WO2023176482A1 - Method for producing polyolefin resin film - Google Patents

Method for producing polyolefin resin film Download PDF

Info

Publication number
WO2023176482A1
WO2023176482A1 PCT/JP2023/007839 JP2023007839W WO2023176482A1 WO 2023176482 A1 WO2023176482 A1 WO 2023176482A1 JP 2023007839 W JP2023007839 W JP 2023007839W WO 2023176482 A1 WO2023176482 A1 WO 2023176482A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
film
polyolefin resin
propylene
density polyethylene
Prior art date
Application number
PCT/JP2023/007839
Other languages
French (fr)
Japanese (ja)
Inventor
雅登 戸松
卓郎 遠藤
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2023176482A1 publication Critical patent/WO2023176482A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/02Dispensing from vessels, e.g. hoppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene

Definitions

  • the present invention relates to a method for producing a polyolefin resin film.
  • the package is manufactured as a laminate, with a base film mainly made of a polyamide resin film, a polyester resin film, or a polypropylene resin film, and the polyolefin resin film used as a sealant. It is manufactured by heat-pressing (hereinafter referred to as heat sealing) at a temperature close to the melting point of the polyolefin resin film while the polyolefin resin film is in contact with the polyolefin resin film.
  • heat sealing heat-pressing
  • packaging bodies are used to package and transport a variety of foods such as fresh foods, prepared foods, and sweets.
  • foods such as fresh foods, prepared foods, and sweets.
  • Polypropylene resin films are inexpensive, and packaging materials using them have excellent heat-sealing properties, so they are widely used as heat-sealing films.
  • a masterbatch As a method for efficiently adding different types of raw materials, a masterbatch is known in which a resin component consisting of a polypropylene resin and a low-density polyethylene resin is blended with fillers, wax, etc.
  • a resin component consisting of a polypropylene resin and a low-density polyethylene resin
  • fillers wax, etc.
  • the use of linear low-density polyethylene as a masterbatch is insufficient because it tends to cause unevenness during molding, and it also causes segregation and mixing due to the difference in slipperiness between the wax masterbatch and other raw materials.
  • There was a problem in that unevenness occurred Patent Document 4, Patent Document 5).
  • An object of the present invention is to provide an environmentally friendly polyolefin resin film that has small fluctuations in the degree of biomass in the product and a small number of defects, so the defect rate of packaging materials using the same is low.
  • the present inventor has developed an environmentally friendly product by preventing raw material segregation and uneven kneading and stably supplying plant-derived linear low-density polyethylene.
  • a process of melt-kneading the pellets mixed in an extruder A method for producing a polyolefin resin film, which includes the steps of extruding a molten resin sheet from an extruder, cooling it with a cooling roll, and forming an unstretched sheet.
  • the content of plant-derived linear low-density polyethylene in the masterbatch pellets is a polypropylene homopolymer and/or a random copolymer of propylene and an ⁇ -olefin having 2 or 4 to 20 carbon atoms, and the plant-derived linear low-density polyethylene. It is 40% by weight or more and 85% by weight or less of the total amount of chain low density polyethylene.
  • the polyolefin resin film roll of the present invention has small fluctuations in the degree of biomass in the product and a small number of defects, so it provides an environmentally friendly polyolefin resin film roll with a low defect rate for packaging materials using it. suitable for.
  • Polyolefin resin film At least one layer of the polyolefin resin film has a content of petroleum-derived propylene homopolymer and/or propylene- ⁇ olefin random copolymer of 80% or more by weight based on the entire olefin resin constituting the layer.95
  • the content of linear low density polyethylene derived from plants is 5% by weight or more and 20% by weight or less.
  • the polyolefin resin composition in the layers other than the at least one layer mentioned above constituting the polyolefin resin film is mainly composed of propylene homopolymer and/or propylene- ⁇ olefin random copolymer from the viewpoint of heat seal strength. .
  • plant-derived linear low-density polyethylene is included.
  • propylene homopolymer or propylene- ⁇ -olefin random copolymer and plant-derived linear low-density polyethylene may be used, or two or more types may be used in combination.
  • propylene- ⁇ -olefin random copolymer examples include copolymers of propylene and at least one ⁇ -olefin having 2 or 4 to 20 carbon atoms other than propylene.
  • ⁇ -olefin monomers having 2 or 4 to 20 carbon atoms ethylene, 1-butene, 1-pentene, 4-methylpentene-1, hexene-1, octene-1, etc. can be used. It is preferable to use ethylene as the propylene- ⁇ -olefin random copolymer from the viewpoint of heat sealability.
  • propylene-ethylene-butene random copolymer in which the main monomer is propylene and a certain amount of ethylene and butene are copolymerized.
  • random copolymers are named and described in descending order of monomer composition ratio.
  • the propylene- ⁇ -olefin random copolymer may be derived from petroleum or plants.
  • at least one layer is of petroleum.
  • the lower limit of the melt flow rate (MFR) of the propylene- ⁇ olefin random copolymer of the film is preferably 2.0 g/10 min, more preferably 3.0 g/10 min, and still more preferably 4.0 g/10 min. be. If it is less than the above, the uniformity of the film thickness may be impaired.
  • the upper limit of the melt flow rate of the random copolymer is preferably 10.0 g/10 min, more preferably 9.0 g/10 min, and still more preferably 8.0 g/10 min. Exceeding the above may cause problems such as stickiness of the film and poor impact strength (impact strength) of the film.
  • the propylene- ⁇ olefin random copolymer is, for example, a propylene-ethylene random copolymer (Prime Polypro F-724NPC manufactured by Prime Polymer Co., Ltd., MFR 7.0 g/10 min at 230°C, load 2.16 kg, melting point 142 °C), propylene-ethylene-butene random copolymer (Sumitomo Noblen FL8115A manufactured by Sumitomo Chemical Co., Ltd., MFR 7.0 g/10 min at 230 °C, load 2.16 kg, melting point 148 °C), propylene-ethylene-butene random copolymer (Prime Polypro F-794NV, manufactured by Prime Polymer Co., Ltd., MFR 5.7 g/10 min at 230°C, load 2.16 kg, melting point 134°C), propylene-ethylene-butene random copolymer (Sumitomo Noblen FL6745A, manufactured by Sumitomo Chemical Co., Ltd.
  • the content of the propylene- ⁇ olefin random copolymer in the polyolefin resin composition constituting the film is preferably 25% by weight or more, more preferably 40% by weight or more, and still more preferably 60% by weight or more from the viewpoint of heat seal strength. Preferably, 75% by weight or more is particularly preferable. From the viewpoint of bending pinhole resistance, the content is preferably 97% by weight or less, more preferably 90% by weight or less, and even more preferably 85% by weight or less.
  • propylene homopolymer In the present invention, heat resistance can be improved by containing a propylene homopolymer in the polyolefin resin composition.
  • the propylene homopolymer used is preferably isotactic polypropylene, which has high crystallinity and can suppress deterioration of heat shrinkage rate.
  • the propylene homopolymer may be derived from petroleum or from plants. Preferably, at least one layer is of petroleum.
  • the lower limit of the melt flow rate (MFR) (measured at 230°C and a load of 2.16 kg) of the propylene homopolymer is preferably 2.0 g/10 min, more preferably 3.0 g/10 min, and even more preferably 4 .0g/10min. If it is less than the above, the uniformity of the film thickness may be impaired.
  • the upper limit of the melt flow rate of the propylene homopolymer is preferably 10.0 g/10 min, more preferably 9.0 g/10 min, and still more preferably 8.0 g/10 min. The uniformity of film thickness may be impaired. Exceeding the above may cause problems such as stickiness of the film and poor impact strength (impact strength) of the film.
  • propylene homopolymer is propylene homopolymer FLX80E4 manufactured by Sumitomo Chemical (MFR 7.5 g/10 min, melting point 164° C.).
  • the content of the propylene homopolymer in the polyolefin resin composition is preferably 50% by weight or less, more preferably 30% by weight or less, even more preferably 10% by weight or less, from the viewpoint of heat seal strength and bag tear resistance. Particularly preferred is 0% by weight. Since slipperiness largely depends on the amount of additives such as anti-blocking agents and organic lubricants, adding linear low-density polyethylene to a film does not change much.
  • Plant-derived linear low-density polyethylene At least one layer of the polyolefin resin composition constituting the film contains plant-derived linear low-density polyethylene from the viewpoint of reducing environmental impact.
  • Plant-derived linear low-density polyethylene can be manufactured using ethanol made from sugar cane, corn, etc., using a manufacturing method such as a high-pressure method, a solution method, or a gas phase method. is possible. Examples include copolymers of plant-derived ethylene and at least one ⁇ -olefin having 3 or more carbon atoms.
  • the ⁇ -olefins may be those derived from fossil fuels as long as they are generally called ⁇ -olefins, such as propylene, butene-1, hexene-1, octene-1, 4-methyl-1-pentene, etc. Preferably, it is an ⁇ -olefin having 3 to 12 carbon atoms.
  • Examples of copolymers of ethylene and ⁇ -olefin include ethylene/hexene-1 copolymer, ethylene/butene-1 copolymer, ethylene/octene-1 copolymer, etc. From this point of view, ethylene-hexene copolymers are preferred.
  • the lower limit of the content of plant-derived ethylene in the plant-derived linear low-density polyethylene is preferably 50%, more preferably 80%. When it is 50% or more, the carbon dioxide reduction effect is good.
  • the upper limit is preferably 98%, more preferably 96%. When it exceeds 98%, the proportion of ⁇ -olefin to be copolymerized decreases, and the heat sealing strength decreases.
  • the lower limit of MFR (measured at 190°C, 2.18 kg) of plant-derived linear low-density polyethylene is preferably 0.8 g/10 min, more preferably 1.5 g/10 min.
  • the upper limit is preferably 5.0 g/10 min, more preferably 4.5 g/10 min.
  • the lower limit of the density of the plant-derived linear low-density polyethylene is preferably 912 kg/m 3 , more preferably 915 kg/m 3 . Good blocking resistance can be obtained by setting the weight to 912 kg/m 3 or more. Moreover, the upper limit is 935 kg/m 3 , more preferably 930 kg/m 3 . When the weight is 930 kg/m 3 or less, good bag breakage resistance can be obtained. Specific examples include ethylene-hexene copolymer (vegetable-derived linear low-density polyethylene) SLH218 (MFR 2.3 g/10 min, density 916 kg/m 3 , melting point 126° C.) manufactured by Braskem.
  • the content of plant-derived linear low-density polyethylene in the polyolefin resin composition constituting the film is preferably 3% by weight or more, more preferably 12% by weight or more, and even more preferably 12% by weight or more, from the viewpoint of reducing environmental load. Particularly preferred is 15% by weight or more.
  • the content is preferably 50% by weight or less, more preferably 40% by weight or less, even more preferably 30% by weight or less, and particularly preferably 25% by weight or less.
  • the polyolefin resin composition constituting the film of the present invention may contain an anti-blocking agent.
  • Blocking resistance can be improved by adding it to at least one of the outermost layers of the film.
  • the anti-blocking agent to be added is not particularly limited, but includes inorganic particles such as spherical silica, amorphous silica, zeolite, talc, mica, alumina, hydrotalcite, and aluminum borate, polymethyl methacrylate, and ultra-high molecular weight.
  • Organic particles such as polyethylene can be added.
  • the amount of anti-blocking agent contained in the polyolefin resin composition constituting the film is preferably 3000 ppm or less, more preferably 2500 ppm or less, based on the polyolefin resin of the layer to which it is added. When the content is 3000 ppm or less, transparency is good.
  • the polyolefin resin composition constituting the film may also contain an organic lubricant.
  • the lubricity and anti-blocking effect of the laminated film are improved, making the film easier to handle. The reason for this is thought to be that the organic lubricant bleeds out and is present on the film surface, resulting in a lubricant effect and release effect.
  • the organic lubricant preferably has a melting point above room temperature.
  • organic lubricants include fatty acid amides and fatty acid esters. Specific examples thereof include oleic acid amide, erucic acid amide, behenic acid amide, ethylene bis oleic acid amide, hexamethylene bis oleic acid amide, and ethylene bis oleic acid amide.
  • the amount of organic lubricant in the polyolefin resin composition is preferably 1500 ppm or less, more preferably 1000 ppm or less, based on the polyolefin resin.
  • concentration is less likely to occur even when stored in a place exposed to high temperatures, such as in a warehouse in the summer.
  • the polyolefin resin composition constituting the film may contain a heat stabilizer. It is possible to suppress defects such as gel, which occurs when the resin deteriorates due to heat and oxidation during melt extrusion.
  • a heat stabilizer for example, a hindered phenolic antioxidant (Irganox 1010) manufactured by BASF, a phosphite treatment stabilizer (Irgafos 168) manufactured by BASF, and a phenol phosphorus antioxidant (Sumilyzer GP) manufactured by Sumitomo Chemical Co., Ltd. Can be mentioned.
  • the heat stabilizer may be used alone or in combination of two or more.
  • the lower limit of the concentration of the heat stabilizer in the polyolefin resin composition is preferably 1,600 ppm or more, more preferably 1,800 ppm or more, and even more preferably 2,000 ppm or more in total for this layer. If it is less than the above, defects such as gelation are likely to occur. Further, the upper limit is preferably 5000 ppm in total for this layer, more preferably 4000 ppm, still more preferably 3500 ppm. If the amount exceeds the above, the end face of the film roll may turn red and spoil its appearance.
  • the polyolefin resin composition constituting the film may contain an appropriate amount of an antistatic agent, an antifogging agent, a neutralizing agent, a nucleating agent, a coloring agent, and others in any layer as necessary within a range that does not impair the purpose of the present invention.
  • neutralizing agents include calcium stearate.
  • the resin By adding pellets recycled from semi-finished products generated during the manufacturing process and manufactured product films, the resin can be reused without sacrificing heat-sealing strength.
  • the polyolefin resin film of the present invention is composed of petroleum-derived propylene homopolymer and/or propylene and ⁇ having 2 or 4 to 20 carbon atoms, with respect to the entire polyolefin resin constituting the layer.
  • the content of the olefin random copolymer is 80% by weight or more and 95% by weight or less, and the content of the plant-derived linear low density polyethylene is 5% by weight or more and 20% by weight or less.
  • the polyolefin resin film may be a single layer polyolefin resin film or may include a plurality of layers, for example, two layers, three layers, or four or more layers. It may be.
  • the heat seal layer and a laminate layer may include a heat seal layer and a laminate layer; in the case of three layers, it may include a heat seal layer, a core layer, and a laminate layer in this order; and in the case of four layers, it may include a heat seal layer, a core layer, and a laminate layer.
  • the heat seal layer and the laminate layer are layers located on the surface side of the film, and the core layer is located between them.
  • the laminate layer is a layer suitable for laminating a base film such as a biaxially oriented polyamide film, and is actually preferably laminated with the base film via an adhesive resin.
  • the laminate layer can also be printed.
  • the heat-sealing layer is a layer suitable for producing a package by overlapping and heat-sealing the two laminates so that the polyolefin resin film of the obtained laminate is on the inside.
  • the surface of the laminate layer of the polyolefin resin film is activated by corona treatment or the like.
  • a polyolefin resin film having a heat seal layer, a core layer, and a laminate layer in this order will be described in detail below, but is not limited to the following.
  • a petroleum-derived propylene homopolymer and/or a random copolymer of propylene and an ⁇ -olefin having 2 or 4 to 20 carbon atoms is added to the entire polyolefin resin of which the core layer and the laminate layer constitute layers.
  • the content of plant-derived linear low density polyethylene is 5% to 20% by weight.
  • the polyolefin resin film has a higher content of the plant-derived linear low-density polyethylene in the polyolefin resin composition forming the core layer than the content of the plant-derived linear low-density polyethylene in the polyolefin resin composition forming the heat-sealing layer.
  • the content of the plant-derived linear low-density polyethylene in the polyolefin-based resin composition forming the laminate layer is higher than the content of the plant-based linear low-density polyethylene in the polyolefin-based resin composition forming the core layer. It is preferable that the content of low-density polyethylene is high. By doing so, the ratio of the polyolefin resin in the resin close to the heat-sealing surface increases, so that high heat-sealing strength can be obtained.
  • the polyolefin resin composition constituting the heat-sealing layer is composed of a propylene homopolymer and/or a propylene- ⁇ -olefin random copolymer from the viewpoint of heat-sealing strength.
  • a propylene homopolymer and/or propylene- ⁇ -olefin random copolymer may be used, or two or more types may be used in combination.
  • the propylene- ⁇ -olefin random copolymer of the heat-sealing layer is a copolymer of propylene and at least one ⁇ -olefin having 2 or 4 to 20 carbon atoms other than propylene.
  • One example is merging.
  • ⁇ -olefin monomers having 2 or 4 to 20 carbon atoms ethylene, 1-butene, 1-pentene, 4-methylpentene-1, hexene-1, octene-1, etc. can be used. It is preferable to use ethylene as the propylene- ⁇ -olefin random copolymer from the viewpoint of heat sealability.
  • propylene-ethylene-butene random copolymer in which the main monomer is propylene and a certain amount of ethylene and butene are copolymerized.
  • random copolymers are named and described in descending order of monomer composition ratio.
  • the propylene- ⁇ -olefin random copolymer may be derived from petroleum or plants.
  • the lower limit of the melt flow rate (MFR) of the propylene- ⁇ olefin random copolymer is preferably 2.0 g/10 min, more preferably 3.0 g/10 min, and still more preferably 4.0 g/10 min. If it is less than the above, the uniformity of the film thickness may be impaired.
  • the upper limit of the melt flow rate of the random copolymer is preferably 10.0 g/10 min, more preferably 9.0 g/10 min, and still more preferably 8.0 g/10 min. Exceeding the above may cause problems such as stickiness of the film and poor impact strength (impact strength) of the film.
  • the propylene- ⁇ olefin random copolymer is, for example, a propylene-ethylene random copolymer (Prime Polypro F-724NPC manufactured by Prime Polymer Co., Ltd., MFR 7.0 g/10 min at 230°C, load 2.16 kg, melting point 142 °C), propylene-ethylene-butene random copolymer (Sumitomo Noblen FL8115A manufactured by Sumitomo Chemical Co., Ltd., MFR 7.0 g/10 min at 230 °C, load 2.16 kg, melting point 148 °C), propylene-ethylene-butene random copolymer (Prime Polypro F-794NV, manufactured by Prime Polymer Co., Ltd., MFR 5.7 g/10 min at 230°C, load 2.16 kg, melting point 134°C), propylene-ethylene-butene random copolymer (Sumitomo Noblen FL6745A, manufactured by Sumitomo Chemical Co., Ltd.
  • propylene homopolymer By containing a propylene homopolymer in the polyolefin resin composition constituting the heat-sealing layer, slipperiness can be improved.
  • the propylene homopolymer used is not particularly limited, but isotactic polypropylene is preferred from the viewpoint of blocking resistance.
  • the propylene homopolymer may be derived from petroleum or from plants.
  • the lower limit of the melt flow rate (MFR) (measured at 230°C and a load of 2.16 kg) of the propylene homopolymer is preferably 2.0 g/10 min, more preferably 3.0 g/10 min, and even more preferably 4 .0g/10min. If it is less than the above, the uniformity of the film thickness may be impaired.
  • the upper limit of the melt flow rate of the propylene homopolymer is preferably 10.0 g/10 min, more preferably 9.0 g/10 min, and still more preferably 8.0 g/10 min. The uniformity of film thickness may be impaired. Exceeding the above may cause problems such as stickiness of the film and poor impact strength (impact strength) of the film.
  • propylene homopolymer is propylene homopolymer FLX80E4 manufactured by Sumitomo Chemical (MFR 7.5 g/10 min, melting point 164° C.).
  • the content of the propylene homopolymer in the polyolefin resin composition constituting the sealing layer is preferably 10% by weight or less, more preferably 5% by weight or less, even more preferably 3% by weight or less, and 0% by weight in terms of heat sealing strength. is particularly preferred.
  • a polyethylene resin such as linear low-density polyethylene is contained in the heat-sealing layer, the heat-sealing strength may decrease due to poor compatibility with each other.
  • the polyolefin resin composition constituting the heat-sealing layer may contain an anti-blocking agent.
  • an anti-blocking agent may be used, but it is better to combine two or more types of inorganic particles with different particle sizes and shapes to form complex protrusions even on the unevenness of the film surface and obtain a more advanced anti-blocking effect. be able to.
  • Anti-blocking agents to be added are not particularly limited, but include inorganic particles such as spherical silica, amorphous silica, zeolite, talc, mica, alumina, hydrotalcite, and aluminum borate, polymethyl methacrylate, and ultra-high molecular weight. Organic particles such as polyethylene can be added.
  • the anti-blocking agent contained in the polyolefin resin composition constituting the heat-sealing layer is preferably 3000 ppm or less, more preferably 2500 ppm or less, based on the polyolefin resin of the layer to which it is added. By setting the amount to 3000 ppm or less, it is possible to reduce shedding of the anti-blocking agent. Moreover, it is preferable that it is 500 ppm or more, and it is more preferable that it is 1000 ppm or more. Good anti-blocking properties can be obtained by setting the content to 500 ppm or more.
  • the polyolefin resin composition constituting the heat seal layer may contain an organic lubricant.
  • the lubricity and anti-blocking effect of the laminated film are improved, making the film easier to handle. The reason for this is thought to be that the organic lubricant bleeds out and is present on the film surface, resulting in a lubricant effect and release effect.
  • the organic lubricant preferably has a melting point above room temperature.
  • organic lubricants include fatty acid amides and fatty acid esters. Specific examples thereof include oleic acid amide, erucic acid amide, behenic acid amide, ethylene bis oleic acid amide, hexamethylene bis oleic acid amide, and ethylene bis oleic acid amide.
  • the amount of organic lubricant in the polyolefin resin composition is preferably 1500 ppm or less, more preferably 1000 ppm or less, based on the polyolefin resin.
  • concentration is less likely to occur even when stored in a place exposed to high temperatures, such as in a warehouse in the summer.
  • the polyolefin resin composition constituting the heat seal layer may contain a heat stabilizer. It is possible to suppress defects such as gel, which occurs when the resin deteriorates due to heat and oxidation during melt extrusion.
  • heat stabilizers and antioxidants can be used. Specifically, for example, a hindered phenolic antioxidant (Irganox 1010) manufactured by BASF, a phosphite treatment stabilizer (Irgafos 168) manufactured by BASF, and a phenol phosphorus antioxidant (Sumilyzer GP) manufactured by Sumitomo Chemical Co., Ltd. Can be mentioned.
  • the heat stabilizer may be used alone or in combination of two or more.
  • the lower limit of the concentration of the heat stabilizer in the polyolefin resin composition is preferably 1,600 ppm or more, more preferably 1,800 ppm or more, and even more preferably 2,000 ppm or more in total for this layer. If it is less than the above, defects such as gel are likely to occur. Further, the upper limit is preferably 5000 ppm in total for this layer, more preferably 4000 ppm, still more preferably 3500 ppm. If the amount exceeds the above, the end surface of the film roll may turn red and spoil its appearance.
  • the polyolefin resin composition constituting the heat-sealing layer may contain an appropriate amount of an antistatic agent, an antifogging agent, a neutralizing agent, a nucleating agent, and a coloring agent in any layer as necessary within a range that does not impair the purpose of the present invention. It may contain additives, other additives, inorganic fillers, and the like. Examples of the neutralizing agent include calcium stearate.
  • the polyolefin resin composition constituting the core layer is mainly composed of a propylene homopolymer and/or a propylene- ⁇ -olefin random copolymer from the viewpoint of heat-sealing strength.
  • plant-derived linear low-density polyethylene is included.
  • propylene homopolymer or propylene- ⁇ -olefin random copolymer and plant-derived linear low-density polyethylene may be used, or two or more types may be used in combination.
  • the propylene- ⁇ -olefin random copolymer of the core layer is a copolymer of propylene and at least one ⁇ -olefin having 2 or 4 to 20 carbon atoms other than propylene.
  • ⁇ -olefin monomers having 2 or 4 to 20 carbon atoms ethylene, 1-butene, 1-pentene, 4-methylpentene-1, hexene-1, octene-1, etc. can be used. It is preferable to use ethylene as the propylene- ⁇ -olefin random copolymer from the viewpoint of heat sealability.
  • propylene-ethylene-butene random copolymer in which the main monomer is propylene and a certain amount of ethylene and butene are copolymerized.
  • random copolymers are named and described in descending order of monomer composition ratio.
  • the propylene- ⁇ -olefin random copolymer may be derived from petroleum or plants.
  • the lower limit of the melt flow rate (MFR) of the propylene- ⁇ olefin random copolymer in the core layer is preferably 2.0 g/10 min, more preferably 3.0 g/10 min, and still more preferably 4.0 g/10 min. It is. If it is less than the above, the uniformity of the film thickness may be impaired.
  • the upper limit of the melt flow rate of the random copolymer is preferably 10.0 g/10 min, more preferably 9.0 g/10 min, and still more preferably 8.0 g/10 min. Exceeding the above may cause problems such as stickiness of the film and poor impact strength (impact strength) of the film.
  • the propylene- ⁇ olefin random copolymer is, for example, a propylene-ethylene random copolymer (Prime Polypro F-724NPC manufactured by Prime Polymer Co., Ltd., MFR 7.0 g/10 min at 230°C, load 2.16 kg, melting point 142 °C), propylene-ethylene-butene random copolymer (Sumitomo Noblen FL8115A manufactured by Sumitomo Chemical Co., Ltd., MFR 7.0 g/10 min at 230 °C, load 2.16 kg, melting point 148 °C), propylene-ethylene-butene random copolymer (Prime Polypro F-794NV, manufactured by Prime Polymer Co., Ltd., MFR 5.7 g/10 min at 230°C, load 2.16 kg, melting point 134°C), propylene-ethylene-butene random copolymer (Sumitomo Noblen FL6745A, manufactured by Sumitomo Chemical Co., Ltd.
  • the content of the propylene- ⁇ olefin random copolymer in the polyolefin resin composition constituting the core layer is preferably 25% by weight or more, more preferably 40% by weight or more, and 60% by weight or more from the viewpoint of heat seal strength. It is more preferable, and particularly preferably 75% by weight or more. From the viewpoint of bending pinhole resistance, the content is preferably 97% by weight or less, more preferably 90% by weight or less, and even more preferably 85% by weight or less.
  • the propylene homopolymer Heat resistance can be improved by containing a propylene homopolymer in the polyolefin resin composition constituting the laminate layer.
  • the propylene homopolymer used is preferably isotactic polypropylene, which has high crystallinity and can suppress deterioration of heat shrinkage rate.
  • the propylene homopolymer may be derived from petroleum or from plants.
  • the lower limit of the melt flow rate (MFR) (measured at 230°C and a load of 2.16 kg) of the propylene homopolymer is preferably 2.0 g/10 min, more preferably 3.0 g/10 min, and even more preferably 4 .0g/10min. If it is less than the above, the uniformity of the film thickness may be impaired.
  • the upper limit of the melt flow rate of the propylene homopolymer is preferably 10.0 g/10 min, more preferably 9.0 g/10 min, and still more preferably 8.0 g/10 min. The uniformity of film thickness may be impaired. Exceeding the above may cause problems such as stickiness of the film and poor impact strength (impact strength) of the film.
  • propylene homopolymer is propylene homopolymer FLX80E4 manufactured by Sumitomo Chemical (MFR 7.5 g/10 min, melting point 164° C.).
  • the content of the propylene homopolymer in the polyolefin resin composition constituting the core layer is preferably 50% by weight or less, more preferably 30% by weight or less, and 10% by weight or less from the viewpoint of heat seal strength and bag breakage resistance. is even more preferred, and 0% by weight is particularly preferred. Since slipperiness largely depends on the amount of additives such as anti-blocking agents and organic lubricants, it does not change much even if linear low-density polyethylene is added to the core layer.
  • the polyolefin resin composition constituting the core layer preferably contains plant-derived linear low-density polyethylene from the viewpoint of reducing environmental impact.
  • Plant-derived linear low-density polyethylene can be manufactured using ethanol made from sugar cane, corn, etc., using a manufacturing method such as a high-pressure method, a solution method, or a gas phase method. is possible. Examples include copolymers of plant-derived ethylene and at least one ⁇ -olefin having 3 or more carbon atoms.
  • the ⁇ -olefins may be those derived from fossil fuels as long as they are generally called ⁇ -olefins, such as propylene, butene-1, hexene-1, octene-1, 4-methyl-1-pentene, etc. Preferably, it is an ⁇ -olefin having 3 to 12 carbon atoms.
  • Examples of copolymers of ethylene and ⁇ -olefin include ethylene/hexene-1 copolymer, ethylene/butene-1 copolymer, ethylene/octene-1 copolymer, etc. From this point of view, ethylene-hexene copolymers are preferred.
  • the lower limit of the content of plant-derived ethylene in the plant-derived linear low-density polyethylene is preferably 50%, more preferably 80%. When it is 50% or more, the carbon dioxide reduction effect is good.
  • the upper limit is preferably 98%, more preferably 96%. When it exceeds 98%, the proportion of ⁇ -olefin to be copolymerized decreases, and the heat sealing strength decreases.
  • the lower limit of MFR (measured at 190°C, 2.18 kg) of plant-derived linear low-density polyethylene is preferably 0.8 g/10 min, more preferably 1.5 g/10 min.
  • the upper limit is preferably 5.0 g/10 min, more preferably 4.5 g/10 min.
  • the lower limit of the density of the plant-derived linear low-density polyethylene is preferably 912 kg/m 3 , more preferably 915 kg/m 3 . Good blocking resistance can be obtained by setting the weight to 910 kg/m 3 or more. Moreover, the upper limit is 935 kg/m 3 , more preferably 930 kg/m 3 . When the weight is 930 kg/m 3 or less, good bag breakage resistance can be obtained. Specific examples include ethylene-hexene copolymer (vegetable-derived linear low-density polyethylene) SLH218 (MFR 2.3 g/10 min, density 916 kg/m 3 , melting point 126° C.) manufactured by Braskem.
  • the content of plant-derived linear low-density polyethylene in the polyolefin resin composition constituting the core layer is preferably 3% by weight or more, more preferably 8% by weight or more, and even more preferably 12% by weight or more from the viewpoint of reducing environmental load. Preferably, 15% by weight or more is particularly preferable. In terms of heat resistance, the content is preferably 50% by weight or less, more preferably 40% by weight or less, even more preferably 30% by weight or less, and particularly preferably 25% by weight or less.
  • the polyolefin resin composition constituting the core layer may contain an anti-blocking agent.
  • the anti-blocking agent to be added is not particularly limited, but includes inorganic particles such as spherical silica, amorphous silica, zeolite, talc, mica, alumina, hydrotalcite, and aluminum borate, polymethyl methacrylate, and ultra-high molecular weight. Organic particles such as polyethylene can be added.
  • the anti-blocking agent contained in the polyolefin resin composition constituting the core layer is preferably at most 3000 ppm, more preferably at most 2500 ppm, even more preferably at most 1000 ppm, and even more preferably at most 500 ppm. The following are particularly preferred. When the content is 3000 ppm or less, transparency is good.
  • the polyolefin resin composition constituting the core layer may contain an organic lubricant.
  • the lubricity and anti-blocking effect of the laminated film are improved, making the film easier to handle. The reason for this is thought to be that the organic lubricant bleeds out and is present on the film surface, resulting in a lubricant effect and release effect.
  • the organic lubricant preferably has a melting point above room temperature.
  • organic lubricants include fatty acid amides and fatty acid esters. Specific examples thereof include oleic acid amide, erucic acid amide, behenic acid amide, ethylene bis oleic acid amide, hexamethylene bis oleic acid amide, and ethylene bis oleic acid amide.
  • the amount of organic lubricant in the polyolefin resin composition is preferably 1500 ppm or less, more preferably 1000 ppm or less, based on the polyolefin resin.
  • concentration is less likely to occur even when stored in a place exposed to high temperatures, such as in a warehouse in the summer.
  • the polyolefin resin composition constituting the core layer may contain a heat stabilizer. It is possible to suppress defects such as gel, which occurs when the resin deteriorates due to heat and oxidation during melt extrusion.
  • a heat stabilizer for example, a hindered phenolic antioxidant (Irganox 1010) manufactured by BASF, a phosphite treatment stabilizer (Irgafos 168) manufactured by BASF, and a phenol phosphorus antioxidant (Sumilyzer GP) manufactured by Sumitomo Chemical Co., Ltd. Can be mentioned.
  • the heat stabilizer may be used alone or in combination of two or more.
  • the lower limit of the concentration of the heat stabilizer in the polyolefin resin composition is preferably 1,600 ppm or more, more preferably 1,800 ppm or more, and even more preferably 2,000 ppm or more in total for this layer. If it is less than the above, defects such as gel are likely to occur. Further, the upper limit is preferably 5000 ppm in total for this layer, more preferably 4000 ppm, still more preferably 3500 ppm. If the amount exceeds the above, the end surface of the film roll may turn red and spoil its appearance.
  • the polyolefin resin composition constituting the core layer may contain an appropriate amount of an antistatic agent, an antifogging agent, a neutralizing agent, a nucleating agent, a coloring agent, Other additives, inorganic fillers, etc. can be included.
  • neutralizing agents include calcium stearate.
  • the resin By adding pellets made from recycled semi-finished products or manufactured product films generated during the manufacturing process to the core layer, the resin can be reused without sacrificing heat-sealing strength, reducing environmental impact.
  • the polyolefin resin composition constituting the laminate layer is mainly composed of propylene homopolymer or propylene- ⁇ -olefin random copolymer from the viewpoint of heat sealing strength.
  • plant-derived linear low-density polyethylene is included.
  • propylene homopolymer or propylene- ⁇ olefin random copolymer and plant-derived linear low-density polyethylene may be used, or two or more types may be used in combination.
  • the propylene- ⁇ -olefin random copolymer constituting the laminate layer is a combination of propylene and at least one ⁇ -olefin having 2 or 4 to 20 carbon atoms other than propylene.
  • Polymers may be mentioned.
  • ⁇ -olefin monomers having 2 or 4 to 20 carbon atoms ethylene, 1-butene, 1-pentene, 4-methylpentene-1, hexene-1, octene-1, etc. can be used. It is preferable to use ethylene as the propylene- ⁇ -olefin random copolymer from the viewpoint of heat sealability.
  • propylene-ethylene-butene random copolymer in which the main monomer is propylene and a certain amount of ethylene and butene are copolymerized.
  • random copolymers are named and described in descending order of monomer composition ratio.
  • the propylene- ⁇ -olefin random copolymer may be derived from petroleum or plants.
  • the lower limit of the melt flow rate (MFR) of the propylene- ⁇ olefin random copolymer constituting the laminate layer is preferably 2.0 g/10 min, more preferably 3.0 g/10 min, and still more preferably 4.0 g. /10min. If it is less than the above, the uniformity of the film thickness may be impaired.
  • the upper limit of the melt flow rate of the random copolymer is preferably 10.0 g/10 min, more preferably 9.0 g/10 min, and still more preferably 8.0 g/10 min. Exceeding the above may cause problems such as stickiness of the film and poor impact strength (impact strength) of the film.
  • the propylene- ⁇ olefin random copolymer is, for example, a propylene-ethylene random copolymer (Prime Polypro F-724NPC manufactured by Prime Polymer Co., Ltd., MFR 7.0 g/10 min at 230°C, load 2.16 kg, melting point 142 °C), propylene-ethylene-butene random copolymer (Sumitomo Noblen FL8115A manufactured by Sumitomo Chemical Co., Ltd., MFR 7.0 g/10 min at 230 °C, load 2.16 kg, melting point 148 °C), propylene-ethylene-butene random copolymer (Prime Polypro F-794NV, manufactured by Prime Polymer Co., Ltd., MFR 5.7 g/10 min at 230°C, load 2.16 kg, melting point 134°C), propylene-ethylene-butene random copolymer (Sumitomo Noblen FL6745A, manufactured by Sumitomo Chemical Co., Ltd.
  • the content of the propylene- ⁇ olefin random copolymer in the polyolefin resin composition constituting the laminate layer is preferably 25% by weight or more, more preferably 40% by weight or more, and 60% by weight or more from the viewpoint of heat seal strength. It is more preferable, and particularly preferably 75% by weight or more.
  • the propylene homopolymer Heat resistance can be improved by containing a propylene homopolymer in the polyolefin resin composition constituting the laminate layer.
  • the propylene homopolymer used is preferably isotactic polypropylene, which has high crystallinity and can suppress deterioration of heat shrinkage rate.
  • the propylene homopolymer may be derived from petroleum or from plants.
  • the lower limit of the melt flow rate (MFR) (measured at 230°C and a load of 2.16 kg) of the propylene homopolymer is preferably 2.0 g/10 min, more preferably 3.0 g/10 min, and even more preferably 4 .0g/10min. If it is less than the above, the uniformity of the film thickness may be impaired.
  • the upper limit of the melt flow rate of the propylene homopolymer is preferably 10.0 g/10 min, more preferably 9.0 g/10 min, and still more preferably 8.0 g/10 min. The uniformity of film thickness may be impaired. Exceeding the above may cause problems such as stickiness of the film and poor impact strength (impact strength) of the film.
  • the content of the propylene homopolymer in the polyolefin resin composition constituting the laminate layer is not particularly limited, but from the viewpoint of heat seal strength and bending pinhole resistance, it is preferably 50% by weight or less, and more preferably 30% by weight or less. It is preferably 10% by weight or less, even more preferably 10% by weight or less, and particularly preferably 0% by weight.
  • Plant-derived linear low-density polyethylene It is preferable to contain plant-derived linear low-density polyethylene in the polyolefin resin composition constituting the laminate layer, since the effect of reducing environmental load can be improved. By containing plant-derived linear low-density polyethylene in the surface layer of the film, the environmental load reduction effect is dramatically improved compared to when the core layer only contains plant-derived linear low-density polyethylene.
  • the polyolefin resin composition constituting the laminate layer contains plant-derived linear low-density polyethylene from the viewpoint of reducing environmental impact.
  • Plant-derived linear low-density polyethylene can be manufactured using ethanol made from sugar cane, corn, etc., using a manufacturing method such as a high-pressure method, a solution method, or a gas phase method. is possible.
  • Examples include copolymers of plant-derived ethylene and at least one ⁇ -olefin having 3 or more carbon atoms.
  • the ⁇ -olefins may be those derived from fossil fuels as long as they are generally called ⁇ -olefins, such as propylene, butene-1, hexene-1, octene-1, 4-methyl-1-pentene, etc.
  • it is an ⁇ -olefin having 3 to 12 carbon atoms.
  • copolymers of ethylene and ⁇ -olefin examples include ethylene/hexene-1 copolymer, ethylene/butene-1 copolymer, ethylene/octene-1 copolymer, etc. From this point of view, ethylene-hexene copolymers are preferred.
  • the lower limit of the content of plant-derived ethylene in the plant-derived linear low-density polyethylene is preferably 50%, more preferably 80%. When it is 50% or more, the carbon dioxide reduction effect is good.
  • the upper limit is preferably 98%, more preferably 96%. When it exceeds 98%, the proportion of ⁇ -olefin to be copolymerized decreases, and the heat sealing strength decreases.
  • the lower limit of MFR (measured at 190°C, 2.18 kg) of plant-derived linear low-density polyethylene is preferably 0.8 g/10 min, more preferably 1.5 g/10 min.
  • the upper limit is preferably 5.0 g/10 min, more preferably 4.5 g/10 min.
  • the lower limit of the density of the plant-derived linear low-density polyethylene is preferably 912 kg/m 3 , more preferably 915 kg/m 3 . Good blocking resistance can be obtained by setting the weight to 910 kg/m 3 or more. Moreover, the upper limit is 935 kg/m 3 , more preferably 930 kg/m 3 . When the weight is 930 kg/m 3 or less, good bag breakage resistance can be obtained. Specific examples include ethylene-hexene copolymer (vegetable-derived linear low-density polyethylene) SLH218 (MFR 2.3 g/10 min, density 916 kg/m 3 , melting point 126° C.) manufactured by Braskem.
  • the content of plant-derived linear low-density polyethylene in the polyolefin resin composition constituting the laminate layer is preferably 0% by weight or more, more preferably 3% by weight or more, and even more preferably 15% by weight or more from the viewpoint of reducing environmental load. Preferably, 20% by weight or more is particularly preferable. From the viewpoint of heat resistance, the content is preferably 50% by weight or less, more preferably 40% by weight or less, and even more preferably 30% by weight or less.
  • the slipperiness of the heat-seal layer does not change much even if linear low-density polyethylene is added to the laminate layer, since it largely depends on the amount of additives such as anti-blocking agents and organic lubricants.
  • the polyolefin resin composition constituting the laminate layer may contain an anti-blocking agent.
  • Anti-blocking agents to be added are not particularly limited, but include inorganic particles such as spherical silica, amorphous silica, zeolite, talc, mica, alumina, hydrotalcite, and aluminum borate, polymethyl methacrylate, and ultra-high molecular weight.
  • Organic particles such as polyethylene can be added.
  • the anti-blocking agent contained in the polyolefin resin composition constituting the laminate layer is preferably 3000 ppm or less, more preferably 2500 ppm or less, even more preferably 1000 ppm or less, and even more preferably 500 ppm or less, based on the polyolefin resin of the layer to which it is added. The following are particularly preferred.
  • the polyolefin resin composition constituting the laminate layer may contain an organic lubricant.
  • the lubricity and anti-blocking effect of the laminated film are improved, making the film easier to handle. The reason for this is thought to be that the organic lubricant bleeds out and is present on the film surface, resulting in a lubricant effect and release effect.
  • the organic lubricant preferably has a melting point above room temperature.
  • organic lubricants include fatty acid amides and fatty acid esters. Specific examples thereof include oleic acid amide, erucic acid amide, behenic acid amide, ethylene bis oleic acid amide, hexamethylene bis oleic acid amide, and ethylene bis oleic acid amide.
  • the amount of organic lubricant in the polyolefin resin composition is preferably 1500 ppm or less, more preferably 1000 ppm or less, based on the polyolefin resin. By setting the concentration to 1,500 ppm or less, blocking is less likely to occur even when stored in a place exposed to high temperatures, such as in a warehouse in the summer.
  • the polyolefin resin composition constituting the laminate layer may contain a heat stabilizer. It is possible to suppress defects such as gel, which occurs when the resin deteriorates due to heat and oxidation during melt extrusion.
  • a heat stabilizer for example, a hindered phenolic antioxidant (Irganox 1010) manufactured by BASF, a phosphite treatment stabilizer (Irgafos 168) manufactured by BASF, and a phenol phosphorus antioxidant (Sumilyzer GP) manufactured by Sumitomo Chemical Co., Ltd. Can be mentioned.
  • the heat stabilizer may be used alone or in combination of two or more.
  • the lower limit of the concentration of the heat stabilizer in the polyolefin resin composition is preferably 1,600 ppm or more, more preferably 1,800 ppm or more, more preferably 2,000 ppm or more, and even more preferably 2,500 ppm in total for this layer. That's all. If it is less than the above, defects such as gelation are likely to occur. Further, the upper limit is preferably 5000 ppm in total for this layer, more preferably 4000 ppm, still more preferably 3500 ppm. If the amount exceeds the above, the end face of the film roll may turn red and spoil its appearance.
  • the polyolefin resin composition constituting the laminate layer may contain an appropriate amount of an antistatic agent, an antifogging agent, a neutralizing agent, a nucleating agent, a coloring agent, Other additives, inorganic fillers, etc. can be included.
  • neutralizing agents include calcium stearate.
  • the lower limit of the thickness of the polyolefin resin film is preferably 15 ⁇ m, more preferably 20 ⁇ m, and still more preferably 25 ⁇ m. When it is 15 ⁇ or more, heat sealing strength is easily obtained.
  • the upper limit of the film thickness is preferably 80 ⁇ m, more preferably 70 ⁇ m, still more preferably 65 ⁇ m, even more preferably 60 ⁇ m. When the thickness is 80 ⁇ m or less, the film does not have too much stiffness and is easy to process, and it is also easy to manufacture a suitable package.
  • the lower limit of the thickness ratio of the heat seal layer of the polyolefin resin film is preferably 23% or more, more preferably 25% or more. Heat sealing strength can be increased by setting it to 23% or more. Further, the upper limit of the thickness ratio is preferably 40% or less, more preferably 35% or less, and still more preferably 30% or less. If the heat seal layer is 40% or more, the thickness ratio of the core layer containing plant-derived material and the laminate layer becomes relatively small, and the environmental load reduction effect decreases.
  • the absolute value of the difference in content of the plant-derived linear low-density polyethylene in the polyolefin resin composition constituting the heat seal layer and the core layer is not particularly limited, but is 1% by weight or more, 18% by weight. % or less.
  • the absolute value of the difference in concentration of linear low density polyethylene between the heat seal layer and the core layer is more preferably 15% by weight or less, still more preferably 10% by weight or less, particularly preferably 8% by weight or less.
  • the absolute value of the difference in content of the plant-derived linear low-density polyethylene in the polyolefin resin compositions constituting the core layer and the laminate layer is 1% by weight or more and 18% by weight or less. is preferred.
  • the absolute value of the difference in concentration of linear low density polyethylene between the core layer and the laminate layer is more preferably 15% by weight or less, even more preferably 10% by weight or less, particularly preferably 8% by weight or less.
  • a polyolefin resin laminate film having a heat seal layer, a core layer, and a laminate layer in this order is produced by melt-extruding the polyolefin resin compositions constituting each layer using separate extruders, and then applying the molten resin from a die to the heat seal layer/core. It can be obtained by coextruding three layers (layer/laminate layer), cooling the molten resin sheet with a cooling roll, and forming an unstretched sheet.
  • the core layer has a content of petroleum-derived propylene homopolymer and/or propylene- ⁇ olefin random copolymer of 80% relative to the entire polyolefin resin constituting the layer.
  • the content of plant-derived linear low-density polyethylene is 5% by weight or more and 20% by weight or less
  • pellets containing petroleum-derived polypropylene resin After mixing pellets of a masterbatch consisting of a mixture of a petroleum-derived polypropylene resin and a plant-derived linear low-density polyethylene resin, the mixture is transferred to an extruder for forming a core layer. The reason will be explained later.
  • Polypropylene resin means a propylene homopolymer and/or a propylene- ⁇ -olefin random copolymer.
  • a random combination of petroleum-derived propylene homopolymer and/or propylene and ⁇ -olefin having 2 or 4 to 20 carbon atoms is added to the entire polyolefin resin constituting the laminate layer, heat-sealing layer, or single layer.
  • the same procedure is carried out in the case of a film in which the content of the copolymer is 80% by weight or more and 95% by weight or less, and the content of plant-derived linear low-density polyethylene is 5% by weight or more and 20% by weight or less.
  • a schematic diagram of the transportation and mixing of raw materials is shown in Figure 1.
  • pellets containing petroleum-derived polypropylene resin Upstream of the extruder, pellets containing petroleum-derived polypropylene resin, pellets of a masterbatch consisting of a mixture of petroleum-derived polypropylene resin and plant-derived linear low-density polyethylene, recycled pellets, and a master containing additives, etc.
  • the pellets of the batch are transferred individually from the individual raw material hoppers (1) to (4) to the mixing hopper (5). Transfer methods include the slide gate method (1 to 3) in which the gate opens for a certain period of time according to the weight of the compound, and the screw feeder method (4) in which the gate rotates at a constant speed.
  • the upper limit of the weight per batch is preferably 800 kg or less. It is more preferably 500 kg or less, and still more preferably 300 kg or less. When the weight is less than 800 kg, fluctuations in the degree of biomass within a batch can be reduced.
  • the lower limit is preferably 5 kg or more, more preferably 20 kg or more, still more preferably 100 kg or more. Productivity will be good if it is 5 kg or more.
  • each discharge When transferring from the mixing hopper (5), it is preferable to divide the weight of each discharge into smaller portions because the segregation of the blend is smaller. By dividing into smaller containers. Segregation when feeding into the extrusion hopper can be reduced.
  • the weight of each discharge is preferably 100 kg or less, more preferably 50 kg or less, and still more preferably 25 kg or less. By setting the weight to 100 kg or less, segregation in the melt extrusion process can be reduced.
  • the upper limit of the measurement variation of the core layer raw material when manufacturing the film is preferably 3% or less, more preferably 2% or less. If it is 3% or less, the fluctuations in physical properties such as biomass degree will be small and the number of defects will be small.
  • the upper limit of the measurement variation of the raw material for the laminate layer when producing the film is preferably 3% or less, more preferably 2% or less. If it is 3% or less, the fluctuations in physical properties such as biomass degree will be small and the number of defects will be small.
  • the mixing hopper (5) and the waiting hopper (9) have a mortar-shaped lower part, and the mixed pellets slide down the sloping inner wall and are transferred to the extruder.
  • the angle of the inclined inner wall of each hopper is also preferably 40 degrees or more, more preferably 50 degrees or more with respect to the horizontal direction. If this angle is less than 40 degrees, the flow of the pellets becomes poor and the anti-segregation effect is weakened, which is not preferable.
  • a stirring device was installed inside the hopper, but from the viewpoint of production stability and prevention of dust generation, etc.
  • a segregation prevention device such as an inner cone (FIG. 2) in the hopper.
  • Segregation of mixed pellets occurs because some of the mixed raw material pellets slide down the sloping inner wall at the bottom of the hopper at greatly different speeds, such as conventional linear low-density polyethylene made of plant-derived material.
  • raw material pellets with poor slippage are blended, there is a gap between the raw material pellets that descend along the inner wall and the surface layer of the accumulated raw material pellets that descend near the center of the bottom inside the hopper. This is because variations occur in the blending ratio of petroleum-derived propylene homopolymer and/or raw material pellets consisting of a random copolymer of propylene and ⁇ -olefin having 2 or 4 to 20 carbon atoms.
  • the resin pressure inside the extruder tends to fluctuate. If the resin pressure fluctuates, it is not preferable because the fluctuation causes gel and the like staying in the molten resin path to be discharged, increasing the number of defects on the film. In addition, fluctuations in resin pressure may cause surging during discharge, which is undesirable.
  • Examples of segregation prevention methods include the following 1) to 4). 1) A method in which raw materials are fed into an extruder before segregation occurs, that is, a method in which raw materials are mixed little by little and fed into the extruder each time. 2) A method in which the speed at which the raw materials slide down the inner wall of the hopper does not vary between materials, that is, a method in which the shape of the hopper is made close to a cylindrical shape. 3) A method in which a mixing device, for example, a screw is inserted vertically and rotated, in order to ensure that even if the raw materials are segregated, they are not segregated when they are discharged from the hopper.
  • Method 4 A method in which an inner cone is installed so that all the raw materials fall along the wall, allowing the raw materials to fall through the hopper without segregation.
  • methods 1) and 2) have problems with productivity because the amount of mixed raw materials is small.
  • Method 3) has the problem that the raw materials are likely to be scraped and dust is likely to be generated because the raw materials are continuously mixed. Therefore, method 4) is the most useful industrially.
  • a masterbatch consisting of petroleum-derived polypropylene resin and a mixture of petroleum-derived polypropylene resin and plant-derived linear low-density polyethylene is fed into a raw material hopper in the form of pellets, weighed, and then transferred to a mixing hopper (5). After being transferred and agitated and mixed in a hopper, it is supplied to the extruder via a standby hopper (9).
  • the upper limit of the angle of repose of the raw material resin pellets is preferably 28 degrees, more preferably 26 degrees. If the above value is exceeded, the pellets may remain in the raw material hopper, and physical property values within the product may easily fluctuate.
  • the lower limit of the angle of repose of the raw material resin pellets is preferably 20 degrees, more preferably 22 degrees.
  • the angle of repose is the maximum angle of inclination at which granular material can be deposited on a slope without slipping, and the smaller this value is, the more easily the particles will slide. Furthermore, when powders and granules having different angles of repose are mixed, segregation is likely to occur due to the difference in ease of sliding down.
  • Pellets made only of plant-derived linear low-density polyethylene tend to have high friction between resins and friction with metal, so a masterbatch made of a mixture of polypropylene resin and plant-derived linear low-density polyethylene is used. By doing so, pellets with a small angle of repose can be obtained. By doing this, it is possible to suppress the segregation of plant-derived linear low-density polyethylene in the hopper, and not only can a film roll with a uniform biomass content be produced, but also the number of defects can be reduced by suppressing fluctuations in resin pressure. Can be done.
  • the polypropylene resin is derived from petroleum.
  • the upper limit of the angle of repose of masterbatch pellets made of a mixture of polypropylene resin and plant-derived linear low density polyethylene is preferably 28 degrees, more preferably 26 degrees. If the above value is exceeded, the pellets may remain in the raw material hopper, and the physical property values or biomass content within the product may easily fluctuate.
  • the lower limit of the angle of repose of the masterbatch pellets made of a mixture of polypropylene resin and linear low density polyethylene derived from plants is preferably 20 degrees, more preferably 22 degrees. If it is less than the above, the resin pellets may easily crumble and segregation may occur, and the physical property values within the product may be liable to fluctuate.
  • the polypropylene resin is derived from petroleum.
  • the shape of the masterbatch pellets may be either cylindrical or ellipsoidal depending on the granulation method.
  • the size of the pellet is shown in FIG. 3 if it is cylindrical, and in FIG. 4 if it is ellipsoidal.
  • the upper limit of the length of the long axis x is preferably 6.0 mm or less, where the long axis x, the short axis y, and the thickness z. , more preferably 5.0 mm or less, still more preferably 4.0 mm or less.
  • the lower limit of the length of the major axis x is preferably 2.5 mm or more, more preferably 2.8 mm or more, and still more preferably 3.0 mm or more.
  • the upper limit of the length of the minor axis y is preferably 4.5 mm or less, more preferably 4.0 mm or less, and still more preferably 3.5 mm or less.
  • the lower limit of the length of the short axis y is preferably 1.5 mm or more, more preferably 1.8 mm or more, and still more preferably 2.0 mm or more.
  • the upper limit of the length of the thickness z is preferably 4.5 mm or less, more preferably 4.0 mm or less, and still more preferably 3.5 mm or less.
  • the lower limit of the thickness z is preferably 1.5 mm or more, more preferably 1.8 mm or more, and still more preferably 2.0 mm or more. By being 4.5 mm or less and 1.5 mm or more, segregation is less likely to occur during discharge from the hopper.
  • the upper limit of the angle of repose of the masterbatch pellets is preferably 28 degrees, more preferably 26 degrees, and even more preferably 25 degrees.
  • the lower limit of the angle of repose of the masterbatch pellets is preferably 20 degrees or more, more preferably 22 degrees.
  • the lower limit of the density of the masterbatch pellets is preferably 880 kg/cm 3 , more preferably 890 kg.
  • the lower limit of the density of the masterbatch pellets is preferably 913 kg/cm 3 , more preferably 910 kg/cm 3 . If it is larger than 910 kg/cm 3 , segregation may easily occur during film production.
  • the density of polypropylene resin is about 890 kg/cm 3 , and the closer it is to this value, the less segregation occurs.
  • the upper limit of MFR of masterbatch pellets at 230° C. and a load of 2.16 kg is preferably 8.0 g/10 min, more preferably 7.0 g/10 min.
  • the lower limit of MFR is preferably 1.0 g/10 min, more preferably 3.0 g/10 min. If it exceeds 8.0 g/10 min or falls below 1.0 g/10 min, resin pressure fluctuations may occur due to the viscosity difference with other polypropylene resins, and surging may occur or the number of defects may increase.
  • the upper limit of the pellet color L of the masterbatch is preferably 90, more preferably 80, and even more preferably 70.
  • the lower limit of pellet color L is preferably 50, more preferably 55, and still more preferably 60. 90 is sufficient. If it is 50 or more, the appearance of the film will be good.
  • the upper limit of the pellet color a of the masterbatch is preferably 2.0, more preferably 1.0, and even more preferably 0.0.
  • the lower limit of pellet color a is preferably -2.0, more preferably -1.5, and still more preferably -1.0. A value of 2.0 or less is sufficient. If it is 2.0 or less, it will not be too red, and if it is -2.0 or more, it will not be too blue, giving the film a good appearance.
  • the upper limit of the pellet color b of the masterbatch is preferably 2.0, more preferably 0.0.
  • the lower limit of pellet color b is preferably -2.0, more preferably -1.5, and still more preferably -1.0. If it is 2.0 or less, it will not be too yellow, and if it is -2.0 or more, it will not be too green, giving the film a good appearance.
  • the lower limit of the content of the plant-derived linear low-density polyethylene constituting the masterbatch relative to the total amount of the petroleum-derived polypropylene resin and the plant-derived linear low-density polyethylene is preferably 40% by weight, and more preferably is 55% by weight. If it is less than the above, linear low-density polyethylene cannot be efficiently added to the film, which may result in high costs.
  • the upper limit of the content of the plant-derived chain low density polyethylene is preferably 85% by weight, more preferably 75% by weight. If it is less than the above, the angle of repose of the masterbatch is unlikely to become small.
  • a heat stabilizer can be added when producing the masterbatch. By adding a heat stabilizer, defects such as deterioration products generated during film formation can be suppressed.
  • a heat stabilizer that can be used, commercially available heat stabilizers and antioxidants can be used. Specifically, for example, a hindered phenolic antioxidant (Irganox 1010) manufactured by BASF, a phosphite treatment stabilizer (Irgafos 168) manufactured by BASF, and a phenol phosphorus antioxidant (Sumilyzer GP) manufactured by Sumitomo Chemical Co., Ltd. Can be mentioned.
  • the heat stabilizer may be used alone or in combination of two or more.
  • the lower limit of the concentration of the heat stabilizer contained in the masterbatch is preferably 2000 ppm, more preferably 2500 ppm, and even more preferably 3000 ppm. If it is less than the above, defects may easily occur.
  • the upper limit of the concentration of the heat stabilizer contained in the masterbatch is preferably 5000 ppm, more preferably 4000 ppm. If it exceeds the above, the end face of the produced film roll may turn red, which may impair the appearance of the product.
  • a method for mixing plant-derived linear low-density polyethylene and petroleum-derived polypropylene homopolymer and/or propylene- ⁇ -olefin copolymer resin includes a method of mixing using a mixing device.
  • the mixing device include Henschel mixer, super mixer, tumbler mixer, screw blender, ribbon blender, and the like.
  • antioxidant which will be described later, to the masterbatch.
  • Commercially available raw materials may originally have antioxidants added, but by adding antioxidants, fish eyes and the like can be significantly reduced. This is thought to be because the extrusion temperature of the polypropylene resin is higher than the melting point of linear low density polyethylene, so that deterioration of the plant-derived polyethylene resin progresses more easily.
  • the antioxidant may be either a primary antioxidant that prevents oxidation by capturing generated radicals, or a secondary antioxidant that decomposes generated peroxide and prevents oxidation.
  • examples of the inhibitor include phenolic antioxidants and amine antioxidants, and examples of secondary antioxidants include phosphorus-based antioxidants and sulfur-based antioxidants.
  • phenolic heat stabilizer examples include Irganox 1010 (manufactured by Ciba Specialty Chemicals, chemical formula: pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate).
  • Irganox 1076 manufactured by BASF Japan Co., Ltd., registered trademark, chemical formula name: octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate
  • Cyanox 1790 Cyanox 1790, Cyanamid Co., Ltd.
  • Irganox 1098 manufactured by BASF Japan, registered trademark , Chemical formula name: N,N'-(hexane-1,6-diyl)bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionamide]
  • Sumilizer GA-80 SurizerGA- 80, manufactured by Sumitomo Chemical Co., Ltd., registered trademark, chemical formula name: 3,9-bis[2- ⁇ 3-(
  • Examples of the phosphorus-based heat stabilizer include Irgafos 168 (manufactured by BASF Japan, registered trademark, chemical formula name: tris(2,4-di-tert-butylphenyl) phosphite), Irgafos 12 (Irgafos 12, manufactured by BASF Japan).
  • the amount of the antioxidant in the present invention is not limited, but is 500 ppm or more and 5000 ppm or less based on the total amount of the polypropylene homopolymer and/or propylene- ⁇ olefin copolymer resin and plant-derived linear low-density polyethylene.
  • a range of is preferred. It is more preferably 1000 ppm or more and 4000 ppm or less, and even more preferably 1500 ppm or more and 3000 ppm or less. If it is less than 500 ppm, the effect of using the antioxidant described below in combination is reduced, which is not preferable.
  • the method for preparing the masterbatch is not particularly limited, and known methods may be used. Examples include a method of heating and melt-kneading using a kneader, a Banbury mixer, a roll, etc., a method of heating and melt-kneading using a single-screw or twin-screw extruder, and the like.
  • the melt-kneading during masterbatch production is preferably 170°C or higher and 280°C or lower, more preferably 190°C or higher and 260°C or lower.
  • the temperature By controlling the temperature to be 170° C. or more and 260° C. or less, the thermal history applied to the resin during masterbatch production can be minimized, and the number of defects such as fish eyes can be suppressed.
  • the method of pelletizing the kneaded resin is not particularly limited, and the strand cut method, water-cooled hot cut method, underwater cut method, etc. can be used, but the strand cut method not only has high productivity but also reduces fluctuations in physical properties. Less is preferable.
  • an inflation method or a T-die method can be used, but the T-die method is preferable in order to improve transparency.
  • the inflation method uses air as the cooling medium, whereas the T-die method uses cooling rolls, so it is an advantageous manufacturing method for increasing the cooling rate. By increasing the cooling rate, crystallization of the unstretched sheet can be suppressed, and transparency becomes advantageous. For these reasons, it is preferable to use a sheet with no orientation in the T-die direction.
  • the width of the T-die is preferably 500 mm or more and 2000 mm or less.
  • the lower limit of the melt-kneading temperature is preferably 170°C, more preferably 190°C, and still more preferably 210°C. By setting the temperature to 170°C or higher, it is possible to sufficiently melt and reduce the load on the extruder.
  • the upper limit of the melting and kneading temperature is preferably 300°C, more preferably 280°C, and still more preferably 260°C. By setting it to 300°C or less, thermal deterioration of the resin can be reduced and a film with less foreign matter can be produced. can be manufactured.
  • the pressure fluctuation in the core layer during production of the film is preferably 0.5 MPa or less, more preferably 0.3 MPa or less.
  • the pressure fluctuation of the laminate layer during production of the film is preferably 0.5 MPa or less, more preferably 0.3 MPa or less.
  • the pressure is 0.5 MPa or less, surging is unlikely to occur, fluctuations in biomass degree in the flow direction are small, and the number of defects is small.
  • the raw materials for the polyolefin resin compositions for the heat seal layer, core layer, and laminate layer are mixed, melt mixed and extruded using separate extruders, and the laminated molten resin of the seal layer, core layer, and laminate layer is melted from a T-die.
  • the film is cast onto a cooling roll to obtain a non-oriented laminated film.
  • the lower limit of the temperature of the cooling roll is preferably 15°C, more preferably 20°C. If it is less than the above, dew condensation may occur on the cooling roll, resulting in insufficient adhesion.
  • the upper limit of the cooling roll is preferably 60°C, more preferably 50°C. If it exceeds the above, transparency may deteriorate.
  • both ends of the laminated molten resin film on the cooling roll with an air nozzle, etc., press the entire width of the laminated molten resin film onto the cooling roll with an air knife, etc., and at the same time, place the laminated molten resin film in a vacuum chamber. It is preferable to prevent air from being entrained between the molten resin sheet and the cooling roll by applying It is preferable that both ends of the air nozzle be installed in series in the film traveling direction, and that the die be surrounded by a sheet to prevent wind from hitting the molten resin sheet. Further, it is preferable to align the direction of the suction port of the vacuum chamber with the traveling direction of the extruded sheet.
  • the ears on both ends of the cooled and solidified non-oriented laminated resin film are cut with a slit blade and guided to another line.
  • the film running speed is preferably 30 m/min or more and 50 m/min or less. It is preferable to subject the surface of the laminate layer of the laminated resin film to corona treatment (power density: 10 W ⁇ min/m 2 or more, 30 W ⁇ min/m 2 or less). The edges of the obtained laminated resin film are trimmed, tension is applied, and the film is rolled up while being pressed with a contact roll. After this, it is preferable to perform aging at a temperature of 25° C. or more and 50° C. or less for a period of 12 hours or more and 36 hours or less.
  • both ends of the roll are cut again using a slitting machine to form a film roll.
  • the width of the film is preferably 400 mm or more and 1800 m or less, and the length is preferably 1000 m or more and 6000 m or less.
  • the lower limit of the average biomass degree of the polyolefin resin film of the present invention is preferably 5%, more preferably 8%, and even more preferably 10%. If it is less than 5%, the effect of reducing environmental load will be small.
  • the upper limit of the biomass degree is preferably 20%, more preferably 17%, and still more preferably 14%. If it exceeds 20%, the seal strength may decrease.
  • the upper limit of the standard deviation of the biomass content measured at 27 locations at 500 m intervals (9 rows) in the longitudinal direction and 400 mm intervals (3 rows) in the width direction of the polyolefin resin film roll of the present invention is preferably 0.60%. , more preferably 0.50%, still more preferably 0.40. When it exceeds 0.50%, products with a low degree of biomass are likely to occur in the manufactured packaging. A standard deviation of 0.05% is sufficient. In the measurement of the degree of biomass, the standard deviation of the measured values of the degree of biomass at all measurement points was calculated using the following (Formula 1).
  • the lower limit of the variation rate of biomass degree in the longitudinal direction of the polyolefin resin film of the present invention is preferably 2%, more preferably 4%, and still more preferably 6%. 2% is sufficient.
  • the upper limit of the rate of variation in biomass degree is preferably 20%, more preferably 15%, and even more preferably 10%. If it exceeds 20%, products with a low degree of biomass are likely to occur in the manufactured packaging.
  • the lower limit of haze of the polyolefin resin film of the present invention is preferably 1.0%, more preferably 2.0%, still more preferably 2.5%, particularly preferably 3.0%. . If it is 1.0% or more, the unevenness of the film surface is not extremely small, so that blocking of the inner surface of the package is less likely to occur.
  • the upper limit of haze is preferably 20.0%, more preferably 15.0%, still more preferably 10.0%, and even more preferably 8.0%. When it is 20.0% or less, visibility of the package can be easily obtained.
  • Linear low-density polyethylene has high crystallinity and tends to increase haze, but if it is added within the above-mentioned preferred range, increase in haze can be suppressed.
  • the upper limit of the static friction coefficient of the polyolefin resin film of the present invention is preferably 0.70, more preferably 0.50, and still more preferably 0.40. If it is 0.70 or less, the missing surfaces will easily slide against each other when filling the package with food or opening the package, resulting in a good opening.
  • the lower limit of the static friction coefficient of a single unit is preferably 0.10, more preferably 0.15, still more preferably 0.20, even more preferably 0.25, particularly preferably 0.30. be. If it is 0.10 or more, the film roll will be less likely to collapse when being transported.
  • the lower limit of Young's modulus (longitudinal direction) of the polyolefin resin film of the present invention is preferably 200 MPa, more preferably 300 MPa, still more preferably 400 MPa, even more preferably 500 MPa. If it is less than 200 MPa, it may be too weak and difficult to process.
  • the upper limit of Young's modulus (longitudinal direction) is preferably 1000 MPa, more preferably 800 MPa, even more preferably 750 MPa. Films exceeding 1000 MPa are brittle and may have poor bag tear resistance.
  • the lower limit of Young's modulus (width direction) of the polyolefin resin film of the present invention is preferably 200 MPa, more preferably 300 MPa, still more preferably 400 MPa, even more preferably 500 MPa, particularly preferably 600 MPa. be. If it is less than 200 MPa, it may be too weak and difficult to process.
  • the upper limit of Young's modulus (width direction) is preferably 1000 MPa, more preferably 800 MPa, and still more preferably 750 MPa. Films exceeding 1000 MPa are brittle and may have poor bag tear resistance. When a small amount of linear low density polyethylene is added to a polyolefin resin film, Young's modulus increases.
  • the lower limit of the impact strength of the polyolefin resin film of the present invention is preferably 0.20J, more preferably 0.25J, still more preferably 0.30J, and even more preferably 0.55J. By setting it to 0.20 J or more, the drop-breakage resistance of the package can be improved. An impact strength of 1.0 J is sufficient. Impact strength is highly dependent on the thickness and molecular orientation of the film. Furthermore, impact strength and drop-break resistance do not necessarily correlate.
  • the lower limit of the accelerated blocking strength of the polyolefin resin film of the present invention is preferably 20 mN/70 mm, more preferably 30 mN/70 mm, even more preferably 36 mN/70 mm. When it is 20 mN/70 mm or more, the film tends to have a stiff feel.
  • the upper limit of the acceleration blocking strength is preferably 100 mN/70 mm, more preferably 80 mN/70 mm, even more preferably 70 mN/70 mm, particularly preferably 60 mN/70 mm. When it is 100 mN/70 mm or less, blocking is unlikely to occur on the inner surface of the package. If linear low density polyethylene is added to the core layer and laminate layer, deterioration in acceleration blocking strength can be suppressed.
  • the lower limit of the puncture strength of the single polyolefin resin film of the present invention is preferably 1.0N, more preferably 1.2N, still more preferably 1.5N, particularly preferably 1.7N.
  • the laminate has good puncture pinhole resistance.
  • a puncture strength of 5.0N is extremely good, and a puncture strength of 3.0N is sufficient. Since the puncture strength largely depends on the orientation of the film, it does not change much just by changing the resin.
  • the lower limit of the heat sealing start temperature of the polyolefin resin film of the present invention is preferably 110°C, more preferably 120°C. When the temperature is 110° C. or higher, it has a high stiffness and is easy to handle.
  • the upper limit of the heat sealing start temperature is 150°C, more preferably 140°C, and even more preferably 130°C. When the temperature is 150° C. or lower, packages can be manufactured at high speed, which is economically advantageous.
  • the heat-sealing start temperature is greatly influenced by the melting point of the heat-sealing layer. Therefore, if linear low-density polyethylene is used for the core layer and laminate layer, changes in heat sealing temperature can be suppressed.
  • the lower limit of the planar orientation coefficient of the polyolefin resin film of the present invention is preferably 0.000, more preferably 0.001. It is difficult to produce a film with less than the above.
  • the upper limit of the plane orientation of the film is 0.010, more preferably 0.008, and still more preferably 0.006 or less. If it is more than the above, the film may be stretched non-uniformly and the thickness uniformity may deteriorate.
  • the lower limit of the wetting tension of the surface of the polyolefin resin film of the present invention to be laminated with at least one film selected from the group consisting of a polyamide resin film, a polyester resin film, and a polypropylene resin film is preferably 30 mN/m. , more preferably 35 mN/m. When it is 30 mN/m or more, the laminate strength is unlikely to decrease.
  • the upper limit of wetting tension is preferably 55 mN/m, more preferably 50 mN/m. When the polyolefin resin film is wound into a roll as it is 55 mN/m or less, blocking between the films is unlikely to occur.
  • the upper limit of the number of defects in the range of 4000 m in the longitudinal direction and 1000 mm in the width direction of the polyolefin resin film of the present invention is preferably 200, more preferably 150, and even more preferably 100. When the number is 200 or less, the appearance of the film is good and the incidence of defective products is reduced.
  • a film laminate using a polyolefin resin film constituting the present invention uses the polyolefin resin film as a sealant and at least one selected from the group consisting of a polyamide resin film, a polyester resin film, and a polypropylene resin film. It is a laminate with one type of biaxially oriented film. Further, as known techniques, these base films may be coated or vapor-deposited for the purpose of imparting adhesiveness or barrier properties, or aluminum foil may be further laminated.
  • biaxially oriented PET polyethylene terephthalate film/aluminum foil/sealant
  • biaxially oriented PET polyethylene terephthalate film/biaxially oriented nylon film/sealant
  • biaxially oriented nylon film/sealant biaxially oriented
  • biaxially oriented Examples include polypropylene film/sealant, biaxially oriented (polyethylene terephthalate) PET film/biaxially oriented nylon film/aluminum foil/sealant, and the like.
  • the method for creating the laminate is to unwind the respective films from the polyolefin resin film roll of the present invention and the biaxially oriented film roll, and use a known method such as a dry lamination method or an extrusion lamination method to create a laminate using an adhesive layer.
  • a known method such as a dry lamination method or an extrusion lamination method to create a laminate using an adhesive layer.
  • lamination but any lamination method may be used.
  • the upper limit of the standard deviation of the degree of biomass of the polyolefin resin film of the laminate roll is preferably 0.60%, more preferably 0.50%, and even more preferably 0.40. When it exceeds 0.50%, products with a low degree of biomass are likely to occur in the manufactured packaging. A standard deviation of 0.05% is sufficient.
  • the lower limit of the variation rate of biomass degree in the longitudinal direction of the polyolefin resin film of the laminate roll is preferably 2%, more preferably 4%, and even more preferably 6%. 2% is sufficient.
  • the upper limit of the rate of variation in biomass degree is preferably 20%, more preferably 15%, and even more preferably 10%. If it exceeds 20%, products with a low degree of biomass are likely to occur in the manufactured packaging.
  • the characteristics of the laminate will be described.
  • the lower limit of the heat seal strength of the laminate of the present invention is preferably 20 N/15 mm, more preferably 22 N/15 mm. If it is 20N/15mm or more, bag breakage resistance is likely to be obtained. Heat sealing strength of 60N/15mm is very good, and 35N/15mm is sufficient.
  • the lower limit of the puncture strength of the laminate of the present invention is preferably 7N, more preferably 8N, and even more preferably 9N. If it is 7N or more, pinholes are less likely to occur when the protrusion comes into contact with the package.
  • the upper limit of the puncture strength is preferably 45N, more preferably 30N, and still more preferably 15N. If it is 45 N or less, the laminate will not have too stiff a feeling and will be easy to handle. Since the puncture strength largely depends on the orientation of the film, it does not change much just by changing the resin.
  • the polyolefin resin film or the laminate arranged to surround the contents, such as foodstuffs, for the purpose of protecting the contents from natural dust, gas, etc. is called a packaging body.
  • the packaging body is manufactured by cutting out the polyolefin resin film or the laminate, and bonding the inner surfaces to each other using a heated heat seal bar or ultrasonic waves to form a bag. For example, two rectangular sheets are bonded with a heat seal layer. Widely used are four-sided sealed bags, which are stacked so that the sides are inward and heat-sealed on all four sides, and packaging bags with backing.
  • the contents may be foodstuffs, but they may also be other products such as daily necessities, and the shape of the package may be other than rectangular, such as a standing pouch or a pillow package.
  • MFR Melt flow rate
  • biomass degree was calculated from the C14 (carbon atom with mass number 14) concentration in the film.
  • the sampling points were a film roll with a width of 1000 mm and a winding length of 4000 m. In the longitudinal direction, there were 9 rows every 500 m from the surface layer to the core, and in the width direction, 3 rows at the center of the roll and 400 mm to the left and right, for a total of 27 samples. I went somewhere. The average value of the measured values at the 27 locations was calculated (FIG. 5).
  • biomass degree was calculated from the C14 (carbon atom with mass number 14) concentration in the film.
  • the sampling points were to remove the film at a distance of 2 m from the edge of the surface layer of the film roll, and from the film at a distance of 2 m from the film at intervals of 500 m in the longitudinal direction from the surface layer to the winding core, and in the width direction at the center of the film roll. This was done at a position 100 mm inside from the left end and 100 mm inside from the right end.
  • the average value of biomass degree at all measurement points was calculated.
  • the sampling points were a film roll with a width of 1000 mm and a winding length of 4000 m.
  • Rate of variation in degree of biomass in the longitudinal direction was calculated using the measured values of degree of biomass at all measurement points.
  • the fluctuation rate of the measured values of biomass degree at 27 locations was calculated using the following (Equation 2).
  • Variation rate (B max - B min )/B ave [%]...
  • Heat-sealing start temperature The heat-sealing start temperature of the polyolefin resin film was measured in accordance with JIS Z 1713 (2009). At this time, the film was cut into rectangular test pieces (for heat sealing) measuring 50 mm x 250 mm (width direction x length direction of the film). The sealing layer portions of the two test pieces were overlapped, and using a thermal gradient tester (heat sealing tester) manufactured by Toyo Seiki Seisakusho Co., Ltd., the heat sealing pressure was 0.2 MPa and the heat sealing time was 1.0 sec. did. Then, heat sealing was performed under the condition that the temperature was increased at a gradient of 5°C. After heat sealing, a test piece was cut out to a width of 15 mm.
  • the heat-sealed test piece was opened 180°, the unsealed portion was held between a chuck, and the sealed portion was peeled off. Then, the temperature at which the heat seal strength reached 4.9N was determined.
  • the obtained dry blend was put into a hopper equipped with an inner cone on a granulation extruder, and using a 45 mm ⁇ twin screw extruder (screw diameter 43 mm ⁇ L/D; 19.5), the rotation speed of the screw and the feeder were adjusted.
  • the extrusion was carried out under conditions in which the rotational speed was adjusted to 200 rpm and 15 rpm, respectively, and the temperature of the kneading section was adjusted to 250°C.
  • the filter mesh configuration was 50 mesh/100 mesh/50 mesh.
  • Granulation was carried out by a strand cutting method, and the pellet mesh was sized with an upper limit of ⁇ 6.0 mm and a lower limit of ⁇ 2.5 mm to obtain a masterbatch. Table 1 shows the physical properties of the obtained masterbatch.
  • Masterbatch: MB7 A masterbatch was obtained under the same conditions as MB1, except that the raw material ratio of MB7 was as shown in Table 1, the screw rotation speed and feeder rotation speed were 400 rpm and 30 rpm, respectively, and the upper limit of the pellet mesh was ⁇ 9.0 mm. Ta. Table 1 shows the physical properties of the obtained masterbatch.
  • Example 1 (Raw materials used in heat seal layer)
  • PP-1 Sumitomo Chemical propylene-ethylene-butene random copolymer FL6745A (MFR6.0g/10min, melting point 130°C)
  • Silica Amorphous silica KMP130-4 manufactured by Shin-Etsu Chemical (average particle size 4 ⁇ m)
  • Organic lubricant Nippon Fine Chemical behenic acid amide BNT-22H
  • Heat stabilizer Irganox 1010, a hindered phenolic antioxidant manufactured by BASF Japan, Irgafos 168, a phosphorus processing stabilizer manufactured by BASF Japan
  • PP-2 Sumitomo Chemical propylene-ethylene-butene random copolymer FL8115A (MFR7.0g/10min, melting point 148°C)
  • LL-1 Braskem ethylene-hexene copolymer (vegetable-derived linear low-density polyethylene)
  • SLH218 MFR 2.3 g/10 min, density 916 kg/m 3 , melting point 126°C)
  • Organic lubricant Nippon Fine Chemical behenic acid amide BNT-22H
  • Heat stabilizer Irganox 1010, a hindered phenolic antioxidant manufactured by BASF Japan, Irgafos 168, a phosphorus processing stabilizer manufactured by BASF Japan
  • PP-2 Sumitomo Chemical propylene-ethylene-butene random copolymer FL8115A (MFR7.0g/10min, melting point 148°C)
  • LL-1 Braskem ethylene-hexene copolymer (vegetable-derived linear low-density polyethylene)
  • SLH218 MFR 2.3 g/10 min, density 916 kg/m 3 , melting point 126°C
  • Heat stabilizer Irganox 1010, a hindered phenolic antioxidant manufactured by BASF Japan, Irgafos 168, a phosphorus processing stabilizer manufactured by BASF Japan
  • Polyolefin resin film Regarding the polyolefin resin film of Example 1, raw materials were adjusted based on the resin compositions and proportions of each layer shown in Table 2 below. For adjustment, each raw material was quantitatively transported using a screw feeder and each raw material was weighed. In one lightweight batch, the laminate layer weighed 14 kg, the core layer weighed 40 kg, and the heat seal layer weighed 14 kg. In addition, assuming that the preparations in each layer listed in Table 1 are 100% by weight, the seal layer contains 360 ppm of behenic acid amide as an organic lubricant and 2000 ppm of silica with an average particle size of 4 ⁇ m as an inorganic anti-blocking agent in a master batch. Added. Behenic acid amide was added as an organic lubricant to the core layer in a master batch at a concentration of 270 ppm.
  • a three-stage single-screw extruder with a screw diameter of 90 mm is used for the mixed raw materials used for the intermediate layer, and a three-stage single-screw extruder with a diameter of 65 mm and a diameter of 45 mm for the mixed raw materials for the heat seal layer and the laminate layer, respectively.
  • the heat seal layer/intermediate layer/laminate layer is introduced in this order, and the pre-land is made into two stages with a width of 1400 mm.
  • the shape of the stepped portion is curved to ensure a uniform flow within the die.
  • the sample was introduced into a T-slot type die designed to have a temperature of 230° C. at the outlet of the die.
  • the thickness ratios of the heat seal layer/core layer/laminate layer were 25%/55%/20%, respectively.
  • the molten resin sheet coming out of the die was cooled with a cooling roll at 35° C. to obtain an unstretched polyolefin resin film having a thickness of 30 ⁇ m.
  • a cooling roll both ends of the film on the cooling roll are fixed with an air nozzle, the entire width of the molten resin sheet is pressed onto the cooling roll with an air knife, and at the same time a vacuum chamber is applied to create a gap between the molten resin sheet and the cooling roll. Prevents air from getting into the The air nozzles were installed in series at both ends in the film advancing direction. The area around the dice was surrounded by a sheet to prevent wind from hitting the molten resin sheet.
  • Corona treatment Corona treatment (power density: 20 W ⁇ min/m 2 ) was performed on the surface of the laminate layer of the film.
  • the film forming speed was 40 m/min.
  • the selvedge portions of the formed film were trimmed.
  • both ends were cut again using a slitting machine, and a roll having a width of 1000 mm was wound up by 4004 m to obtain a film roll.
  • a film at a distance of 2 m from the edge of the surface layer of the film roll was removed, and from the film at a distance of 2 m, the central part in the width direction was taken as a sample for measuring the physical properties of a single unit.
  • Example 2 to Example 9 In Example 1, the raw materials used for the core layer and the laminate layer were changed to the ratios shown in Table 2, and a 30 ⁇ m polyolefin resin film was obtained in the same manner. A laminate was obtained in the same manner as in Example 1. Table 3 shows the evaluation results.
  • Example 1 Comparative example 1, comparative example 4, comparative example 5, comparative example 6, comparative example 7, comparative example 8)
  • the raw materials used for the heat seal layer, core layer, and laminate layer were changed to the ratios shown in Table 4, and a 30 ⁇ m polyolefin resin film was obtained in the same manner.
  • a laminate was obtained in the same manner as in Example 1.
  • Table 5 shows the evaluation results.
  • Example 2 Comparative example 3, comparative example 3
  • the layer ratio of the heat seal layer was 20%
  • the layer ratio of the core layer was 60%
  • Comparative Example 3 A 30 ⁇ m polyolefin resin film was obtained in the same manner except that the heat seal layer ratio was 3%, the core layer ratio was 94%, and the laminate layer ratio was 3%.
  • a laminate was obtained in the same manner as in Example 1. Table 5 shows the evaluation results.
  • the present invention provides an environmentally friendly polyolefin resin film that has small fluctuations in biomass content in the product and a small number of defects, so packaging materials using the same have a low defect rate and have excellent heat sealing strength. This can greatly contribute to industry.

Abstract

[Problem] To provide an environmentally friendly polyolefin resin film which, as a product, fluctuates little in biomass ratio, has few defects, and thereby gives packaging materials with a low reject rate. [Solution] A method for producing a polyolefin resin film, the method comprising: a step in which masterbatch pellets comprising plant-derived, linear, low-density polyethylene and a polypropylene homopolymer and/or a propylene/α-olefin random copolymer are transferred to a mixing hopper; a step in which the mixed pellets are transferred to a standby hopper and then to an extruder; a step in which the mixed pellets are melt-kneaded with the extruder; and a step in which a molten resin sheet is extruded from the extruder and cooled with a cooling roll to form an unstretched sheet.

Description

ポリオレフィン系樹脂フィルムの製造方法Manufacturing method of polyolefin resin film
 本発明は、ポリオレフィン系樹脂フィルムの製造方法に関する。 The present invention relates to a method for producing a polyolefin resin film.
 包装体は、主にポリアミド系樹脂フィルム、ポリエステル系樹脂フィルム、あるいはポリプロピレン系樹脂フィルムなどを基材フィルムとし、前記ポリオレフィン系樹脂フィルムなどをシーラントとして積層体と製造し、前記ポリオレフィン系樹脂フィルム面同士が接触する状態でポリオレフィン系樹脂フィルムの融点近くの温度で加熱圧着(以下、ヒートシール)することにより製造される。 The package is manufactured as a laminate, with a base film mainly made of a polyamide resin film, a polyester resin film, or a polypropylene resin film, and the polyolefin resin film used as a sealant. It is manufactured by heat-pressing (hereinafter referred to as heat sealing) at a temperature close to the melting point of the polyolefin resin film while the polyolefin resin film is in contact with the polyolefin resin film.
 これらの包装体は、生鮮食品、総菜、菓子など、様々な食品を包装し、運搬するのに使用される。包装体を使用することにより、食品を効率よく消費者のもとに届けるだけでなく、食品の腐敗を遅らせ賞味期限を延長したり、運搬、保管中にゴミなどが混入するのを避けたりすることができる。 These packaging bodies are used to package and transport a variety of foods such as fresh foods, prepared foods, and sweets. By using packaging, we not only efficiently deliver food to consumers, but also slow food spoilage, extend the expiration date, and avoid contamination with garbage during transportation and storage. be able to.
 ポリプロピレン系樹脂フィルムは安価であり、それを用いた包装材料は熱封緘(ヒートシー)性に優れるため、ヒートシール用フィルムとして広く用いられている。 Polypropylene resin films are inexpensive, and packaging materials using them have excellent heat-sealing properties, so they are widely used as heat-sealing films.
 ところで、近年、地球温暖化を抑制する観点から、世界規模で二酸化炭素の排出量を削減することが求められてきている。その方策としてバイオマスを原料としたプラスチックが着目されている。バイオマスは大気中に存在する二酸化炭素と水から光合成される。従って、植物由来のプラスチックを焼却しても、もともと大気中あった二酸化炭素が大気に戻るだけ、というカーボンニュートラルの考え方から再生可能な資源であると考えられている。食品包装体のリサイクルは近年急速に進行しているが、いまだその多くが焼却されている中、植物由来のプラスチックを包装体に利用することは地球環境保護の観点から重要であり、各種のバイオマスプラスチックを利用する検討がなされている。 Incidentally, in recent years, there has been a demand to reduce carbon dioxide emissions on a global scale from the perspective of suppressing global warming. Plastics made from biomass are attracting attention as a solution. Biomass is photosynthesized from carbon dioxide and water present in the atmosphere. Therefore, even if plant-based plastics are incinerated, the carbon dioxide that was originally in the atmosphere is returned to the atmosphere, so it is considered a renewable resource based on the carbon-neutral concept. Recycling of food packaging has progressed rapidly in recent years, but while most of it is still incinerated, the use of plant-based plastics for packaging is important from the perspective of protecting the global environment, and various types of biomass are being used. Consideration is being given to using plastic.
 ポリプロピレン系樹脂フィルムへのバイオマスプラスチックの利用としては例えば、植物由来の直鎖状低密度ポリエチレンをポリプロピレン系樹脂に添加する技術が知られている(例えば、特許文献1等参照)。しかし、ポリエチレンはポリプロピレン系樹脂との相溶性が悪いために、ヒートシール強度が低下するという課題があった。 As for the use of biomass plastic in polypropylene resin films, for example, a technique is known in which linear low-density polyethylene derived from plants is added to polypropylene resin (see, for example, Patent Document 1). However, since polyethylene has poor compatibility with polypropylene resins, there has been a problem in that heat seal strength is reduced.
 また、同様に、ポリオレフィン系樹脂フィルムに植物由来直鎖状低密度ポリエチレンを添加した技術が知られている(例えば、特許文献2、特許文献3等参照)。しかし、製品ロール全体の中でバイオマス度が変動したり、局所的にシール強度が弱い箇所が発生したり、あるいは、欠点が増加するという課題があった。 Similarly, a technique in which plant-derived linear low-density polyethylene is added to a polyolefin resin film is known (for example, see Patent Document 2, Patent Document 3, etc.). However, there are problems in that the degree of biomass fluctuates within the entire product roll, there are localized areas where the sealing strength is weak, or an increase in defects occurs.
 植物由来の原材料を使用する場合でも、それにより不良率が高くなってしまうと、かえって地球環境を悪化させることに繋がる。そのため不良率を石油由来樹脂から製造する場合と同等以上とすることは大きな課題であると言える。 Even when using plant-based raw materials, if the defect rate increases, this will actually lead to deterioration of the global environment. Therefore, it can be said that it is a major challenge to make the defective rate equal to or higher than that in the case of manufacturing from petroleum-derived resin.
 異種の原料を効率良く添加する方法としてポリプロピレン系樹脂と低密度ポリエチレン系樹脂からなる樹脂成分に充填剤やワックスなどを配合したマスターバッチが知られている。しかし、かかる技術では直鎖状低密度ポリエチレンへのマスターバッチへの利用は成形時のムラが生じやすく不十分であるとともに、ワックスによるマスターバッチと他の原料との滑り性の違いから偏析や混錬ムラが発生するという課題があった(特許文献4、特許文献5)。 As a method for efficiently adding different types of raw materials, a masterbatch is known in which a resin component consisting of a polypropylene resin and a low-density polyethylene resin is blended with fillers, wax, etc. However, with this technology, the use of linear low-density polyethylene as a masterbatch is insufficient because it tends to cause unevenness during molding, and it also causes segregation and mixing due to the difference in slipperiness between the wax masterbatch and other raw materials. There was a problem in that unevenness occurred (Patent Document 4, Patent Document 5).
特開2021-31563号公報JP 2021-31563 Publication 特開2020-75400号公報JP2020-75400A 特開2021-66107号公報JP2021-66107A 特開平9-302099号公報Japanese Patent Application Publication No. 9-302099 特開2003-335869号公報Japanese Patent Application Publication No. 2003-335869
 本発明は、製品中のバイオマス度の変動が小さく、欠点の個数が少ないため、これを用いた包装材の不良率が小さい、環境配慮型のポリオレフィン系樹脂フィルムを提供することを目的とする。 An object of the present invention is to provide an environmentally friendly polyolefin resin film that has small fluctuations in the degree of biomass in the product and a small number of defects, so the defect rate of packaging materials using the same is low.
 本発明者は、かかる目的を達成するために鋭意検討した結果、原料の偏析や混錬ムラを防止し、植物由来直鎖状低密度ポリエチレンを安定的に供給することにより、環境配慮型の製品のバイオマス度の変動を抑制し更に欠点個数を減少させることに成功し、さらにプロピレン単独重合体及び/またはプロピレン-αオレフィンランダム共重合体と、直鎖状低密度ポリエチレン混合原料を用いながらもヒートシール性に優れることを見出し、本発明の完成に至った。
 すなわち本発明は、以下の態様を有する。
[1]
 ポリプロピレン単独重合体及び/またはプロピレン-αオレフィンランダム共重合体、及び植物由来直鎖状低密度ポリエチレンを含むマスターバッチペレットであって、下記a)~d)を満たす、マスターバッチペレットと、
プロピレン単独重合体及び/またはプロピレン-αオレフィンランダム共重合体からなるペレットを、
 それぞれ個別に、内壁の角度が水平方向に対して40度以上である混合ホッパーに移送する工程、
 次いで混合したペレットを内壁の角度が水平方向に対して40度以上である待機ホッパーに移送し、さらに、押出機に移送する工程、
 押出し機で混合したペレットを溶融混練する工程、
 押出し機から溶融樹脂シートを押出し、冷却ロールで冷却して、未延伸シートを形成する工程を含む、ポリオレフィン系樹脂フィルムの製造方法。
a)マスターバッチペレットにおける植物由来直鎖状低密度ポリエチレンの含有量が、ポリプロピレン単独重合体及び/またはプロピレンと炭素数2又は4~20のαオレフィンとのランダム共重合体、及び前記植物由来直鎖状低密度ポリエチレンの合計量の40重量%以上、85重量%以下である。
b)安息角が20度以上28度以下である。
c)密度が880kg/m以上、910kg/m以下である。
d)230℃、2.16kgにおけるMFRが1.0g/10min以上、8.0g/10min以下である。
[2]
 マスターバッチペレットにおけるポリプロピレン単独重合体及び/またはプロピレン-αオレフィンランダム共重合体と植物由来直鎖状低密度ポリエチレンの合計量に対して、酸化防止剤を500ppm以上、5000ppm以下含有する、[1]に記載のポリオレフィン系樹脂フィルムの製造方法。
[3]
 マスターバッチペレットの形状が円柱状あるいは楕円球状である、[1]または[2]に記載のポリオレフィン系樹脂フィルムの製造方法。
[4]
 マスターバッチペレットの長軸xが6mm以下であり、短軸yの長さが4.5mm以下であり、厚さzの長さが4.5mm以下である、[1]~[3]のいずれかに記載のポリオレフィン系樹脂フィルムの製造方法。
As a result of intensive studies to achieve this objective, the present inventor has developed an environmentally friendly product by preventing raw material segregation and uneven kneading and stably supplying plant-derived linear low-density polyethylene. We succeeded in suppressing fluctuations in the degree of biomass and further reducing the number of defects, and furthermore, we succeeded in suppressing fluctuations in the biomass content of It was discovered that the sealing properties are excellent, leading to the completion of the present invention.
That is, the present invention has the following aspects.
[1]
A masterbatch pellet containing a polypropylene homopolymer and/or a propylene-α olefin random copolymer, and a plant-derived linear low-density polyethylene, the masterbatch pellet satisfying the following a) to d),
Pellets made of propylene homopolymer and/or propylene-α olefin random copolymer,
transferring each separately to a mixing hopper whose inner wall has an angle of 40 degrees or more with respect to the horizontal direction;
Next, the mixed pellets are transferred to a waiting hopper whose inner wall has an angle of 40 degrees or more with respect to the horizontal direction, and further transferred to an extruder.
A process of melt-kneading the pellets mixed in an extruder,
A method for producing a polyolefin resin film, which includes the steps of extruding a molten resin sheet from an extruder, cooling it with a cooling roll, and forming an unstretched sheet.
a) The content of plant-derived linear low-density polyethylene in the masterbatch pellets is a polypropylene homopolymer and/or a random copolymer of propylene and an α-olefin having 2 or 4 to 20 carbon atoms, and the plant-derived linear low-density polyethylene. It is 40% by weight or more and 85% by weight or less of the total amount of chain low density polyethylene.
b) The angle of repose is 20 degrees or more and 28 degrees or less.
c) Density is 880 kg/m 3 or more and 910 kg/m 3 or less.
d) MFR at 230°C and 2.16 kg is 1.0 g/10 min or more and 8.0 g/10 min or less.
[2]
Contains an antioxidant in an amount of 500 ppm or more and 5000 ppm or less based on the total amount of the polypropylene homopolymer and/or propylene-α olefin random copolymer and plant-derived linear low-density polyethylene in the masterbatch pellet, [1] The method for producing a polyolefin resin film described in .
[3]
The method for producing a polyolefin resin film according to [1] or [2], wherein the masterbatch pellets have a cylindrical or ellipsoidal shape.
[4]
Any of [1] to [3], wherein the masterbatch pellet has a long axis x of 6 mm or less, a short axis y of 4.5 mm or less, and a thickness z of 4.5 mm or less. The method for producing a polyolefin resin film according to claim 1.
 本発明のポリオレフィン系樹脂フィルムロールは、製品中のバイオマス度の変動が小さく、欠点の個数が少ないため、これを用いた包装材の不良率が小さい、環境配慮型のポリオレフィン系樹脂フィルムロールを提供するのに適している。 The polyolefin resin film roll of the present invention has small fluctuations in the degree of biomass in the product and a small number of defects, so it provides an environmentally friendly polyolefin resin film roll with a low defect rate for packaging materials using it. suitable for.
原料系の模式図1 原料ホッパー(スライドゲート式)2 原料ホッパー(スライドゲート式)3 原料ホッパー(スライドゲート式)4 原料ホッパー(スクリューフィーダー式)5 混合ホッパー6 計量機7 拡販翼8 移送フィーダー9 待機ホッパー10 押出機Schematic diagram of raw material system 1 Raw material hopper (slide gate type) 2 Raw material hopper (slide gate type) 3 Raw material hopper (slide gate type) 4 Raw material hopper (screw feeder type) 5 Mixing hopper 6 Weighing machine 7 Sales expansion wing 8 Transfer feeder 9 Standby hopper 10 Extruder インナーコーンを設置したホッパーの模式図11 インナーコーンSchematic diagram of a hopper with an inner cone installed 11 Inner cone 円柱状ペレットの外観図及び投影図External view and projection view of cylindrical pellets 楕円球状ペレットの外観図及び投影図External view and projection view of oval spherical pellets バイオマス度の標準偏差の測定箇所Measurement point of standard deviation of biomass degree
(ポリオレフィン系樹脂フィルム)
 ポリオレフィン系樹脂フィルムは、少なくとも1つの層が、層を構成するオレフィン系樹脂全体に対し、石油由来のプロピレン単独重合体及び/またはプロピレン-αオレフィンランダム共重合体の含有量が80重量%以上95重量%以下であり、植物由来の直鎖状低密度ポリエチレンの含有量が5重量%以上20重量%以下である。
(Polyolefin resin film)
At least one layer of the polyolefin resin film has a content of petroleum-derived propylene homopolymer and/or propylene-α olefin random copolymer of 80% or more by weight based on the entire olefin resin constituting the layer.95 The content of linear low density polyethylene derived from plants is 5% by weight or more and 20% by weight or less.
 ポリオレフィン系樹脂フィルムを構成する、上記の少なくとも1つの層以外の層におけるポリオレフィン系樹脂組成物は、ヒートシール強度の点からプロピレン単独重合体及び/またはプロピレン-αオレフィンランダム共重合体を主体とする。また、環境負荷低減の観点から植物由来直鎖状低密度ポリエチレンを含むのが好ましい。プロピレン単独重合体またはプロピレン-αオレフィンランダム共重合体、及び植物由来直鎖状低密度ポリエチレンは1種類でも良いが、2種類以上を混合して使用しても良い。 The polyolefin resin composition in the layers other than the at least one layer mentioned above constituting the polyolefin resin film is mainly composed of propylene homopolymer and/or propylene-α olefin random copolymer from the viewpoint of heat seal strength. . In addition, from the viewpoint of reducing environmental load, it is preferable that plant-derived linear low-density polyethylene is included. One type of propylene homopolymer or propylene-α-olefin random copolymer and plant-derived linear low-density polyethylene may be used, or two or more types may be used in combination.
(プロピレン-αオレフィンランダム共重合体)
 プロピレン-αオレフィンランダム共重合体は、プロピレンとプロピレン以外の炭素原子数が2又は4~20のα-オレフィンの少なくとも1種との共重合体を挙げることができる。かかる炭素原子数が2又は4~20のα-オレフィンモノマーとしては、エチレン、ブテン-1、ペンテン-1、4-メチルペンテン-1、ヘキセン-1、オクテン-1等を用いることができる。
 プロピレン-αオレフィンランダム共重合体はヒートシール性の面からエチレンを用いるのが好ましい。また、少なくとも1種類以上であればよく、必要に応じて2種類以上を混合して用いることができる。特に好適であるのは主とするモノマーがプロピレンであり、一定量のエチレンとブテンを共重合させたプロピレン-エチレン-ブテンランダム共重合体である。本報ではランダム共重合体を構成するモノマー組成比の多い順に呼称し記載した。プロピレン-αオレフィンランダム共重合体は、石油由来のものであっても良く、植物由来のものであっても良い。少なくとも一つの層は石油のものが好ましい。
(Propylene-α-olefin random copolymer)
Examples of the propylene-α-olefin random copolymer include copolymers of propylene and at least one α-olefin having 2 or 4 to 20 carbon atoms other than propylene. As such α-olefin monomers having 2 or 4 to 20 carbon atoms, ethylene, 1-butene, 1-pentene, 4-methylpentene-1, hexene-1, octene-1, etc. can be used.
It is preferable to use ethylene as the propylene-α-olefin random copolymer from the viewpoint of heat sealability. Further, it is sufficient that at least one kind is used, and two or more kinds can be mixed and used as necessary. Particularly suitable is a propylene-ethylene-butene random copolymer in which the main monomer is propylene and a certain amount of ethylene and butene are copolymerized. In this report, random copolymers are named and described in descending order of monomer composition ratio. The propylene-α-olefin random copolymer may be derived from petroleum or plants. Preferably, at least one layer is of petroleum.
 フィルムのプロピレン-αオレフィンランダム共重合体のメルトフローレート(MFR)の下限は好ましくは2.0g/10minであり、より好ましくは3.0g/10minであり、さらに好ましくは4.0g/10minである。上記未満であるとフィルム厚みの均一性が損なわれることがある。ランダム共重合体のメルトフローレートの上限は好ましくは10.0g/10minであり、より好ましくは9.0g/10minであり、さらに好ましくは8.0g/10minである。上記を超えるとフィルムのべた付きやフィルムの耐衝撃強度(インパクト強度)が劣るなど問題が生じることがある。 The lower limit of the melt flow rate (MFR) of the propylene-α olefin random copolymer of the film is preferably 2.0 g/10 min, more preferably 3.0 g/10 min, and still more preferably 4.0 g/10 min. be. If it is less than the above, the uniformity of the film thickness may be impaired. The upper limit of the melt flow rate of the random copolymer is preferably 10.0 g/10 min, more preferably 9.0 g/10 min, and still more preferably 8.0 g/10 min. Exceeding the above may cause problems such as stickiness of the film and poor impact strength (impact strength) of the film.
 プロピレン-αオレフィンランダム共重合体は具体的には例えば、プロピレン-エチレンランダム共重合体(株式会社プライムポリマー製 プライムポリプロF-724NPC、230℃、荷重2.16kgにおけるMFR7.0g/10min、融点142℃)、プロピレン-エチレン-ブテンランダム共重合体(住友化学株式会社製 住友ノーブレンFL8115A、230℃、荷重2.16kgにおけるMFR7.0g/10min、融点148℃)、プロピレン-エチレン-ブテンランダム共重合体(株式会社プライムポリマー製 プライムポリプロF-794NV、230℃、荷重2.16kgにおけるMFR5.7g/10min、融点134℃)、プロピレン-エチレン-ブテンランダム共重合体(住友化学株式会社製 住友ノーブレンFL6745A、230℃、荷重2.16kgにおけるMFR6.0g/10min、融点130℃)などが挙げられる。
 フィルムを構成するポリオレフィン系樹脂組成物おけるプロピレン-αオレフィンランダム共重合体の含有量は、ヒートシール強度の点から25重量%以上が好ましく、40重量%以上がより好ましく、60重量%以上が更に好ましく、75重量%以上が特に好ましい。耐屈曲ピンホール性の点から97重量%以下が好ましく、90重量%以下がより好ましく、85重量%以下が更に好ましい。
Specifically, the propylene-α olefin random copolymer is, for example, a propylene-ethylene random copolymer (Prime Polypro F-724NPC manufactured by Prime Polymer Co., Ltd., MFR 7.0 g/10 min at 230°C, load 2.16 kg, melting point 142 °C), propylene-ethylene-butene random copolymer (Sumitomo Noblen FL8115A manufactured by Sumitomo Chemical Co., Ltd., MFR 7.0 g/10 min at 230 °C, load 2.16 kg, melting point 148 °C), propylene-ethylene-butene random copolymer (Prime Polypro F-794NV, manufactured by Prime Polymer Co., Ltd., MFR 5.7 g/10 min at 230°C, load 2.16 kg, melting point 134°C), propylene-ethylene-butene random copolymer (Sumitomo Noblen FL6745A, manufactured by Sumitomo Chemical Co., Ltd.), MFR 6.0 g/10 min at 230° C., load 2.16 kg, melting point 130° C.), etc.
The content of the propylene-α olefin random copolymer in the polyolefin resin composition constituting the film is preferably 25% by weight or more, more preferably 40% by weight or more, and still more preferably 60% by weight or more from the viewpoint of heat seal strength. Preferably, 75% by weight or more is particularly preferable. From the viewpoint of bending pinhole resistance, the content is preferably 97% by weight or less, more preferably 90% by weight or less, and even more preferably 85% by weight or less.
(プロピレン単独重合体)
 本発明においては、ポリオレフィン系樹脂組成物にプロピレン単独重合体を含有することにより、耐熱性を向上させることができる。使用するプロピレン単独重合体としては、結晶性が高く熱収縮率の悪化を抑えられるアイソタクチックポリプロピレンが好ましい。プロピレン単独重合体は、石油由来のものであっても良く、植物由来のものであっても良い。少なくとも一つの層は石油のものが好ましい。
(Propylene homopolymer)
In the present invention, heat resistance can be improved by containing a propylene homopolymer in the polyolefin resin composition. The propylene homopolymer used is preferably isotactic polypropylene, which has high crystallinity and can suppress deterioration of heat shrinkage rate. The propylene homopolymer may be derived from petroleum or from plants. Preferably, at least one layer is of petroleum.
 上記プロピレン単独重合体のメルトフローレート(MFR)(230℃、荷重2.16kg測定)の下限は好ましくは2.0g/10minであり、より好ましくは3.0g/10minであり、さらに好ましくは4.0g/10minである。上記未満であるとフィルム厚みの均一性が損なわれることがある。
 プロピレン単独重合体のメルトフローレートの上限は好ましくは10.0g/10minであり、より好ましくは9.0g/10minであり、さらに好ましくは8.0g/10minである。フィルム厚みの均一性が損なわれることがある。上記を超えるとフィルムのべた付きやフィルムの耐衝撃強度(インパクト強度)が劣るなど問題が生じることがある。 プロピレン単独重合体は具体的には例えば、住友化学製プロピレン単独重合体FLX80E4(MFR7.5g/10min、融点164℃)がある。
 ポリオレフィン系樹脂組成物おけるプロピレン単独重合体の含有量はヒートシール強度や耐破袋性の点から、50重量%以下が好ましく、30重量%以下がより好ましく、10重量%以下がよりさらに好ましく、0重量%が特に好ましい。
 滑り性はアンチブロッキング剤、有機滑剤などの添加剤の添加量に大きく依存するため、直鎖状低密度ポリエチレンをフィルムに直鎖状低密度ポリエチレンを加えてもあまり変化しない。
The lower limit of the melt flow rate (MFR) (measured at 230°C and a load of 2.16 kg) of the propylene homopolymer is preferably 2.0 g/10 min, more preferably 3.0 g/10 min, and even more preferably 4 .0g/10min. If it is less than the above, the uniformity of the film thickness may be impaired.
The upper limit of the melt flow rate of the propylene homopolymer is preferably 10.0 g/10 min, more preferably 9.0 g/10 min, and still more preferably 8.0 g/10 min. The uniformity of film thickness may be impaired. Exceeding the above may cause problems such as stickiness of the film and poor impact strength (impact strength) of the film. A specific example of the propylene homopolymer is propylene homopolymer FLX80E4 manufactured by Sumitomo Chemical (MFR 7.5 g/10 min, melting point 164° C.).
The content of the propylene homopolymer in the polyolefin resin composition is preferably 50% by weight or less, more preferably 30% by weight or less, even more preferably 10% by weight or less, from the viewpoint of heat seal strength and bag tear resistance. Particularly preferred is 0% by weight.
Since slipperiness largely depends on the amount of additives such as anti-blocking agents and organic lubricants, adding linear low-density polyethylene to a film does not change much.
(植物由来直鎖状低密度ポリエチレン)
 フィルムを構成する少なくとも一層のポリオレフィン系樹脂組成物には環境負荷低減の観点から植物由来直鎖状低密度ポリエチレンを含有する。植物由来直鎖状低密度ポリエチレンは、植物由来直鎖状低密度ポリエチレンはサトウキビやトウモロコシなどを原料としたエタノールを利用し、例えば高圧法、溶液法、気相法等の製造法により製造することが可能である。植物由来のエチレンと炭素数3以上のαオレフィンを少なくとも1種類との共重合体を挙げることができる。α-オレフィンとしては、一般にα-オレフィンと称されているものであれば化石燃料由来のものでも良く、プロピレン、ブテン-1、ヘキセン-1、オクテン-1、4-メチル-1-ペンテン等の炭素数3~12のα-オレフィンであることが好ましい。エチレンとα-オレフィンの共重合体としては、例えばエチレン・ヘキセン-1共重合体、エチレン・ブテン-1共重合体、エチレン・オクテン-1共重合体等が挙げられ、耐屈曲ピンホール性の観点からエチレン-ヘキセン共重合体が好ましい。
 植物由来直鎖状低密度ポリエチレンの植物由来エチレンの含有量の下限は好ましくは50%でより好ましくは80%である。50%以上であると二酸化炭素削減効果が良好である。上限は好ましくは98%であり、より好ましくは96%である。98%を超えると、共重合させるαオレフィンの比率が下がり、ヒートシール強度が低下する。
(Plant-derived linear low-density polyethylene)
At least one layer of the polyolefin resin composition constituting the film contains plant-derived linear low-density polyethylene from the viewpoint of reducing environmental impact. Plant-derived linear low-density polyethylene can be manufactured using ethanol made from sugar cane, corn, etc., using a manufacturing method such as a high-pressure method, a solution method, or a gas phase method. is possible. Examples include copolymers of plant-derived ethylene and at least one α-olefin having 3 or more carbon atoms. The α-olefins may be those derived from fossil fuels as long as they are generally called α-olefins, such as propylene, butene-1, hexene-1, octene-1, 4-methyl-1-pentene, etc. Preferably, it is an α-olefin having 3 to 12 carbon atoms. Examples of copolymers of ethylene and α-olefin include ethylene/hexene-1 copolymer, ethylene/butene-1 copolymer, ethylene/octene-1 copolymer, etc. From this point of view, ethylene-hexene copolymers are preferred.
The lower limit of the content of plant-derived ethylene in the plant-derived linear low-density polyethylene is preferably 50%, more preferably 80%. When it is 50% or more, the carbon dioxide reduction effect is good. The upper limit is preferably 98%, more preferably 96%. When it exceeds 98%, the proportion of α-olefin to be copolymerized decreases, and the heat sealing strength decreases.
 植物由来直鎖状低密度ポリエチレンのMFR(190℃、2.18kg測定)の下限は好ましくは0.8g/10minであり、より好ましくは1,5g/10minである。また上限は好ましくは5.0g/10minであり、より好ましくは4.5g/10minである。上記の範囲内とすることで、ポリプロピレン系樹脂との相溶性が良く、高いシール強度が得られる。 The lower limit of MFR (measured at 190°C, 2.18 kg) of plant-derived linear low-density polyethylene is preferably 0.8 g/10 min, more preferably 1.5 g/10 min. Moreover, the upper limit is preferably 5.0 g/10 min, more preferably 4.5 g/10 min. By setting it within the above range, compatibility with the polypropylene resin is good and high sealing strength can be obtained.
 植物由来直鎖状低密度ポリエチレンの密度の下限は好ましくは912kg/mであり、より好ましくは915kg/mである。912kg/m以上とすることで、良好な耐ブロッキング性が得られる。また上限は、935kg/mであり、より好ましくは930kg/mである。930kg/m以下であることで、良好な耐破袋性が得られる。具体的には例えば、ブラスケム製エチレン-ヘキセン共重合体(植物由来直鎖状低密度ポリエチレン)SLH218(MFR2.3g/10min、密度916kg/m、融点126℃)などがある。
 フィルムを構成するポリオレフィン系樹脂組成物おける植物由来直鎖状低密度ポリエチレンの含有量は環境負荷低減の点から3重量%以上が好ましく、重量%以上がより好ましく、12重量%以上が更に好ましく、15重量%以上が特に好ましい。耐熱性の点で50重量%以下が好ましく、40重量%以下がより好ましく、30重量%以下が更に好ましく、25重量%以下が特に好ましい。
The lower limit of the density of the plant-derived linear low-density polyethylene is preferably 912 kg/m 3 , more preferably 915 kg/m 3 . Good blocking resistance can be obtained by setting the weight to 912 kg/m 3 or more. Moreover, the upper limit is 935 kg/m 3 , more preferably 930 kg/m 3 . When the weight is 930 kg/m 3 or less, good bag breakage resistance can be obtained. Specific examples include ethylene-hexene copolymer (vegetable-derived linear low-density polyethylene) SLH218 (MFR 2.3 g/10 min, density 916 kg/m 3 , melting point 126° C.) manufactured by Braskem.
The content of plant-derived linear low-density polyethylene in the polyolefin resin composition constituting the film is preferably 3% by weight or more, more preferably 12% by weight or more, and even more preferably 12% by weight or more, from the viewpoint of reducing environmental load. Particularly preferred is 15% by weight or more. In terms of heat resistance, the content is preferably 50% by weight or less, more preferably 40% by weight or less, even more preferably 30% by weight or less, and particularly preferably 25% by weight or less.
(添加剤)
 本発明のフィルムを構成するポリオレフィン系樹脂組成物は、アンチブロッキング剤を含んでよい。少なくとも一方の、フィルムの最外層の少なくとも一方となる層に添加することで耐ブロッキング性を高めることができる。
 添加するアンチブロッキング剤は特に限定されるものではないが、球状シリカ、不定形シリカ、ゼオライト、タルク、マイカ、アルミナ、ハイドロタルサイト、ホウ酸アルミニウムなどの無機粒子や、ポリメチルメタクリレート、超高分子量ポリエチレンなどの有機粒子を添加することができる。
 フィルムを構成するポリオレフィン系樹脂組成物に含まれるアンチブロッキング剤は添加する層のポリオレフィン系樹脂に対して、3000ppm以下であることが好ましく、2500ppm以下がより好ましい。3000ppm以下であると透明性が良好である。
(Additive)
The polyolefin resin composition constituting the film of the present invention may contain an anti-blocking agent. Blocking resistance can be improved by adding it to at least one of the outermost layers of the film.
The anti-blocking agent to be added is not particularly limited, but includes inorganic particles such as spherical silica, amorphous silica, zeolite, talc, mica, alumina, hydrotalcite, and aluminum borate, polymethyl methacrylate, and ultra-high molecular weight. Organic particles such as polyethylene can be added.
The amount of anti-blocking agent contained in the polyolefin resin composition constituting the film is preferably 3000 ppm or less, more preferably 2500 ppm or less, based on the polyolefin resin of the layer to which it is added. When the content is 3000 ppm or less, transparency is good.
 フィルムを構成するポリオレフィン系樹脂組成物は、有機系潤滑剤を含んでも良い。積層フィルムの滑性やブロッキング防止効果が向上し、フィルムの取り扱い性がよくなる。その理由として、有機滑剤がブリードアウトし、フィルム表面に存在することで、滑剤効果や離型効果が発現したものと考える。
 有機系潤滑剤は常温以上の融点を持つものが好ましい。有機滑剤は、脂肪酸アミド、脂肪酸エステルが挙げられる。
 具体的にはオレイン酸アミド、エルカ酸アミド、ベヘニン酸アミド、エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、エチレンビスオレイン酸アミドなどである。これらは単独で用いても構わないが、2種類以上を併用することで過酷な環境下においても滑性やブロッキング防止効果を維持することができるので好ましい。
 ポリオレフィン系樹脂組成物中の有機滑剤はポリオレフィン系樹脂に対して1500ppm以下であることが好ましく、1000ppm以下であることがより好ましい。1500ppm以下とすることで、夏の倉庫内のような高温にさらされる場所で保管してもブロッキングが発生しにくい。また、200ppm以上であることが好ましく、250ppm以上であることがより好ましい。200ppm以上とすることで良好な滑り性を得ることができる。
The polyolefin resin composition constituting the film may also contain an organic lubricant. The lubricity and anti-blocking effect of the laminated film are improved, making the film easier to handle. The reason for this is thought to be that the organic lubricant bleeds out and is present on the film surface, resulting in a lubricant effect and release effect.
The organic lubricant preferably has a melting point above room temperature. Examples of organic lubricants include fatty acid amides and fatty acid esters.
Specific examples thereof include oleic acid amide, erucic acid amide, behenic acid amide, ethylene bis oleic acid amide, hexamethylene bis oleic acid amide, and ethylene bis oleic acid amide. Although these may be used alone, it is preferable to use two or more of them in combination, since the lubricity and anti-blocking effect can be maintained even under harsh environments.
The amount of organic lubricant in the polyolefin resin composition is preferably 1500 ppm or less, more preferably 1000 ppm or less, based on the polyolefin resin. By setting the concentration to 1,500 ppm or less, blocking is less likely to occur even when stored in a place exposed to high temperatures, such as in a warehouse in the summer. Moreover, it is preferable that it is 200 ppm or more, and it is more preferable that it is 250 ppm or more. Good slipperiness can be obtained by setting the content to 200 ppm or more.
 フィルムを構成するポリオレフィン系樹脂組成物は熱安定剤を含んでいても良い。溶融押出の際に熱や酸化により樹脂が劣化し発生する、ゲルなどの欠点を抑制することができる。
 市販されている熱安定剤や酸化防止剤を使用することができる。具体的には例えばBASF製ヒンダーフェノール系酸化防止剤(イルガノックス1010)、BASF製亜リン酸塩処理安定剤(イルガフォス168)、住友化学株式会社製フェノールリン系酸化防止剤(スミライザーGP)などが挙げられる。熱安定剤は単独で使用しても良く、2種類以上を組み合わせても良い。また、市販されているポリオレフィン系樹脂には製造時に添加されていることが多いが、マスターバッチなどにより追加で添加しても良い。
 ポリオレフィン系樹脂組成物中の熱安定剤の濃度の下限はこの層に対して合計で、好ましくは1600ppm以上であり、より好ましくは1800ppm以上であり、より好ましくは2000ppm以上である。上記以下であるとゲルなどの欠点が発生しやすい。また、上限はこの層に対して合計で好ましくは5000ppmであり、より好ましくは4000ppmであり、更に好ましくは3500ppmである。上記を超えると、フィルムロールの端面が赤色に変色し外観を損ねることがある。
The polyolefin resin composition constituting the film may contain a heat stabilizer. It is possible to suppress defects such as gel, which occurs when the resin deteriorates due to heat and oxidation during melt extrusion.
Commercially available heat stabilizers and antioxidants can be used. Specifically, for example, a hindered phenolic antioxidant (Irganox 1010) manufactured by BASF, a phosphite treatment stabilizer (Irgafos 168) manufactured by BASF, and a phenol phosphorus antioxidant (Sumilyzer GP) manufactured by Sumitomo Chemical Co., Ltd. Can be mentioned. The heat stabilizer may be used alone or in combination of two or more. Further, although it is often added to commercially available polyolefin resins at the time of manufacture, it may be additionally added using a masterbatch or the like.
The lower limit of the concentration of the heat stabilizer in the polyolefin resin composition is preferably 1,600 ppm or more, more preferably 1,800 ppm or more, and even more preferably 2,000 ppm or more in total for this layer. If it is less than the above, defects such as gelation are likely to occur. Further, the upper limit is preferably 5000 ppm in total for this layer, more preferably 4000 ppm, still more preferably 3500 ppm. If the amount exceeds the above, the end face of the film roll may turn red and spoil its appearance.
 フィルムを構成するポリオレフィン系樹脂組成物は、本発明の目的を損なわない範囲で必要に応じて任意の層に適量の帯電防止剤、防曇剤、中和剤、造核剤、着色剤、その他の添加剤及び無機質充填剤等を含むことができる。中和剤として、ステアリン酸カルシウム等が挙げられる。 The polyolefin resin composition constituting the film may contain an appropriate amount of an antistatic agent, an antifogging agent, a neutralizing agent, a nucleating agent, a coloring agent, and others in any layer as necessary within a range that does not impair the purpose of the present invention. may contain additives and inorganic fillers. Examples of neutralizing agents include calcium stearate.
 製造工程で発生した半製品や製造後の製品フィルムをリサイクルしたペレットを添加することにより、ヒートシール強度を損なうことなく、樹脂を再利することができる。 By adding pellets recycled from semi-finished products generated during the manufacturing process and manufactured product films, the resin can be reused without sacrificing heat-sealing strength.
(ポリプロピレン樹脂積層フィルム)
 また、本発明のポリオレフィン系樹脂フィルムは、少なくとも1つの層が、層を構成するポリオレフィン系樹脂全体に対し、石油由来のプロピレン単独重合体及び/またはプロピレンと炭素数が2又は4~20のαオレフィンのランダム共重合体の含有量が80重量%以上95重量%以下であり、植物由来の直鎖状低密度ポリエチレンの含有量が5重量%以上20重量%以下である。
 このとき、ポリオレフィン系樹脂フィルムは、このとき、単層のポリオレフィン系樹脂フィルムであってもよいし、複数の層を含むものであってもよく、例えば、2層又は3層、あるいは4層以上であっても良い。2層の場合はヒートシール層、ラミネート層を含むものであって良いし、3層の場合はヒートシール層、コア層、ラミネート層をこの順に有するものであってもよいし、4層の場合はヒートシール層、コア層、ラミネート層のそれぞれ2層の間にポリプロピレン樹脂を含む層を有するものであってもよい。ヒートシール層及びラミネート層はフィルムの表面側に位置する層であり、コア層はこれらの間に位置する。
 ラミネート層は、二軸配向ポリアミドフィルムなどの基材フィルムを貼り合わせるのに適した層であり、実際には接着性樹脂を介して基材フィルムと積層するのが好ましい。また、ラミネート層に印刷加工をすることもできる。
 ヒートシール層は得られた積層体のポリオレフィン系樹脂フィルムが内側になるように2枚の前記積層体を重ね合わせてヒートシールして包装体を製造するのに適した層である。
(Polypropylene resin laminated film)
In addition, in the polyolefin resin film of the present invention, at least one layer is composed of petroleum-derived propylene homopolymer and/or propylene and α having 2 or 4 to 20 carbon atoms, with respect to the entire polyolefin resin constituting the layer. The content of the olefin random copolymer is 80% by weight or more and 95% by weight or less, and the content of the plant-derived linear low density polyethylene is 5% by weight or more and 20% by weight or less.
At this time, the polyolefin resin film may be a single layer polyolefin resin film or may include a plurality of layers, for example, two layers, three layers, or four or more layers. It may be. In the case of two layers, it may include a heat seal layer and a laminate layer; in the case of three layers, it may include a heat seal layer, a core layer, and a laminate layer in this order; and in the case of four layers, it may include a heat seal layer, a core layer, and a laminate layer. may have a layer containing a polypropylene resin between each of the heat seal layer, core layer, and laminate layer. The heat seal layer and the laminate layer are layers located on the surface side of the film, and the core layer is located between them.
The laminate layer is a layer suitable for laminating a base film such as a biaxially oriented polyamide film, and is actually preferably laminated with the base film via an adhesive resin. Furthermore, the laminate layer can also be printed.
The heat-sealing layer is a layer suitable for producing a package by overlapping and heat-sealing the two laminates so that the polyolefin resin film of the obtained laminate is on the inside.
 さらに、ヒートシール層には融点の低いプロピレン-αオレフィンランダム共重合体を使用し、層やラミネート層は融点の高いプロピレン-αオレフィンランダム共重合体を使用することで、より良好にヒートシール強度を高めつつ、耐熱性を高めることができる。 Furthermore, by using a propylene-α-olefin random copolymer with a low melting point for the heat-sealing layer, and using a propylene-α-olefin random copolymer with a high melting point for the layers and laminate layers, better heat-sealing strength can be achieved. It is possible to improve the heat resistance while increasing the heat resistance.
 本発明における、ポリオレフィン系樹脂フィルムのラミネート層の表面をコロナ処理等で表面を活性化させたものが好ましい。そうすることにより基材フィルムとのラミネート強度が向上するほか、印刷適正も向上する。 In the present invention, it is preferable that the surface of the laminate layer of the polyolefin resin film is activated by corona treatment or the like. By doing so, not only the strength of lamination with the base film is improved, but also the suitability for printing is improved.
 本発明において、一例として、ポリオレフィン系樹脂フィルムがヒートシール層、コア層、ラミネート層をこの順に有するものにおいて、下記に詳しく説明するが、下記に限定されるものではない。この場合においては、コア層及びラミネート層が層を構成するポリオレフィン系樹脂全体に対し、石油由来のプロピレン単独重合体及び/またはプロピレンと炭素数が2又は4~20のαオレフィンのランダム共重合体の含有量が80重量%以上95重量%以下であり、植物由来の直鎖状低密度ポリエチレンの含有量が5重量%以上20重量%以下である。
 ポリオレフィン系樹脂フィルムは、ヒートシール層を構成するポリオレフィン系樹脂組成物における前記植物由来直鎖状低密度ポリエチレンの含有率より、コア層を構成するポリオレフィン系樹脂組成物における前記植物由来直鎖状低密度ポリエチレンの含有率が大きく、かつコア層を構成するポリオレフィン系樹脂組成物における前記植物由来直鎖状低密度ポリエチレンの含有率より、ラミネート層を構成するポリオレフィン系樹脂組成物における前記植物由来直鎖状低密度ポリエチレンの含有率が大きいのが好ましい。こうすることにより、ヒートシール面に近い樹脂のポリオレフィン系樹脂の比率が大きくなるために、高いヒートシール強度を得ることができる。
In the present invention, as an example, a polyolefin resin film having a heat seal layer, a core layer, and a laminate layer in this order will be described in detail below, but is not limited to the following. In this case, a petroleum-derived propylene homopolymer and/or a random copolymer of propylene and an α-olefin having 2 or 4 to 20 carbon atoms is added to the entire polyolefin resin of which the core layer and the laminate layer constitute layers. The content of plant-derived linear low density polyethylene is 5% to 20% by weight.
The polyolefin resin film has a higher content of the plant-derived linear low-density polyethylene in the polyolefin resin composition forming the core layer than the content of the plant-derived linear low-density polyethylene in the polyolefin resin composition forming the heat-sealing layer. The content of the plant-derived linear low-density polyethylene in the polyolefin-based resin composition forming the laminate layer is higher than the content of the plant-based linear low-density polyethylene in the polyolefin-based resin composition forming the core layer. It is preferable that the content of low-density polyethylene is high. By doing so, the ratio of the polyolefin resin in the resin close to the heat-sealing surface increases, so that high heat-sealing strength can be obtained.
(ヒートシール層)
 ヒートシール層を構成するポリオレフィン系樹脂組成物はヒートシール強度の点からプロピレン単独重合体及び/またはプロピレン-αオレフィンランダム共重合体からなる。プロピレン単独重合体及び/またはプロピレン-αオレフィンランダム共重合体は1種類でも良いが、2種類以上を混合して使用しても良い。
(heat seal layer)
The polyolefin resin composition constituting the heat-sealing layer is composed of a propylene homopolymer and/or a propylene-α-olefin random copolymer from the viewpoint of heat-sealing strength. One type of propylene homopolymer and/or propylene-α-olefin random copolymer may be used, or two or more types may be used in combination.
(プロピレン-αオレフィンランダム共重合体)
 ヒートシール層のプロピレン-αオレフィンランダム共重合体は、プロピレン-αオレフィンランダム共重合体は、プロピレンとプロピレン以外の炭素原子数が2又は4~20のα-オレフィンの少なくとも1種との共重合体を挙げることができる。かかる炭素原子数が2又は4~20のα-オレフィンモノマーとしては、エチレン、ブテン-1、ペンテン-1、4-メチルペンテン-1、ヘキセン-1、オクテン-1等を用いることができる。
 プロピレン-αオレフィンランダム共重合体はヒートシール性の面からエチレンを用いるのが好ましい。また、少なくとも1種類以上であればよく、必要に応じて2種類以上を混合して用いることができる。特に好適であるのは主とするモノマーがプロピレンであり、一定量のエチレンとブテンを共重合させたプロピレン-エチレン-ブテンランダム共重合体である。本願ではランダム共重合体を構成するモノマー組成比の多い順に呼称し記載した。プロピレン-αオレフィンランダム共重合体は、石油由来のものであっても良く、植物由来のものであっても良い。
(Propylene-α-olefin random copolymer)
The propylene-α-olefin random copolymer of the heat-sealing layer is a copolymer of propylene and at least one α-olefin having 2 or 4 to 20 carbon atoms other than propylene. One example is merging. As such α-olefin monomers having 2 or 4 to 20 carbon atoms, ethylene, 1-butene, 1-pentene, 4-methylpentene-1, hexene-1, octene-1, etc. can be used.
It is preferable to use ethylene as the propylene-α-olefin random copolymer from the viewpoint of heat sealability. Further, it is sufficient that at least one kind is used, and two or more kinds can be mixed and used as necessary. Particularly suitable is a propylene-ethylene-butene random copolymer in which the main monomer is propylene and a certain amount of ethylene and butene are copolymerized. In this application, random copolymers are named and described in descending order of monomer composition ratio. The propylene-α-olefin random copolymer may be derived from petroleum or plants.
 プロピレン-αオレフィンランダム共重合体のメルトフローレート(MFR)の下限は好ましくは2.0g/10minであり、より好ましくは3.0g/10minであり、さらに好ましくは4.0g/10minである。上記未満であるとフィルム厚みの均一性が損なわれることがある。
 ランダム共重合体のメルトフローレートの上限は好ましくは10.0g/10minであり、より好ましくは9.0g/10minであり、さらに好ましくは8.0g/10minである。上記を超えるとフィルムのべた付きやフィルムの耐衝撃強度(インパクト強度)が劣るなど問題が生じることがある。
 プロピレン-αオレフィンランダム共重合体は具体的には例えば、プロピレン-エチレンランダム共重合体(株式会社プライムポリマー製 プライムポリプロF-724NPC、230℃、荷重2.16kgにおけるMFR7.0g/10min、融点142℃)、プロピレン-エチレン-ブテンランダム共重合体(住友化学株式会社製 住友ノーブレンFL8115A、230℃、荷重2.16kgにおけるMFR7.0g/10min、融点148℃)、プロピレン-エチレン-ブテンランダム共重合体(株式会社プライムポリマー製 プライムポリプロF-794NV、230℃、荷重2.16kgにおけるMFR5.7g/10min、融点134℃)、プロピレン-エチレン-ブテンランダム共重合体(住友化学株式会社製 住友ノーブレンFL6745A、230℃、荷重2.16kgにおけるMFR6.0g/10min、融点130℃)などが挙げられる。
The lower limit of the melt flow rate (MFR) of the propylene-α olefin random copolymer is preferably 2.0 g/10 min, more preferably 3.0 g/10 min, and still more preferably 4.0 g/10 min. If it is less than the above, the uniformity of the film thickness may be impaired.
The upper limit of the melt flow rate of the random copolymer is preferably 10.0 g/10 min, more preferably 9.0 g/10 min, and still more preferably 8.0 g/10 min. Exceeding the above may cause problems such as stickiness of the film and poor impact strength (impact strength) of the film.
Specifically, the propylene-α olefin random copolymer is, for example, a propylene-ethylene random copolymer (Prime Polypro F-724NPC manufactured by Prime Polymer Co., Ltd., MFR 7.0 g/10 min at 230°C, load 2.16 kg, melting point 142 °C), propylene-ethylene-butene random copolymer (Sumitomo Noblen FL8115A manufactured by Sumitomo Chemical Co., Ltd., MFR 7.0 g/10 min at 230 °C, load 2.16 kg, melting point 148 °C), propylene-ethylene-butene random copolymer (Prime Polypro F-794NV, manufactured by Prime Polymer Co., Ltd., MFR 5.7 g/10 min at 230°C, load 2.16 kg, melting point 134°C), propylene-ethylene-butene random copolymer (Sumitomo Noblen FL6745A, manufactured by Sumitomo Chemical Co., Ltd.), MFR 6.0 g/10 min at 230° C., load 2.16 kg, melting point 130° C.), etc.
(プロピレン単独重合体)
 ヒートシール層を構成するポリオレフィン系樹脂組成物にプロピレン単独重合体を含有することにより、滑り性を向上させることができる。使用するプロピレン単独重合体としては、特に限定しないが耐ブロッキング性の観点からアイソタクチックポリプロピレンが好ましい。プロピレン単独重合体は、石油由来のものであっても良く、植物由来のものであっても良い。
(Propylene homopolymer)
By containing a propylene homopolymer in the polyolefin resin composition constituting the heat-sealing layer, slipperiness can be improved. The propylene homopolymer used is not particularly limited, but isotactic polypropylene is preferred from the viewpoint of blocking resistance. The propylene homopolymer may be derived from petroleum or from plants.
 上記プロピレン単独重合体のメルトフローレート(MFR)(230℃、荷重2.16kg測定)の下限は好ましくは2.0g/10minであり、より好ましくは3.0g/10minであり、さらに好ましくは4.0g/10minである。上記未満であるとフィルム厚みの均一性が損なわれることがある。
 プロピレン単独重合体のメルトフローレートの上限は好ましくは10.0g/10minであり、より好ましくは9.0g/10minであり、さらに好ましくは8.0g/10minである。フィルム厚みの均一性が損なわれることがある。上記を超えるとフィルムのべた付きやフィルムの耐衝撃強度(インパクト強度)が劣るなど問題が生じることがある。
プロピレン単独重合体は具体的には例えば、住友化学製プロピレン単独重合体FLX80E4(MFR7.5g/10min、融点164℃)がある。
 シール層を構成するポリオレフィン系樹脂組成物おけるプロピレン単独重合体の含有量はヒートシール強度の点では10重量%以下が好ましく、5重量%がより好ましく、3重量%以下が更に好ましく、0重量%が特に好ましい。
ヒートシール層に直鎖状低密度ポリエチレンなどのポリエチレン系樹脂を含有すると、互いの相溶性の悪さからヒートシール強度が低下することがある。
The lower limit of the melt flow rate (MFR) (measured at 230°C and a load of 2.16 kg) of the propylene homopolymer is preferably 2.0 g/10 min, more preferably 3.0 g/10 min, and even more preferably 4 .0g/10min. If it is less than the above, the uniformity of the film thickness may be impaired.
The upper limit of the melt flow rate of the propylene homopolymer is preferably 10.0 g/10 min, more preferably 9.0 g/10 min, and still more preferably 8.0 g/10 min. The uniformity of film thickness may be impaired. Exceeding the above may cause problems such as stickiness of the film and poor impact strength (impact strength) of the film.
A specific example of the propylene homopolymer is propylene homopolymer FLX80E4 manufactured by Sumitomo Chemical (MFR 7.5 g/10 min, melting point 164° C.).
The content of the propylene homopolymer in the polyolefin resin composition constituting the sealing layer is preferably 10% by weight or less, more preferably 5% by weight or less, even more preferably 3% by weight or less, and 0% by weight in terms of heat sealing strength. is particularly preferred.
When a polyethylene resin such as linear low-density polyethylene is contained in the heat-sealing layer, the heat-sealing strength may decrease due to poor compatibility with each other.
(添加剤)
 ヒートシール層を構成するポリオレフィン系樹脂組成物は、アンチブロッキング剤を含んでよい。アンチブロッキング剤は1種類でもよいが、2種類以上の粒径や形状が異なる無機粒子を配合した方が、フィルム表面の凹凸においても、複雑な突起が形成され、より高度なブロッキング防止効果を得ることができる。
 添加するアンチブロッキング剤は特に限定されるものではないが、球状シリカ、不定形シリカ、ゼオライト、タルク、マイカ、アルミナ、ハイドロタルサイト、ホウ酸アルミニウムなどの無機粒子や、ポリメチルメタクリレート、超高分子量ポリエチレンなどの有機粒子を添加することができる。
 ヒートシール層を構成するポリオレフィン系樹脂組成物に含まれるアンチブロッキング剤は添加する層のポリオレフィン系樹脂に対して、3000ppm以下であることが好ましく、2500ppm以下がより好ましい。3000ppm以下とすることにより、アンチブロッキング剤の脱落を低減することができる。また、500ppm以上であることが好ましく、1000ppm以上であることがより好ましい。500ppm以上とすることで、良好なアンチブロッキング性を得ることができる。
(Additive)
The polyolefin resin composition constituting the heat-sealing layer may contain an anti-blocking agent. One type of anti-blocking agent may be used, but it is better to combine two or more types of inorganic particles with different particle sizes and shapes to form complex protrusions even on the unevenness of the film surface and obtain a more advanced anti-blocking effect. be able to.
Anti-blocking agents to be added are not particularly limited, but include inorganic particles such as spherical silica, amorphous silica, zeolite, talc, mica, alumina, hydrotalcite, and aluminum borate, polymethyl methacrylate, and ultra-high molecular weight. Organic particles such as polyethylene can be added.
The anti-blocking agent contained in the polyolefin resin composition constituting the heat-sealing layer is preferably 3000 ppm or less, more preferably 2500 ppm or less, based on the polyolefin resin of the layer to which it is added. By setting the amount to 3000 ppm or less, it is possible to reduce shedding of the anti-blocking agent. Moreover, it is preferable that it is 500 ppm or more, and it is more preferable that it is 1000 ppm or more. Good anti-blocking properties can be obtained by setting the content to 500 ppm or more.
 ヒートシール層を構成するポリオレフィン系樹脂組成物は、有機系潤滑剤を含んでも良い。積層フィルムの滑性やブロッキング防止効果が向上し、フィルムの取り扱い性がよくなる。その理由として、有機滑剤がブリードアウトし、フィルム表面に存在することで、滑剤効果や離型効果が発現したものと考える。
 有機系潤滑剤は常温以上の融点を持つものが好ましい。有機滑剤は、脂肪酸アミド、脂肪酸エステルが挙げられる。
 具体的にはオレイン酸アミド、エルカ酸アミド、ベヘニン酸アミド、エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、エチレンビスオレイン酸アミドなどである。これらは単独で用いても構わないが、2種類以上を併用することで過酷な環境下においても滑性やブロッキング防止効果を維持することができるので好ましい。
 ポリオレフィン系樹脂組成物中の有機滑剤はポリオレフィン系樹脂に対して1500ppm以下であることが好ましく、1000ppm以下であることがより好ましい。1500ppm以下とすることで、夏の倉庫内のような高温にさらされる場所で保管してもブロッキングが発生しにくい。また、200ppm以上であることが好ましく、250ppm以上であることがより好ましい。200ppm以上とすることで良好な滑り性を得ることができる。
The polyolefin resin composition constituting the heat seal layer may contain an organic lubricant. The lubricity and anti-blocking effect of the laminated film are improved, making the film easier to handle. The reason for this is thought to be that the organic lubricant bleeds out and is present on the film surface, resulting in a lubricant effect and release effect.
The organic lubricant preferably has a melting point above room temperature. Examples of organic lubricants include fatty acid amides and fatty acid esters.
Specific examples thereof include oleic acid amide, erucic acid amide, behenic acid amide, ethylene bis oleic acid amide, hexamethylene bis oleic acid amide, and ethylene bis oleic acid amide. Although these may be used alone, it is preferable to use two or more of them in combination, since the lubricity and anti-blocking effect can be maintained even under harsh environments.
The amount of organic lubricant in the polyolefin resin composition is preferably 1500 ppm or less, more preferably 1000 ppm or less, based on the polyolefin resin. By setting the concentration to 1,500 ppm or less, blocking is less likely to occur even when stored in a place exposed to high temperatures, such as in a warehouse in the summer. Moreover, it is preferable that it is 200 ppm or more, and it is more preferable that it is 250 ppm or more. Good slipperiness can be obtained by setting the content to 200 ppm or more.
 ヒートシール層を構成するポリオレフィン系樹脂組成物は熱安定剤を含んでいても良い。溶融押出の際に熱や酸化により樹脂が劣化し発生する、ゲルなどの欠点を抑制することができる。
 市販されている熱安定剤や酸化防止剤を使用することができる。具体的には例えばBASF製ヒンダーフェノール系酸化防止剤(イルガノックス1010)、BASF製亜リン酸塩処理安定剤(イルガフォス168)、住友化学株式会社製フェノールリン系酸化防止剤(スミライザーGP)などが挙げられる。熱安定剤は単独で使用しても良く、2種類以上を組み合わせても良い。また、市販されているポリオレフィン系樹脂には製造時に添加されていることが多いが、マスターバッチなどにより追加で添加しても良い。
 ポリオレフィン系樹脂組成物中の熱安定剤の濃度の下限はこの層に対して合計で、好ましくは1600ppm以上であり、より好ましくは1800ppm以上であり、より好ましくは2000ppm以上である。上記以下であるとゲルなどの欠点が発生しやすい。また、上限はこの層に対して合計で好ましくは5000ppmであり、より好ましくは4000ppmであり、更に好ましくは3500ppmである。上記を超えると、フィルムロールの端面が赤色に変色し外観を損ねることがある。
The polyolefin resin composition constituting the heat seal layer may contain a heat stabilizer. It is possible to suppress defects such as gel, which occurs when the resin deteriorates due to heat and oxidation during melt extrusion.
Commercially available heat stabilizers and antioxidants can be used. Specifically, for example, a hindered phenolic antioxidant (Irganox 1010) manufactured by BASF, a phosphite treatment stabilizer (Irgafos 168) manufactured by BASF, and a phenol phosphorus antioxidant (Sumilyzer GP) manufactured by Sumitomo Chemical Co., Ltd. Can be mentioned. The heat stabilizer may be used alone or in combination of two or more. Further, although it is often added to commercially available polyolefin resins during production, it may be additionally added using a masterbatch or the like.
The lower limit of the concentration of the heat stabilizer in the polyolefin resin composition is preferably 1,600 ppm or more, more preferably 1,800 ppm or more, and even more preferably 2,000 ppm or more in total for this layer. If it is less than the above, defects such as gel are likely to occur. Further, the upper limit is preferably 5000 ppm in total for this layer, more preferably 4000 ppm, still more preferably 3500 ppm. If the amount exceeds the above, the end surface of the film roll may turn red and spoil its appearance.
 ヒートシール層を構成するポリオレフィン系樹脂組成物は、本発明の目的を損なわない範囲で必要に応じて任意の層に適量の、帯電防止剤、防曇剤、中和剤、造核剤、着色剤、その他の添加剤及び無機質充填剤等を含むことができる。中和剤としては例えば、ステアリン酸カルシウム等が挙げられる。 The polyolefin resin composition constituting the heat-sealing layer may contain an appropriate amount of an antistatic agent, an antifogging agent, a neutralizing agent, a nucleating agent, and a coloring agent in any layer as necessary within a range that does not impair the purpose of the present invention. It may contain additives, other additives, inorganic fillers, and the like. Examples of the neutralizing agent include calcium stearate.
(コア層)
 コア層を構成するポリオレフィン系樹脂組成物はヒートシール強度の点からプロピレン単独重合体及び/またはプロピレン-αオレフィンランダム共重合体を主体とする。また、環境負荷低減の観点から植物由来直鎖状低密度ポリエチレンを含むのが好ましい。プロピレン単独重合体またはプロピレン-αオレフィンランダム共重合体、及び植物由来直鎖状低密度ポリエチレンは1種類でも良いが、2種類以上を混合して使用しても良い。
(core layer)
The polyolefin resin composition constituting the core layer is mainly composed of a propylene homopolymer and/or a propylene-α-olefin random copolymer from the viewpoint of heat-sealing strength. In addition, from the viewpoint of reducing environmental load, it is preferable that plant-derived linear low-density polyethylene is included. One type of propylene homopolymer or propylene-α-olefin random copolymer and plant-derived linear low-density polyethylene may be used, or two or more types may be used in combination.
(プロピレン-αオレフィンランダム共重合体)
 コア層のプロピレン-αオレフィンランダム共重合体は、プロピレン-αオレフィンランダム共重合体は、プロピレンとプロピレン以外の炭素原子数が2又は4~20のα-オレフィンの少なくとも1種との共重合体を挙げることができる。かかる炭素原子数が2又は4~20のα-オレフィンモノマーとしては、エチレン、ブテン-1、ペンテン-1、4-メチルペンテン-1、ヘキセン-1、オクテン-1等を用いることができる。
 プロピレン-αオレフィンランダム共重合体はヒートシール性の面からエチレンを用いるのが好ましい。また、少なくとも1種類以上であればよく、必要に応じて2種類以上を混合して用いることができる。特に好適であるのは主とするモノマーがプロピレンであり、一定量のエチレンとブテンを共重合させたプロピレン-エチレン-ブテンランダム共重合体である。本願ではランダム共重合体を構成するモノマー組成比の多い順に呼称し記載した。プロピレン-αオレフィンランダム共重合体は、石油由来のものであっても良く、植物由来のものであっても良い。
(Propylene-α-olefin random copolymer)
The propylene-α-olefin random copolymer of the core layer is a copolymer of propylene and at least one α-olefin having 2 or 4 to 20 carbon atoms other than propylene. can be mentioned. As such α-olefin monomers having 2 or 4 to 20 carbon atoms, ethylene, 1-butene, 1-pentene, 4-methylpentene-1, hexene-1, octene-1, etc. can be used.
It is preferable to use ethylene as the propylene-α-olefin random copolymer from the viewpoint of heat sealability. Further, it is sufficient that at least one kind is used, and two or more kinds can be mixed and used as necessary. Particularly suitable is a propylene-ethylene-butene random copolymer in which the main monomer is propylene and a certain amount of ethylene and butene are copolymerized. In this application, random copolymers are named and described in descending order of monomer composition ratio. The propylene-α-olefin random copolymer may be derived from petroleum or plants.
 コア層のプロピレン-αオレフィンランダム共重合体のメルトフローレート(MFR)の下限は好ましくは2.0g/10minであり、より好ましくは3.0g/10minであり、さらに好ましくは4.0g/10minである。上記未満であるとフィルム厚みの均一性が損なわれることがある。
 ランダム共重合体のメルトフローレートの上限は好ましくは10.0g/10minであり、より好ましくは9.0g/10minであり、さらに好ましくは8.0g/10minである。上記を超えるとフィルムのべた付きやフィルムの耐衝撃強度(インパクト強度)が劣るなど問題が生じることがある。
 プロピレン-αオレフィンランダム共重合体は具体的には例えば、プロピレン-エチレンランダム共重合体(株式会社プライムポリマー製 プライムポリプロF-724NPC、230℃、荷重2.16kgにおけるMFR7.0g/10min、融点142℃)、プロピレン-エチレン-ブテンランダム共重合体(住友化学株式会社製 住友ノーブレンFL8115A、230℃、荷重2.16kgにおけるMFR7.0g/10min、融点148℃)、プロピレン-エチレン-ブテンランダム共重合体(株式会社プライムポリマー製 プライムポリプロF-794NV、230℃、荷重2.16kgにおけるMFR5.7g/10min、融点134℃)、プロピレン-エチレン-ブテンランダム共重合体(住友化学株式会社製 住友ノーブレンFL6745A、230℃、荷重2.16kgにおけるMFR6.0g/10min、融点130℃)などが挙げられる。
 コア層を構成するポリオレフィン系樹脂組成物おけるプロピレン-αオレフィンランダム共重合体の含有量は、ヒートシール強度の点から25重量%以上が好ましく、40重量%以上がより好ましく、60重量%以上が更に好ましく、75重量%以上が特に好ましい。耐屈曲ピンホール性の点から97重量%以下が好ましく、90重量%以下がより好ましく、85重量%以下が更に好ましい。
The lower limit of the melt flow rate (MFR) of the propylene-α olefin random copolymer in the core layer is preferably 2.0 g/10 min, more preferably 3.0 g/10 min, and still more preferably 4.0 g/10 min. It is. If it is less than the above, the uniformity of the film thickness may be impaired.
The upper limit of the melt flow rate of the random copolymer is preferably 10.0 g/10 min, more preferably 9.0 g/10 min, and still more preferably 8.0 g/10 min. Exceeding the above may cause problems such as stickiness of the film and poor impact strength (impact strength) of the film.
Specifically, the propylene-α olefin random copolymer is, for example, a propylene-ethylene random copolymer (Prime Polypro F-724NPC manufactured by Prime Polymer Co., Ltd., MFR 7.0 g/10 min at 230°C, load 2.16 kg, melting point 142 °C), propylene-ethylene-butene random copolymer (Sumitomo Noblen FL8115A manufactured by Sumitomo Chemical Co., Ltd., MFR 7.0 g/10 min at 230 °C, load 2.16 kg, melting point 148 °C), propylene-ethylene-butene random copolymer (Prime Polypro F-794NV, manufactured by Prime Polymer Co., Ltd., MFR 5.7 g/10 min at 230°C, load 2.16 kg, melting point 134°C), propylene-ethylene-butene random copolymer (Sumitomo Noblen FL6745A, manufactured by Sumitomo Chemical Co., Ltd.), MFR 6.0 g/10 min at 230° C., load 2.16 kg, melting point 130° C.), etc.
The content of the propylene-α olefin random copolymer in the polyolefin resin composition constituting the core layer is preferably 25% by weight or more, more preferably 40% by weight or more, and 60% by weight or more from the viewpoint of heat seal strength. It is more preferable, and particularly preferably 75% by weight or more. From the viewpoint of bending pinhole resistance, the content is preferably 97% by weight or less, more preferably 90% by weight or less, and even more preferably 85% by weight or less.
(プロピレン単独重合体)
 ラミネート層を構成するポリオレフィン系樹脂組成物にプロピレン単独重合体を含有することにより、耐熱性を向上させることができる。使用するプロピレン単独重合体としては、結晶性が高く熱収縮率の悪化を抑えられるアイソタクチックポリプロピレンが好ましい。プロピレン単独重合体は、石油由来のものであっても良く、植物由来のものであっても良い。
(Propylene homopolymer)
Heat resistance can be improved by containing a propylene homopolymer in the polyolefin resin composition constituting the laminate layer. The propylene homopolymer used is preferably isotactic polypropylene, which has high crystallinity and can suppress deterioration of heat shrinkage rate. The propylene homopolymer may be derived from petroleum or from plants.
 上記プロピレン単独重合体のメルトフローレート(MFR)(230℃、荷重2.16kg測定)の下限は好ましくは2.0g/10minであり、より好ましくは3.0g/10minであり、さらに好ましくは4.0g/10minである。上記未満であるとフィルム厚みの均一性が損なわれることがある。
 プロピレン単独重合体のメルトフローレートの上限は好ましくは10.0g/10minであり、より好ましくは9.0g/10minであり、さらに好ましくは8.0g/10minである。フィルム厚みの均一性が損なわれることがある。上記を超えるとフィルムのべた付きやフィルムの耐衝撃強度(インパクト強度)が劣るなど問題が生じることがある。
プロピレン単独重合体は具体的には例えば、住友化学製プロピレン単独重合体FLX80E4(MFR7.5g/10min、融点164℃)がある。
コア層を構成するポリオレフィン系樹脂組成物おけるプロピレン単独重合体の含有量はヒートシール強度や耐破袋性の点から、50重量%以下が好ましく、30重量%以下がより好ましく、10重量%以下がよりさらに好ましく、0重量%が特に好ましい。
 滑り性はアンチブロッキング剤、有機滑剤などの添加剤の添加量に大きく依存するため、直鎖状低密度ポリエチレンをコア層に直鎖状低密度ポリエチレンを加えてもあまり変化しない。
The lower limit of the melt flow rate (MFR) (measured at 230°C and a load of 2.16 kg) of the propylene homopolymer is preferably 2.0 g/10 min, more preferably 3.0 g/10 min, and even more preferably 4 .0g/10min. If it is less than the above, the uniformity of the film thickness may be impaired.
The upper limit of the melt flow rate of the propylene homopolymer is preferably 10.0 g/10 min, more preferably 9.0 g/10 min, and still more preferably 8.0 g/10 min. The uniformity of film thickness may be impaired. Exceeding the above may cause problems such as stickiness of the film and poor impact strength (impact strength) of the film.
A specific example of the propylene homopolymer is propylene homopolymer FLX80E4 manufactured by Sumitomo Chemical (MFR 7.5 g/10 min, melting point 164° C.).
The content of the propylene homopolymer in the polyolefin resin composition constituting the core layer is preferably 50% by weight or less, more preferably 30% by weight or less, and 10% by weight or less from the viewpoint of heat seal strength and bag breakage resistance. is even more preferred, and 0% by weight is particularly preferred.
Since slipperiness largely depends on the amount of additives such as anti-blocking agents and organic lubricants, it does not change much even if linear low-density polyethylene is added to the core layer.
(植物由来直鎖状低密度ポリエチレン)
 コア層を構成するポリオレフィン系樹脂組成物には環境負荷低減の観点から植物由来直鎖状低密度ポリエチレンを含有するのが好ましい。植物由来直鎖状低密度ポリエチレンは、植物由来直鎖状低密度ポリエチレンはサトウキビやトウモロコシなどを原料としたエタノールを利用し、例えば高圧法、溶液法、気相法等の製造法により製造することが可能である。植物由来のエチレンと炭素数3以上のαオレフィンを少なくとも1種類との共重合体を挙げることができる。α-オレフィンとしては、一般にα-オレフィンと称されているものであれば化石燃料由来のものでも良く、プロピレン、ブテン-1、ヘキセン-1、オクテン-1、4-メチル-1-ペンテン等の炭素数3~12のα-オレフィンであることが好ましい。エチレンとα-オレフィンの共重合体としては、例えばエチレン・ヘキセン-1共重合体、エチレン・ブテン-1共重合体、エチレン・オクテン-1共重合体等が挙げられ、耐屈曲ピンホール性の観点からエチレン-ヘキセン共重合体が好ましい。
 植物由来直鎖状低密度ポリエチレンの植物由来エチレンの含有量の下限は好ましくは50%でより好ましくは80%である。50%以上であると二酸化炭素削減効果が良好である。上限は好ましくは98%であり、より好ましくは96%である。98%を超えると、共重合させるαオレフィンの比率が下がり、ヒートシール強度が低下する。
(Plant-derived linear low-density polyethylene)
The polyolefin resin composition constituting the core layer preferably contains plant-derived linear low-density polyethylene from the viewpoint of reducing environmental impact. Plant-derived linear low-density polyethylene can be manufactured using ethanol made from sugar cane, corn, etc., using a manufacturing method such as a high-pressure method, a solution method, or a gas phase method. is possible. Examples include copolymers of plant-derived ethylene and at least one α-olefin having 3 or more carbon atoms. The α-olefins may be those derived from fossil fuels as long as they are generally called α-olefins, such as propylene, butene-1, hexene-1, octene-1, 4-methyl-1-pentene, etc. Preferably, it is an α-olefin having 3 to 12 carbon atoms. Examples of copolymers of ethylene and α-olefin include ethylene/hexene-1 copolymer, ethylene/butene-1 copolymer, ethylene/octene-1 copolymer, etc. From this point of view, ethylene-hexene copolymers are preferred.
The lower limit of the content of plant-derived ethylene in the plant-derived linear low-density polyethylene is preferably 50%, more preferably 80%. When it is 50% or more, the carbon dioxide reduction effect is good. The upper limit is preferably 98%, more preferably 96%. When it exceeds 98%, the proportion of α-olefin to be copolymerized decreases, and the heat sealing strength decreases.
 植物由来直鎖状低密度ポリエチレンのMFR(190℃、2.18kg測定)の下限は好ましくは0.8g/10minであり、より好ましくは1,5g/10minである。また上限は好ましくは5.0g/10minであり、より好ましくは4.5g/10minである。上記の範囲内とすることで、ポリプロピレン系樹脂との相溶性が良く、高いシール強度が得られる。 The lower limit of MFR (measured at 190°C, 2.18 kg) of plant-derived linear low-density polyethylene is preferably 0.8 g/10 min, more preferably 1.5 g/10 min. Moreover, the upper limit is preferably 5.0 g/10 min, more preferably 4.5 g/10 min. By setting it within the above range, compatibility with the polypropylene resin is good and high sealing strength can be obtained.
 植物由来直鎖状低密度ポリエチレンの密度の下限は好ましくは912kg/mであり、より好ましくは915kg/mである。910kg/m以上とすることで、良好な耐ブロッキング性が得られる。また上限は、935kg/mであり、より好ましくは930kg/mである。930kg/m以下であることで、良好な耐破袋性が得られる。具体的には例えば、ブラスケム製エチレン-ヘキセン共重合体(植物由来直鎖状低密度ポリエチレン)SLH218(MFR2.3g/10min、密度916kg/m、融点126℃)などがある。
 コア層を構成するポリオレフィン系樹脂組成物おける植物由来直鎖状低密度ポリエチレンの含有量は環境負荷低減の点から3重量%以上が好ましく、8重量%以上がより好ましく、12重量%以上が更に好ましく、15重量%以上が特に好ましい。耐熱性の点で50重量%以下が好ましく、40重量%以下がより好ましく、30重量%以下が更に好ましく、25重量%以下が特に好ましい。
The lower limit of the density of the plant-derived linear low-density polyethylene is preferably 912 kg/m 3 , more preferably 915 kg/m 3 . Good blocking resistance can be obtained by setting the weight to 910 kg/m 3 or more. Moreover, the upper limit is 935 kg/m 3 , more preferably 930 kg/m 3 . When the weight is 930 kg/m 3 or less, good bag breakage resistance can be obtained. Specific examples include ethylene-hexene copolymer (vegetable-derived linear low-density polyethylene) SLH218 (MFR 2.3 g/10 min, density 916 kg/m 3 , melting point 126° C.) manufactured by Braskem.
The content of plant-derived linear low-density polyethylene in the polyolefin resin composition constituting the core layer is preferably 3% by weight or more, more preferably 8% by weight or more, and even more preferably 12% by weight or more from the viewpoint of reducing environmental load. Preferably, 15% by weight or more is particularly preferable. In terms of heat resistance, the content is preferably 50% by weight or less, more preferably 40% by weight or less, even more preferably 30% by weight or less, and particularly preferably 25% by weight or less.
(添加剤)
 コア層を構成するポリオレフィン系樹脂組成物は、アンチブロッキング剤を含んでよい。
 添加するアンチブロッキング剤は特に限定されるものではないが、球状シリカ、不定形シリカ、ゼオライト、タルク、マイカ、アルミナ、ハイドロタルサイト、ホウ酸アルミニウムなどの無機粒子や、ポリメチルメタクリレート、超高分子量ポリエチレンなどの有機粒子を添加することができる。
 コア層を構成するポリオレフィン系樹脂組成物に含まれるアンチブロッキング剤は添加する層のポリオレフィン系樹脂に対して、3000ppm以下であることが好ましく、2500ppm以下がより好ましく、1000ppm以下がよりさらに好ましく、500ppm以下が特に好ましい。3000ppm以下であると透明性が良好である。
(Additive)
The polyolefin resin composition constituting the core layer may contain an anti-blocking agent.
The anti-blocking agent to be added is not particularly limited, but includes inorganic particles such as spherical silica, amorphous silica, zeolite, talc, mica, alumina, hydrotalcite, and aluminum borate, polymethyl methacrylate, and ultra-high molecular weight. Organic particles such as polyethylene can be added.
The anti-blocking agent contained in the polyolefin resin composition constituting the core layer is preferably at most 3000 ppm, more preferably at most 2500 ppm, even more preferably at most 1000 ppm, and even more preferably at most 500 ppm. The following are particularly preferred. When the content is 3000 ppm or less, transparency is good.
 コア層を構成するポリオレフィン系樹脂組成物は、有機系潤滑剤を含んでも良い。積層フィルムの滑性やブロッキング防止効果が向上し、フィルムの取り扱い性がよくなる。その理由として、有機滑剤がブリードアウトし、フィルム表面に存在することで、滑剤効果や離型効果が発現したものと考える。
 有機系潤滑剤は常温以上の融点を持つものが好ましい。有機滑剤は、脂肪酸アミド、脂肪酸エステルが挙げられる。
 具体的にはオレイン酸アミド、エルカ酸アミド、ベヘニン酸アミド、エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、エチレンビスオレイン酸アミドなどである。これらは単独で用いても構わないが、2種類以上を併用することで過酷な環境下においても滑性やブロッキング防止効果を維持することができるので好ましい。
 ポリオレフィン系樹脂組成物中の有機滑剤はポリオレフィン系樹脂に対して1500ppm以下であることが好ましく、1000ppm以下であることがより好ましい。1500ppm以下とすることで、夏の倉庫内のような高温にさらされる場所で保管してもブロッキングが発生しにくい。また、200ppm以上であることが好ましく、250ppm以上であることがより好ましい。200ppm以上とすることで良好な滑り性を得ることができる。
The polyolefin resin composition constituting the core layer may contain an organic lubricant. The lubricity and anti-blocking effect of the laminated film are improved, making the film easier to handle. The reason for this is thought to be that the organic lubricant bleeds out and is present on the film surface, resulting in a lubricant effect and release effect.
The organic lubricant preferably has a melting point above room temperature. Examples of organic lubricants include fatty acid amides and fatty acid esters.
Specific examples thereof include oleic acid amide, erucic acid amide, behenic acid amide, ethylene bis oleic acid amide, hexamethylene bis oleic acid amide, and ethylene bis oleic acid amide. Although these may be used alone, it is preferable to use two or more of them in combination, since the lubricity and anti-blocking effect can be maintained even under harsh environments.
The amount of organic lubricant in the polyolefin resin composition is preferably 1500 ppm or less, more preferably 1000 ppm or less, based on the polyolefin resin. By setting the concentration to 1,500 ppm or less, blocking is less likely to occur even when stored in a place exposed to high temperatures, such as in a warehouse in the summer. Moreover, it is preferable that it is 200 ppm or more, and it is more preferable that it is 250 ppm or more. Good slipperiness can be obtained by setting the content to 200 ppm or more.
 コア層を構成するポリオレフィン系樹脂組成物は熱安定剤を含んでいても良い。溶融押出の際に熱や酸化により樹脂が劣化し発生する、ゲルなどの欠点を抑制することができる。
 市販されている熱安定剤や酸化防止剤を使用することができる。具体的には例えばBASF製ヒンダーフェノール系酸化防止剤(イルガノックス1010)、BASF製亜リン酸塩処理安定剤(イルガフォス168)、住友化学株式会社製フェノールリン系酸化防止剤(スミライザーGP)などが挙げられる。熱安定剤は単独で使用しても良く、2種類以上を組み合わせても良い。また、市販されているポリオレフィン系樹脂には製造時に添加されていることが多いが、マスターバッチなどにより追加で添加しても良い。
 ポリオレフィン系樹脂組成物中の熱安定剤の濃度の下限はこの層に対して合計で、好ましくは1600ppm以上であり、より好ましくは1800ppm以上であり、より好ましくは2000ppm以上である。上記以下であるとゲルなどの欠点が発生しやすい。また、上限はこの層に対して合計で好ましくは5000ppmであり、より好ましくは4000ppmであり、更に好ましくは3500ppmである。上記を超えると、フィルムロールの端面が赤色に変色し外観を損ねることがある。
The polyolefin resin composition constituting the core layer may contain a heat stabilizer. It is possible to suppress defects such as gel, which occurs when the resin deteriorates due to heat and oxidation during melt extrusion.
Commercially available heat stabilizers and antioxidants can be used. Specifically, for example, a hindered phenolic antioxidant (Irganox 1010) manufactured by BASF, a phosphite treatment stabilizer (Irgafos 168) manufactured by BASF, and a phenol phosphorus antioxidant (Sumilyzer GP) manufactured by Sumitomo Chemical Co., Ltd. Can be mentioned. The heat stabilizer may be used alone or in combination of two or more. Further, although it is often added to commercially available polyolefin resins at the time of manufacture, it may be additionally added using a masterbatch or the like.
The lower limit of the concentration of the heat stabilizer in the polyolefin resin composition is preferably 1,600 ppm or more, more preferably 1,800 ppm or more, and even more preferably 2,000 ppm or more in total for this layer. If it is less than the above, defects such as gel are likely to occur. Further, the upper limit is preferably 5000 ppm in total for this layer, more preferably 4000 ppm, still more preferably 3500 ppm. If the amount exceeds the above, the end surface of the film roll may turn red and spoil its appearance.
 コア層を構成するポリオレフィン系樹脂組成物は、本発明の目的を損なわない範囲で必要に応じて任意の層に適量の帯電防止剤、防曇剤、中和剤、造核剤、着色剤、その他の添加剤及び無機質充填剤等を含むことができる。中和剤として、ステアリン酸カルシウム等が挙げられる。 The polyolefin resin composition constituting the core layer may contain an appropriate amount of an antistatic agent, an antifogging agent, a neutralizing agent, a nucleating agent, a coloring agent, Other additives, inorganic fillers, etc. can be included. Examples of neutralizing agents include calcium stearate.
 製造工程で発生した半製品や製造後の製品フィルムをリサイクルしたペレットをコア層に添加することにより、ヒートシール強度を損なうことなく、樹脂を再利でき、環境負荷を低減することができる。 By adding pellets made from recycled semi-finished products or manufactured product films generated during the manufacturing process to the core layer, the resin can be reused without sacrificing heat-sealing strength, reducing environmental impact.
(ラミネート層)
 ラミネート層を構成するポリオレフィン系樹脂組成物はヒートシール強度の点からプロピレン単独重合体またはプロピレン-αオレフィンランダム共重合体を主体とする。また、環境負荷低減の観点から植物由来直鎖状低密度ポリエチレンを含むのが好ましい。プロピレン単独重合体またはプピレン-αオレフィンランダム共重合体、及び植物由来直鎖状低密度ポリ
エチレンは1種類でも良いが、2種類以上を混合して使用しても良い。
(プロピレン-αオレフィンランダム共重合体)
 ラミネート層を構成するプロピレン-αオレフィンランダム共重合体は、プロピレン-αオレフィンランダム共重合体は、プロピレンとプロピレン以外の炭素原子数が2又は4~20のα-オレフィンの少なくとも1種との共重合体を挙げることができる。かかる炭素原子数が2又は4~20のα-オレフィンモノマーとしては、エチレン、ブテン-1、ペンテン-1、4-メチルペンテン-1、ヘキセン-1、オクテン-1等を用いることができる。
 プロピレン-αオレフィンランダム共重合体はヒートシール性の面からエチレンを用いるのが好ましい。また、少なくとも1種類以上であればよく、必要に応じて2種類以上を混合して用いることができる。特に好適であるのは主とするモノマーがプロピレンであり、一定量のエチレンとブテンを共重合させたプロピレン-エチレン-ブテンランダム共重合体である。本報ではランダム共重合体を構成するモノマー組成比の多い順に呼称し記載した。プロピレン-αオレフィンランダム共重合体は、石油由来のものであっても良く、植物由来のものであっても良い。
(laminate layer)
The polyolefin resin composition constituting the laminate layer is mainly composed of propylene homopolymer or propylene-α-olefin random copolymer from the viewpoint of heat sealing strength. In addition, from the viewpoint of reducing environmental load, it is preferable that plant-derived linear low-density polyethylene is included. One type of propylene homopolymer or propylene-α olefin random copolymer and plant-derived linear low-density polyethylene may be used, or two or more types may be used in combination.
(Propylene-α-olefin random copolymer)
The propylene-α-olefin random copolymer constituting the laminate layer is a combination of propylene and at least one α-olefin having 2 or 4 to 20 carbon atoms other than propylene. Polymers may be mentioned. As such α-olefin monomers having 2 or 4 to 20 carbon atoms, ethylene, 1-butene, 1-pentene, 4-methylpentene-1, hexene-1, octene-1, etc. can be used.
It is preferable to use ethylene as the propylene-α-olefin random copolymer from the viewpoint of heat sealability. Further, it is sufficient that at least one kind is used, and two or more kinds can be mixed and used as necessary. Particularly suitable is a propylene-ethylene-butene random copolymer in which the main monomer is propylene and a certain amount of ethylene and butene are copolymerized. In this report, random copolymers are named and described in descending order of monomer composition ratio. The propylene-α-olefin random copolymer may be derived from petroleum or plants.
 ラミネート層を構成するプロピレン-αオレフィンランダム共重合体のメルトフローレート(MFR)の下限は好ましくは2.0g/10minであり、より好ましくは3.0g/10minであり、さらに好ましくは4.0g/10minである。上記未満であるとフィルム厚みの均一性が損なわれることがある。
 ランダム共重合体のメルトフローレートの上限は好ましくは10.0g/10minであり、より好ましくは9.0g/10minであり、さらに好ましくは8.0g/10minである。上記を超えるとフィルムのべた付きやフィルムの耐衝撃強度(インパクト強度)が劣るなど問題が生じることがある。
 プロピレン-αオレフィンランダム共重合体は具体的には例えば、プロピレン-エチレンランダム共重合体(株式会社プライムポリマー製 プライムポリプロF-724NPC、230℃、荷重2.16kgにおけるMFR7.0g/10min、融点142℃)、プロピレン-エチレン-ブテンランダム共重合体(住友化学株式会社製 住友ノーブレンFL8115A、230℃、荷重2.16kgにおけるMFR7.0g/10min、融点148℃)、プロピレン-エチレン-ブテンランダム共重合体(株式会社プライムポリマー製 プライムポリプロF-794NV、230℃、荷重2.16kgにおけるMFR5.7g/10min、融点134℃)、プロピレン-エチレン-ブテンランダム共重合体(住友化学株式会社製 住友ノーブレンFL6745A、230℃、荷重2.16kgにおけるMFR6.0g/10min、融点130℃)などが挙げられる。
 ラミネート層を構成するポリオレフィン系樹脂組成物おけるプロピレン-αオレフィンランダム共重合体の含有量は、ヒートシール強度の点から25重量%以上が好ましく、40重量%以上がより好ましく、60重量%以上が更に好ましく、75重量%以上が特に好ましい。
The lower limit of the melt flow rate (MFR) of the propylene-α olefin random copolymer constituting the laminate layer is preferably 2.0 g/10 min, more preferably 3.0 g/10 min, and still more preferably 4.0 g. /10min. If it is less than the above, the uniformity of the film thickness may be impaired.
The upper limit of the melt flow rate of the random copolymer is preferably 10.0 g/10 min, more preferably 9.0 g/10 min, and still more preferably 8.0 g/10 min. Exceeding the above may cause problems such as stickiness of the film and poor impact strength (impact strength) of the film.
Specifically, the propylene-α olefin random copolymer is, for example, a propylene-ethylene random copolymer (Prime Polypro F-724NPC manufactured by Prime Polymer Co., Ltd., MFR 7.0 g/10 min at 230°C, load 2.16 kg, melting point 142 °C), propylene-ethylene-butene random copolymer (Sumitomo Noblen FL8115A manufactured by Sumitomo Chemical Co., Ltd., MFR 7.0 g/10 min at 230 °C, load 2.16 kg, melting point 148 °C), propylene-ethylene-butene random copolymer (Prime Polypro F-794NV, manufactured by Prime Polymer Co., Ltd., MFR 5.7 g/10 min at 230°C, load 2.16 kg, melting point 134°C), propylene-ethylene-butene random copolymer (Sumitomo Noblen FL6745A, manufactured by Sumitomo Chemical Co., Ltd.), MFR 6.0 g/10 min at 230° C., load 2.16 kg, melting point 130° C.), etc.
The content of the propylene-α olefin random copolymer in the polyolefin resin composition constituting the laminate layer is preferably 25% by weight or more, more preferably 40% by weight or more, and 60% by weight or more from the viewpoint of heat seal strength. It is more preferable, and particularly preferably 75% by weight or more.
(プロピレン単独重合体)
 ラミネート層を構成するポリオレフィン系樹脂組成物にプロピレン単独重合体を含有することにより、耐熱性を向上させることができる。使用するプロピレン単独重合体としては、結晶性が高く熱収縮率の悪化を抑えられるアイソタクチックポリプロピレンが好ましい。プロピレン単独重合体は、石油由来のものであっても良く、植物由来のものであっても良い。
(Propylene homopolymer)
Heat resistance can be improved by containing a propylene homopolymer in the polyolefin resin composition constituting the laminate layer. The propylene homopolymer used is preferably isotactic polypropylene, which has high crystallinity and can suppress deterioration of heat shrinkage rate. The propylene homopolymer may be derived from petroleum or from plants.
 上記プロピレン単独重合体のメルトフローレート(MFR)(230℃、荷重2.16kg測定)の下限は好ましくは2.0g/10minであり、より好ましくは3.0g/10minであり、さらに好ましくは4.0g/10minである。上記未満であるとフィルム厚みの均一性が損なわれることがある。
 プロピレン単独重合体のメルトフローレートの上限は好ましくは10.0g/10minであり、より好ましくは9.0g/10minであり、さらに好ましくは8.0g/10minである。フィルム厚みの均一性が損なわれることがある。上記を超えるとフィルムのべた付きやフィルムの耐衝撃強度(インパクト強度)が劣るなど問題が生じることがある。
 ラミネート層を構成するポリオレフィン系樹脂組成物おけるプロピレン単独重合体の含有量は特に限定されないが、ヒートシール強度や耐屈曲ピンホール性の点から、50重量%以下が好ましく、30重量%以下がより好ましく、10重量%以下がよりさらに好ましく、0重量%が特に好ましい。
The lower limit of the melt flow rate (MFR) (measured at 230°C and a load of 2.16 kg) of the propylene homopolymer is preferably 2.0 g/10 min, more preferably 3.0 g/10 min, and even more preferably 4 .0g/10min. If it is less than the above, the uniformity of the film thickness may be impaired.
The upper limit of the melt flow rate of the propylene homopolymer is preferably 10.0 g/10 min, more preferably 9.0 g/10 min, and still more preferably 8.0 g/10 min. The uniformity of film thickness may be impaired. Exceeding the above may cause problems such as stickiness of the film and poor impact strength (impact strength) of the film.
The content of the propylene homopolymer in the polyolefin resin composition constituting the laminate layer is not particularly limited, but from the viewpoint of heat seal strength and bending pinhole resistance, it is preferably 50% by weight or less, and more preferably 30% by weight or less. It is preferably 10% by weight or less, even more preferably 10% by weight or less, and particularly preferably 0% by weight.
(植物由来直鎖状低密度ポリエチレン)
 ラミネート層を構成するポリオレフィン系樹脂組成物に植物由来直鎖状低密度ポリエチレンを含有することにより、環境負荷低減効果を向上させることができるので好ましい。コア層にのみ植物由来直鎖状低密度ポリエチレンを含有する場合より、フィルム表面層にも植物由来直鎖状低密度ポリエチレンを含有することにより、環境負荷低減効果は飛躍的に向上する。ラミネート層を構成するポリオレフィン系樹脂組成物には環境負荷低減の観点から植物由来直鎖状低密度ポリエチレンを含有する。植物由来直鎖状低密度ポリエチレンは、植物由来直鎖状低密度ポリエチレンはサトウキビやトウモロコシなどを原料としたエタノールを利用し、例えば高圧法、溶液法、気相法等の製造法により製造することが可能である。植物由来のエチレンと炭素数3以上のαオレフィンを少なくとも1種類との共重合体を挙げることができる。α-オレフィンとしては、一般にα-オレフィンと称されているものであれば化石燃料由来のものでも良く、プロピレン、ブテン-1、ヘキセン-1、オクテン-1、4-メチル-1-ペンテン等の炭素数3~12のα-オレフィンであることが好ましい。エチレンとα-オレフィンの共重合体としては、例えばエチレン・ヘキセン-1共重合体、エチレン・ブテン-1共重合体、エチレン・オクテン-1共重合体等が挙げられ、耐屈曲ピンホール性の観点からエチレン-ヘキセン共重合体が好ましい。
 植物由来直鎖状低密度ポリエチレンの植物由来エチレンの含有量の下限は好ましくは50%でより好ましくは80%である。50%以上であると二酸化炭素削減効果が良好である。上限は好ましくは98%であり、より好ましくは96%である。98%を超えると、共重合させるαオレフィンの比率が下がり、ヒートシール強度が低下する。
(Plant-derived linear low-density polyethylene)
It is preferable to contain plant-derived linear low-density polyethylene in the polyolefin resin composition constituting the laminate layer, since the effect of reducing environmental load can be improved. By containing plant-derived linear low-density polyethylene in the surface layer of the film, the environmental load reduction effect is dramatically improved compared to when the core layer only contains plant-derived linear low-density polyethylene. The polyolefin resin composition constituting the laminate layer contains plant-derived linear low-density polyethylene from the viewpoint of reducing environmental impact. Plant-derived linear low-density polyethylene can be manufactured using ethanol made from sugar cane, corn, etc., using a manufacturing method such as a high-pressure method, a solution method, or a gas phase method. is possible. Examples include copolymers of plant-derived ethylene and at least one α-olefin having 3 or more carbon atoms. The α-olefins may be those derived from fossil fuels as long as they are generally called α-olefins, such as propylene, butene-1, hexene-1, octene-1, 4-methyl-1-pentene, etc. Preferably, it is an α-olefin having 3 to 12 carbon atoms. Examples of copolymers of ethylene and α-olefin include ethylene/hexene-1 copolymer, ethylene/butene-1 copolymer, ethylene/octene-1 copolymer, etc. From this point of view, ethylene-hexene copolymers are preferred.
The lower limit of the content of plant-derived ethylene in the plant-derived linear low-density polyethylene is preferably 50%, more preferably 80%. When it is 50% or more, the carbon dioxide reduction effect is good. The upper limit is preferably 98%, more preferably 96%. When it exceeds 98%, the proportion of α-olefin to be copolymerized decreases, and the heat sealing strength decreases.
 植物由来直鎖状低密度ポリエチレンのMFR(190℃、2.18kg測定)の下限は好ましくは0.8g/10minであり、より好ましくは1,5g/10minである。また上限は好ましくは5.0g/10minであり、より好ましくは4.5g/10minである。上記の範囲内とすることで、ポリプロピレン系樹脂との相溶性が良く、高いシール強度が得られる。 The lower limit of MFR (measured at 190°C, 2.18 kg) of plant-derived linear low-density polyethylene is preferably 0.8 g/10 min, more preferably 1.5 g/10 min. Moreover, the upper limit is preferably 5.0 g/10 min, more preferably 4.5 g/10 min. By setting it within the above range, compatibility with the polypropylene resin is good and high sealing strength can be obtained.
 植物由来直鎖状低密度ポリエチレンの密度の下限は好ましくは912kg/mであり、より好ましくは915kg/mである。910kg/m以上とすることで、良好な耐ブロッキング性が得られる。また上限は、935kg/mであり、より好ましくは930kg/mである。930kg/m以下であることで、良好な耐破袋性が得られる。具体的には例えば、ブラスケム製エチレン-ヘキセン共重合体(植物由来直鎖状低密度ポリエチレン)SLH218(MFR2.3g/10min、密度916kg/m、融点126℃)などがある。
 ラミネート層を構成するポリオレフィン系樹脂組成物おける植物由来直鎖状低密度ポリエチレンの含有量は環境負荷低減の点から0重量%以上が好ましく、3重量%以上がより好ましく、15重量%以上が更に好ましく、20重量%以上が特に好ましい。耐熱性の点で50重量%以下が好ましく、40重量%以下がより好ましく、30重量%以下が更に好ましい。
 アンチブロッキング剤、有機滑剤などの添加剤の添加量に大きく依存するため、直鎖状低密度ポリエチレンをラミネート層に直鎖状低密度ポリエチレンを加えてもヒートシール層の滑り性はあまり変化しない。
The lower limit of the density of the plant-derived linear low-density polyethylene is preferably 912 kg/m 3 , more preferably 915 kg/m 3 . Good blocking resistance can be obtained by setting the weight to 910 kg/m 3 or more. Moreover, the upper limit is 935 kg/m 3 , more preferably 930 kg/m 3 . When the weight is 930 kg/m 3 or less, good bag breakage resistance can be obtained. Specific examples include ethylene-hexene copolymer (vegetable-derived linear low-density polyethylene) SLH218 (MFR 2.3 g/10 min, density 916 kg/m 3 , melting point 126° C.) manufactured by Braskem.
The content of plant-derived linear low-density polyethylene in the polyolefin resin composition constituting the laminate layer is preferably 0% by weight or more, more preferably 3% by weight or more, and even more preferably 15% by weight or more from the viewpoint of reducing environmental load. Preferably, 20% by weight or more is particularly preferable. From the viewpoint of heat resistance, the content is preferably 50% by weight or less, more preferably 40% by weight or less, and even more preferably 30% by weight or less.
The slipperiness of the heat-seal layer does not change much even if linear low-density polyethylene is added to the laminate layer, since it largely depends on the amount of additives such as anti-blocking agents and organic lubricants.
 ラミネート層を構成するポリオレフィン系樹脂組成物は、アンチブロッキング剤を含んでよい。
 添加するアンチブロッキング剤は特に限定されるものではないが、球状シリカ、不定形シリカ、ゼオライト、タルク、マイカ、アルミナ、ハイドロタルサイト、ホウ酸アルミニウムなどの無機粒子や、ポリメチルメタクリレート、超高分子量ポリエチレンなどの有機粒子を添加することができる。
 ラミネート層を構成するポリオレフィン系樹脂組成物に含まれるアンチブロッキング剤は添加する層のポリオレフィン系樹脂に対して、3000ppm以下であることが好ましく、2500ppm以下がより好ましく、1000ppm以下がよりさらに好ましく、500ppm以下が特に好ましい。
The polyolefin resin composition constituting the laminate layer may contain an anti-blocking agent.
Anti-blocking agents to be added are not particularly limited, but include inorganic particles such as spherical silica, amorphous silica, zeolite, talc, mica, alumina, hydrotalcite, and aluminum borate, polymethyl methacrylate, and ultra-high molecular weight. Organic particles such as polyethylene can be added.
The anti-blocking agent contained in the polyolefin resin composition constituting the laminate layer is preferably 3000 ppm or less, more preferably 2500 ppm or less, even more preferably 1000 ppm or less, and even more preferably 500 ppm or less, based on the polyolefin resin of the layer to which it is added. The following are particularly preferred.
 ラミネート層を構成するポリオレフィン系樹脂組成物は、有機系潤滑剤を含んでも良い。積層フィルムの滑性やブロッキング防止効果が向上し、フィルムの取り扱い性がよくなる。その理由として、有機滑剤がブリードアウトし、フィルム表面に存在することで、滑剤効果や離型効果が発現したものと考える。
 有機系潤滑剤は常温以上の融点を持つものが好ましい。有機滑剤は、脂肪酸アミド、脂肪酸エステルが挙げられる。
 具体的にはオレイン酸アミド、エルカ酸アミド、ベヘニン酸アミド、エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、エチレンビスオレイン酸アミドなどである。これらは単独で用いても構わないが、2種類以上を併用することで過酷な環境下においても滑性やブロッキング防止効果を維持することができるので好ましい。
 ポリオレフィン系樹脂組成物中の有機滑剤はポリオレフィン系樹脂に対して1500ppm以下であることが好ましく、1000ppm以下であることがより好ましい。1500ppm以下とすることで、夏の倉庫内のような高温にさらされる場所で保管してもブロッキングが発生しにくい。
The polyolefin resin composition constituting the laminate layer may contain an organic lubricant. The lubricity and anti-blocking effect of the laminated film are improved, making the film easier to handle. The reason for this is thought to be that the organic lubricant bleeds out and is present on the film surface, resulting in a lubricant effect and release effect.
The organic lubricant preferably has a melting point above room temperature. Examples of organic lubricants include fatty acid amides and fatty acid esters.
Specific examples thereof include oleic acid amide, erucic acid amide, behenic acid amide, ethylene bis oleic acid amide, hexamethylene bis oleic acid amide, and ethylene bis oleic acid amide. Although these may be used alone, it is preferable to use two or more of them in combination, since the lubricity and anti-blocking effect can be maintained even under harsh environments.
The amount of organic lubricant in the polyolefin resin composition is preferably 1500 ppm or less, more preferably 1000 ppm or less, based on the polyolefin resin. By setting the concentration to 1,500 ppm or less, blocking is less likely to occur even when stored in a place exposed to high temperatures, such as in a warehouse in the summer.
 ラミネート層を構成するポリオレフィン系樹脂組成物は熱安定剤を含んでいても良い。溶融押出の際に熱や酸化により樹脂が劣化し発生する、ゲルなどの欠点を抑制することができる。
 市販されている熱安定剤や酸化防止剤を使用することができる。具体的には例えばBASF製ヒンダーフェノール系酸化防止剤(イルガノックス1010)、BASF製亜リン酸塩処理安定剤(イルガフォス168)、住友化学株式会社製フェノールリン系酸化防止剤(スミライザーGP)などが挙げられる。熱安定剤は単独で使用しても良く、2種類以上を組み合わせても良い。また、市販されているポリオレフィン系樹脂には製造時に添加されていることが多いが、マスターバッチなどにより追加で添加しても良い。
ポリオレフィン系樹脂組成物中の熱安定剤の濃度の下限はこの層に対して合計で、好ましくは1600ppm以上であり、より好ましくは1800ppm以上であり、より好ましくは2000ppm以上であり、更に好ましくは2500ppm以上である。上記以下であるとゲルなどの欠点が発生しやすい。また、上限はこの層に対して合計で好ましくは5000ppmであり、より好ましくは4000ppmであり、更に好ましくは3500ppmである。上記を超えると、フィルムロールの端面が赤色に変色し外観を損ねることがある。
The polyolefin resin composition constituting the laminate layer may contain a heat stabilizer. It is possible to suppress defects such as gel, which occurs when the resin deteriorates due to heat and oxidation during melt extrusion.
Commercially available heat stabilizers and antioxidants can be used. Specifically, for example, a hindered phenolic antioxidant (Irganox 1010) manufactured by BASF, a phosphite treatment stabilizer (Irgafos 168) manufactured by BASF, and a phenol phosphorus antioxidant (Sumilyzer GP) manufactured by Sumitomo Chemical Co., Ltd. Can be mentioned. The heat stabilizer may be used alone or in combination of two or more. Further, although it is often added to commercially available polyolefin resins during production, it may be additionally added using a masterbatch or the like.
The lower limit of the concentration of the heat stabilizer in the polyolefin resin composition is preferably 1,600 ppm or more, more preferably 1,800 ppm or more, more preferably 2,000 ppm or more, and even more preferably 2,500 ppm in total for this layer. That's all. If it is less than the above, defects such as gelation are likely to occur. Further, the upper limit is preferably 5000 ppm in total for this layer, more preferably 4000 ppm, still more preferably 3500 ppm. If the amount exceeds the above, the end face of the film roll may turn red and spoil its appearance.
 ラミネート層を構成するポリオレフィン系樹脂組成物は、本発明の目的を損なわない範囲で必要に応じて任意の層に適量の帯電防止剤、防曇剤、中和剤、造核剤、着色剤、その他の添加剤及び無機質充填剤等を含むことができる。中和剤として、ステアリン酸カルシウム等が挙げられる。 The polyolefin resin composition constituting the laminate layer may contain an appropriate amount of an antistatic agent, an antifogging agent, a neutralizing agent, a nucleating agent, a coloring agent, Other additives, inorganic fillers, etc. can be included. Examples of neutralizing agents include calcium stearate.
 ポリオレフィン系樹脂フィルムの厚みの下限は好ましくは15μmであり、より好ましくは20μmであり、さらに好ましくは25μmである。15μ以上であると、ヒートシール強度が得られやすい。
 フィルム厚みの上限は好ましくは80μmであり、より好ましくは70μmであり、さらに好ましくは65μmであり、よりさらに好ましくは60μmである。80μm以下であるとフィルムの腰感が強すぎず加工しやすくなるほか、好適な包装体を製造しやすい。
The lower limit of the thickness of the polyolefin resin film is preferably 15 μm, more preferably 20 μm, and still more preferably 25 μm. When it is 15μ or more, heat sealing strength is easily obtained.
The upper limit of the film thickness is preferably 80 μm, more preferably 70 μm, still more preferably 65 μm, even more preferably 60 μm. When the thickness is 80 μm or less, the film does not have too much stiffness and is easy to process, and it is also easy to manufacture a suitable package.
 ポリオレフィン系樹脂フィルムのヒートシール層の厚み比率の下限は好ましくは23%以上であり、より好ましくは25%以上である。23%以上とすることでヒートシール強度を高めることができる。また、厚み比率の上限は好ましくは40%以下であり、より好ましくは35%以下であり、更に好ましくは30%以下である。ヒートシール層が40%以上であると、相対的に植物由来を含むコア層、ラミネート層の厚み比率が小さくなり、環境負荷低減効果が低下する。 The lower limit of the thickness ratio of the heat seal layer of the polyolefin resin film is preferably 23% or more, more preferably 25% or more. Heat sealing strength can be increased by setting it to 23% or more. Further, the upper limit of the thickness ratio is preferably 40% or less, more preferably 35% or less, and still more preferably 30% or less. If the heat seal layer is 40% or more, the thickness ratio of the core layer containing plant-derived material and the laminate layer becomes relatively small, and the environmental load reduction effect decreases.
 ポリオレフィン系樹脂フィルムは、ヒートシール層とコア層を構成するポリオレフィン系樹脂組成物における前記植物由来直鎖状低密度ポリエチレンの含有率の差の絶対値は特に限定されないが1重量%以上、18重量%以下であるのが好ましい。ヒートシール層とコア層の直鎖状低密度ポリエチレンの濃度差の絶対値はより好ましくは15重量%以下であり、さらに好ましくは10重量%以下であり、特に好ましくは8重量%以下である。含有量の差の絶対値を18重量%以下とすることで、ヒートシール層、コア層の界面における層間強度を高く保ち、高いヒートシール強度を得ることができる。 In the polyolefin resin film, the absolute value of the difference in content of the plant-derived linear low-density polyethylene in the polyolefin resin composition constituting the heat seal layer and the core layer is not particularly limited, but is 1% by weight or more, 18% by weight. % or less. The absolute value of the difference in concentration of linear low density polyethylene between the heat seal layer and the core layer is more preferably 15% by weight or less, still more preferably 10% by weight or less, particularly preferably 8% by weight or less. By setting the absolute value of the content difference to 18% by weight or less, the interlayer strength at the interface between the heat seal layer and the core layer can be maintained high, and high heat seal strength can be obtained.
 ポリオレフィン系樹脂フィルムは、コア層とラミネート層を構成するポリオレフィン系樹脂組成物における前記植物由来直鎖状低密度ポリエチレンの含有率の差の絶対値は1重量%以上、18重量%以下であるのが好ましい。コア層とラミネート層の直鎖状低密度ポリエチレンの濃度差の絶対値はより好ましくは15重量%以下であり、よりさらに好ましくは10重量%以下であり、特に好ましくは8重量%以下である。含有量の差の絶対値を18重量%以下とすることで、コア層、ラミネート層の界面における層間強度を高く保ち、高いヒートシール強度を得ることができる。 In the polyolefin resin film, the absolute value of the difference in content of the plant-derived linear low-density polyethylene in the polyolefin resin compositions constituting the core layer and the laminate layer is 1% by weight or more and 18% by weight or less. is preferred. The absolute value of the difference in concentration of linear low density polyethylene between the core layer and the laminate layer is more preferably 15% by weight or less, even more preferably 10% by weight or less, particularly preferably 8% by weight or less. By setting the absolute value of the content difference to 18% by weight or less, the interlayer strength at the interface between the core layer and the laminate layer can be maintained high, and high heat seal strength can be obtained.
(ポリオレフィンフィルムロールの製造方法)
 ここでは、ヒートシール層、コア層、ラミネート層をこの順に有するポリオレフィン系樹脂積層フィルムロールの製造方法の具体例を挙げるが、これに限定されるものではない。
 ヒートシール層、コア層、ラミネート層をこの順に有するポリオレフィン系樹脂積層フィルムはそれぞれの層を構成するポリオレフィン系樹脂組成物を別々の押出機により溶融押し出しし、ダイスから溶融樹脂をヒートシール層/コア層/ラミネート層の3層となるように共押出しして、溶融樹脂シートを冷却ロールで冷却して、未延伸シートを形成して得ることができる。
 ヒートシール層、コア層、ラミネート層のうち、例えばコア層が、層を構成するポリオレフィン系樹脂全体に対し石油由来のプロピレン単独重合体及び/またはプロピレン-αオレフィンランダム共重合体の含有量が80重量%以上95重量%以下であり、植物由来の直鎖状低密度ポリエチレンの含有量が5重量%以上20重量%以下であるようなフィルムの場合は、石油由来のポリプロピレン系樹脂を含むペレット、及び石油由来のポリプロピレン系樹脂と植物由来の直鎖状低密度ポリエチレン樹脂の混合物からなるマスターバッチのペレットを混合した後にコア層を形成するための押出機へ移送する。その理由は後述する。ポリプロピレン系樹脂とはプロピレン単独重合体及び/またはプロピレン-αオレフィンランダム共重合体を意味する。
 ラミネート層やヒートシール層、あるいは単層のいずれかの層を構成するポリオレフィン系樹脂全体に対し、石油由来のプロピレン単独重合体及び/またはプロピレンと炭素数が2又は4~20のαオレフィンのランダム共重合体の含有量が80重量%以上95重量%以下であり、植物由来の直鎖状低密度ポリエチレンの含有量が5重量%以上20重量%以下であるようなフィルムの場合も同様に行う。
 原料の輸送と混合の模式図を図1に示す。押出機の上流では、石油由来のポリプロピレン系樹脂を含むペレット及び石油由来のポリプロピレン系樹脂と植物由来の直鎖状低密度ポリエチレンの混合物からなるマスターバッチのペレット、再生ペレット、添加材などを含むマスターバッチのペレットを個々の原料ホッパー(1)~(4)から混合ホッパー(5)へ個別に移送する。移送の方式には、配合の重量に合わせて一定時間ゲートが開くスライドゲート方式(1~3)や、一定の速度で回転するスクリューフィーダー方式(4)などがある。1バッチ分の配合量を計量した後、撹拌翼(7)により混合し、混合ホッパーからは移送フィーダー(8)や自重などの方式により、待機ホッパー(9)へ移送され、自重で押出機(10)に輸送される。
(Method for manufacturing polyolefin film roll)
Here, a specific example of a method for producing a polyolefin resin laminated film roll having a heat seal layer, a core layer, and a laminate layer in this order will be given, but the method is not limited thereto.
A polyolefin resin laminate film having a heat seal layer, a core layer, and a laminate layer in this order is produced by melt-extruding the polyolefin resin compositions constituting each layer using separate extruders, and then applying the molten resin from a die to the heat seal layer/core. It can be obtained by coextruding three layers (layer/laminate layer), cooling the molten resin sheet with a cooling roll, and forming an unstretched sheet.
Among the heat seal layer, core layer, and laminate layer, for example, the core layer has a content of petroleum-derived propylene homopolymer and/or propylene-α olefin random copolymer of 80% relative to the entire polyolefin resin constituting the layer. In the case of a film in which the content of plant-derived linear low-density polyethylene is 5% by weight or more and 20% by weight or less, pellets containing petroleum-derived polypropylene resin, After mixing pellets of a masterbatch consisting of a mixture of a petroleum-derived polypropylene resin and a plant-derived linear low-density polyethylene resin, the mixture is transferred to an extruder for forming a core layer. The reason will be explained later. Polypropylene resin means a propylene homopolymer and/or a propylene-α-olefin random copolymer.
A random combination of petroleum-derived propylene homopolymer and/or propylene and α-olefin having 2 or 4 to 20 carbon atoms is added to the entire polyolefin resin constituting the laminate layer, heat-sealing layer, or single layer. The same procedure is carried out in the case of a film in which the content of the copolymer is 80% by weight or more and 95% by weight or less, and the content of plant-derived linear low-density polyethylene is 5% by weight or more and 20% by weight or less. .
A schematic diagram of the transportation and mixing of raw materials is shown in Figure 1. Upstream of the extruder, pellets containing petroleum-derived polypropylene resin, pellets of a masterbatch consisting of a mixture of petroleum-derived polypropylene resin and plant-derived linear low-density polyethylene, recycled pellets, and a master containing additives, etc. The pellets of the batch are transferred individually from the individual raw material hoppers (1) to (4) to the mixing hopper (5). Transfer methods include the slide gate method (1 to 3) in which the gate opens for a certain period of time according to the weight of the compound, and the screw feeder method (4) in which the gate rotates at a constant speed. After weighing the blended amount for one batch, it is mixed by a stirring blade (7), and from the mixing hopper, it is transferred to a standby hopper (9) by a transfer feeder (8) or by its own weight, and then transferred to an extruder ( 10).
 個々の原料を原料ホッパー(1)~(4)から個別に移送し、計量した後に、混合ホッパー(5)に移送される際の計量における、計量1バッチ当たりの重量の上限は好ましくは800kg以下であり、より好ましくは500kg以下であり、更に好ましくは300kg以下である。800kgより以下であると、バッチ内でのバイオマス度の変動を小さくできる。下限は好ましくは5kg以上であり、より好ましくは20kg以上であり、更に好ましくは100kg以上である。5kg以上であると生産性が良好となる。 When each raw material is individually transferred from the raw material hoppers (1) to (4), weighed, and then transferred to the mixing hopper (5), the upper limit of the weight per batch is preferably 800 kg or less. It is more preferably 500 kg or less, and still more preferably 300 kg or less. When the weight is less than 800 kg, fluctuations in the degree of biomass within a batch can be reduced. The lower limit is preferably 5 kg or more, more preferably 20 kg or more, still more preferably 100 kg or more. Productivity will be good if it is 5 kg or more.
 混合ホッパー(5)からの移送の際、1回の排出重量を小さく小分けする程ブレンド物の偏析が小さく好ましい。小さい容器に小分けすることにより。押出ホッパーへ投入する際の偏析を小さくできる。1回の排出重量は好ましくは100kg以下であり、より好ましくは50kg以下であり、更に好ましくは25kg以下である。100kg以下とすることで、溶融押出工程での偏析を小さくすることができる。 When transferring from the mixing hopper (5), it is preferable to divide the weight of each discharge into smaller portions because the segregation of the blend is smaller. By dividing into smaller containers. Segregation when feeding into the extrusion hopper can be reduced. The weight of each discharge is preferably 100 kg or less, more preferably 50 kg or less, and still more preferably 25 kg or less. By setting the weight to 100 kg or less, segregation in the melt extrusion process can be reduced.
(原料の計量変動)
 フィルムを製造する際のコア層原料の計量変動の上限は好ましくは3%以下であり、より好ましくは2%以下である。3%以下であるとバイオマス度をはじめとする物性の変動が小さく、欠点個数も少ない。
 フィルムを製造する際のラミネート層原料の計量変動の上限は好ましくは3%以下であり、より好ましくは2%以下である。3%以下であるとバイオマス度をはじめとする物性の変動が小さく、欠点個数も少ない。
 混合ホッパー(5)、待機ホッパー(9)は下部がすり鉢状になっており、その傾斜した内壁を混合ペレットが滑り落ちて、押出機に移送される。各ホッパーの傾斜した内壁の角度も、水平方向に対して40度以上が好ましく、50度以上が更に好ましい。この角度が40度を下回るとペレットの流れが悪くなって偏析防止効果が弱まるので好ましくない。
 押出機などの混錬装置に各ホッパー内の複数の種類の原料を均一に移送する場合は、従来では、ホッパー内部に攪拌装置を設けていたが、生産安定性、粉塵発生防止などの点からも、よりフィルム中の組成を均一にするには、ホッパー内にインナーコーン(図2)などの偏析防止装置を設ける方法が好ましい。
 混合ペレットの偏析が生じるのは、混合した原料ペレットの一部に、ホッパー下部の傾斜した内壁を滑り落ちる速度の大きく異なるもの、例えば、従来のように、植物由来直鎖状低密度ポリエチレンのように滑りの悪い原料のペレットがブレンドされている場合、内壁沿いに下りてゆく原料ペレットと、堆積した原料ペレットのうち表層の部分といった、ホッパー内部の下部中央付近を下りてゆく原料ペレットの間では、石油由来のプロピレン単独重合体及び/またはプロピレンと炭素数が2又は4~20のαオレフィンのランダム共重合体からなる原料ペレットとの配合比に変動が生じるためである。
(Measurement fluctuation of raw materials)
The upper limit of the measurement variation of the core layer raw material when manufacturing the film is preferably 3% or less, more preferably 2% or less. If it is 3% or less, the fluctuations in physical properties such as biomass degree will be small and the number of defects will be small.
The upper limit of the measurement variation of the raw material for the laminate layer when producing the film is preferably 3% or less, more preferably 2% or less. If it is 3% or less, the fluctuations in physical properties such as biomass degree will be small and the number of defects will be small.
The mixing hopper (5) and the waiting hopper (9) have a mortar-shaped lower part, and the mixed pellets slide down the sloping inner wall and are transferred to the extruder. The angle of the inclined inner wall of each hopper is also preferably 40 degrees or more, more preferably 50 degrees or more with respect to the horizontal direction. If this angle is less than 40 degrees, the flow of the pellets becomes poor and the anti-segregation effect is weakened, which is not preferable.
Conventionally, when multiple types of raw materials in each hopper were uniformly transferred to a kneading device such as an extruder, a stirring device was installed inside the hopper, but from the viewpoint of production stability and prevention of dust generation, etc. However, in order to make the composition in the film more uniform, it is preferable to provide a segregation prevention device such as an inner cone (FIG. 2) in the hopper.
Segregation of mixed pellets occurs because some of the mixed raw material pellets slide down the sloping inner wall at the bottom of the hopper at greatly different speeds, such as conventional linear low-density polyethylene made of plant-derived material. When raw material pellets with poor slippage are blended, there is a gap between the raw material pellets that descend along the inner wall and the surface layer of the accumulated raw material pellets that descend near the center of the bottom inside the hopper. This is because variations occur in the blending ratio of petroleum-derived propylene homopolymer and/or raw material pellets consisting of a random copolymer of propylene and α-olefin having 2 or 4 to 20 carbon atoms.
 また、押出機に侵入する時点で、ポリプロピレン樹脂とポリエチレン樹脂のように溶融粘度が大きく異なるペレットの混合比率が変動すると、押出機内部での樹脂圧の変動が発生しやすい。樹脂圧が変動すると、変動により溶融樹脂経路内に滞留しているゲルなどが吐出されフィルムの欠点数が増加するので好ましくない。この他、樹脂圧が変動することにより、吐出時のサージングが発生することがあり、好ましくない。 Additionally, if the mixing ratio of pellets that have significantly different melt viscosities, such as polypropylene resin and polyethylene resin, changes when they enter the extruder, the resin pressure inside the extruder tends to fluctuate. If the resin pressure fluctuates, it is not preferable because the fluctuation causes gel and the like staying in the molten resin path to be discharged, increasing the number of defects on the film. In addition, fluctuations in resin pressure may cause surging during discharge, which is undesirable.
 偏析防止方法としては、下記1)~4)などが挙げられる。
1)偏析が生じる前に原料を押出機に投入する方法、すなわち原料を少量ずつ混合して都度押出機に投入する方法。
2)ホッパー内壁を滑り落ちる速度が原料間で差が生じないようにする方法、すなわちホッパーの形状を筒状に近いものとする方法。
3)原料が偏析しても、ホッパーから排出される際には偏析していないようにするため混合装置、例えば垂直方向にスクリューを挿入して回転させる方法。
4)全ての原料が壁沿いに落下するように、インナーコーンを設けて偏析なしにホッパー内を原料が落ちてゆくようにする方法。
 これらの方法のうち、1)と2)は、混合済みの原料の量が少ないので生産性に課題がある。3)の方法は、原料を混ぜ続けるので原料が削れて粉塵が発生しやすいという問題がある。よって、工業的には4)の方法が最も有用である。
Examples of segregation prevention methods include the following 1) to 4).
1) A method in which raw materials are fed into an extruder before segregation occurs, that is, a method in which raw materials are mixed little by little and fed into the extruder each time.
2) A method in which the speed at which the raw materials slide down the inner wall of the hopper does not vary between materials, that is, a method in which the shape of the hopper is made close to a cylindrical shape.
3) A method in which a mixing device, for example, a screw is inserted vertically and rotated, in order to ensure that even if the raw materials are segregated, they are not segregated when they are discharged from the hopper.
4) A method in which an inner cone is installed so that all the raw materials fall along the wall, allowing the raw materials to fall through the hopper without segregation.
Among these methods, methods 1) and 2) have problems with productivity because the amount of mixed raw materials is small. Method 3) has the problem that the raw materials are likely to be scraped and dust is likely to be generated because the raw materials are continuously mixed. Therefore, method 4) is the most useful industrially.
 石油由来のポリプロピレン系樹脂、及び石油由来のポリプロピレン系樹脂と植物由来の直鎖状低密度ポリエチレンの混合物からなるマスターバッチはペレットで原料ホッパーに投入され、計量した上で、混合ホッパー(5)に移送され、ホッパーで攪拌・混合された後に、待機ホッパー(9)を経て押出機へ供給される。
 原料樹脂ペレットの安息角の上限は好ましくは28度であり、より好ましくは26度である。上記を超えるとペレットが原料ホッパー内で滞留し、製品内で物性値が変動しやすいことがある。
 原料樹脂ペレットの安息角の下限は好ましくは20度であり、より好ましくは22度である。上記未満であると、樹脂ペレットが崩れやすく偏析が発生し、製品内で物性値が変動しやすいことがある。
 安息角とは、粉粒体の堆積物が斜面上に堆積するとき、滑りをおこさずに堆積できる最大の傾斜角であり、この値が小さいほど、粒子が滑り落ちやすい。また、安息角が異なる粉粒体同士が混合されている場合、滑り落やすさの違いから、偏析が発生しやすい。
A masterbatch consisting of petroleum-derived polypropylene resin and a mixture of petroleum-derived polypropylene resin and plant-derived linear low-density polyethylene is fed into a raw material hopper in the form of pellets, weighed, and then transferred to a mixing hopper (5). After being transferred and agitated and mixed in a hopper, it is supplied to the extruder via a standby hopper (9).
The upper limit of the angle of repose of the raw material resin pellets is preferably 28 degrees, more preferably 26 degrees. If the above value is exceeded, the pellets may remain in the raw material hopper, and physical property values within the product may easily fluctuate.
The lower limit of the angle of repose of the raw material resin pellets is preferably 20 degrees, more preferably 22 degrees. If it is less than the above, the resin pellets may easily crumble and segregation may occur, and the physical property values within the product may be liable to fluctuate.
The angle of repose is the maximum angle of inclination at which granular material can be deposited on a slope without slipping, and the smaller this value is, the more easily the particles will slide. Furthermore, when powders and granules having different angles of repose are mixed, segregation is likely to occur due to the difference in ease of sliding down.
(植物由来直鎖状低密度ポリエチレンを含むマスターバッチペレット)
 植物由来の直鎖状低密度ポリエチレンのみからなるペレットは樹脂同志の摩擦や金属との摩擦が大きくなりやすいため、ポリプロピレン系樹脂と植物由来の直鎖状低密度ポリエチレンの混合物からなるマスターバッチとすることで、安息角の小さいペレットとすることができる。こうすることによりホッパーで植物由来の直鎖状低密度ポリエチレンが偏析することを抑制でき、バイオマス度の均一なフィルムロールが製造できるだけでなく、樹脂圧変動を抑制できるために欠点個数を低減することができる。ポリプロピレン系樹脂は石油由来のものであるのが好ましい。
(Masterbatch pellets containing plant-derived linear low-density polyethylene)
Pellets made only of plant-derived linear low-density polyethylene tend to have high friction between resins and friction with metal, so a masterbatch made of a mixture of polypropylene resin and plant-derived linear low-density polyethylene is used. By doing so, pellets with a small angle of repose can be obtained. By doing this, it is possible to suppress the segregation of plant-derived linear low-density polyethylene in the hopper, and not only can a film roll with a uniform biomass content be produced, but also the number of defects can be reduced by suppressing fluctuations in resin pressure. Can be done. Preferably, the polypropylene resin is derived from petroleum.
 ポリプロピレン系樹脂と植物由来の直鎖状低密度ポリエチレンの混合物からなるマスターバッチペレットの安息角の上限は好ましくは28度であり、より好ましくは26度である。上記を超えるとペレットが原料ホッパー内で滞留し、製品内で物性値、あるいはバイオマス度が変動しやすいことがある。
 ポリプロピレン系樹脂と植物由来の直鎖状低密度ポリエチレンの混合物からなるマスターバッチペレットの安息角の下限は好ましくは20度であり、より好ましくは22度である。上記未満であると、樹脂ペレットが崩れやすく偏析が発生し、製品内で物性値が変動しやすいことがある。ポリプロピレン系樹脂は石油由来のものであるのが好ましい。
The upper limit of the angle of repose of masterbatch pellets made of a mixture of polypropylene resin and plant-derived linear low density polyethylene is preferably 28 degrees, more preferably 26 degrees. If the above value is exceeded, the pellets may remain in the raw material hopper, and the physical property values or biomass content within the product may easily fluctuate.
The lower limit of the angle of repose of the masterbatch pellets made of a mixture of polypropylene resin and linear low density polyethylene derived from plants is preferably 20 degrees, more preferably 22 degrees. If it is less than the above, the resin pellets may easily crumble and segregation may occur, and the physical property values within the product may be liable to fluctuate. Preferably, the polypropylene resin is derived from petroleum.
 マスターバッチペレットの形状は造粒方式によって円柱状、楕円球状のどちらでもよい。ペレットのサイズは円柱状であれば図3、楕円球状であれば図4において、長軸x、短軸y、厚さzとして長軸xの長さの上限は好ましくは6.0mm以下であり、より好ましくは5.0mm以下であり、更に好ましくは4.0mm以下である。長軸xの長さの下限は好ましくは2.5mm以上であり、より好ましくは2.8mm以上であり、更に好ましくは3.0mm以上である。6.0mm以下、2.5mm以上であることで、ホッパーからの排出時に偏析が発生しにくい。
 短軸yの長さの上限は好ましくは4.5mm以下であり、より好ましくは4.0mm以下であり、更に好ましくは3.5mm以下である。短軸yの長さの下限は好ましくは1.5mm以上であり、より好ましくは1.8mm以上であり、更に好ましくは2.0mm以上である。4.5mm以下、1.5mm以上であることで、ホッパーからの排出時に偏析が発生しにくい。
 厚さzの長さの上限は好ましくは4.5mm以下であり、より好ましくは4.0mm以下であり、更に好ましくは3.5mm以下である。厚さzの長さの下限は好ましくは1.5mm以上であり、より好ましくは1.8mm以上であり、更に好ましくは2.0mm以上である。4.5mm以下、1.5mm以上であることで、ホッパーからの排出時に偏析が発生しにくい。
The shape of the masterbatch pellets may be either cylindrical or ellipsoidal depending on the granulation method. The size of the pellet is shown in FIG. 3 if it is cylindrical, and in FIG. 4 if it is ellipsoidal. The upper limit of the length of the long axis x is preferably 6.0 mm or less, where the long axis x, the short axis y, and the thickness z. , more preferably 5.0 mm or less, still more preferably 4.0 mm or less. The lower limit of the length of the major axis x is preferably 2.5 mm or more, more preferably 2.8 mm or more, and still more preferably 3.0 mm or more. By being 6.0 mm or less and 2.5 mm or more, segregation is less likely to occur during discharge from the hopper.
The upper limit of the length of the minor axis y is preferably 4.5 mm or less, more preferably 4.0 mm or less, and still more preferably 3.5 mm or less. The lower limit of the length of the short axis y is preferably 1.5 mm or more, more preferably 1.8 mm or more, and still more preferably 2.0 mm or more. By being 4.5 mm or less and 1.5 mm or more, segregation is less likely to occur during discharge from the hopper.
The upper limit of the length of the thickness z is preferably 4.5 mm or less, more preferably 4.0 mm or less, and still more preferably 3.5 mm or less. The lower limit of the thickness z is preferably 1.5 mm or more, more preferably 1.8 mm or more, and still more preferably 2.0 mm or more. By being 4.5 mm or less and 1.5 mm or more, segregation is less likely to occur during discharge from the hopper.
 マスターバッチペレットの安息角の上限は好ましくは28度であり、より好ましくは26度であり、更に好ましくは25度である。マスターバッチペレットの安息角の下限は好ましくは20度以上であり、より好ましくは22度である。28度以下、20度以上とすることで、ホッパーからの排出時に偏析が発生しにくい。 The upper limit of the angle of repose of the masterbatch pellets is preferably 28 degrees, more preferably 26 degrees, and even more preferably 25 degrees. The lower limit of the angle of repose of the masterbatch pellets is preferably 20 degrees or more, more preferably 22 degrees. By setting the temperature to 28 degrees or less and 20 degrees or more, segregation is less likely to occur during discharge from the hopper.
 マスターバッチペレットの密度の下限は好ましくは880kg/cmであり、より好ましくは890kgである。マスターバッチペレットの密度の下限は好ましくは913kg/cmであり、より好ましくは910kg/cmである。910kg/cmより大きいとフィルム製造時に偏析が発生しやすいことがある。一般にポリプロピレン樹脂の密度は約890kg/cmであり、この値に近いほど偏析が発生しにくい。 The lower limit of the density of the masterbatch pellets is preferably 880 kg/cm 3 , more preferably 890 kg. The lower limit of the density of the masterbatch pellets is preferably 913 kg/cm 3 , more preferably 910 kg/cm 3 . If it is larger than 910 kg/cm 3 , segregation may easily occur during film production. Generally, the density of polypropylene resin is about 890 kg/cm 3 , and the closer it is to this value, the less segregation occurs.
 マスターバッチペレットの230℃、荷重2.16kgにおけるMFRの上限は好ましくは8.0g/10minであり、より好ましくは7.0g/10minである。MFRの下限は好ましくは1.0g/10minであり、より好ましくは3.0g/10minである。8.0g/10minを超えるか、あるいは1.0g/10minを下回ると、他のポリプロピレン樹脂との粘度差から樹脂圧変動が発生し、サージングが発生、あるいは欠点個数が増加することがある。 The upper limit of MFR of masterbatch pellets at 230° C. and a load of 2.16 kg is preferably 8.0 g/10 min, more preferably 7.0 g/10 min. The lower limit of MFR is preferably 1.0 g/10 min, more preferably 3.0 g/10 min. If it exceeds 8.0 g/10 min or falls below 1.0 g/10 min, resin pressure fluctuations may occur due to the viscosity difference with other polypropylene resins, and surging may occur or the number of defects may increase.
 マスターバッチのペレットカラーLの上限は好ましくは90であり、より好ましくは80であり、更に好ましくは70である。ペレットカラーLの下限は好ましくは50であり、より好ましくは55であり、更に好ましくは60である。90あれば十分である。50以上であるとフィルムの外観が良好となる。
 マスターバッチのペレットカラーaの上限は好ましくは2.0であり、より好ましくは1.0であり、更に好ましくは0.0である。ペレットカラーaの下限は好ましくは-2.0であり、より好ましくは-1.5であり、更に好ましくは-1.0である。2.0以下あれば十分である。2.0以下であると赤色すぎず、-2.0以上であると青色すぎずにフィルム外観が良好となる。
 マスターバッチのペレットカラーbの上限は好ましくは2.0であり、更に好ましくは0.0である。ペレットカラーbの下限は好ましくは-2.0であり、より好ましくは-1.5であり、更に好ましくは-1.0である。2.0以下であると黄色すぎず、-2.0以上であると緑色すぎずにフィルム外観が良好となる。
The upper limit of the pellet color L of the masterbatch is preferably 90, more preferably 80, and even more preferably 70. The lower limit of pellet color L is preferably 50, more preferably 55, and still more preferably 60. 90 is sufficient. If it is 50 or more, the appearance of the film will be good.
The upper limit of the pellet color a of the masterbatch is preferably 2.0, more preferably 1.0, and even more preferably 0.0. The lower limit of pellet color a is preferably -2.0, more preferably -1.5, and still more preferably -1.0. A value of 2.0 or less is sufficient. If it is 2.0 or less, it will not be too red, and if it is -2.0 or more, it will not be too blue, giving the film a good appearance.
The upper limit of the pellet color b of the masterbatch is preferably 2.0, more preferably 0.0. The lower limit of pellet color b is preferably -2.0, more preferably -1.5, and still more preferably -1.0. If it is 2.0 or less, it will not be too yellow, and if it is -2.0 or more, it will not be too green, giving the film a good appearance.
 前記マスターバッチを構成する植物由来直鎖状低密度ポリエチレンの石油由来のポリプロピレン系樹脂と植物由来の直鎖状低密度ポリエチレンの合計量に対する含有率の下限は好ましくは40重量%であり、より好ましくは55重量%である。上記未満では効率よく直鎖状低密度ポリエチレンをフィルムに添加できず、コスト高となることがある。植物由来鎖状低密度ポリエチレンの含有率上限は好ましくは85重量%であり、より好ましくは
75重量%である。上記未満であると、マスターバッチの安息角が小さくなりにくい。
The lower limit of the content of the plant-derived linear low-density polyethylene constituting the masterbatch relative to the total amount of the petroleum-derived polypropylene resin and the plant-derived linear low-density polyethylene is preferably 40% by weight, and more preferably is 55% by weight. If it is less than the above, linear low-density polyethylene cannot be efficiently added to the film, which may result in high costs. The upper limit of the content of the plant-derived chain low density polyethylene is preferably 85% by weight, more preferably 75% by weight. If it is less than the above, the angle of repose of the masterbatch is unlikely to become small.
 前記マスターバッチを製造する際に、熱安定剤を添加することができる。熱安定剤を添加することにより、フィルムを製膜する際に発生する劣化物などの欠点を抑制することができる。使用できる熱安定剤としては、市販されている熱安定剤や酸化防止剤を使用することができる。具体的には例えばBASF製ヒンダーフェノール系酸化防止剤(イルガノックス1010)、BASF製亜リン酸塩処理安定剤(イルガフォス168)、住友化学株式会社製フェノールリン系酸化防止剤(スミライザーGP)などが挙げられる。熱安定剤は単独で使用しても良く、2種類以上を組み合わせても良い。
 マスターバッチに含まれる熱安定剤の濃度の下限は好ましくは2000ppmであり、より好ましくは2500ppmであり、更に好ましくは3000ppmである。上記未満であると欠点が発生しやすいことがある。マスターバッチに含まれる前記熱安定剤の濃度の上限は好ましくは5000ppmであり、より好ましくは4000ppmである。上記を超えると、製造したフィルムロールの端面が赤色に変色し、製品の外観を損ねることがある。
A heat stabilizer can be added when producing the masterbatch. By adding a heat stabilizer, defects such as deterioration products generated during film formation can be suppressed. As the heat stabilizer that can be used, commercially available heat stabilizers and antioxidants can be used. Specifically, for example, a hindered phenolic antioxidant (Irganox 1010) manufactured by BASF, a phosphite treatment stabilizer (Irgafos 168) manufactured by BASF, and a phenol phosphorus antioxidant (Sumilyzer GP) manufactured by Sumitomo Chemical Co., Ltd. Can be mentioned. The heat stabilizer may be used alone or in combination of two or more.
The lower limit of the concentration of the heat stabilizer contained in the masterbatch is preferably 2000 ppm, more preferably 2500 ppm, and even more preferably 3000 ppm. If it is less than the above, defects may easily occur. The upper limit of the concentration of the heat stabilizer contained in the masterbatch is preferably 5000 ppm, more preferably 4000 ppm. If it exceeds the above, the end face of the produced film roll may turn red, which may impair the appearance of the product.
(植物由来直鎖状低密度ポリエチレンを含むマスターバッチの製造方法)
 植物由来直鎖状低密度ポリエチレンと石油由来のポリプロピレン単独重合体及び/またはプロピレン-αオレフィン共重合体樹脂の混合方法としては、混合装置を用いて混合する方法が挙げられる。混合装置としては、ヘンシェルミキサー、スーパーミキサー、タンブラーミキサー、スクリューブレンダー、リボンブレンダー等が挙げられる。
(Production method of masterbatch containing plant-derived linear low-density polyethylene)
A method for mixing plant-derived linear low-density polyethylene and petroleum-derived polypropylene homopolymer and/or propylene-α-olefin copolymer resin includes a method of mixing using a mixing device. Examples of the mixing device include Henschel mixer, super mixer, tumbler mixer, screw blender, ribbon blender, and the like.
 マスターバッチには後述する酸化防止剤を添加することが好ましい。市販されている原料はもともと酸化防止剤を添加していることがあるが、追加することによって、フィッシュアイなどを大幅に低減することができる。これはポリプロピレン系樹脂の押出し温度が直鎖状低密度ポリエチレンの融点よりも高いため、植物由来ポリエチレン樹脂の劣化が進行しやすくなるためと考えられる。 It is preferable to add an antioxidant, which will be described later, to the masterbatch. Commercially available raw materials may originally have antioxidants added, but by adding antioxidants, fish eyes and the like can be significantly reduced. This is thought to be because the extrusion temperature of the polypropylene resin is higher than the melting point of linear low density polyethylene, so that deterioration of the plant-derived polyethylene resin progresses more easily.
 酸化防止剤としては、生成したラジカルを捕捉して酸化を防止する一次酸化防止剤、あるいは生成したパーオキサイドを分解して酸化を防止する二次酸化防止剤のいずれであってもよく、一次酸化防止剤としてはフェノール系酸化防止剤、アミン系酸化防止剤があげられ、二次酸化防止剤としてはリン系酸化防止剤、硫黄系酸化防止剤があげられる。 The antioxidant may be either a primary antioxidant that prevents oxidation by capturing generated radicals, or a secondary antioxidant that decomposes generated peroxide and prevents oxidation. Examples of the inhibitor include phenolic antioxidants and amine antioxidants, and examples of secondary antioxidants include phosphorus-based antioxidants and sulfur-based antioxidants.
 フェノール系熱安定剤としては、例えば、イルガノックス1010(Irganox1010、チバ・スペシャルティ・ケミカルズ社製、化学式名:ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、イルガノックス1076(Irganox1076、BASFジャパン社製、登録商標、化学式名:オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)、サイアノックス1790(Cyanox1790、サイアナミド社製、登録商標、化学式名:1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌル酸)、イルガノックス1098(Irganox1098、BASFジャパン社製、登録商標、化学式名:N,N′-(ヘキサン-1,6‐ジイル)ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド])、スミライザーGA-80(SumilizerGA-80、住
友化学社製、登録商標、化学式名:3,9-ビス[2-{3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5・5]ウンデカンなどが挙げられる。
Examples of the phenolic heat stabilizer include Irganox 1010 (manufactured by Ciba Specialty Chemicals, chemical formula: pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate). ], Irganox 1076 (manufactured by BASF Japan Co., Ltd., registered trademark, chemical formula name: octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate), Cyanox 1790 (Cyanox 1790, Cyanamid Co., Ltd.) manufactured by BASF Japan Co., Ltd., chemical formula name: 1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanuric acid), Irganox 1098, manufactured by BASF Japan, registered trademark , Chemical formula name: N,N'-(hexane-1,6-diyl)bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionamide]), Sumilizer GA-80 (SumilizerGA- 80, manufactured by Sumitomo Chemical Co., Ltd., registered trademark, chemical formula name: 3,9-bis[2-{3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionyloxy}-1,1-dimethylethyl ]-2,4,8,10-tetraoxaspiro[5.5]undecane and the like.
リン系熱安定剤としては、例えば、イルガフォス168(Irgafos168、BASFジャパン社製、登録商標、化学式名:トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト)、イルガフォス12(Irgafos12、BASFジャパン社製、登録商標、化学式名:6,6’,6”-[ニトリロトリス(エチレンオキシ)]トリス(2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン)、イルガフォス38(Irgafos38、BASFジャパン社製、登録商標、化学式名:ビス(2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル)エチルエステル亜リン酸)、アデカスタブ329K(ADKSTAB329K、旭電化社製、登録商標、化学式名:トリス(モノ-ジノニルフェニル)ホスファイト)、アデカスタブPEP36(ADKSTAB PEP36、旭電化社製、登録商標、化学式名:ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト)、Hostanox P-EPQ(クラリアント社製、化学式名:テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4′-ビフェニレンジホスホナイト)、GSY-P101(堺化学工業社製、登録商標、化学式名:テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4′-ビフェニレンジホスホナイト)、スミライザーGP(住友化学社製、登録商標、化学式名:6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンズ[d,f][1,3,2]-ジオキサホスフェピン)などが挙げられる。 Examples of the phosphorus-based heat stabilizer include Irgafos 168 (manufactured by BASF Japan, registered trademark, chemical formula name: tris(2,4-di-tert-butylphenyl) phosphite), Irgafos 12 (Irgafos 12, manufactured by BASF Japan). Company, registered trademark, chemical formula name: 6,6',6"-[nitrilotris(ethyleneoxy)]tris(2,4,8,10-tetra-tert-butyldibenzo[d,f][1,3 , 2] dioxaphosphepine), Irgafos 38 (manufactured by BASF Japan, registered trademark, chemical formula name: bis(2,4-bis(1,1-dimethylethyl)-6-methylphenyl) ethyl ester Phosphoric acid), ADKSTAB329K (manufactured by Asahi Denka Co., Ltd., registered trademark, chemical formula name: Tris (mono-dinonylphenyl) phosphite), ADKSTAB PEP36 (ADKSTAB PEP36, manufactured by Asahi Denka Co., Ltd., registered trademark, chemical formula name: Bis) (2,6-di-tert-butyl-4-methylphenyl)pentaerythritol-di-phosphite), Hostanox P-EPQ (manufactured by Clariant, chemical formula name: Tetrakis (2,4-di-tert-butylphenyl) -4,4'-biphenylene diphosphonite), GSY-P101 (manufactured by Sakai Chemical Industry Co., Ltd., registered trademark, chemical formula name: Tetrakis (2,4-di-tert-butyl-5-methylphenyl)-4,4' -biphenylene diphosphonite), Sumilizer GP (manufactured by Sumitomo Chemical Co., Ltd., registered trademark, chemical formula name: 6-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8 , 10-tetra-tert-butyldibenz[d,f][1,3,2]-dioxaphosphepine).
 本発明における上記酸化防止剤の配合量は限定されないが、ポリプロピレン単独重合体及び/またはプロピレン-αオレフィン共重合体樹脂と植物由来直鎖状低密度ポリエチレンの合計量に対して500ppm以上、5000ppm以下の範囲が好ましい。1000ppm以上、4000ppm以下がより好ましく、1500ppm以上、3000ppm以下がさらに好ましい。500ppm未満では後述の酸化防止剤を併用する効果が減少するので好ましくない。逆に、5000ppmを超えた場合は、後述の酸化防止剤を併用する効果が飽和し、該酸化防止剤のフィルム表面への移行によるフィルム白化や製膜工程における冷却ロールの汚染等が引き起こされるので好ましくない。 The amount of the antioxidant in the present invention is not limited, but is 500 ppm or more and 5000 ppm or less based on the total amount of the polypropylene homopolymer and/or propylene-α olefin copolymer resin and plant-derived linear low-density polyethylene. A range of is preferred. It is more preferably 1000 ppm or more and 4000 ppm or less, and even more preferably 1500 ppm or more and 3000 ppm or less. If it is less than 500 ppm, the effect of using the antioxidant described below in combination is reduced, which is not preferable. On the other hand, if it exceeds 5000 ppm, the effect of using the antioxidant described below in combination will be saturated, and the antioxidant will migrate to the film surface, causing film whitening and contamination of the cooling roll during the film forming process. Undesirable.
 マスターバッチの調製方法は、特に制限されるものでなく、公知の方法が挙げられる。例えば、ニーダー、バンバリーミキサー、ロール等の混練機を用いて加熱溶融混練する方法、一軸又は二軸押出機等を用いて加熱溶融混練する方法等が挙げられる。 The method for preparing the masterbatch is not particularly limited, and known methods may be used. Examples include a method of heating and melt-kneading using a kneader, a Banbury mixer, a roll, etc., a method of heating and melt-kneading using a single-screw or twin-screw extruder, and the like.
 マスターバッチ製造時の溶融混練は、170℃以上、280℃以下が好ましく、190℃以上、260℃以下がより好ましい。170℃以上、260℃以下とすることで、マスターバッチ製造時に樹脂にかかる熱履歴を最小限に抑え、フィッシュアイ等の欠点個数を抑制できる。混錬した樹脂をペレット化する方式は特に限定されず、ストランドカット方式、水冷式ホットカット方式、水中カット方式などが使用できるが、ストランドカット方式であると生産性が高いほか、物性の変動が少なくて好ましい。 The melt-kneading during masterbatch production is preferably 170°C or higher and 280°C or lower, more preferably 190°C or higher and 260°C or lower. By controlling the temperature to be 170° C. or more and 260° C. or less, the thermal history applied to the resin during masterbatch production can be minimized, and the number of defects such as fish eyes can be suppressed. The method of pelletizing the kneaded resin is not particularly limited, and the strand cut method, water-cooled hot cut method, underwater cut method, etc. can be used, but the strand cut method not only has high productivity but also reduces fluctuations in physical properties. Less is preferable.
 本発明のポリオレフィン系樹脂フィルムの成形方法は、例えばインフレーション方式、Tダイ方式が使用できるが、透明性を高めるため、Tダイ方式が好ましい。インフレーション方式は冷却媒体が空気であるのに対し、Tダイ方式は冷却ロールを用いるため、冷却速度を高くするには有利な製造方法である。冷却速度を速めることにより、未延伸シートの結晶化を抑制できるため、透明性が有利となる。こうした理由からTダイ方無配向のシートを式が好ましい。Tダイの幅は500mm以上、2000mm以下が好ましい。 As a method for molding the polyolefin resin film of the present invention, for example, an inflation method or a T-die method can be used, but the T-die method is preferable in order to improve transparency. The inflation method uses air as the cooling medium, whereas the T-die method uses cooling rolls, so it is an advantageous manufacturing method for increasing the cooling rate. By increasing the cooling rate, crystallization of the unstretched sheet can be suppressed, and transparency becomes advantageous. For these reasons, it is preferable to use a sheet with no orientation in the T-die direction. The width of the T-die is preferably 500 mm or more and 2000 mm or less.
 溶融混練温度の下限は好ましくは170℃であり、より好ましくは190℃であり、更に好ましくは210℃である。170℃以上とすることで十分に溶融し押出機の負荷を低減することができる。溶融混錬温度の上限は好ましくは300℃であり、より好ましくは280℃であり、更に好ましくは260℃である、300℃以下とすることで、樹脂の熱劣化を低減し異物の少ないフィルムを製造することができる。 The lower limit of the melt-kneading temperature is preferably 170°C, more preferably 190°C, and still more preferably 210°C. By setting the temperature to 170°C or higher, it is possible to sufficiently melt and reduce the load on the extruder. The upper limit of the melting and kneading temperature is preferably 300°C, more preferably 280°C, and still more preferably 260°C. By setting it to 300°C or less, thermal deterioration of the resin can be reduced and a film with less foreign matter can be produced. can be manufactured.
(圧力変動)
 フィルムを製造する際のコア層の圧力変動は好ましくは0.5MPa以下であり、より好ましくは0.3MPa以下である。0.5MPa以下であるとサージングが発生しにくく、流れ方向のバイオマス度の変動が小さく、欠点個数も少ない。
 フィルムを製造する際のラミネート層の圧力変動は好ましくは0.5MPa以下であり、より好ましくは0.3MPa以下である。0.5MPa以下であるとサージングが発生しにくく、流れ方向のバイオマス度の変動が小さく、欠点個数も少ない。
(pressure fluctuation)
The pressure fluctuation in the core layer during production of the film is preferably 0.5 MPa or less, more preferably 0.3 MPa or less. When the pressure is 0.5 MPa or less, surging is unlikely to occur, fluctuations in biomass degree in the flow direction are small, and the number of defects is small.
The pressure fluctuation of the laminate layer during production of the film is preferably 0.5 MPa or less, more preferably 0.3 MPa or less. When the pressure is 0.5 MPa or less, surging is unlikely to occur, fluctuations in biomass degree in the flow direction are small, and the number of defects is small.
 ヒートシール層、コア層、ラミネート層用のポリオレフィン系樹脂組成物の原料をそれぞれ混合し、別々の押出機で溶融混合押し出しし、Tダイから溶融したシール層、コア層、ラミネート層の積層溶融樹脂フィルムを冷却ロール上にキャスティングし、無配向の積層フィルムを得る。冷却ロールの温度の下限は好ましくは15℃であり、より好ましくは20℃である。上記未満であると、冷却ロールに結露が発生し、密着不足となることがある。冷却ロールの上限は好ましくは60℃でより好ましくは50℃である。上記を超えると透明性が悪化することがある。
 冷却ロールでの冷却に際しては、エアーノズル等で冷却ロール上のフ積層溶融樹脂フィルムの両端を固定し、エアーナイフ等で積層溶融樹脂フィルムの全幅を冷却ロールへ押さえつけることが好ましく、さらに同時に真空チャンバーを作用させ溶融樹脂シートと冷却ロールの間への空気の巻き込みを防止するのが好ましい。エアーノズルは、両端ともフィルム進行方向に直列に設置し、ダイス周りはシートで囲い、溶融樹脂シートに風が当たらないようにするのが好ましい。また、真空チャンバーの吸引口の方向を押出されたシートの進行方向に合わせるのが好ましい。
 冷却固化された無配向の積層樹脂フィルムの両端の耳部分はスリット刃により裁断し、別ラインへ導く。フィルム走行速度は30m/min以上、50m/min以下が好ましい。
 積層樹脂フィルムのラミネート層の表面にコロナ処理(電力密度10W・min/m以上、30W・min/m以下)を施すのが好ましい。
 得られた積層樹脂フィルムは耳部分をトリミングし、張力をかけ、コンタクトロールで押さえながらロールに巻き取る。この後25℃以上、50℃以下の温度で12時間以上、36時間以下の期間エージングを行うことが好ましい。
 最後にスリット機によって再度ロールの両端を裁断し、フィルムロールとする。フィルムの幅は400mm以上、1800m以下が好ましく、長さは1000m以上、6000m以下が好ましい。
The raw materials for the polyolefin resin compositions for the heat seal layer, core layer, and laminate layer are mixed, melt mixed and extruded using separate extruders, and the laminated molten resin of the seal layer, core layer, and laminate layer is melted from a T-die. The film is cast onto a cooling roll to obtain a non-oriented laminated film. The lower limit of the temperature of the cooling roll is preferably 15°C, more preferably 20°C. If it is less than the above, dew condensation may occur on the cooling roll, resulting in insufficient adhesion. The upper limit of the cooling roll is preferably 60°C, more preferably 50°C. If it exceeds the above, transparency may deteriorate.
When cooling with a cooling roll, it is preferable to fix both ends of the laminated molten resin film on the cooling roll with an air nozzle, etc., press the entire width of the laminated molten resin film onto the cooling roll with an air knife, etc., and at the same time, place the laminated molten resin film in a vacuum chamber. It is preferable to prevent air from being entrained between the molten resin sheet and the cooling roll by applying It is preferable that both ends of the air nozzle be installed in series in the film traveling direction, and that the die be surrounded by a sheet to prevent wind from hitting the molten resin sheet. Further, it is preferable to align the direction of the suction port of the vacuum chamber with the traveling direction of the extruded sheet.
The ears on both ends of the cooled and solidified non-oriented laminated resin film are cut with a slit blade and guided to another line. The film running speed is preferably 30 m/min or more and 50 m/min or less.
It is preferable to subject the surface of the laminate layer of the laminated resin film to corona treatment (power density: 10 W·min/m 2 or more, 30 W·min/m 2 or less).
The edges of the obtained laminated resin film are trimmed, tension is applied, and the film is rolled up while being pressed with a contact roll. After this, it is preferable to perform aging at a temperature of 25° C. or more and 50° C. or less for a period of 12 hours or more and 36 hours or less.
Finally, both ends of the roll are cut again using a slitting machine to form a film roll. The width of the film is preferably 400 mm or more and 1800 m or less, and the length is preferably 1000 m or more and 6000 m or less.
(ポリオレフィン系樹脂フィルムの特性)
(平均のバイオマス度)
 本発明のポリオレフィン系樹脂フィルムの平均のバイオマス度の下限は好ましくは5%であり、より好ましくは8%であり、更に好ましくは10%である。5%未満であると環境負荷低減効果が小さい。バイオマス度の上限は好ましくは20%であり、より好ましくは17%であり、更に好ましくは14%である。20%を超えるとシール強度が低下することがある。
(Characteristics of polyolefin resin film)
(Average biomass degree)
The lower limit of the average biomass degree of the polyolefin resin film of the present invention is preferably 5%, more preferably 8%, and even more preferably 10%. If it is less than 5%, the effect of reducing environmental load will be small. The upper limit of the biomass degree is preferably 20%, more preferably 17%, and still more preferably 14%. If it exceeds 20%, the seal strength may decrease.
(バイオマス度の標準偏差)
本発明のポリオレフィン系樹脂フィルムロールの長手方向に500m間隔(9行)、幅方向に400mm間隔(3列)の27箇所で測定したバイオマス度の標準偏差の上限は好ましくは0.60%であり、より好ましくは0.50%であり、更に好ましくは0.40である。0.50%を超えると、製造された包装体の中にバイオマス度の低いものが発生しやすい。標準偏差は0.05%であれば充分である。
 バイオマス度の測定において、全測定箇所のバイオマス度の測定値の標準偏差を下記(式1)にて算出した。
Figure JPOXMLDOC01-appb-M000001
(Standard deviation of biomass degree)
The upper limit of the standard deviation of the biomass content measured at 27 locations at 500 m intervals (9 rows) in the longitudinal direction and 400 mm intervals (3 rows) in the width direction of the polyolefin resin film roll of the present invention is preferably 0.60%. , more preferably 0.50%, still more preferably 0.40. When it exceeds 0.50%, products with a low degree of biomass are likely to occur in the manufactured packaging. A standard deviation of 0.05% is sufficient.
In the measurement of the degree of biomass, the standard deviation of the measured values of the degree of biomass at all measurement points was calculated using the following (Formula 1).
Figure JPOXMLDOC01-appb-M000001
(長手方向のバイオマス度の変動率)
 本発明のポリオレフィン系樹脂フィルムの長手方向のバイオマス度の変動率の下限は好ましくは2%であり、より好ましくは4%であり、さらに好ましくは6%である。2%であれば充分である。バイオマス度の変動率の上限は好ましくは20%であり、より好ましくは15%であり、更に好ましくは10%である。20%を超えると、製造された包装体の中にバイオマス度の低いものが発生しやすい。
 前記のバイオマス度の測定において、全測定箇所のバイオマス度の測定値を用いて変動率を算出した。
 例えば、実施例1では27か所のバイオマス度の測定値の変動率を下記(式2)にて算出した。
変動率=(Bmax-Bmin)/Bave [%]・・・(式2)
ave 4000mあたりのバイオマス度の平均値[%]
max 4000mあたりのバイオマス度の最大値[%]
min 4000mあたりのバイオマス度の最小値[%]
(Variation rate of biomass degree in longitudinal direction)
The lower limit of the variation rate of biomass degree in the longitudinal direction of the polyolefin resin film of the present invention is preferably 2%, more preferably 4%, and still more preferably 6%. 2% is sufficient. The upper limit of the rate of variation in biomass degree is preferably 20%, more preferably 15%, and even more preferably 10%. If it exceeds 20%, products with a low degree of biomass are likely to occur in the manufactured packaging.
In the measurement of the degree of biomass described above, the rate of variation was calculated using the measured values of the degree of biomass at all measurement points.
For example, in Example 1, the fluctuation rate of the measured values of biomass degree at 27 locations was calculated using the following (Equation 2).
Variation rate = (B max - B min )/B ave [%]... (Formula 2)
Average value of biomass degree per 4000m [%]
B max Maximum biomass degree per 4000m [%]
B min Minimum biomass degree per 4000m [%]
(ヘイズ)
 本発明のポリオレフィン系樹脂フィルムのヘイズの下限は好ましくは1.0%であり、より好ましくは2.0%であり、さらに好ましくは2.5%であり、特に好ましくは3.0%である。1.0%以上であるとフィルム表面の凹凸が極端に少ない状態ではないため包装体の内面ブロッキングが発生しにくい。
 ヘイズの上限は好ましくは20.0%であり、より好ましくは15.0%であり、更に好ましくは10.0%であり、よりさらに好ましくは8.0%である。20.0%以下であると包装体の視認性を得られやすい。直鎖状低密度ポリエチレンは結晶性が高く、ヘイズが増大しやすいが、上記好ましい範囲内での添加であればヘイズの増大は抑えられる。
(Haze)
The lower limit of haze of the polyolefin resin film of the present invention is preferably 1.0%, more preferably 2.0%, still more preferably 2.5%, particularly preferably 3.0%. . If it is 1.0% or more, the unevenness of the film surface is not extremely small, so that blocking of the inner surface of the package is less likely to occur.
The upper limit of haze is preferably 20.0%, more preferably 15.0%, still more preferably 10.0%, and even more preferably 8.0%. When it is 20.0% or less, visibility of the package can be easily obtained. Linear low-density polyethylene has high crystallinity and tends to increase haze, but if it is added within the above-mentioned preferred range, increase in haze can be suppressed.
(静摩擦係数)
 本発明のポリオレフィン系樹脂フィルムの静摩擦係数の上限は好ましくは0.70であり、より好ましくは0.50であり、さらに好ましくは0.40である。0.70以下であると包装体に食品を充填する時や開封した時にない面同士が滑りやすく口開きが良い。
 単体の静摩擦係数の下限は好ましくは0.10であり、より好ましくは0.15であり、さらに好ましくは0.20であり、よりさらに好ましくは0.25であり、特に好ましくは0.30である。0.10以上であるとフィルムロールを運搬する時に巻き崩れしにくい。
(Static friction coefficient)
The upper limit of the static friction coefficient of the polyolefin resin film of the present invention is preferably 0.70, more preferably 0.50, and still more preferably 0.40. If it is 0.70 or less, the missing surfaces will easily slide against each other when filling the package with food or opening the package, resulting in a good opening.
The lower limit of the static friction coefficient of a single unit is preferably 0.10, more preferably 0.15, still more preferably 0.20, even more preferably 0.25, particularly preferably 0.30. be. If it is 0.10 or more, the film roll will be less likely to collapse when being transported.
(ヤング率)
 本発明のポリオレフィン系樹脂フィルムのヤング率(長手方向)の下限は好ましくは200MPaであり、より好ましくは300MPaであり、さらに好ましくは400MPaであり、よりさらに好ましくは500MPaである。200MPa未満であると腰が弱すぎて加工しにくいことがある。ヤング率(長手方向)の上限は好ましくは1000MPaであり、より好ましくは800MPaであり、よりさらに好ましくは750MPaである。1000MPaを超えるフィルムは脆いため、耐破袋性が悪化することがある。
 本発明のポリオレフィン系樹脂フィルムのヤング率(幅方向)の下限は好ましくは200MPaであり、より好ましくは300MPaであり、さらに好ましくは400MPaであり、よりさらに好ましくは500MPaであり、特に好ましくは600MPaである。200MPa未満であると腰が弱すぎて加工しにくいことがある。ヤング率(幅方向)の上限は好ましくは1000MPaであり、より好ましくは800MPaであり、さらに好ましくは750MPaである。1000MPaを超えるフィルムは脆いため、耐破袋性が悪化することがある。ポリオレフィン系樹脂フィルムに直鎖状低密度ポリエチレンを少量加えると、ヤング率が増大する。
(Young's modulus)
The lower limit of Young's modulus (longitudinal direction) of the polyolefin resin film of the present invention is preferably 200 MPa, more preferably 300 MPa, still more preferably 400 MPa, even more preferably 500 MPa. If it is less than 200 MPa, it may be too weak and difficult to process. The upper limit of Young's modulus (longitudinal direction) is preferably 1000 MPa, more preferably 800 MPa, even more preferably 750 MPa. Films exceeding 1000 MPa are brittle and may have poor bag tear resistance.
The lower limit of Young's modulus (width direction) of the polyolefin resin film of the present invention is preferably 200 MPa, more preferably 300 MPa, still more preferably 400 MPa, even more preferably 500 MPa, particularly preferably 600 MPa. be. If it is less than 200 MPa, it may be too weak and difficult to process. The upper limit of Young's modulus (width direction) is preferably 1000 MPa, more preferably 800 MPa, and still more preferably 750 MPa. Films exceeding 1000 MPa are brittle and may have poor bag tear resistance. When a small amount of linear low density polyethylene is added to a polyolefin resin film, Young's modulus increases.
(衝撃強度)
 本本発明のポリオレフィン系樹脂フィルムの衝撃強度の下限は好ましくは0.20Jであり、より好ましくは0.25Jであり、さらに好ましくは0.30Jであり、より好ましくは0.55Jである。0.20J以上とすることで、包装体の耐落下破袋性を高めることができる。衝撃強度は1.0Jあれば充分である。衝撃強度は厚み、及びフィルムの分子配向に大きく依存する。また、衝撃強度と耐落下破袋性は必ずしも相関しない。
(Impact strength)
The lower limit of the impact strength of the polyolefin resin film of the present invention is preferably 0.20J, more preferably 0.25J, still more preferably 0.30J, and even more preferably 0.55J. By setting it to 0.20 J or more, the drop-breakage resistance of the package can be improved. An impact strength of 1.0 J is sufficient. Impact strength is highly dependent on the thickness and molecular orientation of the film. Furthermore, impact strength and drop-break resistance do not necessarily correlate.
(加速ブロッキング強度)
 本発明のポリオレフィン系樹脂フィルムの加速ブロッキング強度の下限は好ましくは20mN/70mmであり、より好ましくは30mN/70mmであり、よりさらに好ましくは36mN/70mmである。20mN/70mm以上であるとフィルムの腰感が得られやすい。加速ブロッキング強度の上限は好ましくは100mN/70mmであり、より好ましくは80mN/70mmであり、よりさらに好ましくは70mN/70mmであり、特に好ましくは60mN/70mmである。100mN/70mm以下であると包装体の内面でブロッキングを起こしにくい。コア層、ラミネート層への直鎖状低密度ポリエチレン添加であれば、加速ブロッキング強度の悪化は抑えられる。
(acceleration blocking strength)
The lower limit of the accelerated blocking strength of the polyolefin resin film of the present invention is preferably 20 mN/70 mm, more preferably 30 mN/70 mm, even more preferably 36 mN/70 mm. When it is 20 mN/70 mm or more, the film tends to have a stiff feel. The upper limit of the acceleration blocking strength is preferably 100 mN/70 mm, more preferably 80 mN/70 mm, even more preferably 70 mN/70 mm, particularly preferably 60 mN/70 mm. When it is 100 mN/70 mm or less, blocking is unlikely to occur on the inner surface of the package. If linear low density polyethylene is added to the core layer and laminate layer, deterioration in acceleration blocking strength can be suppressed.
(突刺強度)
 本発明のポリオレフィン系樹脂フィルム単体の突刺強度の下限は好ましくは1.0Nであり、より好ましくは1.2Nであり、さらに好ましくは1.5Nであり、特に好ましくは1.7Nである。1.0N以上であると積層体の耐突刺しピンホール性が良好となる。突刺強度は5.0Nあれば極めて優れ、3.0Nであれば十分である。突刺し強度は、フィルムの配向に大きく依存するため、樹脂の変更のみではあまり変化しない。
(Piercing strength)
The lower limit of the puncture strength of the single polyolefin resin film of the present invention is preferably 1.0N, more preferably 1.2N, still more preferably 1.5N, particularly preferably 1.7N. When it is 1.0 N or more, the laminate has good puncture pinhole resistance. A puncture strength of 5.0N is extremely good, and a puncture strength of 3.0N is sufficient. Since the puncture strength largely depends on the orientation of the film, it does not change much just by changing the resin.
(ヒートシール開始温度)
 本発明のポリオレフィン系樹脂フィルムのヒートシール開始温度の下限は好ましくは110℃であり、より好ましくは120℃である。110℃以上であると、腰感が高くハンドリングがしやすい。ヒートシール開始温度の上限は150℃であり、より好ましくは140℃であり、更に好ましくは130℃である。150℃以下であると高速で包装体を製造することができ、経済的メリットがある。ヒートシール開始温度は、ヒートシール層の融点に大きく影響を受ける。そのためコア層、ラミネート層への直鎖状低密度ポリエチレンであれば、ヒートシール温度の変化は抑えられる。
(Heat sealing start temperature)
The lower limit of the heat sealing start temperature of the polyolefin resin film of the present invention is preferably 110°C, more preferably 120°C. When the temperature is 110° C. or higher, it has a high stiffness and is easy to handle. The upper limit of the heat sealing start temperature is 150°C, more preferably 140°C, and even more preferably 130°C. When the temperature is 150° C. or lower, packages can be manufactured at high speed, which is economically advantageous. The heat-sealing start temperature is greatly influenced by the melting point of the heat-sealing layer. Therefore, if linear low-density polyethylene is used for the core layer and laminate layer, changes in heat sealing temperature can be suppressed.
(フィルム面配向係数)
 本発明のポリオレフィン系樹脂フィルムの面配向係数の下限は好ましくは0.000であり、より好ましくは0.001である。上記未満のフィルムを製造することは困難である。フィルムの面配向の上限は0.010であり、より好ましくは0.008であり、更に好ましくは0.006以下である。上記以上であるとフィルムが不均一に延伸され、厚み均一性が悪化することがある。
(Film plane orientation coefficient)
The lower limit of the planar orientation coefficient of the polyolefin resin film of the present invention is preferably 0.000, more preferably 0.001. It is difficult to produce a film with less than the above. The upper limit of the plane orientation of the film is 0.010, more preferably 0.008, and still more preferably 0.006 or less. If it is more than the above, the film may be stretched non-uniformly and the thickness uniformity may deteriorate.
(濡れ張力)
 本発明のポリオレフィン系樹脂フィルムの、ポリアミド樹脂フィルム、ポリエステル樹脂フィルム、及びポリプロピレン樹脂フィルムからなる群から選択される少なくとも1種のフィルムとラミネートする面の濡れ張力の下限は好ましくは30mN/mであり、より好ましくは35mN/mである。30mN/m以上であるとラミネート強度が低下しにくい。濡れ張力の上限は好ましくは55mN/mであり、より好ましくは50mN/mである。55mN/m以下であるとポリオレフィン系樹脂フィルムをロールに巻回したときにフィルム同士のブロッキングが発生しにくい。
(wet tension)
The lower limit of the wetting tension of the surface of the polyolefin resin film of the present invention to be laminated with at least one film selected from the group consisting of a polyamide resin film, a polyester resin film, and a polypropylene resin film is preferably 30 mN/m. , more preferably 35 mN/m. When it is 30 mN/m or more, the laminate strength is unlikely to decrease. The upper limit of wetting tension is preferably 55 mN/m, more preferably 50 mN/m. When the polyolefin resin film is wound into a roll as it is 55 mN/m or less, blocking between the films is unlikely to occur.
(欠点個数)
 本発明のポリオレフィン系樹脂フィルムの長手方向4000m、幅方向1000mmの範囲における欠点個数の上限は、好ましくは200個であり、より好ましくは150個であり、更に好ましくは100個である。200個以下であると、フィルムの外観が良好である他、不良品の発生率が小さくなる。
(Number of defects)
The upper limit of the number of defects in the range of 4000 m in the longitudinal direction and 1000 mm in the width direction of the polyolefin resin film of the present invention is preferably 200, more preferably 150, and even more preferably 100. When the number is 200 or less, the appearance of the film is good and the incidence of defective products is reduced.
(積層体の構成及び製造方法)
 本発明を構成するポリオレフィン系樹脂フィルムを用いたフィルム積層体は、前記ポリオレフィン系樹脂フィルムをシーラントとして用い、ポリアミド系樹脂フィルム、ポリエステル系樹脂フィルム、及びポリプロピレン系樹脂フィルムからなる群から選択される少なくとも1種の二軸配向フィルムとの積層体である。また、公知の技術として接着性やバリア性を付与する目的でこれらの基材フィルムにコーティングや蒸着加工をしたものを用いたり、アルミ箔をさらに積層するなどの構成としてもよい。
 具体的には例えば、二軸延伸PET(ポリエチレンテレフタレート)フィルム/アルミ箔/シーラント、二軸延伸PET(ポリエチレンテレフタレート)フィルム/二軸延伸ナイロンフィルム/シーラント、二軸延伸ナイロンフィルム/シーラント、二軸延伸ポリプロピレンフィルム/シーラント、二軸延伸(ポリエチレンテレフタレート)PETフィルム/二軸延伸ナイロンフィルム/アルミ箔/シーラントなどが挙げられる。
 本発明を構成するポリオレフィン系樹脂フィルムをシーラントとして使用することで、積層体のヒートシール性を向上することができる。
 積層体の作成方法は本発明のポリオレフィン系樹脂フィルムロールと二軸配向フィルムロールからそれぞれのフィルムを巻き出し、ドライラミネート方式、押し出しラミネート方式など公知の方法を使用し、接着剤層を介して、ラミネートすることが挙げられるが、いずれのラミネート方式であっても良い。フィルム積層体はロールの状態で保管及び搬送するのが好ましい。
 積層体ロールのポリオレフィン系樹脂フィルムのバイオマス度の標準偏差の上限は好ましくは0.60%であり、より好ましくは0.50%であり、更に好ましくは0.40である。0.50%を超えると、製造された包装体の中にバイオマス度の低いものが発生しやすい。標準偏差は0.05%であれば充分である。
 積層体ロールのポリオレフィン系樹脂フィルムの長手方向のバイオマス度の変動率の下限は好ましくは2%であり、より好ましくは4%であり、さらに好ましくは6%である。2%であれば充分である。バイオマス度の変動率の上限は好ましくは20%であり、より好ましくは15%であり、更に好ましくは10%である。20%を超えると、製造された包装体の中にバイオマス度の低いものが発生しやすい。
(Structure and manufacturing method of laminate)
A film laminate using a polyolefin resin film constituting the present invention uses the polyolefin resin film as a sealant and at least one selected from the group consisting of a polyamide resin film, a polyester resin film, and a polypropylene resin film. It is a laminate with one type of biaxially oriented film. Further, as known techniques, these base films may be coated or vapor-deposited for the purpose of imparting adhesiveness or barrier properties, or aluminum foil may be further laminated.
Specifically, for example, biaxially oriented PET (polyethylene terephthalate) film/aluminum foil/sealant, biaxially oriented PET (polyethylene terephthalate) film/biaxially oriented nylon film/sealant, biaxially oriented nylon film/sealant, biaxially oriented Examples include polypropylene film/sealant, biaxially oriented (polyethylene terephthalate) PET film/biaxially oriented nylon film/aluminum foil/sealant, and the like.
By using the polyolefin resin film constituting the present invention as a sealant, the heat sealability of the laminate can be improved.
The method for creating the laminate is to unwind the respective films from the polyolefin resin film roll of the present invention and the biaxially oriented film roll, and use a known method such as a dry lamination method or an extrusion lamination method to create a laminate using an adhesive layer. One example is lamination, but any lamination method may be used. It is preferable to store and transport the film laminate in the form of a roll.
The upper limit of the standard deviation of the degree of biomass of the polyolefin resin film of the laminate roll is preferably 0.60%, more preferably 0.50%, and even more preferably 0.40. When it exceeds 0.50%, products with a low degree of biomass are likely to occur in the manufactured packaging. A standard deviation of 0.05% is sufficient.
The lower limit of the variation rate of biomass degree in the longitudinal direction of the polyolefin resin film of the laminate roll is preferably 2%, more preferably 4%, and even more preferably 6%. 2% is sufficient. The upper limit of the rate of variation in biomass degree is preferably 20%, more preferably 15%, and even more preferably 10%. If it exceeds 20%, products with a low degree of biomass are likely to occur in the manufactured packaging.
 積層体の特性について述べる。
(ヒートシール強度)
 本発明の積層体のヒートシール強度の下限は好ましくは20N/15mmであり、より好ましくは22N/15mmである。20N/15mm以上であると耐破袋性が得られやすい。ヒートシール強度は60N/15mmあれば非常に優れ、35N/15mmであれば十分である。
The characteristics of the laminate will be described.
(Heat seal strength)
The lower limit of the heat seal strength of the laminate of the present invention is preferably 20 N/15 mm, more preferably 22 N/15 mm. If it is 20N/15mm or more, bag breakage resistance is likely to be obtained. Heat sealing strength of 60N/15mm is very good, and 35N/15mm is sufficient.
(突刺強度)
 本発明の積層体の突刺強度の下限は好ましくは7Nであり、より好ましくは8Nであり、さらに好ましくは9Nである。7N以上であると包装体に突起が接触した時にピンホールが発生しにくい。突刺強度の上限は好ましくは45Nであり、より好ましくは30Nであり、さらに好ましくは15Nである。45N以下であると積層体の腰感が強すぎずハンドリングが容易となる。突刺し強度は、フィルムの配向に大きく依存するため、樹脂の変更のみではあまり変化しない。
(Piercing strength)
The lower limit of the puncture strength of the laminate of the present invention is preferably 7N, more preferably 8N, and even more preferably 9N. If it is 7N or more, pinholes are less likely to occur when the protrusion comes into contact with the package. The upper limit of the puncture strength is preferably 45N, more preferably 30N, and still more preferably 15N. If it is 45 N or less, the laminate will not have too stiff a feeling and will be easy to handle. Since the puncture strength largely depends on the orientation of the film, it does not change much just by changing the resin.
(包装体)
 食料品などの内容物を自然界の埃やガスなどから保護することを目的に、内容物の周囲を包むように配置された前記ポリオレフィン系樹脂フィルムまたは前記積層体を包装体と呼ぶ。包装体は前記ポリオレフィン系樹脂フィルムまたは前記積層体を切り出し、加熱したヒートシールバーや超音波などで内面同士を接着し、袋状にするなどして製造され、例えば長方形の2枚をヒートシール層側が内側になるよう重ね、四辺をヒートシールした四方シール袋や、背貼り包装袋などが広く使用されている。内容物は食料品であってもよいが、日用雑貨などその他の生産物などであってもよく、包装体の形状もスタンディングパウチやピロー包装体などの長方形以外の形状であってもよい。
(packaging)
The polyolefin resin film or the laminate arranged to surround the contents, such as foodstuffs, for the purpose of protecting the contents from natural dust, gas, etc., is called a packaging body. The packaging body is manufactured by cutting out the polyolefin resin film or the laminate, and bonding the inner surfaces to each other using a heated heat seal bar or ultrasonic waves to form a bag. For example, two rectangular sheets are bonded with a heat seal layer. Widely used are four-sided sealed bags, which are stacked so that the sides are inward and heat-sealed on all four sides, and packaging bags with backing. The contents may be foodstuffs, but they may also be other products such as daily necessities, and the shape of the package may be other than rectangular, such as a standing pouch or a pillow package.
 以下、実施例によって本発明を詳細に説明するが、これらに限定されるものではない。各実施例で得られた特性は以下の方法により測定、評価した。評価の際、フィルム製膜の工程におけるフィルムの流れ方向を長手方向、流れ方向に垂直な方向を幅方向とした。 Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto. The characteristics obtained in each example were measured and evaluated by the following methods. At the time of evaluation, the flow direction of the film in the film forming process was defined as the longitudinal direction, and the direction perpendicular to the flow direction was defined as the width direction.
(1)樹脂密度
 JIS K7112:1999 年のD法(密度こうばい管)に準じて密度を評価した。
N=3で測定し、平均値を算出した。
(1) Resin density Density was evaluated according to JIS K7112: 1999 method D (density-containing tube).
Measurements were made with N=3, and the average value was calculated.
(2)メルトフローレート(MFR)
 JIS K-7210-1に基づきポリプロピレン系樹脂については230℃、荷重2.16kg、植物由来直鎖状低密度ポリエチレンについては190℃、荷重2.16kgで測定を行った。N=3で測定し、平均値を算出した。
(2) Melt flow rate (MFR)
Based on JIS K-7210-1, measurements were carried out at 230°C and a load of 2.16kg for polypropylene resin, and at 190°C and a load of 2.16kg for plant-derived linear low-density polyethylene. Measurements were made with N=3, and the average value was calculated.
(3)融点
 (株)島津製作所製、島津示差走査熱量計DSC-60を用いて得られた、樹脂のDSC曲線の最大融解ピークの温度を融点とした。開始温度30℃、昇温速度5℃/min、終了温度180℃とした。N=3で測定し、平均値を算出した。
(3) Melting point The temperature at the maximum melting peak of the DSC curve of the resin, obtained using a Shimadzu differential scanning calorimeter DSC-60 manufactured by Shimadzu Corporation, was defined as the melting point. The starting temperature was 30°C, the heating rate was 5°C/min, and the ending temperature was 180°C. Measurements were made with N=3, and the average value was calculated.
(4)バイオマス度
ASTM D6866 バイオベース試験に基づき、フィルム中のC14(質量数14の炭素原子)濃度からバイオマス度を算出した。サンプリング箇所は1000mm幅、巻長4000mのフィルムロールにおいて、長手方向へは表層から巻き芯にかけて500mおきに9行、幅方向へはロールの中央と、左右へそれぞれ400mmの地点で3列の合計27か所で行った。前記27箇所の測定値の平均値を算出した(図5)。
(4) Biomass degree Based on the ASTM D6866 biobased test, the biomass degree was calculated from the C14 (carbon atom with mass number 14) concentration in the film. The sampling points were a film roll with a width of 1000 mm and a winding length of 4000 m. In the longitudinal direction, there were 9 rows every 500 m from the surface layer to the core, and in the width direction, 3 rows at the center of the roll and 400 mm to the left and right, for a total of 27 samples. I went somewhere. The average value of the measured values at the 27 locations was calculated (FIG. 5).
(4)バイオマス度
 ASTM D6866 バイオベース試験に基づき、フィルム中のC14(質量数14の炭素原子)濃度からバイオマス度を算出した。
 サンプリング箇所はフィルムロールの表層の端から2mの距離のフィルムを除去し、さらに2mの距離のフィルムから長手方向へ表層から巻き芯にかけて500mおきの位置、かつ幅方向へはフィルムロールの中央と、左端から100mm内側、右端から100mm内側の位置で行った。全測定箇所のバイオマス度の平均値を算出した。
 例えば、実施例1でのサンプリング箇所は1000mm幅、巻長4000mのフィルムロールにおいて、長手方向へは表層から巻き芯にかけて500mおきに9行、幅方向へはロールの中央と、左右へそれぞれ400mmの地点で3列の合計27か所で行った。前記27箇所の測定値の平均値を算出した(図5)。
(4) Biomass degree Based on ASTM D6866 biobased test, the biomass degree was calculated from the C14 (carbon atom with mass number 14) concentration in the film.
The sampling points were to remove the film at a distance of 2 m from the edge of the surface layer of the film roll, and from the film at a distance of 2 m from the film at intervals of 500 m in the longitudinal direction from the surface layer to the winding core, and in the width direction at the center of the film roll. This was done at a position 100 mm inside from the left end and 100 mm inside from the right end. The average value of biomass degree at all measurement points was calculated.
For example, in Example 1, the sampling points were a film roll with a width of 1000 mm and a winding length of 4000 m. In the longitudinal direction, there were 9 rows every 500 m from the surface layer to the core, and in the width direction, at the center of the roll and 400 mm to the left and right. The test was conducted at a total of 27 locations in three rows. The average value of the measured values at the 27 locations was calculated (FIG. 5).
(5)長手方向のバイオマス度の標準偏差
 前記のバイオマス度の測定において、全測定箇所のバイオマス度の測定値の標準偏差を下記(式1)にて算出した。
Figure JPOXMLDOC01-appb-M000002
(5) Standard deviation of the degree of biomass in the longitudinal direction In the measurement of the degree of biomass described above, the standard deviation of the measured values of the degree of biomass at all measurement points was calculated using the following (Formula 1).
Figure JPOXMLDOC01-appb-M000002
(6)長手方向のバイオマス度の変動率
 前記のバイオマス度の測定において、全測定箇所のバイオマス度の測定値を用いて変動率を算出した。
 例えば、実施例1では27か所のバイオマス度の測定値の変動率を下記(式2)にて算出した。
変動率=(Bmax-Bmin)/Bave [%]・・・(式2)
ave 4000mあたりのバイオマス度の平均値[%]
max 4000mあたりのバイオマス度の最大値[%]
min 4000mあたりのバイオマス度の最小値[%]
(6) Rate of variation in degree of biomass in the longitudinal direction In the measurement of degree of biomass described above, the rate of change was calculated using the measured values of degree of biomass at all measurement points.
For example, in Example 1, the fluctuation rate of the measured values of biomass degree at 27 locations was calculated using the following (Equation 2).
Variation rate = (B max - B min )/B ave [%]... (Formula 2)
Average value of biomass degree per 4000m [%]
B max Maximum biomass degree per 4000m [%]
B min Minimum biomass degree per 4000m [%]
(8)静摩擦係数
 フィルムのシール層側同士を重ね合わせ、万能引張試験機STM-T-50BP(東洋ボールドウィン製)を用い、JIS K7125に準じて測定した。サンプルは以下の3種の方法において、長手方向に200mm、幅方向に80mmの大きさで切り出し、測定を行った。
(8) Static Friction Coefficient The seal layer sides of the films were stacked together and measured using a universal tensile tester STM-T-50BP (manufactured by Toyo Baldwin) according to JIS K7125. Samples were cut out to a size of 200 mm in the longitudinal direction and 80 mm in the width direction and measured using the following three methods.
(9)ヤング率
 JIS-K7127に準拠して長手方向および幅方向の引張強度を23℃で測定した。試験片は長さ150mm、幅15mmとし、試験速度は200mm/minとした。N=3で測定し、平均値を算出した。
(9) Young's Modulus Tensile strength in the longitudinal direction and width direction was measured at 23° C. in accordance with JIS-K7127. The test piece had a length of 150 mm and a width of 15 mm, and the test speed was 200 mm/min. Measurements were made with N=3, and the average value was calculated.
(10)耐衝撃性(衝撃強度)
 東洋精機製フィルムインパクトテスターを用いて、23℃にて測定した。
(10) Impact resistance (impact strength)
Measurement was performed at 23° C. using a film impact tester manufactured by Toyo Seiki.
(11)加速ブロッキング強度
 ポリオレフィン系樹脂フィルムを長手方向148mm、幅方向105mmに切り出した。シール面同士を向かい合わせて重ね合わせた。50℃環境で30分予熱をした後、50℃に保持した7.0cm四方のアルミ板で挟み込んだ。(株)東洋精機製作所製ミニテストプレスMP-SCHを使用し、50℃、100kNの条件でアルミ板とサンプルをプレスし、15分間保持した。取り出したサンプルを幅方向70mmに裁断した。重ねたサンプルを30mm開き、3mm径の金属棒を幅方向に平行になるように挿入した。(株)島津製作所製オートグラフAG-Iにサンプルを装着し、長手方向に200mm/minの条件で金属棒を移動させる時の加重を測定した。N=3で測定し、平均値を算出した。
(11) Accelerated blocking strength A polyolefin resin film was cut out to a length of 148 mm in the longitudinal direction and 105 mm in the width direction. The seal surfaces were placed one on top of the other, facing each other. After preheating in an environment of 50°C for 30 minutes, it was sandwiched between 7.0 cm square aluminum plates maintained at 50°C. Using a mini test press MP-SCH manufactured by Toyo Seiki Seisakusho Co., Ltd., the aluminum plate and sample were pressed at 50° C. and 100 kN, and held for 15 minutes. The sample taken out was cut into pieces of 70 mm in the width direction. The stacked samples were opened 30 mm apart, and a metal rod with a diameter of 3 mm was inserted parallel to the width direction. The sample was mounted on an Autograph AG-I manufactured by Shimadzu Corporation, and the load was measured when the metal bar was moved in the longitudinal direction at a rate of 200 mm/min. Measurements were made with N=3, and the average value was calculated.
(12)突刺強度
 ポリオレフィン系樹脂フィルム、及び積層体を、食品衛生法における「食品、添加物等の規格基準 第3:器具及び容器包装」(昭和57年厚生省告示第20号)の「2.強度等試験法」に準拠して23℃下で突刺強度を測定した。先端部直径0.7mmの針を、突刺速度50mm/分でフィルムに突き刺し、針がフィルムを貫通する際の強度を測定した。N=3で測定し、平均値を算出した。
(12) Puncture strength Polyolefin resin films and laminates are tested in accordance with 2. of the Food Sanitation Act's "Specifications and Standards for Foods, Additives, etc. 3: Utensils and Containers and Packaging" (Ministry of Health and Welfare Notification No. 20 of 1980). The puncture strength was measured at 23° C. in accordance with the “Strength etc. Test Method”. A needle with a tip diameter of 0.7 mm was pierced into the film at a piercing speed of 50 mm/min, and the strength when the needle penetrated the film was measured. Measurements were made with N=3, and the average value was calculated.
(13)ヒートシール開始温度
 ポリオレフィン系樹脂フィルムについて、JIS Z 1713(2009)に準拠してヒートシール開始温度を測定した。このとき、フィルムを50mm×250mm(フィルムの幅方向×長さ方向)の長方形の試験片(ヒートシール用)に裁断した。2枚の試験片のシール層部同士を重ね、株式会社東洋精機製作所製,熱傾斜試験機(ヒートシール試験機)を使用し、ヒートシール圧力を0.2MPa、ヒートシール時間を1.0secとした。そして、5℃ずつ傾斜をつけ昇温する条件にてヒートシールした。ヒートシール後、試験片を15mm幅で切り出した。ヒートシールにより融着した試験片を180°に開き、チャックに未シール部分を挟みシール部分を剥離した。そして、ヒートシール強度が4.9Nに到達した時点の温度を求めた。試験機はインストロンインスツルメンツ製の万能材料試験機5965を使用した。試験速度は200mm/minとした。N=5で測定し、平均値を算出した。
(13) Heat-sealing start temperature The heat-sealing start temperature of the polyolefin resin film was measured in accordance with JIS Z 1713 (2009). At this time, the film was cut into rectangular test pieces (for heat sealing) measuring 50 mm x 250 mm (width direction x length direction of the film). The sealing layer portions of the two test pieces were overlapped, and using a thermal gradient tester (heat sealing tester) manufactured by Toyo Seiki Seisakusho Co., Ltd., the heat sealing pressure was 0.2 MPa and the heat sealing time was 1.0 sec. did. Then, heat sealing was performed under the condition that the temperature was increased at a gradient of 5°C. After heat sealing, a test piece was cut out to a width of 15 mm. The heat-sealed test piece was opened 180°, the unsealed portion was held between a chuck, and the sealed portion was peeled off. Then, the temperature at which the heat seal strength reached 4.9N was determined. The testing machine used was a universal material testing machine 5965 manufactured by Instron Instruments. The test speed was 200 mm/min. Measurements were made with N=5, and the average value was calculated.
(14)面配向係数
 JIS K0062:1999 年の化学製品の屈折率測定法に準じて密度を評価した。
N=3で測定し、平均値を算出した。面配向係数は下記式により計算した。
面配向係数=(Nx+Ny)/2-Nz
Nx:長手方向の屈折率 Ny:幅方向の屈折率 Nz:厚み方向の屈折率
(14) Planar orientation coefficient Density was evaluated according to JIS K0062:1999 refractive index measurement method for chemical products.
Measurements were made with N=3, and the average value was calculated. The plane orientation coefficient was calculated using the following formula.
Planar orientation coefficient = (Nx+Ny)/2-Nz
Nx: refractive index in the longitudinal direction Ny: refractive index in the width direction Nz: refractive index in the thickness direction
(15)濡れ張力
 JIS-K6768プラスチック-フィルム及びシート-ぬれ張力試験方法に準拠してラミネート層表面の濡れ張力を測定した。
(15) Wet tension Wet tension on the surface of the laminate layer was measured in accordance with JIS-K6768 Plastic Films and Sheets Wet Tension Test Method.
(16)ヒートシール強度
 ヒートシール条件および強度測定条件は次の通りである。すなわち、実施例・比較例で得られた積層体のポリオレフィン系樹脂フィルム側同士を重ね合せ、0.2MPaの圧力で1秒間、シールバーの幅10mm、ヒートシール温度160℃でヒートシールした後、放冷した。各温度でヒートシールされたフィルムからそれぞれ長手方向80mm、幅方向15mmの試験片を切り取り、各試験片について、クロスヘッドスピード200mm/分でヒートシール部を剥離した際の剥離強度を測定した。試験機はインストロンインスツルメンツ製の万能材料試験機5965を使用した。各N=3回で測定を行い、平均値を算出した。
(16) Heat seal strength Heat seal conditions and strength measurement conditions are as follows. That is, the polyolefin resin film sides of the laminates obtained in Examples and Comparative Examples were overlapped and heat-sealed at a pressure of 0.2 MPa for 1 second with a seal bar width of 10 mm and a heat-sealing temperature of 160°C. It was left to cool. A test piece measuring 80 mm in the longitudinal direction and 15 mm in the width direction was cut from the film heat-sealed at each temperature, and the peel strength of each test piece was measured when the heat-sealed portion was peeled off at a crosshead speed of 200 mm/min. The testing machine used was a universal material testing machine 5965 manufactured by Instron Instruments. Each measurement was performed N=3 times, and the average value was calculated.
(17)欠点個数
 長手方向4000m幅方向1000mmのフィルムロールについて、株式会社ヒューテック製、型式MaxEye.X320の欠点検知機を使用して長さ0.3mm以上1.0mm以下の欠点個数をカウントした。n=3本のロールを検査して平均値を算出した。
(17) Number of defects Regarding a film roll of 4000 mm in the longitudinal direction and 1000 mm in the width direction, a film roll manufactured by Hewtech Co., Ltd., model MaxEye. The number of defects with a length of 0.3 mm or more and 1.0 mm or less was counted using a defect detector X320. n=3 rolls were inspected and the average value was calculated.
(18)ペレットサイズ
 ペレットをランダムに採取し図1、図2に示す長辺x、短辺y、厚さzの長さをノギスにより測定した。n=10個のサンプルで測定を行い、平均値を算出した。
(18) Pellet size Pellets were randomly sampled and the lengths of the long side x, short side y, and thickness z shown in FIGS. 1 and 2 were measured using a caliper. Measurements were performed on n=10 samples, and the average value was calculated.
(19)安息角 水平に置いた直径10cmの円盤状の受け皿に漏斗を用いてペレットを堆積させた。受
け皿からペレットがこぼれて、堆積したペレットが一定の山を形成した時点で、山の傾斜角を分度器で測定した。4分の1円ごとに測定し、その平均値を算出した。
(19) Angle of Repose Pellets were deposited using a funnel on a disk-shaped saucer with a diameter of 10 cm placed horizontally. When the pellets spilled from the tray and the accumulated pellets formed a certain mountain, the inclination angle of the mountain was measured with a protractor. Measurements were taken for each quarter of a yen, and the average value was calculated.
(20)ペレットカラー
 日本電色工業(株)製測色色差計を使用して、JIS Z-8722に準拠しカラーXYZを測定した後、カラーL、a、bを計算した。n=3で測定を行い、平均値を算出した。
(20) Pellet color After measuring color XYZ in accordance with JIS Z-8722 using a colorimeter manufactured by Nippon Denshoku Kogyo Co., Ltd., colors L, a, and b were calculated. Measurements were performed with n=3, and the average value was calculated.
(21)原料の計量変動
 コア層、及びラミネート層の計量ラインにおいて計量された原料比率を監視した。表2、表3における設定比率に対する差の最大値の絶対値を計量変動値とした。
(21) Variation in raw material metering The ratio of raw materials weighed in the core layer and laminate layer metering lines was monitored. The absolute value of the maximum difference with respect to the set ratio in Tables 2 and 3 was taken as the metric fluctuation value.
(22)圧力変動
 コア層、及びラミネート層のメルトラインにおいて、ダイス前の圧力を1sec間隔、60minにわたり監視した。60minの範囲における圧力の最大値と最小値の差を算出し、圧力変動値とした。
(22) Pressure fluctuation At the melt lines of the core layer and laminate layer, the pressure in front of the die was monitored at 1 sec intervals for 60 min. The difference between the maximum value and the minimum value of pressure within a range of 60 min was calculated and used as a pressure fluctuation value.
(マスターバッチの製造)
 マスターバッチの原料としては下記の原料を使用した。
住友化学製プロピレン-エチレン-ブテンランダム共重合体 FL8115A(MFR7.0g/10min、融点148℃)
日本ポリプロ製プロピレン-エチレンランダム共重合体 FG3DC(MFR9.5g/10min、融点148℃)
ブラスケム製エチレン-ヘキセン共重合体(植物由来直鎖状低密度ポリエチレン) SLH218(MFR2.3g/10min、密度916kg/m、融点126℃)
(Manufacture of masterbatch)
The following raw materials were used as raw materials for the masterbatch.
Sumitomo Chemical propylene-ethylene-butene random copolymer FL8115A (MFR7.0g/10min, melting point 148°C)
Propylene-ethylene random copolymer FG3DC manufactured by Nippon Polypro (MFR9.5g/10min, melting point 148°C)
Braskem ethylene-hexene copolymer (vegetable-derived linear low-density polyethylene) SLH218 (MFR 2.3 g/10 min, density 916 kg/m 3 , melting point 126°C)
(マスターバッチ:MB1~MB6、MB8)
 表1に記載のマスターバッチであるMB1~MB6、MB8のそれぞれの原料比率において、ポリプロピレン系樹脂、植物由来直鎖状低密度ポリエチレンペレットを容量200kgのタンブラーミキサーに投入した。この時、ポリプロピレン系樹脂と植物由来直鎖状低密度ポリエチレンの合計を100重量%として表1の重量比となるよう、熱安定剤を添加した。タンブラーミキサーで十分に撹拌した後、25kgずつ小分けして排出し、ドライブレンドを得た。
得られたドライブレンドを造粒押出し機上のインナーコーンを備えたホッパーに投入し、45mmφの2軸押出機(スクリュー径43mmφ L/D;19.5)を用いて、スクリューの回転数、フィーダーの回転数を、それぞれ200rpm、15rpm、混錬部の温度を250℃に調整した条件下で押出した。フィルタメッシュ構成は50メッシュ/100メッシュ/50メッシュとした。ストランドカット方式によって造粒し、ペレットのメッシュは上限をφ6.0mm、下限をφ2.5mmとして分粒し、マスターバッチを得た。得られたマスターバッチの物性を表1に示した。
(Masterbatch: MB1 to MB6, MB8)
Polypropylene resin and plant-derived linear low-density polyethylene pellets were charged into a tumbler mixer with a capacity of 200 kg at the respective raw material ratios of masterbatches MB1 to MB6 and MB8 listed in Table 1. At this time, a heat stabilizer was added so that the weight ratios shown in Table 1 were obtained, with the total of the polypropylene resin and plant-derived linear low-density polyethylene being 100% by weight. After thorough stirring with a tumbler mixer, the mixture was divided into 25 kg portions and discharged to obtain a dry blend.
The obtained dry blend was put into a hopper equipped with an inner cone on a granulation extruder, and using a 45 mmφ twin screw extruder (screw diameter 43 mmφ L/D; 19.5), the rotation speed of the screw and the feeder were adjusted. The extrusion was carried out under conditions in which the rotational speed was adjusted to 200 rpm and 15 rpm, respectively, and the temperature of the kneading section was adjusted to 250°C. The filter mesh configuration was 50 mesh/100 mesh/50 mesh. Granulation was carried out by a strand cutting method, and the pellet mesh was sized with an upper limit of φ6.0 mm and a lower limit of φ2.5 mm to obtain a masterbatch. Table 1 shows the physical properties of the obtained masterbatch.
(マスターバッチ:MB7)
 表1に記載のMB7の原料比率において、スクリューの回転数、フィーダーの回転数を、それぞれ400rpm、30rpmとし、ペレットメッシュの上限をφ9.0mmとした他はMB1と同様の条件でマスターバッチを得た。得られたマスターバッチの物性を表1に示した。
(Masterbatch: MB7)
A masterbatch was obtained under the same conditions as MB1, except that the raw material ratio of MB7 was as shown in Table 1, the screw rotation speed and feeder rotation speed were 400 rpm and 30 rpm, respectively, and the upper limit of the pellet mesh was φ9.0 mm. Ta. Table 1 shows the physical properties of the obtained masterbatch.
(実施例1)
(ヒートシール層で使用する原料)
PP-1:住友化学製プロピレン-エチレン-ブテンランダム共重合体 FL6745A(MFR6.0g/10min、融点130℃)
シリカ:信越化学工業製非晶性シリカKMP130-4(平均粒径4μm)
有機潤滑剤:日本精化製ベヘニン酸アミドBNT-22H
熱安定剤:BASFジャパン製ヒンダードフェノール系酸化防止剤イルガノックス1010、BASFジャパン製リン系加工安定剤イルガフォス168
(Example 1)
(Raw materials used in heat seal layer)
PP-1: Sumitomo Chemical propylene-ethylene-butene random copolymer FL6745A (MFR6.0g/10min, melting point 130°C)
Silica: Amorphous silica KMP130-4 manufactured by Shin-Etsu Chemical (average particle size 4 μm)
Organic lubricant: Nippon Fine Chemical behenic acid amide BNT-22H
Heat stabilizer: Irganox 1010, a hindered phenolic antioxidant manufactured by BASF Japan, Irgafos 168, a phosphorus processing stabilizer manufactured by BASF Japan
(コア層で使用する原料)
PP-2:住友化学製プロピレン-エチレン-ブテンランダム共重合体 FL8115A(MFR7.0g/10min、融点148℃)
LL-1:ブラスケム製エチレン-ヘキセン共重合体(植物由来直鎖状低密度ポリエチレン) SLH218(MFR2.3g/10min、密度916kg/m、融点126℃)
有機潤滑剤:日本精化製ベヘニン酸アミドBNT-22H
熱安定剤:BASFジャパン製ヒンダードフェノール系酸化防止剤イルガノックス1010、BASFジャパン製リン系加工安定剤イルガフォス168
(Raw materials used in core layer)
PP-2: Sumitomo Chemical propylene-ethylene-butene random copolymer FL8115A (MFR7.0g/10min, melting point 148°C)
LL-1: Braskem ethylene-hexene copolymer (vegetable-derived linear low-density polyethylene) SLH218 (MFR 2.3 g/10 min, density 916 kg/m 3 , melting point 126°C)
Organic lubricant: Nippon Fine Chemical behenic acid amide BNT-22H
Heat stabilizer: Irganox 1010, a hindered phenolic antioxidant manufactured by BASF Japan, Irgafos 168, a phosphorus processing stabilizer manufactured by BASF Japan
(ラミネート層での使用する原料)
PP-2:住友化学製プロピレン-エチレン-ブテンランダム共重合体 FL8115A(MFR7.0g/10min、融点148℃)
LL-1:ブラスケム製エチレン-ヘキセン共重合体(植物由来直鎖状低密度ポリエチレン)SLH218(MFR2.3g/10min、密度916kg/m、融点126℃)
熱安定剤:BASFジャパン製ヒンダードフェノール系酸化防止剤イルガノックス1010、BASFジャパン製リン系加工安定剤イルガフォス168
(Raw materials used in laminate layer)
PP-2: Sumitomo Chemical propylene-ethylene-butene random copolymer FL8115A (MFR7.0g/10min, melting point 148°C)
LL-1: Braskem ethylene-hexene copolymer (vegetable-derived linear low-density polyethylene) SLH218 (MFR 2.3 g/10 min, density 916 kg/m 3 , melting point 126°C)
Heat stabilizer: Irganox 1010, a hindered phenolic antioxidant manufactured by BASF Japan, Irgafos 168, a phosphorus processing stabilizer manufactured by BASF Japan
(ポリオレフィン系樹脂フィルム)
 実施例1のポリオレフィン系樹脂フィルムについて、後出の表2に示した各層の樹脂組成とその割合に基づき、原料を調整した。調整は各原料をスクリューフィーダーによって定量輸送しそれぞれの原料を計量した。1回の軽量バッチは、ラミネート層は14kg、コア層は40kg、ヒートシール層は14kgとした。また、表1に記載の各層における調整物を100重量%として、シール層には有機滑剤としてベヘニン酸アミドを360ppm、無機アンチブロッキング剤として平均粒径4μmのシリカを2000ppmとなるようにマスターバッチで添加した。コア層には有機滑剤としてベヘニン酸アミドを270ppmとなるようマスターバッチで添加した。
(Polyolefin resin film)
Regarding the polyolefin resin film of Example 1, raw materials were adjusted based on the resin compositions and proportions of each layer shown in Table 2 below. For adjustment, each raw material was quantitatively transported using a screw feeder and each raw material was weighed. In one lightweight batch, the laminate layer weighed 14 kg, the core layer weighed 40 kg, and the heat seal layer weighed 14 kg. In addition, assuming that the preparations in each layer listed in Table 1 are 100% by weight, the seal layer contains 360 ppm of behenic acid amide as an organic lubricant and 2000 ppm of silica with an average particle size of 4 μm as an inorganic anti-blocking agent in a master batch. Added. Behenic acid amide was added as an organic lubricant to the core layer in a master batch at a concentration of 270 ppm.
(溶融押出)
 中間層に用いる混合原料をスクリュー直径90mmの3ステージ型単軸押出し機で、ヒートシール層用及びラミネート層用の混合原料をそれぞれ直径65mmおよび直径45mmの3ステージ型単軸押出し機を使用し、ヒートシール層/中間層/ラミネート層の順になるよう導入し、巾1400mmでプレランドを2段階にし、かつ溶融樹脂の流れが均一になるように段差部分の形状を曲線状としてダイス内の流れが均一になるように設計したTスロット型ダイに導入し、ダイスの出口温度を230℃で押出した。ヒートシール層/コア層/ラミネート層の厚み比率はそれぞれ25%/55%/20%とした。
(melt extrusion)
A three-stage single-screw extruder with a screw diameter of 90 mm is used for the mixed raw materials used for the intermediate layer, and a three-stage single-screw extruder with a diameter of 65 mm and a diameter of 45 mm for the mixed raw materials for the heat seal layer and the laminate layer, respectively. The heat seal layer/intermediate layer/laminate layer is introduced in this order, and the pre-land is made into two stages with a width of 1400 mm.The shape of the stepped portion is curved to ensure a uniform flow within the die. The sample was introduced into a T-slot type die designed to have a temperature of 230° C. at the outlet of the die. The thickness ratios of the heat seal layer/core layer/laminate layer were 25%/55%/20%, respectively.
(冷却)
 ダイスから出てきた溶融樹脂シートを35℃の冷却ロールで冷却し、厚みが30μmよりなる未延伸のポリオレフィン系樹脂フィルムを得た。冷却ロールでの冷却に際しては、エアーノズルで冷却ロール上のフィルムの両端を固定し、エアーナイフで溶融樹脂シートの全幅を冷却ロールへ押さえつけ、同時に真空チャンバーを作用させ溶融樹脂シートと冷却ロールの間への空気の巻き込みを防止した。エアーノズルは、両端ともフィルム進行方向に直列に設置した。ダイス周りはシートで囲い、溶融樹脂シートに風が当たらないようした。
 また、真空チャンバーの吸引口の方向を押出されたシートの進行方向に合わせた。
(トリミング)
冷却固化されたポリオレフィン系樹脂フィルムの両端の耳部分はスリット刃により裁断し、別ラインへ導いた。
(cooling)
The molten resin sheet coming out of the die was cooled with a cooling roll at 35° C. to obtain an unstretched polyolefin resin film having a thickness of 30 μm. When cooling on a cooling roll, both ends of the film on the cooling roll are fixed with an air nozzle, the entire width of the molten resin sheet is pressed onto the cooling roll with an air knife, and at the same time a vacuum chamber is applied to create a gap between the molten resin sheet and the cooling roll. Prevents air from getting into the The air nozzles were installed in series at both ends in the film advancing direction. The area around the dice was surrounded by a sheet to prevent wind from hitting the molten resin sheet.
In addition, the direction of the suction port of the vacuum chamber was aligned with the direction of movement of the extruded sheet.
(trimming)
The edge portions at both ends of the cooled and solidified polyolefin resin film were cut with a slit blade and led to another line.
(コロナ処理)
 フィルムのラミネート層の表面にコロナ処理(電力密度20W・min/m)を施した。
(Corona treatment)
Corona treatment (power density: 20 W·min/m 2 ) was performed on the surface of the laminate layer of the film.
(巻き取り)
 製膜速度は40m/minで実施した。製膜したフィルムは耳部分をトリミングした。シワにならぬよう、張力をかけ、コンタクトロールで押さえながら巻き取った。40度で24時間エージングを行った後、スリット機によって再度両端を裁断し、幅1000mmのロール状態にして4004m巻き取り、フィルムロールとした。
 フィルムロールの表層の端から2mの距離のフィルムを除去し、さらに2mの距離のフィルムから、幅方向における中央部を単体物性測定用のサンプルとして採取した。
(Take-up)
The film forming speed was 40 m/min. The selvedge portions of the formed film were trimmed. To avoid wrinkles, I applied tension and rolled it up while pressing it with a contact roll. After aging at 40 degrees for 24 hours, both ends were cut again using a slitting machine, and a roll having a width of 1000 mm was wound up by 4004 m to obtain a film roll.
A film at a distance of 2 m from the edge of the surface layer of the film roll was removed, and from the film at a distance of 2 m, the central part in the width direction was taken as a sample for measuring the physical properties of a single unit.
(積層体の作成)
 実施例及び比較例で得られたポリオレフィン系樹脂フィルムと、基材フィルムとして二軸延伸ポリプロピレンフィルム(東洋紡(株)製、P2161、厚み20μm)とを、主剤(東洋モートン社製、TM569)33.6質量部と硬化剤(東洋モートン社製、CAT10L)4.0質量部と酢酸エチル62.4質量部を混合して得られたエステル系接着剤をその塗布量が3.0g/mとなるよう基材フィルムに塗布し、ドライラミネートした。これを巻き取ったものを40℃に保ち、3日間エージングを行い、積層体を得た。
(Creation of laminate)
The polyolefin resin films obtained in Examples and Comparative Examples and a biaxially oriented polypropylene film (manufactured by Toyobo Co., Ltd., P2161, thickness 20 μm) as a base film were used as a base material (manufactured by Toyobo Co., Ltd., TM569) 33. An ester adhesive obtained by mixing 6 parts by mass of a curing agent (manufactured by Toyo Morton Co., Ltd., CAT10L), 4.0 parts by mass and 62.4 parts by mass of ethyl acetate was applied in an amount of 3.0 g/ m2. It was applied to the base film and dry laminated. The wound product was kept at 40° C. and aged for 3 days to obtain a laminate.
(実施例2~実施例9)
 実施例1において、コア層、ラミネート層に用いる原料を表2に示す比率に変更し、同様の方法において30μmのポリオレフィン系樹脂フィルムを得た。実施例1と同様にして積層体を得た。表3に評価結果を示す。
(Example 2 to Example 9)
In Example 1, the raw materials used for the core layer and the laminate layer were changed to the ratios shown in Table 2, and a 30 μm polyolefin resin film was obtained in the same manner. A laminate was obtained in the same manner as in Example 1. Table 3 shows the evaluation results.
(比較例1、比較例4、比較例5、比較例6、比較例7、比較例8)
 実施例1において、ヒートシール層、コア層、ラミネート層に用いる原料を表4に示す比率に変更し、同様の方法において30μmのポリオレフィン系樹脂フィルムを得た。実施例1と同様にして積層体を得た。表5に評価結果を示す。
(Comparative example 1, comparative example 4, comparative example 5, comparative example 6, comparative example 7, comparative example 8)
In Example 1, the raw materials used for the heat seal layer, core layer, and laminate layer were changed to the ratios shown in Table 4, and a 30 μm polyolefin resin film was obtained in the same manner. A laminate was obtained in the same manner as in Example 1. Table 5 shows the evaluation results.
(比較例2、比較例3)
 実施例1において、コア層、ラミネート層に用いる原料を表4に示す比率に変更し、比較例2ではヒートシール層の層比率を20%、コア層の層比率を60%とし、比較例3ではヒートシール層の層比率を3%、コア層の層比率を94%、ラミネート層の層比率を3%とした以外は同様の方法において、30μmのポリオレフィン系樹脂フィルムを得た。
実施例1と同様にして積層体を得た。表5に評価結果を示す。
(Comparative example 2, comparative example 3)
In Example 1, the raw materials used for the core layer and the laminate layer were changed to the ratios shown in Table 4, and in Comparative Example 2, the layer ratio of the heat seal layer was 20%, the layer ratio of the core layer was 60%, and Comparative Example 3 A 30 μm polyolefin resin film was obtained in the same manner except that the heat seal layer ratio was 3%, the core layer ratio was 94%, and the laminate layer ratio was 3%.
A laminate was obtained in the same manner as in Example 1. Table 5 shows the evaluation results.
 比較例1では、植物由来直鎖状低密度ポリエチレンをマスターバッチを使用せず添加したために、流れ方向のバイオマス度の変動が大きいものであった。 In Comparative Example 1, since plant-derived linear low-density polyethylene was added without using a masterbatch, there was a large variation in the degree of biomass in the flow direction.
 比較例2、比較例3では、植物由来直鎖状低密度ポリエチレンをマスターバッチを使用せず添加したために、流れ方向のバイオマス度の変動が大きいものであった。また、ヒートシール層の厚みが薄いために、ヒートシール強度に劣るものであった。 In Comparative Examples 2 and 3, since the plant-derived linear low-density polyethylene was added without using a masterbatch, there was a large variation in the degree of biomass in the flow direction. Furthermore, since the heat seal layer was thin, the heat seal strength was poor.
 比較例4では、植物由来直鎖状低密度ポリエチレンをマスターバッチを使用せず添加したために、流れ方向のバイオマス度の変動が大きいものであった。また、ヒートシール層に植物由来直鎖状低密度ポリエチレンを添加したために、ヒートシール強度に劣るものであった。 In Comparative Example 4, since plant-derived linear low-density polyethylene was added without using a masterbatch, there was a large variation in the degree of biomass in the flow direction. Furthermore, since plant-derived linear low-density polyethylene was added to the heat-sealing layer, the heat-sealing strength was poor.
 比較例5では、植物由来直鎖状低密度ポリエチレンが添加されていないために、環境負荷低減効果が小さいものであった。 In Comparative Example 5, the environmental load reduction effect was small because plant-derived linear low-density polyethylene was not added.
 比較例6では、マスターバッチのポリエチレン比率が大きく、安息角が小さくならなかったため、バイオマス度の変動が大きいものであった。 In Comparative Example 6, the polyethylene ratio of the masterbatch was large and the angle of repose did not become small, so the degree of biomass fluctuated greatly.
 比較例7では、マスターバッチの形状、が大きく、バイオマス度の変動が大きいものであった。 In Comparative Example 7, the shape of the masterbatch was large, and the degree of biomass fluctuated greatly.
 比較例8では、マスターバッチのMFRが大きく、バイオマス度の変動が大きいものであった。 In Comparative Example 8, the masterbatch had a large MFR and a large variation in biomass degree.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明により、製品中のバイオマス度の変動が小さく、欠点の個数が少ないため、これを用いた包装材の不良率が小さく、かつヒートシール強度に優れる、環境配慮型のポリオレフィン系樹脂フィルムを提供することができ、産業に大きく貢献できる。 The present invention provides an environmentally friendly polyolefin resin film that has small fluctuations in biomass content in the product and a small number of defects, so packaging materials using the same have a low defect rate and have excellent heat sealing strength. This can greatly contribute to industry.
1 原料ホッパー(スライドゲート式)
2 原料ホッパー(スライドゲート式)
3 原料ホッパー(スライドゲート式)
4 原料ホッパー(スクリューフィーダー式)
5 混合ホッパー
6 計量機
7 拡販翼
8 移送フィーダー
9 待機ホッパー
10 押出機
11 インナーコーン
1 Raw material hopper (slide gate type)
2 Raw material hopper (slide gate type)
3 Raw material hopper (slide gate type)
4 Raw material hopper (screw feeder type)
5 Mixing hopper 6 Weighing machine 7 Sales expansion wing 8 Transfer feeder 9 Standby hopper 10 Extruder 11 Inner cone

Claims (4)

  1.  ポリプロピレン単独重合体及び/またはプロピレン-αオレフィンランダム共重合体、及び植物由来直鎖状低密度ポリエチレンを含むマスターバッチペレットであって、下記a)~d)を満たす、マスターバッチペレットと、
    プロピレン単独重合体及び/またはプロピレン-αオレフィンランダム共重合体からなるペレットを、
     それぞれ個別に、内壁の角度が水平方向に対して40度以上である混合ホッパーに移送する工程、
     次いで混合したペレットを内壁の角度が水平方向に対して40度以上である待機ホッパーに移送し、さらに、押出機に移送する工程、
     押出し機で混合したペレットを溶融混練する工程、
     押出し機から溶融樹脂シートを押出し、冷却ロールで冷却して、未延伸シートを形成する工程を含む、ポリオレフィン系樹脂フィルムの製造方法。
    a)マスターバッチペレットにおける植物由来直鎖状低密度ポリエチレンの含有量が、ポリプロピレン単独重合体及び/またはプロピレンと炭素数2又は4~20のαオレフィンとのランダム共重合体、及び前記植物由来直鎖状低密度ポリエチレンの合計量の40重量%以上、85重量%以下である。
    b)安息角が20度以上28度以下である。
    c)密度が880kg/m以上、910kg/m以下である。
    d)230℃、2.16kgにおけるMFRが1.0g/10min以上、8.0g/10min以下である。
    A masterbatch pellet containing a polypropylene homopolymer and/or a propylene-α olefin random copolymer, and a plant-derived linear low-density polyethylene, the masterbatch pellet satisfying the following a) to d),
    Pellets made of propylene homopolymer and/or propylene-α olefin random copolymer,
    transferring each separately to a mixing hopper whose inner wall has an angle of 40 degrees or more with respect to the horizontal direction;
    Next, the mixed pellets are transferred to a waiting hopper whose inner wall has an angle of 40 degrees or more with respect to the horizontal direction, and further transferred to an extruder,
    A process of melting and kneading the pellets mixed in an extruder,
    A method for producing a polyolefin resin film, which includes the steps of extruding a molten resin sheet from an extruder, cooling it with a cooling roll, and forming an unstretched sheet.
    a) The content of plant-derived linear low-density polyethylene in the masterbatch pellets is a polypropylene homopolymer and/or a random copolymer of propylene and an α-olefin having 2 or 4 to 20 carbon atoms, and the plant-derived linear low-density polyethylene. It is 40% by weight or more and 85% by weight or less of the total amount of chain low density polyethylene.
    b) The angle of repose is 20 degrees or more and 28 degrees or less.
    c) Density is 880 kg/m 3 or more and 910 kg/m 3 or less.
    d) MFR at 230°C and 2.16 kg is 1.0 g/10 min or more and 8.0 g/10 min or less.
  2. [規則91に基づく訂正 12.07.2023]
     マスターバッチペレットにおけるポリプロピレン単独重合体及び/またはプロピレン-αオレフィンランダム共重合体と植物由来直鎖状低密度ポリエチレンの合計量に対して、酸化防止剤を500ppm以上、5000ppm以下を含有する、請求項1に記載のポリオレフィン系樹脂フィルムの製造方法。
    [Amendment under Rule 91 12.07.2023]
    A claim that contains an antioxidant in an amount of 500 ppm or more and 5000 ppm or less based on the total amount of the polypropylene homopolymer and/or propylene-α olefin random copolymer and plant-derived linear low-density polyethylene in the masterbatch pellet. 1. The method for producing a polyolefin resin film according to 1.
  3.  マスターバッチペレットの形状が円柱状あるいは楕円球状である、請求項1または2に記載のポリオレフィン系樹脂フィルムの製造方法。 The method for producing a polyolefin resin film according to claim 1 or 2, wherein the masterbatch pellets have a cylindrical or ellipsoidal shape.
  4.  マスターバッチペレットの長軸xが6mm以下であり、短軸yの長さが4.5mm以下であり、厚さzの長さが4.5mm以下である、請求項1~3のいずれかに記載のポリオレフィン系樹脂フィルムの製造方法。
     
    Any one of claims 1 to 3, wherein the masterbatch pellet has a long axis x of 6 mm or less, a short axis y of 4.5 mm or less, and a thickness z of 4.5 mm or less. The method for producing the polyolefin resin film described above.
PCT/JP2023/007839 2022-03-16 2023-03-02 Method for producing polyolefin resin film WO2023176482A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022041882 2022-03-16
JP2022-041882 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023176482A1 true WO2023176482A1 (en) 2023-09-21

Family

ID=88023654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007839 WO2023176482A1 (en) 2022-03-16 2023-03-02 Method for producing polyolefin resin film

Country Status (2)

Country Link
TW (1) TW202348395A (en)
WO (1) WO2023176482A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003261718A (en) * 2002-03-06 2003-09-19 Japan Polyolefins Co Ltd Polyolefin-based resin composition, master batch, laminate and method of their production
JP2011037453A (en) * 2009-08-07 2011-02-24 Toyobo Co Ltd Food packaging film
JP2011252082A (en) * 2010-06-02 2011-12-15 Sumitomo Chemical Co Ltd Propylene-based resin composition, masterbatch, composition for polypropylene-based film, and polypropylene-based film
WO2016152835A1 (en) * 2015-03-26 2016-09-29 東洋紡株式会社 Polyethylene film
JP2020032727A (en) * 2019-11-06 2020-03-05 大日本印刷株式会社 Film and packaging bag using plant-derived polyethylene-based resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003261718A (en) * 2002-03-06 2003-09-19 Japan Polyolefins Co Ltd Polyolefin-based resin composition, master batch, laminate and method of their production
JP2011037453A (en) * 2009-08-07 2011-02-24 Toyobo Co Ltd Food packaging film
JP2011252082A (en) * 2010-06-02 2011-12-15 Sumitomo Chemical Co Ltd Propylene-based resin composition, masterbatch, composition for polypropylene-based film, and polypropylene-based film
WO2016152835A1 (en) * 2015-03-26 2016-09-29 東洋紡株式会社 Polyethylene film
JP2020032727A (en) * 2019-11-06 2020-03-05 大日本印刷株式会社 Film and packaging bag using plant-derived polyethylene-based resin

Also Published As

Publication number Publication date
TW202348395A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
JP6467825B2 (en) Sealant film
EP2939948B1 (en) Wrap film
JP4609464B2 (en) Polypropylene-based resin laminated film and method for producing the same
KR102526027B1 (en) Polyethylene film
JPWO2018181011A1 (en) Biaxially oriented polypropylene resin film
TWI439369B (en) Packaging Materials
JP2008030425A (en) Propylenic resin laminated film and its manufacturing method
JP2008155527A (en) Laminate
JP2023158008A (en) Biaxially oriented polypropylene-based resin film, and package using the same
WO2023176482A1 (en) Method for producing polyolefin resin film
WO2023176480A1 (en) Polyolefin resin film roll
WO2023176481A1 (en) Masterbatch pellets
WO2020255643A1 (en) Polyolefin-based resin film, and laminate using same
JP4240076B2 (en) Polypropylene-based resin laminated film and method for producing the same
EP4249245A1 (en) Polyolefin-based resin film, and laminate in which same is used
US20230415464A1 (en) Polyolefin resin film and multilayer body using same
JP6582217B1 (en) LAMINATED SHEET, METHOD FOR PRODUCING LAMINATED SHEET, AND MOLDED BODY
JP4825031B2 (en) Laminated film
JP7167486B2 (en) Polypropylene laminated film
US11866572B2 (en) Polyolefin-based resin film and laminate including the same
CN111344337B (en) Method for producing polyethylene resin film
JP6994398B2 (en) Polypropylene film
JP2008284700A (en) Heat-sealable laminated film
JP2023004379A (en) Drawn film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770440

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024507729

Country of ref document: JP