WO2023176098A1 - 地絡点推定装置及びシステム - Google Patents

地絡点推定装置及びシステム Download PDF

Info

Publication number
WO2023176098A1
WO2023176098A1 PCT/JP2023/000060 JP2023000060W WO2023176098A1 WO 2023176098 A1 WO2023176098 A1 WO 2023176098A1 JP 2023000060 W JP2023000060 W JP 2023000060W WO 2023176098 A1 WO2023176098 A1 WO 2023176098A1
Authority
WO
WIPO (PCT)
Prior art keywords
zero
ground fault
fault point
distribution
phase component
Prior art date
Application number
PCT/JP2023/000060
Other languages
English (en)
French (fr)
Inventor
隆 佐藤
修 友部
雅浩 渡辺
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023176098A1 publication Critical patent/WO2023176098A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured

Definitions

  • the present invention relates to an apparatus and system for estimating the ground fault point of a power system, particularly the ground fault position of a high voltage distribution system.
  • the conventional method for detecting the location of ground faults in high-voltage distribution systems is to detect zero-sequence current using a zero-sequence current transformer installed at the distribution line (feeder) sending section of a distribution substation, and to detect ground faults in each distribution line. The presence or absence of a connection was detected. Additionally, since the zero-sequence current value and zero-sequence current frequency change depending on the impedance of the distribution line, the distance to the location where the ground fault occurred was estimated. However, depending on these methods, the information obtained for estimation fluctuates widely and has low accuracy.
  • Patent Document 1 As a monitoring method to improve this, there is a method described in Patent Document 1, for example.
  • a reference phase is created by sending a synchronized pulse signal from a master station installed in a high-voltage power distribution system to multiple slave stations, and this reference phase is used to control the zero-sequence current detected by each slave station. By comparing the phase and determining the direction of the ground fault, the location where the ground fault has occurred can be narrowed down with high precision.
  • Patent Document 1 In order to realize the method described in Patent Document 1 with high precision, it is necessary to provide a high-voltage power distribution system with a large number of master stations that send out synchronized pulse signals and a large number of slave stations that detect zero-sequence current. Furthermore, in order to improve the ground fault position detection accuracy, it is necessary to increase the number of slave stations, resulting in high cost.
  • the ground fault point estimating device provides a ground fault point estimation device that detects the current or An estimated zero-sequence component distribution database that stores an estimated zero-sequence component distribution, which is the distribution of zero-sequence components of voltage, and a detection database, which is the distribution of zero-sequence components detected at multiple high-voltage customers when a ground fault occurs. and an estimation unit that generates a zero-phase component distribution and estimates the position of the ground fault by comparing the detected zero-phase component distribution with an estimated zero-phase component distribution database.
  • the location of a ground fault that has occurred in the high-voltage power distribution system can be determined without adding a master station or slave station to the high-voltage power distribution system. It becomes possible to estimate with high accuracy. Further features related to the invention will become apparent from the description herein and the accompanying drawings. Further, problems, configurations, and effects other than those described above will be made clear by the description of the following examples.
  • FIG. 1 is a high-voltage power distribution system diagram to which a ground fault detection device according to the present invention is applied.
  • the figure which shows the relationship between the position where a ground fault occurs, and the waveform of the zero-sequence voltage and zero-sequence current detected by the power receiving equipment of a high-voltage consumer.
  • 5 is a flowchart showing a process executed by the ground fault point estimating device according to the first embodiment.
  • 10 is a flowchart showing processing executed by the ground fault point estimating device according to the second embodiment.
  • Other examples of power receiving equipment connection diagrams for high voltage consumers are examples of power receiving equipment connection diagrams for high voltage consumers.
  • FIG. 1 is a high-voltage power distribution system diagram to which a ground fault point estimating device 5 according to a first embodiment is applied.
  • the high-voltage distribution system 100 includes a distribution substation 1, high-voltage consumers 10a, 10b, and 10c, a ground fault estimation device 5, and a high-voltage distribution system that connects the distribution substation 1 and the high-voltage consumers 10a, 10b, and 10c. It has an electric wire 8.
  • the power distribution substation 1 includes a zero-phase current transformer 2, a ground voltage instrument transformer 3, and a power transmission transformer 4 as power sending equipment.
  • the high-voltage consumer 10a includes a zero-phase current transformer 2a, a capacitor-type ground fault detection device 11a, a signal sending unit 12a, a power receiving transformer 13a, a switching protection device 14a, and a power receiving control device 15a as power receiving equipment.
  • the zero-sequence current transformer 2a measures the zero-sequence current, that is, the zero-sequence component of the current
  • the capacitor type ground fault detection device 11a measures the zero-sequence voltage, that is, the zero-sequence component of the voltage.
  • the signal transmitter 12a transmits a signal detected by the power receiving equipment of the high voltage consumer 10a to the ground fault estimation system 5 via the information transmission line 9.
  • the switching protection device 14a protects the transformer, distribution line, etc.
  • the power reception control device 15a controls the power reception state of the high voltage consumer 10a.
  • the signal sending unit 12a receives time information from, for example, the GPS 20 in order to attach a time stamp to the zero-phase component signal to be sent.
  • the high-voltage consumers 10b and 10c are each similarly configured. Note that the number of high-voltage consumers is not limited to the case in FIG. 1.
  • the ground fault point estimating device 5 includes an estimation unit 6 that estimates the position of a ground fault that has occurred in the high-voltage power distribution system 100, and an estimated zero-phase component distribution database 7 that stores information regarding the estimated zero-phase component distribution, which will be described later. have The method by which this ground fault point estimating device 5 estimates the position of a ground fault will be described in detail later.
  • the ground fault point estimating device 5 is installed, for example, as a computer including a CPU and a memory, in a central power dispatch center that controls the power distribution status of a plurality of power distribution substations.
  • a single-line ground fault occurs in the high-voltage distribution system 100, zero-sequence currents I 00 , I 0a , I 0b flow from the distribution substation 1 and high-voltage consumers 10a, 10b, and 10c toward the point where the single-line ground fault occurred.
  • I 0c flows in, and zero-phase voltages V 0a , V 0b , and V 0c are detected in the capacitor-type ground fault detection devices 11a, 11b, and 11c.
  • a single-line ground fault occurs at a location 30 between a distribution point 40 and a high-voltage consumer 10a, where the distribution line branches to distribute power from the distribution substation 1 to multiple high-voltage consumers.
  • An example is shown in which the problem occurs at a position 31 between the power distribution substation 1 and a position 32 between the distribution point 40 and the high voltage consumer 10b.
  • FIG. 2 shows the position where a single-line ground fault occurred in the high-voltage distribution system 100, and the current flow flowing from the high-voltage consumer 10a toward the point where the single-line ground fault occurred and was measured by the zero-phase current transformer 2a of the high-voltage consumer 10a.
  • 3 is a graph showing the relationship between the zero-sequence current I 0a and the waveform of the zero-sequence voltage V 0a measured by the capacitor-type ground fault detection device 11a of the high-voltage consumer 10a when a single-line ground fault 30 occurs.
  • the ground fault position 1 is the ground fault position 31 between the distribution substation 1 and the distribution point 40 in FIG. 1
  • the ground fault position 2 is the ground fault position 30 shown in FIG.
  • the ground fault position 3 is the ground fault position 32 shown in FIG.
  • the peak value, frequency, attenuation time constant of the high frequency component, or the ratio of the maximum value of the above-mentioned zero-sequence current/zero-sequence voltage are collectively referred to as the zero-sequence component, and the A signal containing information regarding the zero-phase component sent to the node estimating device 5 is referred to as a zero-phase component signal.
  • FIG. 3 is a distribution diagram showing all the peak values of zero-sequence currents among the above-mentioned zero-sequence components. For example, when a single-line ground fault occurs at ground fault location 1, plotting the peak values of zero-sequence currents I 0a-1 , I 0b-1 , and I 0c-1 measured at high-voltage consumers 10a, 10b, and 10c. , the distribution 21-1 is indicated by the symbol ⁇ in FIG. Similarly, when a one-line ground fault occurs at ground fault positions 2 and 3, the distributions of the peak values of the zero-sequence current of the high-voltage consumer are 21-2 and 21-3, respectively.
  • the peak values detected at the high-voltage consumer 10a decrease in the order of I 0a-2 , I 0a-1 , and I 0a-3 .
  • the location where the ground fault occurred is the ground fault location 30 in FIG.
  • the zero-sequence current detected at the high-voltage consumer 10a becomes smaller as the ground fault position 32 changes between the two.
  • the peak value in FIG. 3 is the maximum value of I 0a-1 , I 0a-2 , and I 0a-3 in FIG. 2 .
  • the speed at which the zero-sequence current is sampled by the zero-sequence current transformer 2a is, for example, about 1/10 of the period of the zero-sequence current.
  • FIG. 3 also shows that the scale (output) of the power receiving equipment of the high-voltage consumer 10a and the high-voltage consumer 10c is about the same, and that the scale of the high-voltage consumer 10b is significantly larger than them.
  • the distribution of peak values of the zero-sequence current I 0 detected at the high-voltage consumer changes depending on the ground fault position.
  • information such as the resistance of substations, each high-voltage consumer, and the distribution lines that connect them is known, and if it is assumed that a ground fault occurs at any location on the distribution line, each high-voltage
  • the distribution of zero-phase components estimated to be sent out from consumers can be obtained by calculation using line constants, etc.
  • the distribution substation 1 by storing the distribution in advance as a database and comparing it with the distribution of zero-sequence components measured at high-voltage customers in a certain time section, it is possible to estimate the location of a ground fault that occurred in the distribution system in a certain time section. be able to. Although only the high-voltage consumer is shown in FIG. 3, the peak value of the zero-sequence current I00 detected at the distribution substation 1 may also be added.
  • FIG. 4 is a flowchart showing a method for estimating the position of a ground fault in this embodiment.
  • step S402 It is determined whether the ground fault has occurred within the premises or outside the premises, that is, it is determined whether the ground fault has occurred within the power receiving equipment of the high voltage consumer or within the high voltage power distribution system (step S402). Specifically, if the phase of the zero-sequence voltage lags behind the zero-sequence current, a ground fault will occur within the premises, and conversely, if the phase of the zero-sequence current lags behind the zero-sequence voltage, a ground fault will occur within the premises. It is determined that a ground fault has occurred outside the premises.
  • a protection operation for the premises is executed. In other words, it activates the circuit breaker. If the magnitude and duration of the zero-sequence current do not exceed the predetermined protection level, standby without doing anything (steps S403, 404).
  • the signal sending unit 12 of each high-voltage consumer transmits the zero-sequence component of the zero-sequence current I 0 /zero-sequence voltage V 0 and the zero-sequence component of the zero-sequence current I 0 /zero-sequence voltage V 0 .
  • Information combining the timestamps of the detected times is created and transmitted to the ground fault point estimating device 5 (step S405).
  • This time stamp is generated, for example, based on time information obtained from the GPS 20 and carved at approximately 500 ns to 1 ⁇ s.
  • the ground fault point estimating device 5 collects information from each high-voltage consumer that combines the above zero-sequence component and the time stamp of the time when the zero-sequence current I 0 /zero-sequence voltage V 0 was detected, and calculates the time stamp.
  • a zero-sequence component distribution such as the zero-sequence current peak value distribution shown in FIG. 3 is created for each high-voltage consumer (steps S407, 408).
  • the ground fault point estimating device 5 calculates in advance the zero-phase component distribution of high voltage consumers for each ground fault position from the impedance map of the high voltage distribution system 100, and calculates the zero-phase component distribution of high voltage consumers for each ground fault position as shown in FIG.
  • An estimated zero-phase component distribution database 7 is created (step S406).
  • the estimation unit 6 of the ground fault point estimating device 5 compares the detected zero-phase component distribution of the high-voltage customer 10 for each time stamp sent from the signal sending unit 12 with the estimated zero-phase component distribution database 7. They are compared, and if there is a matching estimated zero-phase component distribution, it is extracted (step S409). Whether or not there is a matching distribution is determined by evaluating similarity according to a preset index (step S409). Correlation coefficients and Euclidean distances between distributions are used as indicators for evaluating similarity.
  • step S410 If an estimated zero-phase component distribution that matches the detected zero-phase component distribution is extracted, the position of the ground fault corresponding to the detected zero-phase component distribution and the position of the ground fault corresponding to the matched estimated zero-phase component distribution It is determined that the timestamp and the ground fault position information match, and the time stamp and the ground fault position information are combined and sent to the data collection section, the islanding operation planning section, and the recovery decision making support section (step S410). If a matching estimated zero-phase component distribution is not extracted, the process remains on standby. The above flow makes it possible to estimate the position of the ground fault, but as shown in step S411, the above data may be accumulated and the estimated zero-phase component distribution database 7 may be updated.
  • the detected zero-phase component distribution created based on the zero-phase components detected at each high-voltage customer when a ground fault occurs is compared to the estimated zero-phase component distribution database created in advance. By comparing this with the ground fault, it becomes possible to estimate the location of the ground fault with high accuracy. Furthermore, this method uses only the power receiving equipment that each high-voltage consumer originally has, and there is no need to provide additional equipment, which is very advantageous in terms of cost.
  • Example 2 of the present invention will be described using FIG. 5.
  • the ground fault point estimating device 5 has the same configuration as the first embodiment, but the high voltage consumer connected to the ground fault point estimating device 5 and the device via the information transmission line 9
  • the configuration including group 10 is regarded as a ground fault point estimation system
  • the flow executed in the system is different from that in the first embodiment.
  • the information in which the zero-phase component and the time stamp are combined, generated in step S405 in FIG. Step S501 of transmitting is additionally executed.
  • the power receiving equipment of the high voltage consumer 10a was configured to branch and supply the signal of the zero-phase current transformer 2a to the signal sending unit 12a and the power receiving control device 15a, but as shown in FIG. It is also possible to have a configuration like this.
  • the power receiving equipment of the high voltage consumer 10a shown in FIG. Transfer current signals.
  • FIG. 1 it is possible to apply the present invention without adding equipment to the high-voltage consumer side, and it is possible to reduce equipment introduction costs.
  • FIG. 1 In the configuration shown in FIG.
  • the existing switching protection system consisting of the zero-phase current transformer 2a, the power receiving control device 15a, and the switching protection device 14a can be preserved as is, and the signal sending section 12a can be added later. There is no risk of damaging the reliability of the opening/closing protection system. The same applies to the power receiving equipment of other high voltage consumers.
  • the ground fault point estimating device estimates the position of a ground fault that has occurred in a distribution system that supplies power to multiple high-voltage consumers, when a ground fault occurs at any position in the distribution system.
  • an estimated zero-sequence component distribution database that stores an estimated zero-sequence component distribution that is a distribution of zero-sequence components of current or voltage that is estimated to be detected at multiple high-voltage consumers, and
  • a detected zero-phase component distribution which is a distribution of zero-phase components detected at high-voltage consumers, is generated, and the location of the ground fault is estimated by comparing the detected zero-phase component distribution with an estimated zero-phase component distribution database. and an estimation section.
  • the location of ground faults that occur in the high-voltage power distribution system can be determined with high accuracy without adding a master station or slave station to the high-voltage power distribution system. It becomes possible to estimate
  • the zero-sequence component is the peak value, frequency, attenuation time constant of the high-frequency component, or the ratio of the maximum value of the zero-sequence current or zero-sequence voltage. This makes it possible to generate a plurality of detected zero-phase distributions, thereby making it possible to improve the accuracy of estimating the ground fault point.
  • the estimation unit evaluates the detected zero-phase component distribution and the estimated zero-phase component distribution based on the correlation coefficient or Euclidean distance between the distributions.
  • generating the estimated zero-phase distribution and the detected zero-phase component distribution does not require complicated arithmetic processing, so the similarity between distributions can be evaluated using the simple method described above.
  • the estimation unit generates a detected zero-phase component distribution based on time information when the zero-phase component is detected. Since the distance from the signal sending unit to the ground fault point estimating device differs for each high voltage consumer, there is also a difference in the time during which the zero-phase component signal is transmitted to the ground fault point estimating device after a ground fault occurs. Therefore, if multiple ground faults occur in a short period of time due to multiple lightning strikes, etc., there is a risk that zero-phase component signals will be mixed together, making it impossible to accurately generate a detected zero-phase component distribution. This means that the difference in path distance can be ignored, making it possible to accurately generate a detected zero-phase component distribution.
  • a ground fault point estimation system including the ground fault point estimation device according to (1) and a plurality of high voltage consumers connected to the device via an information transmission line, wherein the high voltage consumers are Information obtained by combining the phase component and the time information when the zero-phase component was detected is transmitted to the ground fault point estimating device via the information transmission line in a batch manner at predetermined time intervals.
  • a ground fault point estimation system including the ground fault point estimation device according to (1) and a plurality of high voltage consumers connected to the device via an information transmission line, the power receiving equipment of the high voltage consumers
  • a zero-sequence current signal detected by a zero-sequence current transformer provided in the power receiving equipment is input to both a signal sending unit and a power receiving control device provided in the power receiving equipment.
  • a ground fault point estimation system including the ground fault point estimation device according to (1) and a plurality of high voltage consumers connected to the device via an information transmission line, the power receiving equipment of the high voltage consumers
  • a zero-sequence current signal measured by a zero-sequence current transformer provided in the power receiving equipment is input to a power receiving control device provided in the power receiving equipment, and is further transferred from the power receiving control device to a signal sending unit provided in the power receiving equipment.
  • Ru As a result, the existing switching protection system consisting of the zero-phase current transformer, power receiving control device, and switching protection device can be preserved and the signal transmission section can be added later, improving the reliability of the existing switching protection system. There is no risk of damage.
  • the present invention is not limited to the above embodiments, and various modifications are possible.
  • the above-mentioned embodiments have been described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to embodiments having all the configurations described.
  • 2a, 2b, 2c Zero-phase current transformer, 5 Ground fault point estimation device, 7 Estimated zero-phase component distribution database, 9 Information transmission line, 10a, 10b, 10c High voltage consumer, 12a, 12b, 12c Signal sending unit, 15a , 15b, 15c Power reception control device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)

Abstract

既存の電力需要家の受電設備の信号を集約することで地絡点を高精度に推定できる装置を提供する。地絡点推定装置5は、配電系統100の任意の位置において地絡が発生した際に、複数の高圧需要家10において検出されると推定される電流または電圧の零相成分の分布である推定零相成分分布を記憶する推定零相成分分布データベース7と、地絡が発生した際に、複数の高圧需要家10において検出された零相成分の分布である検出零相成分分布を生成し、該検出零相成分分布と推定零相成分分布データベース7とを照合することによって地絡の位置を推定する推定部6と、を有する。

Description

地絡点推定装置及びシステム
 本発明は、電力系統の地絡事故点、特に高圧配電系統の地絡位置を推定する装置及びシステムに関する。
 従来の高圧配電系統の地絡位置を検出する方法としては、配電用変電所の配電線(フィーダ)送り出し部に設けられた零相変流器で零相電流を検出し、配電線単位で地絡の有無を検出していた。また配電線のインピーダンスによって零相電流値や零相電流周波数が変化することから、地絡が発生した位置までの距離を推定していた。しかし、これらの方法によっては推定のために得られる情報の変動が大きく、精度が低かった。
 これを改善するための監視方法として、例えば特許文献1に記載のものがある。特許文献1においては、高圧配電系統に設けた親局から、複数の子局に向かって同期パルス信号を送出することで基準位相を作り、この基準位相を各子局で検出する零相電流の位相と比較して、地絡方向を判定することで、地絡が発生した位置を高精度に絞り込んでいる。
特開平6-78453号公報
 特許文献1に記載の方法を高精度に実現するためには、高圧配電系統に同期パルス信号を送出する親局と零相電流を検出する子局を多数設ける必要がある。また、地絡位置検出精度を上げるには、子局の数を増やす必要があり、高コストとなってしまう。
 そこで本発明では、親局や子局の追加が不要で、既存の電力需要家の受電設備の信号を集約することで地絡点を高精度に推定できるシステムを提供することを目的とする。
 上記の課題を解決するために、本発明に係る地絡点推定装置は、配電系統の任意の位置において地絡が発生した際に、複数の高圧需要家において検出されると推定される電流または電圧の零相成分の分布である推定零相成分分布を記憶する推定零相成分分布データベースと、地絡が発生した際に、複数の高圧需要家において検出された零相成分の分布である検出零相成分分布を生成し、該検出零相成分分布と推定零相成分分布データベースとを照合することによって地絡の位置を推定する推定部と、を有する。
 本発明によれば、既存の高圧需要家の受電設備が送出する信号を集約することで、高圧配電系統に親局や子局を追加することなく、高圧配電系統に生じた地絡の位置を高精度に推定することが可能になる。
 本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。
本発明に係る地絡点検出装置が適用される高圧配電系統図。 地絡が発生する位置と、高圧需要家の受電設備で検出される零相電圧及び零相電流の波形との関係を示す図。 高圧需要家の零相電流波高値分布。 実施例1に係る地絡点推定装置が実行する処理を示すフローチャート。 実施例2に係る地絡点推定装置が実行する処理を示すフローチャート。 高圧需要家の受電設備接続図の他の例。
 以下、本発明を実施する上で好適となる実施例について図面を用いて説明する。尚、下記はあくまでも実施の例に過ぎず、発明の内容が下記具体的態様に限定されるものではない。本発明は、下記態様を含めて種々の態様に変形することが無論可能である。
[実施例1]
 実施例1について図1から図4を用いて説明する。まず、図1は実施例1に係る地絡点推定装置5が適用される高圧配電系統図である。高圧配電系統100は配電用変電所1、高圧需要家10a、10b、10c、地絡点推定装置5、及び配電用変電所1と高圧需要家10a、10b、10cとの間を接続する高圧配電線8を有する。配電用変電所1は電力送り出し設備として、零相変流器2、接地形計器用変圧器3、及び送電用変圧器4を備える。
 高圧需要家10aは受電設備として、零相変流器2a、コンデンサ形地絡検出装置11a、信号送出部12a、受電用変圧器13a、開閉保護装置14a、及び受電制御装置15aを備える。零相変流器2aは零相電流、すなわち電流の零相成分を、コンデンサ形地絡検出装置11aは零相電圧、すなわち電圧の零相成分を測定する。信号送出部12aは、高圧需要家10aの受電設備が検出した信号を地絡点推定システム5へ情報伝送回線9を介して伝送する。開閉保護装置14aは、高圧需要家10a内において短絡や地絡などの故障が発生した時に、構内の変圧器や配電線などを保護する。受電制御装置15aは、高圧需要家10aの受電状態を制御する。また、信号送出部12aは、送出する零相成分信号にタイムスタンプを付すために例えばGPS20から時刻情報を受信する。高圧需要家10b、10cもそれぞれ同様に構成される。なお、高圧需要家の数については図1の場合に限られない。
 また、地絡点推定装置5は、高圧配電系統100に発生した地絡の位置を推定する推定部6と、後述する推定零相成分分布に関する情報を記憶する推定零相成分分布データベース7とを有する。この地絡点推定装置5が地絡の位置を推定する方法についての詳細は後述する。なお、地絡点推定装置5は、例えばCPU及びメモリを備えたコンピュータとして、複数の配電用変電所の配電状況をコントロールする中央給電指令所内に設置される。
 高圧配電系統100において、一線地絡が発生すると、配電用変電所1及び高圧需要家10a、10b、10cから、一線地絡の発生点に向かって、零相電流I00、I0a、I0b、I0cが流入するとともに、コンデンサ形地絡検出装置11a、11b、11cにおいて零相電圧V0a、V0b、V0cが検出される。図1において一線地絡は、配電用変電所1から複数の高圧需要家に配電するために配電線が分岐する分電点40と高圧需要家10aとの間の位置30、分電点40と配電用変電所1との間の位置31、及び分電点40と高圧需要家10bとの間の位置32に発生している例を示している。
 そして、高圧需要家10a、10b、10cの信号送出部12a、12b、12cから、地絡点推定装置5へと零相電流I0a、I0b、I0c及び零相電圧V0a、V0b、V0cに関する情報を含む信号が送出される。
 図2は、高圧配電系統100内で一線地絡が発生した位置と、高圧需要家10aから一線地絡の発生点に向かって流入し、高圧需要家10aの零相変流器2aで測定される零相電流I0a及び一線地絡30が発生した時に、高圧需要家10aのコンデンサ形地絡検出装置11aで測定される零相電圧V0aの波形との関係を示すグラフである。一線地絡の発生位置が地絡位置1、地絡位置2、地絡位置3と変化すると、高圧配電系統100内に構成される零相回路のインピーダンスが変化するため、零相電流I0a及び零相電圧V0aが変化する。
 図2において、地絡位置1は、図1において配電用変電所1と分電点40との間の地絡位置31であり、地絡位置2は図1に示された地絡位置30であり、地絡位置3は、図1に示した地絡位置32である。地絡位置の変化によって、特に顕著には零相電流I0aの波高値が変化することがわかる。なお、得られるデータを種々の方法により解析することで、地絡位置毎の零相電流/零相電圧の波高値、周波数、高周波成分の減衰時定数、または極大値の比の変化についても分析可能である。高圧需要家10b、10cについても同様のデータを取得できる。なお、本明細書では、上記した零相電流/零相電圧の波高値、周波数、高周波成分の減衰時定数、または極大値の比についてまとめて零相成分と呼称し、信号送出部12から地絡点推定装置5へと送出される零相成分に関する情報を含む信号を零相成分信号と呼称する。
 図3は、上記した零相成分のうち、零相電流の波高値をまとめて示した分布図である。例えば、一線地絡が地絡位置1で発生した時に、高圧需要家10a、10b、10cで測定される零相電流I0a-1、I0b-1、I0c-1の波高値をプロットすると、図3の記号◇で示した分布21-1となる。同様に、一線地絡が地絡位置2、3で発生した時の高圧需要家の零相電流の波高値の分布はそれぞれ21-2、21-3となる。例えば高圧需要家10aで検出される波高値を見ると、I0a-2、I0a-1、I0a-3の順に小さくなる。すなわち、地絡が生じた位置が、図1の地絡位置30、配電用変電所1と分電点40との間の地絡位置31、及び分電点40と他の高圧需要家10bとの間の地絡位置32、と変化するにつれて高圧需要家10aで検出される零相電流が小さくなることがわかる。なお、図3における波高値は、図2中I0a-1、I0a-2、及びI0a-3の最大値である。また、零相変流器2aで零相電流をサンプリングする速度は例えば零相電流の周期の1/10程度である。さらに、図3は、高圧需要家10aと高圧需要家10cの受電設備の規模(出力)が同程度であり、高圧需要家10bの規模がそれらより大幅に大きいことも示している。
 このように、地絡位置に対応して、高圧需要家で検出される零相電流Iの波高値の分布は変化する。また、高圧配電系統においては、変電所や各高圧需要家、これらをつなぐ配電線についての抵抗等の情報は既知であり、配電線の任意の位置に地絡が生じたと仮定した場合に各高圧需要家から送出されると推定される零相成分の分布は線路定数を用いた計算等により取得することができる。そのため、その分布をデータベースとして予め蓄積しておき、ある時間断面において高圧需要家で測定される零相成分の分布と照合すれば、ある時間断面において配電系統で発生した地絡の位置を推定することができる。なお、図3においては高圧需要家のみ示されているが、配電用変電所1で検出される零相電流I00の波高値を加えてもよい。
 図4は、本実施例において地絡の位置を推定する方法を示すフローチャートである。ステップS401において高圧配電系統100のいずれかの位置で地絡が発生すると、各高圧需要家の構内ケーブルを電源として、高圧配電系統100の地絡点に向かって零相電流が流れ込む。高圧需要家の受電設備を構成する零相変流器はその零相電流を、コンデンサ形地絡検出装置は零相電圧を検出し、零相電流と零相電圧の位相差より、地絡が構内で発生したか、構外で発生したかを判定する、すなわち地絡が高圧需要家の受電設備内で発生したのか、高圧配電系統内で発生したのか判定する(ステップS402)。具体的には、零相電流に対して零相電圧の位相が遅れている場合は地絡が構内で発生し、逆に零相電圧に対して零相電流の位相が遅れている場合には地絡が構外で発生したと判定する。
 構内で地絡が発生した場合、さらに零相電流の大きさと継続時間が既定の保護レベルを超過する場合には、構内の保護動作を実行する。すなわち遮断器を作動させる。零相電流の大きさと継続時間が既定の保護レベルを超過しない場合は、何もせずに待機する(ステップS403、404)。
 構外で地絡が発生した場合は、各高圧需要家の信号送出部12は、零相電流I/零相電圧Vの零相成分と、零相電流I/零相電圧Vが検出された時刻のタイムスタンプを組み合わせた情報を作成し、地絡点推定装置5に伝送する(ステップS405)。このタイムスタンプは例えば、GPS20から取得する、500ns~1μs程度で刻まれる時刻情報に基づいて生成する。
 地絡点推定装置5では、各高圧需要家から、上記の零相成分と零相電流I/零相電圧Vが検出された時刻のタイムスタンプとを組み合わせた情報を収集し、タイムスタンプごとの高圧需要家の、図3に示す零相電流波高値分布のような零相成分分布を作成する(ステップS407、408)。
 また、上記したフローに先立って、地絡点推定装置5では、高圧配電系統100のインピーダンスマップから、地絡位置ごとの高圧需要家の零相成分分布を予め計算しておき、図1に示す推定零相成分分布データベース7を作成しておく(ステップS406)。
 そして、地絡点推定装置5の推定部6は、信号送出部12から送出された、上記タイムスタンプごとの高圧需要家10の検出零相成分分布について、上記の推定零相成分分布データベース7と照合し、合致する推定零相成分分布があれば抽出する(ステップS409)。合致する分布があるか否かは、予め設定する指標に従って類似性を評価することで判定する(ステップS409)。類似性を評価する指標としては、分布間の相関係数やユークリッド距離を用いる。
 検出零相成分分布と合致する推定零相成分分布が抽出された場合には、その検出零相成分分布に対応する地絡の位置と、合致した推定零相成分分布に対応する地絡の位置が合致したと判定し、タイムスタンプと地絡位置情報を組み合わせて、データ収集部や単独運転計画部、復旧意思決定支援部へ送出する(ステップS410)。合致する推定零相成分分布が抽出されなければそのまま待機する。以上のフローにより地絡の位置を推定することが可能になるが、ステップS411に示すように、上記のデータを蓄積し、推定零相成分分布データベース7を更新してもよい。
 上記のように、本実施例においては、地絡が発生したときに各高圧需要家で検出された零相成分に基づいて作成した検出零相成分分布を、予め作成した推定零相成分分布データベースと照合することで、地絡の位置を高精度に推定することが可能になる。しかも、この方法においては、各高圧需要家が元々備えている受電設備のみを使用し、追加設備を設ける必要がなく、コスト面において非常に優れている。
 なお、すべての高圧需要家から零相成分とタイムスタンプとを組み合わせた情報を収集できなくても、一部の高圧需要家から収集した情報から地絡位置を推定することができる。
[実施例2]
 本発明の実施例2について、図5を用いて説明する。実施例2においては、地絡点推定装置5は、実施例1とその構成は同一であるが、地絡点推定装置5、及び該装置と情報伝送回線9を介して接続された高圧需要家群10を含めた構成を地絡点推定システムとみなした場合、該システムにおいて実行されるフローが実施例1と異なる。実施例2においては、図4のステップS405で生成された、零相成分とタイムスタンプとが組み合わされた情報が、所定の時間毎に伝送されるバッチ伝送方式で地絡点推定装置5へと伝送されるステップS501が追加実行される。
 本実施例では、実施例1と同様の効果に加えて、バッチ伝送方式による伝送経路トラフィックの平準化という効果も得られる。
[高圧需要家の他の構成]
 上記の実施例において、高圧需要家10aの受電設備は、零相変流器2aの信号を信号送出部12aと受電制御装置15aとに分岐して供給する構成であったが、図6に示すような構成とすることもできる。図6に示す高圧需要家10aの受電設備は、高圧需要家10a内の零相変流器2aの信号を受電制御装置15aに一旦供給し、受電制御装置15aから、信号送出部12aへ零相電流信号を転送する。図1に示す構成においては、高圧需要家側に設備を追加することなく本発明を適用することが可能になり、設備導入費用を削減することが可能になるが、図6に示すような構成を採用することによっても、零相変流器2a、受電制御装置15a、開閉保護装置14aから構成される既存の開閉保護システムをそのまま温存し、信号送出部12aを後から追加できるため、既存の開閉保護システムの信頼性を損なう恐れがない。他の高圧需要家の受電設備についても同様である。
 以上で説明した本発明の実施例によれば、以下の作用効果を奏する。
(1)本発明に係る複数の高圧需要家に電力を供給する配電系統に生じた地絡の位置を推定する地絡点推定装置は、配電系統の任意の位置において地絡が発生した際に、複数の高圧需要家において検出されると推定される電流または電圧の零相成分の分布である推定零相成分分布を記憶する推定零相成分分布データベースと、地絡が発生した際に、複数の高圧需要家において検出された零相成分の分布である検出零相成分分布を生成し、該検出零相成分分布と推定零相成分分布データベースとを照合することによって地絡の位置を推定する推定部と、を有する。
 上記構成により、既存の高圧需要家の受電設備が送出する信号を集約することで、高圧配電系統に親局や子局を追加することなく、高圧配電系統に生じた地絡の位置を高精度に推定することが可能になる。
(2)零相成分は、零相電流または零相電圧の、波高値、周波数、高周波成分の減衰時定数、または極大値の比である。これにより、複数の検出零相分布を生成することが可能になるため、地絡点の推定精度を向上させることが可能になる。
(3)推定部は、検出零相成分分布と推定零相成分分布とを、分布間の相関係数またはユークリッド距離に基づいて評価する。本発明において推定零相分布及び検出零相成分分布の生成は複雑な演算処理等を要さないため、上記のような平易な手法で分布間の類似性を評価できる。
(4)推定部は、零相成分が検出された時の時刻情報に基づいて検出零相成分分布を生成する。信号送出部から地絡点推定装置までの距離は高圧需要家毎に異なるため、地絡が発生してから零相成分信号が地絡点推定装置に伝送される時間にも差が生じる。したがって、多重雷等により短時間の間に地絡が複数回生じた場合には、零相成分信号が混在して正確に検出零相成分分布を生成できなくなる恐れがあるが、上記構成によって伝送経路距離の差を無視できることになり、正確に検出零相成分分布を生成することが可能になる。
(5)(1)に記載の地絡点推定装置、及び該装置と情報伝送回線を介して接続された複数の高圧需要家を含む地絡点推定システムであって、高圧需要家は、零相成分と、該零相成分が検出された時の時刻情報と、を組み合わせた情報を、所定の時間毎にバッチ方式で情報伝送回線を介して地絡点推定装置に伝送する。これにより、伝送トラフィックの平準化が図れるため、地絡が発生する毎に情報が伝送される場合と比べて安定した情報伝送を実現できる。
(6)(1)に記載の地絡点推定装置、及び該装置と情報伝送回線を介して接続された複数の高圧需要家を含む地絡点推定システムであって、高圧需要家の受電設備に備えられた零相変流器で検出される零相電流信号は受電設備に備えられた信号送出部及び受電制御装置の両方に入力される。これにより、高圧需要家側に設備を追加することなく本発明を適用することが可能になり、設備導入費用を削減することが可能になる。
(7)(1)に記載の地絡点推定装置、及び該装置と情報伝送回線を介して接続された複数の高圧需要家を含む地絡点推定システムであって、高圧需要家の受電設備に備えられた零相変流器で測定される零相電流信号は、受電設備に備えられた受電制御装置に入力され、さらに該受電制御装置から受電設備に備えられた信号送出部へ転送される。これにより、零相変流器、受電制御装置、及び開閉保護装置から構成される既存の開閉保護システムをそのまま温存し、信号送出部を後から追加できるため、既存の開閉保護システムの信頼性を損なう恐れがない。
 なお、本発明は、上記の実施例に限定されるものではなく、様々な変形が可能である。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能である。また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、削除したり、他の構成を追加・置換したりすることが可能である。
2a、2b、2c 零相変流器、5 地絡点推定装置、7 推定零相成分分布データベース、9 情報伝送回線、10a、10b、10c 高圧需要家、12a、12b、12c 信号送出部、15a、15b、15c 受電制御装置

Claims (9)

  1.  複数の高圧需要家に電力を供給する配電系統に生じた地絡の位置を推定する地絡点推定装置であって、
     前記配電系統の任意の位置において前記地絡が発生した際に、前記複数の高圧需要家において検出されると推定される電流または電圧の零相成分の分布である推定零相成分分布を記憶する推定零相成分分布データベースと、
     前記地絡が発生した際に、前記複数の高圧需要家において検出された前記零相成分の分布である検出零相成分分布を生成し、該検出零相成分分布と前記推定零相成分分布データベースとを照合することによって前記地絡の位置を推定する推定部と、を有する、
    ことを特徴とする地絡点推定装置。
  2.  請求項1に記載の地絡点推定装置であって、前記零相成分は、零相電流または零相電圧の波高値である、
    ことを特徴とする地絡点推定装置。
  3.  請求項1に記載の地絡点推定装置であって、前記零相成分は、零相電流または零相電圧の周波数である、
    ことを特徴とする地絡点推定装置。
  4.  請求項1に記載の地絡点推定装置であって、前記零相成分は、零相電流または零相電圧の高周波成分の減衰時定数または、極大値の比である、
    ことを特徴とする地絡点推定装置。
  5.  請求項1に記載の地絡点推定装置であって、前記推定部は、前記検出零相成分分布と前記推定零相成分分布とを、分布間の相関係数またはユークリッド距離に基づいて評価する、
    ことを特徴とする地絡点推定装置。
  6.  請求項1に記載の地絡点推定装置であって、前記推定部は、前記零相成分が検出された時の時刻情報に基づいて前記検出零相成分分布を生成する、
    ことを特徴とする地絡点推定装置。
  7.  請求項1に記載の地絡点推定装置、及び該装置と情報伝送回線を介して接続された前記複数の高圧需要家を含む地絡点推定システムであって、前記高圧需要家は、前記零相成分と、該零相成分が検出された時の時刻情報と、を組み合わせた情報を、所定の時間毎にバッチ方式で前記情報伝送回線を介して前記地絡点推定装置に伝送する、
    ことを特徴とする地絡点推定システム。
  8.  請求項1に記載の地絡点推定装置、及び該装置と情報伝送回線を介して接続された前記複数の高圧需要家を含む地絡点推定システムであって、前記高圧需要家の受電設備に備えられた零相変流器で検出される零相電流信号は前記受電設備に備えられた信号送出部及び受電制御装置の両方に入力される、
    ことを特徴とする地絡点推定システム。
  9.  請求項1に記載の地絡点推定装置、及び該装置と情報伝送回線を介して接続された前記複数の高圧需要家を含む地絡点推定システムであって、前記高圧需要家の受電設備に備えられた零相変流器で測定される零相電流信号は、前記受電設備に備えられた受電制御装置に入力され、さらに該受電制御装置から前記受電設備に備えられた信号送出部へ転送される、
    ことを特徴とする地絡点推定システム。
PCT/JP2023/000060 2022-03-15 2023-01-05 地絡点推定装置及びシステム WO2023176098A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022040120A JP2023135094A (ja) 2022-03-15 2022-03-15 地絡点推定装置及びシステム
JP2022-040120 2022-03-15

Publications (1)

Publication Number Publication Date
WO2023176098A1 true WO2023176098A1 (ja) 2023-09-21

Family

ID=88023286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000060 WO2023176098A1 (ja) 2022-03-15 2023-01-05 地絡点推定装置及びシステム

Country Status (2)

Country Link
JP (1) JP2023135094A (ja)
WO (1) WO2023176098A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122829A (ja) * 1991-10-23 1993-05-18 Hitachi Ltd 電力系統の絶縁劣化検出方法及び装置
JPH0698457A (ja) * 1991-11-28 1994-04-08 Kansai Electric Power Co Inc:The 高圧配電線の地絡故障原因判定方法
JPH1048286A (ja) * 1996-08-02 1998-02-20 Sumitomo Electric Ind Ltd 非接地系架空送電線の地絡事故区間標定方法とその装置
JPH11178200A (ja) * 1997-12-10 1999-07-02 Yaskawa Electric Corp 配電システム
JP2007116893A (ja) * 2005-10-21 2007-05-10 Myongji Univ Industry & Academia Cooperation Foundation 非接地配電系統における零相電流の位相差及び大きさの比較による故障区間検出装置及び方法
JP2010161865A (ja) * 2009-01-07 2010-07-22 Chugoku Electric Power Co Inc:The 配電系統の地絡保護システム、配電系統の地絡保護方法、プログラム
JP2019030193A (ja) * 2017-08-03 2019-02-21 株式会社東芝 配電線事故原因推定システム、方法、プログラム及び記録装置
CN109490706A (zh) * 2018-11-13 2019-03-19 国电电力河北新能源开发有限公司 一种多分支输电线路故障定位方法
CN111965475A (zh) * 2020-06-05 2020-11-20 国电南瑞南京控制系统有限公司 一种基于零序电流分布特性的配电网综合故障研判方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122829A (ja) * 1991-10-23 1993-05-18 Hitachi Ltd 電力系統の絶縁劣化検出方法及び装置
JPH0698457A (ja) * 1991-11-28 1994-04-08 Kansai Electric Power Co Inc:The 高圧配電線の地絡故障原因判定方法
JPH1048286A (ja) * 1996-08-02 1998-02-20 Sumitomo Electric Ind Ltd 非接地系架空送電線の地絡事故区間標定方法とその装置
JPH11178200A (ja) * 1997-12-10 1999-07-02 Yaskawa Electric Corp 配電システム
JP2007116893A (ja) * 2005-10-21 2007-05-10 Myongji Univ Industry & Academia Cooperation Foundation 非接地配電系統における零相電流の位相差及び大きさの比較による故障区間検出装置及び方法
JP2010161865A (ja) * 2009-01-07 2010-07-22 Chugoku Electric Power Co Inc:The 配電系統の地絡保護システム、配電系統の地絡保護方法、プログラム
JP2019030193A (ja) * 2017-08-03 2019-02-21 株式会社東芝 配電線事故原因推定システム、方法、プログラム及び記録装置
CN109490706A (zh) * 2018-11-13 2019-03-19 国电电力河北新能源开发有限公司 一种多分支输电线路故障定位方法
CN111965475A (zh) * 2020-06-05 2020-11-20 国电南瑞南京控制系统有限公司 一种基于零序电流分布特性的配电网综合故障研判方法

Also Published As

Publication number Publication date
JP2023135094A (ja) 2023-09-28

Similar Documents

Publication Publication Date Title
US10180451B2 (en) Electric power system monitoring using high-frequency signals
Gong et al. Integrated fault location system for power distribution feeders
MX2012011015A (es) Ubicacion de fallas en sistemas de suministro de energia electrica.
US11467200B2 (en) Method and device for identifying the location of a fault in an electrical power distribution network
EP3369150B1 (en) Method and system for protection in a mixed line
US10979330B2 (en) Communication of electric power system samples without external time reference
US10345363B2 (en) High-fidelity voltage measurement using resistive divider in a capacitance-coupled voltage transformer
CN111226363B (zh) 用于多端子混合线路中的故障区段识别的方法和装置
CN111512168B (zh) 用于分析电力传输网络的故障数据的系统和方法
JP2024513381A (ja) 配電網の低電圧部分からの測定値を使用して中低電圧配電網の故障を識別し故障位置を特定する方法
US11789059B2 (en) Parameter independent traveling wave-based fault location using unsynchronized measurements
WO2019166903A1 (en) Method and device for fault location in a two-terminal transmission system
CN109564256B (zh) 用于对传输线路中的故障进行定位的基于行波的方法和用于该方法的装置
US20230194580A1 (en) System and method for management of electric grid
WO2023176098A1 (ja) 地絡点推定装置及びシステム
Ivanković et al. Distance protection based on the synchrophasor data in control room
Yeung et al. Exploring the application of phasor measurement units in the distribution network
Dutta et al. Fault resistance sensitivity of sparse measurement based transmission line fault location
Bastard et al. A voltage-based fault location method for radial distribution networks
Elgamasy et al. Tracing passive traveling surge-based fault management control scheme in unearthed distribution systems
Dutta Transmission line fault location using interoperability and integration of data and model
Gong et al. Advanced fault location solution for distribution systems using IED information and the Detailed feeder model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770062

Country of ref document: EP

Kind code of ref document: A1