誘電性多孔質層10における金属元素の含有量が原子数基準で1.0%以下の範囲において0.0001%以上であれば、誘電性多孔質層10の製造に過剰な負担が生じにくい。 Therefore, as a result of extensive studies, the present inventors have determined that the content of the metal element in the dielectric porous layer 10 is adjusted to 1.0% or less based on the number of atoms. It was found that the dielectric properties can be easily adjusted to a desired range. On the other hand, when the content of the metal element in the dielectric porous layer 10 is brought closer to 0% within the range of 1.0% or less, in other words, the residue containing the metal element in the dielectric porous layer 10 is completely removed. Attempts to remove it may place an undue burden on the manufacturing of the dielectric porous layer 10. However, if the content of the metal element in the dielectric porous layer 10 is 0.0001% or more in the range of 1.0% or less based on the number of atoms, an excessive burden will be placed on manufacturing the dielectric porous layer 10. Hateful.
 金属元素を有する多孔化剤を用いて多孔質層を製造する場合、多孔質層を含む製品において、残留した金属元素の作用に伴う腐食によって、電気的絶縁状態、導通不良、及び電気的接続の損失が発生する可能性がある。一方、誘電性多孔質層10における金属元素の含有量CMが原子数基準で0.0001%~1.0%の範囲にあることにより、積層体1aでは、電気的絶縁状態、導通不良、及び電気的接続の損失が発生しにくい。 When manufacturing a porous layer using a porous agent containing a metal element, the product containing the porous layer may suffer from electrical insulation, poor continuity, and electrical connection due to corrosion due to the action of the remaining metal element. Losses may occur. On the other hand, since the metal element content C M in the dielectric porous layer 10 is in the range of 0.0001% to 1.0% based on the number of atoms, the laminate 1a has an electrically insulating state, poor conductivity, and electrical connection loss is less likely to occur.
 金属元素を有する多孔化剤を用いて多孔質層を製造する場合に、多孔質層を含む製品の製造、多孔質層の輸送、及び多孔質層の使用において、金属元素を含む残留物が脱落して異物が発生する可能性がある。一方、誘電性多孔質層10における金属元素の含有量CMが原子数基準で0.0001%~1.0%の範囲にあることにより、このような異物が発生しにくい。 When manufacturing a porous layer using a porous agent containing a metal element, residues containing the metal element may fall off during the production of products containing the porous layer, transportation of the porous layer, and use of the porous layer. foreign matter may be generated. On the other hand, since the metal element content C M in the dielectric porous layer 10 is in the range of 0.0001% to 1.0% based on the number of atoms, such foreign substances are less likely to occur.
 金属元素の含有量CMは、望ましくは0.8%以下であり、より望ましくは0.6%以下であり、さら望ましくは0.4%以下であり、特に望ましくは0.2%以下である。金属元素の含有量CMは、0.0002%以上であってもよく、0.0005%以上であってもよく0.001%以上であってもよく、0.002%以上であってもよく、0.005%以上であってもよく、0.01%以上であってもよい。金属元素の含有量CMは、0.0001%、0.0002%、及び0.0005%のいずれか1つである下限値と、1.0%、0.8%、0.6%、0.4%、及び0.2%のいずれか1つである上限値との全ての組み合わせによって定まる範囲のいずれかに含まれてもよい。 The metal element content C M is preferably 0.8% or less, more preferably 0.6% or less, even more preferably 0.4% or less, and particularly preferably 0.2% or less. be. The content C M of the metal element may be 0.0002% or more, 0.0005% or more, 0.001% or more, or 0.002% or more. It may be 0.005% or more, or 0.01% or more. The metal element content C M has a lower limit of any one of 0.0001%, 0.0002%, and 0.0005%, and a lower limit of 1.0%, 0.8%, 0.6%, It may be included in any of the ranges determined by all combinations with the upper limit of either 0.4% or 0.2%.
 誘電性多孔質層10に含まれる有機ポリマーは、特定のポリマーに限定されない。有機ポリマーは、例えば、液晶ポリマーである。この場合、誘電性多孔質層10が所望の誘電特性を有しやすい。加えて、液晶ポリマーは、成形性、耐熱性、低い線膨張、耐薬品性、ガスバリア性、及び制振性の観点からも有利である。 The organic polymer contained in the dielectric porous layer 10 is not limited to a specific polymer. The organic polymer is, for example, a liquid crystal polymer. In this case, the dielectric porous layer 10 tends to have desired dielectric properties. In addition, liquid crystal polymers are advantageous from the viewpoints of moldability, heat resistance, low linear expansion, chemical resistance, gas barrier properties, and vibration damping properties.
 液晶ポリマーは、液晶性を示すポリマーである限り、特定のポリマーに限定されない。液晶ポリマーは、例えば、液晶性を示す熱可塑性ポリマーである。液晶ポリマーは、例えば、芳香族液晶ポリエステルである。液晶ポリマーとして、例えば、特開2020-147670号公報及び特開2004-189867号公報に記載されている液晶ポリマーが用いられてもよい。液晶ポリマーは、市販品を用いてもよい。市販品の例は、上野製薬社製のUENO LCP 8100シリーズ(低融点タイプ)及びUENO LCP 5000シリーズ(高強度タイプ)である。「UENO LCP」は、上野製薬社の登録商標である。 The liquid crystal polymer is not limited to a specific polymer as long as it exhibits liquid crystallinity. The liquid crystal polymer is, for example, a thermoplastic polymer exhibiting liquid crystallinity. The liquid crystal polymer is, for example, an aromatic liquid crystal polyester. As the liquid crystal polymer, for example, liquid crystal polymers described in JP 2020-147670A and JP 2004-189867A may be used. A commercially available liquid crystal polymer may be used. Examples of commercially available products are UENO LCP 8100 series (low melting point type) and UENO LCP 5000 series (high strength type) manufactured by Ueno Pharmaceutical Co., Ltd. "UENO LCP" is a registered trademark of Ueno Pharmaceutical Co., Ltd.
 液晶ポリマーの融点は特定の値に限定されない。液晶ポリマーの融点は、例えば170℃以上であり、180℃以上であってもよく、200℃以上であってもよく、250℃以上であってもよく、280℃以上であってもよく、300℃以上であってもよい。液晶ポリマーの融点は、例えば、370℃以下である。液晶ポリマーの融点は、例えば、170℃、180℃、200℃、250℃、280℃、及び300℃のいずれか1つと、370℃との間の範囲に含まれうる。液晶ポリマーの融点は、例えば、示差走査熱量測定(DSC)の結果に基づいて決定できる。 The melting point of the liquid crystal polymer is not limited to a specific value. The melting point of the liquid crystal polymer is, for example, 170°C or higher, may be 180°C or higher, may be 200°C or higher, may be 250°C or higher, may be 280°C or higher, and may be 300°C or higher. The temperature may be higher than ℃. The melting point of the liquid crystal polymer is, for example, 370° C. or lower. The melting point of the liquid crystal polymer can range, for example, between any one of 170°C, 180°C, 200°C, 250°C, 280°C, and 300°C and 370°C. The melting point of the liquid crystal polymer can be determined, for example, based on the results of differential scanning calorimetry (DSC).
 誘電性多孔質層10に含まれる有機ポリマーは、液晶ポリマー以外のポリマーであってもよい。有機ポリマーは、例えば、熱可塑性ポリマーである。熱可塑性ポリマーの例は、熱可塑性ポリイミド、ポリスチレン、ポリオレフィン、アクリル樹脂、ポリアクリロニトリル、マレイミド樹脂、エポキシ樹脂、ポリ酢酸ビニル、エチレン‐酢酸ビニル共重合体、ポリビニルアルコール、ポリアミド、ポリ塩化ビニル、ポリアセタール、ポリフェニレンエーテル、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアクリルスルホン、熱可塑性フッ化ポリイミド、熱可塑性ポリウレタン、ポリエーテルイミド、ポリメチルペンテン、セルロース、及びアイオノマーである。 The organic polymer contained in the dielectric porous layer 10 may be a polymer other than the liquid crystal polymer. Organic polymers are, for example, thermoplastic polymers. Examples of thermoplastic polymers include thermoplastic polyimide, polystyrene, polyolefin, acrylic resin, polyacrylonitrile, maleimide resin, epoxy resin, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinyl alcohol, polyamide, polyvinyl chloride, polyacetal, These are polyphenylene ether, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyether sulfone, polyether ether ketone, polyacrylic sulfone, thermoplastic fluorinated polyimide, thermoplastic polyurethane, polyetherimide, polymethylpentene, cellulose, and ionomer.
 誘電性多孔質層10に含まれる金属元素は、特定の元素に限定されない。この金属元素は、例えば、誘電性多孔質層10の製造に用いられる多孔化剤に由来しうる。多孔化剤は、無機塩であってもよいし、セラミックスであってもよいし、金属酸化物であってもよいし、金属水酸化物であってもよいし、金属炭化物であってもよいし、金属窒化物であってもよいし、金属ホウ化物であってもよいし、他の金属化合物であってもよい。 The metal element contained in the dielectric porous layer 10 is not limited to a specific element. This metallic element can originate, for example, from the porogen used in the manufacture of the dielectric porous layer 10. The porosity agent may be an inorganic salt, a ceramic, a metal oxide, a metal hydroxide, or a metal carbide. However, it may be a metal nitride, a metal boride, or another metal compound.
 誘電性多孔質層10は、例えば、ナトリウム等のアルカリ金属元素、カルシウム等のアルカリ土類金属元素、クロム、アルミニウム、及びセラミックスに含有されうる金属元素からなる群より選ばれる少なくとも1つを含む。 The dielectric porous layer 10 contains, for example, at least one element selected from the group consisting of an alkali metal element such as sodium, an alkaline earth metal element such as calcium, chromium, aluminum, and a metal element that can be contained in ceramics.
 誘電性多孔質層10の製造において多孔化剤の抽出のための溶媒は、特定の溶媒に限定されない。その溶媒は、水であってもよく、酸性の溶媒であってもよく、アルカリ性の溶媒であってもよい。酸性の溶媒の例は、塩酸、硫酸、硝酸、及び塩化鉄水溶液等の酸性の水溶液である。アルカリ性の溶媒の例は、水酸化ナトリウム水溶液及び有機系塩基性水溶液である。 The solvent for extracting the porosity agent in the production of the dielectric porous layer 10 is not limited to a specific solvent. The solvent may be water, an acidic solvent, or an alkaline solvent. Examples of acidic solvents are hydrochloric acid, sulfuric acid, nitric acid, and acidic aqueous solutions such as aqueous iron chloride solutions. Examples of alkaline solvents are aqueous sodium hydroxide and organic basic aqueous solutions.
 誘電性多孔質層10における平均孔径dpは特定の値に限定されない。平均孔径dpは、例えば15μm以下である。この場合、誘電性多孔質層10に対してめっきなどの処理を行うときに、誘電性多孔質層10にめっき膜が均一に形成されやすい。加えて、誘電性多孔質層10において金属元素を含む残留物が脱落しにくく、異物が発生しにくい。また、誘電性多孔質層10が所望の誘電特性を有しやすい。平均孔径dpは、例えば、誘電性多孔質層10の断面のSEM写真を画像解析することによって決定できる。例えば、誘電性多孔質層10の断面のSEM像において、無作為に選んだ50個以上の空孔の最大径を求め、その最大径を算術平均することによって平均孔径dpを決定できる。 The average pore diameter dp in the dielectric porous layer 10 is not limited to a specific value. The average pore diameter dp is, for example, 15 μm or less. In this case, when performing a treatment such as plating on the dielectric porous layer 10, a plating film is likely to be uniformly formed on the dielectric porous layer 10. In addition, residues containing metal elements are less likely to fall off in the dielectric porous layer 10, and foreign matter is less likely to be generated. Further, the dielectric porous layer 10 tends to have desired dielectric properties. The average pore diameter dp can be determined, for example, by image analysis of a SEM photograph of a cross section of the dielectric porous layer 10. For example, in a SEM image of a cross section of the dielectric porous layer 10, the average pore diameter dp can be determined by determining the maximum diameter of 50 or more randomly selected pores and arithmetic averaging the maximum diameters.
 平均孔径dpは、14μm以下であってもよいし、13μm以下であってもよいし、12μm以下であってもよい。平均孔径dpは、例えば1μm以上であり、2μm以上であってもよく、4μm以上であってもよく、6μm以上であってもよく、8μm以上であってもよく、10μm以上であってもよい。平均孔径dpは、1μm、2μm、4μm、6μm、8μm、及び10μmのいずれか1つである下限値と、15μm、14μm、13μm、及び12μmのいずれか1つである上限値との全ての組み合わせによって定まる範囲のいずれかに含まれてもよい。 The average pore diameter dp may be 14 μm or less, 13 μm or less, or 12 μm or less. The average pore diameter dp is, for example, 1 μm or more, may be 2 μm or more, may be 4 μm or more, may be 6 μm or more, may be 8 μm or more, or may be 10 μm or more. . The average pore diameter dp is all combinations of a lower limit value that is any one of 1 μm, 2 μm, 4 μm, 6 μm, 8 μm, and 10 μm and an upper limit value that is any one of 15 μm, 14 μm, 13 μm, and 12 μm. may be included in any of the ranges defined by.
 誘電性多孔質層10の空孔率P10は、特定の値に限定されない。空孔率P10は、例えば、50%以上である。この場合、誘電性多孔質層10が所望の誘電特性を有しやすい。また、積層体1aが軽量になりやすい。 The porosity P 10 of the dielectric porous layer 10 is not limited to a specific value. The porosity P 10 is, for example, 50% or more. In this case, the dielectric porous layer 10 tends to have desired dielectric properties. Moreover, the laminate 1a tends to be lightweight.
 空孔率P10は、52%以上であってもよく、54%以上であってもよく、56%以上であってもよく、58%以上であってもよく、60%以上であってもよい。空孔率P10は、例えば90%以下である。この場合、誘電性多孔質層10が所望の強度(剛性)を有しやすい。空孔率P10は、50%、52%、54%、56%、58%、及び60%のいずれか1つと、90%との間の範囲に含まれてもよい。 The porosity P10 may be 52% or more, 54% or more, 56% or more, 58% or more, or 60% or more. good. The porosity P 10 is, for example, 90% or less. In this case, the dielectric porous layer 10 tends to have desired strength (rigidity). The porosity P 10 may be in a range between 90% and any one of 50%, 52%, 54%, 56%, 58%, and 60%.
 誘電性多孔質層10の10GHzにおける比誘電率ε10は、特定の値に限定されない。比誘電率ε10は、例えば2.2以下である。これにより、例えば、1GHz以上の高い周波数の電波を用いた通信の用途に積層体1aを用いた場合に伝送損失が小さくなりやすい。比誘電率ε10は、望ましくは2.1以下であり、より望ましくは2.0以下であり、さらに望ましくは1.9以下であり、特に望ましくは1.8以下である。比誘電率ε10は、例えば、1.1以上である。比誘電率ε10は、例えば、1.1と、2.2、2.1、2.0、1.9、及び1.8のいずれか1つとの間の範囲に含まれていてもよい。 The dielectric constant ε 10 of the dielectric porous layer 10 at 10 GHz is not limited to a specific value. The dielectric constant ε 10 is, for example, 2.2 or less. Thereby, for example, when the laminate 1a is used for communication using radio waves with a high frequency of 1 GHz or more, transmission loss tends to be reduced. The dielectric constant ε 10 is preferably 2.1 or less, more preferably 2.0 or less, still more preferably 1.9 or less, and particularly preferably 1.8 or less. The dielectric constant ε 10 is, for example, 1.1 or more. The dielectric constant ε 10 may, for example, be in a range between 1.1 and any one of 2.2, 2.1, 2.0, 1.9, and 1.8. .
 誘電性多孔質層10の10GHzにおける誘電正接tanδ10は、特定の値に限定されない。誘電正接tanδ10は、例えば0.0017以下である。比誘電率ε10は、0.0016以下であってもよいし、0.0015以下であってもよいし、0.0014以下であってもよい。 The dielectric loss tangent tan δ 10 of the dielectric porous layer 10 at 10 GHz is not limited to a specific value. The dielectric loss tangent tan δ 10 is, for example, 0.0017 or less. The dielectric constant ε 10 may be 0.0016 or less, 0.0015 or less, or 0.0014 or less.
 誘電性多孔質層10の10GHzにおける比誘電率の高温高湿環境試験の前後における変化量Δε10は、特定の値に限定されない。変化量Δε10は、高温高湿環境試験後の誘電性多孔質層10の10GHzにおける比誘電率ε11と高温高湿環境試験前の誘電性多孔質層10の10GHzにおける比誘電率ε10との差の絶対値|ε11-ε10|である。高温高湿環境試験は、例えば、積層体1a又は誘電性多孔質層10を温度85℃及び相対湿度85%の環境に168時間放置することによってなされる。変化量Δε10は、例えば0.2以下であり、望ましくは0.15以下であり、より望ましくは0.1以下である。 The amount of change Δε 10 in the dielectric constant of the dielectric porous layer 10 at 10 GHz before and after the high temperature and high humidity environment test is not limited to a specific value. The amount of change Δε 10 is the relative permittivity ε 11 of the dielectric porous layer 10 at 10 GHz after the high temperature and high humidity environment test, and the relative permittivity ε 10 of the dielectric porous layer 10 at 10 GHz before the high temperature and high humidity environment test. The absolute value of the difference is |ε 11 −ε 10 |. The high temperature and high humidity environment test is performed, for example, by leaving the laminate 1a or the dielectric porous layer 10 in an environment with a temperature of 85° C. and a relative humidity of 85% for 168 hours. The amount of change Δε 10 is, for example, 0.2 or less, preferably 0.15 or less, and more preferably 0.1 or less.
 誘電性多孔質層10の10GHzにおける誘電正接の高温高湿環境試験の前後における変化量Δtanδ10は、特定の値に限定されない。変化量Δtanδ10は、高温高湿環境試験後の誘電性多孔質層10の10GHzにおける誘電正接tanδ11と高温高湿環境試験前の誘電性多孔質層10の10GHzにおける誘電正接tanδ10との差の絶対値|tanδ11-tanδ10|である。変化量Δtanδ10は、例えば0.0005以下であり、望ましくは0.0004以下であり、より望ましくは0.0003以下である。 The amount of change Δtanδ 10 in the dielectric loss tangent of the dielectric porous layer 10 at 10 GHz before and after the high temperature and high humidity environment test is not limited to a specific value. The amount of change Δtanδ 10 is the difference between the dielectric loss tangent tan δ 11 at 10 GHz of the dielectric porous layer 10 after the high temperature and high humidity environment test and the dielectric loss tangent tan δ 10 at 10 GHz of the dielectric porous layer 10 before the high temperature and high humidity environment test. The absolute value of |tanδ 11 −tanδ 10 | is. The amount of change Δtanδ 10 is, for example, 0.0005 or less, preferably 0.0004 or less, and more preferably 0.0003 or less.
 誘電性多孔質層10の厚みt10は特定の値に限定されない。厚みt10は、例えば、1μm~240μmである。厚みt10が1μm以上であると、誘電性多孔質層10のハンドリングがしやすい。厚みt10が240μm以下であると、誘電性多孔質層10の曲げ剛性が低くなりやすい。 The thickness t 10 of the dielectric porous layer 10 is not limited to a specific value. The thickness t 10 is, for example, 1 μm to 240 μm. When the thickness t 10 is 1 μm or more, the dielectric porous layer 10 can be easily handled. If the thickness t 10 is 240 μm or less, the bending rigidity of the dielectric porous layer 10 tends to be low.
 厚みt10は、2μm以上であってもよく、5μm以上であってもよく、10μm以上であってもよく、20μm以上であってもよく、30μm以上であってもよく、40μm以上であってもよく、50μm以上であってもよく、100μm以上であってもよい。厚みt10は、230μm以下であってもよく、220μm以下であってもよく、210μm以下であってもよく、200μm以下であってもよい。厚みt10は、1μm、2μm、5μm、10μm、20μm、30μm、40μm、50μm、及び100μmのいずれか1つである下限値と、240μm、230μm、220μm、210μm、及び200μmのいずれか1つである上限値との全ての組み合わせによって定まる範囲のいずれかに含まれてもよい。 The thickness t10 may be 2 μm or more, 5 μm or more, 10 μm or more, 20 μm or more, 30 μm or more, 40 μm or more. It may be 50 μm or more, or 100 μm or more. The thickness t 10 may be 230 μm or less, 220 μm or less, 210 μm or less, or 200 μm or less. The thickness t 10 has a lower limit of any one of 1 μm, 2 μm, 5 μm, 10 μm, 20 μm, 30 μm, 40 μm, 50 μm, and 100 μm, and a lower limit of any one of 240 μm, 230 μm, 220 μm, 210 μm, and 200 μm. It may be included in any range determined by all combinations with a certain upper limit.
 図1に示す通り、積層体1aは、例えば、非多孔質層30を備えている。非多孔質層30は、誘電性多孔質層10の厚み方向において誘電性多孔質層10と導電層20との間に配置されている。非多孔質層30によって、積層体1aにおいて導電層20が強固に固定されうる。また、所定の液体を用いた処理を積層体1aに対して行うときに、積層体1aの誘電性多孔質層10に液体が浸みにくい。これにより、積層体1aを備えた製品が所望の誘電特性を発揮しやすい。 As shown in FIG. 1, the laminate 1a includes, for example, a non-porous layer 30. The non-porous layer 30 is disposed between the dielectric porous layer 10 and the conductive layer 20 in the thickness direction of the dielectric porous layer 10. The non-porous layer 30 allows the conductive layer 20 to be firmly fixed in the stacked body 1a. Furthermore, when the laminate 1a is subjected to a treatment using a predetermined liquid, the liquid is difficult to penetrate into the dielectric porous layer 10 of the laminate 1a. Thereby, a product including the laminate 1a can easily exhibit desired dielectric properties.
 非多孔質層30は、例えば、所定の有機ポリマーを含んでいる。非多孔質層30に含まれる有機ポリマーは、誘電性多孔質層10に含まれる有機ポリマーと同一種類のポリマーであってもよいし、異なる種類のポリマーであってもよい。非多孔質層30に含まれる有機ポリマーは、望ましくは、誘電性多孔質層10に含まれる有機ポリマーと同一種類のポリマーである。非多孔質層30に含まれる有機ポリマーの例は、誘電性多孔質層10に含まれる有機ポリマーの例と同じである。 The non-porous layer 30 contains, for example, a predetermined organic polymer. The organic polymer contained in the non-porous layer 30 may be the same type of polymer as the organic polymer contained in the dielectric porous layer 10, or may be a different type of polymer. The organic polymer contained in non-porous layer 30 is preferably the same type of polymer as the organic polymer contained in dielectric porous layer 10. Examples of the organic polymer contained in the non-porous layer 30 are the same as those contained in the dielectric porous layer 10.
 非多孔質層30の厚みは特定の値に限定されない。非多孔質層30は、例えば0.1μm~20μmである。 The thickness of the non-porous layer 30 is not limited to a specific value. The non-porous layer 30 has a thickness of, for example, 0.1 μm to 20 μm.
 非多孔質層30の10GHzにおける比誘電率ε30は特定の値に限定されない。比誘電率ε30は、例えば2.1~4.0である。非多孔質層30の10GHzにおける誘電正接tanδ30は特定の値に限定されない。誘電正接tanδ30は、例えば0.0005~0.02である。 The dielectric constant ε 30 of the non-porous layer 30 at 10 GHz is not limited to a specific value. The dielectric constant ε 30 is, for example, 2.1 to 4.0. The dielectric loss tangent tan δ 30 of the non-porous layer 30 at 10 GHz is not limited to a specific value. The dielectric loss tangent tan δ 30 is, for example, 0.0005 to 0.02.
 積層体1aにおいて、誘電性多孔質層10の厚み方向における誘電性多孔質層10と導電層20との間には接着層等の別の層が配置されていてもよい。非多孔質層30が接着層として機能してもよい。 In the laminate 1a, another layer such as an adhesive layer may be disposed between the dielectric porous layer 10 and the conductive layer 20 in the thickness direction of the dielectric porous layer 10. Non-porous layer 30 may function as an adhesive layer.
 導電層20は、導電性を有する限り、特定の層に限定されない。導電層20は、例えば金属を含む。導電層20に含まれる金属は特定の金属に限定されない。導電層20は、例えば、銅を含んでいる。導電層20は、金属箔であってもよいし、めっき層であってもよいし、蒸着層であってもよいし、スパッタリング層であってもよい。 The conductive layer 20 is not limited to a specific layer as long as it has conductivity. The conductive layer 20 includes, for example, metal. The metal contained in the conductive layer 20 is not limited to a specific metal. The conductive layer 20 contains copper, for example. The conductive layer 20 may be a metal foil, a plating layer, a vapor deposition layer, or a sputtering layer.
 図1に示す通り、積層体1aにおいて、導電層20は、例えば、第一導電層21と、第二導電層22とを含んでいる。誘電性多孔質層10は、誘電性多孔質層10の厚み方向において第一導電層21と第二導電層22との間に配置されている。積層体1aは、1つの導電層20のみを備えていてもよい。 As shown in FIG. 1, in the laminate 1a, the conductive layer 20 includes, for example, a first conductive layer 21 and a second conductive layer 22. The dielectric porous layer 10 is arranged between the first conductive layer 21 and the second conductive layer 22 in the thickness direction of the dielectric porous layer 10 . The laminate 1a may include only one conductive layer 20.
 積層体1aにおいて、導電層20は所定の配線パターンをなすように形成されていてもよい。例えば、フォトリソグラフィ及びエッチングを含む方法、又は、レーザパターニング等の方法によって導電層20をパターニングして、所定の配線パターンが形成される。 In the laminate 1a, the conductive layer 20 may be formed to form a predetermined wiring pattern. For example, a predetermined wiring pattern is formed by patterning the conductive layer 20 by a method including photolithography and etching, or a method such as laser patterning.
 積層体1aの用途は特定の用途に限定されない。積層体1aは、例えば、プリント配線板又はプリント配線板のための部材として提供されうる。積層体1aは、無線通信アンテナにおける基板として用いられてもよい。 The use of the laminate 1a is not limited to a specific use. Laminated body 1a may be provided, for example, as a printed wiring board or a member for a printed wiring board. The laminate 1a may be used as a substrate in a wireless communication antenna.
 積層体1aは、様々な観点から変更可能である。積層体1aは、例えば、誘電性多孔質層10の厚み方向において並んだ複数の誘電性多孔質層10を備えるように変更されてもよい。この場合、一対の誘電性多孔質層10の間に導電層20が配置されうる。 The laminate 1a can be modified from various viewpoints. The laminate 1a may be modified, for example, to include a plurality of dielectric porous layers 10 arranged in the thickness direction of the dielectric porous layer 10. In this case, the conductive layer 20 may be placed between the pair of dielectric porous layers 10.
 積層体1aは、図2Aに示す積層体1b、図2Bに示す積層体1c、図2Cに示す積層体1dのように変更されてもよい。積層体1b、積層体1c、及び積層体1dのそれぞれは、特に説明する部分を除き、積層体1aと同様に構成されている。積層体1aの構成要素と同一又は対応する積層体1b、積層体1c、及び積層体1dの構成要素には同一の符号を付し、詳細な説明を省略する。積層体1aに関する説明は、技術的に矛盾しない限り、積層体1b、積層体1c、及び積層体1dにも当てはまる。 The laminate 1a may be modified as a laminate 1b shown in FIG. 2A, a laminate 1c shown in FIG. 2B, or a laminate 1d shown in FIG. 2C. Each of the laminates 1b, 1c, and 1d has the same structure as the laminate 1a, except for parts that are specifically explained. Components of the laminate 1b, 1c, and 1d that are the same as or correspond to the components of the laminate 1a are denoted by the same reference numerals, and detailed description thereof will be omitted. The explanation regarding the laminate 1a also applies to the laminate 1b, the laminate 1c, and the laminate 1d unless technically contradictory.
 図2A、図2B、及び図2Cに示す通り、積層体1b、積層体1c、及び積層体1dのそれぞれは、導電部23を備えている。導電部23は、第一導電層21と第二導電層22とを電気的に接続している。積層体1bにおいて、導電部23はブラインドビアをなすように形成されている。積層体1cにおいて、導電部23はフィルドビアをなすように形成されている。積層体1dにおいて、導電部23はスルーホールビアをなすように形成されている。導電部23は、例えば銅等の金属を含んでいる。導電部23は、例えば、積層体1aにレーザを用いて貫通孔又は非貫通孔を形成し、その貫通孔又は非貫通孔の内部をめっき処理することによって形成できる。 As shown in FIGS. 2A, 2B, and 2C, each of the laminate 1b, 1c, and 1d includes a conductive portion 23. The conductive part 23 electrically connects the first conductive layer 21 and the second conductive layer 22. In the stacked body 1b, the conductive portion 23 is formed to form a blind via. In the stacked body 1c, the conductive portion 23 is formed to form a filled via. In the stacked body 1d, the conductive portion 23 is formed to form a through-hole via. The conductive portion 23 includes, for example, metal such as copper. The conductive portion 23 can be formed, for example, by forming a through hole or a non-through hole in the laminate 1a using a laser, and then plating the inside of the through hole or non-through hole.
 積層体1aが複数の誘電性多孔質層10を備える場合、導電部23は、べリードビアをなすように形成されていてもよい。 When the laminate 1a includes a plurality of dielectric porous layers 10, the conductive portion 23 may be formed to form a buried via.
 以下、実施例により本発明をより詳細に説明する。ただし、本発明は、以下の実施例に限定されない。まず、実施例の評価方法について説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples. However, the present invention is not limited to the following examples. First, the evaluation method of the example will be explained.
 <金属元素の含有量>
 日立ハイテクノロジーズ社製の電界放出形走査電子顕微鏡(FE-SEM)S-4800及びEDX装置Oxford、EMAX Evolution EX-470 X-MAX150を用いて、実施例及び比較例に係る多孔質体から作製した試料に対してSEM‐EDXに基づく元素分析を行った。EDXにおける検出器として、Bruker社のFlat QUADを用いた。このSEM‐EDXに基づく元素分析では、B以上の原子量を有する元素を検出可能であった。SEM‐EDXにおける加速電圧は5kV又は15kVに調節した。SEM‐EDXに基づく元素分析の結果から、試料における金属元素の原子数基準の含有量を決定した。結果を表1に示す。
<Metal element content>
Porous bodies according to Examples and Comparative Examples were prepared using a field emission scanning electron microscope (FE-SEM) S-4800 manufactured by Hitachi High-Technologies, an EDX device Oxford, and an EMAX Evolution EX-470 X-MAX150. Elemental analysis based on SEM-EDX was performed on the samples. A Bruker Flat QUAD was used as a detector in EDX. In this elemental analysis based on SEM-EDX, it was possible to detect elements having an atomic weight of B or more. The accelerating voltage in SEM-EDX was adjusted to 5 kV or 15 kV. From the results of elemental analysis based on SEM-EDX, the content of metal elements in the sample on an atomic basis was determined. The results are shown in Table 1.
 <平均孔径>
 日立ハイテクノロジーズ社製のFE-SEM S-4800を用いて、加速電圧を1kV、3kV、又は5kVに調節して、実施例及び比較例に係る多孔質体から作製した試料の二次電子像及び反射電子像を得た。これらの像は、多孔質体の主面に垂直な断面の像である。これらの像の画像解析を行い、空孔の最大径を求め、その最大径を算術平均することによって平均孔径dpを決定した。画像解析には解析ソフトImage Jを用いた。結果を表1に示す。実施例及び比較例に係る多孔質体の断面のSEM写真をそれぞれ図3及び図4に示す。
<Average pore diameter>
Secondary electron images and A backscattered electron image was obtained. These images are images of a cross section perpendicular to the main surface of the porous body. These images were analyzed to determine the maximum diameter of the pores, and the maximum diameters were arithmetic averaged to determine the average pore diameter dp. The analysis software Image J was used for image analysis. The results are shown in Table 1. SEM photographs of cross sections of porous bodies according to Examples and Comparative Examples are shown in FIGS. 3 and 4, respectively.
 <空孔率>
 実施例及び比較例において、無孔シートの質量Mi及び多孔質体の質量Mpを測定して、下記式(1)に従って、実施例及び比較例における多孔質体の空孔率を測定した。結果を表1に示す。式(1)において、Msは、原料における無機塩の質量である。Vsは、原料における無機塩の体積である。VLは、原料における液晶ポリマーの体積である。
 空孔率[%]=100×{(Mi-Mp)/Ms}{Vs/(Vs+VL)}  式(1)
<Porosity>
In the Examples and Comparative Examples, the mass M i of the non-porous sheet and the mass M P of the porous body were measured, and the porosity of the porous body in the Examples and Comparative Examples was measured according to the following formula (1). . The results are shown in Table 1. In formula (1), M s is the mass of the inorganic salt in the raw material. V s is the volume of inorganic salt in the feedstock. V L is the volume of liquid crystal polymer in the raw material.
Porosity [%] = 100×{(M i - M p )/M s }{V s /(V s +V L )} Formula (1)
 <誘電特性>
 QWED社製のSPDR共振器を用いて、実施例及び比較例に係る多孔質体の10GHzにおける比誘電率及び誘電正接を測定した。この測定は、各多孔質体の作製後かつ高温高湿環境試験前と、高温高湿環境試験後とに行った。結果を表1に示す。高温高湿環境試験では、温度85℃及び相対湿度85%の条件に保たれた環境に各多孔質体を168時間放置した。
<Dielectric properties>
Using an SPDR resonator manufactured by QWED, the dielectric constant and dielectric loss tangent at 10 GHz of the porous bodies according to Examples and Comparative Examples were measured. This measurement was performed after producing each porous body and before the high temperature and high humidity environment test, and after the high temperature and high humidity environment test. The results are shown in Table 1. In the high temperature and high humidity environment test, each porous body was left in an environment maintained at a temperature of 85° C. and a relative humidity of 85% for 168 hours.
 <実施例1>
 上野製薬社製の液晶ポリマーUENO LCP A5000と、硫酸ナトリウムとを、東洋精機社製の混練装置 ラボプラストミル4C150を用いて混練した。この液晶ポリマーの融点は280℃であった。この融点は、ティー・エイ・インスツルメント・ジャパン社製の示差走査熱量計 SDT650を用いて、示差走査熱量測定法に従って測定された。示差走査熱量測定法において、昇温速度は10℃/分であり、窒素雰囲気でこの液晶ポリマーを加熱した。混練前の硫酸ナトリウムは、一次粒子が凝集して形成された二次粒子として存在していた。硫酸ナトリウムの一次粒子の粒径は1~10μmであり、硫酸ナトリウムの二次粒子の粒径は10~50μmであった。ラボプラストミルは、東洋精機社製の登録商標である。混練した液晶ポリマーの体積及び硫酸ナトリウムの体積の和に対する硫酸ナトリウムの体積の比は0.6であった。液晶ポリマーと硫酸ナトリウムとの混練における混練装置の内部の温度は350℃であった。混練装置におけるスクリューの回転速度は30rpm(revolutions per minute)に調整された。
<Example 1>
Liquid crystal polymer UENO LCP A5000 manufactured by Ueno Pharmaceutical Co., Ltd. and sodium sulfate were kneaded using a kneading device Labo Plastomill 4C150 manufactured by Toyo Seiki Co., Ltd. The melting point of this liquid crystal polymer was 280°C. This melting point was measured according to the differential scanning calorimetry method using a differential scanning calorimeter SDT650 manufactured by TA Instruments Japan. In differential scanning calorimetry, the temperature increase rate was 10° C./min, and the liquid crystal polymer was heated in a nitrogen atmosphere. Sodium sulfate before kneading existed as secondary particles formed by agglomeration of primary particles. The particle size of the primary particles of sodium sulfate was 1 to 10 μm, and the particle size of the secondary particles of sodium sulfate was 10 to 50 μm. Labo Plastomill is a registered trademark manufactured by Toyo Seiki Co., Ltd. The ratio of the volume of sodium sulfate to the sum of the volume of the kneaded liquid crystal polymer and the volume of sodium sulfate was 0.6. The temperature inside the kneading device during kneading of the liquid crystal polymer and sodium sulfate was 350°C. The rotational speed of the screw in the kneading device was adjusted to 30 rpm (revolutions per minute).
 井元製作所社製の手動油圧真空プレス11FDを用いて、液晶ポリマーと硫酸ナトリウムとの混練物がシート状に成形され、実施例1に係る無孔シートが得られた。実施例1に係る無孔シートの厚みは100μm~200μmであった。混練物のプレスにおける温度は350℃であり、プレス圧力は4~10MPaであった。 A kneaded product of liquid crystal polymer and sodium sulfate was formed into a sheet using a manual hydraulic vacuum press 11FD manufactured by Imoto Seisakusho Co., Ltd., to obtain a non-porous sheet according to Example 1. The thickness of the non-porous sheet according to Example 1 was 100 μm to 200 μm. The temperature in pressing the kneaded material was 350°C, and the pressing pressure was 4 to 10 MPa.
 ザルトリウス社の実験装置MSE224S-0000-DIを用いて、実施例1に係る無孔シートから溶媒としての超純水に硫酸ナトリウムを抽出させた。超純水の温度は80℃に調整された。超純水を無孔シートの周囲に送るときの無孔シートの周囲の圧力はゲージ圧で10MPaに調整した。無孔シートを超純水に含浸させた時間である抽出時間は、50分間であった。その後、超純水に硫酸ナトリウムを抽出させて得られたシートを乾燥させて、実施例1に係る多孔質体を得た。 Sodium sulfate was extracted from the nonporous sheet according to Example 1 using ultrapure water as a solvent using Sartorius' experimental device MSE224S-0000-DI. The temperature of ultrapure water was adjusted to 80°C. The pressure around the non-porous sheet when ultrapure water was sent around the non-porous sheet was adjusted to 10 MPa in terms of gauge pressure. The extraction time, which is the time during which the nonporous sheet was impregnated with ultrapure water, was 50 minutes. Thereafter, the sheet obtained by extracting sodium sulfate into ultrapure water was dried to obtain a porous body according to Example 1.
 <比較例1>
 下記の点以外は、実施例1と同様にして、比較例1に係る多孔質体を得た。図4によれば、比較例1では、混練前の硫酸ナトリウムは、実施例1における混練前の硫酸ナトリウムの粒度分布よりもブロードな粒度分布を有していたことが理解される。例えば、比較例1における混練前の硫酸ナトリウムは、50μmを超える粒径を有する粒子又は10μm未満の粒径を有する粒子を多数含んでいたと理解される。
<Comparative example 1>
A porous body according to Comparative Example 1 was obtained in the same manner as in Example 1 except for the following points. According to FIG. 4, it is understood that in Comparative Example 1, the sodium sulfate before kneading had a broader particle size distribution than the particle size distribution of sodium sulfate before kneading in Example 1. For example, it is understood that the sodium sulfate before kneading in Comparative Example 1 contained many particles having a particle size of more than 50 μm or particles having a particle size of less than 10 μm.
 表1に示す通り、実施例1及び比較例1に係る多孔質体において、多孔化剤として用いた硫酸ナトリウムに由来して、ナトリウムの存在が確認された。実施例1に係る多孔質体におけるナトリウムの含有量は、原子数基準で0.0001%~1.0%の範囲であり、高温高湿環境試験前後の多孔質体の比誘電率及び誘電正接は低かった。一方、比較例1に係る多孔質体におけるナトリウムの含有量は、原子数基準で23.0%にも及んでおり、比較的高かった。比較例1では、無孔シートにおいて比較的小さい粒径を有する硫化ナトリウムが独立して存在しており、このような硫化ナトリウムが抽出されずに残ったのではないかと考えられる。また、比較例1に係る多孔質体は、比較的高い比誘電率を示した。実施例1に係る多孔質体では金属元素を含む残留物が少なく、その多孔質体の比誘電率及び誘電正接が低かったものと考えられる。 As shown in Table 1, in the porous bodies according to Example 1 and Comparative Example 1, the presence of sodium was confirmed due to the sodium sulfate used as a porosity-forming agent. The content of sodium in the porous body according to Example 1 is in the range of 0.0001% to 1.0% based on the number of atoms, and the relative permittivity and dielectric loss tangent of the porous body before and after the high temperature and high humidity environment test are was low. On the other hand, the content of sodium in the porous body according to Comparative Example 1 was as high as 23.0% based on the number of atoms, which was relatively high. In Comparative Example 1, sodium sulfide having a relatively small particle size existed independently in the non-porous sheet, and it is thought that such sodium sulfide remained without being extracted. Further, the porous body according to Comparative Example 1 exhibited a relatively high dielectric constant. It is thought that the porous body according to Example 1 had less residue containing metal elements, and the relative permittivity and dielectric loss tangent of the porous body were low.
 図3に示す通り、実施例1に係る多孔質体における孔径は小さく、表1に示す通り、平均孔径は15μm以下であった。このため、この多孔質体にめっきなどの処理を行うときにめっき膜が均一に形成されやすいと考えられる。一方、図4に示す通り、比較例2に係る多孔質体では、所々に巨大な空孔が確認され、平均孔径は37.4μmにも及んでいた。 As shown in FIG. 3, the pore diameter in the porous body according to Example 1 was small, and as shown in Table 1, the average pore diameter was 15 μm or less. For this reason, it is thought that when this porous body is subjected to a treatment such as plating, a plating film is likely to be uniformly formed. On the other hand, as shown in FIG. 4, in the porous body according to Comparative Example 2, huge pores were confirmed in some places, and the average pore diameter was as high as 37.4 μm.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 

Claims (6)

  1.  有機ポリマーを含む誘電性多孔質層と、
     前記誘電性多孔質層の一方の主面に沿って配置されている導電層と、を備え、
     前記誘電性多孔質層における金属元素の含有量は、原子数基準で、0.0001%~1.0%の範囲にある、
     積層体。
    a dielectric porous layer containing an organic polymer;
    a conductive layer disposed along one main surface of the dielectric porous layer,
    The content of the metal element in the dielectric porous layer is in the range of 0.0001% to 1.0% based on the number of atoms.
    laminate.
  2.  前記誘電性多孔質層は、15μm以下の平均孔径を有する、請求項1に記載の積層体。 The laminate according to claim 1, wherein the dielectric porous layer has an average pore diameter of 15 μm or less.
  3.  前記有機ポリマーは、液晶ポリマーである、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the organic polymer is a liquid crystal polymer.
  4.  前記誘電性多孔質層は、10GHzにおいて2.2以下の比誘電率を有する、請求項1~3のいずれか項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the dielectric porous layer has a dielectric constant of 2.2 or less at 10 GHz.
  5.  前記導電層は、第一導電層と、第二導電層とを含み、
     前記誘電性多孔質層は、前記誘電性多孔質層の厚み方向において前記第一導電層と前記第二導電層との間に配置されている、
     請求項1~4のいずれか1項に記載の積層体。
    The conductive layer includes a first conductive layer and a second conductive layer,
    The dielectric porous layer is disposed between the first conductive layer and the second conductive layer in the thickness direction of the dielectric porous layer.
    The laminate according to any one of claims 1 to 4.
  6.  前記第一導電層と前記第二導電層とを電気的に接続する導電部をさらに備えた、請求項5に記載の積層体。
     
    The laminate according to claim 5, further comprising a conductive part that electrically connects the first conductive layer and the second conductive layer.
PCT/JP2023/007924 2022-03-18 2023-03-02 Multilayer body WO2023176491A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-044251 2022-03-18
JP2022044251A JP2023137849A (en) 2022-03-18 2022-03-18 Multilayer body

Publications (1)

Publication Number Publication Date
WO2023176491A1 true WO2023176491A1 (en) 2023-09-21

Family

ID=88022994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007924 WO2023176491A1 (en) 2022-03-18 2023-03-02 Multilayer body

Country Status (3)

Country Link
JP (1) JP2023137849A (en)
TW (1) TW202346440A (en)
WO (1) WO2023176491A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438279A (en) * 1977-09-02 1979-03-22 Asahi Chem Ind Co Ltd Production of strengthened forous membrabe
JP2002105205A (en) * 2000-09-29 2002-04-10 Mitsubishi Materials Corp Porous film composed of organic silicone compound and method for producing the same
JP2006273987A (en) * 2005-03-29 2006-10-12 Sumitomo Chemical Co Ltd Porous film and method for producing it
JP2010195899A (en) * 2009-02-24 2010-09-09 Sumitomo Chemical Co Ltd Method for producing porous film, porous film, method for producing laminated porous film, laminated porous film, and separator for battery
WO2012105678A1 (en) * 2011-02-03 2012-08-09 日東電工株式会社 Porous resin molding, porous substrate, and process for production of porous resin molding
US20150060720A1 (en) * 2012-04-16 2015-03-05 Cast Aluminium Industries Method for forming a quickly hardening, inorganic foam
JP2017022092A (en) * 2014-08-29 2017-01-26 住友化学株式会社 Wound body of porous film, and manufacturing method therefor
JP2018138509A (en) * 2016-11-14 2018-09-06 住友化学株式会社 Alumina, slurry comprising the same, alumina porous film using the same, multilayer separator, nonaqueous electrolyte secondary battery, and method for producing nonaqueous electrolyte secondary battery
JP2018147688A (en) * 2017-03-03 2018-09-20 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
JP2021098844A (en) * 2019-12-19 2021-07-01 日東電工株式会社 Method for producing porous resin sheet, flow channel-containing sheet, and roll body

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438279A (en) * 1977-09-02 1979-03-22 Asahi Chem Ind Co Ltd Production of strengthened forous membrabe
JP2002105205A (en) * 2000-09-29 2002-04-10 Mitsubishi Materials Corp Porous film composed of organic silicone compound and method for producing the same
JP2006273987A (en) * 2005-03-29 2006-10-12 Sumitomo Chemical Co Ltd Porous film and method for producing it
JP2010195899A (en) * 2009-02-24 2010-09-09 Sumitomo Chemical Co Ltd Method for producing porous film, porous film, method for producing laminated porous film, laminated porous film, and separator for battery
WO2012105678A1 (en) * 2011-02-03 2012-08-09 日東電工株式会社 Porous resin molding, porous substrate, and process for production of porous resin molding
US20150060720A1 (en) * 2012-04-16 2015-03-05 Cast Aluminium Industries Method for forming a quickly hardening, inorganic foam
JP2017022092A (en) * 2014-08-29 2017-01-26 住友化学株式会社 Wound body of porous film, and manufacturing method therefor
JP2018138509A (en) * 2016-11-14 2018-09-06 住友化学株式会社 Alumina, slurry comprising the same, alumina porous film using the same, multilayer separator, nonaqueous electrolyte secondary battery, and method for producing nonaqueous electrolyte secondary battery
JP2018147688A (en) * 2017-03-03 2018-09-20 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
JP2021098844A (en) * 2019-12-19 2021-07-01 日東電工株式会社 Method for producing porous resin sheet, flow channel-containing sheet, and roll body

Also Published As

Publication number Publication date
JP2023137849A (en) 2023-09-29
TW202346440A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP7206323B2 (en) Film for millimeter wave antenna
JP7179912B2 (en) Film for millimeter wave antenna
JP2019199614A (en) Film for millimeter-wave antenna
CN108780674B (en) Insulating resin material, insulating resin material with metal layer using same, and wiring board
US20100136223A1 (en) Methods and compositions for dielectric materials
US20060210806A1 (en) Methods and compositions for dielectric materials
WO2023176491A1 (en) Multilayer body
TW202026142A (en) Low dielectric substrate
CN116584155A (en) Copper clad laminate and method of forming the same
WO2021070805A1 (en) Plate-shaped composite material
KR101848239B1 (en) Method for manufacturing polymer composites comprising boron nitride
JP2002307611A (en) Fluoroplastic copper-clad laminated sheet
JP2007119573A (en) Low dielectric polyimide film, its production method, and laminate for wiring board
KR20210040369A (en) Plate-like composite material
KR20200016230A (en) Plate-shaped composite material containing polytetrafluoroethylene and filler
EP4067458A1 (en) Porous liquid crystal polymer sheet and wiring circuit board
WO2022209753A1 (en) Method for producing porous liquid crystal polymer
JPH08125292A (en) Composite dielectric body and manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770449

Country of ref document: EP

Kind code of ref document: A1