WO2023176282A1 - Electric power conversion device - Google Patents

Electric power conversion device Download PDF

Info

Publication number
WO2023176282A1
WO2023176282A1 PCT/JP2023/005386 JP2023005386W WO2023176282A1 WO 2023176282 A1 WO2023176282 A1 WO 2023176282A1 JP 2023005386 W JP2023005386 W JP 2023005386W WO 2023176282 A1 WO2023176282 A1 WO 2023176282A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
common mode
voltage vector
pattern
current
Prior art date
Application number
PCT/JP2023/005386
Other languages
French (fr)
Japanese (ja)
Inventor
雄志 荒木
辰樹 柏原
孝次 小林
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Publication of WO2023176282A1 publication Critical patent/WO2023176282A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the present invention relates to a power conversion device that converts DC voltage to AC voltage.
  • PWM pulse width modulation
  • the former method includes pulse width modulation that outputs only odd voltage vectors or only even voltage vectors. According to this method, it is possible to completely suppress fluctuations in common mode voltage within a carrier period. There is also pulse width modulation that switches between outputting only odd-numbered voltage vectors and outputting only even-numbered voltage vectors depending on the electrical angle phase. Also by this method, fluctuations in the common mode voltage can be largely suppressed (see, for example, Patent Document 1).
  • the latter method includes pulse width modulation that matches (shifts) the timing of the rise and fall of the phase voltage of a specific phase with the rise and fall of the phase voltage of other phases in a PWM pattern (for example, Patent Document (see 2). Furthermore, fluctuations in the common mode voltage can also be suppressed by pulse width modulation of two-phase modulation in which switching of one phase is fixed and switching of the other two phases is fixed (see, for example, Patent Document 3).
  • Patent Document 1 is the most effective method for suppressing common mode voltage fluctuations, it has limitations on the voltage vector that can be used.
  • the disadvantage is that the maximum amplitude that can be achieved is limited, and the modulation rate that can be output is limited. Therefore, when driving a compressor motor, etc., noise is excited due to current distortion, making it difficult to apply, or when the rotation speed and modulation rate are high, the modulation method as in Patent Document 3 is difficult to apply. It is necessary to switch.
  • Patent Document 2 Patent Document 3
  • Patent Document 3 two-phase modulation and three-phase modulation are switched depending on the operating range, and it is possible to switch between the former method and the latter method described above in the same way, but the switching shock of the pulse width modulation method occurs.
  • Patent No. 5397448 WO2019/180763
  • Patent No. 5298003 Patent No. 5976067
  • noise measurement in a typical three-phase inverter is performed by connecting an artificial power supply network (LISN) to the input section, and capturing the output of this artificial power supply network with a spectrum analyzer or EMC receiver.
  • These spectrum analyzers and EMC receivers have a predetermined measurement bandwidth called resolution bandwidth (RBW), and for noise measurement, the section defined by this measurement bandwidth becomes a measurement window (frequency window).
  • RBW resolution bandwidth
  • FIG. 10 shows such a measurement window and measurement waveform.
  • FIG. 10 shows the case of FFT analysis. FFT analysis is performed only on waveforms observed in the measurement window. Therefore, there is no problem if the window length of the measurement window and the period of the measurement waveform match as shown in FIG. 10, but if the period of the measurement window and the measurement waveform are different as shown in FIG. Since frequency analysis is performed on a discontinuous waveform, a frequency spectrum that does not actually exist may be observed, and depending on the phase observed in the measurement window, the intensity of the spectrum may be excessively measured. There is. As a countermeasure, a window function is used in FFT analysis, and in spectrum analyzers and EMC receivers, an IF filter (bandpass filter) corresponds to the window function.
  • IF filter bandpass filter
  • the above measurements are performed at each frequency point for a specified period of time.
  • the maximum value of the time response at each frequency point becomes the noise peak value, and the average value of the time response becomes the noise average value.
  • the conventional common mode noise suppression method described above is based on pulse shifting, there are operations in which common mode voltage fluctuations are concentrated.
  • FIG. 13 shows an example of occurrence of common mode noise (conduction noise) in the conventional common mode noise suppression method.
  • the occurrence of common mode noise is suppressed to two times in each control cycle, and common mode noise occurs four times in the measurement window indicated by X1 in the figure, and twice in the measurement window indicated by X3. ing.
  • the measurement window indicated by X2 where common mode voltage fluctuations are concentrated, it is measured that the common mode voltage fluctuations have occurred six times, so there is a problem that the noise peak value is the result of six measurements.
  • Patent Document 4 a carrier waveform whose spectrum is spread by a carrier generator is calculated for each of three phases according to a spectrum spread index defined by a spectrum spread index command generator, and switching of each phase is performed by spectrum spread.
  • the frequency is spread and the peak of electromagnetic noise caused by switching is reduced, but in the noise measurement mentioned above, this is a reduction in the noise average value, and on the contrary, it worsens the noise peak value.
  • the present invention was made in order to solve the conventional technical problem, and it is possible to reduce the fluctuation of the common mode voltage, which is a cause of common mode noise, to a specified number of times or less regardless of the timing of measurement. It is an object of the present invention to provide a power conversion device that can suppress both a noise peak value and a noise average value, and further suppress current distortion.
  • the power conversion device of the present invention converts a DC voltage into an AC voltage, and includes an inverter circuit that applies a phase voltage to a load at a connection point of upper and lower arm switching elements of each phase, and a switching element of each upper and lower arm switching element.
  • the control device is configured to control the number of fluctuations of the common mode voltage in a predetermined measurement bandwidth to be equal to or less than a predetermined number of times N (N is an integer of 1 or more) regardless of the measurement timing.
  • N is an integer of 1 or more
  • the control device simultaneously switches the upper and lower arm switching elements of different phases to opposite polarities to each other, thereby reducing the number of fluctuations of the common mode voltage to a prescribed number of times N or less. It is characterized by
  • the control device refers to the voltage vector pattern in the previous control cycle, and the number of fluctuations of the common mode voltage in the measurement bandwidth is determined regardless of the measurement timing.
  • the present invention is characterized in that it includes a voltage pattern group generation unit that generates a plurality of voltage vector patterns that occur a prescribed number of times N or less.
  • the voltage pattern group generation unit when the switching frequency is larger than the measurement bandwidth, the voltage pattern group generation unit generates an even voltage vector next to an even voltage vector or an odd voltage vector in one control period. By outputting an odd-numbered voltage vector next to the vector, a voltage vector pattern is generated that simultaneously switches the upper and lower arm switching elements of different phases to mutually opposite polarities, and the number of fluctuations of the common mode voltage is kept below the specified number of times N.
  • the voltage pattern group generation section adds a constraint condition such that the number of times of switching of each phase in one control period is equal to or less than a predetermined limit number of times. It is characterized by generating multiple voltage vector patterns.
  • the control device includes a current command calculation unit that calculates a current command value and a voltage vector pattern that is generated by the voltage pattern group generation unit.
  • the optimal voltage vector pattern that minimizes the error between the current command value and the current predicted value is selected from among the voltage vector patterns generated by the current prediction calculation unit that calculates the current predicted value and the voltage pattern group generation unit. It is characterized by having a voltage pattern selection section.
  • the inverter circuit drives the motor by applying a phase voltage at a connection point between the upper and lower arm switching elements of each phase to the motor.
  • the optimal voltage pattern selection section selects the optimal voltage vector pattern based on the number of fluctuations of the common mode voltage and the error between the current command value and the current predicted value. It is characterized by selecting.
  • the optimum voltage pattern selection section prioritizes the number of fluctuations of the common mode voltage higher than the error between the current command value and the current predicted value, and selects the optimum voltage pattern. It is characterized by selecting a voltage vector pattern.
  • an inverter circuit that applies phase voltage to a load at a connection point of upper and lower arm switching elements of each phase and switching of each upper and lower arm switching element is controlled.
  • the controller includes a control device that controls the frequency of fluctuation of the common mode voltage in a predetermined measurement bandwidth to be equal to or less than a predetermined number of times N (N is an integer of 1 or more), regardless of the measurement timing. Since the upper and lower arm switching elements are subjected to switching control, it is possible to suppress and minimize both the average value and the peak value of common mode noise generated due to fluctuations in common mode voltage. Furthermore, it is possible to suppress the occurrence of electromagnetic interference to peripheral devices due to concentration of common mode voltage fluctuations and concentration of common mode noise.
  • the control device simultaneously switches the upper and lower arm switching elements of different phases to opposite polarities, the number of times the common mode voltage fluctuates is equal to or less than the prescribed number N.
  • the switching frequency is larger than the measurement bandwidth, the number of fluctuations in the common mode voltage can be smoothly controlled to be equal to or less than the prescribed number of times N.
  • the control device refers to the voltage vector pattern in the previous control cycle, and detects a plurality of cases in which the number of fluctuations of the common mode voltage in the measurement bandwidth is equal to or less than the prescribed number of times N regardless of the measurement timing. If the configuration includes a voltage pattern group generation section that generates voltage vector patterns, the peak value of common mode noise can be effectively controlled to be equal to or less than the prescribed number of times N.
  • the voltage pattern group generation section when the switching frequency is larger than the measurement bandwidth, the voltage pattern group generation section generates an even voltage vector after an even voltage vector or a voltage vector after an odd voltage vector in one control period.
  • an odd voltage vector By outputting an odd voltage vector, a voltage vector pattern is generated that simultaneously switches the upper and lower arm switching elements of different phases to mutually opposite polarities, and the number of fluctuations of the common mode voltage is preferably set to be equal to or less than the prescribed number of times N.
  • the voltage pattern group generation section generates a plurality of voltage vector patterns by adding a constraint condition such that the number of switching times of each phase in one control period is equal to or less than a predetermined limit number of times, It is also possible to prevent the inconvenience that the switching frequency exceeds the rated frequency of the semiconductor that constitutes the control device.
  • the control device includes a current command calculation unit that calculates a current command value, and a current prediction calculation unit that calculates a current predicted value of each voltage vector pattern generated by the voltage pattern group generation unit.
  • the configuration includes an optimal voltage pattern selection unit that selects a voltage vector pattern that minimizes the error between the current command value and the current predicted value from among the voltage vector patterns generated in the voltage pattern group generation unit. It becomes possible to suppress the average value of common mode noise while taking current response into consideration. In addition, since current distortion can be suppressed over the entire operating range, noise is less likely to be excited, making it extremely effective when driving a motor as a load, for example, as in the seventh aspect of the invention.
  • the optimum voltage pattern selection section may select the optimum voltage vector pattern based on the number of fluctuations of the common mode voltage and the error between the current command value and the predicted current value. , it becomes possible to smoothly realize both suppression of common mode noise and improvement of current response.
  • the optimum voltage pattern selection section selects the optimum voltage vector pattern by giving a higher priority to the number of fluctuations of the common mode voltage than the error between the current command value and the current predicted value. By doing so, it becomes possible to select an optimal voltage vector pattern with good current response while reliably suppressing fluctuations in the common mode voltage.
  • FIG. 1 is an electrical circuit diagram of a power conversion device according to an embodiment of the present invention
  • FIG. FIG. 3 is a diagram showing the relationship between voltage vectors and phase voltages.
  • FIG. 3 is a diagram showing a voltage vector (output basic vector).
  • 2 is a diagram illustrating an example of a voltage vector pattern generated by a voltage pattern group generation unit of the control device in FIG. 1.
  • FIG. FIG. 2 is a diagram illustrating an example of a voltage vector pattern search operation performed by a voltage pattern group generation unit of the control device in FIG. 1;
  • FIG. 2 is a diagram showing operating waveforms at a low modulation rate by the power conversion device of the present invention in FIG. 1;
  • FIG. 2 is a diagram showing operating waveforms of the power conversion device of the present invention in FIG.
  • FIG. 2 is a diagram showing operating waveforms at a high modulation rate by the power conversion device of the present invention in FIG. 1;
  • FIG. 2 is a diagram showing an example of common mode noise generation in the power conversion device of the present invention shown in FIG. 1;
  • FIG. 6 is a diagram showing a measurement window and a measurement waveform when the window length of the measurement window and the period of the measurement waveform match.
  • FIG. 7 is a diagram showing a measurement window and a measurement waveform when the window length of the measurement window and the period of the measurement waveform are different.
  • 12 is a diagram showing a measured waveform to be analyzed in the case of FIG. 11.
  • FIG. 3 is a diagram illustrating an example of common mode noise generation in a conventional power conversion device.
  • a power conversion device 1 drives a motor 8 (load) of a so-called inverter-integrated electric compressor that constitutes a refrigerant circuit of a vehicle air conditioner installed in a vehicle such as an electric vehicle. It is something.
  • power converter 1 of the embodiment includes a three-phase inverter circuit 28 and a control device 21.
  • the inverter circuit 28 converts the DC voltage of a DC power source (vehicle battery: e.g. DC 350V) 29 into three-phase (U-phase voltage Vu, V-phase voltage Vv, W-phase voltage Vw) AC voltage and applies it to the motor 8.
  • a DC power source vehicle battery: e.g. DC 350V
  • Vu DC 350V
  • Vv three-phase voltage
  • Vw three-phase voltage
  • the motor 8 of the embodiment is an IPMSM (Interior Permanent Magnet Synchronous Motor).
  • the inverter circuit 28 has a U-phase half-bridge circuit 19U, a V-phase half-bridge circuit 19V, and a W-phase half-bridge circuit 19W.
  • Each phase half-bridge circuit 19U to 19W is connected to an upper arm switching element 18A to 18C, respectively. and lower arm switching elements 18D to 18F. Further, a flywheel diode 31 is connected in antiparallel to each of the switching elements 18A to 18F.
  • each of the upper and lower arm switching elements 18A to 18F is composed of an insulated gate bipolar transistor (IGBT) in which a MOS structure is incorporated in the gate portion.
  • IGBT insulated gate bipolar transistor
  • the collectors of the upper arm switching elements 18A to 18C of the inverter circuit 28 are connected to the upper arm power supply line (positive bus line) 10 of the DC power supply 29.
  • the emitters of the lower arm switching elements 18D to 18F of the inverter circuit 28 are connected to the lower arm power supply line (negative bus) 15 of the DC power supply 29.
  • the emitter of the upper arm switching element 18A of the U-phase half bridge circuit 19U and the collector of the lower arm switching element 18D are connected in series, and the emitter of the upper arm switching element 18B and the lower arm switching element of the V-phase half bridge circuit 19V are connected in series.
  • 18E are connected in series, and the emitter of the upper arm switching element 18C and the collector of the lower arm switching element 18F of the W-phase half bridge circuit 19W are connected in series.
  • connection point between the upper arm switching element 18A and the lower arm switching element 18D of the U-phase half bridge circuit 19U (midpoint of the upper and lower arms: U-phase voltage Vu) is connected to the U-phase armature coil of the motor 8
  • the connection point between the upper arm switching element 18B and the lower arm switching element 18E of the V-phase half bridge circuit 19V (midpoint of the upper and lower arms: V-phase voltage Vv) is connected to the V-phase armature coil of the motor 8
  • the W-phase A connection point between the upper arm switching element 18C and the lower arm switching element 18F of the half bridge circuit 19W (midpoint between the upper and lower arms: W-phase voltage Vw) is connected to the W-phase armature coil of the motor 8.
  • the control device 21 is composed of a microcomputer (semiconductor) having a processor, and in the embodiment inputs the rotation speed command value from the ECU of the vehicle, and receives the motor current ( Based on these, the ON/OFF state (switching) of each switching element 18A to 18F of the inverter circuit 28 is controlled. Specifically, the gate voltage applied to the gate of each switching element 18A to 18F is controlled.
  • the control device 21 of the embodiment includes a dq-axis current command calculation unit 33 as a current command calculation unit, a voltage pattern group generation unit 34, a dq-axis current prediction calculation unit 35 as a current prediction calculation unit, and an optimal voltage pattern selection 36, a gate driver 37, and current sensors 26A and 26B each comprising a current transformer for measuring U-phase current iu and W-phase current iw, which are U-phase and W-phase motor currents (phase currents) flowing through the motor 8. have. Further, an electrical angle ⁇ rm is obtained from the motor 8.
  • the current sensor 26A measures the U-phase current iu
  • the current sensor 26B measures the W-phase current iw
  • the V-phase current iv is calculated from these.
  • iv, and iw may be measured by a current sensor.
  • the current value of the lower arm power supply line 15 is detected with a shunt resistor, and the current value and the motor 8
  • Gate driver 37 selects the gate voltages of the switching elements 18A and 18D of the U-phase inverter 19U, and the switching element 18B of the V-phase inverter 19V, based on the optimal voltage vector pattern selected by the optimal voltage pattern selection section 36 as described later. A gate voltage of 18E and a gate voltage of switching elements 18C and 18F of W-phase inverter 19W are generated.
  • each of the switching elements 18A to 18F of the inverter circuit 28 is driven ON/OFF based on the gate voltage output from the gate driver 37. That is, when the gate voltage is in an ON state (predetermined voltage value), the switching element is turned on, and when the gate voltage is in an OFF state (zero), the switching element is turned off.
  • the gate driver 37 is a circuit for applying a gate voltage to the IGBTs based on a PWM signal, and is composed of a photocoupler, a logic IC, a transistor, etc. Ru.
  • the voltage at the connection point between the upper arm switching element 18B and the lower arm switching element 18E of the V-phase half-bridge circuit 19V is applied (output) to the V-phase armature coil of the motor 8 as a V-phase voltage Vv (phase voltage)
  • Vv phase voltage
  • Vw W-phase voltage
  • the dq-axis current command calculation unit 33 of the embodiment outputs a d-axis current command value i d ref and a q-axis current command value i q ref as current command values.
  • the q-axis current command value i q ref is calculated from the PI calculation and the relational expression between the q-axis current and torque.
  • the subscripts and superscripts of the d-axis current command value i d ref and the q-axis current command value i q ref are written in the same position above and below, but they are the same as the above notation. (the same applies hereinafter).
  • V1 V3, and V5 are odd voltage vectors
  • V2, V4, and V6 are even voltage vectors
  • V0 and V7 are zero voltage vectors.
  • the voltage pattern group generation unit 34 of the embodiment refers to the voltage vector pattern in the previous control cycle, and determines the number of fluctuations of the common mode voltage Vc of the motor 8 in the measurement bandwidth in the noise measurement described above at the measurement timing.
  • a plurality of voltage vector patterns are generated in which the number of switching times in one control period is equal to or less than a predetermined limit number M regardless of the number of times of switching. In the embodiment, it is assumed that the switching frequency is sufficiently larger than the measurement bandwidth.
  • the voltage pattern group generation unit 34 of the embodiment generates voltage vector pattern candidates by setting the following constraint conditions, taking into account the measurement bandwidth and the number of switching times (switching frequency) of each phase of the inverter circuit 28. generate.
  • the voltage pattern group generation unit 34 refers to the voltage vector patterns (V4, V4, V2, V3, V5) in the previous control cycle.
  • the even voltage vectors V2, V4, V6 after the even voltage vectors V2, V4, V6, the upper and lower arm switching elements 18A to 18F of different phases are simultaneously switched to opposite polarities.
  • the common mode voltage Vc does not change.
  • odd voltage vectors V1, V3, and V5 next to odd voltage vectors V1, V3, and V5 the upper and lower arm switching elements 18A to 18F of different phases are simultaneously switched to opposite polarities.
  • Common mode voltage Vc does not change.
  • the common mode voltage Vc will fluctuate.
  • the odd voltage vector V3 is output after the even voltage vector V2, so the common mode voltage Vc fluctuates once, and the specified number of times N (1: constraint condition 1). Therefore, as the voltage vector that can be output next to the last odd voltage vector V5, a voltage vector in which there is no fluctuation in the common mode voltage Vc is searched for, and in step 1 of the embodiment, for example, the odd voltage vector V5 is selected.
  • step 2 a voltage vector to be output next to the last voltage vector V5 of the voltage vector pattern (V4, V2, V3, V5, V5) determined in step 1 is searched.
  • V4 the common mode voltage
  • V3 the voltage vector pattern
  • V1 an odd voltage vector
  • step 3 a voltage vector to be output next to the last voltage vector V1 of the voltage vector pattern (V2, V3, V5, V5, V1) determined in step 2 is searched.
  • V2, V3, V5, V5, V1 the voltage vector pattern
  • step 4 a voltage vector to be output next to the last voltage vector V3 of the voltage vector pattern (V3, V5, V5, V1, V3) determined in step 3 is searched.
  • V3, V5, V5, V1, V3 the voltage vector pattern
  • step 1 of FIG. 5 the odd voltage vector V5 is used, but other odd voltage vectors V1 and V3 may be used.
  • step 2 the odd voltage vector V1 is used, but other odd voltage vectors V3 and V5 may be used.
  • step 3 other voltage vectors V1, V2, V4 to V6 may be used.
  • step 4 the odd voltage vector V3 is used, but other voltage vectors V1, V2, V4 to V6 may be used, and the options for which the number of fluctuations of the common mode voltage Vc is N(1) or less are sequentially output.
  • step 5 a voltage vector to be output next to the last voltage vector V3 of the voltage vector pattern (V5, V5, V1, V3, V3) determined in step 4 is searched.
  • V5, V5, V1, V3, V3 the voltage vector pattern
  • Vc common mode voltage
  • all voltage vectors become candidates, but constraint condition 2 is also taken into consideration.
  • a voltage vector (voltage vector that satisfies the constraint condition 2 on the number of switching times) in which the number of times of switching (switching frequency) of each phase is equal to or less than the above-mentioned limit number of times M(2) is searched for.
  • step 6 the even voltage vector V4 is determined as a voltage vector that satisfies the first constraint on the variation of the common mode voltage Vc and the second constraint on the number of switching times. This becomes the voltage vector pattern (V5, V1, V3, V3, V4) in the current control cycle shown in FIG. 4, and is saved as a candidate for the voltage vector pattern to be output.
  • the voltage vector pattern in the current control cycle is searched by referring to the voltage vector pattern in the previous control cycle.
  • the number of combinations of voltage vector patterns as a search result changes depending on the voltage vector pattern of the previous control cycle, in the embodiment, there are about 400 combinations (a set of voltage vector patterns) at most.
  • the search for constraint condition 1 regarding fluctuations in the common mode voltage Vc is performed in all steps in FIG. In this way, by considering the fluctuations in the common mode voltage Vc in all steps, a voltage vector pattern is established in which the number of fluctuations in the common mode voltage Vc is N(1) or less no matter where it is measured.
  • the dq-axis current prediction calculation unit 34 of the embodiment predicts and outputs the d-axis current i d and the q-axis current i q as current predicted values.
  • the prediction formulas for the d-axis current i d and the q-axis current i q are derived by discretizing (zero-order hold) the IPMSM state equation shown in equation (I) as shown in equation (II) and equation (III). I do.
  • i d is the d-axis current
  • i q is the q-axis current
  • v d is the d-axis voltage
  • v q is the q-axis voltage
  • L d is the d-axis inductance
  • L q is the q-axis inductance
  • R a is the winding resistance
  • k E is the induced voltage constant
  • ⁇ re is the electrical angular velocity.
  • x(t) is the state quantity at time t (dq-axis current)
  • x[k] is the state quantity at the k-th sample point (discrete representation)
  • u(t ) is the input at time t
  • the control input is the dq-axis voltage
  • the disturbance input is the induced voltage
  • the input is the sum of the control input and disturbance input
  • u[k] is the input at the k-th sample point (discrete representation)
  • a c is the free motion parameter of the state quantity in the continuous domain
  • b c is the influence parameter of the input on the state quantity in the continuous domain
  • a d is the expression of the parameter A c in the discrete domain
  • b d is the expression of the parameter b c in the discrete domain.
  • T p is the prediction period at which the model predictions are made.
  • x[k] in formula (III) is the k-th state quantity, and is the initial value of the dq-axis current output by the dq-axis current command calculation unit 33.
  • the second state quantity x[k+1] (dq-axis current) is predicted from this initial value.
  • the dq-axis current prediction calculation unit 34 solves Equation (III) for each section of the voltage vector pattern described above, and calculates the instantaneous predicted value of each section (5 sections in the embodiment) and the average predicted value of the control period.
  • x[k+1] to x[k+5] are predicted values corresponding to the first to fifth sections of the voltage vector pattern described above.
  • C dqn ⁇ is a rotation matrix at k+n sample points.
  • dqn and ⁇ are written in the same position above and below, but they are the same.
  • v ⁇ n is the ⁇ voltage input at k+n sample points.
  • the voltage vector of the control input is defined on the ⁇ coordinate. Therefore, at each sampling point, dq-axis conversion is performed in consideration of the phase lead for each prediction cycle (underlined part of formula (VI)).
  • the optimal voltage pattern selection unit 36 of the embodiment selects a set of voltage vector patterns (up to 400 patterns) that satisfy the constraints (constraints 1 and 2) generated by the voltage pattern group generation unit 34.
  • the current command values (d-axis current command value i d ref , q-axis current command value i q ref ) calculated by the dq-axis current command calculation unit 33 and the current value predicted value (d A voltage vector pattern with a minimum error from the axis current i d and the q-axis current i q is selected.
  • the optimal voltage pattern selection unit 36 of the embodiment specifically calculates the cost of each voltage vector pattern using the following formulas (VIII) to (XI). .
  • the voltage vector pattern with the minimum cost C (evaluation index) of the voltage vector pattern is output as the optimal voltage vector pattern.
  • C is the cost of the voltage vector pattern
  • W max is the weighting coefficient for the ripple caused by vector switching (the weighting coefficient of the maximum instantaneous error cost)
  • W ave is the responsiveness of the dq-axis current. (weighting coefficient of average error cost)
  • W Vc is a weighting coefficient (number of common mode voltage fluctuations) that determines the control priority of common mode voltage fluctuation and current error (error between current command value and current predicted value). weighting coefficient).
  • C Vc is the number of fluctuations in the common mode voltage in the voltage vector pattern
  • E max is the maximum instantaneous error cost
  • E ave is the average error cost.
  • W d is the d-axis weighting coefficient
  • W q is the q-axis weighting coefficient
  • max() is the function that outputs the maximum value of the argument in ()
  • abs() is the function that outputs the maximum value of the argument in ().
  • x ref [k] is the state quantity command value calculated at k sample points (i d ref [k] is the d-axis current command value, i q ref [k] is the q-axis current command value ).
  • the first and second terms on the right side of formula (VIII) are costs due to current error (error between current command value and current predicted value), and the third term is cost due to common mode voltage fluctuation. .
  • the optimum voltage pattern selection unit 36 of the embodiment basically selects the one with the minimum current error cost as the optimum voltage vector pattern from among the voltage vector patterns without common mode voltage fluctuations. That is, the priority of the number of fluctuations of the common mode voltage is made higher than the current error (error between the current command value and the current predicted value).
  • the current error is too large in a voltage vector pattern without common mode voltage fluctuations, select the voltage vector pattern with the minimum current error cost as the optimal voltage vector pattern from among the voltage vector patterns that include common mode voltage fluctuations. do.
  • the ratio of the weighting coefficients W max , W ave , and W Vc determines to what extent ([A]) the current error should prioritize the voltage vector pattern without common mode voltage fluctuations. This makes it possible to select a voltage vector pattern with good current response, that is, with little current error, while suppressing common mode voltage fluctuations. Note that since only the number of fluctuations of the common mode voltage in each control cycle is optimized here, the noise average value is suppressed. This is because it is evaluated whether the common mode voltage is varied or not in each control cycle.
  • voltage vector pattern 1 which has a current error but has no common mode voltage fluctuation, is selected as the optimal voltage vector pattern.
  • Voltage vector pattern C4 has a good current response even when taking common mode voltage fluctuations into consideration, and voltage vector pattern C3 has no common mode voltage fluctuations, but the current error is too large, so voltage vector pattern 4 is selected by comparing costs C4 and C3. will be selected as the optimal voltage vector pattern.
  • the optimum voltage pattern selection unit 36 of the embodiment basically gives priority to a voltage vector pattern without common mode voltage fluctuation in terms of cost. Even when there is no common mode voltage variation, if the current error is large, a voltage vector pattern with a small current error and common mode voltage variation is selected as the optimal voltage vector pattern.
  • FIG. 6 to 9 show the results according to the present invention.
  • Figure 6 shows the waveforms of the U-phase current iu and common mode voltage Vc at a low modulation rate
  • Figure 7 shows the waveforms of the U-phase current iu and common mode voltage Vc at a medium modulation rate
  • Figure 8 shows the waveforms of the U-phase current iu and common mode voltage Vc at a high modulation rate. It shows the waveforms of the U-phase current iu and the common mode voltage Vc at the time.
  • the modulation rate is low, the common mode voltage Vc does not fluctuate, and as the modulation rate increases from the medium modulation rate to the high modulation rate, the common mode voltage Vc fluctuates. It can be seen that the current response is improved while suppressing fluctuations in the mode voltage Vc.
  • FIG. 9 shows an example of the occurrence of common mode noise (conduction noise) according to the results of the present invention for comparison with the conventional example shown in FIG. 13.
  • common mode noise conduction noise
  • the control device 21 controls the number of fluctuations of the common mode voltage Vc in a predetermined measurement bandwidth to a predetermined number of times N (N is Since the voltage vector pattern is generated to control the switching of the upper and lower arm switching elements 18A to 18F, the average value and the peak value of the common mode noise generated due to fluctuations in the common mode voltage Vc are generated. It becomes possible to suppress and minimize both. Further, it is also possible to suppress the occurrence of electromagnetic interference to peripheral devices due to the concentration of fluctuations in the common mode voltage Vc and the concentration of common mode noise.
  • control device 21 simultaneously switches the upper and lower arm switching elements 18A to 18F of different phases to mutually opposite polarities, so that the number of fluctuations of the common mode voltage Vc is kept below the specified number of times N.
  • the number of fluctuations of the common mode voltage Vc can be smoothly controlled to be equal to or less than the prescribed number of times N.
  • control device 21 refers to the voltage vector pattern in the previous control cycle, and selects a plurality of voltage vectors for which the number of fluctuations of the common mode voltage Vc in the measurement bandwidth is equal to or less than the prescribed number of times N regardless of the measurement timing. Since the voltage pattern group generation unit 34 that generates patterns is included, the peak value of common mode noise can be effectively controlled to be equal to or less than the prescribed number of times N.
  • the voltage pattern group generation unit 34 of the embodiment when the switching frequency is larger than the measurement bandwidth, the voltage pattern group generation unit 34 of the embodiment generates an even voltage vector V2, V4, V6, or By outputting odd voltage vectors V1, V3, and V5 next to odd voltage vectors V1, V3, and V5, a voltage vector pattern is generated that simultaneously switches the upper and lower arm switching elements 18A to 18F of different phases to mutually opposite polarities.
  • the number of fluctuations of the common mode voltage Vc is set to be equal to or less than a specified number of times N, and a constraint condition is added that the number of switching times of each phase in one control period is equal to or less than a predetermined limited number of times M, so that a plurality of voltage vector patterns are generated. Therefore, it is possible to prevent the inconvenience of the switching frequency exceeding the rated switching frequency of the switching element (semiconductor) constituting the inverter circuit 28.
  • the control device 21 includes a dq-axis current command calculation unit 33 that calculates current command values (d-axis current command value i d ref , q-axis current command value i q ref ), and a voltage pattern group generation unit 34 .
  • the dq-axis current prediction calculation unit 35 calculates the current predicted value (d-axis current i d , q-axis current i q ) of each voltage vector pattern generated by the voltage vector pattern generated by the voltage pattern group generation unit 34. Since it has an optimal voltage pattern selection unit 36 that selects the voltage vector pattern that minimizes the error between the current command value and the current predicted value from among the be able to suppress it. In addition, since current distortion can be suppressed over the entire operating range, noise is less likely to be excited, which is extremely effective when driving the motor 8 as a load as in the embodiment.
  • the optimal voltage pattern selection unit 36 selects the optimal voltage vector pattern based on the number of fluctuations in the common mode voltage Vc and the error (current error) between the current command value and the current predicted value. Therefore, it becomes possible to smoothly realize both suppression of common mode noise Vc and improvement of current response.
  • the optimum voltage pattern selection unit 36 sets the priority of the number of fluctuations of the common mode voltage Vc higher than the error (current error) between the current command value and the current predicted value, and selects the optimum voltage vector pattern. Since the selection is made, it is possible to select an optimal voltage vector pattern with good current response while reliably suppressing fluctuations in the common mode voltage Vc.
  • the numerical values shown in the examples are not limited thereto.
  • the embodiment has been described using the example of driving the motor (load) of an electric compressor, the present invention is not limited thereto, and is also effective when driving a motor other than the motor of the electric compressor. Further, in inventions other than claim 9, the present invention can be applied to various power conversion devices that convert DC voltage to AC voltage using an inverter and apply it to a load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Provided is an electric power conversion apparatus comprising an inverter circuit 28 for applying a phase voltage at connection points of upper and lower arm switching elements 18A–18F of various phases to a load, and a control device 21, wherein the control device 21 performs switching control of the upper and lower arm switching elements 18A–18F such that the number of variations of a common mode voltage in a predetermined measured bandwidth becomes equal to or fewer than a predetermined prescribed number N (N being an integer equal to or greater than 1) regardless of the measurement timing, whereby variations of the common mode voltage, which may cause common mode noise, become equal to or fewer than the prescribed number at any measurement timing, so that both the noise peak value and the noise average value can be suppressed, and electric current distortion can also be suppressed.

Description

電力変換装置power converter
 本発明は、直流電圧を交流電圧に変換する電力変換装置に関するものである。 The present invention relates to a power conversion device that converts DC voltage to AC voltage.
 従来より電源に伝搬する伝導ノイズを抑制するためのパルス幅変調(PWM)は種々提案されているが、その手法は大きく二つに分けられる。一つはコモンモードノイズの要因となるコモンモード電圧の変動を完全に抑制する手法であり、もう一つはコモンモード電圧の変動を許容しながら部分的に抑制する手法である。 Various pulse width modulation (PWM) methods have been proposed in the past for suppressing conduction noise propagating to a power supply, but the methods can be broadly divided into two. One is a method that completely suppresses fluctuations in the common mode voltage that cause common mode noise, and the other is a method that partially suppresses fluctuations in the common mode voltage while allowing the fluctuations.
 前者の手法としては奇数電圧ベクトルのみ、或いは、偶数電圧ベクトルのみを出力するパルス幅変調が挙げられる。この手法によれば、キャリア周期内におけるコモンモード電圧の変動を完全に抑制することが可能である。また、電気角位相に応じて奇数電圧ベクトルのみを出力するか、偶数電圧ベクトルのみを出力するかを切り換えるパルス幅変調もある。この手法によっても、コモンモード電圧の変動を大きく抑制することができる(例えば、特許文献1参照)。 The former method includes pulse width modulation that outputs only odd voltage vectors or only even voltage vectors. According to this method, it is possible to completely suppress fluctuations in common mode voltage within a carrier period. There is also pulse width modulation that switches between outputting only odd-numbered voltage vectors and outputting only even-numbered voltage vectors depending on the electrical angle phase. Also by this method, fluctuations in the common mode voltage can be largely suppressed (see, for example, Patent Document 1).
 後者の手法としてはPWMパターンにおいて特定の相の相電圧の立ち上がりと立ち下がりに他の相の相電圧の立ち下がりと立ち上がりのタイミングを合わせる(シフトする)パルス幅変調が挙げられる(例えば、特許文献2参照)。更に、一相のスイッチングを固定し、他の二相をスイッチングする二相変調のパルス幅変調によってもコモンモード電圧の変動を抑制することができる(例えば、特許文献3参照)。 The latter method includes pulse width modulation that matches (shifts) the timing of the rise and fall of the phase voltage of a specific phase with the rise and fall of the phase voltage of other phases in a PWM pattern (for example, Patent Document (see 2). Furthermore, fluctuations in the common mode voltage can also be suppressed by pulse width modulation of two-phase modulation in which switching of one phase is fixed and switching of the other two phases is fixed (see, for example, Patent Document 3).
 しかしながら、前者の手法(特許文献1)はコモンモード電圧変動抑制の方法として最も有効であるものの、使用する電圧ベクトルに制限があるため、線形出力領域(電圧ベクトルが一定の半径で一回転することができる振幅の最大値)が限られ、出力可能な変調率が制限される欠点がある。そのため、コンプレッサのモータを駆動する場合などには、電流歪みに伴う騒音が励起されるため、適用が困難であるか、或いは、回転数・変調率が高い場合には特許文献3の如く変調方式を切り換える必要がある。 However, although the former method (Patent Document 1) is the most effective method for suppressing common mode voltage fluctuations, it has limitations on the voltage vector that can be used. The disadvantage is that the maximum amplitude that can be achieved is limited, and the modulation rate that can be output is limited. Therefore, when driving a compressor motor, etc., noise is excited due to current distortion, making it difficult to apply, or when the rotation speed and modulation rate are high, the modulation method as in Patent Document 3 is difficult to apply. It is necessary to switch.
 これに対して後者の手法(特許文献2、特許文献3)は、線形出力領域を通常の最大まで利用可能であり、高い変調率を実現できるものの、やはりコモンモード電圧の変動抑制効果は前者の手法よりも劣る。尚、特許文献3では、二相変調と三相変調を運転領域によって切り換えており、これと同様に前述した前者の手法と後者の手法を切り換えることが考えられるが、パルス幅変調方式の切り換えショックが発生する。 On the other hand, although the latter method (Patent Document 2, Patent Document 3) can utilize the linear output region to the normal maximum and achieve a high modulation rate, the effect of suppressing common mode voltage fluctuation is still lower than that of the former method. inferior to the method. In addition, in Patent Document 3, two-phase modulation and three-phase modulation are switched depending on the operating range, and it is possible to switch between the former method and the latter method described above in the same way, but the switching shock of the pulse width modulation method occurs.
特許第5397448号公報Patent No. 5397448 WO2019/180763WO2019/180763 特許第5298003号公報Patent No. 5298003 特許第5976067号公報Patent No. 5976067
 ここで、一般的な三相インバータにおけるノイズ測定は、疑似電源回路網(LISN)を入力部に接続し、この疑似電源回路網の出力をスペクトラムアナライザやEMCレシーバで取り込み、測定を行っている。これらスペクトラムアナライザやEMCレシーバは、分解能帯域幅(RBW)である所定の測定帯域幅が存在し、ノイズ測定はこの測定帯域幅で規定された区間が測定窓(周波数窓)となり、測定窓内の周波数成分をスペクトル強度として出力する。この場合、測定窓内に同一周波数成分が複数存在する場合は、出現した回数分だけスペクトル強度が積算される。 Here, noise measurement in a typical three-phase inverter is performed by connecting an artificial power supply network (LISN) to the input section, and capturing the output of this artificial power supply network with a spectrum analyzer or EMC receiver. These spectrum analyzers and EMC receivers have a predetermined measurement bandwidth called resolution bandwidth (RBW), and for noise measurement, the section defined by this measurement bandwidth becomes a measurement window (frequency window). Outputs frequency components as spectral intensity. In this case, if a plurality of the same frequency components exist within the measurement window, the spectral intensities are integrated by the number of times they appear.
 図10は係る測定窓と測定波形を示している。尚、図10はFFT解析の場合を示す。FFT解析は測定窓で観測された波形に対してのみ行われる。そのため、図10に示すように測定窓の窓長と測定波形の周期が一致していれば問題ないが、図11に示すように測定窓と測定波形の周期が異なる場合、図12に示すように不連続な波形に対して周波数解析を行うことになるため、実際には存在しない周波数スペクトルが観測される他、測定窓で観測された位相によっては、スペクトルの強度が過大に測定される恐れがある。その対策として、FFT解析では窓関数が用いられており、スペクトラムアナライザやEMCレシーバではIFフィルタ(バンドパスフィルタ)が窓関数に相当する。 FIG. 10 shows such a measurement window and measurement waveform. Note that FIG. 10 shows the case of FFT analysis. FFT analysis is performed only on waveforms observed in the measurement window. Therefore, there is no problem if the window length of the measurement window and the period of the measurement waveform match as shown in FIG. 10, but if the period of the measurement window and the measurement waveform are different as shown in FIG. Since frequency analysis is performed on a discontinuous waveform, a frequency spectrum that does not actually exist may be observed, and depending on the phase observed in the measurement window, the intensity of the spectrum may be excessively measured. There is. As a countermeasure, a window function is used in FFT analysis, and in spectrum analyzers and EMC receivers, an IF filter (bandpass filter) corresponds to the window function.
 EMI試験では各周波数ポイントにおいて規定時間上記のような測定が行われる。各周波数ポイントにおける時間応答の最大値がノイズピーク値となり、時間応答の平均値がノイズアベレージ値となる。一方、前述した従来のコモンモードノイズ抑制方法は、パルスシフトを基本としているため、コモンモード電圧変動が集中する動作が存在する。 In the EMI test, the above measurements are performed at each frequency point for a specified period of time. The maximum value of the time response at each frequency point becomes the noise peak value, and the average value of the time response becomes the noise average value. On the other hand, since the conventional common mode noise suppression method described above is based on pulse shifting, there are operations in which common mode voltage fluctuations are concentrated.
 図13は係る従来のコモンモードノイズ抑制方法におけるコモンモードノイズ(伝導ノイズ)の発生例を示している。図13の例では各制御周期においてコモンモードノイズの発生は2回に抑えられており、図中X1で示す測定窓ではコモンモードノイズは4回発生し、X3で示す測定窓では2回発生している。しかしながら、コモンモード電圧変動が集中したX2で示す測定窓では6回発生していると測定されるため、ノイズピーク値は6回の測定結果となってしまう問題があった。 FIG. 13 shows an example of occurrence of common mode noise (conduction noise) in the conventional common mode noise suppression method. In the example shown in Figure 13, the occurrence of common mode noise is suppressed to two times in each control cycle, and common mode noise occurs four times in the measurement window indicated by X1 in the figure, and twice in the measurement window indicated by X3. ing. However, in the measurement window indicated by X2 where common mode voltage fluctuations are concentrated, it is measured that the common mode voltage fluctuations have occurred six times, so there is a problem that the noise peak value is the result of six measurements.
 例えば、特許文献4ではスペクトル拡散指数指令生成部により規定されたスペクトル拡散指数に従ってキャリア生成部によりスペクトル拡散されたキャリア波形が三相それぞれに対して計算されるようにし、スペクトル拡散によって各相のスイッチング周波数を拡散し、スイッチングに起因する電磁ノイズのピークを低減させているが、これは前述したノイズ測定においてはノイズアベレージ値の低減であり、ノイズピーク値については逆に悪化してしまうものであった。 For example, in Patent Document 4, a carrier waveform whose spectrum is spread by a carrier generator is calculated for each of three phases according to a spectrum spread index defined by a spectrum spread index command generator, and switching of each phase is performed by spectrum spread. The frequency is spread and the peak of electromagnetic noise caused by switching is reduced, but in the noise measurement mentioned above, this is a reduction in the noise average value, and on the contrary, it worsens the noise peak value. Ta.
 本発明は、係る従来の技術的課題を解決するために成されたものであり、コモンモードノイズの要因となるコモンモード電圧の変動を、どのタイミングで測定されても規定回数以下となるようにすることで、ノイズピーク値とノイズアベレージ値の双方を抑制し、更には電流歪みも抑制することができる電力変換装置を提供することを目的とする。 The present invention was made in order to solve the conventional technical problem, and it is possible to reduce the fluctuation of the common mode voltage, which is a cause of common mode noise, to a specified number of times or less regardless of the timing of measurement. It is an object of the present invention to provide a power conversion device that can suppress both a noise peak value and a noise average value, and further suppress current distortion.
 本発明の電力変換装置は、直流電圧を交流電圧に変換するものであって、各相の上下アームスイッチング素子の接続点における相電圧を負荷に印加するインバータ回路と、各上下アームスイッチング素子のスイッチングを制御する制御装置を備え、この制御装置は、所定の測定帯域幅におけるコモンモード電圧の変動回数が、測定タイミングに関わらず、所定の規定回数N(Nは1以上の整数)以下となるように、上下アームスイッチング素子をスイッチング制御することを特徴とする。 The power conversion device of the present invention converts a DC voltage into an AC voltage, and includes an inverter circuit that applies a phase voltage to a load at a connection point of upper and lower arm switching elements of each phase, and a switching element of each upper and lower arm switching element. The control device is configured to control the number of fluctuations of the common mode voltage in a predetermined measurement bandwidth to be equal to or less than a predetermined number of times N (N is an integer of 1 or more) regardless of the measurement timing. The present invention is characterized by controlling the switching of the upper and lower arm switching elements.
 請求項2の発明の電力変換装置は、上記発明において制御装置は、異なる相の上下アームスイッチング素子を同時に互いに逆極性にスイッチングさせることにより、コモンモード電圧の変動回数を規定回数N以下とすることを特徴とする。 In the power conversion device of the invention of claim 2, in the above invention, the control device simultaneously switches the upper and lower arm switching elements of different phases to opposite polarities to each other, thereby reducing the number of fluctuations of the common mode voltage to a prescribed number of times N or less. It is characterized by
 請求項3の発明の電力変換装置は、請求項1の発明において制御装置は、前回の制御周期における電圧ベクトルパターンを参照し、測定帯域幅におけるコモンモード電圧の変動回数が、測定タイミングに関わらず規定回数N以下となる複数の電圧ベクトルパターンを生成する電圧パターン群生成部を有することを特徴とする。 In the power conversion device of the invention of claim 3, in the invention of claim 1, the control device refers to the voltage vector pattern in the previous control cycle, and the number of fluctuations of the common mode voltage in the measurement bandwidth is determined regardless of the measurement timing. The present invention is characterized in that it includes a voltage pattern group generation unit that generates a plurality of voltage vector patterns that occur a prescribed number of times N or less.
 請求項4の発明の電力変換装置は、上記発明において電圧パターン群生成部は、測定帯域幅よりもスイッチング周波数が大きい場合、一制御周期において偶数電圧ベクトルの次に偶数電圧ベクトル、又は、奇数電圧ベクトルの次に奇数電圧ベクトルを出力することにより、異なる相の上下アームスイッチング素子を同時に互いに逆極性にスイッチングさせる電圧ベクトルパターンを生成し、コモンモード電圧の変動回数を規定回数N以下とすることを特徴とする。 In the power conversion device of the invention according to claim 4, in the above invention, when the switching frequency is larger than the measurement bandwidth, the voltage pattern group generation unit generates an even voltage vector next to an even voltage vector or an odd voltage vector in one control period. By outputting an odd-numbered voltage vector next to the vector, a voltage vector pattern is generated that simultaneously switches the upper and lower arm switching elements of different phases to mutually opposite polarities, and the number of fluctuations of the common mode voltage is kept below the specified number of times N. Features.
 請求項5の発明の電力変換装置は、請求項3又は請求項4の発明において電圧パターン群生成部は、一制御周期における各相のスイッチング回数が所定の制限回数以下となる制約条件を加えて複数の電圧ベクトルパターンを生成することを特徴とする。 In the power conversion device of the invention of claim 5, in the invention of claim 3 or 4, the voltage pattern group generation section adds a constraint condition such that the number of times of switching of each phase in one control period is equal to or less than a predetermined limit number of times. It is characterized by generating multiple voltage vector patterns.
 請求項6の発明の電力変換装置は、請求項3又は請求項4の発明において制御装置は、電流指令値を算出する電流指令演算部と、電圧パターン群生成部が生成した各電圧ベクトルパターンの電流予測値を算出する電流予測演算部と、電圧パターン群生成部において生成された各電圧ベクトルパターンのなかから、電流指令値と電流予測値との誤差が最小となる電圧ベクトルパターンを選択する最適電圧パターン選択部を有することを特徴とする。 In the power conversion device of the invention of claim 6, in the invention of claim 3 or 4, the control device includes a current command calculation unit that calculates a current command value and a voltage vector pattern that is generated by the voltage pattern group generation unit. The optimal voltage vector pattern that minimizes the error between the current command value and the current predicted value is selected from among the voltage vector patterns generated by the current prediction calculation unit that calculates the current predicted value and the voltage pattern group generation unit. It is characterized by having a voltage pattern selection section.
 請求項7の発明の電力変換装置は、上記発明においてインバータ回路は、各相の上下アームスイッチング素子の接続点における相電圧をモータに印加して駆動することを特徴とする。 In the power conversion device according to the seventh aspect of the present invention, the inverter circuit drives the motor by applying a phase voltage at a connection point between the upper and lower arm switching elements of each phase to the motor.
 請求項8の発明の電力変換装置は、請求項6の発明において最適電圧パターン選択部は、コモンモード電圧の変動回数と、電流指令値と電流予測値との誤差に基づき、最適な電圧ベクトルパターンを選択することを特徴とする。 In the power conversion device of the invention of claim 8, in the invention of claim 6, the optimal voltage pattern selection section selects the optimal voltage vector pattern based on the number of fluctuations of the common mode voltage and the error between the current command value and the current predicted value. It is characterized by selecting.
 請求項9の発明の電力変換装置は、上記発明において最適電圧パターン選択部は、コモンモード電圧の変動回数の優先度を、電流指令値と電流予測値との誤差よりも高くして、最適な電圧ベクトルパターンを選択することを特徴とする。 In the power conversion device of the invention according to claim 9, in the above invention, the optimum voltage pattern selection section prioritizes the number of fluctuations of the common mode voltage higher than the error between the current command value and the current predicted value, and selects the optimum voltage pattern. It is characterized by selecting a voltage vector pattern.
 本発明によれば、直流電圧を交流電圧に変換する電力変換装置において、各相の上下アームスイッチング素子の接続点における相電圧を負荷に印加するインバータ回路と、各上下アームスイッチング素子のスイッチングを制御する制御装置を備え、この制御装置が、所定の測定帯域幅におけるコモンモード電圧の変動回数が、測定タイミングに関わらず、所定の規定回数N(Nは1以上の整数)以下となるように、上下アームスイッチング素子をスイッチング制御するようにしたので、コモンモード電圧の変動により発生するコモンモードノイズのアベレージ値とピーク値の双方を抑制し、最小化することが可能となる。また、コモンモード電圧の変動が集中し、コモンモードノイズが集中して発生することに伴う周辺機器への電磁障害の発生も抑制することが可能となるものである。 According to the present invention, in a power conversion device that converts DC voltage to AC voltage, an inverter circuit that applies phase voltage to a load at a connection point of upper and lower arm switching elements of each phase and switching of each upper and lower arm switching element is controlled. The controller includes a control device that controls the frequency of fluctuation of the common mode voltage in a predetermined measurement bandwidth to be equal to or less than a predetermined number of times N (N is an integer of 1 or more), regardless of the measurement timing. Since the upper and lower arm switching elements are subjected to switching control, it is possible to suppress and minimize both the average value and the peak value of common mode noise generated due to fluctuations in common mode voltage. Furthermore, it is possible to suppress the occurrence of electromagnetic interference to peripheral devices due to concentration of common mode voltage fluctuations and concentration of common mode noise.
 この場合、請求項2の発明の如く制御装置が、異なる相の上下アームスイッチング素子を同時に互いに逆極性にスイッチングさせることにより、コモンモード電圧の変動回数を規定回数N以下とするようにすれば、特に測定帯域幅よりもスイッチング周波数が大きい場合に、円滑にコモンモード電圧の変動回数を規定回数N以下に制御することができるようになる。 In this case, if the control device according to the second aspect of the invention simultaneously switches the upper and lower arm switching elements of different phases to opposite polarities, the number of times the common mode voltage fluctuates is equal to or less than the prescribed number N. Particularly when the switching frequency is larger than the measurement bandwidth, the number of fluctuations in the common mode voltage can be smoothly controlled to be equal to or less than the prescribed number of times N.
 また、請求項3の発明の如く制御装置が、前回の制御周期における電圧ベクトルパターンを参照し、測定帯域幅におけるコモンモード電圧の変動回数が、測定タイミングに関わらず規定回数N以下となる複数の電圧ベクトルパターンを生成する電圧パターン群生成部を有する構成とすれば、コモンモードノイズのピーク値を効果的に規定回数N以下に制御することができるようになる。 Further, according to the invention of claim 3, the control device refers to the voltage vector pattern in the previous control cycle, and detects a plurality of cases in which the number of fluctuations of the common mode voltage in the measurement bandwidth is equal to or less than the prescribed number of times N regardless of the measurement timing. If the configuration includes a voltage pattern group generation section that generates voltage vector patterns, the peak value of common mode noise can be effectively controlled to be equal to or less than the prescribed number of times N.
 この場合、電圧パターン群生成部は請求項4の発明の如く、測定帯域幅よりもスイッチング周波数が大きい場合、一制御周期において偶数電圧ベクトルの次に偶数電圧ベクトル、又は、奇数電圧ベクトルの次に奇数電圧ベクトルを出力することにより、異なる相の上下アームスイッチング素子を同時に互いに逆極性にスイッチングさせる電圧ベクトルパターンを生成し、コモンモード電圧の変動回数を規定回数N以下とするとよい。 In this case, as in the invention of claim 4, when the switching frequency is larger than the measurement bandwidth, the voltage pattern group generation section generates an even voltage vector after an even voltage vector or a voltage vector after an odd voltage vector in one control period. By outputting an odd voltage vector, a voltage vector pattern is generated that simultaneously switches the upper and lower arm switching elements of different phases to mutually opposite polarities, and the number of fluctuations of the common mode voltage is preferably set to be equal to or less than the prescribed number of times N.
 また、請求項5の発明の如く電圧パターン群生成部が、一制御周期における各相のスイッチング回数が所定の制限回数以下となる制約条件を加えて複数の電圧ベクトルパターンを生成するようにすれば、スイッチング周波数が制御装置を構成する半導体の定格周波数を超える不都合も防止することができるようになる。 Further, as in the invention of claim 5, if the voltage pattern group generation section generates a plurality of voltage vector patterns by adding a constraint condition such that the number of switching times of each phase in one control period is equal to or less than a predetermined limit number of times, It is also possible to prevent the inconvenience that the switching frequency exceeds the rated frequency of the semiconductor that constitutes the control device.
 更に、請求項6の発明によれば制御装置が、電流指令値を算出する電流指令演算部と、電圧パターン群生成部が生成した各電圧ベクトルパターンの電流予測値を算出する電流予測演算部と、電圧パターン群生成部において生成された各電圧ベクトルパターンのなかから、電流指令値と電流予測値との誤差が最小となる電圧ベクトルパターンを選択する最適電圧パターン選択部を有する構成としたので、電流応答を考慮しながらコモンモードノイズのアベレージ値を抑制することができるようになる。また、全運転範囲において電流歪みも抑制することができるので、騒音も励起され難くなり、例えば請求項7の発明の如く、負荷としてモータを駆動する場合に極めて有効なものとなる。 Furthermore, according to the invention of claim 6, the control device includes a current command calculation unit that calculates a current command value, and a current prediction calculation unit that calculates a current predicted value of each voltage vector pattern generated by the voltage pattern group generation unit. , the configuration includes an optimal voltage pattern selection unit that selects a voltage vector pattern that minimizes the error between the current command value and the current predicted value from among the voltage vector patterns generated in the voltage pattern group generation unit. It becomes possible to suppress the average value of common mode noise while taking current response into consideration. In addition, since current distortion can be suppressed over the entire operating range, noise is less likely to be excited, making it extremely effective when driving a motor as a load, for example, as in the seventh aspect of the invention.
 この場合、請求項8の発明の如く最適電圧パターン選択部が、コモンモード電圧の変動回数と、電流指令値と電流予測値との誤差に基づき、最適な電圧ベクトルパターンを選択するようにすれば、コモンモードノイズの抑制と電流応答の向上の双方を円滑に実現することができるようになる。 In this case, the optimum voltage pattern selection section may select the optimum voltage vector pattern based on the number of fluctuations of the common mode voltage and the error between the current command value and the predicted current value. , it becomes possible to smoothly realize both suppression of common mode noise and improvement of current response.
 また、請求項9の発明の如く最適電圧パターン選択部が、コモンモード電圧の変動回数の優先度を、電流指令値と電流予測値との誤差よりも高くして、最適な電圧ベクトルパターンを選択するようにすれば、コモンモード電圧の変動を確実に抑制しながら、電流応答の良い最適な電圧ベクトルパターンを選択することができるようになる。 Further, according to the invention of claim 9, the optimum voltage pattern selection section selects the optimum voltage vector pattern by giving a higher priority to the number of fluctuations of the common mode voltage than the error between the current command value and the current predicted value. By doing so, it becomes possible to select an optimal voltage vector pattern with good current response while reliably suppressing fluctuations in the common mode voltage.
本発明を適用した一実施例の電力変換装置の電気回路図である。1 is an electrical circuit diagram of a power conversion device according to an embodiment of the present invention; FIG. 電圧ベクトルと相電圧の関係を示す図である。FIG. 3 is a diagram showing the relationship between voltage vectors and phase voltages. 電圧ベクトル(出力基本ベクトル)を示す図である。FIG. 3 is a diagram showing a voltage vector (output basic vector). 図1の制御装置の電圧パターン群生成部により生成される電圧ベクトルパターンの一例を説明する図である。2 is a diagram illustrating an example of a voltage vector pattern generated by a voltage pattern group generation unit of the control device in FIG. 1. FIG. 図1の制御装置の電圧パターン群生成部による電圧ベクトルパターンの探索動作の一例を説明する図である。FIG. 2 is a diagram illustrating an example of a voltage vector pattern search operation performed by a voltage pattern group generation unit of the control device in FIG. 1; 図1の本発明の電力変換装置による低変調率時の動作波形を示す図である。FIG. 2 is a diagram showing operating waveforms at a low modulation rate by the power conversion device of the present invention in FIG. 1; 図1の本発明の電力変換装置による中変調率時の動作波形を示す図である。FIG. 2 is a diagram showing operating waveforms of the power conversion device of the present invention in FIG. 1 at a medium modulation rate. 図1の本発明の電力変換装置による高変調率時の動作波形を示す図である。FIG. 2 is a diagram showing operating waveforms at a high modulation rate by the power conversion device of the present invention in FIG. 1; 図1の本発明の電力変換装置の場合のコモンモードノイズ発生例を示す図である。FIG. 2 is a diagram showing an example of common mode noise generation in the power conversion device of the present invention shown in FIG. 1; 測定窓の窓長と測定波形の周期が一致する場合の測定窓と測定波形を示す図である。FIG. 6 is a diagram showing a measurement window and a measurement waveform when the window length of the measurement window and the period of the measurement waveform match. 測定窓の窓長と測定波形の周期が異なる場合の測定窓と測定波形を示す図である。FIG. 7 is a diagram showing a measurement window and a measurement waveform when the window length of the measurement window and the period of the measurement waveform are different. 図11の場合に解析対象となる測定波形を示す図である。12 is a diagram showing a measured waveform to be analyzed in the case of FIG. 11. FIG. 従来の電力変換装置の場合のコモンモードノイズ発生例を示す図である。FIG. 3 is a diagram illustrating an example of common mode noise generation in a conventional power conversion device.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。本発明を適用した実施例の電力変換装置1は、電気自動車等の車両に搭載される車両用空気調和装置の冷媒回路を構成する所謂インバータ一体型電動圧縮機のモータ8(負荷)を駆動するものである。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. A power conversion device 1 according to an embodiment of the present invention drives a motor 8 (load) of a so-called inverter-integrated electric compressor that constitutes a refrigerant circuit of a vehicle air conditioner installed in a vehicle such as an electric vehicle. It is something.
 (1)電力変換装置1の回路構成
 図1において実施例の電力変換装置1は、三相のインバータ回路28と、制御装置21を備えている。インバータ回路28は、直流電源(車両のバッテリ:例えば、DC350V)29の直流電圧を三相(U相電圧Vu、V相電圧Vv、W相電圧Vw)の交流電圧に変換してモータ8に印加する回路である。この場合、実施例のモータ8はIPMSM(Interior Permanent Magnet Synchronous Motor)である。
(1) Circuit configuration of power converter 1 In FIG. 1, power converter 1 of the embodiment includes a three-phase inverter circuit 28 and a control device 21. The inverter circuit 28 converts the DC voltage of a DC power source (vehicle battery: e.g. DC 350V) 29 into three-phase (U-phase voltage Vu, V-phase voltage Vv, W-phase voltage Vw) AC voltage and applies it to the motor 8. This is a circuit that does this. In this case, the motor 8 of the embodiment is an IPMSM (Interior Permanent Magnet Synchronous Motor).
 インバータ回路28は、U相ハーフブリッジ回路19U、V相ハーフブリッジ回路19V、W相ハーフブリッジ回路19Wを有しており、各相のハーフブリッジ回路19U~19Wは、それぞれ上アームスイッチング素子18A~18Cと、下アームスイッチング素子18D~18Fを個別に有している。更に、各スイッチング素子18A~18Fには、それぞれフライホイールダイオード31が逆並列に接続されている。各上下アームスイッチング素子18A~18Fは、実施例ではMOS構造をゲート部に組み込んだ絶縁ゲートバイポーラトランジスタ(IGBT)から構成されている。 The inverter circuit 28 has a U-phase half-bridge circuit 19U, a V-phase half-bridge circuit 19V, and a W-phase half-bridge circuit 19W. Each phase half-bridge circuit 19U to 19W is connected to an upper arm switching element 18A to 18C, respectively. and lower arm switching elements 18D to 18F. Further, a flywheel diode 31 is connected in antiparallel to each of the switching elements 18A to 18F. In the embodiment, each of the upper and lower arm switching elements 18A to 18F is composed of an insulated gate bipolar transistor (IGBT) in which a MOS structure is incorporated in the gate portion.
 そして、インバータ回路28の上アームスイッチング素子18A~18Cのコレクタは、直流電源29の上アーム電源ライン(正極側母線)10に接続されている。一方、インバータ回路28の下アームスイッチング素子18D~18Fのエミッタは、直流電源29の下アーム電源ライン(負極側母線)15に接続されている。 The collectors of the upper arm switching elements 18A to 18C of the inverter circuit 28 are connected to the upper arm power supply line (positive bus line) 10 of the DC power supply 29. On the other hand, the emitters of the lower arm switching elements 18D to 18F of the inverter circuit 28 are connected to the lower arm power supply line (negative bus) 15 of the DC power supply 29.
 この場合、U相ハーフブリッジ回路19Uの上アームスイッチング素子18Aのエミッタと下アームスイッチング素子18Dのコレクタが直列に接続され、V相ハーフブリッジ回路19Vの上アームスイッチング素子18Bのエミッタと下アームスイッチング素子18Eのコレクタが直列に接続され、W相ハーフブリッジ回路19Wの上アームスイッチング素子18Cのエミッタと下アームスイッチング素子18Fのコレクタが直列に接続されている。 In this case, the emitter of the upper arm switching element 18A of the U-phase half bridge circuit 19U and the collector of the lower arm switching element 18D are connected in series, and the emitter of the upper arm switching element 18B and the lower arm switching element of the V-phase half bridge circuit 19V are connected in series. 18E are connected in series, and the emitter of the upper arm switching element 18C and the collector of the lower arm switching element 18F of the W-phase half bridge circuit 19W are connected in series.
 そして、U相ハーフブリッジ回路19Uの上アームスイッチング素子18Aと下アームスイッチング素子18Dの接続点(上下アームの中点:U相電圧Vu)は、モータ8のU相の電機子コイルに接続され、V相ハーフブリッジ回路19Vの上アームスイッチング素子18Bと下アームスイッチング素子18Eの接続点(上下アームの中点:V相電圧Vv)は、モータ8のV相の電機子コイルに接続され、W相ハーフブリッジ回路19Wの上アームスイッチング素子18Cと下アームスイッチング素子18Fの接続点(上下アームの中点:W相電圧Vw)は、モータ8のW相の電機子コイルに接続されている。 The connection point between the upper arm switching element 18A and the lower arm switching element 18D of the U-phase half bridge circuit 19U (midpoint of the upper and lower arms: U-phase voltage Vu) is connected to the U-phase armature coil of the motor 8, The connection point between the upper arm switching element 18B and the lower arm switching element 18E of the V-phase half bridge circuit 19V (midpoint of the upper and lower arms: V-phase voltage Vv) is connected to the V-phase armature coil of the motor 8, and the W-phase A connection point between the upper arm switching element 18C and the lower arm switching element 18F of the half bridge circuit 19W (midpoint between the upper and lower arms: W-phase voltage Vw) is connected to the W-phase armature coil of the motor 8.
 (2)制御装置21の構成
 次に、制御装置21はプロセッサを有するマイクロコンピュータ(半導体)から構成されており、実施例では車両のECUから回転数指令値を入力し、モータ8からモータ電流(相電流)を入力して、これらに基づき、インバータ回路28の各スイッチング素子18A~18FのON/OFF状態(スイッチング)を制御する。具体的には、各スイッチング素子18A~18Fのゲートに印加するゲート電圧を制御する。
(2) Configuration of the control device 21 Next, the control device 21 is composed of a microcomputer (semiconductor) having a processor, and in the embodiment inputs the rotation speed command value from the ECU of the vehicle, and receives the motor current ( Based on these, the ON/OFF state (switching) of each switching element 18A to 18F of the inverter circuit 28 is controlled. Specifically, the gate voltage applied to the gate of each switching element 18A to 18F is controlled.
 実施例の制御装置21は、電流指令演算部としてのdq軸電流指令演算部33と、電圧パターン群生成部34と、電流予測演算部としてのdq軸電流予測演算部35と、最適電圧パターン選択部36と、ゲートドライバ37と、モータ8に流れるU相とW相のモータ電流(相電流)であるU相電流iu、W相電流iwを測定するためのカレントトランスから成る電流センサ26A、26Bを有している。また、モータ8からは電気角θrmが得られる。 The control device 21 of the embodiment includes a dq-axis current command calculation unit 33 as a current command calculation unit, a voltage pattern group generation unit 34, a dq-axis current prediction calculation unit 35 as a current prediction calculation unit, and an optimal voltage pattern selection 36, a gate driver 37, and current sensors 26A and 26B each comprising a current transformer for measuring U-phase current iu and W-phase current iw, which are U-phase and W-phase motor currents (phase currents) flowing through the motor 8. have. Further, an electrical angle θrm is obtained from the motor 8.
 尚、実施例では電流センサ26AによりU相電流iuを測定し、電流センサ26BによりW相電流iwを測定して、V相電流ivはこれらから計算により求めるものであるが、全ての相電流iu、iv、iwを電流センサにより測定してもよい。また、各相のモータ電流を検出する方法については実施例のように電流センサ26A、26Bで測定する以外に、下アーム電源ライン15の電流値をシャント抵抗により検出し、その電流値とモータ8の運転状態から推定する方法などがあることから、各相電流を検出・推定する方法に関しては、特に限定しない。 In the embodiment, the current sensor 26A measures the U-phase current iu, the current sensor 26B measures the W-phase current iw, and the V-phase current iv is calculated from these. , iv, and iw may be measured by a current sensor. In addition, as for the method of detecting the motor current of each phase, in addition to measuring with the current sensors 26A and 26B as in the embodiment, the current value of the lower arm power supply line 15 is detected with a shunt resistor, and the current value and the motor 8 There is no particular limitation on the method of detecting and estimating each phase current, as there are methods of estimating it from the operating state of the current.
 (3)ゲートドライバ37
 先ず、ゲートドライバ37は、後述する如く最適電圧パターン選択部36が選択した最適電圧ベクトルパターンに基づき、U相インバータ19Uのスイッチング素子18A、18Dのゲート電圧と、V相インバータ19Vのスイッチング素子18B、18Eのゲート電圧と、W相インバータ19Wのスイッチング素子18C、18Fのゲート電圧を発生させる。
(3) Gate driver 37
First, the gate driver 37 selects the gate voltages of the switching elements 18A and 18D of the U-phase inverter 19U, and the switching element 18B of the V-phase inverter 19V, based on the optimal voltage vector pattern selected by the optimal voltage pattern selection section 36 as described later. A gate voltage of 18E and a gate voltage of switching elements 18C and 18F of W-phase inverter 19W are generated.
 そして、インバータ回路28の各スイッチング素子18A~18Fは、ゲートドライバ37から出力されるゲート電圧に基づき、ON/OFF駆動される。即ち、ゲート電圧がON状態(所定の電圧値)となるとスイッチング素子がON動作し、ゲート電圧がOFF状態(零)となるとスイッチング素子がOFF動作する。このゲートドライバ37は、スイッチング素子18A~18Fが前述したIGBTである場合には、PWM信号に基づいてゲート電圧をIGBTに印加するための回路であり、フォトカプラやロジックIC、トランジスタ等から構成される。 Then, each of the switching elements 18A to 18F of the inverter circuit 28 is driven ON/OFF based on the gate voltage output from the gate driver 37. That is, when the gate voltage is in an ON state (predetermined voltage value), the switching element is turned on, and when the gate voltage is in an OFF state (zero), the switching element is turned off. When the switching elements 18A to 18F are the above-mentioned IGBTs, the gate driver 37 is a circuit for applying a gate voltage to the IGBTs based on a PWM signal, and is composed of a photocoupler, a logic IC, a transistor, etc. Ru.
 そして、U相ハーフブリッジ回路19Uの上アームスイッチング素子18Aと下アームスイッチング素子18Dの接続点の電圧がU相電圧Vu(相電圧)としてモータ8のU相の電機子コイルに印加(出力)され、V相ハーフブリッジ回路19Vの上アームスイッチング素子18Bと下アームスイッチング素子18Eの接続点の電圧がV相電圧Vv(相電圧)としてモータ8のV相の電機子コイルに印加(出力)され、W相ハーフブリッジ回路19Wの上アームスイッチング素子18Cと下アームスイッチング素子18Fの接続点の電圧がW相電圧Vw(相電圧)としてモータ8のW相の電機子コイルに印加(出力)される。 Then, the voltage at the connection point between the upper arm switching element 18A and the lower arm switching element 18D of the U-phase half bridge circuit 19U is applied (output) to the U-phase armature coil of the motor 8 as the U-phase voltage Vu (phase voltage). , the voltage at the connection point between the upper arm switching element 18B and the lower arm switching element 18E of the V-phase half-bridge circuit 19V is applied (output) to the V-phase armature coil of the motor 8 as a V-phase voltage Vv (phase voltage), The voltage at the connection point between the upper arm switching element 18C and the lower arm switching element 18F of the W-phase half-bridge circuit 19W is applied (output) to the W-phase armature coil of the motor 8 as the W-phase voltage Vw (phase voltage).
 (4)dq軸電流指令演算部33
 実施例のdq軸電流指令演算部33は、電流指令値としてのd軸電流指令値id refとq軸電流指令値iq refを出力する。この場合、q軸電流指令値iq refは、PI演算及びq軸電流とトルクの関係式より算出する。尚、後述する数式の表記ではd軸電流指令値id refとq軸電流指令値iq refの下付文字と上付文字を上下同じ位置に表記しているが、上記表記と同一のものである(以下、同じ)。
(4) dq-axis current command calculation section 33
The dq-axis current command calculation unit 33 of the embodiment outputs a d-axis current command value i d ref and a q-axis current command value i q ref as current command values. In this case, the q-axis current command value i q ref is calculated from the PI calculation and the relational expression between the q-axis current and torque. In addition, in the notation of the formula described later, the subscripts and superscripts of the d-axis current command value i d ref and the q-axis current command value i q ref are written in the same position above and below, but they are the same as the above notation. (the same applies hereinafter).
 ここで、モータ8の各相の電機子コイルに印加するU相電圧Vu、V相電圧Vv、W相電圧VwのHigh、Lowの状態を纏めると、図2に示すようなV0~V7の8つの電圧ベクトル(出力基本ベクトル)の状態に表現することができる。このうち、V1、V3、V5が奇数電圧ベクトル、V2、V4、V6が偶数電圧ベクトル、V0、V7が零電圧ベクトルであり、各電圧ベクトルをαβ軸の電圧空間で示すと図3のようになる。 Here, if we summarize the High and Low states of the U-phase voltage Vu, V-phase voltage Vv, and W-phase voltage Vw applied to the armature coil of each phase of the motor 8, the 8 of V0 to V7 as shown in FIG. It can be expressed in the state of two voltage vectors (output fundamental vectors). Among these, V1, V3, and V5 are odd voltage vectors, V2, V4, and V6 are even voltage vectors, and V0 and V7 are zero voltage vectors. When each voltage vector is shown in the αβ axis voltage space, it becomes as shown in Figure 3. Become.
 (5)電圧パターン群生成部34
 次に、実施例の電圧パターン群生成部34は、前回の制御周期における電圧ベクトルパターンを参照し、前述したノイズ測定での測定帯域幅におけるモータ8のコモンモード電圧Vcの変動回数が、測定タイミングに関わらず所定の規定回数N以下となり、且つ、一制御周期でのスイッチング回数が所定の制限回数M以下となる複数の電圧ベクトルパターンを生成する。尚、実施例では測定帯域幅よりもスイッチング周波数は十分大きいものとする。
(5) Voltage pattern group generation unit 34
Next, the voltage pattern group generation unit 34 of the embodiment refers to the voltage vector pattern in the previous control cycle, and determines the number of fluctuations of the common mode voltage Vc of the motor 8 in the measurement bandwidth in the noise measurement described above at the measurement timing. A plurality of voltage vector patterns are generated in which the number of switching times in one control period is equal to or less than a predetermined limit number M regardless of the number of times of switching. In the embodiment, it is assumed that the switching frequency is sufficiently larger than the measurement bandwidth.
 即ち、実施例の電圧パターン群生成部34は、測定帯域幅とインバータ回路28の各相のスイッチング回数(スイッチング周波数)を考慮して、以下のような制約条件を設けて電圧ベクトルパターンの候補を生成する。
 制約条件1:どのタイミングで測定してもコモンモード電圧Vcの変動回数が前記規定回数N以下となること。この規定回数Nとは1以上の整数であるが、以下の説明ではN=1とする。
 制約条件2:一制御周期で出力される電圧ベクトルパターンにおいて、インバータ回路28の各相のスイッチング回数(スイッチング周波数)が前記制限回数M以下となること。この制限回数Mとは、インバータ回路28を構成するスイッチング素子(半導体)の定格スイッチング周波数を超えない値とし、以下の説明ではM=2とする。
That is, the voltage pattern group generation unit 34 of the embodiment generates voltage vector pattern candidates by setting the following constraint conditions, taking into account the measurement bandwidth and the number of switching times (switching frequency) of each phase of the inverter circuit 28. generate.
Constraint condition 1: The number of fluctuations in the common mode voltage Vc is equal to or less than the specified number of times N, regardless of the timing of measurement. This specified number of times N is an integer greater than or equal to 1, but in the following explanation, N=1.
Constraint condition 2: In the voltage vector pattern output in one control period, the number of switching times (switching frequency) of each phase of the inverter circuit 28 is equal to or less than the limit number M. This limited number of times M is a value that does not exceed the rated switching frequency of the switching element (semiconductor) constituting the inverter circuit 28, and in the following description, M=2.
 (5-1)電圧パターン群生成部34の動作
 以下、図4と図5を参照しながら実施例の電圧パターン群生成部34の動作手順を具体的に説明する。実施例では一制御周期の電圧ベクトル分解能を5(5区間)とし、その場合の前回の制御周期における電圧ベクトルパターンを図4の左側に示し、候補として決定された今回の制御周期における電圧ベクトルパターンの一例を右側に示す。尚、図4中のステップ1~ステップ6は、図5中のステップ1~ステップ6に対応しており、ステップ1での判断対象は前回の制御周期における電圧ベクトルパターンであり、ステップ6で今回の制御周期における電圧ベクトルパターンを決定する。また、各図中のV1~V6は前述した電圧ベクトル(出力基本ベクトル。零電圧ベクトル以外)である。
(5-1) Operation of the voltage pattern group generation section 34 Hereinafter, the operation procedure of the voltage pattern group generation section 34 of the embodiment will be specifically explained with reference to FIGS. 4 and 5. In the example, the voltage vector resolution of one control period is set to 5 (5 sections), and the voltage vector pattern in the previous control period in that case is shown on the left side of FIG. 4, and the voltage vector pattern in the current control period determined as a candidate is shown. An example is shown on the right. Note that steps 1 to 6 in FIG. 4 correspond to steps 1 to 6 in FIG. Determine the voltage vector pattern in the control period. Further, V1 to V6 in each figure are the voltage vectors (output basic vectors, other than zero voltage vectors) described above.
 電圧パターン群生成部34は、先ずステップ1で前回の制御周期における電圧ベクトルパターン(V4、V4、V2、V3、V5)を参照する。ここで、偶数電圧ベクトルV2、V4、V6の次に偶数電圧ベクトルV2、V4、V6を出力する場合は、異なる相の上下アームスイッチング素子18A~18Fを同時に互いに逆極性にスイッチングさせることになるため、コモンモード電圧Vcは変動しない。同じく、奇数電圧ベクトルV1、V3、V5の次に奇数電圧ベクトルV1、V3、V5を出力する場合も、異なる相の上下アームスイッチング素子18A~18Fを同時に互いに逆極性にスイッチングさせることになるため、コモンモード電圧Vcは変動しない。 First, in step 1, the voltage pattern group generation unit 34 refers to the voltage vector patterns (V4, V4, V2, V3, V5) in the previous control cycle. Here, when outputting the even voltage vectors V2, V4, V6 after the even voltage vectors V2, V4, V6, the upper and lower arm switching elements 18A to 18F of different phases are simultaneously switched to opposite polarities. , the common mode voltage Vc does not change. Similarly, when outputting odd voltage vectors V1, V3, and V5 next to odd voltage vectors V1, V3, and V5, the upper and lower arm switching elements 18A to 18F of different phases are simultaneously switched to opposite polarities. Common mode voltage Vc does not change.
 一方、偶数電圧ベクトルの次に奇数電圧ベクトルを出力した場合や、奇数電圧ベクトルの次に偶数電圧ベクトルを出力した場合は、コモンモード電圧Vcが変動してしまう。前回の制御周期における電圧ベクトルパターンでは、偶数電圧ベクトルV2の次に奇数電圧ベクトルV3を出力しているので、コモンモード電圧Vcは1回変動しており、前述した規定回数N(1:制約条件1)となっている。そのため、最後の奇数電圧ベクトルV5の次に出力できる電圧ベクトルはコモンモード電圧Vcの変動が無い電圧ベクトルを探索することになり、実施例のステップ1では例えば奇数電圧ベクトルV5とする。 On the other hand, if an odd voltage vector is output after an even voltage vector, or if an even voltage vector is output after an odd voltage vector, the common mode voltage Vc will fluctuate. In the voltage vector pattern in the previous control cycle, the odd voltage vector V3 is output after the even voltage vector V2, so the common mode voltage Vc fluctuates once, and the specified number of times N (1: constraint condition 1). Therefore, as the voltage vector that can be output next to the last odd voltage vector V5, a voltage vector in which there is no fluctuation in the common mode voltage Vc is searched for, and in step 1 of the embodiment, for example, the odd voltage vector V5 is selected.
 次に、ステップ2ではステップ1で決定した電圧ベクトルパターン(V4、V2、V3、V5、V5)の最後の電圧ベクトルV5の次に出力する電圧ベクトルを探索する。この場合、依然コモンモード電圧Vcは1回変動しているので、コモンモード電圧Vcが変動しない電圧ベクトルを探索することになり、実施例のステップ2では例えば奇数電圧ベクトルV1とする。 Next, in step 2, a voltage vector to be output next to the last voltage vector V5 of the voltage vector pattern (V4, V2, V3, V5, V5) determined in step 1 is searched. In this case, since the common mode voltage Vc still fluctuates once, a voltage vector in which the common mode voltage Vc does not fluctuate is searched for, and in step 2 of the embodiment, for example, an odd voltage vector V1 is selected.
 次に、ステップ3ではステップ2で決定した電圧ベクトルパターン(V2、V3、V5、V5、V1)の最後の電圧ベクトルV1の次に出力する電圧ベクトルを探索する。この場合はコモンモード電圧Vcの変動は無いので、全ての電圧ベクトルが候補となり、実施例のステップ3では例えば奇数電圧ベクトルV3とする。 Next, in step 3, a voltage vector to be output next to the last voltage vector V1 of the voltage vector pattern (V2, V3, V5, V5, V1) determined in step 2 is searched. In this case, since there is no variation in the common mode voltage Vc, all voltage vectors become candidates, and in step 3 of the embodiment, for example, the odd voltage vector V3 is selected.
 次に、ステップ4ではステップ3で決定した電圧ベクトルパターン(V3、V5、V5、V1、V3)の最後の電圧ベクトルV3の次に出力する電圧ベクトルを探索する。この場合もコモンモード電圧Vcの変動は無いので、全ての電圧ベクトルが候補となり、実施例のステップ4では例えば奇数電圧ベクトルV3とする。 Next, in step 4, a voltage vector to be output next to the last voltage vector V3 of the voltage vector pattern (V3, V5, V5, V1, V3) determined in step 3 is searched. In this case as well, since there is no variation in the common mode voltage Vc, all voltage vectors become candidates, and in step 4 of the embodiment, for example, the odd voltage vector V3 is selected.
 尚、図5のステップ1では奇数電圧ベクトルV5としているが、その他の奇数電圧ベクトルV1やV3でもよい。同様にステップ2では奇数電圧ベクトルV1としているが、その他の奇数電圧ベクトルV3やV5でもよい。更に、ステップ3では奇数電圧ベクトルV3としているが、それ以外の電圧ベクトルV1、V2、V4~V6でもよい。同様にステップ4でも奇数電圧ベクトルV3としているが、それ以外の電圧ベクトルV1、V2、V4~V6でもよく、コモンモード電圧Vcの変動回数がN(1)以下となる選択肢を順次出力する。 Note that in step 1 of FIG. 5, the odd voltage vector V5 is used, but other odd voltage vectors V1 and V3 may be used. Similarly, in step 2, the odd voltage vector V1 is used, but other odd voltage vectors V3 and V5 may be used. Further, although the odd voltage vector V3 is used in step 3, other voltage vectors V1, V2, V4 to V6 may be used. Similarly, in step 4, the odd voltage vector V3 is used, but other voltage vectors V1, V2, V4 to V6 may be used, and the options for which the number of fluctuations of the common mode voltage Vc is N(1) or less are sequentially output.
 次にステップ5では、ステップ4で決定した電圧ベクトルパターン(V5、V5、V1、V3、V3)の最後の電圧ベクトルV3の次に出力する電圧ベクトルを探索する。この場合もコモンモード電圧Vcの変動が無いので、すべての電圧ベクトルが候補となるが、制約条件2についても考慮を行う。この場合は各相のスイッチング回数(スイッチング周波数)が前述した制限回数M(2)以下となる電圧ベクトル(スイッチング回数の制約条件2を満たす電圧ベクトル)を探索する。実施例ではステップ6で、偶数電圧ベクトルV4をコモンモード電圧Vcの変動の制約条件1とスイッチング回数の制約条件2を満たす電圧ベクトルとして決定する。これが図4で示した今回の制御周期における電圧ベクトルパターン(V5、V1、V3、V3、V4)となり、出力する電圧ベクトルパターンの候補として保存する。 Next, in step 5, a voltage vector to be output next to the last voltage vector V3 of the voltage vector pattern (V5, V5, V1, V3, V3) determined in step 4 is searched. In this case as well, since there is no variation in the common mode voltage Vc, all voltage vectors become candidates, but constraint condition 2 is also taken into consideration. In this case, a voltage vector (voltage vector that satisfies the constraint condition 2 on the number of switching times) in which the number of times of switching (switching frequency) of each phase is equal to or less than the above-mentioned limit number of times M(2) is searched for. In the embodiment, in step 6, the even voltage vector V4 is determined as a voltage vector that satisfies the first constraint on the variation of the common mode voltage Vc and the second constraint on the number of switching times. This becomes the voltage vector pattern (V5, V1, V3, V3, V4) in the current control cycle shown in FIG. 4, and is saved as a candidate for the voltage vector pattern to be output.
 以上のように、前回の制御周期における電圧ベクトルパターンを参照して今回の制御周期における電圧ベクトルパターンを探索する。前回の制御周期の電圧ベクトルパターンによって探索結果の電圧ベクトルパターンの組み合わせの数は変化するが、実施例では最大で400通り程度(電圧ベクトルパターンの集合)存在することになる。また、コモンモード電圧Vcの変動についての制約条件1の探索は図5のすべてのステップで行われる。このように、すべてのステップでコモンモード電圧Vcの変動を考慮することで、どこで測定してもコモンモード電圧Vcの変動回数をN(1)以下とする電圧ベクトルパターンが成立する。そして、このような電圧パターン群生成部34による電圧ベクトルパターンの探索により、入力の電圧ベクトルパターンの段階でコモンモードノイズのピーク値が抑制されることになる。 As described above, the voltage vector pattern in the current control cycle is searched by referring to the voltage vector pattern in the previous control cycle. Although the number of combinations of voltage vector patterns as a search result changes depending on the voltage vector pattern of the previous control cycle, in the embodiment, there are about 400 combinations (a set of voltage vector patterns) at most. Further, the search for constraint condition 1 regarding fluctuations in the common mode voltage Vc is performed in all steps in FIG. In this way, by considering the fluctuations in the common mode voltage Vc in all steps, a voltage vector pattern is established in which the number of fluctuations in the common mode voltage Vc is N(1) or less no matter where it is measured. By searching for a voltage vector pattern by the voltage pattern group generation unit 34, the peak value of common mode noise is suppressed at the input voltage vector pattern stage.
 (6)dq軸電流予測演算部34
 次に、実施例のdq軸電流予測演算部34は、電流予測値としてのd軸電流idとq軸電流iqを予測して出力する。d軸電流idとq軸電流iqの予測式は、数式(I)で示すIPMSMの状態方程式を数式(II)、数式(III)で示す如く離散化(ゼロ次ホールド)することで導出を行う。
(6) dq-axis current prediction calculation unit 34
Next, the dq-axis current prediction calculation unit 34 of the embodiment predicts and outputs the d-axis current i d and the q-axis current i q as current predicted values. The prediction formulas for the d-axis current i d and the q-axis current i q are derived by discretizing (zero-order hold) the IPMSM state equation shown in equation (I) as shown in equation (II) and equation (III). I do.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 尚、数式(I)において、idはd軸電流、iqはq軸電流、vdはd軸電圧、vqはq軸電圧、Ldはd軸インダクタンス、Lqはq軸インダクタンス、Raは巻線抵抗、kEは誘起電圧定数、ωreは電気角速度である。 In addition, in formula (I), i d is the d-axis current, i q is the q-axis current, v d is the d-axis voltage, v q is the q-axis voltage, L d is the d-axis inductance, L q is the q-axis inductance, R a is the winding resistance, k E is the induced voltage constant, and ω re is the electrical angular velocity.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 尚、数式(II)、数式(III)において、x(t)は時刻tにおける状態量(dq軸電流)、x[k]はk番目のサンプル点における状態量(離散表現)、u(t)は時刻tにおける入力(制御入力がdq軸電圧、外乱入力が誘起電圧、入力は制御入力と外乱入力の総和)、u[k]はk番目のサンプル点における入力(離散表現)、Acは連続領域における状態量の自由運動パラメータ、bcは連続領域における入力の状態量への影響パラメータ、AdはパラメータAcの離散領域での表現、bdはパラメータbcの離散領域での表現、Tpはモデル予測を行う予測周期である。 In addition, in formulas (II) and (III), x(t) is the state quantity at time t (dq-axis current), x[k] is the state quantity at the k-th sample point (discrete representation), and u(t ) is the input at time t (the control input is the dq-axis voltage, the disturbance input is the induced voltage, the input is the sum of the control input and disturbance input), u[k] is the input at the k-th sample point (discrete representation), A c is the free motion parameter of the state quantity in the continuous domain, b c is the influence parameter of the input on the state quantity in the continuous domain, A d is the expression of the parameter A c in the discrete domain, and b d is the expression of the parameter b c in the discrete domain. The expression T p is the prediction period at which the model predictions are made.
 数式(III)中のx[k]はk番目の状態量であり、dq軸電流指令演算部33が出力するdq軸電流の初期値である。この初期値から2番目の状態量x[k+1](dq軸電流)を予測する。dq軸電流予測演算部34は、数式(III)を前述した電圧ベクトルパターンの1区間毎に解き、各区間(実施例では5区間)の瞬時予測値と制御周期の平均予測値を算出する。 x[k] in formula (III) is the k-th state quantity, and is the initial value of the dq-axis current output by the dq-axis current command calculation unit 33. The second state quantity x[k+1] (dq-axis current) is predicted from this initial value. The dq-axis current prediction calculation unit 34 solves Equation (III) for each section of the voltage vector pattern described above, and calculates the instantaneous predicted value of each section (5 sections in the embodiment) and the average predicted value of the control period.
 制御周期を前述したように5区間に区切った場合の予測式は、下記数式(IV)~数式(VII)のようになる。尚、A行列b行列は電気角速度ωreに依存するが、制御周期当たりの変動が少ないため、近似的に一定値としている。 The prediction formulas when the control period is divided into five sections as described above are as shown in the following formulas (IV) to (VII). Note that although the A matrix and the b matrix depend on the electrical angular velocity ω re , since there is little variation per control cycle, they are approximately constant values.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 尚、数式(IV)において、x[k+1]~x[k+5]は前述した電圧ベクトルパターンの1番目の区間~5番目の区間に対応する予測値である。また、数式(VI)において、Cdqnαβはk+nサンプル点における回転行列である。数式ではdqnとαβを上下同じ位置に表記しているが同一のものである。また、数式(VII)においてvαβnはk+nサンプル点におけるαβ電圧入力である。 Note that in formula (IV), x[k+1] to x[k+5] are predicted values corresponding to the first to fifth sections of the voltage vector pattern described above. Further, in formula (VI), C dqn αβ is a rotation matrix at k+n sample points. In the formula, dqn and αβ are written in the same position above and below, but they are the same. Also, in equation (VII), vαβ n is the αβ voltage input at k+n sample points.
 制御入力の電圧ベクトルは、αβ座標上で定義されている。そのため、各サンプリング点において、予測周期毎の位相進みを考慮したdq軸変換を行う(数式(VI)の下線部分)。 The voltage vector of the control input is defined on the αβ coordinate. Therefore, at each sampling point, dq-axis conversion is performed in consideration of the phase lead for each prediction cycle (underlined part of formula (VI)).
 (7)最適電圧パターン選択部36
 次に、実施例の最適電圧パターン選択部36は、電圧パターン群生成部34において生成された前記制約条件(制約条件1と2)を満たす電圧ベクトルパターンの集合(最大400通り)のなかから、dq軸電流指令演算部33が算出した電流指令値(d軸電流指令値id ref、q軸電流指令値iq ref)と、dq軸電流予測演算部35が算出した電流値予測値(d軸電流id、q軸電流iq)との誤差が最小となる電圧ベクトルパターンを選択する。
(7) Optimal voltage pattern selection section 36
Next, the optimal voltage pattern selection unit 36 of the embodiment selects a set of voltage vector patterns (up to 400 patterns) that satisfy the constraints (constraints 1 and 2) generated by the voltage pattern group generation unit 34. The current command values (d-axis current command value i d ref , q-axis current command value i q ref ) calculated by the dq-axis current command calculation unit 33 and the current value predicted value (d A voltage vector pattern with a minimum error from the axis current i d and the q-axis current i q is selected.
 (7-1)最適電圧パターン選択部36の動作
 実施例の最適電圧パターン選択部36は、具体的には下記数式(VIII)~数式(XI)を用いて各電圧ベクトルパターンのコスト計算を行う。コスト計算の結果、電圧ベクトルパターンのコストC(評価の指標)が最小となった電圧ベクトルパターンを最適電圧ベクトルパターンとして出力する。
(7-1) Operation of the optimal voltage pattern selection unit 36 The optimal voltage pattern selection unit 36 of the embodiment specifically calculates the cost of each voltage vector pattern using the following formulas (VIII) to (XI). . As a result of the cost calculation, the voltage vector pattern with the minimum cost C (evaluation index) of the voltage vector pattern is output as the optimal voltage vector pattern.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 尚、数式(VIII)において、Cは電圧ベクトルパターンのコスト、Wmaxはベクトルの切り替わりに起因するリプルにかかる重み係数(瞬時誤差最大値コストの重み係数)、Waveはdq軸電流の応答性にかかる重み係数(平均誤差コストの重み係数)、WVcはコモンモード電圧変動と電流誤差(電流指令値と電流予測値との誤差)の制御優先度を決定する重み係数(コモンモード電圧変動回数に対する重み係数)である。また、CVcは電圧ベクトルパターンにおけるコモンモード電圧の変動回数、Emaxは瞬時誤差最大値コスト、Eaveは平均誤差コストである。 In the formula (VIII), C is the cost of the voltage vector pattern, W max is the weighting coefficient for the ripple caused by vector switching (the weighting coefficient of the maximum instantaneous error cost), and W ave is the responsiveness of the dq-axis current. (weighting coefficient of average error cost), W Vc is a weighting coefficient (number of common mode voltage fluctuations) that determines the control priority of common mode voltage fluctuation and current error (error between current command value and current predicted value). weighting coefficient). Furthermore, C Vc is the number of fluctuations in the common mode voltage in the voltage vector pattern, E max is the maximum instantaneous error cost, and E ave is the average error cost.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 尚、数式(X)においてWdはd軸重み係数、Wqはq軸重み係数、max()は()内の引数の最大値を出力する関数、abs()は()内の引数の絶対値と出力する関数、xref[k]はkサンプル点において計算された状態量指令値(id ref[k]はd軸電流指令値、iq ref[k]はq軸電流指令値)である。 In addition, in formula (X), W d is the d-axis weighting coefficient, W q is the q-axis weighting coefficient, max() is the function that outputs the maximum value of the argument in (), and abs() is the function that outputs the maximum value of the argument in (). The function that outputs the absolute value, x ref [k] is the state quantity command value calculated at k sample points (i d ref [k] is the d-axis current command value, i q ref [k] is the q-axis current command value ).
 数式(VIII)の右辺の第一項及び第二項は電流誤差(電流指令値と電流予測値との誤差)に起因するコストであり、第三項はコモンモード電圧変動に起因するコストである。実施例の最適電圧パターン選択部36は、基本的にはコモンモード電圧変動の無い電圧ベクトルパターンのなかから電流誤差コストが最小のものを最適電圧ベクトルパターンとして選択する。即ち、コモンモード電圧の変動回数の優先度を、電流誤差(電流指令値と電流予測値との誤差)よりも高くする。また、コモンモード電圧変動の無い電圧ベクトルパターンにおいて、電流誤差が大きすぎる場合は、コモンモード電圧変動を含む電圧ベクトルパターンのなかから電流誤差コストが最小となる電圧ベクトルパターンを最適電圧ベクトルパターンとして選択する。 The first and second terms on the right side of formula (VIII) are costs due to current error (error between current command value and current predicted value), and the third term is cost due to common mode voltage fluctuation. . The optimum voltage pattern selection unit 36 of the embodiment basically selects the one with the minimum current error cost as the optimum voltage vector pattern from among the voltage vector patterns without common mode voltage fluctuations. That is, the priority of the number of fluctuations of the common mode voltage is made higher than the current error (error between the current command value and the current predicted value). In addition, if the current error is too large in a voltage vector pattern without common mode voltage fluctuations, select the voltage vector pattern with the minimum current error cost as the optimal voltage vector pattern from among the voltage vector patterns that include common mode voltage fluctuations. do.
 各重み係数Wmax、Wave、WVcの比によって、電流誤差がどの位([A])まではコモンモード電圧変動の無い電圧ベクトルパターンを優先するかが決定される。これにより、コモンモード電圧変動を抑制しながら、電流応答の良い、即ち、電流誤差が少ない電圧ベクトルパターンを選択することが可能となる。尚、ここでは毎制御周期でのコモンモード電圧の変動回数の最適化のみを行うため、ノイズアベレージ値を抑制していることになる。各制御周期でコモンモード電圧を変動させるか、させないかを評価しているからである。 The ratio of the weighting coefficients W max , W ave , and W Vc determines to what extent ([A]) the current error should prioritize the voltage vector pattern without common mode voltage fluctuations. This makes it possible to select a voltage vector pattern with good current response, that is, with little current error, while suppressing common mode voltage fluctuations. Note that since only the number of fluctuations of the common mode voltage in each control cycle is optimized here, the noise average value is suppressed. This is because it is evaluated whether the common mode voltage is varied or not in each control cycle.
 (7-2)最適電圧ベクトルパターンの選択例
 次に、数式(VIII)を用いて最適電圧ベクトルパターンを選択する実施例を説明する。今、重み係数Wmax=1.0、重み係数Wave=1.0、重み係数WVc=2.5とした場合、Emax=1.0、Eave=1.0、CVc=0の電圧ベクトルパターン1と、Emax=0.0、Eave=0.0、CVc=1.0の電圧ベクトルパターン2を考える。電圧ベクトルパターン1は、コモンモード電圧変動が無いが、若干の電流誤差を持ち、電圧ベクトルパターン2は、理想の電流応答を示すが、コモンモード電圧変動がある場合である。
(7-2) Example of Selection of Optimal Voltage Vector Pattern Next, an example of selecting the optimal voltage vector pattern using equation (VIII) will be described. Now, if the weighting coefficient W max =1.0, the weighting coefficient W ave = 1.0, and the weighting coefficient W Vc = 2.5, E max = 1.0, E ave = 1.0, C Vc = 0. Consider voltage vector pattern 1 with E max =0.0, E ave =0.0, and voltage vector pattern 2 with C Vc =1.0. Voltage vector pattern 1 has no common mode voltage fluctuation but has some current error, and voltage vector pattern 2 shows an ideal current response but has common mode voltage fluctuation.
 上記の場合、数式(VIII)から導出される電圧ベクトルパターン1のコストC1と電圧ベクトルパターン2のコストC2は、
 C1=1.0×1.0+1.0×1.0+2.5×0.0=2.0
 C2=1.0×0.0+1.0×0.0+2.5×1.0=2.5
となる。上記重み係数の比の場合、電流誤差はあるが、コモンモード電圧変動が無い電圧ベクトルパターン1が最適電圧ベクトルパターンとして選択されることになる。
In the above case, the cost C1 of voltage vector pattern 1 and the cost C2 of voltage vector pattern 2 derived from formula (VIII) are:
C1=1.0×1.0+1.0×1.0+2.5×0.0=2.0
C2=1.0×0.0+1.0×0.0+2.5×1.0=2.5
becomes. In the case of the above weighting coefficient ratio, voltage vector pattern 1, which has a current error but has no common mode voltage fluctuation, is selected as the optimal voltage vector pattern.
 また、Emax=2.0、Eave=2.0、CVc=0の電圧ベクトルパターン3と、Emax=0.0、Eave=1.0、CVc=1.0の電圧ベクトルパターン4を考える。電圧ベクトルパターン3及び電圧ベクトルパターン4は共に電流誤差が存在する場合である。 Also, voltage vector pattern 3 with E max =2.0, E ave =2.0, C Vc =0, and voltage vector pattern 3 with E max =0.0, E ave =1.0, C Vc =1.0. Consider pattern 4. Both voltage vector pattern 3 and voltage vector pattern 4 are cases where a current error exists.
 上記の場合、数式(VIII)から導出される電圧ベクトルパターン3のコストC3と電圧ベクトルパターン4のコストC4は、
 C3=1.0×2.0+1.0×2.0+2.5×0.0=4.0
 C4=1.0×0.0+1.0×1.0+2.5×1.0=3.5
となる。電圧ベクトルパターンC4はコモンモード電圧変動を加味しても電流応答が良く、電圧ベクトルパターンC3はコモンモード電圧変動が無いが、電流誤差が大きすぎるため、コストC4とC3の比較で電圧ベクトルパターン4が最適電圧ベクトルパターンとして選択されることになる。
In the above case, the cost C3 of voltage vector pattern 3 and the cost C4 of voltage vector pattern 4 derived from formula (VIII) are:
C3=1.0×2.0+1.0×2.0+2.5×0.0=4.0
C4=1.0×0.0+1.0×1.0+2.5×1.0=3.5
becomes. Voltage vector pattern C4 has a good current response even when taking common mode voltage fluctuations into consideration, and voltage vector pattern C3 has no common mode voltage fluctuations, but the current error is too large, so voltage vector pattern 4 is selected by comparing costs C4 and C3. will be selected as the optimal voltage vector pattern.
 以上のような数式(VIII)を用いた評価の結果、実施例の最適電圧パターン選択部36は、基本的にはコモンモード電圧変動が無い電圧ベクトルパターンがコスト的に優先される。コモンモード電圧変動が無いときでも、電流誤差が大きい場合、電流誤差が小さくコモンモード電圧変動がある電圧ベクトルパターンが最適電圧ベクトルパターンとして選択される。 As a result of the evaluation using the above-mentioned formula (VIII), the optimum voltage pattern selection unit 36 of the embodiment basically gives priority to a voltage vector pattern without common mode voltage fluctuation in terms of cost. Even when there is no common mode voltage variation, if the current error is large, a voltage vector pattern with a small current error and common mode voltage variation is selected as the optimal voltage vector pattern.
 また、数式(VIII)の最適化の計算は、各制御周期において行われ、逐次最適化によってコモンモード電圧変動を抑制しながら電流誤差を最小化する。そのため、ノイズアベレージ値を抑制しながら、電流誤差を最小化している。 Further, the optimization calculation of formula (VIII) is performed in each control cycle, and the current error is minimized while suppressing the common mode voltage fluctuation by successive optimization. Therefore, the current error is minimized while suppressing the noise average value.
 図6~図9は本発明による結果を示している。図6は低変調率時のU相電流iuとコモンモード電圧Vcの波形を示し、図7は中変調率時のU相電流iuとコモンモード電圧Vcの波形を示し、図8は高変調率時のU相電流iuとコモンモード電圧Vcの波形を示している。低変調率のときにはコモンモード電圧Vcは変動しておらず、中変調率から高変調率と変調率が高くなるに従ってコモンモード電圧Vcの変動が発生しているが、何れの運転範囲においてもコモンモード電圧Vcの変動を抑制しながら、電流応答が良くなっていることが分かる。 6 to 9 show the results according to the present invention. Figure 6 shows the waveforms of the U-phase current iu and common mode voltage Vc at a low modulation rate, Figure 7 shows the waveforms of the U-phase current iu and common mode voltage Vc at a medium modulation rate, and Figure 8 shows the waveforms of the U-phase current iu and common mode voltage Vc at a high modulation rate. It shows the waveforms of the U-phase current iu and the common mode voltage Vc at the time. When the modulation rate is low, the common mode voltage Vc does not fluctuate, and as the modulation rate increases from the medium modulation rate to the high modulation rate, the common mode voltage Vc fluctuates. It can be seen that the current response is improved while suppressing fluctuations in the mode voltage Vc.
 また、図9は従来の図13と比較するための本発明の結果によるコモンモードノイズ(伝導ノイズ)の発生例を示している。図9から明らかな如く、どのタイミングで測定されたとしても、測定窓で区切られる窓内でのノイズの発生回数は4回(一制御周期では2回ずつ)となっており、ノイズピーク値が抑制されている。 Further, FIG. 9 shows an example of the occurrence of common mode noise (conduction noise) according to the results of the present invention for comparison with the conventional example shown in FIG. 13. As is clear from Fig. 9, no matter what timing the measurement is taken, the number of times the noise occurs within the window divided by the measurement window is four times (two times in one control cycle), and the noise peak value is suppressed.
 以上詳述した如く本発明の電力変換装置1によれば、制御装置21が、所定の測定帯域幅におけるコモンモード電圧Vcの変動回数が、測定タイミングに関わらず、所定の規定回数N(Nは1以上の整数)以下となる電圧ベクトルパターンを生成し、上下アームスイッチング素子18A~18Fをスイッチング制御するようにしたので、コモンモード電圧Vcの変動により発生するコモンモードノイズのアベレージ値とピーク値の双方を抑制し、最小化することが可能となる。また、コモンモード電圧Vcの変動が集中し、コモンモードノイズが集中して発生することに伴う周辺機器への電磁障害の発生も抑制することが可能となる。 As described in detail above, according to the power conversion device 1 of the present invention, the control device 21 controls the number of fluctuations of the common mode voltage Vc in a predetermined measurement bandwidth to a predetermined number of times N (N is Since the voltage vector pattern is generated to control the switching of the upper and lower arm switching elements 18A to 18F, the average value and the peak value of the common mode noise generated due to fluctuations in the common mode voltage Vc are generated. It becomes possible to suppress and minimize both. Further, it is also possible to suppress the occurrence of electromagnetic interference to peripheral devices due to the concentration of fluctuations in the common mode voltage Vc and the concentration of common mode noise.
 また、実施例では制御装置21が、異なる相の上下アームスイッチング素子18A~18Fを同時に互いに逆極性にスイッチングさせることにより、コモンモード電圧Vcの変動回数を規定回数N以下とするようにしているので、特に測定帯域幅よりもスイッチング周波数が大きい場合に、円滑にコモンモード電圧Vcの変動回数を規定回数N以下に制御することができるようになる。 Further, in the embodiment, the control device 21 simultaneously switches the upper and lower arm switching elements 18A to 18F of different phases to mutually opposite polarities, so that the number of fluctuations of the common mode voltage Vc is kept below the specified number of times N. In particular, when the switching frequency is larger than the measurement bandwidth, the number of fluctuations of the common mode voltage Vc can be smoothly controlled to be equal to or less than the prescribed number of times N.
 また、実施例では制御装置21が、前回の制御周期における電圧ベクトルパターンを参照し、測定帯域幅におけるコモンモード電圧Vcの変動回数が、測定タイミングに関わらず規定回数N以下となる複数の電圧ベクトルパターンを生成する電圧パターン群生成部34を有しているので、コモンモードノイズのピーク値を効果的に規定回数N以下に制御することができるようになる。 Further, in the embodiment, the control device 21 refers to the voltage vector pattern in the previous control cycle, and selects a plurality of voltage vectors for which the number of fluctuations of the common mode voltage Vc in the measurement bandwidth is equal to or less than the prescribed number of times N regardless of the measurement timing. Since the voltage pattern group generation unit 34 that generates patterns is included, the peak value of common mode noise can be effectively controlled to be equal to or less than the prescribed number of times N.
 この場合、実施例の電圧パターン群生成部34は、測定帯域幅よりもスイッチング周波数が大きい場合、一制御周期において偶数電圧ベクトルV2、V4,V6の次に偶数電圧ベクトルV2、V4、V6、又は、奇数電圧ベクトルV1、V3、V5の次に奇数電圧ベクトルV1、V3、V5を出力することにより、異なる相の上下アームスイッチング素子18A~18Fを同時に互いに逆極性にスイッチングさせる電圧ベクトルパターンを生成し、コモンモード電圧Vcの変動回数を規定回数N以下としており、更に、一制御周期における各相のスイッチング回数が所定の制限回数M以下となる制約条件を加えて複数の電圧ベクトルパターンを生成するようにしているので、スイッチング周波数がインバータ回路28を構成するスイッチング素子(半導体)の定格スイッチング周波数を超える不都合も防止することができるようになる。 In this case, when the switching frequency is larger than the measurement bandwidth, the voltage pattern group generation unit 34 of the embodiment generates an even voltage vector V2, V4, V6, or By outputting odd voltage vectors V1, V3, and V5 next to odd voltage vectors V1, V3, and V5, a voltage vector pattern is generated that simultaneously switches the upper and lower arm switching elements 18A to 18F of different phases to mutually opposite polarities. , the number of fluctuations of the common mode voltage Vc is set to be equal to or less than a specified number of times N, and a constraint condition is added that the number of switching times of each phase in one control period is equal to or less than a predetermined limited number of times M, so that a plurality of voltage vector patterns are generated. Therefore, it is possible to prevent the inconvenience of the switching frequency exceeding the rated switching frequency of the switching element (semiconductor) constituting the inverter circuit 28.
 更に、実施例では制御装置21が、電流指令値(d軸電流指令値id ref、q軸電流指令値iq ref)を算出するdq軸電流指令演算部33と、電圧パターン群生成部34が生成した各電圧ベクトルパターンの電流予測値(d軸電流id、q軸電流iq)を算出するdq軸電流予測演算部35と、電圧パターン群生成部34において生成された各電圧ベクトルパターンのなかから、電流指令値と電流予測値との誤差が最小となる電圧ベクトルパターンを選択する最適電圧パターン選択部36を有しているので、電流応答を考慮しながらコモンモードノイズのアベレージ値を抑制することができるようになる。また、全運転範囲において電流歪みも抑制することができるので、騒音も励起され難くなり、実施例の如く負荷としてモータ8を駆動する場合に極めて有効なものとなる。 Furthermore, in the embodiment, the control device 21 includes a dq-axis current command calculation unit 33 that calculates current command values (d-axis current command value i d ref , q-axis current command value i q ref ), and a voltage pattern group generation unit 34 . The dq-axis current prediction calculation unit 35 calculates the current predicted value (d-axis current i d , q-axis current i q ) of each voltage vector pattern generated by the voltage vector pattern generated by the voltage pattern group generation unit 34. Since it has an optimal voltage pattern selection unit 36 that selects the voltage vector pattern that minimizes the error between the current command value and the current predicted value from among the be able to suppress it. In addition, since current distortion can be suppressed over the entire operating range, noise is less likely to be excited, which is extremely effective when driving the motor 8 as a load as in the embodiment.
 この場合、実施例では最適電圧パターン選択部36が、コモンモード電圧Vcの変動回数と、電流指令値と電流予測値との誤差(電流誤差)に基づき、最適電圧ベクトルパターンを選択するようにしているので、コモンモードノイズVcの抑制と電流応答の向上の双方を円滑に実現することができるようになる。 In this case, in the embodiment, the optimal voltage pattern selection unit 36 selects the optimal voltage vector pattern based on the number of fluctuations in the common mode voltage Vc and the error (current error) between the current command value and the current predicted value. Therefore, it becomes possible to smoothly realize both suppression of common mode noise Vc and improvement of current response.
 また、実施例では最適電圧パターン選択部36が、コモンモード電圧Vcの変動回数の優先度を、電流指令値と電流予測値との誤差(電流誤差)よりも高くして、最適電圧ベクトルパターンを選択するようにしているので、コモンモード電圧Vcの変動を確実に抑制しながら、電流応答の良い最適電圧ベクトルパターンを選択することができるようになる。 Further, in the embodiment, the optimum voltage pattern selection unit 36 sets the priority of the number of fluctuations of the common mode voltage Vc higher than the error (current error) between the current command value and the current predicted value, and selects the optimum voltage vector pattern. Since the selection is made, it is possible to select an optimal voltage vector pattern with good current response while reliably suppressing fluctuations in the common mode voltage Vc.
 尚、実施例で示した各数値はそれに限定されるものではない。また、実施例では電動圧縮機のモータ(負荷)の駆動を例に説明したが、それに限らず、電動圧縮機のモータ以外のモータを駆動する場合も有効である。また、請求項9以外の発明では、インバータにより直流電圧を交流電圧に変換して負荷に印加する各種電力変換装置に本発明は適用可能である。 Note that the numerical values shown in the examples are not limited thereto. Furthermore, although the embodiment has been described using the example of driving the motor (load) of an electric compressor, the present invention is not limited thereto, and is also effective when driving a motor other than the motor of the electric compressor. Further, in inventions other than claim 9, the present invention can be applied to various power conversion devices that convert DC voltage to AC voltage using an inverter and apply it to a load.
 1 電力変換装置
 8 モータ
 18A~18F 上下アームスイッチング素子
 19U U相インバータ
 19V V相インバータ
 19W W相インバータ
 21 制御装置
 28 インバータ回路
 33 dq軸電流指令演算部(電流指令演算部)
 34 電圧パターン群生成部
 35 dq軸電流予測演算部(電流予測演算部)
 36 最適電圧パターン選択部
 37 ゲートドライバ
1 Power converter 8 Motor 18A to 18F Upper and lower arm switching elements 19U U-phase inverter 19V V-phase inverter 19W W-phase inverter 21 Control device 28 Inverter circuit 33 dq-axis current command calculation unit (current command calculation unit)
34 Voltage pattern group generation unit 35 dq-axis current prediction calculation unit (current prediction calculation unit)
36 Optimal voltage pattern selection section 37 Gate driver

Claims (9)

  1.  直流電圧を交流電圧に変換する電力変換装置において、
     各相の上下アームスイッチング素子の接続点における相電圧を負荷に印加するインバータ回路と、
     前記各上下アームスイッチング素子のスイッチングを制御する制御装置を備え、
     該制御装置は、所定の測定帯域幅におけるコモンモード電圧の変動回数が、測定タイミングに関わらず、所定の規定回数N(Nは1以上の整数)以下となるように、前記上下アームスイッチング素子をスイッチング制御することを特徴とする電力変換装置。
    In a power conversion device that converts DC voltage to AC voltage,
    an inverter circuit that applies the phase voltage at the connection point of the upper and lower arm switching elements of each phase to the load;
    comprising a control device that controls switching of each of the upper and lower arm switching elements,
    The control device controls the upper and lower arm switching elements so that the number of fluctuations of the common mode voltage in a predetermined measurement bandwidth is equal to or less than a predetermined number of times N (N is an integer of 1 or more) regardless of the measurement timing. A power conversion device characterized by switching control.
  2.  前記制御装置は、異なる相の前記上下アームスイッチング素子を同時に互いに逆極性にスイッチングさせることにより、コモンモード電圧の変動回数を前記規定回数N以下とすることを特徴とする請求項1に記載の電力変換装置。 The power supply according to claim 1, wherein the control device makes the number of fluctuations of the common mode voltage equal to or less than the prescribed number of times N by simultaneously switching the upper and lower arm switching elements of different phases to mutually opposite polarities. conversion device.
  3.  前記制御装置は、前回の制御周期における電圧ベクトルパターンを参照し、前記測定帯域幅におけるコモンモード電圧の変動回数が、測定タイミングに関わらず前記規定回数N以下となる複数の電圧ベクトルパターンを生成する電圧パターン群生成部を有することを特徴とする請求項1に記載の電力変換装置。 The control device refers to voltage vector patterns in the previous control cycle and generates a plurality of voltage vector patterns in which the number of fluctuations of the common mode voltage in the measurement bandwidth is equal to or less than the specified number of times N regardless of the measurement timing. The power conversion device according to claim 1, further comprising a voltage pattern group generation section.
  4.  前記電圧パターン群生成部は、前記測定帯域幅よりもスイッチング周波数が大きい場合、一制御周期において偶数電圧ベクトルの次に偶数電圧ベクトル、又は、奇数電圧ベクトルの次に奇数電圧ベクトルを出力することにより、異なる相の前記上下アームスイッチング素子を同時に互いに逆極性にスイッチングさせる電圧ベクトルパターンを生成し、コモンモード電圧の変動回数を前記規定回数N以下とすることを特徴とする請求項3に記載の電力変換装置。 When the switching frequency is larger than the measurement bandwidth, the voltage pattern group generation section outputs an even voltage vector after an even voltage vector or an odd voltage vector after an odd voltage vector in one control period. , generating a voltage vector pattern that simultaneously switches the upper and lower arm switching elements of different phases to mutually opposite polarities, and making the number of fluctuations of the common mode voltage equal to or less than the specified number of times N. conversion device.
  5.  前記電圧パターン群生成部は、一制御周期における各相のスイッチング回数が所定の制限回数以下となる制約条件を加えて前記複数の電圧ベクトルパターンを生成することを特徴とする請求項3又は請求項4に記載の電力変換装置。 3. The voltage pattern group generation unit generates the plurality of voltage vector patterns by adding a constraint condition such that the number of switching times of each phase in one control period is equal to or less than a predetermined limit number of times. 4. The power conversion device according to 4.
  6.  前記制御装置は、
     電流指令値を算出する電流指令演算部と、
     前記電圧パターン群生成部が生成した各電圧ベクトルパターンの電流予測値を算出する電流予測演算部と、
     前記電圧パターン群生成部において生成された各電圧ベクトルパターンのなかから、前記電流指令値と前記電流予測値との誤差が最小となる電圧ベクトルパターンを選択する最適電圧パターン選択部を有することを特徴とする請求項3又は請求項4に記載の電力変換装置。
    The control device includes:
    a current command calculation unit that calculates a current command value;
    a current prediction calculation unit that calculates a current predicted value of each voltage vector pattern generated by the voltage pattern group generation unit;
    It is characterized by comprising an optimum voltage pattern selection unit that selects a voltage vector pattern that minimizes the error between the current command value and the current predicted value from among the voltage vector patterns generated in the voltage pattern group generation unit. The power conversion device according to claim 3 or claim 4.
  7.  前記インバータ回路は、各相の前記上下アームスイッチング素子の接続点における相電圧をモータに印加して駆動することを特徴とする請求項6に記載の電力変換装置。 The power conversion device according to claim 6, wherein the inverter circuit drives the motor by applying a phase voltage at a connection point of the upper and lower arm switching elements of each phase to the motor.
  8.  前記最適電圧パターン選択部は、前記コモンモード電圧の変動回数と、前記電流指令値と前記電流予測値との誤差に基づき、最適な電圧ベクトルパターンを選択することを特徴とする請求項6に記載の電力変換装置。 7. The optimal voltage pattern selection unit selects the optimal voltage vector pattern based on the number of fluctuations of the common mode voltage and an error between the current command value and the predicted current value. power converter.
  9.  前記最適電圧パターン選択部は、前記コモンモード電圧の変動回数の優先度を、前記電流指令値と前記電流予測値との誤差よりも高くして、前記最適な電圧ベクトルパターンを選択することを特徴とする請求項8に記載の電力変換装置。 The optimum voltage pattern selection unit selects the optimum voltage vector pattern by giving a higher priority to the number of fluctuations of the common mode voltage than the error between the current command value and the predicted current value. The power conversion device according to claim 8.
PCT/JP2023/005386 2022-03-18 2023-02-16 Electric power conversion device WO2023176282A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022044526A JP2023138042A (en) 2022-03-18 2022-03-18 Power conversion device
JP2022-044526 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023176282A1 true WO2023176282A1 (en) 2023-09-21

Family

ID=88022938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005386 WO2023176282A1 (en) 2022-03-18 2023-02-16 Electric power conversion device

Country Status (2)

Country Link
JP (1) JP2023138042A (en)
WO (1) WO2023176282A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288111A (en) * 2005-04-01 2006-10-19 Mitsubishi Electric Corp Inverter apparatus
JP2009290938A (en) * 2008-05-27 2009-12-10 Fuji Electric Holdings Co Ltd Inverter apparatus and method of measuring its noise
US20190131868A1 (en) * 2017-10-30 2019-05-02 University Of Florida Research Foundation, Inc. EMI Energy Mitigation
JP2022175053A (en) * 2021-05-12 2022-11-25 株式会社日立製作所 Inverter control device, power conversion apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288111A (en) * 2005-04-01 2006-10-19 Mitsubishi Electric Corp Inverter apparatus
JP2009290938A (en) * 2008-05-27 2009-12-10 Fuji Electric Holdings Co Ltd Inverter apparatus and method of measuring its noise
US20190131868A1 (en) * 2017-10-30 2019-05-02 University Of Florida Research Foundation, Inc. EMI Energy Mitigation
JP2022175053A (en) * 2021-05-12 2022-11-25 株式会社日立製作所 Inverter control device, power conversion apparatus

Also Published As

Publication number Publication date
JP2023138042A (en) 2023-09-29

Similar Documents

Publication Publication Date Title
US8232753B2 (en) Control device for electric motor drive apparatus
US7075267B1 (en) Space vector-based current controlled PWM inverter for motor drives
US7898197B2 (en) Motor control device
US7612522B2 (en) Motor drive control with a single current sensor using space vector technique
JP5122505B2 (en) Power conversion apparatus and control method thereof
US8223521B2 (en) Inverter device
US9130481B2 (en) Power converting appartatus
US20110133678A1 (en) Motor control device, motor drive system and inverter control device
JP2011061950A (en) Power conversion apparatus
Sanila Direct Torque Control of induction motor with constant switching frequency
WO2023176282A1 (en) Electric power conversion device
WO2020171110A1 (en) Inverter device
WO2008115579A1 (en) Audible noise reduction for single current shunt platform
JP2018148689A (en) Power converter control device
JP2020031485A (en) Power converter
JP4143918B2 (en) Two-phase modulation control type inverter device
CN112803858A (en) Improved current hysteresis control method of permanent magnet fault-tolerant motor based on H-bridge inverter
KR20210081057A (en) Motor driving apparatus and home appliance including the same
WO2023136340A1 (en) Power conversion device
JP7286018B2 (en) AC rotary electric machine control device and electric power steering device
KR20140090471A (en) Apparatus for driving motor
US11327116B2 (en) Pulse pattern generation device
US11658596B2 (en) Motor control device and air conditioner
KR20190051334A (en) Power converting apparatus
JP7182478B2 (en) power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770242

Country of ref document: EP

Kind code of ref document: A1