WO2023176174A1 - Analysis system and object analysis method - Google Patents

Analysis system and object analysis method Download PDF

Info

Publication number
WO2023176174A1
WO2023176174A1 PCT/JP2023/002896 JP2023002896W WO2023176174A1 WO 2023176174 A1 WO2023176174 A1 WO 2023176174A1 JP 2023002896 W JP2023002896 W JP 2023002896W WO 2023176174 A1 WO2023176174 A1 WO 2023176174A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
control material
emission
luminescence
emission control
Prior art date
Application number
PCT/JP2023/002896
Other languages
French (fr)
Japanese (ja)
Inventor
昭俊 野▲崎▼
紘明 剣持
俊平 一杉
裕一 竹内
真一郎 斉藤
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2023176174A1 publication Critical patent/WO2023176174A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to an analysis system and an object analysis method.
  • fluorescence analysis and fluorescence imaging which evaluates emission spectra, in addition to "wavelength", which has traditionally been widely used as an evaluation axis, "time” has been newly added as an evaluation axis, resulting in a quantitatively and qualitatively excellent multi-purpose method.
  • This realizes dimensional data acquisition.
  • This is intended to overcome the current saturation of data acquisition technology and provide analytical data that can maximize the benefits of advances in information technology such as AI. It is related to the various manufacturing and processing industries that are currently in operation, and related or incidental quality assurance, inspection, and analysis, and also includes the status of substances with respect to raw materials, manufacturing traceability, ID, etc.
  • This invention aims to be applied to describing, recording, and evaluating information with high sensitivity.
  • Fluorescence is an example of light emitted from a substance. Fluorescence is light that is generated when electrons in a stable energy state (ground state) are temporarily brought into an excited state by irradiation with light, and then the excited electrons move to the ground state. The fluorescence usually occurs only for a short period of time, such as a few nanoseconds or a few picoseconds.
  • the lifetime of the fluorescence emitted by various substances changes depending on the type of substance, the environment in which the substance is placed, and the transition process.
  • fluorescence lifetime observation is performed as a method for evaluating the state of objects in physical property research of organic materials, solar cells, photocatalysts, biochemistry, etc.
  • an object or a fluorescent material that labels the object is irradiated with excitation light, and the lifetime of the fluorescence (so-called fluorescence lifetime) is measured.
  • the fluorescence lifetime is the time when the fluorescence intensity at the fluorescence peak wavelength becomes 1/e with respect to its maximum value.
  • the above-mentioned fluorescence lifetime measurement is performed as one method for observing protein interactions.
  • a living tissue to be observed is irradiated with specific excitation light, and the lifetime of fluorescence unique to the living tissue is measured.
  • Non-Patent Document 1 describes that the fluorescence lifetime of granules derived from a specific fluorescent protein (EGFP) and tubor protein is measured. This document states that the fluorescence lifetime of cells placed under stress decreases.
  • EGFP specific fluorescent protein
  • Patent Document 1 describes a method for measuring phosphorylation activity by binding an enzyme to a substrate labeled with a fluorescent substance in the presence of a phosphate donor and comparing the fluorescence intensity and fluorescence lifetime before and after binding the enzyme. is listed.
  • Non-Patent Document 1 and Patent Document 1 light of all wavelengths emitted by a substance is collectively recognized as one light, and changes in the intensity are observed. Therefore, even if it is possible to recognize that the state of the object has changed from the standard state, it is difficult to analyze what is causing the state change.
  • the luminescence time and the like depend on the type of object, etc., and it is not intended to actively change the luminescence wavelength or luminescence time for observation.
  • an object emits autofluorescence it may be difficult to distinguish between the autofluorescence and the fluorescence emitted by a fluorescent substance. Therefore, there has been a need to provide a method that allows more detailed analysis.
  • fluorescent dyes that control the "wavelength” to facilitate the acquisition of fluorescence data.
  • fluorescent labels that emit fluorescence at different “wavelengths” in the near-ultraviolet-visible-near-infrared range
  • fluorescent probes whose fluorescence "wavelength” and fluorescence intensity change depending on the presence of a specific substance.
  • the present invention solves the above-mentioned problems by acquiring quantitatively and qualitatively superior multidimensional data using a simple method, and by utilizing informatization technology, the object can be advantageous in acquiring new knowledge.
  • the purpose is to provide methods and systems for analyzing objects.
  • the present invention proposes multidimensionalization using the evaluation axis of "time.”
  • time for example, Non-Patent Document 1
  • these techniques observe monotonically decaying fluorescence, and are based on "wavelength” x "time”. It was not a technology to obtain multidimensional data.
  • the present invention realizes quantitatively and qualitatively superior data acquisition by multidimensionalizing "wavelength” x "time.”
  • the present invention further proposes an ⁇ analysis/imaging method using fluorescence whose emission spectrum fluctuates over time'' as a method for improving the ⁇ quality'' of multidimensional data of ⁇ wavelength'' x ⁇ time.''
  • a new "luminescent material” has been developed as a specific means for realizing the above analysis method.
  • the above-mentioned “fluorescence whose emission spectrum fluctuates over time” can be realized.
  • the use of this luminescent dye has the advantage that data can be acquired with a simpler configuration (conventional measuring equipment) compared to ordinary fluorescent dyes that exhibit short-lived and monotonically decaying fluorescent dyes.
  • wavelength here refers to a specific wavelength range (for example, 400 nm to 700 nm), or may also refer to a specific wavelength (for example, 820 nm).
  • an analysis system that reflects one aspect of the present invention includes a light source that emits light of a predetermined wavelength, a light source that can interact with an object, and that emits light upon receiving light from the light source.
  • the light emission control material has an imaging unit that acquires changes over time in the light emission state of the control material, and an analysis unit that analyzes the state of the object based on the change over time in the emission spectrum of the light emission state, and the light emission control material has a light emission lifespan. and/or the emission spectrum changes over time.
  • a method for analyzing a target includes a method for analyzing a target, and a light emission control material that can interact with the target and emits light upon receiving light of a predetermined wavelength, in contact with the target.
  • a step of irradiating the light emission control material with light a step of obtaining a change over time in the light emission state of the light emission control material that has received the light, and a step of analyzing the state of the object from the change over time in the emission spectrum of the light emission state.
  • the luminescence control material has a luminescence lifetime that changes and/or a luminescence spectrum that changes over time.
  • FIG. 1 is a flowchart illustrating an example of a method for analyzing an object according to an embodiment of the present invention.
  • FIG. 2A shows an emission spectrum, which is one of the indicators of the luminescent state, when light with a wavelength of 380 nm is irradiated on luminescent material 1 and luminescent material 2
  • FIG. 2 is a graph showing changes over time in the light intensity of the emission peak wavelength when irradiating the light emitting material 2 and the light emitting material 2, respectively.
  • FIG. 3 is a graph showing temporal fluctuations in the emission spectrum when the emission control material including the luminescent material 1 and the luminescent material 2 in FIG. 2 is irradiated with light having a wavelength of 380 nm.
  • FIG. 2A shows an emission spectrum, which is one of the indicators of the luminescent state, when light with a wavelength of 380 nm is irradiated on luminescent material 1 and luminescent material 2
  • FIG. 2 is a graph showing changes over time
  • FIG. 4 is a diagram showing changes in the color of light emitted by the light emission control material shown in FIG. 3.
  • FIG. 5 is a flowchart showing an example of a method for selecting a light emission control material.
  • FIG. 6 is a graph schematically showing the relationship between luminescence intensity and time when two types of materials with different luminescence lifetimes are used.
  • FIG. 7 is a schematic diagram showing an example of the configuration of an analysis system according to an embodiment of the present invention.
  • FIG. 8 is a diagram in which the chromaticity of the data image acquired in Example 2 is measured and the chromaticity is expressed in a chromaticity diagram for each measurement time.
  • FIG. 9 is a diagram in which the chromaticity of the data image acquired in Example 3 is measured and the chromaticity is expressed in a chromaticity diagram for each measurement time.
  • Analysis Method A method for analyzing an object according to an embodiment of the present invention will be described first, and then an analysis system that can be used in the analysis method will be described.
  • the light emission control material is irradiated with light while the target object and the light emission control material are in contact (S11, hereinafter also referred to as “light irradiation step”). Then, the change over time in the light emission state (so-called emission spectrum, etc.) emitted by the emission control material is acquired (S12, hereinafter also referred to as “data acquisition step”), and the state of the object is analyzed from the change over time in the emission spectrum. (S13, hereinafter also referred to as "analysis step”).
  • S11 light irradiation step
  • the target object and the emission control material are brought into contact with each other, and the object (especially the emission control material) is irradiated with light (this refers to irradiation with light having a so-called specific excitation spectrum).
  • the method of contact between the object and the emission control material is appropriately selected depending on the shape, condition, etc. of the object and the emission control material. For example, when both the target object and the emission control material are fluids such as liquids or particles, they may be mixed and brought into contact with each other.
  • the molded object containing one may be applied with a liquid containing the object (object) or immersed in a liquid containing the other object.
  • the "target object” in this specification may be either an organic substance or an inorganic substance, for example, it may be a natural substance such as a component derived from a living body, or it may be an artificially synthesized substance. good. Furthermore, it may be a substance with a known molecular structure or a substance with an unknown molecular structure. Further, the target object may be a single compound or a mixture of multiple compounds.
  • the target object may be brought into contact with the emission control material, but a composition containing the target object and other components (for example, a solvent, impurities, etc.) may be brought into contact with the emission control material.
  • a composition containing the target object and other components for example, a solvent, impurities, etc.
  • emission control material refers to a material that emits light (emits an emission spectrum) upon receiving light of a predetermined wavelength (excitation spectrum), and whose emission spectrum changes upon interaction with an object. be.
  • emission control material may be a material whose luminescence lifetime changes depending on changes in the surrounding environment, changes in the object itself, or differences in objects, and/or whose emission spectrum changes over time.
  • the type of light emitted by the light emission control material upon receiving light of a predetermined wavelength is not particularly limited, and may be either fluorescence or phosphorescence.
  • the emission spectrum changes due to interaction with the target object means that the emission control material changes due to changes in the target object itself or other changes (for example, changes in the structure, concentration, dispersion state, etc. of the target object). This refers to changes in the lifespan and emission spectrum of emitted light.
  • the "emission lifetime” is the time during which the emission intensity at the emission peak wavelength becomes 1/e of its maximum value.
  • a substance whose luminescence lifetime changes is used as a luminescence control material, by measuring changes in light intensity over a certain period of time, it becomes possible to analyze the state of the object in detail. Note that two or more kinds of substances whose luminescence lifetimes change may be combined and used as a luminescence control material.
  • the emission spectrum changes over time means that the waveform of the emission spectrum changes depending on time when the emission spectrum is observed at regular intervals.
  • a light emission control material can be obtained, for example, by combining two or more types of light emitting materials that have different maximum emission wavelengths and different light emission lifetimes.
  • the number of luminescent materials contained in the luminescence control material is preferably 2 or more and 5 or less, more preferably 2 or more and 3 or less. However, if there is a material whose emission spectrum waveform changes over time, this may be used as the emission control material.
  • the luminescence control material contains luminescent material 1 (anthracene derivative) and luminescent material 2 (perylene bisimide derivative) at a ratio of 10:1 (mass ratio).
  • FIG. 2A shows emission spectra when luminescent material 1 and luminescent material 2 are each irradiated with light having a wavelength of 380 nm.
  • FIG. 2A shows emission spectra when luminescent material 1 and luminescent material 2 are each irradiated with light having a wavelength of 380 nm.
  • FIG. 1 anthracene derivative
  • luminescent material 2 perylene bisimide derivative
  • the luminescent lifetime of luminescent material 1 is 50 nanoseconds, and the luminescent lifetime of luminescent material 2 is 200 nanoseconds.
  • FIG. 3 shows changes in the emission spectrum when a light emission control material containing such luminescent material 1 and luminescent material 2 is irradiated with light at a wavelength of 380 nm.
  • the time in FIG. 3 indicates the number of seconds that have elapsed since the moment when the irradiation of light with a wavelength of 380 nm ended as 0.
  • the intensity of each wavelength does not uniformly decrease over time, but the amount of decrease varies depending on the wavelength. Therefore, the waveform of the emission spectrum changes over time. For example, in the emission spectrum from 0 ns to 50 ns, light with a wavelength of about 450 nm is the strongest.
  • a sample is prepared by bringing a desired object into contact with a material that is a candidate for an emission control material (hereinafter also referred to as "candidate material") (S101).
  • the candidate material is preferably a combination of a plurality of light emitting materials.
  • the sample is irradiated with pulsed laser light (S102). After irradiation with the laser beam, the emission spectrum of the sample is photographed multiple times (timings a to n in FIG.
  • the luminescent material used in the luminescence control material may be a known inorganic material that emits fluorescence, or may be an organic compound, an organometallic complex, or the like that emits fluorescence or phosphorescence.
  • organic compounds and organometallics tend to interact with target objects (molecules, ions, etc.), and their luminescence lifetime, emission wavelength, and luminous efficiency tend to change depending on the environment in which the target object exists. Therefore, it is possible to analyze not only the target object but also the environment around the target object, so it is more preferable that the luminescent material is an organic compound or an organometallic complex.
  • organic compounds and organometallic complexes in particular can have various functions (sensing properties, switching properties, absorption/emission colors, solubility, etc.) adjusted by molecular design, and are superior to inorganic compounds in terms of functional expandability. ing.
  • a thermally activated delayed fluorescent dye and a phosphorescent dye because of their long luminescence lifetime.
  • a femtosecond laser may be required to oscillate a sufficiently short pulse of excitation light during the light irradiation described below, or a femtosecond laser may be required to oscillate a sufficiently short pulse of excitation light, or the data acquisition method described below.
  • Processes may require fast gated image intensifier cameras with nanosecond time resolution.
  • the emission control material contains a thermally activated delayed fluorescent dye or a phosphorescent dye
  • a relatively low-spec optical system configuration for example, it is possible to use an LED or a semiconductor laser as a light source. This may make it possible to use general-purpose high-speed cameras with time resolution from microseconds to milliseconds.
  • a thermally activated delayed fluorescent dye or a phosphorescent dye even if the object emits autofluorescence, it becomes possible to easily distinguish it from this. Furthermore, it becomes easier to separate the light from the light source.
  • the heat-activated delayed fluorescent dye that can be used in this embodiment will be described below.
  • a part of the dye in the singlet excited state generated by photoexcitation is converted to the more stable triplet excited state by internal intersystem crossing.
  • the triplet excited state relaxes in a non-radiative process, but when the energy difference between the singlet excited state and triplet excited state is small enough to cause reverse intersystem crossing due to heat, the reverse It exhibits delayed fluorescence from the singlet excited state regenerated by intercrossing.
  • the fluorescence is referred to as thermally activated delayed fluorescence
  • the dye that emits the thermally activated delayed fluorescence is referred to as a thermally activated delayed fluorescent dye.
  • the heat-activated delayed fluorescent dye has a long luminescence lifetime compared to ordinary fluorescent dyes. Examples of heat-activated delayed fluorescent dyes include compounds represented by the following chemical formula.
  • Phosphorescence is the emission of light that occurs during the transition from the triplet excited state to the singlet ground state when a substance is excited. Compared to normal fluorescence, which originates from allowed transitions and occurs quickly, phosphorescence originates from spin-forbidden transitions, and thus has a long luminescence lifetime. In many dyes, the transition from the spin-forbidden triplet excited state to the singlet ground state is deactivated non-radiatively, and no phosphorescence is observed under room temperature conditions, but complexes of heavy elements are forbidden due to spin-orbit interactions. is relaxed and exhibits phosphorescence at room temperature. Materials exhibiting such phosphorescence are referred to herein as phosphorescent dyes. Specific examples of phosphorescent dyes include compounds represented by the following chemical formula.
  • the method of irradiating the above-mentioned object and time evaluation with light while in contact with them is not particularly limited, as long as it is a method that can irradiate light of a desired wavelength for a certain period of time.
  • the light irradiation in this step be performed only for a short time. If you continue to irradiate light from the light source even after the light emission control material starts emitting light, the light emitted from the light emission control material and the light from the light source may mix, making it difficult to analyze the target object. .
  • the light irradiation time is preferably several nanoseconds to several tens of nanoseconds. By irradiating the light for this period of time, it is possible to sufficiently excite the emission control material. Further, within this range, it is unlikely to affect the observation of light emitted by the emission control material. Furthermore, in the case of several nanoseconds or more, a relatively inexpensive laser or the like can be used.
  • the wavelength of the light irradiated in this step is appropriately selected depending on the type of emission control material, sensor sensitivity, objective lens aberration, etc., but is usually preferably 200 nm to 1700 nm, more preferably 300 to 800 nm. When the wavelength of the irradiated light is within this range, there is no need to use a special light source, and the light emission control material and the object are less likely to be affected.
  • data acquisition process In the data acquisition step S12, data (hereinafter also simply referred to as "data") representing changes over time in the emission spectrum of the emission control material that received light in the above-described light irradiation step S11 is acquired.
  • the data acquisition method is appropriately selected depending on the type of emission control material and the like. For example, images may be captured intermittently or continuously. Furthermore, the emission spectrum may be measured multiple times. Among these, a method of intermittently acquiring images is preferred.
  • the number of times the images are acquired may be two or more times.
  • the interval is not particularly limited; for example, in FIG. It may be selected as appropriate depending on the type of light, luminescence life, etc.
  • the data acquisition step of acquiring a series of data may be repeated.
  • the signal/noise ratio (SN ratio) improves according to the number of integrations N.
  • the number of times the data acquisition is repeated is preferably selected as appropriate depending on the desired signal-to-noise ratio and analysis work time.
  • the intervals at which multiple images are acquired should be determined by the luminescence lifetime of the luminescence control material (if multiple luminescent materials are used, the luminescent material with the longest luminescence lifetime)
  • the luminescence lifetime of the material is ⁇ 2l
  • the upper limit of the time for performing one data acquisition step is preferably 1 second.
  • the time for performing one data acquisition process is preferably ⁇ 1l or more.
  • the timing of performing the data acquisition step is preferably set as follows, for example, when two types of luminescent materials with different luminescent lifetimes are used.
  • FIG. 6 is a graph schematically showing the relationship between luminescence intensity and time when two types of materials with different luminescence lifetimes are used. As shown in FIG.
  • the luminescent lifetime of the material 1 with a short luminescent lifetime is ⁇ 1l
  • the time when the luminescent intensity of the luminescent material 1 becomes 0 is ⁇ 1e
  • the luminescent lifetime of the luminescent material 2 with a long luminescent lifetime is ⁇ 2l
  • the data acquisition start timing Ts is preferably ⁇ 1l ⁇ Ts ⁇ 1e
  • the end timing Te of data acquisition preferably satisfies ⁇ 1e ⁇ Te ⁇ 2e .
  • the ratio expressed by S2/S1 between the integral value S1 of the luminescent intensity of the luminescent material 1 from Ts to Te and the integral value S2 of the luminescent intensity of the luminescent material 2 from Ts to Te is large.
  • the data acquisition start timing Ts and the data acquisition end timing are set so that the numerical value becomes large.
  • the state of the object is analyzed from the data acquired in the data acquisition step S12 (data regarding changes over time in the emission spectrum of the emission control material).
  • desired states such as the structure, concentration, dispersion state, bonding state of the target object and other substances, etc. of the target object are determined from the plurality of data or continuous data acquired in the data acquisition step S12 described above. , perform the analysis.
  • the data analysis method performed in the analysis step S13 is selected as appropriate depending on the type of data acquired in the data acquisition step S12. For example, when the data is a plurality of photographs or videos, the state of the object may be analyzed by identifying the emission spectrum of the light emitted by the luminescence control material from the photographs or videos at each time. Alternatively, for example, as shown in FIG. 4, the chromaticity of the light emitted by the light emission control material may be expressed in color coordinates, and the state of the object may be analyzed from the degree of change in chromaticity.
  • a histogram of fluorescence intensity on a pixel-by-pixel basis, or to identify and display the XY coordinate position of a pixel having a value above a certain threshold (for example, display a heat map, etc.), etc.
  • Various analyzes for extracting the amount may be appropriately selected and performed.
  • data when the target is in a standard state and data when the target is in a predetermined state are acquired in advance, and these data and the data acquired in the data acquisition process described above are used.
  • the object may be analyzed by comparing the
  • analysis may be performed based on a learned model generated in advance by machine learning.
  • the state of the target object can be determined by applying the data regarding the change in the emission spectrum of the luminescence control material over time obtained in the data acquisition step S12 to the trained model. It is possible to judge (predict) from the accumulated data etc.
  • machine learning for example, a process similar to the data acquisition process S12 described above is performed multiple times. Then, multiple predictive models are constructed based on this. Then, by combining the results of the plurality of prediction models, a trained model that can predict information (for example, structure, etc.) regarding the state of the object is created.
  • the above prediction model can be constructed by performing machine learning using the features of multiple data as explanatory variables and the state of the object as the objective variable.
  • explanatory variables numerical values representing the characteristics of the data described above and numerical values calculated from them can be used.
  • objective variable can be selected as appropriate depending on the purpose of the analysis, and is not limited to the state of the object, but may be any other variable related to the object.
  • Machine learning may be supervised learning or unsupervised learning.
  • supervised learning refers to a learning method that learns the "relationship between input and output” from learning data with correct answer labels.
  • Unsupervised learning refers to a learning method that learns the "structure of a data group" from training data without correct answer labels.
  • machine learning may be reinforcement learning, deep learning, or deep reinforcement learning.
  • reinforcement learning is a learning method that learns the "optimal sequence of actions" through trial and error.
  • Deep learning is a learning method that uses large amounts of data to learn features contained in the data in a step-by-step manner. Deep reinforcement learning refers to a learning method that combines reinforcement learning and deep learning.
  • Machine learning includes, for example, linear regression (multiple regression analysis, partial least squares (PLS) regression, LASSO regression, Ridge regression, principal component regression (PCR), etc.), random forests, decision trees, support vector machines (SVM), A prediction model constructed by an analysis method selected from support vector regression (SVR), neural network, discriminant analysis, etc. can be applied.
  • linear regression multiple regression analysis, partial least squares (PLS) regression, LASSO regression, Ridge regression, principal component regression (PCR), etc.
  • PLS partial least squares
  • PCR principal component regression
  • SVM support vector machines
  • a prediction model constructed by an analysis method selected from support vector regression (SVR), neural network, discriminant analysis, etc. can be applied.
  • the above-mentioned light emission control material is used, and the change over time of the emission spectrum of the light emission control material is obtained.
  • the emission spectrum of the emission control material changes over time, it is possible to evaluate the condition of the object not only by the lifespan of the light but also by unprecedented evaluation axes such as changes in color. It is possible to analyze the state of things in detail. Furthermore, with this method, even when the object emits autofluorescence, the light emitted by the emission control material can be identified.
  • the analysis method of this embodiment it is possible to intentionally control the temporal fluctuation of the emission spectrum of light emitted by the target object and the system containing the emission control material using the emission control material. Acquire quantitatively and qualitatively excellent multidimensional data without using equipment or going through complicated processes, and use information technology such as computers and AI with the new multidimensional data mentioned above. By combining them, it becomes possible to analyze the target object in more detail.
  • the method for analyzing the object described above can be performed by the following analysis system.
  • the system that performs the above analysis method is not limited to this analysis system, and is not limited to the configuration shown below.
  • FIG. 7 shows a schematic diagram showing the configuration of the analysis system of this embodiment.
  • the analysis system 200 of this embodiment includes a light source that can interact with a target object and emits light of a predetermined wavelength to a sample 20 that includes a light emission control material that emits light upon receiving light from the light source and the target object. 21, an imaging unit 22 that acquires changes over time in the emission spectrum of the emission control material, and an analysis unit 23 that analyzes the state of the object from the changes in the emission spectrum over time.
  • the analysis system 200 also includes an optical unit 24 that guides the light emitted from the light source 21 so as to irradiate the sample 20 and guides the light emitted from the sample 20 to the imaging section 22 side; A movable stage 25 for placing the light source 21, an objective lens 26 for condensing the light emitted from the light source 21 onto the sample 20 or condensing the light emitted by the sample 20 (light emission control material), and the light emission timing of the light source 21. It further includes a control unit 27 that controls the imaging timing of the imaging unit 22 and the like. Each configuration will be explained below.
  • the sample 20 used in the analysis system 200 of this embodiment may be in a state where the luminescence control material and the object interact.
  • the light emission control material and the target object are the same as those in the above-described method for evaluating a target object.
  • the sample 20 is a plate on which a target object (aqueous solution) is impregnated with particulate luminescence control material, but the shape and state of the sample are not limited to this configuration. .
  • the light source 21 is not particularly limited as long as it can irradiate the sample with light of a desired wavelength for a desired period of time.
  • preferred light sources include picosecond diode lasers, wavelength tunable lasers, supercontinuum light sources, LED light sources, and the like. According to these light sources, the sample 20 can be irradiated with light of a predetermined wavelength only for a short time. In view of the desired signal/noise ratio (SN), it is preferable to select a light source that is sufficiently quenched before the emission control material emits light.
  • the imaging unit 22 is not particularly limited as long as it is capable of acquiring changes over time in the emission spectrum of the emission control material, and is appropriately selected according to the type of data to be acquired.
  • the imaging unit 22 may be a known CCD camera, CMOS camera, or the like that captures images of the sample 20 multiple times intermittently or continuously.
  • the analysis section 23 may be any means that can analyze the data acquired by the above-mentioned imaging section.
  • the target object may be analyzed by reading separately acquired reference data and comparing the reference data with data acquired by the imaging unit 22.
  • the analysis unit 23 also reads out the learned model from an external storage device (not shown) or internal storage means (not shown), and combines the learned model with the data acquired by the imaging unit 22. You may perform a comparison operation.
  • Such an analysis unit includes storage means such as a hard disk drive (HDD), solid state drive (SSD), and read-only memory (ROM) that store programs and data, and a central processing unit that executes programs and performs calculation processing.
  • storage means such as a hard disk drive (HDD), solid state drive (SSD), and read-only memory (ROM) that store programs and data
  • ROM read-only memory
  • a general computer general-purpose computer equipped with a device (CPU) can be used. Further, the computer may further include input means such as a keyboard and mouse, and output means such as a monitor and a printer.
  • the analysis system 200 of this embodiment includes the optical unit 24.
  • the optical unit 24 includes an excitation light filter 222 for cutting unnecessary wavelength light emitted from the light source 21, and a dichroic filter that guides the light from the light source 21 to the sample 20 side while transmitting the light emitted by the emission control material.
  • the mirror 223 or a fluorescence filter 224 that cuts unnecessary wavelengths of light from the light transmitted through the dichroic mirror 223 may be provided.
  • the optical unit 24 may further include a light source for alignment, an optical path switching element, and the like. Further, it may include a beam expander for expanding the laser spot and a diffuser plate for reducing speckles. Furthermore, in order to perform observations for purposes other than this one within the same device, it may be separately equipped with general fluorescence, polarization, or differential interference related elements, light sources suited to these uses, and the like.
  • the analysis system 200 also includes a movable stage 25 for holding the sample 20.
  • the movable stage 25 is a member for focusing the imaging section 22 on the sample 20, and is configured to be freely movable.
  • the analysis system 200 includes an objective lens 26 for condensing the light emitted from the light source 21 onto the sample 20 or condensing the light emitted by the sample 20 (light emission control material).
  • the objective lens 26 is similar to a known objective lens, and its magnification is appropriately selected.
  • the analysis system 200 further includes a control unit 27 that adjusts the timing at which the light source 21 emits light and controls the timing at which the imaging unit 22 starts and ends imaging.
  • the control unit also includes storage means such as a hard disk drive (HDD), solid state drive (SSD), and read-only memory (ROM) that store programs and data, and a central processing unit (CPU) that performs program execution and calculation processing. ) can be used.
  • HDD hard disk drive
  • SSD solid state drive
  • ROM read-only memory
  • CPU central processing unit
  • the above-mentioned light emission control material is used, and the imaging unit acquires the change over time in the light emission spectrum of the light emission control material.
  • the analysis system does not require complicated configurations or operations, and is extremely useful in various fields.
  • Multidimensionalization of acquired data is not limited to the above, and possible uses and specific examples regarding multidimensionalization of fluorescence analysis and fluorescence imaging data are listed below.
  • Fluorescence intensity plotted on a two-dimensional plane of "excitation wavelength” x "emission wavelength” is called a "fluorescence fingerprint,” and technology that uses it as a “fingerprint” to represent the unique properties of a substance is becoming common.
  • material-specific data obtained as four-dimensional data by adding the time axis to this three-dimensional data is defined as a "phosphorescent fingerprint.”
  • phosphorescent fingerprint material-specific data obtained as four-dimensional data by adding the time axis to this three-dimensional data.
  • the name uses the typical "phosphorescence”
  • this luminescence mechanism is not necessarily limited to phosphorescence.
  • the main idea is that it is not a physical object, but four-dimensional data that includes a time axis. This is the same as the currently widely recognized "fluorescent fingerprint” in which the emission mechanism is not limited to fluorescence in the narrow sense.
  • slicing along the time axis allows you to understand the temporal changes in "excitation wavelength x emission wavelength x emission intensity,” and slicing along the emission wavelength allows you to understand the temporal changes in "excitation wavelength x emission time x
  • the dependence of the emission intensity on the emission wavelength can be understood.
  • the wavelength range that can be used for efficient analysis and imaging is limited due to the absorption of visible light by hemoglobin, water scattering, and autofluorescence of biomolecules.
  • phosphorescent fingerprints it is possible to maximize the amount of information in a limited wavelength range using a new axis, the time axis, making it an analysis and imaging method with a high degree of superiority in the biological field.
  • Phosphorescent fingerprints are superior in identifying whether two samples come from the same source or not. With phosphorescent fingerprints, the amount of information per sample can be greatly increased by adding a time axis. This allows identification, which is normally possible by combining multiple measurements, to be made possible with a single measurement. For example, difference analysis is important in forensic investigation of crimes, but the use of phosphorescent fingerprints reduces the number of measurements required for identification, leading to a reduction in the time required for evidence investigation. In addition, phosphorescent fingerprint measuring devices can be lighter and more portable than analytical devices such as mass spectrometers that are often used for transfer identification analysis, and can be used as a simple analysis method in the field.
  • luminescent species include ⁇ phosphorescence'' and ⁇ thermally activated delayed fluorescence.'' It will be done. It is known that these luminescent species behave differently from normal fluorescence due to differences in the luminescence principle, and by utilizing this, it is also possible to add a further evaluation axis ( ⁇ dimension). For example, phosphorescence is a phenomenon of light emission from a triplet excited state, and it is known that this triplet excited state is deactivated by the presence of dissolved oxygen. Furthermore, it is known that the luminous efficiency and luminescent lifetime of thermally activated delayed fluorescence change depending on the temperature.
  • luminescent material 1 anthracene derivative
  • luminescent material 2 perylene bisimide derivative
  • Silica gel was added to the solution and the solvent (toluene) was distilled off to obtain a particulate luminescence control material in which luminescent materials 1 and 2 were adsorbed.
  • soft drink 1 was prepared as a target object, and a dispersion liquid in which the time evaluation material was dispersed in the target object was placed on a plate, which was designated as sample 20.
  • the analysis system 200 shown in FIG. 7 was prepared, the plate was placed on the movable stage 25, and the objective lens 26 was focused. Then, the sample 20 was irradiated with excitation light from the light source 21 . After the excitation light irradiation from the light source 21 was completed, six data images were acquired by the imaging unit 22 every 50 ns. The chromaticity of the data image acquired by the imaging unit 22 was measured and represented in a chromaticity diagram for each measurement time. The results are similar to the graph shown in FIG.
  • Example 2 A chromaticity diagram was obtained in the same manner as in Example 1, except that the type of soft drink was changed and soft drink 2 was used. The results are shown in FIG.
  • Example 3 A chromaticity diagram was obtained in the same manner as in Example 1, except that the type of soft drink was changed and soft drink 2 was used. The results are shown in FIG.
  • the analysis system and analysis method of the present invention it is possible to easily analyze a target object without going through complicated steps.
  • the analysis method and analysis system are useful in various fields. For example, in the industrial field, it can be used to control the functionality and quality of materials. It can also be used in the development of materials, etc. On the other hand, in the medical field, it can also be applied to acquiring information regarding living organisms.

Abstract

The present invention addresses the problem of providing an analysis system capable of analyzing the state of an object in detail using a simple method. This analysis system for solving the aforementioned problem includes: a light source for emitting light of a given wavelength; an imaging section for obtaining the changes-over-time of an emission spectrum of a light emission control material that is capable of interacting with an object and that receives light from the light source and emits said light; and an analysis section for analyzing the state of the object from the changes- over-time of the emission spectrum. Regarding the light emission control material, the emission spectrum changes over time and/or the emission lifetime changes.

Description

解析システム、および対象物の解析方法Analysis system and object analysis method
 本発明は、解析システムおよび対象物の解析方法に関するものである。発光スペクトル評価としての蛍光分析や蛍光イメージング分野等に関して、従来広く用いられてきた評価軸としての「波長」に加え、新たに「時間」という評価軸を加えて量的・質的に優れた多次元化データ取得を実現するものである。これは現在データ取得技術が飽和しつつあることを打開しつつ、且つAI等の情報化技術発展の恩恵を最大限に享受が出来るうる解析データを提供するという側面を担うものである。そして、現在営まれている各種製造業、加工業、それに関連または付随する品質保証、検査、分析に関わるものであり、その他、原材料や製造上のトレーサビリティーやID等に対して、物質の状態を高感度に記述、記録し、評価することへの適用を目的とした発明である。 The present invention relates to an analysis system and an object analysis method. In the field of fluorescence analysis and fluorescence imaging, which evaluates emission spectra, in addition to "wavelength", which has traditionally been widely used as an evaluation axis, "time" has been newly added as an evaluation axis, resulting in a quantitatively and qualitatively excellent multi-purpose method. This realizes dimensional data acquisition. This is intended to overcome the current saturation of data acquisition technology and provide analytical data that can maximize the benefits of advances in information technology such as AI. It is related to the various manufacturing and processing industries that are currently in operation, and related or incidental quality assurance, inspection, and analysis, and also includes the status of substances with respect to raw materials, manufacturing traceability, ID, etc. This invention aims to be applied to describing, recording, and evaluating information with high sensitivity.
 物質に特定の波長の光を照射すると、照射した波長とは異なる波長の光が当該物質から出射することがある。物質から出射する光の一例として、蛍光が挙げられる。蛍光は、光の照射によって、安定したエネルギー状態(基底状態)にあった電子が、一時的に励起状態となり、その後、励起電子が基底状態に移る際に生じる光である。当該蛍光は、通常、数ナノ秒や数ピコ秒という短時間のみ生じる。 When a substance is irradiated with light of a specific wavelength, light of a wavelength different from the irradiated wavelength may be emitted from the substance. Fluorescence is an example of light emitted from a substance. Fluorescence is light that is generated when electrons in a stable energy state (ground state) are temporarily brought into an excited state by irradiation with light, and then the excited electrons move to the ground state. The fluorescence usually occurs only for a short period of time, such as a few nanoseconds or a few picoseconds.
 ここで、各種物質が発する蛍光の寿命は、物質の種類や当該物質が置かれた環境、さらに遷移過程に依存して変化する。当該性質を利用し、有機材料、太陽電池、光触媒、生化学等の物性研究では、対象物の状態を評価する手法として、蛍光寿命観察が行われている。例えば、対象物や、対象物を標識する蛍光物質に励起光を照射し、このときの蛍光の寿命(いわゆる蛍光寿命)を計測する。そして、当該蛍光寿命に基づき、対象物がどのような状態にあるかを判定する。なお、蛍光寿命とは、蛍光ピーク波長における蛍光強度が、その最大値に対して1/eとなる時間である。 Here, the lifetime of the fluorescence emitted by various substances changes depending on the type of substance, the environment in which the substance is placed, and the transition process. Taking advantage of this property, fluorescence lifetime observation is performed as a method for evaluating the state of objects in physical property research of organic materials, solar cells, photocatalysts, biochemistry, etc. For example, an object or a fluorescent material that labels the object is irradiated with excitation light, and the lifetime of the fluorescence (so-called fluorescence lifetime) is measured. Then, based on the fluorescence lifetime, it is determined what state the object is in. Note that the fluorescence lifetime is the time when the fluorescence intensity at the fluorescence peak wavelength becomes 1/e with respect to its maximum value.
 ここで、癌細胞の臨床試験では、近年、細胞が分泌するタンパク質によって癌化が促進されることが見出され、細胞間の相互作用の仕組みを解明する研究が主流となっている。そして、タンパク質の相互作用の観察方法の一つとして、上述の蛍光寿命測定が行われている。当該方法では、観察する生体組織に特定の励起光を照射し、生体組織特有の蛍光の寿命を測定している。 In recent years, in clinical trials of cancer cells, it has been discovered that canceration is promoted by proteins secreted by cells, and research to elucidate the mechanism of interactions between cells has become mainstream. The above-mentioned fluorescence lifetime measurement is performed as one method for observing protein interactions. In this method, a living tissue to be observed is irradiated with specific excitation light, and the lifetime of fluorescence unique to the living tissue is measured.
 また、非特許文献1には、特定の蛍光タンパク質(EGFP)とtuborタンパク質とに由来する顆粒の蛍光寿命を測定することが記載されている。当該文献には、ストレス下におかれた細胞の蛍光寿命が減少する、と記載されている。 Additionally, Non-Patent Document 1 describes that the fluorescence lifetime of granules derived from a specific fluorescent protein (EGFP) and tubor protein is measured. This document states that the fluorescence lifetime of cells placed under stress decreases.
 また、特許文献1には、蛍光物質で標識した基質に、リン酸供与体の存在下、酵素を結合させ、その前後の蛍光強度および蛍光寿命を比較することで、リン酸化活性を測定する方法が記載されている。 Furthermore, Patent Document 1 describes a method for measuring phosphorylation activity by binding an enzyme to a substrate labeled with a fluorescent substance in the presence of a phosphate donor and comparing the fluorescence intensity and fluorescence lifetime before and after binding the enzyme. is listed.
特許第4615867号公報Patent No. 4615867
 しかしながら、上記非特許文献1や特許文献1に記載されている技術等では、物質が発する全ての波長の光を、まとめて1つの光と認識し、その強度の変化を観察している。そのため、対象物の状態が標準状態から変化していること等は認識できても、何に起因して状態変化が生じているか等、解析することが難しい。つまり、非特許文献1の技術等では、発光時間等が対象物の種類等に依存しており、積極的に発光波長や発光時間を変化させて観察しようとするものではない。また、対象物が自家蛍光を発する場合等には、当該自家蛍光と、蛍光物質が発する蛍光との区別が難しいこと等もある。したがって、より詳細な分析を行うことが可能な方法の提供が求められていた。 However, in the techniques described in Non-Patent Document 1 and Patent Document 1, light of all wavelengths emitted by a substance is collectively recognized as one light, and changes in the intensity are observed. Therefore, even if it is possible to recognize that the state of the object has changed from the standard state, it is difficult to analyze what is causing the state change. In other words, in the technique of Non-Patent Document 1, etc., the luminescence time and the like depend on the type of object, etc., and it is not intended to actively change the luminescence wavelength or luminescence time for observation. Furthermore, when an object emits autofluorescence, it may be difficult to distinguish between the autofluorescence and the fluorescence emitted by a fluorescent substance. Therefore, there has been a need to provide a method that allows more detailed analysis.
 これらの公知技術やデータ取得に関しての現状や課題は次のようにまとめることが出来る。 The current status and issues regarding these known technologies and data acquisition can be summarized as follows.
 蛍光を用いた分析・イメージング分野において「波長」の操作による測定技術が広く開発されてきた。例えば、生体透過性に優れる近赤外領域の「波長」を用いることで生体の深部観察を可能とする技術、対象物観察に適切な「波長」に分解することで別個の観測対象に関する情報を同時に取得する技術、励起光源の「波長」を掃引し、観測波長・強度の3次元データとして情報を取得する技術(蛍光指紋)、などがある。なお、本発明では、発光スペクトルの対象は蛍光やりん光等を含めたスペクトルとして表現している。また、「蛍光寿命」であったり、「りん光寿命」についても発光寿命として表現することとする。 In the field of analysis and imaging using fluorescence, measurement techniques based on the manipulation of "wavelength" have been widely developed. For example, a technology that enables deep observation of living organisms by using "wavelengths" in the near-infrared region that have excellent biological permeability; There are techniques that simultaneously acquire information, and techniques that sweep the "wavelength" of the excitation light source and acquire information as three-dimensional data of observation wavelength and intensity (fluorescence fingerprint). In the present invention, the target of the emission spectrum is expressed as a spectrum including fluorescence, phosphorescence, and the like. Furthermore, "fluorescence lifetime" and "phosphorescence lifetime" are also expressed as luminescence lifetime.
 蛍光データの取得を容易にするために「波長」を制御する蛍光色素の開発も盛んである。例えば、近紫外-可視-近赤外の範囲において異なる「波長」の蛍光を示す「蛍光標識」、特定の物質の存在により蛍光「波長」や蛍光強度が変化する「蛍光プローブ」などがある。 There is also active development of fluorescent dyes that control the "wavelength" to facilitate the acquisition of fluorescence data. For example, there are "fluorescent labels" that emit fluorescence at different "wavelengths" in the near-ultraviolet-visible-near-infrared range, and "fluorescent probes" whose fluorescence "wavelength" and fluorescence intensity change depending on the presence of a specific substance.
 一方、近年コンピュータやAIの発展に伴い分析技術に求められるデータの様相が変化しつつある。すなわち、大量のデータの蓄積、通信、演算が可能となったことで、より量・質に優れた複雑なデータ取得が求められてきている。これには人間が空間的に把握可能な3次元を超える多次元データも含まれる。 On the other hand, with the development of computers and AI in recent years, the aspect of data required for analysis technology is changing. In other words, as it has become possible to store, communicate, and calculate large amounts of data, there is a need for more complex data acquisition with superior quantity and quality. This includes multidimensional data that exceeds the three dimensions that humans can grasp spatially.
 上述の「波長」を操作することによるデータ取得技術は飽和しつつある。コンピュータ、AIといった情報化技術発展の恩恵を最大限に享受するためにはさらなる量的・質的に優れたデータの取得が望まれる。このためには「波長」に加えてさらに別の評価軸を加えて多次元化することが必須である。 The data acquisition technology by manipulating the above-mentioned "wavelength" is becoming saturated. In order to fully enjoy the benefits of advances in information technology such as computers and AI, it is desirable to acquire even more quantitatively and qualitatively superior data. For this purpose, it is essential to add another evaluation axis in addition to "wavelength" to make it multidimensional.
 本発明は、上記の課題に対して、簡便な方法で、量的・質的に優れた多次元化データ取得をし、情報化技術を活用することで、新たな知見獲得に優位となりうる対象物の解析方法、および解析システムの提供を目的とする。 The present invention solves the above-mentioned problems by acquiring quantitatively and qualitatively superior multidimensional data using a simple method, and by utilizing informatization technology, the object can be advantageous in acquiring new knowledge. The purpose is to provide methods and systems for analyzing objects.
 本発明の手段について説明する。
 前述の飽和しつつあるデータ取得技術に対し、本発明で提案するのが「時間」という評価軸を用いた多次元化である。
 既に「時間」として色素固有の発光寿命に着目した分析・イメージング技術は存在するものの(例えば非特許文献1)、これらは単調に減衰する蛍光を観測するものであり、「波長」×「時間」の多次元データを得る技術では無かった。本発明は「波長」×「時間」の多次元化により量的・質的に優れたデータ取得を実現するものである。
The means of the present invention will be explained.
In response to the aforementioned data acquisition technology that is becoming saturated, the present invention proposes multidimensionalization using the evaluation axis of "time."
Although there are already analysis and imaging techniques that focus on the luminescence lifetime of a dye as "time" (for example, Non-Patent Document 1), these techniques observe monotonically decaying fluorescence, and are based on "wavelength" x "time". It was not a technology to obtain multidimensional data. The present invention realizes quantitatively and qualitatively superior data acquisition by multidimensionalizing "wavelength" x "time."
 一般的な蛍光では発光寿命がナノ秒オーダーと短いため時間分解が難しく、時間軸を評価軸として用いる効果は限定的である。りん光や熱活性化遅延蛍光といった寿命が長い発光を用いることで時間分解を容易にし、時間軸を評価軸として最大限に用いることが可能となる。 Since the luminescence lifetime of general fluorescence is short on the order of nanoseconds, time resolution is difficult, and the effectiveness of using the time axis as an evaluation axis is limited. The use of long-lived luminescence, such as phosphorescence or thermally activated delayed fluorescence, facilitates time resolution and makes it possible to maximize the use of the time axis as an evaluation axis.
 単調に減衰する蛍光において「波長」×「時間」の多次元データを取得しても「蛍光寿命」という定数に関する情報しか得られず多次元化の恩恵は限定的である。
 本発明ではさらに、「波長」×「時間」の多次元化データの「質」を向上する方法として「発光スペクトルが時間変動する蛍光を用いた分析・イメージング法」を提案する。これにより従来の時間軸を用いた蛍光分析・イメージング法では蛍光強度という単純なスカラー量の時間変化しか取得できなかったのに対し、本発明の手法では発光スペクトル=色という多次元データの時間変化を取得することが可能となる。
Even if we acquire multidimensional data of "wavelength" x "time" for fluorescence that decays monotonically, we can only obtain information about the constant "fluorescence lifetime", and the benefits of multidimensionalization are limited.
The present invention further proposes an ``analysis/imaging method using fluorescence whose emission spectrum fluctuates over time'' as a method for improving the ``quality'' of multidimensional data of ``wavelength'' x ``time.'' As a result, while conventional fluorescence analysis/imaging methods using a time axis could only obtain time changes in a simple scalar quantity called fluorescence intensity, the method of the present invention can obtain time changes in multidimensional data such as emission spectrum = color. It becomes possible to obtain.
 本発明では上記分析法を実現するための具体的な手段として新たな「発光材料」を開発した。この発光材料により上記「発光スペクトルが時間変動する蛍光」が実現できる。また、この発光材料には蛍光寿命を延ばしたり、外部起因によって鋭敏な変化を示す機能を付与することも可能である。さらに、この発光色素を利用することで、短寿命・単調減衰の蛍光素呈す通常の蛍光色素と比較してより簡易な構成(従来の測定機)でデータ取得が出来ることも利点である。 In the present invention, a new "luminescent material" has been developed as a specific means for realizing the above analysis method. With this luminescent material, the above-mentioned "fluorescence whose emission spectrum fluctuates over time" can be realized. Furthermore, it is also possible to extend the fluorescence lifetime or to give this luminescent material the ability to show a sharp change due to external factors. Furthermore, the use of this luminescent dye has the advantage that data can be acquired with a simpler configuration (conventional measuring equipment) compared to ordinary fluorescent dyes that exhibit short-lived and monotonically decaying fluorescent dyes.
 なお、ここでいう「波長」とは、ある特定の波長域(例えば、400nm~700nm)のことを指し、或いは特定の波長(例えば820nm)の事であっても良い。 Note that the "wavelength" here refers to a specific wavelength range (for example, 400 nm to 700 nm), or may also refer to a specific wavelength (for example, 820 nm).
 前述のように本発明は量的・質的に優れた多次元化データ取得を実現するものである。これを実現するために、本発明の一側面を反映した解析システムは、所定の波長の光を出射する光源と、対象物と相互作用可能であり、前記光源からの光を受けて発光する発光制御材の発光状態の経時変化を取得する撮像部と、前記発光状態の発光スペクトルの経時変化から、前記対象物の状態を解析する解析部と、を有し、前記発光制御材は、発光寿命が変化する、および/または経時で発光スペクトルが変化する。 As mentioned above, the present invention realizes quantitatively and qualitatively superior multidimensional data acquisition. In order to achieve this, an analysis system that reflects one aspect of the present invention includes a light source that emits light of a predetermined wavelength, a light source that can interact with an object, and that emits light upon receiving light from the light source. The light emission control material has an imaging unit that acquires changes over time in the light emission state of the control material, and an analysis unit that analyzes the state of the object based on the change over time in the emission spectrum of the light emission state, and the light emission control material has a light emission lifespan. and/or the emission spectrum changes over time.
 本発明の一側面を反映した対象物の解析方法は、対象物、および前記対象物と相互作用可能であり、所定の波長の光を受けて発光する発光制御材を接触させた状態で、前記発光制御材に光を照射する工程と、前記光を受けた前記発光制御材の発光状態の経時変化を取得する工程と、前記発光状態の発光スペクトルの経時変化から、前記対象物の状態を解析する工程と、を含み、前記発光制御材は、発光寿命が変化する、および/または経時で発光スペクトルが変化する。 A method for analyzing a target according to one aspect of the present invention includes a method for analyzing a target, and a light emission control material that can interact with the target and emits light upon receiving light of a predetermined wavelength, in contact with the target. A step of irradiating the light emission control material with light, a step of obtaining a change over time in the light emission state of the light emission control material that has received the light, and a step of analyzing the state of the object from the change over time in the emission spectrum of the light emission state. The luminescence control material has a luminescence lifetime that changes and/or a luminescence spectrum that changes over time.
 本発明の一実施形態に係る解析システムおよび対象物の解析方法によれば、簡易な測定であっても、「波長」×「時間」といった量的・質的に優れた新たな多次元データ取得を実現する事が可能となる。そして、情報化技術の発展と共に、量的・質的に優れた新たな多次元化データとを組合せることで、従来は不可能であった対象物自体の種類判別や、対象物自体の構造変化や、対象物と発光制御材との相互作用の変化を観測する状況において活用できるものである。 According to the analysis system and object analysis method according to an embodiment of the present invention, even in simple measurements, it is possible to obtain new quantitatively and qualitatively excellent multidimensional data such as "wavelength" x "time". It becomes possible to realize. With the development of information technology, by combining new multidimensional data that is superior in quantity and quality, we can now distinguish the type of object itself, which was previously impossible, and the structure of the object itself. This can be used in situations where changes or changes in the interaction between an object and a luminescence control material are observed.
図1は、本発明の一実施形態に係る対象物の解析方法の一例を示すフローチャートである。FIG. 1 is a flowchart illustrating an example of a method for analyzing an object according to an embodiment of the present invention. 図2Aは、波長380nmの光を、発光材料1および発光材料2にそれぞれ照射したときの発光状態の指標の一つである発光スペクトルを示し、図2Bは、波長380nmの光を、発光材料1および発光材料2にそれぞれ照射したときの発光ピーク波長の光強度の経時変化を示すグラフである。FIG. 2A shows an emission spectrum, which is one of the indicators of the luminescent state, when light with a wavelength of 380 nm is irradiated on luminescent material 1 and luminescent material 2, and FIG. 2 is a graph showing changes over time in the light intensity of the emission peak wavelength when irradiating the light emitting material 2 and the light emitting material 2, respectively. 図3は、図2における発光材料1および発光材料2を含む発光制御材に波長380nmの光を照射したときの発光スペクトルの時間変動を示すグラフである。FIG. 3 is a graph showing temporal fluctuations in the emission spectrum when the emission control material including the luminescent material 1 and the luminescent material 2 in FIG. 2 is irradiated with light having a wavelength of 380 nm. 図4は、図3に示す発光制御材が発する光の色の変遷を示す図である。FIG. 4 is a diagram showing changes in the color of light emitted by the light emission control material shown in FIG. 3. 図5は、発光制御材の選定方法の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of a method for selecting a light emission control material. 図6は、発光寿命が異なる2種類の材料を用いたときの、発光強度と時間との関係を模式的に示すグラフである。FIG. 6 is a graph schematically showing the relationship between luminescence intensity and time when two types of materials with different luminescence lifetimes are used. 図7は、本発明の一実施形態に係る解析システムの構成の一例を示す概略図である。FIG. 7 is a schematic diagram showing an example of the configuration of an analysis system according to an embodiment of the present invention. 図8は、実施例2で取得したデータ画像の色度を測定し、当該色度を測定時間ごとに色度図に表した図である。FIG. 8 is a diagram in which the chromaticity of the data image acquired in Example 2 is measured and the chromaticity is expressed in a chromaticity diagram for each measurement time. 図9は、実施例3で取得したデータ画像の色度を測定し、当該色度を測定時間ごとに色度図に表した図である。FIG. 9 is a diagram in which the chromaticity of the data image acquired in Example 3 is measured and the chromaticity is expressed in a chromaticity diagram for each measurement time.
 以下、本発明について、実施形態に基づき、詳細に説明する。ただし、本発明は、これらの実施形態に限定されない。 Hereinafter, the present invention will be described in detail based on embodiments. However, the present invention is not limited to these embodiments.
 1.解析方法
 本発明の一実施形態に係る対象物の解析方法について、先に説明し、その後、当該解析方法に使用可能な解析システムを説明する。
1. Analysis Method A method for analyzing an object according to an embodiment of the present invention will be described first, and then an analysis system that can be used in the analysis method will be described.
 本実施形態では、図1のフローチャートに示すように、対象物と発光制御材とを接触させた状態で、発光制御材に光を照射する(S11、以下、「光照射工程」とも称する)。そして、当該発光制御材が発する発光状態(いわゆる発光スペクトル等)の経時変化を取得し(S12、以下、「データ取得工程」とも称する)、当該発光スペクトルの経時変化から、対象物の状態を解析する(S13、以下、「解析工程」とも称する)。以下、本実施形態の対象物の解析方法の各工程について説明する。 In this embodiment, as shown in the flowchart of FIG. 1, the light emission control material is irradiated with light while the target object and the light emission control material are in contact (S11, hereinafter also referred to as "light irradiation step"). Then, the change over time in the light emission state (so-called emission spectrum, etc.) emitted by the emission control material is acquired (S12, hereinafter also referred to as "data acquisition step"), and the state of the object is analyzed from the change over time in the emission spectrum. (S13, hereinafter also referred to as "analysis step"). Each step of the method for analyzing an object according to this embodiment will be described below.
 (光照射工程)
 光照射工程S11では、対象物と、発光制御材とを接触させた状態で、これら(特に発光制御材)に光を照射する(いわゆる特定の励起スペクトルを持った光を照射することを指す)。対象物と、発光制御材との接触方法は、対象物や発光制御材の形状、状態等に応じて適宜選択される。例えば、対象物および発光制御材がいずれも、液体や粒子等の流体である場合には、これらを混合し、接触させてもよい。一方、対象物または発光制御材のいずれか一方が、特定の形状に成形されていたり、各種成形体に固定されていたりする場合には、一方(例えば発光制御材)を含む成形物に他方(対象物)を含む液体を塗布したり、他方を含む液体に当該成形体を浸漬したりしてもよい。
(Light irradiation process)
In the light irradiation step S11, the target object and the emission control material are brought into contact with each other, and the object (especially the emission control material) is irradiated with light (this refers to irradiation with light having a so-called specific excitation spectrum). . The method of contact between the object and the emission control material is appropriately selected depending on the shape, condition, etc. of the object and the emission control material. For example, when both the target object and the emission control material are fluids such as liquids or particles, they may be mixed and brought into contact with each other. On the other hand, if either the target object or the emission control material is molded into a specific shape or fixed to various molded objects, the molded object containing one (for example, the emission control material) may The molded article may be applied with a liquid containing the object (object) or immersed in a liquid containing the other object.
 ここで、本明細書における「対象物」は、有機物、無機物のいずれであってもよく、例えば生体由来の成分等、天然の物質であってもよく、人工的に合成した物質であってもよい。さらに、分子構造が明らかな物質であってもよく、分子構造が不明な物質であってもよい。また、対象物は、単一の化合物であってもよく、複数の化合物の混合物であってもよい。 Here, the "target object" in this specification may be either an organic substance or an inorganic substance, for example, it may be a natural substance such as a component derived from a living body, or it may be an artificially synthesized substance. good. Furthermore, it may be a substance with a known molecular structure or a substance with an unknown molecular structure. Further, the target object may be a single compound or a mixture of multiple compounds.
 また、対象物のみを発光制御材と接触させてもよいが、対象物と他の成分(例えば溶媒や不純物等)とを含む組成物を、発光制御材と接触させてもよい。 Further, only the target object may be brought into contact with the emission control material, but a composition containing the target object and other components (for example, a solvent, impurities, etc.) may be brought into contact with the emission control material.
 一方、本明細書における「発光制御材」とは、所定の波長の光(励起スペクトル)を受けて発光し(発光スペクトルを発し)、対象物との相互作用によって、発光スペクトルが変化する材料である。さらに、当該「発光制御材」は、周囲の環境の変化、対象物そのものの変化や、対象物の違いによって発光寿命が変化する、および/または経時で発光スペクトルが変化する材料としても良い。当該発光制御材が、所定の波長の光を受けて発する光の種類は特に制限されず、蛍光およびりん光のいずれであってもよい。 On the other hand, the term "emission control material" as used herein refers to a material that emits light (emits an emission spectrum) upon receiving light of a predetermined wavelength (excitation spectrum), and whose emission spectrum changes upon interaction with an object. be. Further, the "emission control material" may be a material whose luminescence lifetime changes depending on changes in the surrounding environment, changes in the object itself, or differences in objects, and/or whose emission spectrum changes over time. The type of light emitted by the light emission control material upon receiving light of a predetermined wavelength is not particularly limited, and may be either fluorescence or phosphorescence.
 上記「対象物との相互作用によって、発光スペクトルが変化する」とは、対象物自体の変化やその他の変化(例えば、対象物の構造や濃度、分散状態等が変化)によって、発光制御材が発する光の寿命や発光スペクトルが変化することをいう。 The above phrase "the emission spectrum changes due to interaction with the target object" means that the emission control material changes due to changes in the target object itself or other changes (for example, changes in the structure, concentration, dispersion state, etc. of the target object). This refers to changes in the lifespan and emission spectrum of emitted light.
 上述のように、「発光寿命」とは、発光ピーク波長における発光強度が、その最大値に対して1/eとなる時間である。発光寿命が変化する物質を発光制御材として用いる場合、光の強度変化を一定時間測定することで、対象物の状態を詳細に解析することが可能となる。なお、発光寿命が変化する物質を二種以上組み合わせて、これらを発光制御材としてもよい。 As mentioned above, the "emission lifetime" is the time during which the emission intensity at the emission peak wavelength becomes 1/e of its maximum value. When a substance whose luminescence lifetime changes is used as a luminescence control material, by measuring changes in light intensity over a certain period of time, it becomes possible to analyze the state of the object in detail. Note that two or more kinds of substances whose luminescence lifetimes change may be combined and used as a luminescence control material.
 一方、「経時で発光スペクトルが変化する」とは、一定時間ごとに発光スペクトルを観察したとき、時間によって、発光スペクトルの波形が変化することをいう。このような発光制御材は、例えば、互いに最大発光波長が異なり、かつ発光寿命が異なる、二種以上の発光材料を組み合わせることで得られる。発光制御材が含む発光材料の数は、2以上5以下が好ましく、2以上3以下がより好ましい。ただし、経時で発光スペクトルの波形が変化する材料があれば、これを発光制御材として用いてもよい。 On the other hand, "the emission spectrum changes over time" means that the waveform of the emission spectrum changes depending on time when the emission spectrum is observed at regular intervals. Such a light emission control material can be obtained, for example, by combining two or more types of light emitting materials that have different maximum emission wavelengths and different light emission lifetimes. The number of luminescent materials contained in the luminescence control material is preferably 2 or more and 5 or less, more preferably 2 or more and 3 or less. However, if there is a material whose emission spectrum waveform changes over time, this may be used as the emission control material.
 本実施形態の発光制御材の経時での発光スペクトルの変化について、発光材料を二種含む発光制御材を例に説明する。当該発光制御材は、発光材料1(アントラセン誘導体)および発光材料2(ペリレンビスイミド誘導体)を10:1(質量比)で含んでいる。図2Aに、波長380nmの光を、発光材料1および発光材料2にそれぞれ照射したときの発光スペクトルを示す。また、図2Bに、波長380nmの光を発光材料1に照射したときの発光ピーク波長(波長455nm)の光強度の経時変化、および波長380nmの光を発光材料2に照射したときの、発光ピーク波長(波長600nm)の光強度の経時変化を示す。発光材料1の発光寿命は、50ナノ秒であり、発光材料2の発光寿命は200ナノ秒である。 Changes in the emission spectrum of the emission control material of this embodiment over time will be explained using an example of a emission control material containing two types of luminescent materials. The luminescence control material contains luminescent material 1 (anthracene derivative) and luminescent material 2 (perylene bisimide derivative) at a ratio of 10:1 (mass ratio). FIG. 2A shows emission spectra when luminescent material 1 and luminescent material 2 are each irradiated with light having a wavelength of 380 nm. In addition, FIG. 2B shows the change over time in the light intensity of the light emission peak wavelength (wavelength 455 nm) when light with a wavelength of 380 nm is irradiated onto the light emitting material 1, and the light emission peak when the light emitting material 2 is irradiated with light with a wavelength of 380 nm. It shows the change over time in the light intensity of the wavelength (wavelength 600 nm). The luminescent lifetime of luminescent material 1 is 50 nanoseconds, and the luminescent lifetime of luminescent material 2 is 200 nanoseconds.
 このような発光材料1および発光材料2を含む発光制御材に、波長380nmの光を照射したときの、発光スペクトルの変化を図3に示す。図3における時間は、波長380nmの光の照射が終わった瞬間を0とし、当該瞬間から経過した秒数を示している。図3に示すように、当該発光制御材では、経時で各波長の強度が一律に低減するのではなく、波長ごとに低減量が異なる。そのため、経時で発光スペクトルの波形が変化する。例えば、0ns~50nsまでの発光スペクトルでは、波長約450nmの光が最も強い。一方、100ns以降の発光スペクトルでは、波長600nmが最も強い。そして、このような発光制御材では、観察される色が経時で変化する。当該発光制御材が発する光の色度の経時変化を図4の色座標に示す。色座標中の数字は、図3の時間と対応している。つまり、このような発光制御材を用いると、光の強度変化だけではなく、色の変化等といった、これまでにない評価軸によっても、対象物の状態を解析することが可能となり、対象物の状態を詳細に解析することが可能となる。 FIG. 3 shows changes in the emission spectrum when a light emission control material containing such luminescent material 1 and luminescent material 2 is irradiated with light at a wavelength of 380 nm. The time in FIG. 3 indicates the number of seconds that have elapsed since the moment when the irradiation of light with a wavelength of 380 nm ended as 0. As shown in FIG. 3, in the light emission control material, the intensity of each wavelength does not uniformly decrease over time, but the amount of decrease varies depending on the wavelength. Therefore, the waveform of the emission spectrum changes over time. For example, in the emission spectrum from 0 ns to 50 ns, light with a wavelength of about 450 nm is the strongest. On the other hand, in the emission spectrum after 100 ns, the wavelength of 600 nm is the strongest. In such a light emission control material, the observed color changes over time. Changes over time in the chromaticity of light emitted by the light emission control material are shown in the color coordinates of FIG. 4. The numbers in the color coordinates correspond to the times in FIG. In other words, by using such a light emission control material, it becomes possible to analyze the state of an object not only by changes in light intensity but also by unprecedented evaluation axes such as changes in color. It becomes possible to analyze the state in detail.
 ここで、本実施形態において、周囲の環境によって、発光強度分布が変化する発光制御材を選定する方法の一例を、図5のフローチャートに示す。ただし、発光制御材の選定方法は当該方法に限定されない。まず、所望の対象物と、発光制御材の候補となる材料(以下、「候補材料」とも称する)とを接触させた試料を作製する(S101)。候補材料は、複数の発光材料の組み合わせが好ましい。そして、当該試料に対して、パルスレーザ光を照射する(S102)。レーザ光の照射後、複数回(図5では、タイミングa~n)に亘って試料の発光スペクトルを撮影し、画像a~nを取得する(S103)。そして、当該画像a~nを解析し、出力値を時間軸で分離できたか、すなわち経時で色が変化したか、もしくは発光スペクトルの波形が変化したか、等を判定する(S104)。出力値が時間軸で分離できなかった場合には、候補材料を変更し(S106)、同様の工程を行う。また、当該方法によって、複数の候補材料を選び出した後、これらの中から、対象物の状態変化によって出力値が変化するかを確認し(S105)、出力値が時間軸で分離でき、かつ対象物の状態変化によって出力が変化する候補材料を発光制御材として選定してもよい(S107)。 Here, in this embodiment, an example of a method for selecting a light emission control material whose light emission intensity distribution changes depending on the surrounding environment is shown in the flowchart of FIG. However, the method for selecting the emission control material is not limited to this method. First, a sample is prepared by bringing a desired object into contact with a material that is a candidate for an emission control material (hereinafter also referred to as "candidate material") (S101). The candidate material is preferably a combination of a plurality of light emitting materials. Then, the sample is irradiated with pulsed laser light (S102). After irradiation with the laser beam, the emission spectrum of the sample is photographed multiple times (timings a to n in FIG. 5) to obtain images a to n (S103). Then, the images a to n are analyzed to determine whether the output values could be separated on the time axis, that is, whether the color changed over time or the waveform of the emission spectrum changed (S104). If the output values cannot be separated on the time axis, the candidate material is changed (S106) and the same process is performed. In addition, after selecting a plurality of candidate materials using this method, it is confirmed whether the output value changes depending on the state change of the target object (S105), and if the output value can be separated on the time axis and the target material is A candidate material whose output changes depending on changes in the state of the object may be selected as the emission control material (S107).
 上記発光制御材に使用する発光材料は、蛍光を発する公知の無機材料であってもよく、蛍光やりん光等を発する有機化合物や有機金属錯体等であってもよい。これらの中でも、有機化合物や有機金属は、対象物(分子やイオン等)と相互作用しやすく、さらに対象物が存在する環境に依存して、発光寿命や発光波長、発光効率が変化しやすい。したがって、対象物だけでなく、対象物の周囲の環境も解析することが可能であるため、発光材料は、有機化合物や有機金属錯体であることがより好ましい。また、特に有機化合物や有機金属錯体は、分子設計により、様々な機能(センシング性、スイッチング性、吸収・発光色、溶解性等)を調整可能であり、無機化合物より機能拡張性の面でも優れている。 The luminescent material used in the luminescence control material may be a known inorganic material that emits fluorescence, or may be an organic compound, an organometallic complex, or the like that emits fluorescence or phosphorescence. Among these, organic compounds and organometallics tend to interact with target objects (molecules, ions, etc.), and their luminescence lifetime, emission wavelength, and luminous efficiency tend to change depending on the environment in which the target object exists. Therefore, it is possible to analyze not only the target object but also the environment around the target object, so it is more preferable that the luminescent material is an organic compound or an organometallic complex. In addition, organic compounds and organometallic complexes in particular can have various functions (sensing properties, switching properties, absorption/emission colors, solubility, etc.) adjusted by molecular design, and are superior to inorganic compounds in terms of functional expandability. ing.
 上記有機化合物や有機金属錯体の中でも、その発光寿命が長いことから、熱活性遅延蛍光色素およびりん光色素を少なくとも一種組み合わせることが好ましい。例えば、発光制御材の発光寿命が数ナノ秒である場合には、後述の光照射の際に、十分に短い励起光をパルス発振するためのフェムト秒レーザが必要になったり、後述のデータ取得工程で、ナノ秒の時間分解能を有する高速ゲートイメージインテンシファイアカメラが必要になったりすることがある。これに対し、発光制御材が熱活性化遅延蛍光色素、またはりん光色素を含むと、比較的低スペックの光学系構成を使用可能であり、例えば、光源としてLEDや半導体レーザの使用が可能になったり、マイクロ秒~ミリ秒の時間分解能を有する汎用的な高速カメラの使用が可能になったりする。また、熱活性遅延蛍光色素やりん光色素を用いることで、対象物が自家蛍光を発する場合にも、これと容易に区別することが可能となる。さらに、光源からの光との分離も容易になる。 Among the above-mentioned organic compounds and organometallic complexes, it is preferable to combine at least one of a thermally activated delayed fluorescent dye and a phosphorescent dye because of their long luminescence lifetime. For example, if the luminescence lifetime of the luminescence control material is a few nanoseconds, a femtosecond laser may be required to oscillate a sufficiently short pulse of excitation light during the light irradiation described below, or a femtosecond laser may be required to oscillate a sufficiently short pulse of excitation light, or the data acquisition method described below. Processes may require fast gated image intensifier cameras with nanosecond time resolution. On the other hand, if the emission control material contains a thermally activated delayed fluorescent dye or a phosphorescent dye, it is possible to use a relatively low-spec optical system configuration, for example, it is possible to use an LED or a semiconductor laser as a light source. This may make it possible to use general-purpose high-speed cameras with time resolution from microseconds to milliseconds. Further, by using a thermally activated delayed fluorescent dye or a phosphorescent dye, even if the object emits autofluorescence, it becomes possible to easily distinguish it from this. Furthermore, it becomes easier to separate the light from the light source.
 本実施形態で使用可能な熱活性化遅延蛍光色素について、以下説明する。一般的に、光励起により生じた一重項励起状態の色素の一部は内部項間交差によってより安定な三重項励起状態に変換される。通常の蛍光色素において三重項励起状態は無輻射過程で緩和するのに対し、熱により逆項間交差が充分起こる程度に一重項励起状態と三重項励起状態とのエネルギー差が小さい場合、逆項間交差により再び生じた一重項励起状態から遅延蛍光を呈する。本明細書では、当該蛍光を熱活性化遅延蛍光と呼び、当該熱活性化遅延蛍光を発する色素を熱活性化遅延蛍光色素と称する。当該熱活性化遅延蛍光色素は、通常の蛍光色素と比較して長い発光寿命を持つ。熱活性化遅延蛍光色素の例には、下記化学式で表される化合物が含まれる。 The heat-activated delayed fluorescent dye that can be used in this embodiment will be described below. Generally, a part of the dye in the singlet excited state generated by photoexcitation is converted to the more stable triplet excited state by internal intersystem crossing. In ordinary fluorescent dyes, the triplet excited state relaxes in a non-radiative process, but when the energy difference between the singlet excited state and triplet excited state is small enough to cause reverse intersystem crossing due to heat, the reverse It exhibits delayed fluorescence from the singlet excited state regenerated by intercrossing. In this specification, the fluorescence is referred to as thermally activated delayed fluorescence, and the dye that emits the thermally activated delayed fluorescence is referred to as a thermally activated delayed fluorescent dye. The heat-activated delayed fluorescent dye has a long luminescence lifetime compared to ordinary fluorescent dyes. Examples of heat-activated delayed fluorescent dyes include compounds represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 また、本実施形態で使用可能なりん光色素について、以下説明する。物質を励起したときに三重項励起状態から一重項基底状態への遷移の際に生じる発光をりん光と呼ぶ。通常の蛍光が許容遷移に由来し速やかに生じるのと比べ、りん光はスピン禁制遷移に由来するため発光寿命が長い。多くの色素においてスピン禁制の三重項励起状態から一重項基底状態への遷移は無輻射で失活し、室温条件下ではりん光は観測されないが、重元素の錯体はスピン-軌道相互作用により禁制が緩和され、室温下でりん光を呈する。このようなりん光を呈する材料を、本明細書では、りん光色素と称する。りん光色素の具体例には、以下の化学式で表される化合物が含まれる。
Figure JPOXMLDOC01-appb-C000002
Further, phosphorescent dyes that can be used in this embodiment will be explained below. Phosphorescence is the emission of light that occurs during the transition from the triplet excited state to the singlet ground state when a substance is excited. Compared to normal fluorescence, which originates from allowed transitions and occurs quickly, phosphorescence originates from spin-forbidden transitions, and thus has a long luminescence lifetime. In many dyes, the transition from the spin-forbidden triplet excited state to the singlet ground state is deactivated non-radiatively, and no phosphorescence is observed under room temperature conditions, but complexes of heavy elements are forbidden due to spin-orbit interactions. is relaxed and exhibits phosphorescence at room temperature. Materials exhibiting such phosphorescence are referred to herein as phosphorescent dyes. Specific examples of phosphorescent dyes include compounds represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000002
 また、上述の対象物および時間評価を接触させた状態で、これらに光を照射する方法は特に制限されず、所望の波長の光を一定時間照射可能な方法であれば、特に限定されない。 Further, the method of irradiating the above-mentioned object and time evaluation with light while in contact with them is not particularly limited, as long as it is a method that can irradiate light of a desired wavelength for a certain period of time.
 本工程における光の照射は、短時間のみ行うことが好ましい。発光制御材の発光が開始してからも、光源から光を照射し続けると、発光制御材からの発光と、光源からの光とが混合してしまい、対象物の解析が難しくなることがある。光の照射時間は、具体的には、数ナノ秒~数十ナノ秒が好ましい。当該時間光を照射することで、発光制御材を十分に励起させることが可能である。また、当該範囲であれば、発光制御材が発する光の観察に影響を及ぼし難い。さらに、数ナノ秒以上とする場合、比較的安価なレーザ等を使用することができる。 It is preferable that the light irradiation in this step be performed only for a short time. If you continue to irradiate light from the light source even after the light emission control material starts emitting light, the light emitted from the light emission control material and the light from the light source may mix, making it difficult to analyze the target object. . Specifically, the light irradiation time is preferably several nanoseconds to several tens of nanoseconds. By irradiating the light for this period of time, it is possible to sufficiently excite the emission control material. Further, within this range, it is unlikely to affect the observation of light emitted by the emission control material. Furthermore, in the case of several nanoseconds or more, a relatively inexpensive laser or the like can be used.
 本工程で照射する光の波長は、発光制御材の種類や、センサ感度、対物レンズ収差等に応じて適宜選択されるが、通常200nm~1700nmが好ましく、300~800nmがより好ましい。照射する光の波長が当該範囲であると、特殊な光源を使用する必要がなく、また発光制御材や対象物に対して影響を及ぼし難い。 The wavelength of the light irradiated in this step is appropriately selected depending on the type of emission control material, sensor sensitivity, objective lens aberration, etc., but is usually preferably 200 nm to 1700 nm, more preferably 300 to 800 nm. When the wavelength of the irradiated light is within this range, there is no need to use a special light source, and the light emission control material and the object are less likely to be affected.
 (データ取得工程)
 データ取得工程S12では、上述の光照射工程S11で光を受けた発光制御材の発光スペクトルの経時変化を表すデータ(以下、単に「データ」とも称する)を取得する。データの取得方法は、発光制御材の種類等に応じて適宜選択される。例えば断続的に画像を撮影してもよく、連続的に画像を取得してもよい。さらに、複数回発光スペクトルを測定してもよい。これらの中でも、断続的に画像を取得する方法が好ましい。
(Data acquisition process)
In the data acquisition step S12, data (hereinafter also simply referred to as "data") representing changes over time in the emission spectrum of the emission control material that received light in the above-described light irradiation step S11 is acquired. The data acquisition method is appropriately selected depending on the type of emission control material and the like. For example, images may be captured intermittently or continuously. Furthermore, the emission spectrum may be measured multiple times. Among these, a method of intermittently acquiring images is preferred.
 画像を断続的に取得する場合、画像の取得回数は、2回以上であればよい。また、その間隔は特に制限されず、例えば上述の図4(後述の実施例)等では、50ナノ秒ごとに、に6回画像を取得しているが、当該回数や間隔は、発光制御材の種類や発光寿命等に応じて適宜選択すればよい。なお、一連のデータを取得するデータ取得工程は繰り返し行ってもよい。データ取得工程を繰り返し(例えばN回)行うと、積算回数Nに応じて、シグナル/ノイズ比(SN比)が改善する。データ取得回数を繰り返し行う回数は、所望の信号雑音比や解析作業時間に応じて適宜選択することが好ましい。 When images are acquired intermittently, the number of times the images are acquired may be two or more times. In addition, the interval is not particularly limited; for example, in FIG. It may be selected as appropriate depending on the type of light, luminescence life, etc. Note that the data acquisition step of acquiring a series of data may be repeated. When the data acquisition step is repeated (for example, N times), the signal/noise ratio (SN ratio) improves according to the number of integrations N. The number of times the data acquisition is repeated is preferably selected as appropriate depending on the desired signal-to-noise ratio and analysis work time.
 また、一連のデータを取得するデータ取得工程を繰り返し行う場合、複数の画像を取得する際の間隔は、発光制御材の発光寿命(発光材料を複数使用する場合には、最も発光寿命が長い発光材料)の発光寿命をτ2lとしたとき、当該τ2lに比例する間隔で行うことが好ましい。画像の取得間隔を当該範囲に設定すると、発光制御材が発する光の経時変化を、より正確に把握できる。 In addition, when repeating the data acquisition process to acquire a series of data, the intervals at which multiple images are acquired should be determined by the luminescence lifetime of the luminescence control material (if multiple luminescent materials are used, the luminescent material with the longest luminescence lifetime) When the luminescence lifetime of the material) is τ 2l , it is preferable to carry out the process at intervals proportional to τ 2l . By setting the image acquisition interval within this range, it is possible to more accurately understand the change over time in the light emitted by the light emission control material.
 一方、一回のデータ取得工程を行う時間の上限は、1秒が好ましい。また、発光制御材の発光寿命(発光材料を複数使用する場合には、最も発光寿命が短い発光材料)の発光寿命をτ1lとしたとき、一回のデータ取得工程を行う時間(データ取得時間)は、τ1l以上であることが好ましい。τ1l以上データ取得工程を行うことで、発光制御材の経時変化を把握しやすくなり、対象物の状態をより正確に把握しやすくなる。一方、発光制御材として、上述の熱活性化遅延蛍光色素やりん光色素を用いたとしても、通常、1秒より長い発光を得ることは難しい。 On the other hand, the upper limit of the time for performing one data acquisition step is preferably 1 second. In addition, when the luminescent lifetime of the luminescent control material (if multiple luminescent materials are used, the luminescent material with the shortest luminescent lifetime) is τ 1l , the time for performing one data acquisition process (data acquisition time ) is preferably τ 1l or more. By performing the data acquisition process for τ 1l or more, it becomes easier to understand the change in the luminescence control material over time, and it becomes easier to understand the state of the object more accurately. On the other hand, even if the above-mentioned heat-activated delayed fluorescent dye or phosphorescent dye is used as a light emission control material, it is usually difficult to obtain light emission longer than 1 second.
 特に、データ取得工程を行うタイミングは、例えば発光寿命が異なる2種類の発光材料を用いる場合、以下のように設定することが好ましい。図6は、発光寿命が異なる2種類の材料を用いたときの、発光強度と時間との関係を模式的に示すグラフである。図6に示すように、発光寿命が短い材料1の発光寿命をτ1l、当該発光材料1の発光強度が0になる時間をτ1eとし、発光寿命が長い発光材料2の発光寿命をτ2l、当該発光材料2の発光強度が0になる時間をτ2eとしたとき、データ取得開始タイミングTsは、τ1l≦Ts≦τ1eであることが好ましい。一方、データ取得の終了タイミングTeは、τ1e≦Te≦τ2eが好ましい。またこのとき、TsからTeまでの発光材料1の発光強度の積分値S1と、TsからTeまでの発光材料2の発光強度の積分値S2とのS2/S1で表される比が大きいことが好ましく、当該数値が大きくなるように、データ取得開始タイミングTsおよびデータ取得終了のタイミングを設定することが好ましい。 In particular, the timing of performing the data acquisition step is preferably set as follows, for example, when two types of luminescent materials with different luminescent lifetimes are used. FIG. 6 is a graph schematically showing the relationship between luminescence intensity and time when two types of materials with different luminescence lifetimes are used. As shown in FIG. 6, the luminescent lifetime of the material 1 with a short luminescent lifetime is τ 1l , the time when the luminescent intensity of the luminescent material 1 becomes 0 is τ 1e , and the luminescent lifetime of the luminescent material 2 with a long luminescent lifetime is τ 2l When the time when the luminescence intensity of the luminescent material 2 becomes 0 is τ 2e , the data acquisition start timing Ts is preferably τ 1l ≦Ts≦τ 1e . On the other hand, the end timing Te of data acquisition preferably satisfies τ 1e ≦Te≦τ 2e . Also, at this time, the ratio expressed by S2/S1 between the integral value S1 of the luminescent intensity of the luminescent material 1 from Ts to Te and the integral value S2 of the luminescent intensity of the luminescent material 2 from Ts to Te is large. Preferably, the data acquisition start timing Ts and the data acquisition end timing are set so that the numerical value becomes large.
 (解析工程)
 解析工程S13では、データ取得工程S12で取得したデータ(発光制御材の発光スペクトルの経時変化に関するデータ)から、対象物の状態を解析する。当該解析工程S13では、上述のデータ取得工程S12で取得した複数のデータもしくは連続したデータから、対象物の構造や濃度、分散状態、対象物と他の物質との結合状態等、所望の状態について、解析を行う。
(Analysis process)
In the analysis step S13, the state of the object is analyzed from the data acquired in the data acquisition step S12 (data regarding changes over time in the emission spectrum of the emission control material). In the analysis step S13, desired states such as the structure, concentration, dispersion state, bonding state of the target object and other substances, etc. of the target object are determined from the plurality of data or continuous data acquired in the data acquisition step S12 described above. , perform the analysis.
 解析工程S13で行うデータの解析方法は、データ取得工程S12で取得したデータの種類に応じて適宜選択される。例えば、データが複数の写真や映像である場合には、当該写真や映像から、発光制御材が発する光の発光スペクトルを時間毎に特定し、対象物の状態を解析してもよい。また、例えば図4に示すように、発光制御材が発する光の色度を色座標に表し、色度の変化の度合いから、対象物の状態を解析してもよい。また例えば、画素単位で蛍光強度のヒストグラムを作成したり、ある閾値以上を有する画素のXY座標位置の特定し、表示したり(たとえばヒートマップ等を表示)する等、画像内における統計量や特徴量を抽出する様々な解析を適宜選択し実施してもよい。 The data analysis method performed in the analysis step S13 is selected as appropriate depending on the type of data acquired in the data acquisition step S12. For example, when the data is a plurality of photographs or videos, the state of the object may be analyzed by identifying the emission spectrum of the light emitted by the luminescence control material from the photographs or videos at each time. Alternatively, for example, as shown in FIG. 4, the chromaticity of the light emitted by the light emission control material may be expressed in color coordinates, and the state of the object may be analyzed from the degree of change in chromaticity. In addition, for example, it is possible to create a histogram of fluorescence intensity on a pixel-by-pixel basis, or to identify and display the XY coordinate position of a pixel having a value above a certain threshold (for example, display a heat map, etc.), etc. Various analyzes for extracting the amount may be appropriately selected and performed.
 なお、上記解析は、予め対象物の標準状態であるときのデータや、対象物が所定の状態となったときのデータを取得しておき、これらのデータと上述のデータ取得工程で取得したデータとを照らし合わせて対象物の解析を行ってもよい。 In addition, in the above analysis, data when the target is in a standard state and data when the target is in a predetermined state are acquired in advance, and these data and the data acquired in the data acquisition process described above are used. The object may be analyzed by comparing the
 また、予め機械学習で生成した学習済モデル等に基づいて解析してもよい。学習済モデルに基づいて、解析を行う場合、上述のデータ取得工程S12で得られた、発光制御材の発光スペクトルの経時変化に関するデータを学習済モデルに当てはめることで、対象物がどのような状態にあるかを、蓄積されたデータ等から判定(予測)することができる。 Alternatively, analysis may be performed based on a learned model generated in advance by machine learning. When performing analysis based on a trained model, the state of the target object can be determined by applying the data regarding the change in the emission spectrum of the luminescence control material over time obtained in the data acquisition step S12 to the trained model. It is possible to judge (predict) from the accumulated data etc.
 機械学習では、例えば上述のデータ取得工程S12と同様の工程を複数回行う。そして、これに基づいて予測モデルを複数構築する。そして、複数の予測モデルの結果を組み合わせることで、対象物の状態に関する情報(例えば、構造等)を予測可能な学習済モデルを作成する。 In machine learning, for example, a process similar to the data acquisition process S12 described above is performed multiple times. Then, multiple predictive models are constructed based on this. Then, by combining the results of the plurality of prediction models, a trained model that can predict information (for example, structure, etc.) regarding the state of the object is created.
 上記予測モデルは、対象物の状態が予め判明している場合等には、複数のデータの特徴を説明変数とし、対象物の状態を目的変数とする機械学習をそれぞれ行うことで構築可能である。説明変数としては、上述のデータの特徴を表す数値、およびそれらから計算された数値を用いることができる。一方、目的変数は、解析の目的に応じて適宜選択可能であり、対象物の状態に限らず、対象物に関連する他の何らかの変数を用いてもよい。 If the state of the object is known in advance, the above prediction model can be constructed by performing machine learning using the features of multiple data as explanatory variables and the state of the object as the objective variable. . As explanatory variables, numerical values representing the characteristics of the data described above and numerical values calculated from them can be used. On the other hand, the objective variable can be selected as appropriate depending on the purpose of the analysis, and is not limited to the state of the object, but may be any other variable related to the object.
 機械学習は、教師あり学習であってもよいし、教師なし学習であってもよい。なお、教師あり学習とは、正解ラベルのついた学習データから「入力と出力との関係」を学習する学習方法をいう。教師なし学習とは、正解ラベルのない学習データから「データ群の構造」を学習する学習方法をいう。 Machine learning may be supervised learning or unsupervised learning. Note that supervised learning refers to a learning method that learns the "relationship between input and output" from learning data with correct answer labels. Unsupervised learning refers to a learning method that learns the "structure of a data group" from training data without correct answer labels.
 また、機械学習は、強化学習、深層学習または深層強化学習であってもよい。なお、強化学習とは、試行錯誤をすることで「最適な行動系列」を学習する学習方法をいう。深層学習とは、大量のデータから、データに含まれる特徴を段階的により深く(深層で)学習する学習方法をいう。深層強化学習とは、強化学習と深層学習を組み合わせた学習方法をいう。 Additionally, machine learning may be reinforcement learning, deep learning, or deep reinforcement learning. Note that reinforcement learning is a learning method that learns the "optimal sequence of actions" through trial and error. Deep learning is a learning method that uses large amounts of data to learn features contained in the data in a step-by-step manner. Deep reinforcement learning refers to a learning method that combines reinforcement learning and deep learning.
 機械学習には、一般的な解析手法(アルゴリズム)を適用できる。機械学習には、例えば、線形回帰(重回帰分析、部分最小二乗(PLS)回帰、LASSO回帰、Ridge回帰、主成分回帰(PCR)など)、ランダムフォレスト、決定木、サポートベクターマシン(SVM)、サポートベクター回帰(SVR)、ニューラルネットワーク、判別分析等により選択される解析手法により構築された予測モデルを適用可能である。 General analysis methods (algorithms) can be applied to machine learning. Machine learning includes, for example, linear regression (multiple regression analysis, partial least squares (PLS) regression, LASSO regression, Ridge regression, principal component regression (PCR), etc.), random forests, decision trees, support vector machines (SVM), A prediction model constructed by an analysis method selected from support vector regression (SVR), neural network, discriminant analysis, etc. can be applied.
 (効果)
 前述のように、従来の蛍光寿命の測定方法等では、蛍光物質が発する全ての波長の光を、まとめて1つの光と認識し、その強度の変化を測定していた。そのため、対象物の細かい状態まで解析することは難しかった。また、対象物が自家蛍光を発する場合には、蛍光物質由来の光の特定が難しいことがあった。
(effect)
As described above, in conventional methods for measuring fluorescence lifetime, light of all wavelengths emitted by a fluorescent substance is recognized as one light, and changes in the intensity are measured. Therefore, it was difficult to analyze the detailed state of the object. Furthermore, when the object emits autofluorescence, it may be difficult to identify the light originating from the fluorescent substance.
 これに対し、本実施形態では、上述の発光制御材を使用し、発光制御材の発光スペクトルの経時変化を取得する。当該方法では、発光制御材の発光スペクトルが経時で変化するため、対象物の状態を、光の寿命だけではなく、色の変化等といった、これまでにない評価軸によっても評価可能であり、対象物の状態を詳細に解析することが可能である。また、当該方法では、対象物が自家蛍光を発する場合にも、発光制御材が発する光を識別できる。 On the other hand, in this embodiment, the above-mentioned light emission control material is used, and the change over time of the emission spectrum of the light emission control material is obtained. In this method, since the emission spectrum of the emission control material changes over time, it is possible to evaluate the condition of the object not only by the lifespan of the light but also by unprecedented evaluation axes such as changes in color. It is possible to analyze the state of things in detail. Furthermore, with this method, even when the object emits autofluorescence, the light emitted by the emission control material can be identified.
 つまり、本実施形態の解析方法によれば、発光制御材によって、当該対象物および発光制御材を含む系が発する光の発光スペクトルの時間変動を意図的に制御することが可能であり、特殊な装置を使用したり、複雑な工程を経ることなく、量的・質的に優れた多次元化データ取得を取得し、コンピュータ、AIといった情報化技術と、前述の新たな多次元化データとを組合せたりすることで、対象物をより詳細に解析することが可能となる。 In other words, according to the analysis method of this embodiment, it is possible to intentionally control the temporal fluctuation of the emission spectrum of light emitted by the target object and the system containing the emission control material using the emission control material. Acquire quantitatively and qualitatively excellent multidimensional data without using equipment or going through complicated processes, and use information technology such as computers and AI with the new multidimensional data mentioned above. By combining them, it becomes possible to analyze the target object in more detail.
 2.解析システム
 上述の対象物の解析方法は、以下の解析システムによって行うことができる。ただし、上述の解析方法を行うシステムは、当該解析システムに制限されず、下記に示す構成に限定されない。
2. Analysis System The method for analyzing the object described above can be performed by the following analysis system. However, the system that performs the above analysis method is not limited to this analysis system, and is not limited to the configuration shown below.
 本実施形態の解析システムの構成を示す概略図を図7に示す。本実施形態の解析システム200は、対象物と相互作用可能であり、光源からの光を受けて発光する発光制御材および対象物を含む試料20に対して、所定の波長の光を出射する光源21と、発光制御材の発光スペクトルの経時変化を取得する撮像部22と、当該発光スペクトルの経時変化から、対象物の状態を解析する解析部23と、を有する。また、当該解析システム200は、光源21から出射した光を試料20に照射するように、光を導いたり、試料20が出射した光を撮像部22側に導いたりする光学ユニット24や、試料20を載置するための可動ステージ25、光源21から出射した光を試料20に集光させたり、試料20(発光制御材)が発する光を集光するための対物レンズ26、光源21の発光タイミングや、撮像部22の撮像タイミング等を制御する制御部27等をさらに有する。以下、各構成について説明する。 FIG. 7 shows a schematic diagram showing the configuration of the analysis system of this embodiment. The analysis system 200 of this embodiment includes a light source that can interact with a target object and emits light of a predetermined wavelength to a sample 20 that includes a light emission control material that emits light upon receiving light from the light source and the target object. 21, an imaging unit 22 that acquires changes over time in the emission spectrum of the emission control material, and an analysis unit 23 that analyzes the state of the object from the changes in the emission spectrum over time. The analysis system 200 also includes an optical unit 24 that guides the light emitted from the light source 21 so as to irradiate the sample 20 and guides the light emitted from the sample 20 to the imaging section 22 side; A movable stage 25 for placing the light source 21, an objective lens 26 for condensing the light emitted from the light source 21 onto the sample 20 or condensing the light emitted by the sample 20 (light emission control material), and the light emission timing of the light source 21. It further includes a control unit 27 that controls the imaging timing of the imaging unit 22 and the like. Each configuration will be explained below.
 (試料)
 本実施形態の解析システム200で使用する試料20は、発光制御材および対象物が相互作用した状態であればよい。発光制御材および対象物は、上述の対象物の評価方法における発光制御材および対象物と同様である。本実施形態では、一例として、プレート上に、対象物(水溶液)に粒子状の発光制御材を含浸させたさせたものを試料20としているが、試料の形状や状態は、当該構成に限定されない。
(sample)
The sample 20 used in the analysis system 200 of this embodiment may be in a state where the luminescence control material and the object interact. The light emission control material and the target object are the same as those in the above-described method for evaluating a target object. In this embodiment, as an example, the sample 20 is a plate on which a target object (aqueous solution) is impregnated with particulate luminescence control material, but the shape and state of the sample are not limited to this configuration. .
 (光源)
 光源21は、上記試料に対して、所望の波長の光を所望の時間照射可能な手段であれば特に制限されない。好ましい光源の一例に、ピコ秒ダイオードレーザ、波長可変レーザ、スーパーコンティニュアム光源、LED光源等が含まれる。これらの光源によれば、短時間のみ、所定の波長の光を、試料20に照射することができる。所望のシグナル/ノイズ比(SN)を鑑み、上記発光制御材が発光するまでに十分に消光する光源を選定することが好ましい。
(light source)
The light source 21 is not particularly limited as long as it can irradiate the sample with light of a desired wavelength for a desired period of time. Examples of preferred light sources include picosecond diode lasers, wavelength tunable lasers, supercontinuum light sources, LED light sources, and the like. According to these light sources, the sample 20 can be irradiated with light of a predetermined wavelength only for a short time. In view of the desired signal/noise ratio (SN), it is preferable to select a light source that is sufficiently quenched before the emission control material emits light.
 (撮像部)
 撮像部22は、上記発光制御材の発光スペクトルの経時変化を取得可能な手段であれば特に制限されず、取得するデータの種類に合わせて適宜選択される。撮像部22は、複数回に亘って、試料20の画像を断続的または連続的に撮影する公知のCCDカメラ、CMOSカメラ等であってもよい。
(Imaging unit)
The imaging unit 22 is not particularly limited as long as it is capable of acquiring changes over time in the emission spectrum of the emission control material, and is appropriately selected according to the type of data to be acquired. The imaging unit 22 may be a known CCD camera, CMOS camera, or the like that captures images of the sample 20 multiple times intermittently or continuously.
 (解析部)
 解析部23は上述の撮像部で取得したデータを解析可能な手段であればよい。例えば別途取得した参照データを読み出し、当該参照データと撮像部22で取得したデータとを比較して、対象物を解析してもよい。また、当該解析部23は、学習済モデルを外部の記憶装置(図示せず)や、内部に備えた記憶手段(図示せず)から読み出し、当該学習済モデルと撮像部22で取得したデータとを比較演算してもよい。
(Analysis Department)
The analysis section 23 may be any means that can analyze the data acquired by the above-mentioned imaging section. For example, the target object may be analyzed by reading separately acquired reference data and comparing the reference data with data acquired by the imaging unit 22. The analysis unit 23 also reads out the learned model from an external storage device (not shown) or internal storage means (not shown), and combines the learned model with the data acquired by the imaging unit 22. You may perform a comparison operation.
 このような解析部としては、プログラムやデータ等を記憶するハードディスクドライブ(HDD)、ソリッドステートドライブ(SSD)、リードオンリーメモリ(ROM)等の記憶手段、プログラムの実行や計算処理等を行う中央処理装置(CPU)を備えた一般的なコンピュータ(汎用コンピュータ)を用いることができる。また、当該コンピュータは、キーボードやマウス等の入力手段、モニタやプリンタ等の出力手段をさらに有していてもよい。 Such an analysis unit includes storage means such as a hard disk drive (HDD), solid state drive (SSD), and read-only memory (ROM) that store programs and data, and a central processing unit that executes programs and performs calculation processing. A general computer (general-purpose computer) equipped with a device (CPU) can be used. Further, the computer may further include input means such as a keyboard and mouse, and output means such as a monitor and a printer.
 (その他の構成)
 上述のように、本実施形態の解析システム200は、光学ユニット24を有する。当該光学ユニット24は、光源21から出射する不要な波長の光をカットするための励起光フィルタ222、光源21からの光を試料20側に導く一方で、発光制御材が発する光は透過させるダイクロイックミラー223や、ダイクロイックミラー223を透過した光のうち、不要な波長の光をカットする蛍光フィルタ224等を備えていてもよい。なお、光学ユニット24は、図示しないが、位置合わせのための光源や、光路切替素子等をさらに有していてもよい。また、レーザスポット拡張のためのビームエキスパンダ、スペックル低減のための拡散板を有していてもよい。さらに、本目的以外の観察も同装置内で行えるよう,一般的な蛍光、偏光、または微分干渉関連素子、それら用途に合わせた光源等を別途備えていても良い。
(Other configurations)
As described above, the analysis system 200 of this embodiment includes the optical unit 24. The optical unit 24 includes an excitation light filter 222 for cutting unnecessary wavelength light emitted from the light source 21, and a dichroic filter that guides the light from the light source 21 to the sample 20 side while transmitting the light emitted by the emission control material. The mirror 223 or a fluorescence filter 224 that cuts unnecessary wavelengths of light from the light transmitted through the dichroic mirror 223 may be provided. Although not shown, the optical unit 24 may further include a light source for alignment, an optical path switching element, and the like. Further, it may include a beam expander for expanding the laser spot and a diffuser plate for reducing speckles. Furthermore, in order to perform observations for purposes other than this one within the same device, it may be separately equipped with general fluorescence, polarization, or differential interference related elements, light sources suited to these uses, and the like.
 また、解析システム200は、試料20を保持するための可動ステージ25を有する。当該可動ステージ25は、撮像部22の焦点を試料20に合わせたりするための部材であり、自在に移動可能に構成されている。 The analysis system 200 also includes a movable stage 25 for holding the sample 20. The movable stage 25 is a member for focusing the imaging section 22 on the sample 20, and is configured to be freely movable.
 さらに、解析システム200は、光源21から出射した光を試料20に集光させたり、試料20(発光制御材)が発する光を集光したりするための対物レンズ26を有する。当該対物レンズ26は、公知の対物レンズと同様であり、その倍率は適宜選択される。 Further, the analysis system 200 includes an objective lens 26 for condensing the light emitted from the light source 21 onto the sample 20 or condensing the light emitted by the sample 20 (light emission control material). The objective lens 26 is similar to a known objective lens, and its magnification is appropriately selected.
 また、解析システム200は、光源21が光を出射するタイミングを調整したり、撮像部22が撮像を開始したり終了したりするタイミングを制御する制御部27をさらに有する。当該制御部も、プログラムやデータ等を記憶するハードディスクドライブ(HDD)、ソリッドステートドライブ(SSD)、リードオンリーメモリ(ROM)等の記憶手段、プログラムの実行や計算処理等を行う中央処理装置(CPU)を備えた一般的なコンピュータ(汎用コンピュータ)を用いることができる。 The analysis system 200 further includes a control unit 27 that adjusts the timing at which the light source 21 emits light and controls the timing at which the imaging unit 22 starts and ends imaging. The control unit also includes storage means such as a hard disk drive (HDD), solid state drive (SSD), and read-only memory (ROM) that store programs and data, and a central processing unit (CPU) that performs program execution and calculation processing. ) can be used.
 (効果)
 本実施形態の解析システムでは、上述の発光制御材を使用し、撮像部によって、発光制御材の発光スペクトルの経時変化を取得する。当該システムでは、発光制御材の発光スペクトルの変化や、発光制御材が発する光の色度変化等に基づき、対象物を詳細に解析することが可能である。また、当該解析システムでは、複雑な構成や作業が必要なく、各種分野において、非常に有用である。
(effect)
In the analysis system of this embodiment, the above-mentioned light emission control material is used, and the imaging unit acquires the change over time in the light emission spectrum of the light emission control material. With this system, it is possible to analyze a target object in detail based on changes in the emission spectrum of the emission control material, changes in chromaticity of light emitted by the emission control material, and the like. Further, the analysis system does not require complicated configurations or operations, and is extremely useful in various fields.
 (その他)
 「取得データの多次元化」は上記に限定されるものではなく、蛍光分析や蛍光イメージングデータの多次元化に関して考えられる利用法、具体例を以下に挙げる。
(others)
"Multidimensionalization of acquired data" is not limited to the above, and possible uses and specific examples regarding multidimensionalization of fluorescence analysis and fluorescence imaging data are listed below.
 蛍光強度を「励起波長」×「発光波長」の2次元平面にプロットしたものを「蛍光指紋」と呼び、物質固有の性質を表す、まさに「指紋」として用いる技術が一般的になってきている。これに対し、この3次元データに時間の軸を加え4次元データとして得られる物質固有のデータを「りん光指紋」として定義する。時間軸のレンジを広げるために蛍光に対し長い発光寿命を有する発光色素を用いることが望ましいため、代表的な「りん光」を用いた命名であるが、この発光メカニズムは必ずしもりん光に限ったものでは無く、時間軸を加えた4次元データであることが主旨である。これは現在広く認知されている「蛍光指紋」において発光メカニズムが狭義の蛍光に限られないことと同一である。 Fluorescence intensity plotted on a two-dimensional plane of "excitation wavelength" x "emission wavelength" is called a "fluorescence fingerprint," and technology that uses it as a "fingerprint" to represent the unique properties of a substance is becoming common. . On the other hand, material-specific data obtained as four-dimensional data by adding the time axis to this three-dimensional data is defined as a "phosphorescent fingerprint." In order to expand the time axis range, it is desirable to use a luminescent dye with a long luminescence lifetime compared to fluorescence, so the name uses the typical "phosphorescence", but this luminescence mechanism is not necessarily limited to phosphorescence. The main idea is that it is not a physical object, but four-dimensional data that includes a time axis. This is the same as the currently widely recognized "fluorescent fingerprint" in which the emission mechanism is not limited to fluorescence in the narrow sense.
 蛍光指紋の3次元データは人間が把握可能な3次元空間に描写することができるのに対し、りん光指紋の4次元データはそのまま3次元空間に描写することはできない。ただし、このことは多次元データを演算するAIにおいては問題とならない差異である。 While the three-dimensional data of a fluorescent fingerprint can be depicted in a three-dimensional space that can be grasped by humans, the four-dimensional data of a phosphorescent fingerprint cannot be depicted directly in a three-dimensional space. However, this difference is not a problem in AI that calculates multidimensional data.
 また、もし人間がデータの意味を理解する必要がある場合にはある軸に沿ってスライスし、複数の3次元データとして示すことも有用である。このスライスする軸は目的に従い選択され、例えば時間軸でスライスすれば「励起波長×発光波長×発光強度」の時間変化を把握することができ、発光波長でスライスすれば「励起波長×発光時間×発光強度」の発光波長依存性が把握できる。 Additionally, if humans need to understand the meaning of data, it is useful to slice it along a certain axis and present it as multiple three-dimensional data. The axis for slicing is selected according to the purpose. For example, slicing along the time axis allows you to understand the temporal changes in "excitation wavelength x emission wavelength x emission intensity," and slicing along the emission wavelength allows you to understand the temporal changes in "excitation wavelength x emission time x The dependence of the emission intensity on the emission wavelength can be understood.
 ヘモグロビンなどの可視光領域の吸収、水の散乱、さらに生体分子の自家蛍光などにより効率のよい分析・イメージングに使用可能な波長領域は限られている。りん光指紋を用いることで時間軸という新たな軸により限られた波長領域での情報量を最大化でき、バイオ分野において高い優位性をもつ分析・イメージング手法となる。 The wavelength range that can be used for efficient analysis and imaging is limited due to the absorption of visible light by hemoglobin, water scattering, and autofluorescence of biomolecules. By using phosphorescent fingerprints, it is possible to maximize the amount of information in a limited wavelength range using a new axis, the time axis, making it an analysis and imaging method with a high degree of superiority in the biological field.
 また、従来バイオ分野での分析やイメージングにおいて波長軸を用いて行われてきた多色染色を、時間軸を用いて行うという応用法も可能である。限られた波長範囲での多色化には限界があったのに対し、発光色の時間変化が異なる発光制御材を用いることで実質的に無限の多色化が可能となる。 It is also possible to apply multicolor staining, which has traditionally been performed using the wavelength axis in analysis and imaging in the biofield, to using the time axis. While there was a limit to the number of colors in a limited wavelength range, by using a luminescence control material whose emission color changes over time, it is possible to have a virtually unlimited number of colors.
 2つのサンプルが同一の由来か否かを識別する異同識別においてりん光指紋は優位性を発揮する。りん光指紋では時間軸を加えることでサンプル当たりの情報量を大幅に増加させることができる。これにより通常は複数の測定を組み合わせることで可能となる識別を1度の測定で可能とし得る。たとえば犯罪の科学捜査において異同識別分析は重要であるが、りん光指紋を用いることで識別に要する測定数が抑制され、証拠捜査に必要な時間の短縮につながる。また、りん光指紋の測定装置は、異動識別分析に頻用される質量分析装置などといった分析装置と比べ軽量化・携行化が可能であり現場での簡易分析法としての活用も考えられる。 Phosphorescent fingerprints are superior in identifying whether two samples come from the same source or not. With phosphorescent fingerprints, the amount of information per sample can be greatly increased by adding a time axis. This allows identification, which is normally possible by combining multiple measurements, to be made possible with a single measurement. For example, difference analysis is important in forensic investigation of crimes, but the use of phosphorescent fingerprints reduces the number of measurements required for identification, leading to a reduction in the time required for evidence investigation. In addition, phosphorescent fingerprint measuring devices can be lighter and more portable than analytical devices such as mass spectrometers that are often used for transfer identification analysis, and can be used as a simple analysis method in the field.
 時間を新たな評価軸として活用する手段として、寿命が長い発光種を用いることの有効性を既に述べているが、具体的な発光種として「りん光」、「熱活性化遅延蛍光」が挙げられる。これらの発光種は発光原理の違いにより通常の蛍光とは異なる挙動を持つことが知られており、これを活用することで更なる評価軸(≒次元)を追加することも可能となる。例えば、りん光は三重項励起状態からの発光現象であるが、この三重項励起状態が溶存酸素の存在により失活することが知られている。また熱活性化遅延蛍光は温度によりその発光効率、発光寿命が変化することが知られている。これらの現象はその発光材料の存在する環境を知るためのセンサーとして受動的に用いることもできるが、より能動的に用いることで新たな評価軸(≒次元)として活用することができる。すなわち、酸素を吹き込む、加熱するなどの操作をしながら測定することにより「酸素濃度」や「温度」という新たな次元を持つ多次元データの取得が可能となる。 We have already discussed the effectiveness of using long-lived luminescent species as a means of utilizing time as a new evaluation axis, and specific luminescent species include ``phosphorescence'' and ``thermally activated delayed fluorescence.'' It will be done. It is known that these luminescent species behave differently from normal fluorescence due to differences in the luminescence principle, and by utilizing this, it is also possible to add a further evaluation axis (≈dimension). For example, phosphorescence is a phenomenon of light emission from a triplet excited state, and it is known that this triplet excited state is deactivated by the presence of dissolved oxygen. Furthermore, it is known that the luminous efficiency and luminescent lifetime of thermally activated delayed fluorescence change depending on the temperature. These phenomena can be used passively as sensors to know the environment in which the luminescent material exists, but by using them more actively, they can be utilized as a new evaluation axis (≒ dimension). That is, by performing measurements while performing operations such as blowing in oxygen or heating, it becomes possible to acquire multidimensional data with new dimensions such as "oxygen concentration" and "temperature."
 [実施例1]
 発光制御材として、発光材料1(アントラセン誘導体)および発光材料2(ペリレンビスイミド誘導体)を10:1(質量比)をトルエンに溶解させた。当該溶液にシリカゲルを加え、溶媒(トルエン)を留去することで発光材料1および2が吸着された粒子状の発光制御材を得た。さらに、対象物として清涼飲料水1を準備し、時間評価材を対象物に分散した分散液をプレート上に載せ、これを試料20とした。
[Example 1]
As luminescence control materials, luminescent material 1 (anthracene derivative) and luminescent material 2 (perylene bisimide derivative) were dissolved in toluene at a ratio of 10:1 (mass ratio). Silica gel was added to the solution and the solvent (toluene) was distilled off to obtain a particulate luminescence control material in which luminescent materials 1 and 2 were adsorbed. Furthermore, soft drink 1 was prepared as a target object, and a dispersion liquid in which the time evaluation material was dispersed in the target object was placed on a plate, which was designated as sample 20.
 そして、図7に示す解析システム200を準備し、当該プレートを可動ステージ25上に載置し、対物レンズ26の焦点を合わせた。そして、光源21から励起光を、試料20に照射した。そして、光源21から励起光照射終了後、撮像部22によって、50ns秒ごとに、6個のデータ画像を取得した。撮像部22で取得したデータ画像の色度を測定し、測定時間ごとに色度図に表した。当該結果は、図4に示したグラフと同様である。 Then, the analysis system 200 shown in FIG. 7 was prepared, the plate was placed on the movable stage 25, and the objective lens 26 was focused. Then, the sample 20 was irradiated with excitation light from the light source 21 . After the excitation light irradiation from the light source 21 was completed, six data images were acquired by the imaging unit 22 every 50 ns. The chromaticity of the data image acquired by the imaging unit 22 was measured and represented in a chromaticity diagram for each measurement time. The results are similar to the graph shown in FIG.
 [実施例2]
 清涼飲料水の種類を変更し、清涼飲料水2を用いた以外は、実施例1と同様に色度図を得た。結果を図8に示す。
[Example 2]
A chromaticity diagram was obtained in the same manner as in Example 1, except that the type of soft drink was changed and soft drink 2 was used. The results are shown in FIG.
 [実施例3]
 清涼飲料水の種類を変更し、清涼飲料水2を用いた以外は、実施例1と同様に色度図を得た。結果を図9に示す。
[Example 3]
A chromaticity diagram was obtained in the same manner as in Example 1, except that the type of soft drink was changed and soft drink 2 was used. The results are shown in FIG.
 本出願は、2022年3月16日出願の特願2022―041452号に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2022-041452 filed on March 16, 2022. All contents described in the application specification and drawings are incorporated herein by reference.
 本発明の解析システムおよび解析方法によれば、複雑な工程を経ることなく、対象物を容易に解析することが可能である。当該解析方法および解析システムは、様々な分野において有用である。例えば、工業分野においては、材料の機能や品質の管理に使用することが可能である。また、材料の開発等においても、利用することが可能である。一方、医療の分野においては、生体に関する情報の取得等にも適用することが可能である。 According to the analysis system and analysis method of the present invention, it is possible to easily analyze a target object without going through complicated steps. The analysis method and analysis system are useful in various fields. For example, in the industrial field, it can be used to control the functionality and quality of materials. It can also be used in the development of materials, etc. On the other hand, in the medical field, it can also be applied to acquiring information regarding living organisms.
 21 光源
 22 撮像部
 23 解析部
 24 光学ユニット
 25 可動ステージ
 26 対物レンズ
 27 制御部
 222 励起光フィルタ
 223 ダイクロイックミラー
 224 蛍光フィルタ
 

 
21 Light source 22 Imaging unit 23 Analysis unit 24 Optical unit 25 Movable stage 26 Objective lens 27 Control unit 222 Excitation light filter 223 Dichroic mirror 224 Fluorescence filter

Claims (12)

  1.  所定の波長の光を出射する光源と、
     対象物と相互作用可能であり、前記光源からの光を受けて発光する発光制御材の発光状態の経時変化を取得する撮像部と、
     前記発光状態の発光スペクトルの経時変化から、前記対象物の状態を解析する解析部と、を有し、
     前記発光制御材は、発光寿命が変化する、および/または経時で発光スペクトルが変化する、解析システム。
    a light source that emits light of a predetermined wavelength;
    an imaging unit that is capable of interacting with a target object and acquires changes over time in a light emission state of a light emission control material that emits light upon receiving light from the light source;
    an analysis unit that analyzes the state of the object based on changes over time in the emission spectrum of the light emission state;
    The luminescence control material is an analysis system in which the luminescence lifetime changes and/or the luminescence spectrum changes over time.
  2.  前記発光制御材は、二種以上の発光材料を含む、
     請求項1に記載の解析システム。
    The luminescence control material includes two or more types of luminescent materials,
    The analysis system according to claim 1.
  3.  前記発光制御材は、熱活性化遅延蛍光色素またはりん光色素を少なくとも一種含む、
     請求項1または2に記載の解析システム。
    The emission control material includes at least one type of heat-activated delayed fluorescent dye or phosphorescent dye.
    The analysis system according to claim 1 or 2.
  4.  前記二種以上の発光材料のうち、最も発光寿命が長い材料の発光寿命をτ1lとした場合に、前記撮像部の前記発光スペクトルの経時変化の取得時間が、τ1l以上である、
     請求項2に記載の解析システム。
    When the luminescent lifetime of the material with the longest luminescent lifetime among the two or more types of luminescent materials is τ 1l , the acquisition time of the temporal change in the emission spectrum of the imaging unit is τ 1l or more;
    The analysis system according to claim 2.
  5.  前記撮像部は、前記発光制御材の発光スペクトルの経時変化を連続的または断続的に取得する、
     請求項1~4のいずれか一項に記載の解析システム。
    The imaging unit continuously or intermittently acquires changes over time in the emission spectrum of the emission control material.
    The analysis system according to any one of claims 1 to 4.
  6.  前記撮像部の前記発光スペクトルの経時変化の取得時間は、1秒以内である、
     請求項1~5のいずれか一項に記載の解析システム。
    The acquisition time of the temporal change in the emission spectrum of the imaging unit is within 1 second;
    The analysis system according to any one of claims 1 to 5.
  7.  対象物、および前記対象物と相互作用可能であり、所定の波長の光を受けて発光する発光制御材を接触させた状態で、前記発光制御材に光を照射する工程と、
     前記光を受けた前記発光制御材の発光状態の経時変化を取得する工程と、
     前記発光状態の発光スペクトルの経時変化から、前記対象物の状態を解析する工程と、
     を含み、
     前記発光制御材は、発光寿命が変化する、および/または経時で発光スペクトルが変化する、対象物の解析方法。
    irradiating the light emission control material with light while in contact with a target object and a light emission control material that can interact with the target object and emits light upon receiving light of a predetermined wavelength;
    obtaining a change over time in a light emission state of the light emission control material that has received the light;
    Analyzing the state of the object based on the temporal change in the emission spectrum of the light emission state;
    including;
    A method for analyzing a target object, wherein the luminescence control material has a luminescence lifetime that changes and/or a luminescence spectrum that changes over time.
  8.  前記発光制御材は、二種以上の発光材料を含む、
     請求項7に記載の対象物の解析方法。
    The luminescence control material includes two or more types of luminescent materials,
    The method for analyzing an object according to claim 7.
  9.  前記発光制御材は、熱活性化遅延蛍光色素またはりん光色素を少なくとも一種含む、
     請求項7または8に記載の対象物の解析方法。
    The emission control material includes at least one type of heat-activated delayed fluorescent dye or phosphorescent dye.
    The method for analyzing an object according to claim 7 or 8.
  10.  前記二種以上の発光材料のうち、最も発光寿命が長い材料の発光寿命をτ1lとした場合に、前記発光スペクトルの経時変化を取得する工程における、前記経時変化の取得時間が、τ1l以上である、
     請求項8に記載の対象物の解析方法。
    When the luminescent lifetime of the material with the longest luminescent lifetime among the two or more types of luminescent materials is τ 1l , the acquisition time of the temporal change in the step of acquiring the temporal change in the emission spectrum is τ 1l or more is,
    The method for analyzing an object according to claim 8.
  11.  前記発光スペクトルの経時変化を取得する工程は、前記発光制御材の発光スペクトルの経時変化を連続的または断続的に取得する工程である、
     請求項7~10のいずれか一項に記載の対象物の解析方法。
    The step of obtaining the change in the emission spectrum over time is a step of continuously or intermittently obtaining the change in the emission spectrum of the emission control material over time.
    The method for analyzing an object according to any one of claims 7 to 10.
  12.  前記発光スペクトルの経時変化を取得する工程における、前記経時変化の取得時間は、1秒以内である、
     請求項7~11のいずれか一項に記載の対象物の解析方法。
    In the step of acquiring the temporal change of the emission spectrum, the acquisition time of the temporal change is within 1 second.
    The method for analyzing an object according to any one of claims 7 to 11.
PCT/JP2023/002896 2022-03-16 2023-01-30 Analysis system and object analysis method WO2023176174A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022041452 2022-03-16
JP2022-041452 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023176174A1 true WO2023176174A1 (en) 2023-09-21

Family

ID=88022780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002896 WO2023176174A1 (en) 2022-03-16 2023-01-30 Analysis system and object analysis method

Country Status (1)

Country Link
WO (1) WO2023176174A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294105A (en) * 2003-03-25 2004-10-21 Mitsui Eng & Shipbuild Co Ltd Two-dimensional time resolution spectral substance detection method and apparatus
JP2017075811A (en) * 2015-10-13 2017-04-20 国立大学法人九州大学 Fluorescent probe for pancreatic juice detection, pancreatic juice detection method, and pancreatic juice detection kit
JP2019020363A (en) * 2017-07-21 2019-02-07 株式会社日立ハイテクサイエンス Display device for optical analysis apparatus
JP2019163228A (en) * 2018-03-20 2019-09-26 株式会社東芝 Metal organic structure, phosphor film, and molecular detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294105A (en) * 2003-03-25 2004-10-21 Mitsui Eng & Shipbuild Co Ltd Two-dimensional time resolution spectral substance detection method and apparatus
JP2017075811A (en) * 2015-10-13 2017-04-20 国立大学法人九州大学 Fluorescent probe for pancreatic juice detection, pancreatic juice detection method, and pancreatic juice detection kit
JP2019020363A (en) * 2017-07-21 2019-02-07 株式会社日立ハイテクサイエンス Display device for optical analysis apparatus
JP2019163228A (en) * 2018-03-20 2019-09-26 株式会社東芝 Metal organic structure, phosphor film, and molecular detection device

Similar Documents

Publication Publication Date Title
Wieser et al. Tracking single molecules in the live cell plasma membrane—Do’s and Don’t’s
Manzo et al. A review of progress in single particle tracking: from methods to biophysical insights
Tinnefeld et al. Photophysical dynamics of single molecules studied by spectrally-resolved fluorescence lifetime imaging microscopy (SFLIM)
JP6654616B2 (en) Sub-diffraction limit image resolution and other imaging techniques
Turkowyd et al. From single molecules to life: microscopy at the nanoscale
Böhmer et al. Fluorescence spectroscopy of single molecules under ambient conditions: methodology and technology
US7141378B2 (en) Exploring fluorophore microenvironments
Fries et al. Quantitative identification of different single molecules by selective time-resolved confocal fluorescence spectroscopy
Niesner et al. Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD (P) H autofluorescence
Bacia et al. Fluorescence correlation spectroscopy: principles and applications
JP4921458B2 (en) Screening method using polarization anisotropy in FRET emission
US7671345B2 (en) Method of analysing a sample and apparatus therefor
JP2010276380A (en) Fluorescence correlation spectroscopic analyzer and method, and computer program therefor
AU2005279041B2 (en) A method of analysing a sample and apparatus therefor
WO2023176174A1 (en) Analysis system and object analysis method
JP2008083047A (en) Method for examining structure labeled with by fluorogenic material of specimen at high spatial resolution
JP2014202550A (en) Optical analytic device and optical analytic method using single light emission particle detection in plural wavelength bands
US7521696B2 (en) Method and apparatus for analyzing a dynamic sample
KR20190084048A (en) Microfluidic device and sample analysis method
JP6157326B2 (en) Single luminescent particle detection method using light detection
WO2023153279A1 (en) Analysis system and analysis method
Rüttinger Confocal microscopy and quantitative single molecule techniques for metrology in molecular medicine
EP4253941A1 (en) Method and apparatus for optical imaging with a high number of imaging samples
Cheng Probing Molecular Stoichiometry by Photon Antibunching and Nanofluidics Assisted Imaging in Solution
EP4253942A1 (en) Method and apparatus for optical imaging with a high number of imaging samples

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770136

Country of ref document: EP

Kind code of ref document: A1