WO2023176347A1 - 柑橘類植物を栽培する方法及び液体組成物 - Google Patents

柑橘類植物を栽培する方法及び液体組成物 Download PDF

Info

Publication number
WO2023176347A1
WO2023176347A1 PCT/JP2023/006484 JP2023006484W WO2023176347A1 WO 2023176347 A1 WO2023176347 A1 WO 2023176347A1 JP 2023006484 W JP2023006484 W JP 2023006484W WO 2023176347 A1 WO2023176347 A1 WO 2023176347A1
Authority
WO
WIPO (PCT)
Prior art keywords
ions
liquid composition
citrus
humic acid
plant
Prior art date
Application number
PCT/JP2023/006484
Other languages
English (en)
French (fr)
Inventor
一馬 本田
実 盛岡
ギャビン ディアス
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/694,101 external-priority patent/US20230284626A1/en
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2023176347A1 publication Critical patent/WO2023176347A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G17/00Cultivation of hops, vines, fruit trees, or like trees
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N61/00Biocides, pest repellants or attractants, or plant growth regulators containing substances of unknown or undetermined composition, e.g. substances characterised only by the mode of action
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P21/00Plant growth regulators
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides

Definitions

  • the present invention relates to a method and liquid composition for cultivating citrus plants.
  • Citrus greening disease (also referred to as huanglongbing or HLB) is one of the diseases of citrus plants.
  • HLB is a plant disease caused by pathogenic bacteria such as Candidatus Liberibacterb infecting citrus plants. The pathogen is transmitted by the citrus psyllid.
  • Citrus plants infected with the HLB pathogen exhibit the following symptoms: yellowing of some of the leaves, small size of the ripe fruit, most of the surface of the ripe fruit remaining green, taste of the ripe fruit. is bitter.
  • HLB As HLB progresses, the citrus plant gradually weakens and dies from the tips of the branches, eventually dying.
  • Patent Document 1 discloses a method for treating citrus greening disease in citrus plants, which includes applying a liquid containing Fe 2+ ions to the foliage, rhizosphere, or both of citrus plants infected with HLB pathogens. do.
  • Patent Document 1 merely verifies the therapeutic effect of HLB under the conditions of growing citrus plants using a vegetable seedling growing soil. Furthermore, liquids containing Fe 2+ ions are applied to citrus plant seedlings as frequently as once every five days.
  • An object of the present invention is to provide a cultivation method that can alleviate the symptoms of HLB in citrus plants even when citrus plants are grown in a natural environment, and a liquid composition for use in such a cultivation method.
  • a method for cultivating citrus plants comprising: A method comprising applying to the citrus plant a liquid composition containing Fe ions and humic acid, wherein at least a portion of the Fe ions are Fe 2+ ions.
  • a method for cultivating citrus plants comprising: A method comprising applying to the citrus plant a liquid composition containing Fe ions and humic acid, wherein at least a portion of the Fe ions are Fe 2+ ions.
  • [6] The method according to any one of [1] to [5], wherein the citrus plant is infected with a brown rot pathogen.
  • [7] The method according to any one of [1] to [6], wherein the concentration of total Fe ions in the liquid composition is 100 mg/L to 1000 mg/L.
  • [8] The method according to any one of [1] to [7], wherein at least 18% by mass of the total Fe ions in the liquid composition are Fe 2+ ions.
  • [10] The method according to any one of [1] to [9], wherein the liquid composition is applied two to eight times a year.
  • a method for cultivating citrus plants includes applying to the citrus plants a liquid composition containing Fe ions and humic acid, at least a part of which is Fe 2+ ions. be.
  • Citrus plants include, for example, tangerines, oranges, lemons, citrons, yuzus, and kumquats. Citrus plants include, for example, oranges (Citrus sinensis), grapefruits (Citrus paradisi) or lemons (Citrus limon). Oranges can be early varieties such as Hamlin oranges or late varieties such as Valencia oranges.
  • the method for cultivating citrus plants according to this embodiment can target citrus plants infected with HLB pathogens. Therefore, the method according to the present embodiment alleviates the symptoms of HLB in citrus plants. Alternatively, citrus plants that are not infected with HLB pathogens may be targeted. After applying the method according to the present embodiment, even if the citrus plant is infected with an HLB pathogen, the symptoms will be alleviated.
  • Citrus plants can be grown in sandy soil.
  • Sandy soil is a general term for soil containing 50% or more of coarse particles, and includes sandy soil with a particle size of 2.0 mm or less, as well as gravel soil with a particle size of more than 2.0 mm.
  • Citrus plants may be cultivated in an environment inhabited by the citrus psyllium (Diaphorina citri).
  • HLB pathogens are transmitted by the citrus psyllids. This creates an environment where citrus plants are susceptible to infection by HLB pathogens.
  • citrus plants cultivated by the method according to the present embodiment are not infected with HLB pathogens, or even if infected with HLB pathogens, the symptoms are alleviated.
  • the method for cultivating citrus plants according to the present embodiment can target citrus plants infected with the pathogen of brown rot.
  • Brown rot is a disease caused by pathogenic bacteria such as Phytophthora bacteria infecting citrus plants and causing fruit drop.
  • Citrus plants to which the method according to the present embodiment is applied maintain fruit quality even if infected with brown rot pathogens.
  • the liquid composition applied to citrus plants contains Fe ions and humic acid, and at least a portion of the Fe ions are Fe 2+ ions.
  • a liquid composition can be obtained, for example, by dissolving in water an iron compound capable of supplying Fe 2+ ions.
  • the iron compound capable of supplying Fe 2+ ions is not particularly limited as long as it can liberate Fe 2+ ions in an aqueous solution.
  • a divalent iron compound such as FeO or FeSO 4 can be used.
  • the compound is a solid iron compound containing trivalent iron such as iron citrate, it can be an iron compound capable of supplying Fe 2+ ions if it can liberate Fe 2+ ions in an aqueous solution.
  • the above liquid composition combines a trivalent iron compound such as Fe 2 O 3 or FeCl 3 and a reducing agent, reduces Fe 3+ ions to Fe 2+ ions by the action of the reducing agent, and supplies Fe 2+ ions. Good too.
  • the concentration of total Fe ions in the liquid composition is preferably 100 mg/L to 1000 mg/L, more preferably 100 mg/L to 500 mg/L, and even more preferably 100 mg/L to 300 mg/L. .
  • the concentration of total Fe ions in the liquid composition is preferably 100 mg/L to 1000 mg/L, more preferably 100 mg/L to 500 mg/L, and even more preferably 100 mg/L to 300 mg/L. .
  • Total Fe ions means all Fe ions, including Fe 2+ ions and Fe 3+ ions.
  • concentration of Fe 2+ ions in liquid compositions can be measured by existing methods using o-phenanthroline. o-phenanthroline selectively forms complexes with Fe 2+ ions. Therefore, by measuring the absorbance of this complex, Fe 2+ ions can be selectively quantified. Further, the total Fe ion concentration in the liquid composition can be determined using the o-phenanthroline method after reducing Fe 3+ ions in the liquid composition to convert all Fe ions to Fe 2+ ions.
  • At least 18% by weight of the total Fe ions of the liquid composition are Fe 2+ ions.
  • All (100% by mass) of the total Fe ions in the liquid composition may be Fe 2+ ions.
  • Humic acids include humic acids and humic acid salts.
  • humic acid include natural humic acid produced naturally in peat and weathered coal, artificial humic acid produced artificially by nitric acid oxidation of lignite, and natural humic acid and/or artificial humic acid containing sodium, Examples include humic acid salts neutralized with alkaline substances such as potassium, ammonia, calcium and magnesium.
  • Humic acids include humic acid, nitrofumic acid, ammonium humate, calcium humate, magnesium humate, ammonium nitrofumate, calcium nitrofumate, magnesium nitrofumate, and the like.
  • the humic acid may be a humic acid extract.
  • the humic acid extract refers to an extract obtained by extracting nitric acid oxides from young coal such as lignite and brown coal at a pH range of 5 to 8, preferably at a pH range of 5 to 7.
  • the humic acid extract is selected from, for example, nitric oxide of young coal obtained by oxidative decomposition of young coal with nitric acid, potassium hydroxide, sodium hydroxide, ammonium hydroxide, magnesium hydroxide, and calcium hydroxide.
  • a mixture of an inorganic compound containing at least one of monovalent or divalent alkali and water is stirred at 40 to 90°C for 0.5 to 1 hour, and then a solid-liquid separation step is performed to obtain a liquid material. obtained as.
  • the inorganic compound is added to the water so that the pH is in the range of 5 to 8.
  • a method for producing a humic acid extract is described in Patent Document 2.
  • the solids concentration of humic acid in the liquid composition can range from 0.01 to 0.1% by weight. If it is 0.01 mass % or more, the effect of alleviating the symptoms of HLB will be sufficient, and if it is 0.1 mass % or less, the solid content will not settle and separate, and the equipment for applying the liquid composition will not be clogged.
  • the liquid composition may contain metal ions such as Ca ions, Mg ions, Al ions, Ba ions, Cr ions, K ions, Mn ions, and Na ions.
  • the liquid composition may contain an acid in order to stably maintain Fe 2+ ions and maintain the alleviation effect on HLB symptoms.
  • Such acids include citric acid, malic acid, tartaric acid, oxalic acid and ascorbic acid. Among these, citric acid is preferred as the acid.
  • the acid concentration is preferably 100 mg/L to 10 g/L, more preferably 500 mg/L to 2 g/L.
  • the means for applying the liquid composition to citrus plants is not particularly limited. Such means include, for example, spraying the liquid composition on the leaf surface of the citrus plant, or irrigating the rhizosphere of the citrus plant with the liquid composition.
  • the liquid composition is applied to the rhizosphere of the citrus plant.
  • the above liquid composition is applied to the rhizosphere, it is expected that the acid released from the roots of citrus plants will reduce Fe 3+ ions to Fe 2+ ions, thereby sustaining the alleviation effect on HLB symptoms.
  • the liquid composition is watered using a watering tube.
  • the frequency of application of the liquid composition can be from 2 to 8 times a year. Alternatively, the frequency of application of the liquid composition may be once every 45 to 180 days.
  • the application rate of the liquid composition can be from 0.1 g to 3.0 g Fe 2+ , preferably from 0.27 g to 1.1 g Fe 2+ per citrus plant per year.
  • Citrus Plant Cultivation Valencia oranges and Hamlin oranges were grown in sandy soil in Florida.
  • 5 L of the above liquid composition per citrus plant (hereinafter referred to as "tree") was applied once every 45 days using an irrigation tube.
  • 5 L of water per tree was applied once every 45 days using an irrigation tube.
  • Evaluation Items are root density, soil nutrients, soil pH, fruit yield, leaf component analysis, pathogen quantification, crown volume, and crown density.
  • the table above shows the root density from June 2019 to June 2020 and the rate of change in root density over half a year or one year.
  • the root density of Valencia orange in the Fe 2+ ion and humic acid treated plots increased, but in the second six months (winter to summer), the root density decreased.
  • the root density of Valencia orange in the untreated plot decreased in both periods.
  • Root density of Hamlin orange increased throughout the year in all experimental plots.
  • the root density increased more significantly in the Fe 2+ ion and humic acid applied plots than in the untreated plots.
  • Fe 2+ ions and humic acid were effective in increasing root density in all tree varieties. The increase in root density was noticeable during the first six months of application.
  • the table above shows the amount of nutrients in the soil in June 2020.
  • the soil in the Fe 2+ ion applied area had a lower S content than the soil in the untreated area. This suggests that trees applied with Fe 2+ ions and humic acid absorbed these nutrients better. Trees treated with Fe 2+ ions and humic acids may utilize more S to alleviate HLB and other stresses.
  • the above table shows the soil pH from day 2 to day 30 after starting the application of Fe 2+ ions and humic acid.
  • the soil pH on the 30th day was within the optimal range (5.8 to 6.5).
  • Fe 2+ ions and humic acid have the effect of acidifying the soil. Soil acidification is an effective method for citrus plants to resist HLB pathogens, and Fe 2+ ions and humic acids are considered effective from this perspective as well.
  • the soil pH as of January 2021 was within the optimal range (5.8 to 6.5) in both the Fe 2+ ion and humic acid application area and the untreated area.
  • the table above shows data on fruit yield in the first year after the start of application of Fe 2+ ions and humic acids.
  • the fruit drop rate decreased and the yield increased compared to the untreated plots.
  • the fruit yield in the Fe 2+ ion and humic acid applied plots increased by about 9% compared to that in the untreated plots.
  • the harvest time for Hamlin oranges is from late December to January, and although it has only been about half a year since the start of Fe 2+ ion and humic acid application, good signs have appeared in the fruit yield.
  • the table above shows data on fruit yield in the second year after the start of application of Fe 2+ ions and humic acids.
  • the fruit yield at harvest, estimated number of fruits on the tree, and fruit drop rate were affected by the brown rot outbreak in both Hamlin orange and Valencia orange in the Fe 2+ ion and humic acid applied area and in the untreated area. No significant difference was observed.
  • the average yield and number of fruits in Hamlin orange were significantly higher in the Fe 2+ ion and humic acid applied plots than in the untreated plots.
  • the number of fruits increased compared to the first year.
  • Fe 2+ ions and humic acid and that Fe 2+ ions and humic acid were applied 3 times in the first year, whereas Fe 2+ ions and humic acid were applied 5 times in the second year. may be affected.
  • the table above shows data on the quality of fruit harvested in the second year. For both Hamlin orange and Valencia orange, no significant difference was observed between the Fe 2+ ion and humic acid treated area and the untreated area, and there was no difference in quality and size.
  • the table above shows the rate of change in components contained in tree leaves from June 2019 (summer) to January 2020 (winter).
  • P and K increase, while other components decrease.
  • Hamlin Orange only P increases and other components decrease.
  • the degree of decrease in Mg, Ca, S, and B in the Fe 2+ ion and humic acid application area was smaller than that in the untreated area, and the degree of decrease in Mg was particularly small.
  • the increase in P was remarkable in the Fe 2+ ion and humic acid applied plots compared to the untreated plots.
  • the table above shows the rate of change in components contained in tree leaves from January 2020 (winter) to June 2020 (summer).
  • Valencia orange the opposite phenomenon was observed from the change from summer to winter. That is, P and K decreased, and other components increased.
  • the increase rates of Ca, S, B, Mn, and Cu in the Fe 2+ ion and humic acid applied plots were smaller than those in the untreated plots.
  • Hamlin orange the increase rates of N, K, S, and B in the Fe 2+ ion and humic acid applied plots were smaller than those in the untreated plots.
  • the table above shows the rate of change in components contained in tree leaves for one year from June 2019 (summer) to June 2020 (summer).
  • Valencia orange and Hamlin orange most of the components tended to decrease in the untreated plot.
  • the degree of decrease in Mg was small in the Fe 2+ ion and humic acid application areas, and Fe increased.
  • Hamlin orange Mg increased and Fe decreased in the Fe 2+ ion and humic acid applied plots.
  • HLB is a disease in which the movement of nutrients within a tree is inhibited. Therefore, the application of Fe 2+ ions and humic acids may begin to normalize nutrient transfer to resist HLB pathogens.
  • the table above shows the rate of change in components contained in tree leaves from June 2020 (summer) to January 2021 (winter). For Valencia orange, no significant difference was observed in any experimental group. In Hamlin orange, the increase rate of B in the Fe 2+ ion and humic acid applied plots was greater than that in the untreated plots, and a significant difference was observed. It is thought that leaves affected by HLB use a large amount of B. However, the application of Fe 2+ ions and humic acid may have actively incorporated B, resulting in a significant increase in B.
  • the above table shows the semi-quantitative results (Ct values of real-time quantitative PCR) of Candidatus Liberibacter asiaticus (cLas). As is clear from this table, no significant difference was observed in the amount of pathogenic bacteria in any of the experimental plots. Rather than killing pathogenic bacteria, Fe 2+ ions and humic acid may induce gene expression that alleviates the symptoms of HLB. Additionally, since the trees are grown in a real farm environment, the citrus psyllids attack the trees one after another, which may lead to repeated infections with the pathogen before the HLB is cured.
  • the table above shows the crown volume (m 3 ) of trees in June 2019, January 2020, and June 2020, and the amount of change in each period.
  • Citrus trees have the property that their underground roots stop growing when their above-ground crown is growing, and their above-ground crown stops growing when their underground roots are growing. need to be kept in mind.
  • the root density of Valencia oranges in the untreated area decreased, suggesting that carbohydrates were used for above-ground growth.
  • the Valencia oranges treated with Fe 2+ ions and humic acid it is thought that carbohydrates were used for root growth.
  • Hamlin orange in the untreated area while an increase in root density was observed as described above, the crown volume decreased.
  • the roots of Hamlin oranges treated with Fe 2+ ions and humic acid grew while maintaining the crown volume.
  • the above table shows the tree canopy density and the amount of change over one year in June 2019 and June 2020. No significant difference was observed in crown density in any of the experimental plots.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Agronomy & Crop Science (AREA)
  • Botany (AREA)
  • Dentistry (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Forests & Forestry (AREA)
  • Mycology (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Microbiology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cultivation Of Plants (AREA)
  • Hydroponics (AREA)

Abstract

自然環境下で柑橘類植物を栽培しても、柑橘類植物のHLBの症状を緩和することができる栽培方法を開示する。かかる方法は、Feイオン及び腐植酸を含有し、上記Feイオンの少なくとも一部がFe2+イオンである液体組成物を柑橘類植物に施用する工程を含む。

Description

柑橘類植物を栽培する方法及び液体組成物
 本発明は、柑橘類植物を栽培する方法及び液体組成物に関する。
 カンキツグリーニング病(huanglongbing又はHLBともいう)は、柑橘類植物の病害の一つである。HLBは、Candidatus Liberibacterbなどの病原菌が柑橘類植物に感染することで引き起こされる植物病である。病原菌はミカンキジラミによって媒介されている。HLBの病原菌に感染した柑橘類植物は、以下の症状を呈する:葉の一部が黄色化する、成熟果実のサイズが小さい、成熟果実の表面の大部分が緑色のままとなる、成熟果実の味が苦い。HLBが進行すると、柑橘類植物は、徐々に衰弱して枝の先端から枯れていき、最終的には枯死する。
 特許文献1は、HLBの病原菌に感染した柑橘類植物の葉面、根圏、又はそれらの両方にFe2+イオンを含む液体を施用することを含む、柑橘類植物のカンキツグリーニング病の治療方法を開示する。
米国特許第8945631号明細書 特許第6231059号公報
 特許文献1は、野菜育苗用培土を用いて、柑橘類植物を育成する条件下にて、HLBの治療効果を検証しているに過ぎない。また、Fe2+イオンを含む液体は5日に1回という高頻度で柑橘類植物の苗木に施用されている。
 本発明は、自然環境下で柑橘類植物を栽培しても、柑橘類植物のHLBの症状を緩和することができる栽培方法及びかかる栽培方法に使用する液体組成物を提供することを目的とする。
 本発明は以下の側面を含む。
[1]柑橘類植物を栽培する方法であって、
 Feイオン及び腐植酸を含有し、上記Feイオンの少なくとも一部がFe2+イオンである液体組成物を上記柑橘類植物に施用する工程を含む、方法。
[2]上記柑橘類植物が砂質土壌にて栽培される、[1]に記載の方法。
[3]上記柑橘類植物がオレンジ、グレープフルーツ又はレモンである、[1]又は[2]に記載の方法。
[4]上記柑橘類植物がカンキツグリーニング病の病原菌に感染している、[1]~[3]のいずれかに記載の方法。
[5]上記柑橘類植物がミカンキジラミ(Diaphorina citri)の生息している環境下で栽培される、[1]~[4]のいずれかに記載の方法。
[6]上記柑橘類植物が褐色腐敗病の病原菌に感染している、[1]~[5]のいずれかに記載の方法。
[7]上記液体組成物の総Feイオンの濃度が100mg/L~1000mg/Lである、[1]~[6]のいずれかに記載の方法。
[8]上記液体組成物の総Feイオンの少なくとも18質量%がFe2+イオンである、[1]~[7]のいずれかに記載の方法。
[9]上記液体組成物が灌水チューブを用いて施用される、[1]~[8]のいずれかに記載の方法。
[10]上記液体組成物が1年に2回~8回施用される、[1]~[9]のいずれかに記載の方法。
[11]上記液体組成物が、1年に、1本の柑橘類植物あたり、Fe2+を0.27g~1.1g施用される、[1]~[10]のいずれかに記載の方法。
[12]Feイオン及び腐植酸を含有し、上記Feイオンの少なくとも一部がFe2+イオンである液体組成物。
[13]上記液体組成物の総Feイオンの濃度が100mg/L~1000mg/Lである、[12]に記載の液体組成物。
[14]上記液体組成物の総Feイオンの少なくとも18質量%がFe2+イオンである、[12]又は[13]に記載の液体組成物。
[15]柑橘類植物栽培用である、[12]~[14]のいずれかに記載の液体組成物。
[16]砂質土壌にて栽培される柑橘類植物栽培用である、[15]に記載の液体組成物。
[17]上記柑橘類植物がオレンジ、グレープフルーツ又はレモンである、[15]又は[16]に記載の液体組成物。
[18]カンキツグリーニング病の病原菌に感染している柑橘類植物用である、[15]~[17]のいずれかに記載の液体組成物。
[19]ミカンキジラミの生息している環境下で栽培される柑橘類植物用である、[15]~[18]のいずれかに記載の液体組成物。
[20]褐色腐敗病の病原菌に感染している柑橘類植物用である、[15]~[19]のいずれかに記載の液体組成物。
 本発明によれば、自然環境下で柑橘類植物を栽培しても、柑橘類植物のHLBの症状を緩和することが可能となる。
 以下、本発明の実施形態について詳細に説明する。
 一実施形態に係る柑橘類植物を栽培する方法は、Feイオン及び腐植酸を含有し、上記Feイオンの少なくとも一部がFe2+イオンである液体組成物を上記柑橘類植物に施用する工程を含む方法である。
 柑橘類植物は、例えば、ミカン類、オレンジ類、レモン類、ブンタン類、ユズ類及びキンカン類を含む。柑橘類植物は、例えば、オレンジ(Citrus sinensis)、グレープフルーツ(Citrus paradisi)又はレモン(Citrus limon)を含む。オレンジはハムリンオレンジなどの早生種でも、バレンシアオレンジなどの晩生種でもよい。
 本実施形態に係る柑橘類植物を栽培する方法は、HLBの病原菌に感染している柑橘類植物を対象とすることができる。そのため、本実施形態に係る方法により、柑橘類植物のHLBの症状が緩和される。また、HLBの病原菌に感染していない柑橘類植物を対象としてもよい。本実施形態に係る方法を適用後、該柑橘類植物がHLBの病原菌に感染したとしても、その症状が緩和される。
 柑橘類植物は、砂質土壌にて栽培することができる。砂質土壌とは、粗粒分を50%以上含む土壌の総称であり、粒径が2.0mm以下の砂質土壌のほか、粒径が2.0mmを超える礫質土壌も含む。
 柑橘類植物は、ミカンキジラミ(Diaphorina citri)の生息している環境下で栽培されてもよい。ミカンキジラミが生息する自然環境下で柑橘類植物を栽培すると、ミカンキジラミによりHLBの病原菌が媒介される。このため、柑橘類植物にとっては、HLBの病原菌により感染しやすい環境となる。かかる環境であっても、本実施形態に係る方法で栽培される柑橘類植物は、HLBの病原菌に感染しないか、HLBの病原菌に感染したとしても、その症状が緩和される。
 本実施形態に係る柑橘類植物を栽培する方法は、褐色腐敗病の病原菌に感染している柑橘類植物を対象とすることができる。褐色腐敗病は、Phytophthora属菌などの病原菌が柑橘類植物に感染することで引き起こされ、落果が生じる病害である。本実施形態に係る方法を適用した柑橘類植物は、褐色腐敗病の病原菌に感染しても、果実の品質が維持される。
 柑橘類植物に施用する液体組成物はFeイオン及び腐植酸を含有し、Feイオンの少なくとも一部がFe2+イオンである。かかる液体組成物は、例えば、Fe2+イオンを供給することができる鉄化合物を水に溶解して得ることができる。Fe2+イオンを供給することができる鉄化合物としては、水溶液中でFe2+イオンを遊離可能であれば、特に限定されない。かかる鉄化合物には、例えば、FeO、FeSOなどの二価の鉄化合物を用いることができる。また、クエン酸鉄のような固体では三価の鉄を含む鉄化合物であっても、水溶液中にFe2+イオンを遊離可能であれば、Fe2+イオンを供給することができる鉄化合物となり得る。また、上記液体組成物はFe、FeClなどの三価の鉄化合物及び還元剤を組み合わせ、還元剤の作用によりFe3+イオンをFe2+イオンに還元し、Fe2+イオンを供給してもよい。
 上記液体組成物中の総Feイオンの濃度は、好ましくは100mg/L~1000mg/Lであり、より好ましくは100mg/L~500mg/Lであり、さらに好ましくは100mg/L~300mg/Lである。上記下限値以上の総Feイオンの濃度とすることで、HLBの症状の緩和作用を発揮しやすくなる。一方、上記上限値以下の総Feイオンの濃度とすることで、柑橘類植物への損傷を避けることができる。
 「総Feイオン」とは、Fe2+イオン及びFe3+イオンを含む全てのFeイオンを意味する。液体組成物中のFe2+イオンの濃度は、o-フェナントロリンを用いた既存の方法によって測定することができる。o-フェナントロリンはFe2+イオンと選択的に錯体を形成する。このため、この錯体の吸光度を測定することにより、Fe2+イオンを選択的に定量することができる。また、液体組成物中の総Feイオン濃度は、液体組成物中のFe3+イオンを還元して全FeイオンをFe2+イオンとした後にo-フェナントロリン法を用いて定量することができる。
 上記液体組成物の総Feイオンの少なくとも18質量%がFe2+イオンであることが好ましい。総Feイオンの少なくとも18質量%がFe2+イオンであることで、HLBの症状の緩和作用が発揮しやすくなる。上記液体組成物の総Feイオンの全て(100質量%)がFe2+イオンであってもよい。
 腐植酸は、腐植酸及び腐植酸塩を含む。腐植酸としては、泥炭及び風化炭などの天然に産出される天然腐植酸、亜炭の硝酸酸化などにより人工的に製造される人工腐植酸、及び、天然腐植酸及び/又は人工腐植酸をナトリウム、カリウム、アンモニア、カルシウム及びマグネシウムなどのアルカリ物質で中和した腐植酸塩などが挙げられる。腐植酸としては、フミン酸、ニトロフミン酸、フミン酸アンモニウム、フミン酸カルシウム、フミン酸マグネシウム、ニトロフミン酸アンモニウム、ニトロフミン酸カルシウム及びニトロフミン酸マグネシウムなどが挙げられる。腐植酸は、腐植酸抽出液であってもよい。腐植酸抽出液とは、亜炭及び褐炭などの若年炭の硝酸酸化物をpH5~8の範囲で抽出した抽出液、好ましくはpH5~7の範囲で抽出した抽出液をいう。腐植酸抽出液は、例えば、若年炭を硝酸で酸化分解させて得られた若年炭の硝酸酸化物と、水酸化カリウム、水酸化ナトリウム、水酸化アンモニウム、水酸化マグネシウム及び水酸化カルシウムから選ばれる1価又は2価のアルカリの少なくとも一つを含む無機化合物と、水との混合物を、40~90℃で、0.5~1時間攪拌した後、固液分離工程を行うことにより、液状物として得られる。無機化合物は、pH5~8の範囲になるように、水に添加する。腐植酸抽出液の製法は、特許文献2に記載されている。液体組成物中の腐植酸の固形分濃度は、0.01~0.1質量%の範囲とすることができる。0.01質量以上だと、HLBの症状の緩和作用が十分となり、0.1質量%以下だと固形分が沈降分離せず、液体組成物を施用するための設備に詰まりが生じない。
 上記液体組成物は、Feイオン及び腐植酸の他に、Caイオン、Mgイオン、Alイオン、Baイオン、Crイオン、Kイオン、Mnイオン及びNaイオンなどの金属イオンを含んでいてもよい。上記液体組成物は、Fe2+イオンを安定に保持しHLBの症状の緩和作用を持続させるために、酸を含んでいてもよい。かかる酸としては、クエン酸、リンゴ酸、酒石酸、シュウ酸及びアスコルビン酸などが挙げられる。中でも酸としては、クエン酸が好ましい。Fe2+イオンを安定に保持する観点から、酸の濃度は、好ましくは100mg/L~10g/Lであり、より好ましくは500mg/L~2g/Lである。
 上記液体組成物を柑橘類植物へ施用する手段は特に限定されない。かかる手段としては、例えば、柑橘類植物の葉面に上記液体組成物を散布する、柑橘類植物の根圏に上記液体組成物を灌水する、手段などが挙げられる。上記液体組成物は、柑橘類植物の根圏に灌水されることが好ましい。根圏に上記液体組成物を施用すると、柑橘類植物の根から放出された酸がFe3+イオンを還元してFe2+イオンとすることで、HLBの症状の緩和作用を持続することが期待される。また、施用の利便性の観点から、上記液体組成物は灌水チューブを用いて灌水されることが好ましい。
 上記液体組成物の施用頻度は、1年に2回~8回とすることができる。あるいは、上記液体組成物の施用頻度は、45日~180日に1回であってもよい。上記液体組成物の施用量は、1年に、1本の柑橘類植物あたり、0.1g~3.0gのFe2+、好ましくは0.27g~1.1gのFe2+とすることができる。この範囲の施用頻度及び施用量とすることで、HLBの症状の緩和作用が発揮しやすくなる。
 Fe2+イオン及び腐植酸を含む液体組成物の調製
 50gの鉄力あくあ(日本国登録商標)F10(愛知製鋼株式会社)及び50gの腐植パワー(日本国登録商標)H5(固形分濃度5%;デンカ株式会社)を5Lの水で希釈(100倍)した液体組成物を調製した。この液体組成物の総Feイオン及びFe2+イオンの濃度は、それぞれ150mg/L及び27mg/Lであった。すなわち、総Feイオンの18質量%がFe2+イオンであった。また、液体組成物の有機酸の濃度を測定したところ、クエン酸濃度が1.09g/Lであった。
 柑橘類植物栽培
 フロリダ州の砂質土壌にてバレンシアオレンジ及びハムリンオレンジを栽培した。Fe2+イオン施用区は、1本の柑橘類植物(以下、「樹木」と記載する。)あたり5Lの上記液体組成物を45日に1回、灌水チューブを用いて施用した。無処理区は、1本の樹木あたり5Lの水を45日に1回、灌水チューブを用いて施用した。2019年6月から施用を開始し、2019年6月、2020年1月、2020年6月、2021年1月の各時点において柑橘類植物の評価を行った。なお、ほとんど全ての樹木はHLBの病原菌に感染しており、ミカンキジラミも生息する環境下で栽培を行った。
 評価項目
 評価項目は、根密度、土壌の栄養素、土壌のpH、果実の収量、葉の成分分析、病原菌の定量、樹冠容積及び樹冠密度である。
 結果
1)根密度
Figure JPOXMLDOC01-appb-T000001
 上の表は、2019年6月から2020年6月における根密度及び半年間又は1年間の根密度の変化率を示す。最初の半年(夏季から冬季)で、Fe2+イオン及び腐植酸施用区のバレンシアオレンジの根密度は増加したが、次の半年(冬季から夏季)では根密度は減少した。一方、いずれの期間においても、無処理区のバレンシアオレンジの根密度は減少した。ハムリンオレンジは、いずれの実験区でも、1年を通じて根密度は増加した。しかしながら、無処理区に比べ、Fe2+イオン及び腐植酸施用区では、より顕著に根密度が増加した。いずれの品種の樹木においてもFe2+イオン及び腐植酸が根密度の増加に効果的であった。根密度の増加は、施用開始から最初の半年で顕著であった。HLBの病原菌に感染した樹木は、地上部から見えない根系が病原菌による最も大きな被害を受ける。このため、根密度の増加効果を奏するFe2+イオン及び腐植酸は、HLBの症状緩和に大きく貢献すると考えられる。
Figure JPOXMLDOC01-appb-T000002
 上の表に、2020年6月から2021年1月の根密度の変化率を示す。いずれの実験区でも根密度に有意差は認められなかった。
 2)土壌の栄養素
Figure JPOXMLDOC01-appb-T000003
 上の表は、2020年6月における土壌の栄養素の量を示す。いずれの品種においても、Fe2+イオン施用区の土壌は、無処理区の土壌と比較して、Sの含有量が少なかった。これは、Fe2+イオン及び腐植酸を施用した樹木が、これらの栄養素をより吸収したことを示唆している。Fe2+イオン及び腐植酸を施用した樹木はHLB及び他のストレスを軽減するために、より多くのSを利用している可能性がある。
Figure JPOXMLDOC01-appb-T000004
 上の表は、2020年6月から2021年1月までの土壌の栄養素の変化率を示す。バレンシアオレンジ及びハムリンオレンジのいずれもFe2+イオン及び腐植酸施用区と無処理区の間で土壌の栄養素変化率に有意な差は認められなかった。
 3)土壌のpH
Figure JPOXMLDOC01-appb-T000005
 上の表は、Fe2+イオン及び腐植酸の施用を開始してから2日目~30日目までの土壌のpHを示す。いずれの実験区でも、30日目の土壌pHが最適範囲(5.8~6.5)であった。また、Fe2+イオン及び腐植酸施用区の土壌のpHは無処理区のそれと比べて低かったことから、Fe2+イオン及び腐植酸は土壌を酸性化する効果がある。柑橘類植物がHLBの病原菌に抵抗するためには、土壌の酸性化が有効な方法であり、この視点からもFe2+イオン及び腐植酸は有効であると考えられる。2021年1月時点の土壌pHは、Fe2+イオン及び腐植酸施用区並びに無処理区のいずれにおいても、最適範囲(5.8~6.5)であった。
 4)果実の収量
Figure JPOXMLDOC01-appb-T000006
 上の表は、Fe2+イオン及び腐植酸の施用開始から1年目の果実の収量に関するデータを示す。Fe2+イオン及び腐植酸施用区は無処理区と比較して、果実の落果率が低下し、収量が増加した。Fe2+イオン及び腐植酸施用区の果実の収量は無処理区のそれと比較して約9%増加した。ハムリンオレンジの収穫時期は、12月下旬から1月であり、Fe2+イオン及び腐植酸施用開始から約半年に過ぎないが果実の収量に良い兆候が現れた。
Figure JPOXMLDOC01-appb-T000007
 上の表は、Fe2+イオン及び腐植酸の施用開始から2年目の果実の収量に関するデータを示す。2年目の場合、褐色腐敗病が発生した影響で収穫時の果実収量、推定樹上果実数、落果率はハムリンオレンジ及びバレンシアオレンジのいずれもFe2+イオン及び腐植酸施用区と無処理区間で有意差が認められなかった。しかし、褐色腐敗病が発生する前(落果前)では、ハムリンオレンジにおいて平均収量及び果実数が、無処理区と比較してFe2+イオン及び腐植酸施用区で有意に多かった。また、1年目と比較しても果実数が増えていた。Fe2+イオン及び腐植酸を施用し続けたこと、また、1年目はFe2+イオン及び腐植酸を3回施用したのに対し、2年目はFe2+イオン及び腐植酸を5回施用したことが影響している可能性がある。
Figure JPOXMLDOC01-appb-T000008
 上の表は、2年目に収穫した果実の品質に関するデータを示す。ハムリンオレンジ及びバレンシアオレンジのいずれもFe2+イオン及び腐植酸施用区と無処理区で有意な差が認められず、品質及び大きさに違いはなかった。
 5)葉の成分分析
Figure JPOXMLDOC01-appb-T000009
 上の表は、2019年6月(夏季)から2020年1月(冬季)にかけての樹木の葉に含まれる成分の変化率を示す。バレンシアオレンジでは、PとKが増加し、その他の成分は減少している。ハムリンオレンジでは、Pのみが増加し、他の成分は減少している。バレンシアオレンジでは、Fe2+イオン及び腐植酸施用区における、Mg、Ca、S、Bの減少の度合いは、無処理区におけるそれと比較して小さく、特にMgの減少の度合いが小さかった。ハムリンオレンジでは、Fe2+イオン及び腐植酸施用区は無処理区と比較して、Pの増加が顕著であった。
Figure JPOXMLDOC01-appb-T000010
 上の表は、2020年1月(冬季)から2020年6月(夏季)にかけての樹木の葉に含まれる成分の変化率を示す。バレンシアオレンジでは、夏季から冬季にかけての変化と反対の現象が見られた。すなわち、PとKが減少し、それ以外の成分は増加した。バレンシアオレンジでは、Fe2+イオン及び腐植酸施用区における、Ca、S、B、Mn、Cuの増加率が無処理区のそれと比較して小さかった。ハムリンオレンジでは、Fe2+イオン及び腐植酸施用区における、N、K、S、Bの増加率が無処理区のそれと比較して小さかった。
Figure JPOXMLDOC01-appb-T000011
 上の表は、2019年6月(夏季)から2020年6月(夏季)までの1年間の樹木の葉に含まれる成分の変化率を示す。バレンシアオレンジ及びハムリンオレンジのいずれも、無処理区において、ほとんどの成分が減少傾向にあった。バレンシアオレンジでは、Fe2+イオン及び腐植酸施用区におけるMgの減少度合いが小さく、Feは増加した。ハムリンオレンジでは、Fe2+イオン及び腐植酸施用区において、Mgが増加し、Feは減少した。
 興味深いことに、Fe2+イオン及び腐植酸施用区の樹木では、葉の栄養素の移動の挙動に違いが確認された。HLBは、栄養素の樹木内における移動が阻害される病気である。このため、Fe2+イオン及び腐植酸の施用によって、HLBの病原菌に抵抗するために栄養素の移動が正常化し始めている可能性がある。
Figure JPOXMLDOC01-appb-T000012
 上の表は、2020年6月(夏季)から2021年1月(冬季)にかけての樹木の葉に含まれる成分の変化率を示す。バレンシアオレンジでは、いずれの実験区においても有意な差は認められなかった。ハムリンオレンジでは、Fe2+イオン及び腐植酸施用区におけるBの増加率が、無処理区のそれと比較して大きく、有意な差が認められた。HLBに罹患した葉は、Bの使用量が多いと考えられている。しかしながら、Fe2+イオン及び腐植酸の施用によってBが積極的に取り込まれ、Bが顕著に増加した可能性がある。
 6)病原菌の定量
Figure JPOXMLDOC01-appb-T000013
 上の表は、Candidatus Liberibacter asiaticus(cLas)の半定量結果(リアルタイム定量PCRのCt値)を示す。この表から明らかなように、いずれの実験区でも病原菌の量に有意差は認められなかった。Fe2+イオン及び腐植酸は、病原菌を殺菌するのではなく、HLBの症状を緩和する遺伝子発現を誘発している可能性がある。また、実農園の環境で栽培していることから、ミカンキジラミが順次樹木を攻撃するため、HLBが治癒する間もなく病原菌の感染を繰り返している可能性もある。
 7)樹冠容積及び樹冠密度
Figure JPOXMLDOC01-appb-T000014
 上の表は、2019年6月、2020年1月及び2020年6月における、樹木の樹冠容積(m)と、各期間での変化量を示す。柑橘の樹木は、地上部の樹冠が成長しているときには地下部の根の成長が止まる性質があり、地下部の根が成長しているときは地上部の樹冠の成長が止まる性質があることを念頭に置く必要がある。無処理区のバレンシアオレンジでは、上述したように根密度が減少しており、地上部の成長に炭水化物が使われたと考えられる。Fe2+イオン及び腐植酸施用区のバレンシアオレンジは、根の成長に炭水化物が使われたと考えられる。無処理区のハムリンオレンジにおいては、上述したように根密度の増加が認められる一方、樹冠容積は減少した。Fe2+イオン及び腐植酸施用区のハムリンオレンジは、樹冠容積を維持しながら根が成長した。
Figure JPOXMLDOC01-appb-T000015
 上の表は、2020年6月から2021年1月の樹冠容積の変化率を示す。いずれの実験区でも樹冠容積に有意差は認められなかった。
Figure JPOXMLDOC01-appb-T000016
 上の表は、2019年6月及び2020年6月における、樹木の樹冠密度と1年間の変化量を示す。いずれの実験区でも樹冠密度に有意差は認められなかった。

Claims (20)

  1.  柑橘類植物を栽培する方法であって、
     Feイオン及び腐植酸を含有し、前記Feイオンの少なくとも一部がFe2+イオンである液体組成物を前記柑橘類植物に施用する工程を含む、方法。
  2.  前記柑橘類植物が砂質土壌にて栽培される、請求項1に記載の方法。
  3.  前記柑橘類植物がオレンジ、グレープフルーツ又はレモンである、請求項1又は2に記載の方法。
  4.  前記柑橘類植物がカンキツグリーニング病の病原菌に感染している、請求項1又は2に記載の方法。
  5.  前記柑橘類植物がミカンキジラミ(Diaphorina citri)の生息している環境下で栽培される、請求項1又は2に記載の方法。
  6.  前記柑橘類植物が褐色腐敗病の病原菌に感染している、請求項1又は2に記載の方法。
  7.  前記液体組成物の総Feイオンの濃度が100mg/L~1000mg/Lである、請求項1又は2に記載の方法。
  8.  前記液体組成物の総Feイオンの少なくとも18質量%がFe2+イオンである、請求項1又は2に記載の方法。
  9.  前記液体組成物が灌水チューブを用いて施用される、請求項1又は2に記載の方法。
  10.  前記液体組成物が1年に2回~8回施用される、請求項1又は2に記載の方法。
  11.  前記液体組成物が、1年に、1本の柑橘類植物あたり、Fe2+を0.27g~1.1g施用される、請求項1又は2に記載の方法。
  12.  Feイオン及び腐植酸を含有し、前記Feイオンの少なくとも一部がFe2+イオンである液体組成物。
  13.  前記液体組成物の総Feイオンの濃度が100mg/L~1000mg/Lである、請求項12に記載の液体組成物。
  14.  前記液体組成物の総Feイオンの少なくとも18質量%がFe2+イオンである、請求項12又は13に記載の液体組成物。
  15.  柑橘類植物栽培用である、請求項12又は13に記載の液体組成物。
  16.  砂質土壌にて栽培される柑橘類植物栽培用である、請求項15に記載の液体組成物。
  17.  前記柑橘類植物がオレンジ、グレープフルーツ又はレモンである、請求項15に記載の液体組成物。
  18.  カンキツグリーニング病の病原菌に感染している柑橘類植物用である、請求項15に記載の液体組成物。
  19.  ミカンキジラミの生息している環境下で栽培される柑橘類植物用である、請求項15に記載の液体組成物。
  20.  褐色腐敗病の病原菌に感染している柑橘類植物用である、請求項15に記載の液体組成物。
PCT/JP2023/006484 2022-03-14 2023-02-22 柑橘類植物を栽培する方法及び液体組成物 WO2023176347A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17/694,101 2022-03-14
US17/694,101 US20230284626A1 (en) 2022-03-14 2022-03-14 Method for cultivating citrus plant and liquid composition
JP2022183586A JP2023134343A (ja) 2022-03-14 2022-11-16 柑橘類植物を栽培する方法及び液体組成物
JP2022-183586 2022-11-16

Publications (1)

Publication Number Publication Date
WO2023176347A1 true WO2023176347A1 (ja) 2023-09-21

Family

ID=88023307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006484 WO2023176347A1 (ja) 2022-03-14 2023-02-22 柑橘類植物を栽培する方法及び液体組成物

Country Status (2)

Country Link
JP (1) JP2023134372A (ja)
WO (1) WO2023176347A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081420A1 (ja) * 2010-12-14 2012-06-21 国立大学法人広島大学 カンキツグリーニング病の治療液及びこれを用いた治療方法
JP2017071522A (ja) * 2015-10-06 2017-04-13 デンカ株式会社 腐植酸抽出液
US20170181438A1 (en) * 2014-08-10 2017-06-29 Uday Bhavanishankar Philar A holistic, cost effective method for management of huang long bing (hlb), phytophthora gummosis, asian citrus psyllid and other serious infestations in citrus and other crops
JP2019019027A (ja) * 2017-07-18 2019-02-07 株式会社エンドレスアドバンス 土壌充填剤
CN110839456A (zh) * 2019-11-21 2020-02-28 刘�文 用复合微生物菌剂生态防治柑橘黄龙病的方法
WO2020112844A1 (en) * 2018-11-27 2020-06-04 Locus Agriculture Ip Company, Llc Yeast-based compositions for enhancing rhizosphere properties and plant health

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081420A1 (ja) * 2010-12-14 2012-06-21 国立大学法人広島大学 カンキツグリーニング病の治療液及びこれを用いた治療方法
US20170181438A1 (en) * 2014-08-10 2017-06-29 Uday Bhavanishankar Philar A holistic, cost effective method for management of huang long bing (hlb), phytophthora gummosis, asian citrus psyllid and other serious infestations in citrus and other crops
JP2017071522A (ja) * 2015-10-06 2017-04-13 デンカ株式会社 腐植酸抽出液
JP2019019027A (ja) * 2017-07-18 2019-02-07 株式会社エンドレスアドバンス 土壌充填剤
WO2020112844A1 (en) * 2018-11-27 2020-06-04 Locus Agriculture Ip Company, Llc Yeast-based compositions for enhancing rhizosphere properties and plant health
CN110839456A (zh) * 2019-11-21 2020-02-28 刘�文 用复合微生物菌剂生态防治柑橘黄龙病的方法

Also Published As

Publication number Publication date
JP2023134372A (ja) 2023-09-27

Similar Documents

Publication Publication Date Title
JP2020099332A (ja) 藻類の濃縮抽出物、その製造方法および農業におけるその使用
KR101784143B1 (ko) 유황 함유량이 높은 부추 재배방법 및 유황 함유량이 높은 부추
Robertson-Andersson et al. Can kelp extract (KELPAK®) be useful in seaweed mariculture?
KR100612641B1 (ko) 천연광물을 이용한 채소의 재배방법
Ishaq et al. Effect of single and mixed inoculation of arbuscular mycorrhizal fungi and phosphorus fertilizer application on corn growth in calcareous soil
CN107353101A (zh) 一种防治八角树炭疽病的复合肥料及其使用方法
WO2012068473A1 (en) Plant growth enhancing mixture and method of applying same
El-Sabagh et al. Effect of biofertilizers as a partial substitute for nitrogen fertilzier on vegetative growth, yield, fruit quality and leaf mineral content of two seedless grape cultivars II: fruit quality and leaf mineral content
CN110073875A (zh) 一种富硒芒果的高产种植方法
Shilpa et al. Role of nanofertilizers in horticulture: A review
Ali et al. Effect of seaweed extract and cytokinin (CPPU) spraying on growth of lemon (Citrus limon L.) seedling budded on sour orange.
WO2023176347A1 (ja) 柑橘類植物を栽培する方法及び液体組成物
CN104429733A (zh) 一种防治红花大金元黑胫病方法
JP2023134343A (ja) 柑橘類植物を栽培する方法及び液体組成物
KR101176518B1 (ko) 꾸지뽕나무의 무성생식방법
EP1298998A1 (de) Präparat mit fungizider wirkung
JP2015086386A (ja) 熔岩粉末を用いた農産物用土壌改良剤及びこれを用いた土壌改良方法
WO2023176346A1 (ja) 柑橘類植物を栽培する方法及び柑橘類植物栽培用液体組成物
CN107593220A (zh) 一种北方梨树早结高产的栽培方法
KR102094460B1 (ko) 숯분말, 풀빅산 및 미생물제제를 포함하는 염류장해 방지용 뿌리작물 영양제 및 그 제조방법
Al-Gazar et al. EFFECT OF CHICKEN MANURE COMBINED WITH BIO-FERTILIZERS, MINERAL FERTILIZER AND SOME FOLIAR APPLICATIONS ON: 1-VEGETATIVE GROWTH AND SOME CHEMICAL CONSTITUENTS OF TOMATO LEAVES.
JP2023134344A (ja) 柑橘類植物を栽培する方法及び柑橘類植物栽培用液体組成物
CN106336310A (zh) 一种防治沙田柚溃疡病的肥料及其制备方法
RU2655963C1 (ru) Способ выращивания стевии в аридных условиях
CN113880659B (zh) 一种防治果树根腐病的复合矿物药剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770306

Country of ref document: EP

Kind code of ref document: A1