WO2023176411A1 - Single-walled carbon nanotube dispersion liquid, curable resin composition, cured product and antistatic film - Google Patents

Single-walled carbon nanotube dispersion liquid, curable resin composition, cured product and antistatic film Download PDF

Info

Publication number
WO2023176411A1
WO2023176411A1 PCT/JP2023/007155 JP2023007155W WO2023176411A1 WO 2023176411 A1 WO2023176411 A1 WO 2023176411A1 JP 2023007155 W JP2023007155 W JP 2023007155W WO 2023176411 A1 WO2023176411 A1 WO 2023176411A1
Authority
WO
WIPO (PCT)
Prior art keywords
walled carbon
curable resin
carbon nanotubes
resin composition
mass
Prior art date
Application number
PCT/JP2023/007155
Other languages
French (fr)
Japanese (ja)
Inventor
芽衣 末岡
亮介 伊藤
安史 近田
Original Assignee
株式会社大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪ソーダ filed Critical 株式会社大阪ソーダ
Publication of WO2023176411A1 publication Critical patent/WO2023176411A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Definitions

  • the present invention relates to a single-walled carbon nanotube dispersion, a curable resin composition, a cured product, and an antistatic film.
  • Carbon nanotubes are used in various applications such as conductive fillers, thermally conductive materials, light emitting elements, electrode materials, electrode bonding materials, reinforcing materials, and black pigments.
  • Carbon nanotubes are minute structures with a diameter of nanometers, and because they are not easy to handle or process when used alone, they are produced as a carbon nanotube dispersion in a liquid medium and used for various purposes. It is common that
  • carbon nanotubes are sometimes used in antistatic films for smartphones and the like for the purpose of imparting antistatic properties to the film.
  • a pre-prepared carbon nanotube dispersion is mixed with a resin (transparent resin), and the resulting resin composition is applied onto a transparent substrate in the form of a film.
  • Antistatic films can be produced.
  • antistatic films are required to have high transparency.
  • butyral resin is known as a dispersant that improves the dispersibility of carbon nanotubes in resin (for example, Patent Document 2).
  • butyral resin inhibits the conductivity of carbon nanotubes. For this reason, there is a problem in that it is difficult to use insulating dispersants in applications that require electrical conductivity, such as antistatic films.
  • the present invention has good dispersibility of carbon nanotubes when mixed with a curable resin, and can impart good antistatic properties and excellent transparency to the curable resin composition.
  • the main objective is to provide a novel single-walled carbon nanotube dispersion.
  • Another object of the present invention is to provide a curable resin composition using the single-walled carbon nanotube dispersion, a cured product of the curable resin composition, and an antistatic film using the cured product. do.
  • a single-walled carbon nanotube dispersion containing single-walled carbon nanotubes, a conductive polymer containing a specific repeating unit, and a liquid medium is a dispersion of carbon nanotubes when mixed with a curable resin. It has been found that the antistatic properties and excellent transparency can be imparted to the curable resin composition.
  • the present invention was completed through further studies based on the above findings.
  • Item 1 A single-walled carbon nanotube dispersion liquid comprising a single-walled carbon nanotube, a conductive polymer containing a repeating unit represented by the following formula (1), and a liquid medium.
  • the group R 1 is a linear or branched alkylene group having 3 to 5 carbon atoms
  • the group R 2 is a hydrogen atom, a linear or branched alkyl group, or a group - OR 2 forms a salt.
  • Item 2. The single-walled carbon nanotube dispersion according to item 1, wherein the liquid medium contains at least one of water and an organic solvent.
  • Item 3. Item 3.
  • Measurement conditions for sedimentation rate 100 parts by mass of urethane acrylate and 3 parts by mass of 1-hydroxycyclohexyl-phenyl ketone are mixed with isopropyl alcohol to prepare a resin solution having a solid concentration of urethane acrylate of 30% by mass.
  • the resin solution and the single-walled carbon nanotube dispersion are mixed to prepare a measurement sample containing 0.015% by mass of single-walled carbon nanotubes and 29% by mass of urethane acrylate based on the solid content of urethane acrylate.
  • the sedimentation rate of the single-walled carbon nanotubes is calculated by filling 0.4 ml of the obtained measurement sample into a sample cell, rotating it at a high speed of 4000 rpm, and analyzing the particle separation phenomenon at the center of the cell based on the elapsed time. Item 4.
  • Item 1 wherein the mass ratio of the content of the conductive polymer to the content of the single-walled carbon nanotubes (content of the conductive polymer/content of the single-walled carbon nanotubes) is 1 or more and 10 or less.
  • the single-walled carbon nanotube dispersion according to any one of items 1 to 3.
  • Item 5. A curable resin composition comprising a single-walled carbon nanotube, a conductive polymer containing a repeating unit represented by the following formula (1), a liquid medium, and a curable resin.
  • the group R 1 is a linear or branched alkylene group having 3 to 5 carbon atoms
  • the group R 2 is a hydrogen atom, a linear or branched alkyl group, or a group - OR 2 forms a salt.
  • Item 6. The curable resin composition according to item 5, wherein the liquid medium contains at least one of water and an organic solvent. Section 7. Item 7. The curable resin composition according to item 5 or 6, wherein the single-walled carbon nanotubes have a sedimentation rate of 60%/h or less, as measured by a light transmission centrifugal sedimentation method under the following conditions.
  • the sedimentation rate of the single-walled carbon nanotubes is calculated by filling a sample cell with 0.4 ml of the curable resin composition, rotating it at a high speed of 4000 rpm, and analyzing the particle separation phenomenon at the center of the cell based on the elapsed time.
  • Section 8. Item 5, wherein the mass ratio of the content of the conductive polymer to the content of the single-walled carbon nanotubes (content of the conductive polymer/content of the single-walled carbon nanotubes) is 1 or more and 10 or less.
  • the curable resin composition according to any one of items 1 to 7. Item 9.
  • Item 10. A cured product of the curable resin composition according to any one of Items 5 to 9. Item 11. Item 11. The cured product according to item 10, which is in the form of a film. Item 12. The surface resistance value is 10 11 ⁇ /sq. Item 12. The cured product according to item 10 or 11, which is as follows. Item 13. a transparent base material; an antistatic layer formed of the cured product according to any one of items 10 to 12, laminated on the transparent base material; An antistatic film comprising: Section 14. Item 14. The antistatic film according to item 13, which satisfies the following conditions. (Total light transmittance of the antistatic film/Total light transmittance of the antistatic film when the antistatic layer is formed only with the curable resin)>0.94
  • carbon nanotubes have good dispersibility when mixed with a curable resin, and can provide a curable resin composition with good antistatic properties and excellent transparency.
  • a layered carbon nanotube dispersion can be provided.
  • the single-walled carbon nanotube dispersion of the present invention comprises single-walled carbon nanotubes and a conductive polymer (hereinafter referred to as conductive polymer A) containing a repeating unit represented by the following formula (1). ) and a liquid medium.
  • conductive polymer A a conductive polymer containing a repeating unit represented by the following formula (1).
  • the single-walled carbon nanotube dispersion liquid of the present invention has good dispersibility of carbon nanotubes when mixed with a curable resin, and has good antistatic properties for the curable resin composition. It can provide excellent transparency.
  • the single-walled carbon nanotube dispersion of the present invention will be described in detail.
  • the origin (manufacturing method) of the single-walled carbon nanotubes is not limited, and the effects of the present invention can be achieved.
  • Single-walled carbon nanotubes may be manufactured by any method within the above range. Examples of methods for producing single-walled carbon nanotubes include arc discharge, laser evaporation, and chemical vapor deposition (CVD), with chemical vapor deposition (CVD) being preferred.
  • the number of single-walled carbon nanotubes contained in the CNT dispersion of the present invention may be one, or two or more.
  • the average particle diameter (D50) of the single-walled carbon nanotubes is not particularly limited as long as it achieves the effects of the present disclosure, but is preferably 4000 nm or less, more preferably It is 2000 nm or less, more preferably 600 nm or less.
  • the average particle diameter (D50) of the single-walled carbon nanotubes is preferably 1 nm or more, more preferably 10 nm or more, and still more preferably 100 nm or more.
  • the average particle diameter (D50) of single-walled carbon nanotubes was measured as follows.
  • the average particle diameter (D50) of the single-walled carbon nanotubes contained in the CNT dispersion of the present invention was measured using a dynamic light scattering particle size distribution analyzer (for example, manufactured by Otsuka Electronics, product name "ELSZ-2000ZS"). Measure the particle size distribution (scattering intensity standard) of CNTs.
  • the particle size (nm) at which the cumulative volume calculated from the small diameter side is 50% is determined, and is defined as the scattering intensity average particle size D50.
  • the single-walled carbon nanotubes have a G band and a D band in the Raman spectrum at an excitation wavelength of 532 nm measured by resonance Raman scattering method.
  • the peak intensity ratio G/D is preferably 200 or less, more preferably 150 or less, even more preferably 100 or less, even more preferably 50 or less.
  • the peak intensity ratio G/D is preferably 0.5 or more, more preferably 1 or more, still more preferably 2 or more. Note that "peak intensity ratio” means "height ratio".
  • the The sedimentation rate of the layered carbon nanotubes is preferably 60%/h or less, more preferably 40%/h or less, still more preferably 35%/h or less, even more preferably 30%/h or less.
  • the sedimentation rate is, for example, 0.001%/h or more, 0.01%/h or more, 0.1%/h or more.
  • the sedimentation rate of the single-walled carbon nanotubes is calculated by filling 0.4 ml of the obtained measurement sample into a sample cell, rotating it at a high speed of 4000 rpm, and analyzing the particle separation phenomenon at the center of the cell based on the elapsed time.
  • a UV curable resin for coating is used, specifically, a product name: Beamset 575 manufactured by Arakawa Chemical Industry Co., Ltd. (70% by mass of urethane oligomer, 30% by mass of trimethyloltopropane triacrylate, number of functional groups) 3 to 6, solid content 100%, viscosity at 25° C.
  • Beam Set 575 is not available, use DIC Corporation's product name: Luxidia V-4025 (UV curable resin for coating (urethane acrylate), number of functional groups: 6, solid content 78-82% by mass (butyl acetate), The viscosity at 25° C. is 370 to 630 mPa ⁇ s and the weight average molecular weight is about 1000).
  • the content of single-walled carbon nanotubes is not particularly limited as long as it does not impede the effects of the present invention, and from the viewpoint of achieving the effects of the present invention more preferably, the content rate of single-walled carbon nanotubes is preferably 0. 01 to 1% by weight, more preferably 0.05 to 0.5% by weight, even more preferably 0.1 to 0.5% by weight.
  • the CNT dispersion of the present invention contains conductive polymer A along with single-walled carbon nanotubes.
  • the conductive polymer A includes a repeating unit represented by the following formula (1).
  • the group R 1 is a straight or branched alkylene group having 3 to 5 carbon atoms.
  • the group R 2 is a hydrogen atom, a linear or branched alkyl group, or the group -O--R 2 forms a salt.
  • the repeating unit represented by formula (1) above is a sulfonic acid.
  • the repeating unit represented by the above formula (1) is a sulfonic acid alkyl ester, and the number of carbon atoms in the alkyl group is preferably 3 to 3. It is 5.
  • the group -O-R 2 forms a salt
  • the compound represented by the above formula (1) is a sulfonic acid salt, and specific examples include lithium salt, sodium salt, and potassium salt of sulfonic acid. Examples include.
  • R 1 is preferably a branched alkylene group having 4 or 5 carbon atoms, particularly preferably a group -CH 2 -CH 2 -CH(CH 3 )-, a group -CH 2 - CH 2 --CH(CH 2 CH 3 )- or the group --CH 2 --CH 2 --CH 2 --CH(CH 3 )- is preferred. That is, the repeating unit represented by formula (1) is preferably the following formula (11), formula (12), or formula (13).
  • R 2 is H, Na, a group -CH 2 C(CH 3 ) 3 , a group -CH(CH 3 ) (CH 2 CH 3 ), the group -CH(CH 3 ) 2 and the like are preferred.
  • the linker (spacer) connecting the repeating units represented by the above formula (1) is not particularly limited as long as the effect of the present invention is achieved, and for example, the number of carbon atoms is 1 to 1. 3 alkylene groups are mentioned. Further, the repeating unit represented by the above formula (1) may be directly bonded without having a linker (spacer).
  • the conductive polymer A containing the repeating unit represented by the above formula (1) is preferably a self-doped conductive polymer.
  • a self-doping conductive polymer is a conductive polymer that has a substituent (sulfo group, sulfonate group, etc.) in the main chain of the polymer, either directly or via a spacer, that provides both water solubility and a doping effect.
  • SELFTRON registered trademark
  • SELFTRON registered trademark
  • the number of repeating units contained in the conductive polymer A may be only one type, or two or more types.
  • the proportion of the repeating units represented by the above formula (1) is not particularly limited as long as the effects of the present invention are achieved, and for example, , 5% by mass or more, 30% by mass or more, 50% by mass or more, 70% by mass or more, 90% by mass or more.
  • the proportion of the repeating unit represented by the above formula (1) is large, the conductive polymer A tends to become a self-doped conductive polymer.
  • the weight average molecular weight of the conductive polymer A is preferably about 1,000 to 1,000,000, more preferably about 1,500 to 750,000. , more preferably about 2,000 to 500,000.
  • the weight average molecular weight of the conductive polymer A is a value measured by gel filtration chromatography (GPC).
  • the viscosity of a 1% by mass isopropanol solution of conductive polymer A is, for example, 1 mPa ⁇ s or more, preferably 1 to 200 mPa ⁇ s. degree, more preferably about 1 to 100 mPa ⁇ s, still more preferably about 1 to 50 mPa ⁇ s.
  • the method for measuring the viscosity of conductive polymer A is as follows.
  • ⁇ Method of measuring viscosity> The viscosity is measured using a rheometer under the conditions of 25° C. environment, shear rate of 1.0 s ⁇ 1 and cone plate: C60/2.
  • the conductivity of a 1% by mass isopropanol solution of conductive polymer A is preferably about 10 5 to 10 10 ⁇ /sq., more preferably about 10 ⁇ /sq. It is about 6 to 10 9 ⁇ /sq., more preferably about 10 7 to 10 9 ⁇ /sq.
  • the conductivity of the conductive polymer A is determined by applying No. .. This is a value measured according to the method of the example after coating by a bar coating method using a No. 12 bar coater and drying by air drying.
  • the mass ratio of the content of conductive polymer A to the content of single-walled carbon nanotubes is preferably about 1 to 20, more preferably about 1 to 15, and even more preferably about 1 to 10.
  • the mass ratio of the content of conductive polymer A to the content of single-walled carbon nanotubes is preferably 10 or less.
  • the content of conductive polymer A is not particularly limited as long as it does not impede the effects of the present invention, and from the viewpoint of more preferably achieving the effects of the present invention, the content of conductive polymer A is preferably 0. .01 to 20% by weight, more preferably 0.05 to 10% by weight, and still more preferably 0.1 to 5% by weight.
  • the CNT dispersion of the present invention further contains a liquid medium.
  • the type of liquid medium is not particularly limited as long as it does not impede the effects of the present invention, and may be either a polar solvent or a non-polar solvent, for example.
  • the CNT dispersion of the present invention may contain only one type of liquid medium, or may contain two or more types. From the viewpoint of achieving the effects of the present invention more suitably, the liquid medium is preferably a polar solvent.
  • Preferred liquid media include, for example, water and organic solvents (preferably alcohols such as ethanol and isopropyl alcohol, and polar organic solvents such as DMF, NMP, ethyl acetate, butyl acetate, and methyl ethyl ketone).
  • organic solvents preferably alcohols such as ethanol and isopropyl alcohol, and polar organic solvents such as DMF, NMP, ethyl acetate, butyl acetate, and methyl ethyl ketone.
  • isopropyl alcohol is particularly preferred.
  • the proportion of the liquid medium in the CNT dispersion of the present invention is preferably 79.00 to 99.98% by mass, more preferably 84.00 to 99.98% by mass, even more preferably 89.00 to 99.98% by mass. Mass % is mentioned.
  • the CNT dispersion of the present invention further contains additives included in known carbon nanotube dispersions, if necessary. Good too.
  • the content of the additive is preferably 10% by mass or less, more preferably 5% by mass or less, even more preferably 3% by mass or less.
  • An acid can be further added to the CNT dispersion of the present invention, if necessary.
  • the type of acid is not particularly limited as long as it does not impede the effects of the present invention, and it may be either an organic acid or an inorganic acid.
  • the CNT dispersion of the present invention may contain only one type of acid, or may contain two or more types of acids. From the viewpoint of achieving the effects of the present invention more preferably, the pKa of the acid is preferably 0 to 15, more preferably 1 to 13, and even more preferably 1.5 to 8.
  • Preferred acids include, for example, alcohol (preferably trifluoroethanol, phenol, etc.), carboxylic acid (preferably acetic acid, benzoic acid, etc.), phosphonic acid (preferably hexylphosphonic acid, phenylphosphonic acid, etc.), phosphoric acid (preferably hexylphosphonic acid, phenylphosphonic acid, etc.), Preferred examples include dibenzyl phosphate and the like.
  • the acid content is preferably adjusted by the pKa of the acid. For example, when using phosphonic acid, the concentration is 0.001mM to 10M, more preferably 0.01mM to 1M, and even more preferably 0.1mM to 500mM.
  • the method for producing the CNT dispersion of the present invention is not particularly limited, and can be produced by mixing single-walled carbon nanotubes, conductive polymer A, and a liquid medium.
  • the CNT dispersion of the present invention has good dispersibility of carbon nanotubes when mixed with a curable resin, and can impart good antistatic properties and excellent transparency to the curable resin composition. Therefore, the CNT dispersion of the present invention can be suitably used for manufacturing a curable resin composition, which will be described later, and for manufacturing an antistatic film using the curable resin composition.
  • the curable resin composition of the present invention comprises a single-walled carbon nanotube, a conductive polymer A containing a repeating unit represented by the above formula (1), a liquid medium, and a curable resin. It is characterized by including.
  • the curable resin composition of the present invention can be suitably produced by using the CNT dispersion of the present invention described above. That is, the curable resin composition of the present invention can be suitably produced by mixing the CNT dispersion of the present invention and the curable resin.
  • the CNT dispersion of the present invention has good dispersibility of single-walled carbon nanotubes when mixed with a curable resin, and has good antistatic properties and excellent transparency for the curable resin composition. Can be given gender. Therefore, in the curable resin composition of the present invention produced using the CNT dispersion of the present invention, the single-walled carbon nanotubes are uniformly dispersed in the curable resin composition, and the composition has good antistatic properties. It can exhibit excellent transparency. Therefore, for example, by using a cured resin layer obtained by curing the curable resin composition of the present invention on a transparent substrate as an antistatic layer, an antistatic film can be suitably produced.
  • the conductive polymer A containing the repeating unit represented by formula (1), and the liquid medium in the curable resin composition of the present invention please refer to "1. This is as explained in the section "Layered Carbon Nanotube Dispersion”.
  • the content of single-walled carbon nanotubes is not particularly limited as long as it does not impede the effects of the present invention, and is preferably Examples include 0.001 to 0.1% by mass, more preferably 0.005 to 0.05% by mass, and still more preferably 0.005 to 0.04% by mass.
  • the content of the conductive polymer A is not particularly limited as long as it does not impede the effects of the present invention, and from the viewpoint of more preferably achieving the effects of the present invention. , preferably 0.010 to 0.500% by mass, more preferably 0.015 to 0.200% by mass, and even more preferably 0.015 to 0.100% by mass.
  • the mass ratio of the content of conductive polymer A to the content of single-walled carbon nanotubes is preferably about 1 to 20, more preferably about 1 to 15, and still more preferably about 1 to 10.
  • the proportion of the liquid medium in the curable resin composition of the present invention is preferably 10 to 70% by mass, more preferably 20 to 60% by mass, and even more preferably 30 to 50% by mass.
  • the curable resin contained in the curable resin composition of the present invention is not particularly limited. Since the curable resin composition of the present invention preferably has excellent transparency, the curable resin is preferably transparent.
  • curable resin can be appropriately selected depending on the application, and examples include ionizing radiation-curable resins and thermosetting resins.
  • the ionizing radiation curable resin is a resin that is crosslinked and cured by irradiation with ionizing radiation, and includes a mixture of at least one of prepolymers, oligomers, monomers, etc. as appropriate.
  • ionizing radiation refers to electromagnetic waves or charged particle beams that have energy quanta that can polymerize or crosslink molecules, and ultraviolet rays (UV) or electron beams (EB) are usually used; It also includes electromagnetic waves such as rays and gamma rays, and charged particle beams such as alpha rays and ion beams.
  • the ionizing radiation-curable resin examples include urethane (meth)acrylate, epoxy acrylate, polyester acrylate, polyether acrylate, and the like.
  • the curable resin is particularly preferably urethane (meth)acrylate because the curable resin composition of the present invention can exhibit good antistatic properties and excellent transparency when cured.
  • Ionizing radiation curable resins can be used alone or in combination of two or more.
  • thermosetting resins include epoxy resins, polyurethane resins (including two-component curable polyurethanes), unsaturated polyester resins, aminoalkyd resins, phenolic resins, urea resins, diallyl phthalate resins, and melamine resins. , guanamine resin, melamine-urea cocondensation resin, silicone resin, polysiloxane resin and the like. These thermosetting resins can be used alone or in combination of two or more.
  • a crosslinking agent, a curing agent such as a polymerization initiator, and a polymerization accelerator can be added to the curable resin composition.
  • a curing agent an organic amine or the like can be added to an epoxy resin, and an isocyanate, an organic sulfonate, or the like can be added to an unsaturated polyester resin, a polyurethane resin, or the like.
  • Peroxides such as methyl ethyl ketone peroxide and radical initiators such as azoisobutyl nitrile can be added to the unsaturated polyester resin.
  • the curable resin composition of the present invention has a sedimentation rate of single-walled carbon nanotubes measured by a light transmission centrifugal sedimentation method under the following conditions, preferably 60%/h or less, more preferably 40%/h or less, More preferably, it is 35%/h or less, and even more preferably 30%/h or less.
  • the sedimentation rate is, for example, 0.001%/h or more, 0.01%/h or more, 0.1%/h or more.
  • the sedimentation rate of the single-walled carbon nanotubes is calculated by filling a sample cell with 0.4 ml of the curable resin composition, rotating it at a high speed of 4000 rpm, and analyzing the particle separation phenomenon at the center of the cell based on the elapsed time.
  • the curable resin composition of the present invention becomes a cured product by being cured by irradiation with ionizing radiation or heating.
  • the cured product of the curable resin composition of the present invention preferably has a surface resistance value of 10 11 ⁇ /sq. Below, more preferably 10 10 ⁇ /sq. More preferably 10 9 ⁇ /sq. The lower limit is, for example, 10 5 ⁇ /sq. can be mentioned.
  • the surface resistance value was measured as described in Examples.
  • a cured product when the curable resin is an ultraviolet curable resin, a cured product can be obtained by drying the curable resin composition and irradiating it with ultraviolet rays.
  • a cured resin layer (cured product in the form of a film) is formed.
  • a transparent film in which a cured resin layer and a transparent base material are laminated is obtained.
  • the cured resin layer of the transparent film has antistatic properties. Therefore, by using the cured resin layer as an antistatic layer, the transparent film can be suitably used as an antistatic film in which the antistatic layer is laminated on a transparent base material.
  • the antistatic film of the present invention comprises a transparent base material and an antistatic layer formed of a cured product of the curable resin composition of the present invention, which is laminated on the transparent base material. It is characterized by Since the antistatic film of the present invention includes an antistatic layer using the curable resin composition of the present invention, it has both good antistatic properties and excellent transparency.
  • the antistatic film of the present invention preferably satisfies the following conditions. (Total light transmittance of the antistatic film/Total light transmittance of the antistatic film when the antistatic layer is formed only with the curable resin)>0.94
  • the total light transmittance of the antistatic film was measured as described in Examples.
  • the total light transmittance per unit thickness (5 ⁇ m) of the antistatic film of the present invention is preferably 70% or more, more preferably 75% or more, and still more preferably 81% or more.
  • the transparent base material is formed of, for example, a transparent resin.
  • the transparent resin is not particularly limited as long as it can be used as a base material for antistatic films, and includes polyesters such as polyethylene terephthalate, acrylic resins, polycarbonates, polypropylene, polystyrene, polyimides, polyamides, polysulfones, polyethersulfones, Examples include polyvinyl chloride, polyvinyl alcohol, polymethyl methacrylate, phenol resin, epoxy resin, and ABS resin.
  • the transparent base material is transparent.
  • the total light transmittance per unit thickness (100 ⁇ m) of the transparent base material is preferably 70% or more, more preferably 80% or more, and still more preferably 84% or more. Measurement of total light transmittance is performed according to the description in Examples.
  • the thickness of the transparent base material is, for example, about 10 to 500 ⁇ m, preferably about 20 to 300 ⁇ m, and more preferably about 30 to 200 ⁇ m.
  • the antistatic layer is formed of a cured product of the curable resin composition of the present invention. Therefore, the surface resistance value of the antistatic layer is preferably 10 11 ⁇ /sq. Below, more preferably 10 10 ⁇ /sq. More preferably 10 9 ⁇ /sq. The lower limit is, for example, 10 5 ⁇ /sq. can be mentioned. The surface resistance value was measured as described in Examples.
  • the thickness of the antistatic layer is, for example, about 1 to 20 ⁇ m, preferably about 2 to 10 ⁇ m, and more preferably about 3 to 6 ⁇ m.
  • the antistatic film of the present invention can be suitably applied to, for example, interface screens of electronic devices such as smartphones.
  • Total light transmittance The total light transmittance of the antistatic film was measured using an ultraviolet/visible/near-infrared spectrophotometer (UV 3600i, manufactured by Shimadzu Corporation) in accordance with JIS K7361-1.
  • the dispersion stability (sedimentation rate) of the curable resin composition was evaluated by the following procedure. Dispersion stability was evaluated using a method called light transmission centrifugal sedimentation using a dispersibility evaluation/particle size distribution device LS-610 manufactured by LUM Japan, using the sedimentation rate of carbon nanotubes in a solution measured. Specifically, a sample cell containing 0.4 ml of the curable resin composition as a measurement sample was rotated at a high speed of 4000 rpm at 25°C, and the particle separation phenomenon at the center of the cell was analyzed based on the elapsed time. , the sedimentation rate of carbon nanotubes was calculated. The above measurement device is equipped with data analysis software, and by automatically analyzing the measurement data, the sedimentation rate can be calculated.
  • Dispersant 1 SELFTRON (registered trademark) organic solvent grade (manufactured by Tosoh Corporation, viscosity 4-6 mPa ⁇ s (1% by mass solution @ 25°C)), surface resistance 5.1 ⁇ 10 8 ⁇ /sq. (1% by mass solution).
  • a conductive polymer self-doped conductive material containing a repeating unit represented by the above general formula (1).
  • Dispersant 2 S-LEC BL-10 (manufactured by Sekisui Chemical Co., Ltd.) A polymer dispersant containing no repeating unit represented by the above general formula (1).
  • Polyethylene terephthalate film Lumirror (registered trademark) #100-S10 (manufactured by Toray Industries, Inc.)
  • urethane acrylate 100 parts by mass of urethane acrylate (manufactured by Arakawa Chemical Industries, Ltd., trade name: Beam Set 575) as a curable resin (transparent), and 3 parts by mass of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals, trade name: Irgacure 184).
  • a liquid curable resin solution (binder resin solution (solid content concentration: 30% by mass)) was prepared using 10% and isopropanol.
  • CNT dispersions 2 to 8 were prepared in the same manner as CNT dispersion 1.
  • Curable resin composition 1 was produced by mixing 225 mg of the obtained CNT dispersion 1 and 10 g of the above-mentioned curable resin solution (binder resin solution).
  • the amount of carbon nanotubes was 0.015 parts by mass and the amount of SELFTRON was 0.015 parts by mass with respect to 100 parts by mass of urethane acrylate.
  • Curable resin compositions 2 to 11 were each produced in the same manner as curable composition 1 based on the formulations shown in the upper row of Table 2.
  • the total light transmittance of antistatic film 7 (ie, Comparative Example 1) when the antistatic layer was formed only from the curable resin (urethane acrylate) was 85.9%. From this, in the antistatic film 1 of Example 1, the total light transmittance (84.7%) of the antistatic film 1 of Example 1/the charge when the antistatic layer is formed only with a curable resin The total light transmittance (85.9%) of the protective film 7 was 0.99.
  • the surface resistivity values of antistatic films 2 to 11 and the total light transmittance of antistatic films 2 to 11 were measured, and the results are summarized in the lower part of Table 2.

Abstract

The present invention provides a novel single-walled carbon nanotube dispersion liquid which exhibits good dispersibility of carbon nanotubes if mixed with a curable resin, and is capable of imparting good antistatic properties and excellent transparency to a curable resin composition. The present invention provides a single-walled carbon nanotube dispersion liquid which contains single-walled carbon nanotubes, a conductive polymer that contains a repeating unit represented by formula (1), and a solvent. (In formula (1), a group R1 represents a linear or branched alkylene group having 3 to 5 carbon atoms; and a group R2 represents a hydrogen atom, a linear or branched alkyl group or a salt formed with a group -O-R2.)

Description

単層カーボンナノチューブ分散液、硬化性樹脂組成物、硬化物及び帯電防止性フィルムSingle-walled carbon nanotube dispersion, curable resin composition, cured product, and antistatic film
 本発明は、単層カーボンナノチューブ分散液、硬化性樹脂組成物、硬化物及び帯電防止性フィルムに関する。 The present invention relates to a single-walled carbon nanotube dispersion, a curable resin composition, a cured product, and an antistatic film.
 カーボンナノチューブは、例えば、導電フィラー、熱伝導材料、発光素子、電極材料、電極接合材料、補強材料、黒色顔料などの各種用途に用いられている。 Carbon nanotubes are used in various applications such as conductive fillers, thermally conductive materials, light emitting elements, electrode materials, electrode bonding materials, reinforcing materials, and black pigments.
 カーボンナノチューブは、直径がナノメートルサイズの微細な構造体であり、単体では取扱性や加工性が良くないことから、液性媒体に分散させたカーボンナノチューブ分散液として製造され、各種用途に適用されることが一般的である。 Carbon nanotubes are minute structures with a diameter of nanometers, and because they are not easy to handle or process when used alone, they are produced as a carbon nanotube dispersion in a liquid medium and used for various purposes. It is common that
 ところが、カーボンナノチューブは、その高い結晶性などから、樹脂中で非常に凝集しやすく、カーボンナノチューブ分散液を樹脂と混合して各種用途に使用した際、樹脂中でカーボンナノチューブが凝集し、その特性を十分に発揮できないという問題がある。 However, due to their high crystallinity, carbon nanotubes tend to aggregate in resins, and when a carbon nanotube dispersion is mixed with a resin and used for various purposes, the carbon nanotubes aggregate in the resin, causing problems with its properties. The problem is that they cannot fully demonstrate their abilities.
特開2019-189857号公報JP2019-189857A 特許第4635103号Patent No. 4635103
 例えばスマートフォンなどの帯電防止性フィルムには、フィルムに帯電防止性を付与することを目的として、カーボンナノチューブが使用されることがある。帯電防止性フィルムにカーボンナノチューブを使用する場合、あらかじめ調製したカーボンナノチューブ分散液を樹脂(透明樹脂)と混合し、得られた樹脂組成物を透明基材の上にフィルム状に塗布することで、帯電防止性フィルムを製造することができる。 For example, carbon nanotubes are sometimes used in antistatic films for smartphones and the like for the purpose of imparting antistatic properties to the film. When using carbon nanotubes in an antistatic film, a pre-prepared carbon nanotube dispersion is mixed with a resin (transparent resin), and the resulting resin composition is applied onto a transparent substrate in the form of a film. Antistatic films can be produced.
 このような帯電防止性フィルムには、帯電防止性に加えて、高い透明性も求められる。 In addition to antistatic properties, such antistatic films are required to have high transparency.
 ところが、前記の通り、カーボンナノチューブは非常に凝集しやすく、カーボンナノチューブ分散液中でカーボンナノチューブを均一に分散させた場合にも、分散液を樹脂と混合すると、樹脂中でカーボンナノチューブが凝集という問題がある(例えば、特許文献1参照)。透明樹脂中でカーボンナノチューブが凝集すると透明性が低下する。 However, as mentioned above, carbon nanotubes are extremely prone to agglomeration, and even when carbon nanotubes are uniformly dispersed in a carbon nanotube dispersion, when the dispersion is mixed with a resin, the problem arises that the carbon nanotubes agglomerate in the resin. (For example, see Patent Document 1). When carbon nanotubes aggregate in a transparent resin, transparency decreases.
 また、樹脂中のカーボンナノチューブの凝集を抑制する他の手段としては、カーボンナノチューブの分散剤を用いる手段も知られている。例えば、樹脂中におけるカーボンナノチューブの分散性を高める分散剤として、ブチラール樹脂が知られている(例えば特許文献2)。しかしながら、ブチラール樹脂は絶縁性のため、カーボンナノチューブの導電性を阻害する。このため、帯電防止性フィルムのように導電性が求められる用途には、絶縁性の分散剤は使用し難いという問題がある。 Furthermore, as another means for suppressing agglomeration of carbon nanotubes in a resin, there is also known a means of using a dispersant for carbon nanotubes. For example, butyral resin is known as a dispersant that improves the dispersibility of carbon nanotubes in resin (for example, Patent Document 2). However, because of its insulating properties, butyral resin inhibits the conductivity of carbon nanotubes. For this reason, there is a problem in that it is difficult to use insulating dispersants in applications that require electrical conductivity, such as antistatic films.
 このような状況下、本発明は、硬化性樹脂と混合された場合のカーボンナノチューブの分散性が良好であり、硬化性樹脂組成物に対して良好な帯電防止性と優れた透明性を付与できる、新規な単層カーボンナノチューブ分散液を提供することを主な目的とする。また、本発明は、当該単層カーボンナノチューブ分散液を利用した硬化性樹脂組成物、当該硬化性樹脂組成物の硬化物、及び当該硬化物を利用した帯電防止性フィルムを提供することも目的とする。 Under these circumstances, the present invention has good dispersibility of carbon nanotubes when mixed with a curable resin, and can impart good antistatic properties and excellent transparency to the curable resin composition. , the main objective is to provide a novel single-walled carbon nanotube dispersion. Another object of the present invention is to provide a curable resin composition using the single-walled carbon nanotube dispersion, a cured product of the curable resin composition, and an antistatic film using the cured product. do.
 本発明者らは、上記の課題を解決すべく鋭意検討を行った。その結果、単層カーボンナノチューブと、特定の繰り返し単位を含む導電性高分子と、液性媒体と、を含む、単層カーボンナノチューブ分散液は、硬化性樹脂と混合された場合のカーボンナノチューブの分散性が良好であり、硬化性樹脂組成物に対して良好な帯電防止性と優れた透明性を付与できることを見出した。 The present inventors conducted extensive studies to solve the above problems. As a result, a single-walled carbon nanotube dispersion containing single-walled carbon nanotubes, a conductive polymer containing a specific repeating unit, and a liquid medium is a dispersion of carbon nanotubes when mixed with a curable resin. It has been found that the antistatic properties and excellent transparency can be imparted to the curable resin composition.
 本発明は、以上のような知見に基づいて更に検討を重ねることにより完成したものである。 The present invention was completed through further studies based on the above findings.
 即ち、本発明は以下のように記載することができる。
項1. 単層カーボンナノチューブと、下記式(1)で表される繰り返し単位を含む導電性高分子と、液性媒体と、を含む、単層カーボンナノチューブ分散液。
[前記式(1)中、基R1は、炭素数3~5の直鎖又は分岐鎖のアルキレン基であり、基R2は、水素原子、直鎖若しくは分岐鎖のアルキル基、又は基-O-R2が塩を形成している。]
項2. 前記液性媒体が、水及び有機溶媒のうち少なくとも一方を含む、項1に記載の単層カーボンナノチューブ分散液。
項3. 下記条件の光透過式遠心沈降法によって測定される、前記単層カーボンナノチューブの沈降速度が、60%/h以下である、項1または2に記載の単層カーボンナノチューブ分散液。
(沈降速度の測定条件)
 ウレタンアクリレート100質量部及び1-ヒドロキシシクロヘキシル-フェニルケトン3質量部をイソプロピルアルコールと混合して、ウレタンアクリレートの固形分濃度が30質量%の樹脂溶液を調製する。前記樹脂溶液と、前記単層カーボンナノチューブ分散液とを混合し、単層カーボンナノチューブがウレタンアクリレートの固形分に対して0.015質量%、ウレタンアクリレートが29質量%の測定用試料を調製する。得られた測定用試料0.4mlをサンプルセルに充填し、4000rpmで高速回転させ、セル中央における粒子の分離現象を経過時間によって解析することにより、単層カーボンナノチューブの沈降速度を算出する。
項4. 前記単層カーボンナノチューブの含有量に対する前記導電性高分子の含有量の質量比(前記導電性高分子の含有量/前記単層カーボンナノチューブの含有量)が、1以上10以下である、項1~3のいずれか1項に記載の単層カーボンナノチューブ分散液。
項5. 単層カーボンナノチューブと、下記式(1)で表される繰り返し単位を含む導電性高分子と、液性媒体と、硬化性樹脂とを含む、硬化性樹脂組成物。
[前記式(1)中、基R1は、炭素数3~5の直鎖又は分岐鎖のアルキレン基であり、基R2は、水素原子、直鎖若しくは分岐鎖のアルキル基、又は基-O-R2が塩を形成している。]
項6. 前記液性媒体が、水及び有機溶媒のうち少なくとも一方を含む、項5に記載の硬化性樹脂組成物。
項7. 下記条件の光透過式遠心沈降法によって測定される、前記単層カーボンナノチューブの沈降速度が、60%/h以下である、項5または6に記載の硬化性樹脂組成物。
(沈降速度の測定条件)
 硬化性樹脂組成物0.4mlをサンプルセルに充填し、4000rpmで高速回転させ、セル中央における粒子の分離現象を経過時間によって解析することにより、単層カーボンナノチューブの沈降速度を算出する。
項8. 前記単層カーボンナノチューブの含有量に対する前記導電性高分子の含有量の質量比(前記導電性高分子の含有量/前記単層カーボンナノチューブの含有量)が、1以上10以下である、項5~7のいずれか1項に記載の硬化性樹脂組成物。
項9. 前記硬化性樹脂が、ウレタン(メタ)アクリレートである、項5~8のいずれか1項に記載の硬化性樹脂組成物。
項10. 項5~9のいずれか1項に記載の硬化性樹脂組成物の硬化物。
項11. フィルムの形態である、項10に記載の硬化物。
項12. 表面抵抗値が、1011Ω/sq.以下である、項10または11に記載の硬化物。
項13. 透明基材と、前記透明基材の上に積層された、項10~12のいずれか1項に記載の硬化物によって形成された帯電防止層と、
を備える、帯電防止性フィルム。
項14. 以下の条件を満たす、項13に記載の帯電防止性フィルム。
 (前記帯電防止性フィルムの全光線透過率/前記硬化性樹脂のみで帯電防止層を形成した場合の帯電防止性フィルムの全光線透過率)>0.94
That is, the present invention can be described as follows.
Item 1. A single-walled carbon nanotube dispersion liquid comprising a single-walled carbon nanotube, a conductive polymer containing a repeating unit represented by the following formula (1), and a liquid medium.
[In the above formula (1), the group R 1 is a linear or branched alkylene group having 3 to 5 carbon atoms, and the group R 2 is a hydrogen atom, a linear or branched alkyl group, or a group - OR 2 forms a salt. ]
Item 2. Item 2. The single-walled carbon nanotube dispersion according to item 1, wherein the liquid medium contains at least one of water and an organic solvent.
Item 3. Item 3. The single-walled carbon nanotube dispersion according to item 1 or 2, wherein the single-walled carbon nanotubes have a sedimentation rate of 60%/h or less, as measured by a light transmission centrifugal sedimentation method under the following conditions.
(Measurement conditions for sedimentation rate)
100 parts by mass of urethane acrylate and 3 parts by mass of 1-hydroxycyclohexyl-phenyl ketone are mixed with isopropyl alcohol to prepare a resin solution having a solid concentration of urethane acrylate of 30% by mass. The resin solution and the single-walled carbon nanotube dispersion are mixed to prepare a measurement sample containing 0.015% by mass of single-walled carbon nanotubes and 29% by mass of urethane acrylate based on the solid content of urethane acrylate. The sedimentation rate of the single-walled carbon nanotubes is calculated by filling 0.4 ml of the obtained measurement sample into a sample cell, rotating it at a high speed of 4000 rpm, and analyzing the particle separation phenomenon at the center of the cell based on the elapsed time.
Item 4. Item 1, wherein the mass ratio of the content of the conductive polymer to the content of the single-walled carbon nanotubes (content of the conductive polymer/content of the single-walled carbon nanotubes) is 1 or more and 10 or less. The single-walled carbon nanotube dispersion according to any one of items 1 to 3.
Item 5. A curable resin composition comprising a single-walled carbon nanotube, a conductive polymer containing a repeating unit represented by the following formula (1), a liquid medium, and a curable resin.
[In the above formula (1), the group R 1 is a linear or branched alkylene group having 3 to 5 carbon atoms, and the group R 2 is a hydrogen atom, a linear or branched alkyl group, or a group - OR 2 forms a salt. ]
Item 6. Item 6. The curable resin composition according to item 5, wherein the liquid medium contains at least one of water and an organic solvent.
Section 7. Item 7. The curable resin composition according to item 5 or 6, wherein the single-walled carbon nanotubes have a sedimentation rate of 60%/h or less, as measured by a light transmission centrifugal sedimentation method under the following conditions.
(Measurement conditions for sedimentation rate)
The sedimentation rate of the single-walled carbon nanotubes is calculated by filling a sample cell with 0.4 ml of the curable resin composition, rotating it at a high speed of 4000 rpm, and analyzing the particle separation phenomenon at the center of the cell based on the elapsed time.
Section 8. Item 5, wherein the mass ratio of the content of the conductive polymer to the content of the single-walled carbon nanotubes (content of the conductive polymer/content of the single-walled carbon nanotubes) is 1 or more and 10 or less. The curable resin composition according to any one of items 1 to 7.
Item 9. The curable resin composition according to any one of Items 5 to 8, wherein the curable resin is urethane (meth)acrylate.
Item 10. A cured product of the curable resin composition according to any one of Items 5 to 9.
Item 11. Item 11. The cured product according to item 10, which is in the form of a film.
Item 12. The surface resistance value is 10 11 Ω/sq. Item 12. The cured product according to item 10 or 11, which is as follows.
Item 13. a transparent base material; an antistatic layer formed of the cured product according to any one of items 10 to 12, laminated on the transparent base material;
An antistatic film comprising:
Section 14. Item 14. The antistatic film according to item 13, which satisfies the following conditions.
(Total light transmittance of the antistatic film/Total light transmittance of the antistatic film when the antistatic layer is formed only with the curable resin)>0.94
 本発明によれば、硬化性樹脂と混合された場合のカーボンナノチューブの分散性が良好であり、硬化性樹脂組成物に対して良好な帯電防止性と優れた透明性を付与できる、新規な単層カーボンナノチューブ分散液を提供することができる。また、本発明によれば、当該単層カーボンナノチューブ分散液を利用した硬化性樹脂組成物、当該硬化性樹脂組成物の硬化物、及び帯電防止性フィルムを提供することもできる。 According to the present invention, carbon nanotubes have good dispersibility when mixed with a curable resin, and can provide a curable resin composition with good antistatic properties and excellent transparency. A layered carbon nanotube dispersion can be provided. Further, according to the present invention, it is also possible to provide a curable resin composition using the single-walled carbon nanotube dispersion, a cured product of the curable resin composition, and an antistatic film.
1.単層カーボンナノチューブ分散液
 本発明の単層カーボンナノチューブ分散液は、単層カーボンナノチューブと、下記式(1)で表される繰り返し単位を含む導電性高分子(以下、導電性高分子Aと表記することがある)と、液性媒体と、を含むことを特徴とする。
1. Single-walled carbon nanotube dispersion The single- walled carbon nanotube dispersion of the present invention comprises single-walled carbon nanotubes and a conductive polymer (hereinafter referred to as conductive polymer A) containing a repeating unit represented by the following formula (1). ) and a liquid medium.
 本発明の単層カーボンナノチューブ分散液は、当該構成を備えることにより、硬化性樹脂と混合された場合のカーボンナノチューブの分散性が良好であり、硬化性樹脂組成物に対して良好な帯電防止性と優れた透明性を付与できる。以下、本発明の単層カーボンナノチューブ分散液について詳述する。 By having the above structure, the single-walled carbon nanotube dispersion liquid of the present invention has good dispersibility of carbon nanotubes when mixed with a curable resin, and has good antistatic properties for the curable resin composition. It can provide excellent transparency. Hereinafter, the single-walled carbon nanotube dispersion of the present invention will be described in detail.
 本発明の単層カーボンナノチューブ分散液(以下、本発明のCNT分散液と表記することがある。)において、単層カーボンナノチューブの由来(製造方法)は限定されず、本発明の効果を奏することを限度として、単層カーボンナノチューブは、いかなる製法で製造されたものであってもよい。単層カーボンナノチューブの製造方法としては、アーク放電法、レーザー蒸発法、化学気相成長法(CVD)法を例示することができ、化学気相成長法(CVD)法であることが好ましい。本発明のCNT分散液に含まれる単層カーボンナノチューブは、1種類であってもよいし、2種類以上であってもよい。 In the single-walled carbon nanotube dispersion of the present invention (hereinafter sometimes referred to as the CNT dispersion of the present invention), the origin (manufacturing method) of the single-walled carbon nanotubes is not limited, and the effects of the present invention can be achieved. Single-walled carbon nanotubes may be manufactured by any method within the above range. Examples of methods for producing single-walled carbon nanotubes include arc discharge, laser evaporation, and chemical vapor deposition (CVD), with chemical vapor deposition (CVD) being preferred. The number of single-walled carbon nanotubes contained in the CNT dispersion of the present invention may be one, or two or more.
 本発明のCNT分散液において、単層カーボンナノチューブ(単層CNT)の平均粒子径(D50)は、本開示の効果を奏することを限度として、特に制限されないが、好ましくは4000nm以下、より好ましくは2000nm以下、さらに好ましくは600nm以下である。なお、単層カーボンナノチューブの平均粒子径(D50)は、好ましくは1nm以上、より好ましくは10nm以上、さらに好ましくは100nm以上である。単層カーボンナノチューブの平均粒子径(D50)の測定は、以下の通りである。 In the CNT dispersion of the present invention, the average particle diameter (D50) of the single-walled carbon nanotubes (single-walled CNTs) is not particularly limited as long as it achieves the effects of the present disclosure, but is preferably 4000 nm or less, more preferably It is 2000 nm or less, more preferably 600 nm or less. The average particle diameter (D50) of the single-walled carbon nanotubes is preferably 1 nm or more, more preferably 10 nm or more, and still more preferably 100 nm or more. The average particle diameter (D50) of single-walled carbon nanotubes was measured as follows.
<単層CNTの平均粒子径(D50)測定>
 本発明のCNT分散液に含まれる単層カーボンナノチューブの平均粒子径(D50)においては、動的光散乱式粒度分布測定装置(例えば、大塚電子製、製品名「ELSZ-2000ZS」)を用いてCNTの粒度分布(散乱強度基準)を測定する。単層CNTの粒度分布において、小径側から計算した累積体積が50%となる粒子径(nm)として求め、散乱強度平均粒子径D50とする。
<Measurement of average particle diameter (D50) of single-walled CNT>
The average particle diameter (D50) of the single-walled carbon nanotubes contained in the CNT dispersion of the present invention was measured using a dynamic light scattering particle size distribution analyzer (for example, manufactured by Otsuka Electronics, product name "ELSZ-2000ZS"). Measure the particle size distribution (scattering intensity standard) of CNTs. In the particle size distribution of single-walled CNTs, the particle size (nm) at which the cumulative volume calculated from the small diameter side is 50% is determined, and is defined as the scattering intensity average particle size D50.
 また、本発明の効果をより好適に奏する観点から、本発明のCNT分散液において、単層カーボンナノチューブは、共鳴ラマン散乱法で測定した、励起波長532nmにおけるラマンスペクトルにおいて、GバンドとDバンドのピーク強度比G/Dは、好ましくは200以下、より好ましくは150以下、さらに好ましくは100以下、さらに好ましくは50以下である。当該ピーク強度比G/Dは好ましくは0.5以上、より好ましくは1以上、さらに好ましくは2以上である。なお、「ピーク強度比」とは「高さ比」のことを意味する。 In addition, from the viewpoint of achieving the effects of the present invention more preferably, in the CNT dispersion of the present invention, the single-walled carbon nanotubes have a G band and a D band in the Raman spectrum at an excitation wavelength of 532 nm measured by resonance Raman scattering method. The peak intensity ratio G/D is preferably 200 or less, more preferably 150 or less, even more preferably 100 or less, even more preferably 50 or less. The peak intensity ratio G/D is preferably 0.5 or more, more preferably 1 or more, still more preferably 2 or more. Note that "peak intensity ratio" means "height ratio".
 また、本発明の効果をより一層好適に発揮する観点から、本発明のCNT分散液を含む硬化性樹脂組成物(樹脂溶液)において、下記条件の光透過式遠心沈降法によって測定される、単層カーボンナノチューブの沈降速度は、好ましくは60%/h以下、より好ましくは40%/h以下、さらに好ましくは35%/h以下、さらに好ましくは30%/h以下である。当該沈降速度は、例えば0.001%/h以上、0.01%/h以上、0.1%/h以上などである。 In addition, from the viewpoint of exhibiting the effects of the present invention even more favorably, in the curable resin composition (resin solution) containing the CNT dispersion of the present invention, the The sedimentation rate of the layered carbon nanotubes is preferably 60%/h or less, more preferably 40%/h or less, still more preferably 35%/h or less, even more preferably 30%/h or less. The sedimentation rate is, for example, 0.001%/h or more, 0.01%/h or more, 0.1%/h or more.
(沈降速度の測定条件)
 ウレタンアクリレート100質量部及び1-ヒドロキシシクロヘキシル-フェニルケトン3質量部をイソプロピルアルコールと混合して、ウレタンアクリレートの固形分濃度が30質量%の樹脂溶液を調製する。前記樹脂溶液と、前記単層カーボンナノチューブ分散液とを混合し、単層カーボンナノチューブがウレタンアクリレートの固形分に対して0.015質量%、ウレタンアクリレートが29質量%の測定用試料を調製する。得られた測定用試料0.4mlをサンプルセルに充填し、4000rpmで高速回転させ、セル中央における粒子の分離現象を経過時間によって解析することにより、単層カーボンナノチューブの沈降速度を算出する。ウレタンアクリレートとしては、コーティング用UV硬化型樹脂を用い、具体的には、荒川化学工業社製の商品名:ビームセット575(ウレタンオリゴマー70質量%、トリメチロールトプロパントリアクリレート30質量%、官能基数3~6、固形分100%、25℃での粘度12000±200mPa・s、オリゴマー重量平均分子量1500~1600、モノマー分子量300程度)を用いる。ビームセット575が入手できない場合には、DIC株式会社製の商品名:ルクシディアV-4025(コーティング用UV硬化型樹脂(ウレタンアクリレート)、官能基数6、固形分78~82質量%(ブチルアセテート)、25℃での粘度370~630mPa・s、重量平均分子量1000程度)にて代用する。
(Measurement conditions for sedimentation rate)
100 parts by mass of urethane acrylate and 3 parts by mass of 1-hydroxycyclohexyl-phenyl ketone are mixed with isopropyl alcohol to prepare a resin solution having a solid concentration of urethane acrylate of 30% by mass. The resin solution and the single-walled carbon nanotube dispersion are mixed to prepare a measurement sample containing 0.015% by mass of single-walled carbon nanotubes and 29% by mass of urethane acrylate based on the solid content of urethane acrylate. The sedimentation rate of the single-walled carbon nanotubes is calculated by filling 0.4 ml of the obtained measurement sample into a sample cell, rotating it at a high speed of 4000 rpm, and analyzing the particle separation phenomenon at the center of the cell based on the elapsed time. As the urethane acrylate, a UV curable resin for coating is used, specifically, a product name: Beamset 575 manufactured by Arakawa Chemical Industry Co., Ltd. (70% by mass of urethane oligomer, 30% by mass of trimethyloltopropane triacrylate, number of functional groups) 3 to 6, solid content 100%, viscosity at 25° C. 12000±200 mPa·s, oligomer weight average molecular weight 1500 to 1600, monomer molecular weight approximately 300). If Beam Set 575 is not available, use DIC Corporation's product name: Luxidia V-4025 (UV curable resin for coating (urethane acrylate), number of functional groups: 6, solid content 78-82% by mass (butyl acetate), The viscosity at 25° C. is 370 to 630 mPa·s and the weight average molecular weight is about 1000).
 本発明のCNT分散液において、単層カーボンナノチューブの含有率は、本発明の効果を阻害しないことを限度として、特に制限されず、本発明の効果をより好適に奏する観点から、好ましくは0.01~1質量%、より好ましくは0.05~0.5質量%、さらに好ましくは0.1~0.5質量%が挙げられる。 In the CNT dispersion of the present invention, the content of single-walled carbon nanotubes is not particularly limited as long as it does not impede the effects of the present invention, and from the viewpoint of achieving the effects of the present invention more preferably, the content rate of single-walled carbon nanotubes is preferably 0. 01 to 1% by weight, more preferably 0.05 to 0.5% by weight, even more preferably 0.1 to 0.5% by weight.
 本発明のCNT分散液は、単層カーボンナノチューブと共に、導電性高分子Aを含む。前記の通り、導電性高分子Aは、下記式(1)で表される繰り返し単位を含む。 The CNT dispersion of the present invention contains conductive polymer A along with single-walled carbon nanotubes. As described above, the conductive polymer A includes a repeating unit represented by the following formula (1).
 式(1)中、基R1は、炭素数3~5の直鎖又は分岐鎖のアルキレン基である。また、基R2は、水素原子、直鎖若しくは分岐鎖のアルキル基、又は基-O-R2が塩を形成している。 In formula (1), the group R 1 is a straight or branched alkylene group having 3 to 5 carbon atoms. Further, the group R 2 is a hydrogen atom, a linear or branched alkyl group, or the group -O--R 2 forms a salt.
 式(1)において、基R2が水素原子(H)である場合、上記式(1)で表される繰り返し単位は、スルホン酸である。また、基R2が直鎖若しくは分岐鎖のアルキル基である場合、上記式(1)で表される繰り返し単位は、スルホン酸アルキルエステルであり、当該アルキル基の炭素数は、好ましくは3~5である。また、基-O-R2が塩を形成している場合、上記式(1)で表される化合物は、スルホン酸塩であり、具体例としてはスルホン酸のリチウム塩、ナトリウム塩、カリウム塩などが挙げられる。 In formula (1), when the group R 2 is a hydrogen atom (H), the repeating unit represented by formula (1) above is a sulfonic acid. Further, when the group R 2 is a linear or branched alkyl group, the repeating unit represented by the above formula (1) is a sulfonic acid alkyl ester, and the number of carbon atoms in the alkyl group is preferably 3 to 3. It is 5. In addition, when the group -O-R 2 forms a salt, the compound represented by the above formula (1) is a sulfonic acid salt, and specific examples include lithium salt, sodium salt, and potassium salt of sulfonic acid. Examples include.
 式(1)において、R1は、炭素数4又は5の分岐鎖のアルキレン基であることが好ましく、特に好ましくは基-CH2-CH2-CH(CH3)-、基-CH2-CH2-CH(CH2CH3)-、又は基-CH2-CH2-CH2-CH(CH3)-であることが好ましい。すなわち、式(1)で表される繰り返し単位は、以下の式(11)、式(12)又は式(13)であることが好ましい。 In formula (1), R 1 is preferably a branched alkylene group having 4 or 5 carbon atoms, particularly preferably a group -CH 2 -CH 2 -CH(CH 3 )-, a group -CH 2 - CH 2 --CH(CH 2 CH 3 )- or the group --CH 2 --CH 2 --CH 2 --CH(CH 3 )- is preferred. That is, the repeating unit represented by formula (1) is preferably the following formula (11), formula (12), or formula (13).
 また、上記式(1)、式(11)、式(12)及び式(13)において、R2は、H、Na、基-CH2C(CH33、基-CH(CH3)(CH2CH3)、基-CH(CH32などが好ましい。 In the above formulas (1), (11), (12) and (13), R 2 is H, Na, a group -CH 2 C(CH 3 ) 3 , a group -CH(CH 3 ) (CH 2 CH 3 ), the group -CH(CH 3 ) 2 and the like are preferred.
 また、導電性高分子Aにおいて、上記式(1)で表される繰り返し単位を繋ぐリンカー(スペーサ)としては、本発明の効果を奏することを限度として、特に制限されず、例えば炭素数1~3のアルキレン基が挙げられる。また、リンカー(スペーサ)を有しておらず、上記式(1)で表される繰り返し単位が直接結合していてもよい。 Further, in the conductive polymer A, the linker (spacer) connecting the repeating units represented by the above formula (1) is not particularly limited as long as the effect of the present invention is achieved, and for example, the number of carbon atoms is 1 to 1. 3 alkylene groups are mentioned. Further, the repeating unit represented by the above formula (1) may be directly bonded without having a linker (spacer).
 本発明の効果をより一層好適に発揮する観点から、上記式(1)で表される繰り返し単位を含む導電性高分子Aは、自己ドープ型導電性高分子であることが好ましい。自己ドープ型導電性高分子とは、水溶性の付与とドーピング作用を兼ね備えた置換基(スルホ基、スルホネート基等)を直接又はスペーサを介してポリマー主鎖中に有する導電性高分子である。自己ドープ型導電性高分子としては、東ソー株式会社の商品名「SELFTRON」(登録商標)などが知られている。「SELFTRON」(登録商標)は、上記式(1)で表される繰り返し単位を含む導電性高分子Aに相当する。 From the viewpoint of exhibiting the effects of the present invention even more favorably, the conductive polymer A containing the repeating unit represented by the above formula (1) is preferably a self-doped conductive polymer. A self-doping conductive polymer is a conductive polymer that has a substituent (sulfo group, sulfonate group, etc.) in the main chain of the polymer, either directly or via a spacer, that provides both water solubility and a doping effect. As a self-doped conductive polymer, Tosoh Corporation's product name "SELFTRON" (registered trademark) is known. "SELFTRON" (registered trademark) corresponds to conductive polymer A containing a repeating unit represented by the above formula (1).
 導電性高分子Aに含まれる繰り返し単位は、1種類のみであってもよいし、2種類以上であってもよい。導電性高分子Aに含まれる繰り返し単位(100質量%)のうち、上記式(1)で表される繰り返し単位の割合は、本発明の効果を奏することを限度として、特に制限されず、例えば、5質量%以上、30質量%以上、50質量%以上、70質量%以上、90質量%以上などが挙げられる。上記式(1)で表される繰り返し単位の割合が大きいと、導電性高分子Aが自己ドープ型導電性高分子となりやすくなる。 The number of repeating units contained in the conductive polymer A may be only one type, or two or more types. Among the repeating units (100% by mass) contained in the conductive polymer A, the proportion of the repeating units represented by the above formula (1) is not particularly limited as long as the effects of the present invention are achieved, and for example, , 5% by mass or more, 30% by mass or more, 50% by mass or more, 70% by mass or more, 90% by mass or more. When the proportion of the repeating unit represented by the above formula (1) is large, the conductive polymer A tends to become a self-doped conductive polymer.
 本発明の効果をより一層好適に発揮する観点から、導電性高分子Aの重量平均分子量としては、好ましくは1,000~1,000,000程度、より好ましくは1,500~750,000程度、さらに好ましくは2,000~500,000程度である。導電性高分子Aの重量平均分子量は、具体的には、ゲル濾過クロマトグラフィー(GPC)法によって測定された値である。 From the viewpoint of exhibiting the effects of the present invention even more suitably, the weight average molecular weight of the conductive polymer A is preferably about 1,000 to 1,000,000, more preferably about 1,500 to 750,000. , more preferably about 2,000 to 500,000. Specifically, the weight average molecular weight of the conductive polymer A is a value measured by gel filtration chromatography (GPC).
 また、本発明の効果をより一層好適に発揮する観点から、導電性高分子Aの1質量%イソプロパノール溶液の粘度(20℃環境)としては、例えば1mPa・s以上、好ましくは1~200mPa・s程度、より好ましくは1~100mPa・s程度、さらに好ましくは1~50mPa・s程度である。導電性高分子Aの当該粘度の測定方法は、以下の通りである。 In addition, from the viewpoint of exhibiting the effects of the present invention even more favorably, the viscosity of a 1% by mass isopropanol solution of conductive polymer A (in a 20°C environment) is, for example, 1 mPa·s or more, preferably 1 to 200 mPa·s. degree, more preferably about 1 to 100 mPa·s, still more preferably about 1 to 50 mPa·s. The method for measuring the viscosity of conductive polymer A is as follows.
<粘度の測定方法>
 レオメータを用い、25℃環境、せん断速度1.0s-1、コーンプレート:C60/2の条件で粘度を測定する。
<Method of measuring viscosity>
The viscosity is measured using a rheometer under the conditions of 25° C. environment, shear rate of 1.0 s −1 and cone plate: C60/2.
 また、本発明の効果をより一層好適に発揮する観点から、導電性高分子Aの1質量%イソプロパノール溶液の導電性としては、好ましくは105~1010Ω/sq.程度、より好ましくは106~109Ω/sq.程度、さらに好ましくは107~109Ω/sq.程度である。導電性高分子Aの当該導電性は、具体的には、1質量%の導電性高分子Aの溶液をPET(ルミラー(登録商標)#100-S10(東レ株式会社製))の片面にNo.12のバーコータを用いてバーコート法にて塗布し、風乾によって乾燥させた後に、実施例の手法に準じて測定された値である。 In addition, from the viewpoint of exhibiting the effects of the present invention even more favorably, the conductivity of a 1% by mass isopropanol solution of conductive polymer A is preferably about 10 5 to 10 10 Ω/sq., more preferably about 10 Ω/sq. It is about 6 to 10 9 Ω/sq., more preferably about 10 7 to 10 9 Ω/sq. Specifically, the conductivity of the conductive polymer A is determined by applying No. .. This is a value measured according to the method of the example after coating by a bar coating method using a No. 12 bar coater and drying by air drying.
 本発明の効果をより一層好適に発揮する観点から、本発明の単層カーボンナノチューブ分散液において、単層カーボンナノチューブの含有量に対する導電性高分子Aの含有量の質量比(導電性高分子Aの含有量/単層カーボンナノチューブの含有量)は、好ましくは1~20程度、より好ましくは1~15程度、さらに好ましくは1~10程度である。本発明のCNT分散液を利用した硬化性樹脂組成物の耐熱性を考慮すると、単層カーボンナノチューブの含有量に対する導電性高分子Aの含有量の質量比は10以下が好ましい。 From the viewpoint of exhibiting the effects of the present invention even more favorably, in the single-walled carbon nanotube dispersion of the present invention, the mass ratio of the content of conductive polymer A to the content of single-walled carbon nanotubes (conductive polymer A (content of single-walled carbon nanotubes) is preferably about 1 to 20, more preferably about 1 to 15, and even more preferably about 1 to 10. Considering the heat resistance of the curable resin composition using the CNT dispersion of the present invention, the mass ratio of the content of conductive polymer A to the content of single-walled carbon nanotubes is preferably 10 or less.
 本発明のCNT分散液において、導電性高分子Aの含有率は、本発明の効果を阻害しないことを限度として、特に制限されず、本発明の効果をより好適に奏する観点から、好ましくは0.01~20質量%、より好ましくは0.05~10質量%、さらに好ましくは0.1~5質量%が挙げられる。 In the CNT dispersion of the present invention, the content of conductive polymer A is not particularly limited as long as it does not impede the effects of the present invention, and from the viewpoint of more preferably achieving the effects of the present invention, the content of conductive polymer A is preferably 0. .01 to 20% by weight, more preferably 0.05 to 10% by weight, and still more preferably 0.1 to 5% by weight.
 また、本発明のCNT分散液には、単層カーボンナノチューブ、導電性高分子Aに加えて、さらに、液性媒体が含まれる。液性媒体の種類は、本発明の効果を阻害しないことを限度として、特に制限されず、例えば極性溶媒及び非極性溶媒のいずれであってもよい。また、本発明のCNT分散液に含まれる液性媒体は、1種類のみであってもよいし、2種類以上であってもよい。本発明の効果をより好適に奏する観点から、液性媒体は、極性溶媒であることが好ましい。好ましい液性媒体としては、例えば、水、有機溶媒(好ましくは、エタノール、イソプロピルアルコールなどのアルコール、DMF、NMP、酢酸エチル、酢酸ブチル、メチルエチルケトンなどの極性の有機溶媒)が挙げられる。これらの中でも、特にイソプロピルアルコールが好ましい。 Furthermore, in addition to the single-walled carbon nanotubes and the conductive polymer A, the CNT dispersion of the present invention further contains a liquid medium. The type of liquid medium is not particularly limited as long as it does not impede the effects of the present invention, and may be either a polar solvent or a non-polar solvent, for example. Furthermore, the CNT dispersion of the present invention may contain only one type of liquid medium, or may contain two or more types. From the viewpoint of achieving the effects of the present invention more suitably, the liquid medium is preferably a polar solvent. Preferred liquid media include, for example, water and organic solvents (preferably alcohols such as ethanol and isopropyl alcohol, and polar organic solvents such as DMF, NMP, ethyl acetate, butyl acetate, and methyl ethyl ketone). Among these, isopropyl alcohol is particularly preferred.
 本発明のCNT分散液中の液性媒体の割合は、好ましくは79.00~99.98質量%、より好ましくは84.00~99.98質量%、さらに好ましくは89.00~99.98質量%が挙げられる。 The proportion of the liquid medium in the CNT dispersion of the present invention is preferably 79.00 to 99.98% by mass, more preferably 84.00 to 99.98% by mass, even more preferably 89.00 to 99.98% by mass. Mass % is mentioned.
 本発明のCNT分散液には、単層カーボンナノチューブ、導電性高分子A、及び液性媒体に加えて、必要に応じて、公知のカーボンナノチューブ分散液に含まれる添加剤がさらに含まれていてもよい。本発明のCNT分散液において、添加剤の含有率としては、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下である。 In addition to the single-walled carbon nanotubes, the conductive polymer A, and the liquid medium, the CNT dispersion of the present invention further contains additives included in known carbon nanotube dispersions, if necessary. Good too. In the CNT dispersion of the present invention, the content of the additive is preferably 10% by mass or less, more preferably 5% by mass or less, even more preferably 3% by mass or less.
 本発明のCNT分散液には、更に、必要に応じて、酸を加えることができる。酸の種類は、本発明の効果を阻害しないことを限度として、特に制限されず、有機酸、無機酸のいずれであってもよい。また、本発明のCNT分散液に含まれる酸は、1種類のみであってもよいし、2種類以上であってもよい。本発明の効果をより好適に奏する観点から、酸のpKaとしては、好ましくは0~15、より好ましくは1~13、更に好ましくは1.5~8である。好ましい酸としては、例えば、アルコール(好ましくはトリフルオロエタノール、フェノールなど)、カルボン酸(好ましくは酢酸、安息香酸など)、ホスホン酸(好ましくはへキシルホスホン酸、フェニルホスホン酸など)、リン酸(好ましくはリン酸ジベンジルなど)が挙げられる。酸の含有率は、酸のpKaによって調整することが好ましい。例えば、ホスホン酸を用いる場合には、0.001mM~10M、より好ましくは0.01mM~1M、更に好ましくは0.1mM~500mMである。酸を添加することにより、硬化性樹脂と混合した場合のカーボンナノチューブ分散性を向上させ、更に、ドーピング効果により、硬化性樹脂組成物の導電性を高めることができる。 An acid can be further added to the CNT dispersion of the present invention, if necessary. The type of acid is not particularly limited as long as it does not impede the effects of the present invention, and it may be either an organic acid or an inorganic acid. Further, the CNT dispersion of the present invention may contain only one type of acid, or may contain two or more types of acids. From the viewpoint of achieving the effects of the present invention more preferably, the pKa of the acid is preferably 0 to 15, more preferably 1 to 13, and even more preferably 1.5 to 8. Preferred acids include, for example, alcohol (preferably trifluoroethanol, phenol, etc.), carboxylic acid (preferably acetic acid, benzoic acid, etc.), phosphonic acid (preferably hexylphosphonic acid, phenylphosphonic acid, etc.), phosphoric acid (preferably hexylphosphonic acid, phenylphosphonic acid, etc.), Preferred examples include dibenzyl phosphate and the like. The acid content is preferably adjusted by the pKa of the acid. For example, when using phosphonic acid, the concentration is 0.001mM to 10M, more preferably 0.01mM to 1M, and even more preferably 0.1mM to 500mM. By adding an acid, the dispersibility of carbon nanotubes when mixed with a curable resin can be improved, and furthermore, the conductivity of the curable resin composition can be increased due to the doping effect.
 本発明のCNT分散液の製造方法は、特に制限されず、単層カーボンナノチューブと、導電性高分子Aと、液性媒体とを混合することにより製造することができる。 The method for producing the CNT dispersion of the present invention is not particularly limited, and can be produced by mixing single-walled carbon nanotubes, conductive polymer A, and a liquid medium.
 本発明のCNT分散液は、硬化性樹脂と混合された場合のカーボンナノチューブの分散性が良好であり、硬化性樹脂組成物に対して良好な帯電防止性と優れた透明性を付与できる。このため、本発明のCNT分散液は、後述する硬化性樹脂組成物の製造、当該硬化性樹脂組成物を利用した帯電防止性フィルムの製造などに好適に利用することができる。 The CNT dispersion of the present invention has good dispersibility of carbon nanotubes when mixed with a curable resin, and can impart good antistatic properties and excellent transparency to the curable resin composition. Therefore, the CNT dispersion of the present invention can be suitably used for manufacturing a curable resin composition, which will be described later, and for manufacturing an antistatic film using the curable resin composition.
2.硬化性樹脂組成物
 本発明の硬化性樹脂組成物は、単層カーボンナノチューブと、前記式(1)で表される繰り返し単位を含む導電性高分子Aと、液性媒体と、硬化性樹脂とを含むことを特徴とする。本発明の硬化性樹脂組成物は、前述した本発明のCNT分散液を利用することにより、好適に製造することができる。すなわち、本発明のCNT分散液と、硬化性樹脂とを混合することにより、本発明の硬化性樹脂組成物を好適に製造することができる。
2. Curable Resin Composition The curable resin composition of the present invention comprises a single-walled carbon nanotube, a conductive polymer A containing a repeating unit represented by the above formula (1), a liquid medium, and a curable resin. It is characterized by including. The curable resin composition of the present invention can be suitably produced by using the CNT dispersion of the present invention described above. That is, the curable resin composition of the present invention can be suitably produced by mixing the CNT dispersion of the present invention and the curable resin.
 前記の通り、本発明のCNT分散液は、硬化性樹脂と混合された場合の単層カーボンナノチューブの分散性が良好であり、硬化性樹脂組成物に対して良好な帯電防止性と優れた透明性を付与できる。このため、本発明のCNT分散液を利用して製造された、本発明の硬化性樹脂組成物は、単層カーボンナノチューブが硬化性樹脂組成物中で均一に分散し、良好な帯電防止性と優れた透明性を発揮することができる。従って、例えば、本発明の硬化性樹脂組成物を透明基材上で硬化させた硬化樹脂層を帯電防止層とすることにより、好適に帯電防止性フィルムを製造することができる。 As mentioned above, the CNT dispersion of the present invention has good dispersibility of single-walled carbon nanotubes when mixed with a curable resin, and has good antistatic properties and excellent transparency for the curable resin composition. Can be given gender. Therefore, in the curable resin composition of the present invention produced using the CNT dispersion of the present invention, the single-walled carbon nanotubes are uniformly dispersed in the curable resin composition, and the composition has good antistatic properties. It can exhibit excellent transparency. Therefore, for example, by using a cured resin layer obtained by curing the curable resin composition of the present invention on a transparent substrate as an antistatic layer, an antistatic film can be suitably produced.
 本発明の硬化性樹脂組成物において、単層カーボンナノチューブと、前記式(1)で表される繰り返し単位を含む導電性高分子Aと、液性媒体の詳細については、前述の「1.単層カーボンナノチューブ分散液」の項目で説明した通りである。 For details of the single-walled carbon nanotubes, the conductive polymer A containing the repeating unit represented by formula (1), and the liquid medium in the curable resin composition of the present invention, please refer to "1. This is as explained in the section "Layered Carbon Nanotube Dispersion".
 本発明の硬化性樹脂組成物において、単層カーボンナノチューブの含有率は、本発明の効果を阻害しないことを限度として、特に制限されず、本発明の効果をより好適に奏する観点から、好ましくは0.001~0.1質量%、より好ましくは0.005~0.05質量%、さらに好ましくは0.005~0.04質量%が挙げられる。 In the curable resin composition of the present invention, the content of single-walled carbon nanotubes is not particularly limited as long as it does not impede the effects of the present invention, and is preferably Examples include 0.001 to 0.1% by mass, more preferably 0.005 to 0.05% by mass, and still more preferably 0.005 to 0.04% by mass.
 また、本発明の硬化性樹脂組成物において、導電性高分子Aの含有率は、本発明の効果を阻害しないことを限度として、特に制限されず、本発明の効果をより好適に奏する観点から、好ましくは0.010~0.500質量%、より好ましくは0.015~0.200質量%、さらに好ましくは0.015~0.100質量%が挙げられる。 Furthermore, in the curable resin composition of the present invention, the content of the conductive polymer A is not particularly limited as long as it does not impede the effects of the present invention, and from the viewpoint of more preferably achieving the effects of the present invention. , preferably 0.010 to 0.500% by mass, more preferably 0.015 to 0.200% by mass, and even more preferably 0.015 to 0.100% by mass.
 本発明の効果をより一層好適に発揮する観点から、本発明の硬化性樹脂組成物において、単層カーボンナノチューブの含有量に対する導電性高分子Aの含有量の質量比(導電性高分子Aの含有量/単層カーボンナノチューブの含有量)は、好ましくは1~20程度、より好ましくは1~15程度、さらに好ましくは1~10程度である。単層カーボンナノチューブの含有量に対する導電性高分子Aの含有量の質量比を10以下にすることで、耐熱性に優れた硬化性樹脂組成物を得ることができる。 From the viewpoint of exhibiting the effects of the present invention even more favorably, in the curable resin composition of the present invention, the mass ratio of the content of conductive polymer A to the content of single-walled carbon nanotubes (the mass ratio of the content of conductive polymer A to the content of single-walled carbon nanotubes) content/content of single-walled carbon nanotubes) is preferably about 1 to 20, more preferably about 1 to 15, and still more preferably about 1 to 10. By setting the mass ratio of the content of conductive polymer A to the content of single-walled carbon nanotubes to 10 or less, a curable resin composition with excellent heat resistance can be obtained.
 本発明の硬化性樹脂組成物中の液性媒体の割合は、好ましくは10~70質量%、より好ましくは20~60質量%、さらに好ましくは30~50質量%が挙げられる。 The proportion of the liquid medium in the curable resin composition of the present invention is preferably 10 to 70% by mass, more preferably 20 to 60% by mass, and even more preferably 30 to 50% by mass.
 本発明の硬化性樹脂組成物に含まれる硬化性樹脂は、特に制限されない。本発明の硬化性樹脂組成物は、透明性に優れることが好ましいため、硬化性樹脂は透明であることが好ましい。 The curable resin contained in the curable resin composition of the present invention is not particularly limited. Since the curable resin composition of the present invention preferably has excellent transparency, the curable resin is preferably transparent.
 硬化性樹脂の種類については、用途に応じて適宜選択することができ、例えば、電離放射線硬化性樹脂、熱硬化性樹脂などが挙げられる。 The type of curable resin can be appropriately selected depending on the application, and examples include ionizing radiation-curable resins and thermosetting resins.
 電離放射線硬化性樹脂とは、電離放射線を照射することにより、架橋、硬化する樹脂であり、プレポリマー、オリゴマー、及びモノマーなどのうち少なくとも1種を適宜混合したものが挙げられる。ここで電離放射線とは、電磁波又は荷電粒子線のうち、分子を重合あるいは架橋しうるエネルギー量子を有するものを意味し、通常紫外線(UV)又は電子線(EB)が用いられるが、その他、X線、γ線等の電磁波、α線、イオン線等の荷電粒子線も含むものである。電離放射線硬化性樹脂の具体例としては、ウレタン(メタ)アクリレート、エポキシアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート等が挙げられる。これらの中でも、本発明の硬化性樹脂組成物が硬化することにより、良好な帯電防止性と優れた透明性を発揮できることから、硬化性樹脂は、ウレタン(メタ)アクリレートであることが特に好ましい。電離放射線硬化性樹脂は1種または2種以上を併用して用いることができる。 The ionizing radiation curable resin is a resin that is crosslinked and cured by irradiation with ionizing radiation, and includes a mixture of at least one of prepolymers, oligomers, monomers, etc. as appropriate. Here, ionizing radiation refers to electromagnetic waves or charged particle beams that have energy quanta that can polymerize or crosslink molecules, and ultraviolet rays (UV) or electron beams (EB) are usually used; It also includes electromagnetic waves such as rays and gamma rays, and charged particle beams such as alpha rays and ion beams. Specific examples of the ionizing radiation-curable resin include urethane (meth)acrylate, epoxy acrylate, polyester acrylate, polyether acrylate, and the like. Among these, the curable resin is particularly preferably urethane (meth)acrylate because the curable resin composition of the present invention can exhibit good antistatic properties and excellent transparency when cured. Ionizing radiation curable resins can be used alone or in combination of two or more.
 また、熱硬化性樹脂の具体例としては、例えば、エポキシ樹脂、ポリウレタン樹脂(2液硬化性ポリウレタンも含む)、不飽和ポリエステル樹脂、アミノアルキッド樹脂、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、メラミン-尿素共縮合樹脂、珪素樹脂、ポリシロキサン樹脂等が挙げられる。これらの熱硬化性樹脂は1種または2種以上を併用して用いることができる。 Specific examples of thermosetting resins include epoxy resins, polyurethane resins (including two-component curable polyurethanes), unsaturated polyester resins, aminoalkyd resins, phenolic resins, urea resins, diallyl phthalate resins, and melamine resins. , guanamine resin, melamine-urea cocondensation resin, silicone resin, polysiloxane resin and the like. These thermosetting resins can be used alone or in combination of two or more.
 硬化性樹脂組成物には、架橋剤、重合開始剤等の硬化剤、重合促進剤を添加できる。例えば、硬化剤としては、有機アミン等をエポキシ樹脂に添加でき、イソシアネート、有機スルホン酸塩等を不飽和ポリエステル樹脂、ポリウレタン樹脂等に添加できる。メチルエチルケトンパーオキサイド等の過酸化物、及びアゾイソブチルニトリル等のラジカル開始剤は、不飽和ポリエステル樹脂に添加できる。 A crosslinking agent, a curing agent such as a polymerization initiator, and a polymerization accelerator can be added to the curable resin composition. For example, as a curing agent, an organic amine or the like can be added to an epoxy resin, and an isocyanate, an organic sulfonate, or the like can be added to an unsaturated polyester resin, a polyurethane resin, or the like. Peroxides such as methyl ethyl ketone peroxide and radical initiators such as azoisobutyl nitrile can be added to the unsaturated polyester resin.
 本発明の硬化性樹脂組成物は、下記条件の光透過式遠心沈降法によって測定される、単層カーボンナノチューブの沈降速度が、好ましくは60%/h以下、より好ましくは40%/h以下、さらに好ましくは35%/h以下、さらに好ましくは30%/h以下である。当該沈降速度は、例えば0.001%/h以上、0.01%/h以上、0.1%/h以上などである。 The curable resin composition of the present invention has a sedimentation rate of single-walled carbon nanotubes measured by a light transmission centrifugal sedimentation method under the following conditions, preferably 60%/h or less, more preferably 40%/h or less, More preferably, it is 35%/h or less, and even more preferably 30%/h or less. The sedimentation rate is, for example, 0.001%/h or more, 0.01%/h or more, 0.1%/h or more.
(沈降速度の測定条件)
 硬化性樹脂組成物0.4mlをサンプルセルに充填し、4000rpmで高速回転させ、セル中央における粒子の分離現象を経過時間によって解析することにより、単層カーボンナノチューブの沈降速度を算出する。
(Measurement conditions for sedimentation rate)
The sedimentation rate of the single-walled carbon nanotubes is calculated by filling a sample cell with 0.4 ml of the curable resin composition, rotating it at a high speed of 4000 rpm, and analyzing the particle separation phenomenon at the center of the cell based on the elapsed time.
 本発明の硬化性樹脂組成物は、電離放射線の照射や加熱によって硬化させることにより硬化物となる。 The curable resin composition of the present invention becomes a cured product by being cured by irradiation with ionizing radiation or heating.
 本発明の硬化性樹脂組成物の硬化物は、表面抵抗値が、好ましくは1011Ω/sq.以下、より好ましくは1010Ω/sq.以下さらに好ましくは109Ω/sq.以下であり、下限については、例えば、105Ω/sq.が挙げられる。表面抵抗値の測定は、実施例の記載による。 The cured product of the curable resin composition of the present invention preferably has a surface resistance value of 10 11 Ω/sq. Below, more preferably 10 10 Ω/sq. More preferably 10 9 Ω/sq. The lower limit is, for example, 10 5 Ω/sq. can be mentioned. The surface resistance value was measured as described in Examples.
 例えば、本発明の硬化性樹脂組成物において、硬化性樹脂が紫外線硬化性樹脂である場合、硬化性樹脂組成物を乾燥させ、紫外線を照射することで硬化物が得られる。例えば、本発明の硬化性樹脂組成物を透明基材の上に塗布し、乾燥させた後、紫外線照射によって硬化性樹脂組成物を硬化させると、硬化樹脂層(フィルムの形態の硬化物)が形成され、硬化樹脂層と透明基材とが積層された透明フィルムが得られる。当該透明フィルムの硬化樹脂層は、帯電防止性を備えている。このため、硬化樹脂層を帯電防止層とすることにより、透明フィルムは、透明基材の上に帯電防止層が積層された、帯電防止性フィルムとして好適に利用することができる。 For example, in the curable resin composition of the present invention, when the curable resin is an ultraviolet curable resin, a cured product can be obtained by drying the curable resin composition and irradiating it with ultraviolet rays. For example, when the curable resin composition of the present invention is applied onto a transparent substrate, dried, and then cured by ultraviolet irradiation, a cured resin layer (cured product in the form of a film) is formed. A transparent film in which a cured resin layer and a transparent base material are laminated is obtained. The cured resin layer of the transparent film has antistatic properties. Therefore, by using the cured resin layer as an antistatic layer, the transparent film can be suitably used as an antistatic film in which the antistatic layer is laminated on a transparent base material.
3.帯電防止性フィルム
 本発明の帯電防止性フィルムは、透明基材と、透明基材の上に積層された、本発明の硬化性樹脂組成物の硬化物によって形成された帯電防止層とを備えることを特徴としている。本発明の帯電防止性フィルムは、本発明の硬化性樹脂組成物を利用した帯電防止層を備えることから、良好な帯電防止性と優れた透明性とを兼ね備えている。
3. Antistatic Film The antistatic film of the present invention comprises a transparent base material and an antistatic layer formed of a cured product of the curable resin composition of the present invention, which is laminated on the transparent base material. It is characterized by Since the antistatic film of the present invention includes an antistatic layer using the curable resin composition of the present invention, it has both good antistatic properties and excellent transparency.
 本発明の帯電防止性フィルムは、以下の条件を満たすことが好ましい。
 (前記帯電防止性フィルムの全光線透過率/前記硬化性樹脂のみで帯電防止層を形成した場合の帯電防止性フィルムの全光線透過率)>0.94
The antistatic film of the present invention preferably satisfies the following conditions.
(Total light transmittance of the antistatic film/Total light transmittance of the antistatic film when the antistatic layer is formed only with the curable resin)>0.94
 帯電防止性フィルムの全光線透過率の測定は、実施例の記載による。 The total light transmittance of the antistatic film was measured as described in Examples.
 本発明の帯電防止性フィルムの単位厚み(5μm)当たりの全光線透過率は、好ましくは70%以上、より好ましくは75%以上、さらに好ましくは81%以上が挙げられる。 The total light transmittance per unit thickness (5 μm) of the antistatic film of the present invention is preferably 70% or more, more preferably 75% or more, and still more preferably 81% or more.
 本発明の帯電防止性フィルムにおいて、透明基材は、例えば、透明樹脂により形成される。透明樹脂としては、帯電防止性フィルムの基材として利用できるものであれば、特に制限されず、ポリエチレンテレフタレート等のポリエステル、アクリル樹脂、ポリカーボネート、ポリプロピレン、ポリスチレン、ポリイミド、ポリアミド、ポリスルホン、ポリエーテルスルホン、ポリ塩化ビニル、ポリビニルアルコール、ポリメチルメタクリレート、フェノール樹脂、エポキシ樹脂、ABS樹脂などが挙げられる。 In the antistatic film of the present invention, the transparent base material is formed of, for example, a transparent resin. The transparent resin is not particularly limited as long as it can be used as a base material for antistatic films, and includes polyesters such as polyethylene terephthalate, acrylic resins, polycarbonates, polypropylene, polystyrene, polyimides, polyamides, polysulfones, polyethersulfones, Examples include polyvinyl chloride, polyvinyl alcohol, polymethyl methacrylate, phenol resin, epoxy resin, and ABS resin.
 透明基材は、透明である。透明基材の単位厚み(100μm)当たりの全光線透過率は、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは84%以上が挙げられる。全光線透過率の測定は、実施例の記載に準じて行う。 The transparent base material is transparent. The total light transmittance per unit thickness (100 μm) of the transparent base material is preferably 70% or more, more preferably 80% or more, and still more preferably 84% or more. Measurement of total light transmittance is performed according to the description in Examples.
 透明基材の厚みは、例えば10~500μm程度、好ましくは20~300μm程度、さらに30~200μm程度である。 The thickness of the transparent base material is, for example, about 10 to 500 μm, preferably about 20 to 300 μm, and more preferably about 30 to 200 μm.
 また、帯電防止層は、本発明の硬化性樹脂組成物の硬化物によって形成される。このため、帯電防止層の表面抵抗値は、好ましくは1011Ω/sq.以下、より好ましくは1010Ω/sq.以下さらに好ましくは109Ω/sq.以下であり、下限については、例えば、105Ω/sq.が挙げられる。表面抵抗値の測定は、実施例の記載による。 Further, the antistatic layer is formed of a cured product of the curable resin composition of the present invention. Therefore, the surface resistance value of the antistatic layer is preferably 10 11 Ω/sq. Below, more preferably 10 10 Ω/sq. More preferably 10 9 Ω/sq. The lower limit is, for example, 10 5 Ω/sq. can be mentioned. The surface resistance value was measured as described in Examples.
 帯電防止層の厚みは、例えば1~20μm程度、好ましくは2~10μm程度、さらに3~6μm程度である。 The thickness of the antistatic layer is, for example, about 1 to 20 μm, preferably about 2 to 10 μm, and more preferably about 3 to 6 μm.
 本発明の帯電防止性フィルムは、例えば、スマートフォンなどの電子機器のインターフェース画面等に好適に適用することができる。 The antistatic film of the present invention can be suitably applied to, for example, interface screens of electronic devices such as smartphones.
 以下に、実施例により本発明をさらに詳細に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。 The present invention will be explained in more detail with reference to examples below, but the following examples do not limit the scope of the present invention in any way.
 実施例及び比較例における各測定方法は、以下の通りである。 The measurement methods in Examples and Comparative Examples are as follows.
(表面抵抗値の測定)
 標準条件(23℃、50%RH)において、帯電防止性フィルムの帯電防止層側の表面に対して、高抵抗抵抗率計(ハイレスタ-UX MCP-HT800、日東精工アナリテック社製)を用いてUSRプローブMCP-HTP14を2kgの荷重で押し当てて定電圧印可/漏洩電流測定法にて表面抵抗値を測定した。
(Measurement of surface resistance value)
Under standard conditions (23°C, 50% RH), the surface of the antistatic layer side of the antistatic film was measured using a high resistance resistivity meter (Hirestar-UX MCP-HT800, manufactured by Nitto Seiko Analytech). The surface resistance value was measured by applying a constant voltage/leakage current measurement method by pressing a USR probe MCP-HTP14 with a load of 2 kg.
(全光線透過率)
 帯電防止性フィルムについて、全光線透過率の測定は、紫外・可視・近赤外分光光度計(UV 3600i、島津社製)を用いてJIS K7361-1に準拠して測定した。
(Total light transmittance)
The total light transmittance of the antistatic film was measured using an ultraviolet/visible/near-infrared spectrophotometer (UV 3600i, manufactured by Shimadzu Corporation) in accordance with JIS K7361-1.
(分散安定性(沈降速度))
 硬化性樹脂組成物の分散安定性(沈降速度)は、以下の手順により評価した。分散安定性は、光透過式遠心沈降法と呼ばれる方法をLUMJapan製 分散性評価・粒子径分布装置LS-610型により、測定したカーボンナノチューブの溶液中での沈降速度を用いて評価した。具体的には、硬化性樹脂組成物0.4mlを測定用試料として入れたサンプルセルを25℃条件下にて4000rpmで高速回転させ、セル中央における粒子の分離現象を経過時間によって解析することにより、カーボンナノチューブの沈降速度を算出した。上記測定装置にはデータ解析ソフトが搭載されており、測定データを自動的に解析することで、沈降速度を算出できる。
(Dispersion stability (sedimentation rate))
The dispersion stability (sedimentation rate) of the curable resin composition was evaluated by the following procedure. Dispersion stability was evaluated using a method called light transmission centrifugal sedimentation using a dispersibility evaluation/particle size distribution device LS-610 manufactured by LUM Japan, using the sedimentation rate of carbon nanotubes in a solution measured. Specifically, a sample cell containing 0.4 ml of the curable resin composition as a measurement sample was rotated at a high speed of 4000 rpm at 25°C, and the particle separation phenomenon at the center of the cell was analyzed based on the elapsed time. , the sedimentation rate of carbon nanotubes was calculated. The above measurement device is equipped with data analysis software, and by automatically analyzing the measurement data, the sedimentation rate can be calculated.
 実施例及び比較例で用いた原料の詳細は、以下の通りである。 Details of the raw materials used in the Examples and Comparative Examples are as follows.
(カーボンナノチューブ)
単層CNT1:大阪ソーダ社製単層カーボンナノチューブ(製品名:OStube) 外径:2.0-3.0nm、炭素純度:99.7%、GD比:90
単層CNT2:ゼオンナノテクノロジー社製単層カーボンナノチューブ(製品名:ZEONANO SG101) 外径:4.0nm、炭素純度:99.2%、GD比:8
多層CNT1:Nanocyl社製多層カーボンナノチューブ(製品名:NC7000)
 外径:9.5nm、炭素純度:90%、GD比:1
(carbon nanotube)
Single-walled CNT1: Single-walled carbon nanotube manufactured by Osaka Soda Co., Ltd. (product name: OStube) Outer diameter: 2.0-3.0 nm, carbon purity: 99.7%, GD ratio: 90
Single-walled CNT2: Single-walled carbon nanotube manufactured by Zeon Nano Technology Co., Ltd. (product name: ZEONANO SG101) Outer diameter: 4.0 nm, carbon purity: 99.2%, GD ratio: 8
Multi-walled CNT1: Multi-walled carbon nanotube manufactured by Nanocyl (product name: NC7000)
Outer diameter: 9.5 nm, carbon purity: 90%, GD ratio: 1
(分散剤)
分散剤1:SELFTRON(登録商標)有機溶剤グレード(東ソー社製、粘度4-6mPa・s(1質量%溶液@25℃))、表面抵抗は5.1×108Ω/sq.(1質量%溶液)。上記一般式(1)で表される繰り返し単位を含む導電性高分子(自己ドープ型導電性材料)。
分散剤2:エスレックBL-10(積水化学社製)上記一般式(1)で表される繰り返し単位を含まない高分子分散剤。
(dispersant)
Dispersant 1: SELFTRON (registered trademark) organic solvent grade (manufactured by Tosoh Corporation, viscosity 4-6 mPa·s (1% by mass solution @ 25°C)), surface resistance 5.1×10 8 Ω/sq. (1% by mass solution). A conductive polymer (self-doped conductive material) containing a repeating unit represented by the above general formula (1).
Dispersant 2: S-LEC BL-10 (manufactured by Sekisui Chemical Co., Ltd.) A polymer dispersant containing no repeating unit represented by the above general formula (1).
(透明基材)
ポリエチレンテレフタレートフィルム:ルミラー(登録商標)#100-S10(東レ株式会社製)
(transparent base material)
Polyethylene terephthalate film: Lumirror (registered trademark) #100-S10 (manufactured by Toray Industries, Inc.)
(硬化性樹脂溶液(バインダー樹脂溶液))
 硬化性樹脂(透明)としてのウレタンアクリレート(荒川化学工業社製、商品名:ビームセット575)100質量部と、光重合開始剤(チバ・スペシャリティ・ケミカルズ社製、商品名:イルガキュア184)3質量部と、イソプロパノールを用いて、液状の硬化性樹脂溶液(バインダー樹脂溶液(固形分濃度:30質量%))を調製した。
(Curable resin solution (binder resin solution))
100 parts by mass of urethane acrylate (manufactured by Arakawa Chemical Industries, Ltd., trade name: Beam Set 575) as a curable resin (transparent), and 3 parts by mass of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals, trade name: Irgacure 184). A liquid curable resin solution (binder resin solution (solid content concentration: 30% by mass)) was prepared using 10% and isopropanol.
(CNT分散液1の製造)
 直径20mmの円柱状ガラス管に、単層CNT1としての「OStube」0.2質量部、分散剤(導電性高分子)としての「SELFTRON」0.2質量部、及び溶媒としてのイソプロパノール100質量部を加えた。超音波ホモジナイザー(UX-300、三井電機精機社製)を使い10分間処理し、カーボンナノチューブ濃度が0.2質量%のCNT分散液1を得た。
(Manufacture of CNT dispersion liquid 1)
In a cylindrical glass tube with a diameter of 20 mm, 0.2 parts by mass of "OStube" as single-walled CNT1, 0.2 parts by mass of "SELFTRON" as a dispersant (conductive polymer), and 100 parts by mass of isopropanol as a solvent. added. The mixture was treated for 10 minutes using an ultrasonic homogenizer (UX-300, manufactured by Mitsui Electric Seiki Co., Ltd.) to obtain CNT dispersion 1 with a carbon nanotube concentration of 0.2% by mass.
 表1の上段に示す配合に基づき、CNT分散液1と同様の方法でCNT分散液2~8を調製した。 Based on the formulations shown in the upper row of Table 1, CNT dispersions 2 to 8 were prepared in the same manner as CNT dispersion 1.
(CNT分散液1を含む硬化性樹脂組成物の沈降速度の測定)
 得られたCNT分散液1を225mgと前記の硬化性樹脂溶液(バインダー樹脂溶液)10gを混合し、カーボンナノチューブがウレタンアクリレートの固形分に対して0.015質量%、ウレタンアクリレートが29質量%の測定用試料を調製した。得られた測定用試料の沈降速度を前述の方法で測定したところ、29.8%/hであった。
(Measurement of sedimentation rate of curable resin composition containing CNT dispersion 1)
225 mg of the obtained CNT dispersion 1 and 10 g of the above-mentioned curable resin solution (binder resin solution) were mixed, and the carbon nanotubes were 0.015% by mass and the urethane acrylate was 29% by mass based on the solid content of the urethane acrylate. A sample for measurement was prepared. The sedimentation rate of the obtained measurement sample was measured by the method described above and was found to be 29.8%/h.
(CNT分散液2、CNT分散液4~8を含む硬化性樹脂組成物の沈降速度の測定)
 CNT分散液1と同じ配合に基づき、CNT分散液2、CNT分散液4~8を含む、各測定用試料を各々調製し、得られた沈降速度測定用溶液の沈降速度を測定したところ、表1の下段の通りになった。
(Measurement of sedimentation rate of curable resin composition containing CNT dispersion 2 and CNT dispersions 4 to 8)
Based on the same formulation as CNT dispersion 1, each measurement sample including CNT dispersion 2 and CNT dispersions 4 to 8 was prepared, and the sedimentation rate of the obtained solution for sedimentation rate measurement was measured. It became the street at the bottom of 1.
(CNT分散液3を含む硬化性樹脂組成物の沈降速度の測定)
 得られたCNT分散液3を450mgと前記の硬化性樹脂溶液(バインダー樹脂溶液)10gを混合し、カーボンナノチューブがウレタンアクリレートの固形分に対して0.015質量%、ウレタンアクリレートが29質量%の測定用試料を調製した。得られた測定用試料の沈降速度を前述の方法で測定したところ、0.6%/hであった。
(Measurement of sedimentation rate of curable resin composition containing CNT dispersion 3)
450 mg of the obtained CNT dispersion 3 and 10 g of the above-mentioned curable resin solution (binder resin solution) were mixed, and the carbon nanotubes were 0.015% by mass and the urethane acrylate was 29% by mass based on the solid content of the urethane acrylate. A sample for measurement was prepared. The sedimentation rate of the obtained measurement sample was measured by the method described above and was found to be 0.6%/h.
(硬化性樹脂組成物1の製造)
<実施例1>
 得られたCNT分散液1を225mgと前記の硬化性樹脂溶液(バインダー樹脂溶液)10gを混合し、硬化性樹脂組成物1を製造した。硬化性樹脂組成物において、ウレタンアクリレート100質量部に対し、カーボンナノチューブは0.015質量部、SELFTRONは0.015質量部とした。
(Manufacture of curable resin composition 1)
<Example 1>
Curable resin composition 1 was produced by mixing 225 mg of the obtained CNT dispersion 1 and 10 g of the above-mentioned curable resin solution (binder resin solution). In the curable resin composition, the amount of carbon nanotubes was 0.015 parts by mass and the amount of SELFTRON was 0.015 parts by mass with respect to 100 parts by mass of urethane acrylate.
<実施例2~6、比較例1~5>
 表2の上段に示す配合に基づき、硬化性組成物1と同様にして硬化性樹脂組成物2~11を各々製造した。
<Examples 2 to 6, Comparative Examples 1 to 5>
Curable resin compositions 2 to 11 were each produced in the same manner as curable composition 1 based on the formulations shown in the upper row of Table 2.
(帯電防止性フィルム1~11の製造)
 透明基材の片面にNo.12のバーコータを用いてバーコート法にて、前記で得られた各硬化性樹脂組成物1~11を各々の基材に塗布し、風乾によって乾燥させた後にUV照射機(光源:メタルハライド、積算光量:600mJ/cm2)で硬化させ、透明基材の片面に厚み5μmの帯電防止層が積層された、帯電防止性フィルム1~11を得た。帯電防止性フィルム1の表面抵抗を測定したところ、107Ω/sq.であり、全光線透過率は84.7%であった。また、前記硬化性樹脂(ウレタンアクリレート)のみで帯電防止層を形成した場合の帯電防止性フィルム7(すなわち比較例1)の全光線透過率は、85.9%であった。このことから、実施例1の帯電防止性フィルム1において、実施例1の帯電防止性フィルム1の全光線透過率(84.7%)/硬化性樹脂のみで帯電防止層を形成した場合の帯電防止性フィルム7の全光線透過率(85.9%))=0.99であった。
 帯電防止性フィルム2~11の表面抵抗率値および帯電防止性フィルム2~11の全光線透過率を各々測定し、表2の下段に結果をまとめた。
(Production of antistatic films 1 to 11)
No. 1 on one side of the transparent base material. Each of the curable resin compositions 1 to 11 obtained above was applied to each base material by the bar coating method using a bar coater No. 12, and after air drying, a UV irradiation machine (light source: metal halide, integrated The film was cured at a light intensity of 600 mJ/cm 2 ) to obtain antistatic films 1 to 11 in which an antistatic layer with a thickness of 5 μm was laminated on one side of a transparent substrate. When the surface resistance of the antistatic film 1 was measured, it was found to be 10 7 Ω/sq. The total light transmittance was 84.7%. Further, the total light transmittance of antistatic film 7 (ie, Comparative Example 1) when the antistatic layer was formed only from the curable resin (urethane acrylate) was 85.9%. From this, in the antistatic film 1 of Example 1, the total light transmittance (84.7%) of the antistatic film 1 of Example 1/the charge when the antistatic layer is formed only with a curable resin The total light transmittance (85.9%) of the protective film 7 was 0.99.
The surface resistivity values of antistatic films 2 to 11 and the total light transmittance of antistatic films 2 to 11 were measured, and the results are summarized in the lower part of Table 2.

Claims (14)

  1.  単層カーボンナノチューブと、下記式(1)で表される繰り返し単位を含む導電性高分子と、液性媒体と、を含む、単層カーボンナノチューブ分散液。
    [前記式(1)中、基R1は、炭素数3~5の直鎖又は分岐鎖のアルキレン基であり、基R2は、水素原子、直鎖若しくは分岐鎖のアルキル基、又は基-O-R2が塩を形成している。]
    A single-walled carbon nanotube dispersion liquid comprising a single-walled carbon nanotube, a conductive polymer containing a repeating unit represented by the following formula (1), and a liquid medium.
    [In the above formula (1), the group R 1 is a linear or branched alkylene group having 3 to 5 carbon atoms, and the group R 2 is a hydrogen atom, a linear or branched alkyl group, or a group - OR 2 forms a salt. ]
  2.  前記液性媒体が、水及び有機溶媒のうち少なくとも一方を含む、請求項1に記載の単層カーボンナノチューブ分散液。 The single-walled carbon nanotube dispersion liquid according to claim 1, wherein the liquid medium contains at least one of water and an organic solvent.
  3.  下記条件の光透過式遠心沈降法によって測定される、前記単層カーボンナノチューブの沈降速度が、60%/h以下である、請求項1または2に記載の単層カーボンナノチューブ分散液。
    (沈降速度の測定条件)
     ウレタンアクリレート100質量部及び1-ヒドロキシシクロヘキシル-フェニルケトン3質量部をイソプロピルアルコールと混合して、ウレタンアクリレートの固形分濃度が30質量%の樹脂溶液を調製する。前記樹脂溶液と、前記単層カーボンナノチューブ分散液とを混合し、単層カーボンナノチューブがウレタンアクリレートの固形分に対して0.015質量%、ウレタンアクリレートが29質量%の測定用試料を調製する。得られた測定用試料0.4mlをサンプルセルに充填し、4000rpmで高速回転させ、セル中央における粒子の分離現象を経過時間によって解析することにより、単層カーボンナノチューブの沈降速度を算出する。
    The single-walled carbon nanotube dispersion according to claim 1 or 2, wherein the single-walled carbon nanotubes have a sedimentation rate of 60%/h or less, as measured by a light transmission centrifugal sedimentation method under the following conditions.
    (Measurement conditions for sedimentation rate)
    100 parts by mass of urethane acrylate and 3 parts by mass of 1-hydroxycyclohexyl-phenyl ketone are mixed with isopropyl alcohol to prepare a resin solution having a solid concentration of urethane acrylate of 30% by mass. The resin solution and the single-walled carbon nanotube dispersion are mixed to prepare a measurement sample containing 0.015% by mass of single-walled carbon nanotubes and 29% by mass of urethane acrylate based on the solid content of urethane acrylate. The sedimentation rate of the single-walled carbon nanotubes is calculated by filling 0.4 ml of the obtained measurement sample into a sample cell, rotating it at a high speed of 4000 rpm, and analyzing the particle separation phenomenon at the center of the cell based on the elapsed time.
  4.  前記単層カーボンナノチューブの含有量に対する前記導電性高分子の含有量の質量比(前記導電性高分子の含有量/前記単層カーボンナノチューブの含有量)が、1以上10以下である、請求項1または2に記載の単層カーボンナノチューブ分散液。 A mass ratio of the content of the conductive polymer to the content of the single-walled carbon nanotubes (content of the conductive polymer/content of the single-walled carbon nanotubes) is 1 or more and 10 or less. Single-walled carbon nanotube dispersion liquid according to 1 or 2.
  5.  単層カーボンナノチューブと、下記式(1)で表される繰り返し単位を含む導電性高分子と、液性媒体と、硬化性樹脂とを含む、硬化性樹脂組成物。
    [前記式(1)中、基R1は、炭素数3~5の直鎖又は分岐鎖のアルキレン基であり、基R2は、水素原子、直鎖若しくは分岐鎖のアルキル基、又は基-O-R2が塩を形成している。]
    A curable resin composition comprising a single-walled carbon nanotube, a conductive polymer containing a repeating unit represented by the following formula (1), a liquid medium, and a curable resin.
    [In the above formula (1), the group R 1 is a linear or branched alkylene group having 3 to 5 carbon atoms, and the group R 2 is a hydrogen atom, a linear or branched alkyl group, or a group - OR 2 forms a salt. ]
  6.  前記液性媒体が、水及び有機溶媒のうち少なくとも一方を含む、請求項5に記載の硬化性樹脂組成物。 The curable resin composition according to claim 5, wherein the liquid medium contains at least one of water and an organic solvent.
  7.  下記条件の光透過式遠心沈降法によって測定される、前記単層カーボンナノチューブの沈降速度が、60%/h以下である、請求項5または6に記載の硬化性樹脂組成物。
    (沈降速度の測定条件)
     硬化性樹脂組成物0.4mlをサンプルセルに充填し、4000rpmで高速回転させ、セル中央における粒子の分離現象を経過時間によって解析することにより、単層カーボンナノチューブの沈降速度を算出する。
    The curable resin composition according to claim 5 or 6, wherein the single-walled carbon nanotubes have a sedimentation rate of 60%/h or less, as measured by a light transmission centrifugal sedimentation method under the following conditions.
    (Measurement conditions for sedimentation rate)
    The sedimentation rate of the single-walled carbon nanotubes is calculated by filling a sample cell with 0.4 ml of the curable resin composition, rotating it at a high speed of 4000 rpm, and analyzing the particle separation phenomenon at the center of the cell based on the elapsed time.
  8.  前記単層カーボンナノチューブの含有量に対する前記導電性高分子の含有量の質量比(前記導電性高分子の含有量/前記単層カーボンナノチューブの含有量)が、1以上10以下である、請求項5または6に記載の硬化性樹脂組成物。 A mass ratio of the content of the conductive polymer to the content of the single-walled carbon nanotubes (content of the conductive polymer/content of the single-walled carbon nanotubes) is 1 or more and 10 or less. 6. The curable resin composition according to 5 or 6.
  9.  前記硬化性樹脂が、ウレタン(メタ)アクリレートである、請求項5または6に記載の硬化性樹脂組成物。 The curable resin composition according to claim 5 or 6, wherein the curable resin is urethane (meth)acrylate.
  10.  請求項5または6に記載の硬化性樹脂組成物の硬化物。 A cured product of the curable resin composition according to claim 5 or 6.
  11.  フィルムの形態である、請求項10に記載の硬化物。 The cured product according to claim 10, which is in the form of a film.
  12.  表面抵抗値が、1011Ω/sq.以下である、請求項10に記載の硬化物。 The surface resistance value is 10 11 Ω/sq. The cured product according to claim 10, which is as follows.
  13.  透明基材と、前記透明基材の上に積層された、請求項10に記載の硬化物によって形成された帯電防止層と、
    を備える、帯電防止性フィルム。
    a transparent base material; an antistatic layer formed of the cured product according to claim 10, laminated on the transparent base material;
    An antistatic film comprising:
  14.  以下の条件を満たす、請求項13に記載の帯電防止性フィルム。
     (前記帯電防止性フィルムの全光線透過率/前記硬化性樹脂のみで帯電防止層を形成した場合の帯電防止性フィルムの全光線透過率)>0.94
    The antistatic film according to claim 13, which satisfies the following conditions.
    (Total light transmittance of the antistatic film/Total light transmittance of the antistatic film when the antistatic layer is formed only with the curable resin)>0.94
PCT/JP2023/007155 2022-03-18 2023-02-27 Single-walled carbon nanotube dispersion liquid, curable resin composition, cured product and antistatic film WO2023176411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022044149 2022-03-18
JP2022-044149 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023176411A1 true WO2023176411A1 (en) 2023-09-21

Family

ID=88023482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007155 WO2023176411A1 (en) 2022-03-18 2023-02-27 Single-walled carbon nanotube dispersion liquid, curable resin composition, cured product and antistatic film

Country Status (1)

Country Link
WO (1) WO2023176411A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066649A1 (en) * 2005-12-06 2007-06-14 Mitsubishi Rayon Co., Ltd. Carbon nanotube-containing composition, composite body, and their production methods
JP2019147937A (en) * 2018-02-26 2019-09-05 国立大学法人山梨大学 Conductive resin composition, conductive resin solution, conductive resin composition production method, and conductive object
KR20200123389A (en) * 2019-04-19 2020-10-29 나가세케무텍쿠스가부시키가이샤 Laminate
JP2022142739A (en) * 2021-03-16 2022-09-30 東ソー株式会社 Conductive polymer composition, and conductive polymer film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066649A1 (en) * 2005-12-06 2007-06-14 Mitsubishi Rayon Co., Ltd. Carbon nanotube-containing composition, composite body, and their production methods
JP2019147937A (en) * 2018-02-26 2019-09-05 国立大学法人山梨大学 Conductive resin composition, conductive resin solution, conductive resin composition production method, and conductive object
KR20200123389A (en) * 2019-04-19 2020-10-29 나가세케무텍쿠스가부시키가이샤 Laminate
JP2022142739A (en) * 2021-03-16 2022-09-30 東ソー株式会社 Conductive polymer composition, and conductive polymer film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOBKOWIAK MAREK; REBIS TOMASZ; MILCZAREK GRZEGORZ: "Electrocatalytic sensing of poly-nitroaromatic compounds on multiwalled carbon nanotubes modified with alkoxysulfonated derivative of PEDOT", MATERIALS CHEMISTRY AND PHYSICS, ELSEVIER SA, SWITZERLAND, TAIWAN, REPUBLIC OF CHINA, vol. 186, 26 October 2016 (2016-10-26), Switzerland, Taiwan, Republic of China , pages 108 - 114, XP029837385, ISSN: 0254-0584, DOI: 10.1016/j.matchemphys.2016.10.035 *

Similar Documents

Publication Publication Date Title
KR101601988B1 (en) Method for producing carbon nanotube-containing conductor
Park et al. Synthesis and dispersion characteristics of multi‐walled carbon nanotube composites with poly (methyl methacrylate) prepared by in‐situ bulk polymerization
Zhang et al. Poly (vinyl alcohol)/SWNT composite film
Sangermano et al. Transparent and conductive graphene oxide/poly (ethylene glycol) diacrylate coatings obtained by photopolymerization
DE60008243T2 (en) Aqueous Ceramer compositions and antistatic, abrasion-resistant ceramers made from them
Amani et al. Electric field induced alignment of carbon nanotubes: methodology and outcomes
KR101883023B1 (en) Functionalized carbon nanotubes exhibiting enhanced solubility and methods for making the same
JP2017525781A (en) Graphene quantum dot-polymer composite material and manufacturing method thereof
JP5599076B2 (en) Nanocarbon aqueous dispersion and nanocarbon dispersion resin composition
JP6201164B2 (en) Active energy ray-curable nanocarbon dispersion, method for producing the same, and active energy ray-curable coating agent using the same
Cui et al. PVK/MWNT electrodeposited conjugated polymer network nanocomposite films
Hameed et al. Graphene based room temperature flexible nanocomposites from permanently cross-linked networks
Ha et al. Composites of Single‐Walled Carbon Nanotubes and Styrene‐Isoprene Copolymer Latices
Veena et al. Characterization of nanosilica‐filled epoxy composites for electrical and insulation applications
Qiu et al. Effect of functionalized graphene oxide with organophosphorus oligomer on the thermal and mechanical properties and fire safety of polystyrene
Sadek et al. Study on the properties of multi-walled carbon nanotubes reinforced poly (vinyl alcohol) composites
Chang et al. Alignment and properties of carbon nanotube buckypaper/liquid crystalline polymer composites
Liu et al. One-step preparation of oxygen/fluorine dual functional MWCNTs with good water dispersibility by the initiation of fluorine gas
WO2016114389A1 (en) Electroconductive laminate and method for manufacturing electroconductive laminate
JP6176431B2 (en) Active energy ray-curable coating composition and coating agent
Thielemans et al. Impure carbon nanotubes as reinforcements for acrylated epoxidized soy oil composites
Toyoda et al. Dispersion of carbon nanofibers modified with polymer colloids to enhance mechanical properties of PVA nanocomposite film
JP2006312677A (en) Carbon fiber oriented connecting film and its manufacturing method
Sebastian et al. Enhancement in the electrical and thermal properties of ethylene vinyl acetate (EVA) co-polymer by zinc oxide nanoparticles
Zhao et al. Preparation of carbon quantum dots based high photostability luminescent membranes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770369

Country of ref document: EP

Kind code of ref document: A1