WO2023176047A1 - Laser welding device and laser welding method - Google Patents

Laser welding device and laser welding method Download PDF

Info

Publication number
WO2023176047A1
WO2023176047A1 PCT/JP2022/043276 JP2022043276W WO2023176047A1 WO 2023176047 A1 WO2023176047 A1 WO 2023176047A1 JP 2022043276 W JP2022043276 W JP 2022043276W WO 2023176047 A1 WO2023176047 A1 WO 2023176047A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
light
laser
welding
detection
Prior art date
Application number
PCT/JP2022/043276
Other languages
French (fr)
Japanese (ja)
Inventor
大暉 井本
啓 大野
直彦 小畑
Original Assignee
パナソニックホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックホールディングス株式会社 filed Critical パナソニックホールディングス株式会社
Publication of WO2023176047A1 publication Critical patent/WO2023176047A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/323Bonding taking account of the properties of the material involved involving parts made of dissimilar metallic material

Definitions

  • the present disclosure relates to a laser welding device and a laser welding method.
  • Laser welding is known as a technique for joining multiple workpieces.
  • a technology related to laser welding a technology for detecting a deviation in the irradiation position of laser light during laser welding (hereinafter sometimes simply referred to as "irradiation position deviation”) has been developed.
  • Patent Document 1 discloses a laser welding device that detects an irradiation position based on the amount of light generated on a workpiece during laser welding.
  • Patent Document 2 discloses a laser welding device that detects an irradiation position shift based on the intensity ratio of plasma light generated on a plurality of workpieces during laser welding.
  • the laser welding device of the present disclosure includes: A laser welding device for welding a first workpiece and a second workpiece, a laser emitting section that emits laser light; a first detection unit that distinguishes and detects multiple types of light in different wavelength ranges that are generated when the first workpiece is irradiated with the laser light; a second detection unit that distinguishes and detects multiple types of light in different wavelength ranges that are generated when the second workpiece is irradiated with the laser light; a determination unit that determines a welding state of the first workpiece and the second workpiece by the laser beam based on the detection results of the first detection unit and the second detection unit; Equipped with
  • the laser welding method of the present disclosure includes: A laser welding method for welding a first workpiece and a second workpiece, the method comprising: Irradiates the laser beam, distinguishing and detecting multiple types of light in different wavelength ranges generated by irradiating the first workpiece with the laser light; distinguishing and detecting multiple types of light in different wavelength ranges generated by irradiating the second workpiece with the laser light; Based on the detection result of the light generated at the first workpiece and the detection result of the light generated at the second workpiece, the laser beam is applied to the first workpiece and the second workpiece. The welding condition with the workpiece is determined.
  • FIG. 1 is a schematic diagram showing an example of a laser welding device according to an embodiment.
  • FIG. 2A is a diagram for explaining the result of light detection by the detection unit.
  • FIG. 2B is a diagram for explaining the result of light detection by the detection unit.
  • FIG. 2C is a diagram for explaining the result of light detection by the detection unit.
  • FIG. 3 is a diagram illustrating a scanning locus of a laser beam irradiation position during welding.
  • FIG. 4A is an example of the detection result of the detection unit when the irradiation position of the laser beam is shifted.
  • FIG. 4B is an example of the detection result of the detection unit when the laser beam irradiation position is shifted.
  • FIG. 4A is an example of the detection result of the detection unit when the irradiation position of the laser beam is shifted.
  • FIG. 4B is an example of the detection result of the detection unit when the laser beam irradiation position is shifted.
  • FIG. 4A is an
  • FIG. 5A is an example of a detection result of the detection unit when a welding speed abnormality occurs.
  • FIG. 5B is an example of a detection result of the detection unit when an abnormal welding speed occurs.
  • FIG. 6 is a flowchart showing an example of the welding operation of the laser welding device according to the embodiment.
  • FIG. 7 is a diagram showing the light detection results of the laser welding apparatus according to the embodiment and the light detection results of the inventions of Patent Document 1 and Patent Document 2.
  • FIG. 8 is a diagram illustrating detectability of the laser welding apparatus according to the embodiment and the laser welding apparatuses of Patent Document 1 and Patent Document 2.
  • Patent Document 1 and Patent Document 2 only detect the irradiation position shift, and cannot detect the laser welding state in detail.
  • An object of the present disclosure is to provide a laser welding device and a laser welding method that can detect the laser welding state in more detail.
  • FIG. 1 is a schematic diagram showing an example of a laser welding apparatus 100 according to an embodiment. This disclosure will be described using a Cartesian coordinate system (X, Y, Z). As shown by the arrows in FIG. 1, the Z-axis direction is the optical axis direction of the laser beam 105, the Y-axis direction is perpendicular to the Z-axis direction, and the X-axis direction is perpendicular to the Y-axis direction and the Z-axis direction. It is the direction. In FIG. 1, the workpieces 110 and 111 are arranged such that the boundary 109 between the workpieces 110 and 111 is along the Y-axis direction, and the width direction of the workpieces 110 and 111 is along the X-axis direction. .
  • the laser welding device 100 is a device that welds workpieces 110 and 111 that are butted against each other.
  • the workpieces 110 and 111 are made of different materials.
  • the workpiece 110 is made of Cu
  • the workpiece 111 is made of Al.
  • the workpieces 110 and 111 are placed on a stage (not shown). By moving the laser head 104 that emits the laser beam 105 relative to the stage along the Y-axis direction, a boundary 109 between the workpieces 110 and 111 along the Y-axis direction is continuously welded.
  • the laser welding device 100 includes a laser emitting section 101, a first detection section 106, a second detection section 107, a control section 115, and a determination section 116.
  • the laser emitting unit 101 is a device that irradiates the workpieces 110 and 111 with laser light 105.
  • the laser emitting section 101 includes, for example, a laser oscillator 102, a light transmission section 103, and a laser head 104.
  • a laser oscillator 102 oscillates a laser beam 105.
  • the laser light 105 is a laser light in a blue wavelength range, that is, a wavelength range of approximately 400 nm or more and 450 nm or less.
  • the laser light 105 does not necessarily have to be a laser light in a wavelength range of approximately 400 nm or more and 450 nm or less.
  • the wavelength range of the laser beam 105 will be described as approximately 400 nm or more and 450 nm or less.
  • Laser light 105 oscillated by laser oscillator 102 is transmitted to laser head 104 by optical transmission section 103.
  • the laser head 104 receives the laser beam 105 and emits it toward the workpieces 110 and 111.
  • the laser head 104 includes a plurality of optical components, and the laser beam 105 is focused on a predetermined focal position by the plurality of optical components. When the predetermined focus position is located at the boundary 109 of the workpieces 110, 111, the workpieces 110, 111 are melted and joined together.
  • the laser head 104 may be a laser head such as a single-core head or a galvano head provided with a galvano scanner, for example.
  • the first detection unit 106 and the second detection unit 107 are sensors that receive light and detect the light intensity for each wavelength range. Further, the first detection section 106 and the second detection section 107 output the detection results to the control section 115.
  • the first detection unit 106 and the second detection unit 107 are arranged around the laser head 104 so as to be able to individually receive light from the workpieces 110 and 111.
  • the first detection unit 106 is placed closer to the workpiece 110 than the second detection unit 107, so that it individually receives light from the workpiece 110.
  • the second detection unit 107 is arranged closer to the workpiece 111 than the first detection unit 106, so that it individually receives light from the workpiece 111.
  • the first detection unit 106 individually receives light from the workpiece 110 by having a filter for selectively receiving plasma light derived from Cu.
  • the second detection unit 107 individually receives light from the workpiece 111 by having a filter for selectively receiving plasma light derived from Al.
  • a light receiving section (not shown) of the first detection section 106 is directed toward the focal position of the laser beam 105. Further, a light receiving section (not shown) of the second detection section 107 is directed toward the focal position of the laser beam 105.
  • the plurality of types of light are plasma light 112a, 112b, reflected light 113a, 113b, and thermal radiation light 114a, 114b.
  • the plasma light 112a is light emitted from plasma generated when the workpiece 110 is melted by heating.
  • the plasma light 112b is light emitted from plasma generated when the workpiece 111 is melted by heating.
  • the molten states of the workpieces 110 and 111 are reflected in the plasma lights 112a and 112b.
  • Plasma light 112a, 112b has different wavelengths depending on the material of workpieces 110, 111.
  • the reflected light 113a is the reflected light of the laser beam 105 reflected by the workpiece 110.
  • the reflected light 113b is the reflected light of the laser beam 105 reflected by the workpiece 111.
  • the surface conditions of the workpiece 110 and the workpiece 111 are reflected in the reflected lights 113a and 113b.
  • Thermal radiation light 114a is light emitted when the workpiece 110 reaches a high temperature state.
  • the thermal radiation light 114b is light emitted when the workpiece 111 reaches a high temperature.
  • the heat input state to the workpiece 110 and the workpiece 111 is reflected in the thermal radiation lights 114a and 114b.
  • the plasma light 112a, the reflected light 113a, and the thermal radiation light 114a have different wavelength ranges from each other.
  • the plasma light 112b, the reflected light 113b, and the thermal radiation light 114b have different wavelength ranges from each other.
  • the plasma beams 112a and 112b are between 400 nm and 500 nm, and the wavelength of the thermal radiation 114a and 114b is between 1200 nm and 1400 nm.
  • the first detection unit 106 and the second detection unit 107 have, for example, a spectroscopic system that spectrally separates the detection light, and detect the light intensity for each wavelength range via the spectroscopic system.
  • the first detection unit 106 and the second detection unit 107 are equipped with optical components suitable for the wavelength range of the detection light as a spectroscopic system. Note that the first detection unit 106 and the second detection unit 107 have a spectral sensor that detects the light intensity for each wavelength, and even if the spectral sensor is used to detect the light intensity by distinguishing each wavelength range. good.
  • the first detection unit 106 can distinguish and detect the plasma light 112a, the reflected light 113a, and the thermal radiation light 114a. Further, the second detection unit 107 can distinguish and detect the plasma light 112b, the reflected light 113b, and the thermal radiation light 114b.
  • the control unit 115 controls the laser welding operation.
  • the control unit 115 is, for example, a computer having a CPU (Central Processing Unit).
  • the control section 115 controls the laser beam 105 to be emitted from the laser emitting section 101 .
  • the control unit 115 controls the oscillation and stopping of the laser beam 105, the oscillation output of the laser oscillator 102, and the like.
  • control unit 115 relatively moves the irradiation position of the laser beam 105 with respect to the workpieces 110 and 111.
  • the control unit 115 moves the laser head 104 relative to the workpieces 110 and 111, for example.
  • the control unit 115 may perform wobbling control, for example.
  • Wobbling control is a control in which the irradiation position is moved so that the irradiation position draws a circular locus, and is a control that is mainly executed during dissimilar welding.
  • control unit 115 may be configured to move the stage on which the workpieces 110 and 111 are placed relative to the irradiation position of the laser beam 105, or may be configured to move the stage and the irradiation position of the laser beam 105. It may be configured to move both positions.
  • the determination unit 116 acquires the detection results of the first detection unit 106 and the second detection unit 107, and determines the laser welding state at the boundary 109 between the workpieces 110 and 111 based on the acquired detection results. Specifically, the determining unit 116 can determine multiple types of welding abnormalities based on the molten state, surface state, and heat input state at the boundary 109, such as misalignment of the irradiation position of the laser beam 105, and Abnormal welding speed at the irradiation position can be detected.
  • the irradiation position shift means that the irradiation position moves away from the boundary 109 in the X-axis direction. If the irradiation position has shifted, either the workpieces 110 or 111 will not be sufficiently irradiated with the laser beam 105.
  • Welding speed abnormality means that the relative scanning speed of the irradiation position of the laser beam 105 (hereinafter referred to as "relative scanning speed") with respect to the workpieces 110 and 111 is too fast.
  • relative scanning speed the relative scanning speed of the irradiation position of the laser beam 105
  • the determination unit 116 calculates the amount of correction for the laser welding operation by the laser welding apparatus 100 based on the laser welding state.
  • the amount of correction includes, for example, the amount of shift of the irradiation position and the amount of variation in the relative scanning speed of the irradiation position.
  • FIGS. 2A to 2C are diagrams for explaining light detection results by the first detection unit 106 and the second detection unit 107.
  • the vertical axis represents detected light intensity and the horizontal axis represents time.
  • the vertical axis indicates "detection light intensity," but in reality, it is the intensity of any one of plasma light, reflected light, and thermal radiation light.
  • the reference range is a light intensity range in which the light intensity can be when the workpiece 110 and the workpiece 111 are laser welded without any abnormality.
  • the reference range is set for each type of light.
  • the light intensity of the detection units 106 and 107 is always greater than the reference range.
  • the determining unit 116 determines that the detected light intensity is "upper limit abnormality".
  • the light intensity of the detection units 106 and 107 is always smaller than the reference range.
  • the determining unit 116 determines that the detected light intensity is "lower limit abnormality".
  • FIG. 3 is a diagram illustrating the scanning locus of the irradiation position of the laser beam 105 during welding.
  • 203 in FIG. 3 is a scanning locus of the irradiation position of the laser beam 105 during normal welding.
  • 204 in FIG. 3 is a scanning locus of the irradiation position when the irradiation position shifts.
  • SP1 to SP5 in FIG. 3 are the irradiation ranges of the laser beam 105.
  • the laser beam 105 is irradiating the irradiation ranges SP1 to SP4
  • the laser beam 105 is irradiating both the workpieces 110 and 111.
  • the workpiece 110 is irradiated with the laser beam 105, but the workpiece 111 is not irradiated with the laser beam 105.
  • the light intensity of the plasma light 112a, 112b, reflected light 113a, 113b, and thermal radiation light 114a, 114b is within the reference range within the welding time.
  • FIGS. 4A and 4B are examples of detection results of the detection units 106 and 107 when the irradiation position shifts toward the workpiece 110 side.
  • FIGS. 4A and 4B show detection results when the laser beam 105 is irradiated to the irradiation range SP5 (see FIG. 3).
  • 4A shows the detection result by the first detection unit 106
  • FIG. 4B shows the detection result by the second detection unit 107.
  • the intensity of one of the multiple types of light falls outside the reference range.
  • the workpiece 111 When the laser beam 105 is irradiated to the irradiation range SP5, the workpiece 111 is less likely to be melted than when the laser beam 105 is irradiated to the irradiation range SP4, and the amount of plasma on the workpiece 111 is reduced. do. As a result, the amount of plasma light 112b indicating emission from the plasma of the workpiece 111 decreases.
  • the amount of irradiation of the laser beam 105 to the workpiece 111 is smaller than when the laser beam 105 is irradiated to the irradiation range SP4, so the workpiece The amount of reflected light 113b indicating reflection from the object 111 decreases.
  • the workpiece 110 and the workpiece 111 are heated evenly.
  • the workpiece 110 is heated even more, and the workpiece 111 is less likely to be heated.
  • the amount of heat input to the workpiece 110 is large, and the amount of thermal radiation light 114a indicating emission from the workpiece 110 is large.
  • the amount of heat input to the workpiece 111 is small, and the amount of thermal radiation light 114b indicating emission from the workpiece 111 is small.
  • the determination unit 116 determines that the intensities of the plasma light 112a and the reflected light 113a are "normal", the intensity of the thermal radiation light 114a is "upper limit abnormal”, and that the intensities of the plasma light 112b, the reflected light 113b, and the thermal radiation light 114b are If the intensity is "lower limit abnormality", it is determined that the irradiation position has shifted toward the workpiece 110 side.
  • the determination unit 116 determines that the intensities of the plasma light 112b and the reflected light 113b are "normal”, that the thermal radiation 114b is "abnormal at the upper limit”, and that the intensities of the plasma light 112a, the reflected light 113a, and the thermal radiation 114a are "lower limit”. If it is "abnormal", it is determined that a shift in the irradiation position toward the workpiece 111 has occurred.
  • FIG. 5A is an example of a detection result of the first detection unit 106 when an abnormality in welding speed occurs.
  • FIG. 5B is an example of a detection result of the second detection unit 107 when an abnormal welding speed occurs.
  • the detection results shown in FIGS. 5A and 5B are the results when the workpiece 110 is sufficiently melted and the workpiece 111 is not sufficiently melted.
  • the detection results in FIGS. 5A and 5B indicate that the irradiation position moves relative to the workpieces 110 and 111 at a scanning speed that is such that the workpiece 110 is sufficiently melted and the workpiece 111 is not sufficiently melted. This is the result when
  • Cu (melting point: 1085° C.) has a higher melting point than Al (melting point: 660° C.), it easily absorbs laser light 105 (wavelength range of approximately 400 nm or more and 450 nm or less). Therefore, Cu (melting point: 1085° C.) is easier to heat and melt than Al (melting point: 660° C.). Therefore, when laser welding is performed using the laser beam 105, the workpiece 110 is more easily melted than the workpiece 111. If the wavelength range of the laser beam 105 used changes, the workpiece 111 may be more easily melted than the workpiece 110.
  • melting abnormality the fact that the workpiece is not sufficiently melted.
  • the intensity of the plasma light 112a, reflected light 113a, and thermal radiation light 114a all fall within the reference range during the welding time.
  • the amount of plasma on the workpiece 111 is small, so the amount of plasma light 112b indicating emission from the plasma of the workpiece 111 is small.
  • the workpiece 111 is not sufficiently melted and the volume of the solid workpiece 111 is large, so reflection from the surface of the workpiece 111 is shown. The amount of reflected light 113b is large.
  • the presence of melting abnormality in the workpiece 111 means that the temperature of the workpiece 111 is low and the amount of heat input is small. That is, when there is a melting abnormality in the workpiece 111, the amount of thermal radiation light 114b indicating emission from the workpiece 111 is small.
  • the determination unit 116 determines that the intensities of the plasma light 112a, the reflected light 113a, and the thermal radiation light 114a are "normal,” that the plasma light 112b and the thermal radiation light 114b are “lower limit abnormal,” and that the reflected light 113b is “abnormal.” If it is "upper limit abnormality", it is determined that a welding speed abnormality has occurred. The determination unit 116 may further determine that the workpiece 111 has a melting abnormality.
  • the determination unit 116 also determines that welding speed abnormality has occurred when the plasma light 112a, 112b and the thermal radiation light 114a, 114b are "lower limit abnormality" and the reflected light beams 113a, 113b are "upper limit abnormality”. It is determined that there is.
  • the determining unit 116 may further determine that melting abnormality has occurred in both the workpieces 110 and 111.
  • the intensities of the plasma light 112a and the reflected light 113a are "normal"
  • the thermal radiation light 114a is the "upper limit abnormality”
  • the plasma light 112b, the reflected light 113b, and the thermal radiation light 114b are the "lower limit abnormality”.
  • the laser welding apparatus 100 first determines the irradiation position shift. , and eliminate the irradiation position shift according to the determination result. Thereafter, the laser welding apparatus 100 determines whether the welding speed is abnormal, and eliminates the welding position shift according to the determination result.
  • the plasma light 112a and the reflected light 113a , and the thermal radiation light 114a is the "lower limit abnormality”
  • the plasma light 112b and the thermal radiation light 114b are the “lower limit abnormality”
  • the intensity of the reflected light 113b is the "upper limit abnormality”.
  • the laser welding apparatus 100 first The positional deviation may be resolved and then the welding speed abnormality may be resolved. Alternatively, the laser welding apparatus 100 may be controlled so as to simultaneously eliminate the irradiation position shift and the welding speed abnormality.
  • FIG. 6 is a flowchart showing an example of the laser welding operation of the laser welding apparatus 100.
  • the targets for determining welding abnormality are irradiation position deviation and welding speed abnormality.
  • step S11 the control unit 115 starts emitting and scanning the laser beam 105.
  • the control unit 115 controls the laser emitting unit 101 to start emitting the laser beam 105 toward the boundary 109 between the workpieces 110 and 111, and also causes the laser head 104 to move along the boundary 109. Move at a predetermined speed.
  • the predetermined speed is a predetermined scanning speed.
  • step S12 the first detection unit 106 and the second detection unit 107 start detecting light from the workpiece 110 and light from the workpiece 111, respectively.
  • step S13 the determination unit 116 determines whether the light intensity of the plasma light 112a, 112b, reflected light 113a, 113b, and thermal radiation light 114a, 114b is "normal”, “upper limit abnormality”, or “lower limit abnormality”. Based on the determination result, it is determined whether there is a welding abnormality.
  • the determination unit 116 determines that there is “no welding abnormality”, and determines that there is no welding abnormality. If the strength of is "upper limit abnormality” or “lower limit abnormality”, it is determined that "welding abnormality exists”.
  • step S13 If it is determined that "there is a welding abnormality" ("YES" in step S13), the process moves to step S14, and the determination unit 116 performs a welding process based on the light intensity detection pattern and a preset abnormality detection pattern. , to identify the type of welding abnormality.
  • An abnormality detection pattern is set for each type of welding abnormality.
  • the abnormality detection patterns include, for example, the following abnormality detection patterns (E1) to (E4).
  • Plasma light 112a, 112b and thermal radiation light 114a, 114b are "lower limit abnormality", and reflected light 113a, 113b are "upper limit abnormality” Abnormal”.
  • step S15 If the "welding abnormality" is accompanied by at least “irradiation position shift” (patterns (E1) and (E2), etc.) ("YES" in step S15), the process moves to step S16, and the determination unit 116 The amount of deviation in the intensity of the plurality of types of light with respect to the reference range is calculated for each type of light.
  • step S17 the determination unit 116 calculates the amount of shift with respect to the irradiation position at the time of determination in step S13, based on the amount of shift for each type of light.
  • This shift amount is a value that is estimated to cause all of the intensities of the plurality of types of light to fall within the reference range when the irradiation position is brought closer to the boundary 109 by the shift amount.
  • step S18 the control unit 115 corrects the irradiation position based on the shift amount. Specifically, the control unit 115 shifts the laser head 104 by a shift amount in the X-axis direction to bring the irradiation position closer to the boundary 109. After that, the process moves to step S13.
  • step S15 If the "welding abnormality" is not accompanied by "irradiation position shift” but is accompanied by "welding speed abnormality” (patterns (E3) and (E4), etc.) ("NO" in step S15), the process moves to step S19. Then, the determination unit 116 calculates the amount of deviation in the intensity of the plurality of types of light with respect to the reference range for each type of light. Next, in step S20, the determination unit 116 calculates the amount of variation with respect to the scanning speed at the time of determination in step S13, based on the amount of shift for each type of light. This amount of variation is a value that is estimated to cause all of the intensities of the plurality of types of light to fall within the reference range when the scanning speed is reduced by the amount of variation.
  • step S21 the control unit 115 corrects the scanning speed based on the amount of variation. Specifically, the control unit 115 reduces the scanning speed by the amount of variation. After that, the process moves to step S13.
  • step S13 If it is determined that there is "no welding abnormality" ("NO" in step S13), the process proceeds to step S22, and the control unit 115 determines whether laser welding is completed. For example, the control unit 115 may determine whether laser welding is completed based on whether the irradiation position has reached the target position.
  • step S22 If the laser welding is not completed (“NO” in step S22), the process moves to step S13, and the necessary processes in steps S13 to S21 are repeated until the laser welding is completed.
  • step S22 When the laser welding is completed (“YES” in step S22), the process moves to step S23, where the control unit 115 finishes emitting the laser beam and scanning the irradiation position, and the detection units 106 and 107 Terminate detection.
  • step S23 specifically, the control unit 115 stops the movement of the laser head 104 and the irradiation of the laser beam 105 by the laser emitting unit 101.
  • step S15 it is determined that the welding abnormality is an "irradiation position deviation", and after the irradiation position is shifted to an appropriate position, step S15 is performed. In S15, it is determined that the welding abnormality is "abnormal welding speed.” Therefore, the control unit 115 first eliminates the irradiation position shift as a first step, and eliminates the welding speed abnormality as a second step.
  • the following abnormality detection pattern (E5) may be included in the preset abnormality detection patterns.
  • the determination unit 116 determines that the welding abnormality is “irradiation position deviation” and “welding speed abnormality”, and the control unit 115 changes the irradiation position.
  • the scanning speed may be changed to the appropriate speed at the same time as shifting to the appropriate position. That is, the control unit 115 may eliminate the irradiation position shift and the welding speed abnormality at the same time.
  • step S13 the determination unit 116 determines that "welding abnormality exists" when the detection pattern of each light intensity corresponds to any of the preset abnormality detection patterns, and selects any abnormality detection pattern. If this does not apply, it may be determined that there is no welding abnormality.
  • FIG. 7 is a diagram showing the light detection results of the laser welding apparatus 100 according to the embodiment and the light detection results of the inventions of Patent Document 1 and Patent Document 2.
  • FIG. 7 shows three patterns of welding conditions: "normal”, “deviation of irradiation position toward workpiece 110 side", and "abnormal welding speed accompanied by melting abnormality of workpiece 111". .
  • FIG. 7 shows the optical detection results by the detection unit on the workpiece 110 side and the detection unit on the workpiece 111 side for each welding state.
  • FIG. 8 is a diagram illustrating detectability of the laser welding device 100 according to the embodiment and the laser welding devices of Patent Document 1 and Patent Document 2.
  • "A” in FIG. 8 indicates that it is detectable
  • "C” indicates that it is not detectable
  • "B” indicates that some welding abnormality can be detected, but the type of welding abnormality is This shows that it is not possible to distinguish between
  • a detection unit on the workpiece 110 side and a detection unit on the workpiece 111 side detect light generated in the workpieces 110 and 111 without distinguishing them for each wavelength range. Therefore, the detection target in Patent Document 1 is the intensity of light including plasma light 112a, reflected light 113a, and thermal radiation light 114a, and the intensity of light including plasma light 112b, reflected light 113b, and thermal radiation light 114b. It is strength.
  • Patent Document 2 a detection unit on the workpiece 110 side and a detection unit on the workpiece 111 side detect only plasma light generated in the workpieces 110 and 111. Therefore, the detection targets in Patent Document 2 are the intensity of the plasma light 112a and the intensity of the plasma light 112b.
  • welding abnormalities are determined when "irradiation position shift on the workpiece 110 side" occurs and when “abnormal welding speed accompanied by abnormal melting of the workpiece 111" occurs. cannot distinguish between types.
  • the intensity of the plasma light 112a, the intensity of the reflected light 113a, the intensity of the thermal radiation light 114a, the intensity of the plasma light 112b, and the reflected are different.
  • the laser welding apparatus 100 can detect “irradiation position shift” and “welding speed abnormality” as welding abnormalities. Furthermore, it is possible to distinguish at least whether “irradiation position shift” or "abnormal welding speed” is occurring.
  • the laser welding apparatus 100 was explained as having one each of the first detection section 106 and the second detection section 107, but the first detection section 106 and the second detection section 107 are Two or more of each may be provided.
  • the welding state can be determined in detail during biaxial laser welding.
  • the boundary between the workpieces may include a line along the X-axis direction and a line along the Y-axis direction.
  • laser welding can be performed while determining the welding state in detail without changing the orientation of the workpiece.
  • laser welding can be performed while determining the welding state in detail.
  • the laser welding apparatus 100 welds the boundary 109 by abutting the workpiece 110 and the workpiece 111, and includes a laser emitting section 101 that emits a laser beam 105, A first detection unit 106 that distinguishes and detects multiple types of light in different wavelength ranges that are generated when the workpiece 110 is irradiated with the laser light 105; A second detection unit 107 that distinguishes and detects a plurality of types of light in different wavelength ranges that occur, and a workpiece 110 that is irradiated with laser light 105 based on the detection results of the first detection unit 106 and the second detection unit 107. and a determination unit 116 that determines the welding state of the workpiece 111 and the workpiece 111.
  • the laser welding state can be detected in detail. Thereby, the laser welding state can be accurately grasped, so that appropriate laser welding control can be executed depending on the welding state. As a result, precise laser welding can be achieved.
  • the determination unit 116 determines multiple types of welding abnormalities based on the detection results of the detection units 106 and 107.
  • the plurality of types of welding abnormalities include a deviation in the irradiation position of the laser beam 105 and an abnormality in the welding speed at the irradiation position.
  • the plurality of types of light include plasma light 112a, 112b, reflected light 113a, 113b, and thermal radiation light 114a, 114b from the workpiece 110 and workpiece 111.
  • various welding abnormalities can be distinguished and detected. For example, if the focusing position of the laser beam 105 in the optical axis direction of the laser beam 105 (hereinafter referred to as the "focus position") is shifted, even if the intensity of the thermal radiation lights 114a and 114b is "normal". Regardless, the intensity of the plasma lights 112a and 112b reaches the "lower limit abnormality". Therefore, by detecting the plasma lights 112a and 112b in addition to the reflected lights 113a and 113b and the thermal radiation lights 114a and 114b, it is possible to determine a welding abnormality caused by a focus position shift.
  • the accuracy of detecting welding abnormalities can be improved. For example, as shown in FIG. 7, when detecting a welding speed abnormality, reflected light 113a, 113b and thermal radiation light 114a, 114b may be detected. However, by detecting the plasma lights 112a and 112b, it is possible to directly determine whether either of the workpieces 110 or 111 is not sufficiently melted. Therefore, by detecting the plasma lights 112a and 112b in addition to the reflected lights 113a and 113b and the thermal radiation lights 114a and 114b, welding abnormalities in the workpieces 110 and 111 can be determined more accurately.
  • the workpiece 110 and the workpiece 111 are made of different materials.
  • the plasma lights 112a and 112b are detected, the welding states of the workpieces 110 and 111 can be detected in more detail.
  • the control unit 115 of this embodiment controls the relative movement of the irradiation position of the laser beam 105 with respect to the workpiece 110 and the workpiece 111.
  • control unit 115 moves the irradiation position relatively closer to the boundary 109 based on the determination result by the determination unit 116. Further, the control unit 115 changes the relative moving speed of the irradiation position with respect to the workpiece 110 and the workpiece 111 based on the determination result by the determination unit 116. Thereby, laser welding can be appropriately performed based on the determination result of welding abnormality.
  • the laser welding apparatus 100 has been described as determining irradiation position deviation and welding speed abnormality, but it may also determine welding abnormalities other than irradiation position deviation and welding speed abnormality. For example, if all of the detection results for multiple types of light are "lower limit abnormality," the laser welding device 100 determines that the laser light 105 is "insufficient in intensity" and adjusts the laser emitting part to increase the laser oscillation intensity. 101 may be controlled. Further, the laser welding apparatus 100 controls the laser beam when all of the detection results of the plurality of types of light remain at the "lower limit abnormality" even though the laser emitting unit 101 is controlled so that the laser oscillation intensity is increased. It may be determined that there is a "component abnormality" in the emission unit 101.
  • the first detection unit 106 and the second detection unit 107 separately detect plasma light, reflected light, and thermal radiation light.
  • any two types of light among plasma light, reflected light, and thermal radiation light can be detected separately, multiple types of welding abnormalities can be discriminated and determined.
  • FIG. 7 shows that it is possible to distinguish between irradiation position deviation and welding speed abnormality by obtaining detection results for two types of light among plasma light, reflected light, and thermal radiation light.
  • the intensities of the plasma lights 112a, 112b and the reflected lights 113a, 113b when there is a shift in the irradiation position toward the workpiece 110 are “normal”, “lower limit abnormal”, “normal”, and “lower limit”. “Abnormal.”
  • the intensities of the plasma lights 112a, 112b and the reflected lights 113a, 113b when welding speed abnormality accompanied by melting abnormality of the workpiece 111 are “normal”, “lower limit abnormality”, “normal”, and “upper limit abnormality”. "Abnormal.” That is, since the two detection patterns are different, it is possible to distinguish between the irradiation position shift and the welding speed abnormality based on the detection results of the two types of light.
  • the present disclosure can also be applied to welding other than butt welding.
  • the present disclosure can be applied to the case where one of the workpieces 110 and 111 is overlapped with the other and welded. In that case, the irradiation position is scanned along the boundary between the workpieces 110 and 111 when the workpieces 110 and 111 are viewed along the optical axis direction of the laser beam 105.
  • the welding of the workpieces 110 and 111 made of different materials has been described, but the present invention can be applied to welding of a plurality of workpieces made of the same material.
  • the present disclosure can be suitably applied to a laser welding device that laser welds a plurality of workpieces.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

A laser welding device (100) welds together a first workpiece (110) and a second workpiece (111) and comprises: a laser emitting unit (101) that emits a laser light (105); a first detection unit (106) that differentiates and detects a plurality of types of light of different wavelength ranges and produced by the laser light (105) being irradiated onto the first workpiece (110); a second detection unit (107) that differentiates and detects a plurality of types of light of different wavelength ranges and produced by the laser light (105) being irradiated onto the second workpiece (111); and a determination unit (116) that determines, on the basis of the detection results from the first detection unit (106) and the second detection unit (107), the state of welding produced by the laser light (105) between the first workpiece (110) and the second workpiece (111).

Description

レーザー溶接装置及びレーザー溶接方法Laser welding equipment and laser welding method
 本開示は、レーザー溶接装置及びレーザー溶接方法に関する。 The present disclosure relates to a laser welding device and a laser welding method.
 複数の被加工物を接合する技術として、レーザー溶接が知られている。レーザー溶接に関連する技術として、レーザー溶接時におけるレーザー光の照射位置ずれ(以下、単に「照射位置ずれ」と称することもある。)を検出する技術が開発されている。 Laser welding is known as a technique for joining multiple workpieces. As a technology related to laser welding, a technology for detecting a deviation in the irradiation position of laser light during laser welding (hereinafter sometimes simply referred to as "irradiation position deviation") has been developed.
 特許文献1には、レーザー溶接時に被加工物で生じる光の量に基づいて照射位置を検出するレーザー溶接装置が開示されている。特許文献2には、レーザー溶接時に複数の被加工物で生じるプラズマ光の強度比に基づいて照射位置ずれを検出するレーザー溶接装置が開示されている。 Patent Document 1 discloses a laser welding device that detects an irradiation position based on the amount of light generated on a workpiece during laser welding. Patent Document 2 discloses a laser welding device that detects an irradiation position shift based on the intensity ratio of plasma light generated on a plurality of workpieces during laser welding.
特開2014-176882号公報Japanese Patent Application Publication No. 2014-176882 特開平6-269966号公報Japanese Patent Application Publication No. 6-269966
 本開示のレーザー溶接装置は、
 第1の被加工物と第2の被加工物とを溶接するレーザー溶接装置であって、
 レーザー光を出射するレーザー出射部と、
 前記レーザー光が前記第1の被加工物に照射されることで生じる異なる波長域の複数種の光を区別して検出する第1の検出部と、
 前記レーザー光が前記第2の被加工物に照射されることで生じる異なる波長域の複数種の光を区別して検出する第2の検出部と、
 前記第1の検出部及び前記第2の検出部の検出結果に基づいて、前記レーザー光による前記第1の被加工物と前記第2の被加工物との溶接状態を判定する判定部と、
 を備える。
The laser welding device of the present disclosure includes:
A laser welding device for welding a first workpiece and a second workpiece,
a laser emitting section that emits laser light;
a first detection unit that distinguishes and detects multiple types of light in different wavelength ranges that are generated when the first workpiece is irradiated with the laser light;
a second detection unit that distinguishes and detects multiple types of light in different wavelength ranges that are generated when the second workpiece is irradiated with the laser light;
a determination unit that determines a welding state of the first workpiece and the second workpiece by the laser beam based on the detection results of the first detection unit and the second detection unit;
Equipped with
 本開示のレーザー溶接方法は、
 第1の被加工物と第2の被加工物とを溶接するレーザー溶接方法であって、
 レーザー光を照射し、
 前記第1の被加工物に前記レーザー光が照射されることで生じる異なる波長域の複数種の光を区別して検出し、
 前記第2の被加工物に前記レーザー光が照射されることで生じる異なる波長域の複数種の光を区別して検出し、
 前記第1の被加工物で生じた光の検出結果、及び、前記第2の被加工物で生じた光の検出結果に基づいて、前記レーザー光による前記第1の被加工物と前記第2の被加工物との溶接状態を判定する。
The laser welding method of the present disclosure includes:
A laser welding method for welding a first workpiece and a second workpiece, the method comprising:
Irradiates the laser beam,
distinguishing and detecting multiple types of light in different wavelength ranges generated by irradiating the first workpiece with the laser light;
distinguishing and detecting multiple types of light in different wavelength ranges generated by irradiating the second workpiece with the laser light;
Based on the detection result of the light generated at the first workpiece and the detection result of the light generated at the second workpiece, the laser beam is applied to the first workpiece and the second workpiece. The welding condition with the workpiece is determined.
図1は、実施形態に係るレーザー溶接装置の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of a laser welding device according to an embodiment. 図2Aは、検出部による光検出結果を説明するための図である。FIG. 2A is a diagram for explaining the result of light detection by the detection unit. 図2Bは、検出部による光検出結果を説明するための図である。FIG. 2B is a diagram for explaining the result of light detection by the detection unit. 図2Cは、検出部による光検出結果を説明するための図である。FIG. 2C is a diagram for explaining the result of light detection by the detection unit. 図3は、溶接時におけるレーザー光の照射位置の走査軌跡を例示する図である。FIG. 3 is a diagram illustrating a scanning locus of a laser beam irradiation position during welding. 図4Aは、レーザー光の照射位置ずれが生じているときの検出部の検出結果の一例である。FIG. 4A is an example of the detection result of the detection unit when the irradiation position of the laser beam is shifted. 図4Bは、レーザー光の照射位置ずれが生じているときの検出部の検出結果の一例である。FIG. 4B is an example of the detection result of the detection unit when the laser beam irradiation position is shifted. 図5Aは、溶接速度異常が生じているときの検出部の検出結果の一例である。FIG. 5A is an example of a detection result of the detection unit when a welding speed abnormality occurs. 図5Bは、溶接速度異常が生じているときの検出部の検出結果の一例である。FIG. 5B is an example of a detection result of the detection unit when an abnormal welding speed occurs. 図6は、実施形態に係るレーザー溶接装置の溶接動作の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of the welding operation of the laser welding device according to the embodiment. 図7は、実施形態に係るレーザー溶接装置の光検出結果と特許文献1及び特許文献2の発明の光検出結果を示す図である。FIG. 7 is a diagram showing the light detection results of the laser welding apparatus according to the embodiment and the light detection results of the inventions of Patent Document 1 and Patent Document 2. 図8は、実施形態に係るレーザー溶接装置、特許文献1及び特許文献2のレーザー溶接装置の検出可否を説明する図である。FIG. 8 is a diagram illustrating detectability of the laser welding apparatus according to the embodiment and the laser welding apparatuses of Patent Document 1 and Patent Document 2.
 特許文献1及び特許文献2のレーザー溶接装置はいずれも照射位置ずれを検出するだけであり、レーザー溶接状態を詳細に検出することはできない。 The laser welding devices of Patent Document 1 and Patent Document 2 only detect the irradiation position shift, and cannot detect the laser welding state in detail.
 本開示は、レーザー溶接状態をより詳細に検出することができるレーザー溶接装置及びレーザー溶接方法を提供することを目的とする。 An object of the present disclosure is to provide a laser welding device and a laser welding method that can detect the laser welding state in more detail.
 以下、本開示の各実施形態及び変形例について、図面を参照しながら説明する。 Hereinafter, each embodiment and modification example of the present disclosure will be described with reference to the drawings.
 (実施形態)
 <全体構成>
 図1は、実施形態に係るレーザー溶接装置100の一例を示す模式図である。本開示では、直交座標系(X,Y,Z)を使用して説明する。図1の矢印にて示されるように、Z軸方向が、レーザー光105の光軸方向、Y軸方向がZ軸方向に直交する方向、X軸方向がY軸方向及びZ軸方向に直交する方向である。図1では、被加工物110、111同士の境界109がY軸方向に、かつ、被加工物110、111の幅方向がX軸方向に沿うように被加工物110、111が配置されている。
(Embodiment)
<Overall configuration>
FIG. 1 is a schematic diagram showing an example of a laser welding apparatus 100 according to an embodiment. This disclosure will be described using a Cartesian coordinate system (X, Y, Z). As shown by the arrows in FIG. 1, the Z-axis direction is the optical axis direction of the laser beam 105, the Y-axis direction is perpendicular to the Z-axis direction, and the X-axis direction is perpendicular to the Y-axis direction and the Z-axis direction. It is the direction. In FIG. 1, the workpieces 110 and 111 are arranged such that the boundary 109 between the workpieces 110 and 111 is along the Y-axis direction, and the width direction of the workpieces 110 and 111 is along the X-axis direction. .
 レーザー溶接装置100は、互いに突き合わせられた被加工物110、111の溶接を行う装置である。本実施形態では、被加工物110、111は、異種材料で形成されている。例えば、被加工物110は、Cuで形成されており、被加工物111は、Alで形成されている。なお、被加工物110、111は、ステージ(不図示)に載置される。レーザー光105を出射するレーザーヘッド104がステージに対してY軸方向に沿って相対的に移動することで、被加工物110、111のY軸方向に沿う境界109が連続的に溶接される。 The laser welding device 100 is a device that welds workpieces 110 and 111 that are butted against each other. In this embodiment, the workpieces 110 and 111 are made of different materials. For example, the workpiece 110 is made of Cu, and the workpiece 111 is made of Al. Note that the workpieces 110 and 111 are placed on a stage (not shown). By moving the laser head 104 that emits the laser beam 105 relative to the stage along the Y-axis direction, a boundary 109 between the workpieces 110 and 111 along the Y-axis direction is continuously welded.
 レーザー溶接装置100は、レーザー出射部101、第1の検出部106、第2の検出部107、制御部115、及び、判定部116を備えている。 The laser welding device 100 includes a laser emitting section 101, a first detection section 106, a second detection section 107, a control section 115, and a determination section 116.
 レーザー出射部101は、レーザー光105を被加工物110、111に照射する装置である。レーザー出射部101は、例えば、レーザー発振器102、光伝送部103、及び、レーザーヘッド104を備えている。 The laser emitting unit 101 is a device that irradiates the workpieces 110 and 111 with laser light 105. The laser emitting section 101 includes, for example, a laser oscillator 102, a light transmission section 103, and a laser head 104.
 レーザー発振器102は、レーザー光105を発振する。例えば、レーザー光105は、青色波長域、すなわち、400nm以上450nm以下程度の波長域のレーザー光である。なお、レーザー光105は、必ずしも、400nm以上450nm以下程度の波長域のレーザー光でなくともよい。以下、レーザー光105の波長域は、400nm以上450nm以下程度であるとして説明する。 A laser oscillator 102 oscillates a laser beam 105. For example, the laser light 105 is a laser light in a blue wavelength range, that is, a wavelength range of approximately 400 nm or more and 450 nm or less. Note that the laser light 105 does not necessarily have to be a laser light in a wavelength range of approximately 400 nm or more and 450 nm or less. Hereinafter, the wavelength range of the laser beam 105 will be described as approximately 400 nm or more and 450 nm or less.
 レーザー発振器102により発振されたレーザー光105は、光伝送部103によって、レーザーヘッド104に伝送される。 Laser light 105 oscillated by laser oscillator 102 is transmitted to laser head 104 by optical transmission section 103.
 レーザーヘッド104は、レーザー光105を受光し、被加工物110、111に向けて出射させる。レーザーヘッド104には、複数の光学部品が内蔵されており、複数の光学部品によりレーザー光105が所定の焦点位置に集光される。所定の焦点位置が、被加工物110、111の境界109に位置するとき、被加工物110、111は溶融し、接合される。レーザーヘッド104は、例えば、単芯ヘッド、または、ガルバノスキャナが設けられたガルバノヘッド等のレーザーヘッドであってもよい。 The laser head 104 receives the laser beam 105 and emits it toward the workpieces 110 and 111. The laser head 104 includes a plurality of optical components, and the laser beam 105 is focused on a predetermined focal position by the plurality of optical components. When the predetermined focus position is located at the boundary 109 of the workpieces 110, 111, the workpieces 110, 111 are melted and joined together. The laser head 104 may be a laser head such as a single-core head or a galvano head provided with a galvano scanner, for example.
 第1の検出部106及び第2の検出部107は、光を受光し、波長域毎に光強度を検出するセンサである。また、第1の検出部106及び第2の検出部107は、その検出結果を制御部115に出力する。 The first detection unit 106 and the second detection unit 107 are sensors that receive light and detect the light intensity for each wavelength range. Further, the first detection section 106 and the second detection section 107 output the detection results to the control section 115.
 第1の検出部106及び第2の検出部107は、レーザーヘッド104の周囲に、被加工物110、111からの光を個別に受光できるように配置されている。例えば、第1の検出部106は、第2の検出部107よりも被加工物110の近くに配置されることにより、被加工物110からの光を個別に受光する。第2の検出部107は、第1の検出部106よりも被加工物111の近くに配置されることにより、被加工物111からの光を個別に受光する。あるいは、第1の検出部106は、Cu由来のプラズマ光を選択的に受光するためのフィルタを有することにより、被加工物110からの光を個別に受光する。第2の検出部107は、Al由来のプラズマ光を選択的に受光するためのフィルタを有することにより、被加工物111からの光を個別に受光する。 The first detection unit 106 and the second detection unit 107 are arranged around the laser head 104 so as to be able to individually receive light from the workpieces 110 and 111. For example, the first detection unit 106 is placed closer to the workpiece 110 than the second detection unit 107, so that it individually receives light from the workpiece 110. The second detection unit 107 is arranged closer to the workpiece 111 than the first detection unit 106, so that it individually receives light from the workpiece 111. Alternatively, the first detection unit 106 individually receives light from the workpiece 110 by having a filter for selectively receiving plasma light derived from Cu. The second detection unit 107 individually receives light from the workpiece 111 by having a filter for selectively receiving plasma light derived from Al.
 第1の検出部106の受光部(不図示)は、レーザー光105の焦点位置に向けられている。また、第2の検出部107の受光部(不図示)は、レーザー光105の焦点位置に向けられている。 A light receiving section (not shown) of the first detection section 106 is directed toward the focal position of the laser beam 105. Further, a light receiving section (not shown) of the second detection section 107 is directed toward the focal position of the laser beam 105.
 レーザー光105が被加工物110、111の境界109に照射されることで、被加工物110、111のそれぞれにおいて複数種の光が生じる。本実施形態では、複数種の光は、プラズマ光112a、112b、反射光113a、113b、熱放射光114a、114bである。 By irradiating the boundary 109 between the workpieces 110 and 111 with the laser beam 105, multiple types of light are generated in each of the workpieces 110 and 111. In this embodiment, the plurality of types of light are plasma light 112a, 112b, reflected light 113a, 113b, and thermal radiation light 114a, 114b.
 プラズマ光112aは、被加工物110が加熱により溶融することで生じるプラズマから放出される光である。プラズマ光112bは、被加工物111が加熱により溶融することで生じるプラズマから放出される光である。プラズマ光112a、112bには、被加工物110、111の溶融状態が反映されている。プラズマ光112a、112bは、被加工物110、111の材料に応じて異なる波長を有する。 The plasma light 112a is light emitted from plasma generated when the workpiece 110 is melted by heating. The plasma light 112b is light emitted from plasma generated when the workpiece 111 is melted by heating. The molten states of the workpieces 110 and 111 are reflected in the plasma lights 112a and 112b. Plasma light 112a, 112b has different wavelengths depending on the material of workpieces 110, 111.
 反射光113aは、被加工物110で反射した、レーザー光105の反射光である。反射光113bは、被加工物111で反射した、レーザー光105の反射光である。反射光113a、113bは、被加工物110及び被加工物111の表面状態が反映されている。 The reflected light 113a is the reflected light of the laser beam 105 reflected by the workpiece 110. The reflected light 113b is the reflected light of the laser beam 105 reflected by the workpiece 111. The surface conditions of the workpiece 110 and the workpiece 111 are reflected in the reflected lights 113a and 113b.
 熱放射光114aは、被加工物110が高温状態となることにより放出される光である。熱放射光114bは、被加工物111が高温状態となることにより放出される光である。熱放射光114a、114bには、被加工物110及び被加工物111に対する入熱状態が反映されている。 Thermal radiation light 114a is light emitted when the workpiece 110 reaches a high temperature state. The thermal radiation light 114b is light emitted when the workpiece 111 reaches a high temperature. The heat input state to the workpiece 110 and the workpiece 111 is reflected in the thermal radiation lights 114a and 114b.
 プラズマ光112a、反射光113a、熱放射光114aは、互いに波長域が異なる。同様に、プラズマ光112b、反射光113b、熱放射光114bは、互いに波長域が異なる。例えば、400nm以上450nm以下程度の波長域のレーザー光を用いて、Cuで形成されている被加工物110とAlで形成されている被加工物111とをレーザー溶接する場合、プラズマ光112a、112bの波長は、500nm以上800nm以下、反射光113a、113bの波長は、400nm以上500nm以下、熱放射光114a、114bの波長は、1200nm以上1400nm以下となる。 The plasma light 112a, the reflected light 113a, and the thermal radiation light 114a have different wavelength ranges from each other. Similarly, the plasma light 112b, the reflected light 113b, and the thermal radiation light 114b have different wavelength ranges from each other. For example, when laser welding the workpiece 110 made of Cu and the workpiece 111 made of Al using laser light in a wavelength range of about 400 nm or more and 450 nm or less, the plasma beams 112a and 112b The wavelength of the reflected light beams 113a and 113b is between 400 nm and 500 nm, and the wavelength of the thermal radiation 114a and 114b is between 1200 nm and 1400 nm.
 第1の検出部106及び第2の検出部107は、例えば、検出光を分光する分光系を有し、分光系を介して波長域毎に光強度を検出する。第1の検出部106及び第2の検出部107には、分光系として検出光の波長域に応じて適した光学部品が搭載される。なお、第1の検出部106及び第2の検出部107は、波長毎に光強度を検出する分光センサを有し、分光センサを利用して波長域毎に区別して光強度を検出してもよい。 The first detection unit 106 and the second detection unit 107 have, for example, a spectroscopic system that spectrally separates the detection light, and detect the light intensity for each wavelength range via the spectroscopic system. The first detection unit 106 and the second detection unit 107 are equipped with optical components suitable for the wavelength range of the detection light as a spectroscopic system. Note that the first detection unit 106 and the second detection unit 107 have a spectral sensor that detects the light intensity for each wavelength, and even if the spectral sensor is used to detect the light intensity by distinguishing each wavelength range. good.
 よって、第1の検出部106は、プラズマ光112a、反射光113a、及び、熱放射光114aを区別して検出することができる。また、第2の検出部107は、プラズマ光112b、反射光113b、及び、熱放射光114bを区別して検出することができる。 Therefore, the first detection unit 106 can distinguish and detect the plasma light 112a, the reflected light 113a, and the thermal radiation light 114a. Further, the second detection unit 107 can distinguish and detect the plasma light 112b, the reflected light 113b, and the thermal radiation light 114b.
 制御部115は、レーザー溶接動作を制御する。制御部115は、例えば、CPU(Central Processing Unit)を有するコンピューターである。制御部115は、レーザー出射部101に対してレーザー光105の出射制御を行う。具体的には、制御部115は、レーザー光105の発振及び発振停止の制御、並びに、レーザー発振器102の発振出力等の制御を行う。 The control unit 115 controls the laser welding operation. The control unit 115 is, for example, a computer having a CPU (Central Processing Unit). The control section 115 controls the laser beam 105 to be emitted from the laser emitting section 101 . Specifically, the control unit 115 controls the oscillation and stopping of the laser beam 105, the oscillation output of the laser oscillator 102, and the like.
 また、制御部115は、被加工物110、111に対するレーザー光105の照射位置を相対移動させる。制御部115は、例えば、レーザーヘッド104を被加工物110、111に対して移動させる。 Furthermore, the control unit 115 relatively moves the irradiation position of the laser beam 105 with respect to the workpieces 110 and 111. The control unit 115 moves the laser head 104 relative to the workpieces 110 and 111, for example.
 制御部115は、例えば、ウォブリング制御を実行してもよい。ウォブリング制御は、照射位置が円の軌跡を描くように照射位置を移動させる制御であり、主に異種溶接時に実行される制御である。 The control unit 115 may perform wobbling control, for example. Wobbling control is a control in which the irradiation position is moved so that the irradiation position draws a circular locus, and is a control that is mainly executed during dissimilar welding.
 なお、制御部115は、被加工物110、111が載置されたステージを、レーザー光105の照射位置に対して移動するように構成されていてもよいし、当該ステージ及びレーザー光105の照射位置の両方を移動するように構成されていてもよい。 Note that the control unit 115 may be configured to move the stage on which the workpieces 110 and 111 are placed relative to the irradiation position of the laser beam 105, or may be configured to move the stage and the irradiation position of the laser beam 105. It may be configured to move both positions.
 判定部116は、第1の検出部106及び第2の検出部107の検出結果を取得し、取得した検出結果に基づいて、被加工物110、111の境界109におけるレーザー溶接状態を判定する。具体的には、判定部116は、境界109における溶融状態、表面状態及び入熱状態に基づいて、複数種類の溶接異常を判定することができ、例えば、レーザー光105の照射位置ずれ、及び、照射位置の溶接速度異常を検出できる。 The determination unit 116 acquires the detection results of the first detection unit 106 and the second detection unit 107, and determines the laser welding state at the boundary 109 between the workpieces 110 and 111 based on the acquired detection results. Specifically, the determining unit 116 can determine multiple types of welding abnormalities based on the molten state, surface state, and heat input state at the boundary 109, such as misalignment of the irradiation position of the laser beam 105, and Abnormal welding speed at the irradiation position can be detected.
 照射位置ずれとは、照射位置が境界109からX軸方向に遠ざかることである。照射位置ずれが生じている場合、被加工物110、111のいずれかにレーザー光105が十分に照射されない。 The irradiation position shift means that the irradiation position moves away from the boundary 109 in the X-axis direction. If the irradiation position has shifted, either the workpieces 110 or 111 will not be sufficiently irradiated with the laser beam 105.
 溶接速度異常とは、被加工物110、111に対して、レーザー光105の照射位置の相対的な走査速度(以下、「相対走査速度」と称す。)が速すぎることである。溶接速度異常が生じているとき、被加工物110、111の少なくとも一方が十分に溶融しなくなる。 Welding speed abnormality means that the relative scanning speed of the irradiation position of the laser beam 105 (hereinafter referred to as "relative scanning speed") with respect to the workpieces 110 and 111 is too fast. When an abnormal welding speed occurs, at least one of the workpieces 110 and 111 is not sufficiently melted.
 また、判定部116は、レーザー溶接状態に基づいて、レーザー溶接装置100によるレーザー溶接動作の補正量を算出する。補正量には、例えば、照射位置のシフト量、及び、照射位置の相対走査速度の変動量などがある。 Furthermore, the determination unit 116 calculates the amount of correction for the laser welding operation by the laser welding apparatus 100 based on the laser welding state. The amount of correction includes, for example, the amount of shift of the irradiation position and the amount of variation in the relative scanning speed of the irradiation position.
 <光強度の検出>
 図2A~図2Cは、第1の検出部106、及び、第2の検出部107による光検出結果を説明するための図である。図2A~図2Cにおいて、縦軸が検出光強度、横軸が時間である。図2A~図2Cには、縦軸が「検出光強度」と示されているが、実際には、プラズマ光、反射光、及び、熱放射光のいずれかの強度である。
<Light intensity detection>
FIGS. 2A to 2C are diagrams for explaining light detection results by the first detection unit 106 and the second detection unit 107. In FIGS. 2A to 2C, the vertical axis represents detected light intensity and the horizontal axis represents time. In FIGS. 2A to 2C, the vertical axis indicates "detection light intensity," but in reality, it is the intensity of any one of plasma light, reflected light, and thermal radiation light.
 図2Aでは、検出部106、107の光強度が常に基準範囲内にある。基準範囲とは、被加工物110と被加工物111とが異常なくレーザー溶接されている場合に光強度が取り得る光強度範囲である。基準範囲は、光の種類ごとに設定されている。検出光強度が、常に基準範囲内にある場合、判定部116は、検出光強度が「正常」であると判定する。 In FIG. 2A, the light intensity of the detection units 106 and 107 is always within the reference range. The reference range is a light intensity range in which the light intensity can be when the workpiece 110 and the workpiece 111 are laser welded without any abnormality. The reference range is set for each type of light. When the detected light intensity is always within the reference range, the determination unit 116 determines that the detected light intensity is "normal".
 図2Bでは、検出部106、107の光強度が常に基準範囲よりも大きい。この場合、判定部116は、検出光強度が「上限異常」であると判定する。 In FIG. 2B, the light intensity of the detection units 106 and 107 is always greater than the reference range. In this case, the determining unit 116 determines that the detected light intensity is "upper limit abnormality".
 図2Cでは、検出部106、107の光強度が常に基準範囲よりも小さい。この場合、判定部116は、検出光強度が「下限異常」であると判定する。 In FIG. 2C, the light intensity of the detection units 106 and 107 is always smaller than the reference range. In this case, the determining unit 116 determines that the detected light intensity is "lower limit abnormality".
 <溶接異常の判定例>
 以下、(1)照射位置ずれ、(2)溶接速度異常、及び、(3)照射位置ずれかつ溶接速度異常を例に挙げて、溶接異常の判定について説明する。
<Example of determining welding abnormality>
Hereinafter, determination of a welding abnormality will be described using (1) irradiation position deviation, (2) welding speed abnormality, and (3) irradiation position deviation and welding speed abnormality as examples.
 (1)照射位置ずれ
 図3、図4A及び図4Bを参照しつつ、判定部116による照射位置ずれの判定について説明する。
(1) Irradiation Position Shift The determination of irradiation position shift by the determination unit 116 will be described with reference to FIGS. 3, 4A, and 4B.
 図3は、溶接時におけるレーザー光105の照射位置の走査軌跡を例示する図である。図3の203は、正常に溶接されているときのレーザー光105の照射位置の走査軌跡である。図3の204は、照射位置ずれが生じるときの照射位置の走査軌跡である。 FIG. 3 is a diagram illustrating the scanning locus of the irradiation position of the laser beam 105 during welding. 203 in FIG. 3 is a scanning locus of the irradiation position of the laser beam 105 during normal welding. 204 in FIG. 3 is a scanning locus of the irradiation position when the irradiation position shifts.
 図3のSP1~SP5は、レーザー光105の照射範囲である。レーザー光105が照射範囲SP1~SP4に照射されているとき、レーザー光105は被加工物110、111の両方に照射されている。レーザー光105が照射範囲SP5に照射されているとき、レーザー光105は被加工物110に照射され、被加工物111には照射されていない。 SP1 to SP5 in FIG. 3 are the irradiation ranges of the laser beam 105. When the laser beam 105 is irradiating the irradiation ranges SP1 to SP4, the laser beam 105 is irradiating both the workpieces 110 and 111. When the laser beam 105 is irradiating the irradiation range SP5, the workpiece 110 is irradiated with the laser beam 105, but the workpiece 111 is not irradiated with the laser beam 105.
 照射位置が軌跡203のように走査されている場合、溶接時間内において、プラズマ光112a、112b、反射光113a、113b、熱放射光114a、114bのいずれの光強度も基準範囲内にある。 When the irradiation position is scanned like the trajectory 203, the light intensity of the plasma light 112a, 112b, reflected light 113a, 113b, and thermal radiation light 114a, 114b is within the reference range within the welding time.
 図4A、及び、図4Bは、被加工物110側への照射位置ずれが生じているときの検出部106、107の検出結果の一例である。図4A、及び、図4Bは、レーザー光105が照射範囲SP5(図3参照)に照射されているときの検出結果である。図4Aは、第1の検出部106による検出結果を示しており、図4Bは、第2の検出部107による検出結果を示している。 FIGS. 4A and 4B are examples of detection results of the detection units 106 and 107 when the irradiation position shifts toward the workpiece 110 side. FIGS. 4A and 4B show detection results when the laser beam 105 is irradiated to the irradiation range SP5 (see FIG. 3). 4A shows the detection result by the first detection unit 106, and FIG. 4B shows the detection result by the second detection unit 107.
 照射位置が軌跡204のように走査されると、複数種の光のうちのいずれかの強度が基準範囲外となる。 When the irradiation position is scanned like the trajectory 204, the intensity of one of the multiple types of light falls outside the reference range.
 レーザー光105が照射範囲SP5に照射されているとき、レーザー光105が照射範囲SP4に照射されているときと比べて、被加工物111が溶融されにくくなり、被加工物111のプラズマ量が減少する。その結果、被加工物111のプラズマからの放出を示すプラズマ光112bの光量が減少する。 When the laser beam 105 is irradiated to the irradiation range SP5, the workpiece 111 is less likely to be melted than when the laser beam 105 is irradiated to the irradiation range SP4, and the amount of plasma on the workpiece 111 is reduced. do. As a result, the amount of plasma light 112b indicating emission from the plasma of the workpiece 111 decreases.
 よって、図4Bに示されているように、レーザー光105が照射範囲SP5に照射されているとき、プラズマ光112bの強度として、基準範囲よりも小さい値が検出される。 Therefore, as shown in FIG. 4B, when the laser beam 105 is irradiating the irradiation range SP5, a value smaller than the reference range is detected as the intensity of the plasma light 112b.
 また、レーザー光105が照射範囲SP5に照射されているとき、レーザー光105が照射範囲SP4に照射されているときと比べて、被加工物111に対するレーザー光105の照射量が少ないので、被加工物111からの反射を示す反射光113bの光量が減少する。 Furthermore, when the laser beam 105 is irradiated to the irradiation range SP5, the amount of irradiation of the laser beam 105 to the workpiece 111 is smaller than when the laser beam 105 is irradiated to the irradiation range SP4, so the workpiece The amount of reflected light 113b indicating reflection from the object 111 decreases.
 よって、図4Bに示されているように、レーザー光105が照射範囲SP5に照射されているとき、反射光113bの強度として、基準範囲よりも小さい値が検出される。 Therefore, as shown in FIG. 4B, when the laser beam 105 is irradiated to the irradiation range SP5, a value smaller than the reference range is detected as the intensity of the reflected light 113b.
 レーザー光105が照射範囲SP4に照射されているとき、被加工物110と被加工物111とが均等に加熱される。しかし、レーザー光105が照射範囲SP5に照射されているとき、より一層被加工物110が加熱され、被加工物111が加熱されにくくなる。その結果、レーザー光105が照射範囲SP4に照射されているときと比べて、被加工物110に対する入熱量が大きく、被加工物110からの放出を示す熱放射光114aの光量が多い。一方、被加工物111に対する入熱量が小さく、被加工物111からの放出を示す熱放射光114bの光量が少ない。 When the laser beam 105 is irradiated to the irradiation range SP4, the workpiece 110 and the workpiece 111 are heated evenly. However, when the laser beam 105 is irradiated to the irradiation range SP5, the workpiece 110 is heated even more, and the workpiece 111 is less likely to be heated. As a result, compared to when the laser beam 105 is irradiated to the irradiation range SP4, the amount of heat input to the workpiece 110 is large, and the amount of thermal radiation light 114a indicating emission from the workpiece 110 is large. On the other hand, the amount of heat input to the workpiece 111 is small, and the amount of thermal radiation light 114b indicating emission from the workpiece 111 is small.
 よって、レーザー光105が照射範囲SP5に照射されているとき、図4Aに示されているように、熱放射光114aの強度として、基準範囲よりも大きい値が検出される。また、図4Bに示されているように、熱放射光114bの強度として、基準範囲よりも小さい値が検出される。 Therefore, when the laser beam 105 is irradiated to the irradiation range SP5, as shown in FIG. 4A, a value larger than the reference range is detected as the intensity of the thermal radiation light 114a. Further, as shown in FIG. 4B, a value smaller than the reference range is detected as the intensity of the thermal radiation light 114b.
 したがって、判定部116は、プラズマ光112a及び反射光113aの強度が「正常」、熱放射光114aの強度が「上限異常」、並びに、プラズマ光112b、反射光113b、及び、熱放射光114bの強度が「下限異常」である場合、被加工物110側への照射位置ずれが生じていると判定する。 Therefore, the determination unit 116 determines that the intensities of the plasma light 112a and the reflected light 113a are "normal", the intensity of the thermal radiation light 114a is "upper limit abnormal", and that the intensities of the plasma light 112b, the reflected light 113b, and the thermal radiation light 114b are If the intensity is "lower limit abnormality", it is determined that the irradiation position has shifted toward the workpiece 110 side.
 なお、判定部116は、プラズマ光112b及び反射光113bの強度が「正常」、熱放射光114bが「上限異常」、並びに、プラズマ光112a、反射光113a、及び、熱放射光114aが「下限異常」である場合、被加工物111側への照射位置ずれが生じていると判定する。 Note that the determination unit 116 determines that the intensities of the plasma light 112b and the reflected light 113b are "normal", that the thermal radiation 114b is "abnormal at the upper limit", and that the intensities of the plasma light 112a, the reflected light 113a, and the thermal radiation 114a are "lower limit". If it is "abnormal", it is determined that a shift in the irradiation position toward the workpiece 111 has occurred.
 (2)溶接速度異常
 図5A、及び、図5Bを参照しつつ、判定部116による溶接速度異常の判定について説明する。
(2) Welding speed abnormality The determination of welding speed abnormality by the determination unit 116 will be described with reference to FIGS. 5A and 5B.
 図5Aは、溶接速度異常が生じているときの第1の検出部106の検出結果の一例である。図5Bは、溶接速度異常が生じているときの第2の検出部107の検出結果の一例である。 FIG. 5A is an example of a detection result of the first detection unit 106 when an abnormality in welding speed occurs. FIG. 5B is an example of a detection result of the second detection unit 107 when an abnormal welding speed occurs.
 図5A及び図5Bの検出結果は、被加工物110が十分に溶融され、被加工物111が十分に溶融されていないときの結果である。すなわち、図5A及び図5Bの検出結果は、被加工物110が十分に溶融され、被加工物111が十分に溶融されない程度の走査速度で照射位置が被加工物110、111に対して移動しているときの結果である。 The detection results shown in FIGS. 5A and 5B are the results when the workpiece 110 is sufficiently melted and the workpiece 111 is not sufficiently melted. In other words, the detection results in FIGS. 5A and 5B indicate that the irradiation position moves relative to the workpieces 110 and 111 at a scanning speed that is such that the workpiece 110 is sufficiently melted and the workpiece 111 is not sufficiently melted. This is the result when
 なお、Cu(融点1085℃)は、Al(融点660℃)よりも融点が高いものの、レーザー光105(400nm以上450nm以下程度の波長域)を吸収しやすい。このため、Cu(融点1085℃)は、Al(融点660℃)よりも入熱しやすく、溶融しやすい。よって、レーザー光105でレーザー溶接を行う場合、被加工物110の方が、被加工物111よりも溶融しやすい。もし、使用するレーザー光105の波長域が変われば、被加工物111の方が、被加工物110よりも溶融しやすくなることもある。 Although Cu (melting point: 1085° C.) has a higher melting point than Al (melting point: 660° C.), it easily absorbs laser light 105 (wavelength range of approximately 400 nm or more and 450 nm or less). Therefore, Cu (melting point: 1085° C.) is easier to heat and melt than Al (melting point: 660° C.). Therefore, when laser welding is performed using the laser beam 105, the workpiece 110 is more easily melted than the workpiece 111. If the wavelength range of the laser beam 105 used changes, the workpiece 111 may be more easily melted than the workpiece 110.
 以下の説明において、被加工物が十分に溶融されていないことを「溶融異常」と称することもある。 In the following description, the fact that the workpiece is not sufficiently melted may be referred to as "melting abnormality".
 被加工物110に溶融異常がない場合、溶接時間内において、プラズマ光112a、反射光113a、熱放射光114aのいずれの強度も基準範囲内となる。 If there is no melting abnormality in the workpiece 110, the intensity of the plasma light 112a, reflected light 113a, and thermal radiation light 114a all fall within the reference range during the welding time.
 被加工物111に溶融異常がある場合、被加工物111のプラズマ量が少ないので、被加工物111のプラズマからの放出を示すプラズマ光112bの光量が少ない。 When there is a melting abnormality in the workpiece 111, the amount of plasma on the workpiece 111 is small, so the amount of plasma light 112b indicating emission from the plasma of the workpiece 111 is small.
 また、被加工物111に溶融異常がある場合、被加工物111が十分に溶融されておらず、固体状態の被加工物111の体積が大きいので、被加工物111の表面からの反射を示す反射光113bの光量が多い。 In addition, if there is a melting abnormality in the workpiece 111, the workpiece 111 is not sufficiently melted and the volume of the solid workpiece 111 is large, so reflection from the surface of the workpiece 111 is shown. The amount of reflected light 113b is large.
 また、被加工物111に溶融異常があることは、被加工物111の温度が低く、入熱量が少ないことを意味する。すなわち、被加工物111に溶融異常がある場合、被加工物111からの放出を示す熱放射光114bの光量が少ない。 Further, the presence of melting abnormality in the workpiece 111 means that the temperature of the workpiece 111 is low and the amount of heat input is small. That is, when there is a melting abnormality in the workpiece 111, the amount of thermal radiation light 114b indicating emission from the workpiece 111 is small.
 したがって、判定部116は、プラズマ光112a、反射光113a、及び、熱放射光114aの強度が「正常」、プラズマ光112b、及び、熱放射光114bが「下限異常」、並びに、反射光113bが「上限異常」である場合、溶接速度異常が生じていると判定する。判定部116は、さらに、被加工物111の溶融異常が生じていると判定してもよい。 Therefore, the determination unit 116 determines that the intensities of the plasma light 112a, the reflected light 113a, and the thermal radiation light 114a are "normal," that the plasma light 112b and the thermal radiation light 114b are "lower limit abnormal," and that the reflected light 113b is "abnormal." If it is "upper limit abnormality", it is determined that a welding speed abnormality has occurred. The determination unit 116 may further determine that the workpiece 111 has a melting abnormality.
 なお、判定部116は、プラズマ光112a、112b、及び、熱放射光114a、114bが「下限異常」、並びに、反射光113a、113bが「上限異常」である場合も、溶接速度異常が生じていると判定する。判定部116は、さらに、被加工物110、111の両方において溶融異常が生じていると判定してもよい。 Note that the determination unit 116 also determines that welding speed abnormality has occurred when the plasma light 112a, 112b and the thermal radiation light 114a, 114b are "lower limit abnormality" and the reflected light beams 113a, 113b are "upper limit abnormality". It is determined that there is. The determining unit 116 may further determine that melting abnormality has occurred in both the workpieces 110 and 111.
 (3)照射位置ずれかつ溶接速度異常
 レーザー溶接において、被加工物110側への照射位置ずれが生じ、かつ、溶接速度異常に起因して被加工物111の溶融異常が生じている場合、図4A及び図4Bの検出結果と同様の結果が得られる。
(3) Irradiation position deviation and welding speed abnormality In laser welding, when an irradiation position deviation toward the workpiece 110 side occurs and abnormal melting of the workpiece 111 occurs due to the welding speed abnormality, Results similar to the detection results in FIGS. 4A and 4B are obtained.
 すなわち、プラズマ光112a及び反射光113aの強度が「正常」、熱放射光114aが「上限異常」、並びに、プラズマ光112b、反射光113b、及び、熱放射光114bが「下限異常」となる。 That is, the intensities of the plasma light 112a and the reflected light 113a are "normal", the thermal radiation light 114a is the "upper limit abnormality", and the plasma light 112b, the reflected light 113b, and the thermal radiation light 114b are the "lower limit abnormality".
 このように、照射位置ずれかつ溶接速度異常が生じているときの検出パターンが、照射位置ずれが生じているときの検出パターンと同じ場合、レーザー溶接装置100は、まず、照射位置ずれを判定し、判定結果に応じて照射位置ずれを解消させる。その後、レーザー溶接装置100は、溶接速度異常を判定し、判定結果に応じて溶接位置ずれを解消させる。 In this way, if the detection pattern when an irradiation position shift and welding speed abnormality occurs is the same as the detection pattern when an irradiation position shift occurs, the laser welding apparatus 100 first determines the irradiation position shift. , and eliminate the irradiation position shift according to the determination result. Thereafter, the laser welding apparatus 100 determines whether the welding speed is abnormal, and eliminates the welding position shift according to the determination result.
 なお、レーザー溶接において、被加工物111側への照射位置ずれが生じ、かつ、溶接速度異常に起因して被加工物110及び111の溶融異常が生じている場合、プラズマ光112a、反射光113a、及び、熱放射光114aが「下限異常」、プラズマ光112b及び熱放射光114bが「下限異常」、反射光113bの強度が「上限異常」となる。 In addition, in laser welding, if the irradiation position shifts toward the workpiece 111 side and abnormal melting of the workpieces 110 and 111 occurs due to an abnormal welding speed, the plasma light 112a and the reflected light 113a , and the thermal radiation light 114a is the "lower limit abnormality", the plasma light 112b and the thermal radiation light 114b are the "lower limit abnormality", and the intensity of the reflected light 113b is the "upper limit abnormality".
 このように、照射位置ずれかつ溶接速度異常が生じているときの検出パターンが、照射位置ずれが生じているときの検出パターンと異なる場合、上述したように、レーザー溶接装置100は、まず、照射位置ずれを解消させ、次いで、溶接速度異常を解消させてもよい。もしくは、レーザー溶接装置100は、照射位置ずれ及び溶接速度異常を同時に解消させるように制御してもよい。 As described above, when the detection pattern when the irradiation position shift and welding speed abnormality occur is different from the detection pattern when the irradiation position shift occurs, the laser welding apparatus 100 first The positional deviation may be resolved and then the welding speed abnormality may be resolved. Alternatively, the laser welding apparatus 100 may be controlled so as to simultaneously eliminate the irradiation position shift and the welding speed abnormality.
 <レーザー溶接動作>
 次に、レーザー溶接装置100によるレーザー溶接動作について説明する。図6は、レーザー溶接装置100のレーザー溶接動作の一例を示すフローチャートである。以下の説明において、溶接異常の判定対象は、照射位置ずれ、及び、溶接速度異常であるとして説明する。
<Laser welding operation>
Next, a laser welding operation by the laser welding apparatus 100 will be explained. FIG. 6 is a flowchart showing an example of the laser welding operation of the laser welding apparatus 100. In the following description, it will be assumed that the targets for determining welding abnormality are irradiation position deviation and welding speed abnormality.
 まず、ステップS11において、制御部115は、レーザー光105の出射及び走査を開始する。具体的には、制御部115は、レーザー出射部101を制御して、被加工物110、111の境界109に向けてレーザー光105の出射を開始させるとともに、レーザーヘッド104を境界109に沿って所定速度で移動させる。所定速度は、予め決定されている走査速度である。 First, in step S11, the control unit 115 starts emitting and scanning the laser beam 105. Specifically, the control unit 115 controls the laser emitting unit 101 to start emitting the laser beam 105 toward the boundary 109 between the workpieces 110 and 111, and also causes the laser head 104 to move along the boundary 109. Move at a predetermined speed. The predetermined speed is a predetermined scanning speed.
 次いで、ステップS12において、第1の検出部106、及び、第2の検出部107は、それぞれ被加工物110からの光及び被加工物111からの光の検出を開始する。 Next, in step S12, the first detection unit 106 and the second detection unit 107 start detecting light from the workpiece 110 and light from the workpiece 111, respectively.
 次に、ステップS13において、判定部116は、プラズマ光112a、112b、反射光113a、113b、熱放射光114a、114bの光強度が「正常」、「上限異常」及び「下限異常」のいずれであるかを判定し、判定結果に基づいて溶接異常の有無を判定する。 Next, in step S13, the determination unit 116 determines whether the light intensity of the plasma light 112a, 112b, reflected light 113a, 113b, and thermal radiation light 114a, 114b is "normal", "upper limit abnormality", or "lower limit abnormality". Based on the determination result, it is determined whether there is a welding abnormality.
 判定部116は、例えば、プラズマ光112a、112b、反射光113a、113b、熱放射光114a、114bの強度がいずれも「正常」である場合、「溶接異常なし」と判定し、いずれかの光の強度が「上限異常」または「下限異常」である場合、「溶接異常あり」と判定する。 For example, when the intensities of the plasma lights 112a and 112b, the reflected lights 113a and 113b, and the thermal radiation lights 114a and 114b are all "normal", the determination unit 116 determines that there is "no welding abnormality", and determines that there is no welding abnormality. If the strength of is "upper limit abnormality" or "lower limit abnormality", it is determined that "welding abnormality exists".
 「溶接異常あり」と判定された場合(ステップS13の“YES”)、ステップS14に遷移して、判定部116は、光強度の検出パターンと、予め設定されている異常検出パターンとに基づいて、溶接異常の種類を特定する。異常検出パターンは、溶接異常の種類ごとに設定されている。異常検出パターンには、例えば、以下の異常検出パターン(E1)~(E4)が含まれる。 If it is determined that "there is a welding abnormality" ("YES" in step S13), the process moves to step S14, and the determination unit 116 performs a welding process based on the light intensity detection pattern and a preset abnormality detection pattern. , to identify the type of welding abnormality. An abnormality detection pattern is set for each type of welding abnormality. The abnormality detection patterns include, for example, the following abnormality detection patterns (E1) to (E4).
 (E1)被加工物110側への照射位置ずれ時のパターン
 プラズマ光112a及び反射光113aの強度が「正常」、熱放射光114aが「上限異常」、並びに、プラズマ光112b、反射光113b、及び、熱放射光114bが「下限異常」。
(E1) Pattern when the irradiation position shifts toward the workpiece 110 side The intensities of the plasma light 112a and the reflected light 113a are "normal", the thermal radiation light 114a is "upper limit abnormal", and the plasma light 112b, the reflected light 113b, And the thermal radiation light 114b is "lower limit abnormality".
 (E2)被加工物111側への照射位置ずれ時のパターン
 プラズマ光112b及び反射光113bの強度が「正常」、熱放射光114bが「上限異常」、並びに、プラズマ光112a、反射光113a、及び、熱放射光114aが「下限異常」。
(E2) Pattern when the irradiation position shifts toward the workpiece 111 side The intensities of the plasma light 112b and the reflected light 113b are "normal", the thermal radiation light 114b is "abnormal upper limit", and the plasma light 112a, the reflected light 113a, And the thermal radiation light 114a is "lower limit abnormality".
 (E3)溶接速度異常(被加工物111の溶融異常)時のパターン
 プラズマ光112a、反射光113a、及び、熱放射光114aの強度が「正常」、プラズマ光112b、及び、熱放射光114bが「下限異常」、並びに、反射光113bが「上限異常」。
(E3) Pattern when welding speed is abnormal (melting abnormality of workpiece 111) The intensity of plasma light 112a, reflected light 113a, and thermal radiation light 114a is "normal", and the intensity of plasma light 112b and thermal radiation light 114b is "normal". "Lower limit abnormality" and the reflected light 113b are "upper limit abnormality".
 (E4)溶接速度異常(被加工物110、111の溶融異常)時のパターン
 プラズマ光112a、112b、及び、熱放射光114a、114bが「下限異常」、並びに、反射光113a、113bが「上限異常」。
(E4) Pattern when welding speed abnormality (melting abnormality of workpieces 110, 111) Plasma light 112a, 112b and thermal radiation light 114a, 114b are "lower limit abnormality", and reflected light 113a, 113b are "upper limit abnormality" Abnormal”.
 「溶接異常」が、少なくとも「照射位置ずれ」を伴うもの(パターン(E1)及び(E2)等)である場合(ステップS15の“YES”)、ステップS16に遷移して、判定部116は、基準範囲に対する複数種の光の強度のずれ量を光の種類ごとに算出する。次いで、ステップS17において、判定部116は、光の種類ごとのずれ量に基づいて、ステップS13の判定時点での照射位置に対するシフト量を算出する。このシフト量は、照射位置を境界109にシフト量近づけた場合、複数種の光の強度のいずれもが基準範囲内の値になると推定される値のことである。 If the "welding abnormality" is accompanied by at least "irradiation position shift" (patterns (E1) and (E2), etc.) ("YES" in step S15), the process moves to step S16, and the determination unit 116 The amount of deviation in the intensity of the plurality of types of light with respect to the reference range is calculated for each type of light. Next, in step S17, the determination unit 116 calculates the amount of shift with respect to the irradiation position at the time of determination in step S13, based on the amount of shift for each type of light. This shift amount is a value that is estimated to cause all of the intensities of the plurality of types of light to fall within the reference range when the irradiation position is brought closer to the boundary 109 by the shift amount.
 次に、ステップS18において、制御部115は、シフト量に基づいて照射位置を補正する。具体的には、制御部115は、レーザーヘッド104をX軸方向にシフト量、シフトさせて、照射位置を境界109に近づける。その後、ステップS13に遷移する。 Next, in step S18, the control unit 115 corrects the irradiation position based on the shift amount. Specifically, the control unit 115 shifts the laser head 104 by a shift amount in the X-axis direction to bring the irradiation position closer to the boundary 109. After that, the process moves to step S13.
 「溶接異常」が、「照射位置ずれ」を伴わず、「溶接速度異常」を伴うもの(パターン(E3)及び(E4)等)である場合(ステップS15の“NO”)、ステップS19に遷移して、判定部116は、基準範囲に対する複数種の光の強度のずれ量を、光の種類ごとに算出する。次いで、ステップS20において、判定部116は、光の種類ごとのずれ量に基づいて、ステップS13の判定時点での走査速度に対する変動量を算出する。この変動量は、走査速度を変動量減少させた場合、複数種の光の強度のいずれもが基準範囲内の値になると推定される値のことである。 If the "welding abnormality" is not accompanied by "irradiation position shift" but is accompanied by "welding speed abnormality" (patterns (E3) and (E4), etc.) ("NO" in step S15), the process moves to step S19. Then, the determination unit 116 calculates the amount of deviation in the intensity of the plurality of types of light with respect to the reference range for each type of light. Next, in step S20, the determination unit 116 calculates the amount of variation with respect to the scanning speed at the time of determination in step S13, based on the amount of shift for each type of light. This amount of variation is a value that is estimated to cause all of the intensities of the plurality of types of light to fall within the reference range when the scanning speed is reduced by the amount of variation.
 次に、ステップS21において、制御部115は、変動量に基づいて走査速度を補正する。具体的には、制御部115は、走査速度を変動量減少させる。その後、ステップS13に遷移する。 Next, in step S21, the control unit 115 corrects the scanning speed based on the amount of variation. Specifically, the control unit 115 reduces the scanning speed by the amount of variation. After that, the process moves to step S13.
 「溶接異常なし」と判定された場合(ステップS13の“NO”)、ステップS22に遷移して、制御部115は、レーザー溶接が完了したか否かを判定する。例えば、制御部115は、照射位置が目的位置に達しているか否かに基づいてレーザー溶接が完了したか否かを判定してもよい。 If it is determined that there is "no welding abnormality" ("NO" in step S13), the process proceeds to step S22, and the control unit 115 determines whether laser welding is completed. For example, the control unit 115 may determine whether laser welding is completed based on whether the irradiation position has reached the target position.
 レーザー溶接が完了していない場合(ステップS22の“NO”)、ステップS13に遷移して、レーザー溶接が完了するまで、ステップS13~S21の中の必要な処理が繰り返される。 If the laser welding is not completed (“NO” in step S22), the process moves to step S13, and the necessary processes in steps S13 to S21 are repeated until the laser welding is completed.
 レーザー溶接が完了した場合(ステップS22の“YES”)、ステップS23に遷移して、制御部115は、レーザー光の出射、及び、照射位置の走査を終了し、検出部106、107は、光の検出を終了する。ステップS23において、具体的には、制御部115は、レーザーヘッド104の移動、及び、レーザー出射部101によるレーザー光105の照射を停止させる。 When the laser welding is completed (“YES” in step S22), the process moves to step S23, where the control unit 115 finishes emitting the laser beam and scanning the irradiation position, and the detection units 106 and 107 Terminate detection. In step S23, specifically, the control unit 115 stops the movement of the laser head 104 and the irradiation of the laser beam 105 by the laser emitting unit 101.
 なお、レーザー溶接において、照射位置ずれ及び溶接速度異常の両方が生じている場合、ステップS15において、溶接異常が「照射位置ずれ」であると判定され、照射位置が適正位置にシフトした後、ステップS15で、溶接異常が「溶接速度異常」であると判定される。よって、制御部115は、まず、1ステップ目として照射位置ずれを解消させ、2ステップ目として溶接速度異常を解消させる。 Note that in laser welding, if both an irradiation position deviation and a welding speed abnormality occur, it is determined in step S15 that the welding abnormality is an "irradiation position deviation", and after the irradiation position is shifted to an appropriate position, step S15 is performed. In S15, it is determined that the welding abnormality is "abnormal welding speed." Therefore, the control unit 115 first eliminates the irradiation position shift as a first step, and eliminates the welding speed abnormality as a second step.
 また、予め設定されている異常検出パターンに、以下の異常検出パターン(E5)が含まれていてもよい。 Furthermore, the following abnormality detection pattern (E5) may be included in the preset abnormality detection patterns.
 (E5)被加工物111側への照射位置ずれ、及び、溶接速度異常(被加工物110及び111の溶融異常)時のパターン
 プラズマ光112a、反射光113a、熱放射光114a、プラズマ光112b及び熱放射光114bが「下限異常」、反射光113bの強度が「上限異常」。
(E5) Pattern when irradiation position shift toward workpiece 111 side and welding speed abnormality (melting abnormality of workpieces 110 and 111) Plasma light 112a, reflected light 113a, thermal radiation light 114a, plasma light 112b, The intensity of the thermal radiation 114b is "lower limit abnormality" and the intensity of the reflected light 113b is "upper limit abnormality".
 そして、検出パターンが、異常検出パターン(E5)に該当する場合、判定部116は、溶接異常が「照射位置ずれ」かつ「溶接速度異常」であると判定し、制御部115は、照射位置を適正位置にシフトさせ、それと同時に走査速度を適正速度に変更してもよい。すなわち、制御部115は、照射位置ずれの解消と、溶接速度異常の解消を同時に行ってもよい。 When the detection pattern corresponds to the abnormality detection pattern (E5), the determination unit 116 determines that the welding abnormality is “irradiation position deviation” and “welding speed abnormality”, and the control unit 115 changes the irradiation position. The scanning speed may be changed to the appropriate speed at the same time as shifting to the appropriate position. That is, the control unit 115 may eliminate the irradiation position shift and the welding speed abnormality at the same time.
 また、ステップS13において、判定部116は、各光強度の検出パターンが、予め設定されている異常検出パターンのいずれかに該当する場合に、「溶接異常あり」と判定し、いずれの異常検出パターンにも該当しない場合、「溶接異常なし」と判定してもよい。 In addition, in step S13, the determination unit 116 determines that "welding abnormality exists" when the detection pattern of each light intensity corresponds to any of the preset abnormality detection patterns, and selects any abnormality detection pattern. If this does not apply, it may be determined that there is no welding abnormality.
 <実施形態と従来発明との比較>
 図7及び図8を参照しつつ、特許文献1及び特許文献2のレーザー溶接装置に対する実施形態に係るレーザー溶接装置100の利点を説明する。
<Comparison between embodiment and conventional invention>
Advantages of the laser welding device 100 according to the embodiment over the laser welding devices of Patent Document 1 and Patent Document 2 will be described with reference to FIGS. 7 and 8.
 図7は、実施形態に係るレーザー溶接装置100の光検出結果と特許文献1及び特許文献2の発明の光検出結果を示す図である。図7には、溶接状態として、「正常」、「被加工物110側への照射位置ずれ」、及び、「被加工物111の溶融異常を伴う溶接速度異常」の3パターンが示されている。そして、図7には、溶接状態毎に、被加工物110側の検出部、及び、被加工物111側の検出部による光検出結果が示されている。 FIG. 7 is a diagram showing the light detection results of the laser welding apparatus 100 according to the embodiment and the light detection results of the inventions of Patent Document 1 and Patent Document 2. FIG. 7 shows three patterns of welding conditions: "normal", "deviation of irradiation position toward workpiece 110 side", and "abnormal welding speed accompanied by melting abnormality of workpiece 111". . FIG. 7 shows the optical detection results by the detection unit on the workpiece 110 side and the detection unit on the workpiece 111 side for each welding state.
 図8は、実施形態に係るレーザー溶接装置100、特許文献1及び特許文献2のレーザー溶接装置の検出可否を説明する図である。図8中の「A」は、検出可能であることを示しており、「C」は検出不能であることを示しており、「B」は、何らかの溶接異常を検出できるが、溶接異常の種類を区別することができないことを示している。 FIG. 8 is a diagram illustrating detectability of the laser welding device 100 according to the embodiment and the laser welding devices of Patent Document 1 and Patent Document 2. "A" in FIG. 8 indicates that it is detectable, "C" indicates that it is not detectable, and "B" indicates that some welding abnormality can be detected, but the type of welding abnormality is This shows that it is not possible to distinguish between
 特許文献1では、被加工物110側の検出部、及び、被加工物111側の検出部は、被加工物110、111で生じた光を波長域毎に区別することなく検出する。したがって、特許文献1における検出対象は、プラズマ光112a、反射光113a、及び、熱放射光114aを含む光の強度、及び、プラズマ光112b、反射光113b、及び、熱放射光114bを含む光の強度である。 In Patent Document 1, a detection unit on the workpiece 110 side and a detection unit on the workpiece 111 side detect light generated in the workpieces 110 and 111 without distinguishing them for each wavelength range. Therefore, the detection target in Patent Document 1 is the intensity of light including plasma light 112a, reflected light 113a, and thermal radiation light 114a, and the intensity of light including plasma light 112b, reflected light 113b, and thermal radiation light 114b. It is strength.
 「被加工物110側への照射位置ずれ」が生じているとき、特許文献1の被加工物110側の検出部で検出される光の強度は、「上限異常」となり、被加工物111側の検出部で検出される光の強度は、「下限異常」となる。 When a "deviation in the irradiation position toward the workpiece 110 side" occurs, the intensity of the light detected by the detection unit on the workpiece 110 side in Patent Document 1 becomes "upper limit abnormality", and the intensity on the workpiece 111 side The intensity of light detected by the detection unit is at the "lower limit abnormality".
 一方、「被加工物111の溶融異常を伴う溶接速度異常」が生じているとき、特許文献1の被加工物110側の検出部で検出される光の強度は、「正常」となる。また、被加工物111のプラズマからの放出を示すプラズマ光112b及び被加工物111からの放出を示す熱放射光114bの光量が減少するものの、被加工物111からの反射を示す反射光113bの光量が増加する。すなわち、被加工物111で生じる光の総量が、「溶接異常」が生じていないときに被加工物111で生じる光の総量とほぼ同じとなる。よって、被加工物111側の検出部で検出される光の強度も「正常」となる。 On the other hand, when "abnormal welding speed accompanied by abnormal melting of the workpiece 111" occurs, the intensity of light detected by the detection unit on the workpiece 110 side of Patent Document 1 becomes "normal". Furthermore, although the light intensity of the plasma light 112b indicating emission from the plasma of the workpiece 111 and the thermal radiation light 114b indicating emission from the workpiece 111 decreases, the reflected light 113b indicating reflection from the workpiece 111 decreases. The amount of light increases. That is, the total amount of light generated at the workpiece 111 is approximately the same as the total amount of light generated at the workpiece 111 when "welding abnormality" does not occur. Therefore, the intensity of the light detected by the detection section on the workpiece 111 side is also "normal".
 よって、図8に示されているように、特許文献1のレーザー溶接装置は、「照射位置ずれ」を検出することができるものの、「溶接速度異常」を検出することができない。 Therefore, as shown in FIG. 8, although the laser welding device of Patent Document 1 can detect "irradiation position shift", it cannot detect "abnormal welding speed".
 特許文献2では、被加工物110側の検出部、及び、被加工物111側の検出部は、被加工物110、111で生じたプラズマ光のみを検出する。したがって、特許文献2における検出対象は、プラズマ光112aの強度、及び、プラズマ光112bの強度である。 In Patent Document 2, a detection unit on the workpiece 110 side and a detection unit on the workpiece 111 side detect only plasma light generated in the workpieces 110 and 111. Therefore, the detection targets in Patent Document 2 are the intensity of the plasma light 112a and the intensity of the plasma light 112b.
 「被加工物110側への照射位置ずれ」が生じているとき、特許文献2の被加工物110側の検出部で検出されるプラズマ光112aの強度は「正常」となり、被加工物111側の検出部で検出される光の強度は「下限異常」となる。 When a "deviation in the irradiation position toward the workpiece 110 side" occurs, the intensity of the plasma light 112a detected by the detection unit on the workpiece 110 side of Patent Document 2 becomes "normal", and the intensity on the workpiece 111 side is The intensity of the light detected by the detection unit is at the "lower limit abnormality".
 また、「被加工物111の溶融異常を伴う溶接速度異常」が生じているとき、特許文献2の被加工物110側の検出部で検出されるプラズマ光112aの強度は、「正常」となり、被加工物111側の検出部で検出される光の強度は、「下限異常」となる。 Further, when "abnormal welding speed accompanied by abnormal melting of the workpiece 111" occurs, the intensity of the plasma light 112a detected by the detection unit on the workpiece 110 side of Patent Document 2 becomes "normal", The intensity of the light detected by the detection unit on the workpiece 111 side becomes the "lower limit abnormality".
 すなわち、「被加工物110側の照射位置ずれ」が生じているときと、「被加工物111の溶融異常を伴う溶接速度異常」が生じているときとで、検出結果に基づいて、溶接異常の種類の区別ができない。 In other words, based on the detection results, welding abnormalities are determined when "irradiation position shift on the workpiece 110 side" occurs and when "abnormal welding speed accompanied by abnormal melting of the workpiece 111" occurs. cannot distinguish between types.
 よって、図8に示されているように、特許文献2のレーザー溶接装置は、「被加工物110側への照射位置ずれ」及び「被加工物111の溶融異常を伴う溶接速度異常」が生じているとき、何らかの溶接異常が生じていることを検出することができる。しかしながら、特許文献2のレーザー溶接装置は、「照射位置ずれ」及び「溶接速度異常」のいずれが生じているかを区別することはできない。 Therefore, as shown in FIG. 8, in the laser welding apparatus of Patent Document 2, "deviation of the irradiation position toward the workpiece 110" and "abnormal welding speed accompanied by abnormal melting of the workpiece 111" occur. It is possible to detect that some kind of welding abnormality has occurred. However, the laser welding apparatus of Patent Document 2 cannot distinguish between "irradiation position shift" and "abnormal welding speed".
 実施形態では、「正常」、「照射位置ずれ」及び「溶接速度異常」の各場合において、プラズマ光112aの強度、反射光113aの強度、熱放射光114aの強度、プラズマ光112bの強度、反射光113bの強度、及び、熱放射光114bの強度の検出パターンが異なる。 In the embodiment, in each case of "normal", "irradiation position shift", and "abnormal welding speed", the intensity of the plasma light 112a, the intensity of the reflected light 113a, the intensity of the thermal radiation light 114a, the intensity of the plasma light 112b, and the reflected The detection patterns of the intensity of the light 113b and the intensity of the thermal radiation light 114b are different.
 よって、図8に示されているように、実施形態に係るレーザー溶接装置100は、溶接異常として「照射位置ずれ」及び「溶接速度異常」を検出することができる。また、少なくとも、「照射位置ずれ」及び「溶接速度異常」のいずれが生じているかを区別することができる。 Therefore, as shown in FIG. 8, the laser welding apparatus 100 according to the embodiment can detect "irradiation position shift" and "welding speed abnormality" as welding abnormalities. Furthermore, it is possible to distinguish at least whether "irradiation position shift" or "abnormal welding speed" is occurring.
 なお、上述の説明では、レーザー溶接装置100は、第1の検出部106及び第2の検出部107を1つずつ備えるとして説明したが、第1の検出部106及び第2の検出部107をそれぞれ2以上備えていてもよい。これにより、2軸方向のレーザー溶接時において、溶接状態を詳細に判定することができる。例えば、3以上の被加工物を接合する場合、被加工物同士の境界がX軸方向に沿う線及びY軸方向に沿う線を含むことがある。この場合、被加工物の向きを変えることなく、溶接状態を詳細に判定しながら、レーザー溶接を実行できる。また、照射位置の走査方向に対して被加工物同士の境界が斜め方向に延在する場合にも溶接状態を詳細に判定しながら、レーザー溶接を実行できる。 In addition, in the above description, the laser welding apparatus 100 was explained as having one each of the first detection section 106 and the second detection section 107, but the first detection section 106 and the second detection section 107 are Two or more of each may be provided. Thereby, the welding state can be determined in detail during biaxial laser welding. For example, when joining three or more workpieces, the boundary between the workpieces may include a line along the X-axis direction and a line along the Y-axis direction. In this case, laser welding can be performed while determining the welding state in detail without changing the orientation of the workpiece. Further, even when the boundary between workpieces extends diagonally with respect to the scanning direction of the irradiation position, laser welding can be performed while determining the welding state in detail.
 以上、説明した通り、実施形態に係るレーザー溶接装置100は、被加工物110と被加工物111とを突き合わせて境界109を溶接するものであり、レーザー光105を出射するレーザー出射部101と、レーザー光105が被加工物110に照射されることで生じる異なる波長域の複数種の光を区別して検出する第1の検出部106と、レーザー光105が被加工物111に照射されることで生じる異なる波長域の複数種の光を区別して検出する第2の検出部107と、第1の検出部106及び第2の検出部107の検出結果に基づいて、レーザー光105による被加工物110と被加工物111との溶接状態を判定する判定部116と、を備える。 As described above, the laser welding apparatus 100 according to the embodiment welds the boundary 109 by abutting the workpiece 110 and the workpiece 111, and includes a laser emitting section 101 that emits a laser beam 105, A first detection unit 106 that distinguishes and detects multiple types of light in different wavelength ranges that are generated when the workpiece 110 is irradiated with the laser light 105; A second detection unit 107 that distinguishes and detects a plurality of types of light in different wavelength ranges that occur, and a workpiece 110 that is irradiated with laser light 105 based on the detection results of the first detection unit 106 and the second detection unit 107. and a determination unit 116 that determines the welding state of the workpiece 111 and the workpiece 111.
 このように、異なる波長域の複数種の光を区別して検出することで、複数種類の溶接異常を区別して判定することができる。よって、レーザー溶接状態を詳細に検出することができる。これにより、レーザー溶接状態を正確に把握できるので、溶接状態に応じて適切なレーザー溶接制御を実行できる。ひいては、精密なレーザー溶接を実現できる。 In this way, by distinguishing and detecting multiple types of light in different wavelength ranges, multiple types of welding abnormalities can be distinguished and determined. Therefore, the laser welding state can be detected in detail. Thereby, the laser welding state can be accurately grasped, so that appropriate laser welding control can be executed depending on the welding state. As a result, precise laser welding can be achieved.
 判定部116は、検出部106、107の検出結果に基づいて、複数種の溶接異常を判定する。例えば、複数種の溶接異常には、レーザー光105の照射位置ずれ、並びに、照射位置の溶接速度異常が含まれる。 The determination unit 116 determines multiple types of welding abnormalities based on the detection results of the detection units 106 and 107. For example, the plurality of types of welding abnormalities include a deviation in the irradiation position of the laser beam 105 and an abnormality in the welding speed at the irradiation position.
 このように、複数種の溶接異常を検出できるので、溶接状態に応じて適切なレーザー溶接制御を実行できる。 In this way, multiple types of welding abnormalities can be detected, so appropriate laser welding control can be performed depending on the welding state.
 複数種の光には、被加工物110及び被加工物111からのプラズマ光112a、112b、反射光113a、113b及び熱放射光114a、114bが含まれる。 The plurality of types of light include plasma light 112a, 112b, reflected light 113a, 113b, and thermal radiation light 114a, 114b from the workpiece 110 and workpiece 111.
 プラズマ光、反射光、熱放射光の3種類の光を検出することで、様々な溶接異常を区別して検出できる。例えば、レーザー光105の光軸方向におけるレーザー光105の集光位置(以下、「フォーカス位置」と称す。)がずれている場合、熱放射光114a、114bの強度が「正常」であるにもかかわらず、プラズマ光112a、112bの強度が「下限異常」となる。よって、反射光113a、113b、及び、熱放射光114a、114bに加えてプラズマ光112a、112bを検出することで、フォーカス位置ずれに起因する溶接異常を判定することができる。 By detecting three types of light: plasma light, reflected light, and thermal radiation light, various welding abnormalities can be distinguished and detected. For example, if the focusing position of the laser beam 105 in the optical axis direction of the laser beam 105 (hereinafter referred to as the "focus position") is shifted, even if the intensity of the thermal radiation lights 114a and 114b is "normal". Regardless, the intensity of the plasma lights 112a and 112b reaches the "lower limit abnormality". Therefore, by detecting the plasma lights 112a and 112b in addition to the reflected lights 113a and 113b and the thermal radiation lights 114a and 114b, it is possible to determine a welding abnormality caused by a focus position shift.
 また、溶接異常の検出精度を高めることができる。例えば、図7に示されているように、溶接速度異常を検出する場合、反射光113a、113b、及び、熱放射光114a、114bを検出すればよい。しかし、プラズマ光112a、112bを検出することで、被加工物110、111のいずれかが十分に溶融されていないことを直接的に判定できる。よって、反射光113a、113b、及び、熱放射光114a、114bに加えてプラズマ光112a、112bを検出することで、より正確に被加工物110、111の溶接異常を判定できる。 Additionally, the accuracy of detecting welding abnormalities can be improved. For example, as shown in FIG. 7, when detecting a welding speed abnormality, reflected light 113a, 113b and thermal radiation light 114a, 114b may be detected. However, by detecting the plasma lights 112a and 112b, it is possible to directly determine whether either of the workpieces 110 or 111 is not sufficiently melted. Therefore, by detecting the plasma lights 112a and 112b in addition to the reflected lights 113a and 113b and the thermal radiation lights 114a and 114b, welding abnormalities in the workpieces 110 and 111 can be determined more accurately.
 被加工物110及び被加工物111は、異種材料で形成されている。本実施形態では、プラズマ光112a、112bを検出するので、より詳細に被加工物110、111の溶接状態を検出できる。 The workpiece 110 and the workpiece 111 are made of different materials. In this embodiment, since the plasma lights 112a and 112b are detected, the welding states of the workpieces 110 and 111 can be detected in more detail.
 本実施形態の制御部115は、被加工物110及び被加工物111に対して、レーザー光105の照射位置の相対的な移動制御を行う。 The control unit 115 of this embodiment controls the relative movement of the irradiation position of the laser beam 105 with respect to the workpiece 110 and the workpiece 111.
 具体的には、制御部115は、判定部116による判定結果に基づいて、照射位置を相対的に境界109に近づける。また、制御部115は、判定部116による判定結果に基づいて、被加工物110及び被加工物111に対する照射位置の相対的な移動速度を変更する。これにより、溶接異常の判定結果に基づいて、適切にレーザー溶接を実行できる。 Specifically, the control unit 115 moves the irradiation position relatively closer to the boundary 109 based on the determination result by the determination unit 116. Further, the control unit 115 changes the relative moving speed of the irradiation position with respect to the workpiece 110 and the workpiece 111 based on the determination result by the determination unit 116. Thereby, laser welding can be appropriately performed based on the determination result of welding abnormality.
 (変形例)
 実施形態では、レーザー溶接装置100は、照射位置ずれの判定、及び、溶接速度異常の判定を行うとして説明したが、照射位置ずれ、溶接速度異常以外の溶接異常を判定してもよい。例えば、レーザー溶接装置100は、複数種の光の検出結果のいずれもが「下限異常」である場合、レーザー光105の「強度不足」と判定し、レーザー発振強度が大きくなるようにレーザー出射部101を制御してもよい。さらに、レーザー溶接装置100は、レーザー発振強度が大きくなるようにレーザー出射部101を制御したにもかかわらず、複数種の光の検出結果のいずれもが「下限異常」のままである場合、レーザー出射部101の「部品の異常」と判定してもよい。
(Modified example)
In the embodiment, the laser welding apparatus 100 has been described as determining irradiation position deviation and welding speed abnormality, but it may also determine welding abnormalities other than irradiation position deviation and welding speed abnormality. For example, if all of the detection results for multiple types of light are "lower limit abnormality," the laser welding device 100 determines that the laser light 105 is "insufficient in intensity" and adjusts the laser emitting part to increase the laser oscillation intensity. 101 may be controlled. Further, the laser welding apparatus 100 controls the laser beam when all of the detection results of the plurality of types of light remain at the "lower limit abnormality" even though the laser emitting unit 101 is controlled so that the laser oscillation intensity is increased. It may be determined that there is a "component abnormality" in the emission unit 101.
 また、実施形態では、第1の検出部106及び第2の検出部107は、それぞれ、プラズマ光、反射光、及び、熱放射光を区別して検出すると説明した。しかしながら、プラズマ光、反射光、及び、熱放射光のうちのいずれか2種類の光を区別して検出できれば、複数種の溶接異常を区別して判定できる。実際に、図7には、プラズマ光、反射光、及び、熱放射光のうちの2種類の光の検出結果を得ることで、照射位置ずれと溶接速度異常を区別できることが示されている。 Furthermore, in the embodiment, it has been explained that the first detection unit 106 and the second detection unit 107 separately detect plasma light, reflected light, and thermal radiation light. However, if any two types of light among plasma light, reflected light, and thermal radiation light can be detected separately, multiple types of welding abnormalities can be discriminated and determined. In fact, FIG. 7 shows that it is possible to distinguish between irradiation position deviation and welding speed abnormality by obtaining detection results for two types of light among plasma light, reflected light, and thermal radiation light.
 例えば、被加工物110側への照射位置ずれが生じている場合のプラズマ光112a、112b及び反射光113a、113bの強度は、「正常」、「下限異常」、「正常」、及び、「下限異常」である。被加工物111の溶融異常を伴う溶接速度異常が生じている場合のプラズマ光112a、112b及び反射光113a、113bの強度は、「正常」、「下限異常」、「正常」、及び、「上限異常」である。すなわち、両者の検出パターンが異なるので、2種類の光の検出結果により、照射位置ずれと溶接速度異常を区別できる。 For example, the intensities of the plasma lights 112a, 112b and the reflected lights 113a, 113b when there is a shift in the irradiation position toward the workpiece 110 are "normal", "lower limit abnormal", "normal", and "lower limit". "Abnormal." The intensities of the plasma lights 112a, 112b and the reflected lights 113a, 113b when welding speed abnormality accompanied by melting abnormality of the workpiece 111 are "normal", "lower limit abnormality", "normal", and "upper limit abnormality". "Abnormal." That is, since the two detection patterns are different, it is possible to distinguish between the irradiation position shift and the welding speed abnormality based on the detection results of the two types of light.
 実施形態では、被加工物110と被加工物111との突き合せ溶接について説明されているが、本開示は、突き合せ溶接以外の溶接にも適用できる。例えば、本開示は、被加工物110と被加工物111との一方に他方を重ね合わせて溶接する場合にも適用できる。その場合、レーザー光105の光軸方向に沿って被加工物110と被加工物111を見たときの被加工物110と被加工物111との境界に沿って照射位置が走査される。 Although the embodiment describes butt welding between the workpiece 110 and the workpiece 111, the present disclosure can also be applied to welding other than butt welding. For example, the present disclosure can be applied to the case where one of the workpieces 110 and 111 is overlapped with the other and welded. In that case, the irradiation position is scanned along the boundary between the workpieces 110 and 111 when the workpieces 110 and 111 are viewed along the optical axis direction of the laser beam 105.
 また、実施形態では、異種材料で形成されている被加工物110、111の溶接について説明したが、同種材料で形成されている複数の被加工物の溶接に対して適用することができる。 Further, in the embodiment, the welding of the workpieces 110 and 111 made of different materials has been described, but the present invention can be applied to welding of a plurality of workpieces made of the same material.
 上記各実施形態及び各変形例に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で上記各実施形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。 This can be realized by making various modifications to the above embodiments and modifications that those skilled in the art can think of, or by arbitrarily combining the components and functions of the above embodiments without departing from the spirit of the present disclosure. The present disclosure also includes forms in which:
 本開示によれば、レーザー溶接状態をより詳細に検出することができるレーザー溶接装置及びレーザー溶接方法を提供することができる。 According to the present disclosure, it is possible to provide a laser welding device and a laser welding method that can detect the laser welding state in more detail.
 本開示は、複数の被加工物をレーザー溶接するレーザー溶接装置に好適に適用できる。 The present disclosure can be suitably applied to a laser welding device that laser welds a plurality of workpieces.
 100 レーザー溶接装置
 101 レーザー出射部
 102 レーザー発振器
 103 光伝送部
 104 レーザーヘッド
 105 レーザー光
 106 第1の検出部
 107 第2の検出部
 109 境界
 110 被加工物
 111 被加工物
 112a、112b プラズマ光
 113a、113b 反射光
 114a、114b 熱放射光
 115 制御部
 116 判定部
100 Laser welding device 101 Laser emission part 102 Laser oscillator 103 Light transmission part 104 Laser head 105 Laser light 106 First detection part 107 Second detection part 109 Boundary 110 Workpiece 111 Workpiece 112a, 112b Plasma light 113a, 113b Reflected light 114a, 114b Thermal radiation light 115 Control section 116 Judgment section

Claims (9)

  1.  第1の被加工物と第2の被加工物とを溶接するレーザー溶接装置であって、
     レーザー光を出射するレーザー出射部と、
     前記レーザー光が前記第1の被加工物に照射されることで生じる異なる波長域の複数種の光を区別して検出する第1の検出部と、
     前記レーザー光が前記第2の被加工物に照射されることで生じる異なる波長域の複数種の光を区別して検出する第2の検出部と、
     前記第1の検出部及び前記第2の検出部の検出結果に基づいて、前記レーザー光による前記第1の被加工物と前記第2の被加工物との溶接状態を判定する判定部と、
     を備えるレーザー溶接装置。
    A laser welding device for welding a first workpiece and a second workpiece,
    a laser emitting section that emits laser light;
    a first detection unit that distinguishes and detects multiple types of light in different wavelength ranges that are generated when the first workpiece is irradiated with the laser light;
    a second detection unit that distinguishes and detects multiple types of light in different wavelength ranges that are generated when the second workpiece is irradiated with the laser light;
    a determination unit that determines a welding state of the first workpiece and the second workpiece by the laser beam based on the detection results of the first detection unit and the second detection unit;
    Laser welding equipment equipped with.
  2.  前記判定部は、前記検出結果に基づいて、複数種の溶接異常を判定し、
     前記複数種の溶接異常には、前記レーザー光の照射位置ずれ、並びに、前記照射位置の溶接速度異常が含まれる、
     請求項1に記載のレーザー溶接装置。
    The determination unit determines multiple types of welding abnormalities based on the detection results,
    The plurality of types of welding abnormalities include a deviation in the irradiation position of the laser beam, and an abnormality in the welding speed at the irradiation position.
    The laser welding device according to claim 1.
  3.  前記複数種の光は、前記第1の被加工物及び前記第2の被加工物からのプラズマ光、反射光、及び熱放射光を含む、
     請求項1または2に記載のレーザー溶接装置。
    The plurality of types of light include plasma light, reflected light, and thermal radiation light from the first workpiece and the second workpiece,
    The laser welding device according to claim 1 or 2.
  4.  前記第1の被加工物及び前記第2の被加工物は、互いに異種材料で形成されている、
     請求項1から3のいずれかに記載のレーザー溶接装置。
    The first workpiece and the second workpiece are formed of mutually different materials;
    A laser welding device according to any one of claims 1 to 3.
  5.  前記第1の検出部及び前記第2の検出部をそれぞれ複数備える、
     請求項1から4のいずれかに記載のレーザー溶接装置。
    each comprising a plurality of the first detection units and the second detection units;
    A laser welding device according to any one of claims 1 to 4.
  6.  前記第1の被加工物及び前記第2の被加工物に対して、前記レーザー光の照射位置の相対的な移動制御を行う制御部をさらに備える、
     請求項1から5のいずれかに記載のレーザー溶接装置。
    further comprising a control unit that controls relative movement of the irradiation position of the laser beam with respect to the first workpiece and the second workpiece;
    A laser welding device according to any one of claims 1 to 5.
  7.  前記制御部は、前記判定部による判定結果に基づいて、前記第1の被加工物と前記第2の被加工物との境界に前記照射位置を相対的に近づける、
     請求項6に記載のレーザー溶接装置。
    The control unit moves the irradiation position relatively close to a boundary between the first workpiece and the second workpiece based on a determination result by the determination unit.
    The laser welding device according to claim 6.
  8.  前記制御部は、前記判定部による判定結果に基づいて、前記第1の被加工物及び前記第2の被加工物に対する前記照射位置の相対的な移動速度を変更する、
     請求項6又は7に記載のレーザー溶接装置。
    The control unit changes a relative moving speed of the irradiation position with respect to the first workpiece and the second workpiece based on the determination result by the determination unit.
    The laser welding device according to claim 6 or 7.
  9.  第1の被加工物と第2の被加工物とを溶接するレーザー溶接方法であって、
     レーザー光を照射し、
     前記第1の被加工物に前記レーザー光が照射されることで生じる異なる波長域の複数種の光を区別して検出し、
     前記第2の被加工物に前記レーザー光が照射されることで生じる異なる波長域の複数種の光を区別して検出し、
     前記第1の被加工物で生じた光の検出結果、及び、前記第2の被加工物で生じた光の検出結果に基づいて、前記レーザー光による前記第1の被加工物と前記第2の被加工物との溶接状態を判定する、
     レーザー溶接方法。
    A laser welding method for welding a first workpiece and a second workpiece, the method comprising:
    Irradiates the laser beam,
    distinguishing and detecting multiple types of light in different wavelength ranges generated by irradiating the first workpiece with the laser light;
    distinguishing and detecting multiple types of light in different wavelength ranges generated by irradiating the second workpiece with the laser light;
    Based on the detection result of the light generated at the first workpiece and the detection result of the light generated at the second workpiece, the laser beam is applied to the first workpiece and the second workpiece. Determine the welding condition with the workpiece,
    Laser welding method.
PCT/JP2022/043276 2022-03-18 2022-11-24 Laser welding device and laser welding method WO2023176047A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022044124 2022-03-18
JP2022-044124 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023176047A1 true WO2023176047A1 (en) 2023-09-21

Family

ID=88023232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043276 WO2023176047A1 (en) 2022-03-18 2022-11-24 Laser welding device and laser welding method

Country Status (1)

Country Link
WO (1) WO2023176047A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060000812A1 (en) * 2004-07-02 2006-01-05 Jan Weber Method and apparatus for controlling and adjusting the intensity profile of a laser beam employed in a laser welder for welding polymeric and metallic components
JP2014205182A (en) * 2013-04-15 2014-10-30 トヨタ自動車株式会社 Inspection device for welding part and inspection method thereof
JP2021058927A (en) * 2019-10-09 2021-04-15 パナソニックIpマネジメント株式会社 Laser welding quality detecting method and laser welding quality detecting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060000812A1 (en) * 2004-07-02 2006-01-05 Jan Weber Method and apparatus for controlling and adjusting the intensity profile of a laser beam employed in a laser welder for welding polymeric and metallic components
JP2014205182A (en) * 2013-04-15 2014-10-30 トヨタ自動車株式会社 Inspection device for welding part and inspection method thereof
JP2021058927A (en) * 2019-10-09 2021-04-15 パナソニックIpマネジメント株式会社 Laser welding quality detecting method and laser welding quality detecting device

Similar Documents

Publication Publication Date Title
JP5947741B2 (en) Welded part inspection device and inspection method
JP5929948B2 (en) Weld inspection method
JP7126220B2 (en) LASER WELDING METHOD AND LASER WELDING APPARATUS
WO2019198441A1 (en) Laser welding method
JP2001191187A (en) Method and device for measuring process parameter in material working process
JP2020025985A (en) System and method of multi-beam soldering
US20240116122A1 (en) A method for optimising a machining time of a laser machining process, method for carrying out a laser machining process on a workpiece, and laser machining system designed for carrying out this process
WO2022004610A1 (en) Laser welding device and laser welding method
JP2007307595A (en) Apparatus and method of laser beam working
WO2023176047A1 (en) Laser welding device and laser welding method
US20210394305A1 (en) Laser welding method and apparatus
JP6003934B2 (en) Laser welding inspection apparatus and laser welding inspection method
JP2002346783A (en) Method and device for controlling laser welding
JP6277986B2 (en) Laser welding apparatus and laser welding method
JP6780544B2 (en) Laser welding equipment
WO2022209929A1 (en) Laser processing head and laser processing system
US20180361515A1 (en) Method for detecting hole in laser-welded portion and laser welding device
JP2007007698A (en) Laser beam machining head
JP2014024068A (en) Bead inspection method in laser welding and laser welding method
JP7113315B2 (en) Laser welding method
JP2014024069A (en) Bead inspection method in laser welding
JP7308439B2 (en) LASER PROCESSING DEVICE AND OPTICAL ADJUSTMENT METHOD
JP2006150373A (en) Laser beam machining apparatus and laser beam machining method
JP2016221545A (en) Laser processing device, and converging angle setting method for laser processing device
JP2000312984A (en) Laser device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932310

Country of ref document: EP

Kind code of ref document: A1