WO2023175786A1 - Terminal, wireless communication method, and base station - Google Patents

Terminal, wireless communication method, and base station Download PDF

Info

Publication number
WO2023175786A1
WO2023175786A1 PCT/JP2022/011983 JP2022011983W WO2023175786A1 WO 2023175786 A1 WO2023175786 A1 WO 2023175786A1 JP 2022011983 W JP2022011983 W JP 2022011983W WO 2023175786 A1 WO2023175786 A1 WO 2023175786A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
uci
betaoffsets
information
information element
Prior art date
Application number
PCT/JP2022/011983
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 松村
聡 永田
ジン ワン
ウェイチー スン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/011983 priority Critical patent/WO2023175786A1/en
Publication of WO2023175786A1 publication Critical patent/WO2023175786A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Releases (Rel.) 8 and 9).
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G+ plus
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • a terminal uses a physical uplink shared channel (PUSCH) to transmit uplink control information (UCI).
  • UCI uplink control information
  • PUSCH physical uplink shared channel
  • UCI on PUSCH The operation of transmitting UCI on PUSCH is also referred to as UCI on PUSCH.
  • the UE determines the amount of resources (for example, the number of coded modulation symbols per layer) for the transmission of the UCI based on the beta offset.
  • a set of multiple beta offsets may be configured in the UE by higher layer signaling (eg, RRC (Radio Resource Control) signaling).
  • the UE transmits one codeword (CW) using one PUSCH.
  • CW codeword
  • future wireless communication systems eg, Rel. 17 NR
  • one object of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can appropriately perform UCI on PUSCH transmission for multiple codewords.
  • a terminal includes first configuration information regarding a beta offset for a physical uplink shared channel for one codeword and for the physical uplink shared channel for two codewords. Second configuration information regarding a beta offset for the two codewords; and a control unit that makes the decision.
  • UCI on PUSCH transmission for multiple codewords can be appropriately performed.
  • FIG. 1 shows Rel. 15/16 is a diagram illustrating an example of a set of information elements regarding a plurality of beta offsets in NR.
  • FIG. 2 shows Rel. 15/16 is a diagram showing an example of PUSCH configuration information including a beta offset information element in NR.
  • FIG. 3 shows Rel. 15/16 is a diagram showing an example of CG PUSCH setting information including a beta offset information element in NR.
  • FIG. 4 shows an example of the UCI-OnPUSCH information element for UCI on 1 CW PUSCH and the UCI-OnPUSCH information element for UCI on 2 CW PUSCH for the dynamic PUSCH of the first embodiment. It is a diagram.
  • FIG. 1 shows Rel. 15/16 is a diagram illustrating an example of a set of information elements regarding a plurality of beta offsets in NR.
  • FIG. 2 shows Rel. 15/16 is a diagram showing an example of PUSCH configuration information including a beta offset information element in NR.
  • FIG. 3 shows
  • FIG. 5 shows an example of the betaOffsets parameters and scaling parameters for UCI on 1 CW PUSCH and the betaOffsets parameters and scaling parameters for UCI on 2 CW PUSCH regarding the dynamic PUSCH of the first embodiment. show It is a diagram.
  • FIG. 6 is a diagram illustrating an example of UCI-OnPUSCH information elements for UCI on 1 CW PUSCH and UCI on 2 CW PUSCH for dynamic PUSCH of the first embodiment.
  • FIG. 7 shows an example of the betaOffsets parameters and scaling parameters for UCI on 1 CW PUSCH and the betaOffsets parameters and scaling parameters for UCI on 2 CW PUSCH regarding the dynamic PUSCH of the second embodiment. show It is a diagram.
  • FIG. 6 is a diagram illustrating an example of UCI-OnPUSCH information elements for UCI on 1 CW PUSCH and UCI on 2 CW PUSCH for dynamic PUSCH of the first embodiment.
  • FIG. 7 shows an example of the betaOffsets parameters and scaling parameters for U
  • FIG. 8 shows the CG-UCI-OnPUSCH information element for UCI on 1 CW PUSCH and the CG-UCI-OnPUSCH information element for UCI on 2 CW PUSCH regarding CG PUSCH of the third embodiment. It is a figure showing an example.
  • FIG. 9 is a diagram illustrating an example of CG-UCI-OnPUSCH information elements for UCI on 1 CW PUSCH and UCI on 2 CW PUSCH for CG PUSCH of the third embodiment.
  • FIG. 10 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 11 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 12 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 13 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 14 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the UE can transmit uplink control information (UCI) using a physical uplink shared channel (PUSCH).
  • UCI uplink control information
  • PUSCH physical uplink shared channel
  • the operation of transmitting UCI on PUSCH is also referred to as UCI on PUSCH.
  • the UE determines the amount of resources used for UCI transmission (for example, the number of coded modulation symbols for each layer, the number of resource elements (Resource Elements (RE)), the number of UCI bits,
  • the coding rate of UCI transmitted using the PUSCH may be determined based on the modulation order or the like.
  • the UE determines the amount of resources (eg, the number of coded modulation symbols per layer) for the transmission of the UCI based on the beta offset.
  • the beta offset is also expressed as ⁇ Offset , and may differ depending on the type or content of UCI (HARQ-ACK, CSI part 1, CSI part 2, etc.).
  • the transmission power of PUSCH including UCI may be determined based on the beta offset.
  • a set of multiple beta offsets may be configured in the UE by upper layer signaling (for example, RRC (Radio Resource Control) signaling).
  • RRC Radio Resource Control
  • Figure 1 shows Rel. 15/16 is a diagram illustrating an example of a set of information elements regarding a plurality of beta offsets in NR. This example is described using Abstract Syntax Notation One (ASN.1) notation (note that this is just an example and is not necessarily a complete description. The same applies to similar drawings that follow).
  • ASN.1 Abstract Syntax Notation One
  • the information element of the set regarding multiple beta offsets (BetaOffsets information element (BetaOffsets IE)) includes seven parameters indicating the index regarding the beta offsets.
  • betaOffsetACK-Index1, betaOffsetACK-Index2, and betaOffsetACK-Index3 indicate the index regarding the beta offset applied when transmitting HARQ-ACK up to 2 bits, up to 11 bits, and larger than 11 bits on the PUSCH, respectively.
  • betaOffsetCSI-Part1-Index1 and betaOffsetCSI-Part1-Index2 indicate the index regarding the beta offset applied when transmitting CSI part 1 up to 11 bits and larger than 11 bits on the PUSCH, respectively.
  • betaOffsetCSI-Part2-Index1 and betaOffsetCSI-Part2-Index2 indicate the index regarding the beta offset applied when transmitting CSI part 2 up to 11 bits and larger than 11 bits on the PUSCH, respectively.
  • the UE Based on the type (or content) and number of bits (payload size) of the UCI to be transmitted, the UE refers to one index in one set and determines the corresponding beta offset value. Note that the correspondence between the index and the beta offset value is defined by the standard. The correspondence relationship may differ depending on the contents of the UCI.
  • a dynamic beta offset and a semi-static beta offset are defined.
  • the UE selects one of up to four offset indices by the beta offset indicator field included in the Downlink Control Information (DCI) format for scheduling the PUSCH. It is specified.
  • the UE uses the beta offsets information element corresponding to the specified offset index to determine the beta offset for the UCI transmitted on the PUSCH.
  • DCI Downlink Control Information
  • the UE When the UE is configured with a semi-static beta offset, it determines that the beta offset indicator field included in the DCI format for scheduling the PUSCH is 0 bits. The UE also uses one beta offsets information element configured by RRC to determine the beta offset for the UCI transmitted on the PUSCH.
  • the Beta Offsets information element regarding the dynamic beta offset or quasi-static beta offset for the PUSCH (which may be referred to as dynamic PUSCH, dynamic scheduling PUSCH, etc.) scheduled according to the DCI format is: It is included in the PUSCH configuration information (PUSCH-Config information element) and configured in the UE. Note that the DCI that schedules PUSCH may be called a dynamic grant, and for example, DCI formats 0_0, 0_1, 0_2, etc. are defined.
  • FIG. 2 shows Rel. 15/16 is a diagram showing an example of PUSCH configuration information including a beta offset information element in NR.
  • the UCI-OnPUSCH information element (UCI-OnPUSCH IE) defined in 15/16 NR may include a betaOffsets parameter (betaOffsets) and a scaling parameter (scaling). If the betaOffsets parameter contains "dynamic”, it indicates that dynamic beta offsets are used for DCI formats other than DCI format 0_2, and if it contains "semiStatic", it indicates that dynamic beta offsets are used for DCI formats other than DCI format 0_2. Indicates that a static beta offset is used. "dynamic” includes a BetaOffsets information element of size 4 (ie, four), and “semiStatic” includes one BetaOffsets information element.
  • the scaling parameter indicates a scaling factor for limiting the number of REs allocated to UCI on PUSCH for DCI formats other than DCI format 0_2.
  • f0p5 corresponds to 0.5.
  • the UCI-OnPUSCH-DCI-0-2 information element (UCI-OnPUSCH-DCI-0-2 IE) specified in 16 NR includes the betaOffsets parameter (betaOffsetsDCI-0-2) and the scaling parameter ( scalingDCI-0-2).
  • betaOffsetsDCI-0-2 the betaOffsets parameter
  • scalingDCI-0-2 the scaling parameter
  • the dynamic beta offset it differs from the UCI-OnPUSCH information element in that a beta offsets information element of size 2 can be set instead of a beta offsets information element of size 4.
  • the size of the beta offset indicator field included in DCI format 0_2 varies from 1 bit to 2 bits. Note that when a quasi-static beta offset is set, the size of the beta offset indicator field included in DCI format 0_2 is also 0 bits.
  • the UE may be configured by an upper layer parameter (pdsch-HARQ-ACK-CodebookList) to generate two HARQ-ACK codebooks.
  • the UE may be configured with two UCI-OnPUSCH information elements (UCI-OnPUSCH IE) for DCI format 0_1 by a list (UCI-OnPUSCH-ListDCI-0-1-r16).
  • the UE also lists two UCI-OnPUSCH-DCI-0-2 information elements (UCI-OnPUSCH-DCI-0-2 IE) for DCI format 0_2 (UCI-OnPUSCH-ListDCI-0-2-r16).
  • a first entry in these lists may correspond to a first HARQ-ACK codebook and a second entry may correspond to a second HARQ-ACK codebook.
  • the first HARQ-ACK codebook is related to the Physical Uplink Control Channel (PUCCH) with a priority index of 0 and the second HARQ-ACK codebook is related to the PUCCH with a priority index of 1. do.
  • Uplink transmission without dynamic grant is also called configured grant (CG) PUSCH.
  • the actual uplink grant (UL grant) of CG PUSCH is configured by RRC signaling (ConfiguredGrantConfig information element) for type 1 CG PUSCH, and provided by PDCCH (DCI) for type 2 CG PUSCH.
  • RRC signaling ConfiguredGrantConfig information element
  • DCI PDCCH
  • the Beta Offsets information element regarding the dynamic beta offset or quasi-static beta offset for the CG PUSCH is included in the CG PUSCH configuration information (ConfiguredGrantConfig information element) and configured in the UE.
  • FIG. 3 shows Rel. 15/16 is a diagram showing an example of CG PUSCH setting information including a beta offset information element in NR.
  • the CG-UCI-OnPUSCH information element (CG-UCI-OnPUSCH IE) specified in NR is the setting (“ one or more BetaOffsets information elements corresponding to "dynamic” or “semiStatic”). If the CG-UCI-OnPUSCH information element contains “dynamic”, it indicates that a dynamic beta offset is used for UCI on CG PUSCH, and if it contains “semiStatic”, it indicates that a semi-static beta offset is used for UCI on CG PUSCH. indicates that a standard beta offset is used. "Dynamic” includes a BetaOffsets information element of size 1 to 4, and "semiStatic” includes one BetaOffsets information element.
  • “semiStatic” is set for type 1 CG PUSCH.
  • “dynamic” is set for type 2 CG PUSCH, the UE can specify one of up to four offset indexes by the beta offset indicator field included in the DCI for CG PUSCH activation. Ru. The UE uses the beta offsets information element corresponding to the specified offset index to determine the beta offset for the UCI transmitted on the CG PUSCH.
  • the betaOffset parameter (betaOffsetCG-UCI-r16) for CG-UCI in CG PUSCH specified in 16 NR indicates an index regarding the beta offset when only CG-UCI is transmitted on CG PUSCH. Note that when HARQ-ACK and CG-UCI are transmitted on CG PUSCH, the applied beta offset may be a beta offset for HARQ-ACK.
  • CG-UCI includes the HARQ Process Number (HPN) field, Redundancy Version (RV) field, New Data Indicator (NDI) field, and Channel Occupancy Time (Channel Occupancy Time (COT) sharing information field may also be included.
  • HPN HARQ Process Number
  • RV Redundancy Version
  • NDI New Data Indicator
  • COT Channel Occupancy Time
  • priority (priority) Rel.
  • multiple levels eg, two levels
  • communication is controlled by setting separate priorities for signals/channels corresponding to different traffic types (also called services, service types, communication types, use cases, etc.) (e.g., transmission control in case of collision) It is assumed that This enables communication control for the same signal/channel based on different priorities depending on the service type and the like.
  • the priorities are information (e.g. UCI, channel state information (CSI)), channel (Physical Downlink Shared Channel (PDSCH), PUSCH, PUCCH, etc.), reference signal (e.g. CSI-RS, SRS, etc.), and HARQ- It may be set/defined for at least one of the ACK codebooks. Furthermore, different priorities may be set for the PUCCH used for SR transmission, the PUCCH used for HARQ-ACK transmission, and the PUCCH used for CSI transmission.
  • CSI channel state information
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Downlink Shared Channel
  • reference signal e.g. CSI-RS, SRS, etc.
  • HARQ- It may be set/defined for at least one of the ACK codebooks.
  • different priorities may be set for the PUCCH used for SR transmission, the PUCCH used for HARQ-ACK transmission, and the PUCCH used for CSI transmission.
  • the priority may be defined as a first priority (for example, high, 1, etc.) and a second priority (for example, low, 0, etc.) that is lower in priority than the first priority.
  • a first priority for example, high, 1, etc.
  • a second priority for example, low, 0, etc.
  • three or more types of priorities may be set.
  • the priority may be expressed by a priority index, and the larger the priority index, the higher the priority.
  • a high priority may be expressed as high priority (HP), and a low priority may be expressed as low priority (LP).
  • HP high priority
  • LP low priority
  • PUSCH with a high priority may be expressed as HP PUSCH
  • HARQ-ACK with a low priority may be expressed as LP HARQ-ACK.
  • Priority is set for HARQ-ACK for dynamically scheduled PDSCH, Semi-persistent scheduling (SPS) HARQ-ACK for PDSCH, SPS HARQ-ACK for PDSCH release Good too. Priorities may be set for HARQ-ACK codebooks corresponding to these HARQ-ACKs. Note that when setting a priority to a PDSCH, the priority of the PDSCH may be replaced with the priority of HARQ-ACK for the PDSCH.
  • SPS Semi-persistent scheduling
  • priorities may be set for dynamic PUSCH, CG PUSCH, etc.
  • Information regarding the priority may be notified from the base station to the UE using at least one of upper layer signaling and DCI.
  • the priority of a scheduling request may be set with an upper layer parameter (eg, schedulingRequestPriority).
  • the priority of HARQ-ACK for a PDSCH (eg, dynamic PDSCH) scheduled on a DCI may be notified by the DCI.
  • the priority of HARQ-ACK for SPS PDSCH may be set by a higher-level parameter (for example, HARQ-ACK-Codebook-indicator-forSPS), or may be notified by DCI that instructs activation of SPS PDSCH.
  • Aperiodic CSI (A-CSI)/Semi-persistent CSI (SP-CSI) transmitted on PUCCH is good.
  • the priority of aperiodic CSI (A-CSI)/SP-CSI transmitted on PUSCH may be notified by DCI (for example, trigger DCI or activation DCI).
  • the priority of a dynamic grant-based PUSCH may be notified by the priority indicator field of the DCI that schedules the PUSCH.
  • the configuration grant-based PUSCH priority may be configured with an upper layer parameter (eg, priority).
  • a predetermined priority (eg, low) may be set for P-SRS/SP-SRS and A-SRS triggered by DCI (eg, DCI format 0_1/DCI format 2_3).
  • the UE may control UL transmission based on priority when multiple UL signals/UL channels overlap (or collide).
  • Time resources may be read as time domain or time domain.
  • the time resource may be in units of symbols, slots, subslots, or subframes.
  • Overlapping of multiple UL signals/UL channels in the same UE means that multiple UL signals/UL channels overlap at least in the same time resource (e.g., symbol). It's okay.
  • collision of UL signals/UL channels in different UEs means that multiple UL signals/UL channels overlap in the same time resource (e.g., symbol) and frequency resource (e.g., RB). It can also mean wrapping.
  • the UE controls the multiplexed UL signals/UL channels to be multiplexed into one UL channel and transmitted. Good too.
  • the UE may multiplex (or map) HARQ-ACK onto PUSCH and transmit both UL data and HARQ-ACK.
  • the UE When multiple UL signals/UL channels with different priorities overlap, the UE performs the UL transmission with the higher priority (e.g., prioritizes the UL transmission with the higher priority) and the UL transmission with the lower priority. It may also be controlled so that it does not occur (for example, it is dropped).
  • the UE drops the UL data/HARQ-ACK with lower priority and drops the UL data/HARQ-ACK with higher priority. Control may be performed to prioritize and transmit ACK. Note that the UE may change (eg, postpone or shift) the transmission timing of UL transmission with low priority.
  • the transmission may be controlled by two steps.
  • one UL channel is selected that multiplexes UL signals transmitted in UL transmissions with the same priority.
  • control may be performed such that among UL transmissions with different priorities, UL transmissions with a higher priority are transmitted with priority, and UL transmissions with a lower priority are dropped.
  • the UE can resolve collisions between multiple UL transmissions with the same priority through step 1 and resolve collisions between multiple UL transmissions with different priorities through step 2.
  • each UL channel/UL signal can be and useful from the viewpoint of spectral efficiency.
  • RF Radio Frequency
  • inter-band carrier aggregation e.g., inter-band CA
  • simultaneous transmission of PUCCH/PUSCH with different priorities e.g., PHY priority
  • PUCCH/PUSCH with different priorities e.g., PHY priority
  • RRC Radio Resource Control
  • UL transmissions with different priorities can be multiplexed (e.g. on the same UL channel). may also be supported. For example, multiple UL transmissions may be supported by multiplexing UL transmissions of one priority onto UL channels for UL transmissions of other priorities.
  • Whether to multiplex/map a UCI (for example, HARQ-ACK) to a UL channel (for example, PUSCH) with a different priority from that of the UCI (for example, enable/disable, or activate/deactivate) is determined by the upper layer. It may also be set by signaling.
  • BetaOffsets information element for LP HARQ-ACK multiplexed on HP dynamic PUSCH e.g., may be called BetaOffsetsCrossPri0 IE
  • BetaOffsetsCrossPri1IE for HP HARQ-ACK multiplexed on LP dynamic PUSCH
  • BetaOffsetsCrossPri1IE a new BetaOffsets information element (for example, it may be called BetaOffsetsCrossPri1IE) will be defined.
  • BetaOffsets information elements may include parameters corresponding to betaOffsetACK-Index1, betaOffsetACK-Index2, and betaOffsetACK-Index3 of existing betaoffsets information elements (BetaOffsets IE) (CSI Part 1, CSI Part 2 parameters may not be included).
  • betaOffsets the betaOffsets parameter (betaOffsets), the betaOffsets parameter (betaOffsetsDCI-0-2) for DCI format 0_2, and the existing betaoffsets information element (CG-UCI-OnPUSCH IE) in the CG-UCI-OnPUSCH information element (CG-UCI-OnPUSCH IE)
  • Parameters/information elements for example, betaOffsetsCrossPri0-r17, betaOffsetsCrossPri1-r17, betaOffsetsCrossPri0DCI-0-2-r17, betaOffsetsCrossPri1DCI -0-2-r17, betaOffsetsCrossPri1DCI -0-2-r17,CG-betaOffsetsCrossPri0,CG -betaOffsetsCrossPri1) is being considered.
  • PUSCH transmission of 2 code words Rel.
  • the UE transmits one codeword (CW) using one PUSCH.
  • CW codeword
  • T.17 NR it is considered that the UE transmits more than one CW using one PUSCH. For example, support for 2CW transmission for ranks 5-8, support for 2CW transmission for ranks 2-8, etc. are being considered.
  • Rel. 15 and Rel. 16 UEs it is assumed that only one beam and panel is used for UL transmission at a given time, but Rel.
  • simultaneous UL transmission of multiple beams and multiple panels eg, PUSCH transmission
  • TRPs TRPs
  • the base station may use the UL TCI or panel ID to configure or direct panel-specific transmission for UL transmission.
  • UL TCI (UL TCI status) is Rel. It may be based on signaling similar to the DL beam indication supported in X.15.
  • the panel ID may be implicitly or explicitly applied to a target RS resource (or target RS resource set) and at least one transmission of PUCCH/PUSCH/SRS/PRACH. If the panel ID is explicitly notified, the panel ID may be configured in at least one of the target RS, target channel, and reference RS (eg, DL RS resource configuration or spatial relationship information).
  • UCI on PUSCH When UCI on PUSCH is used in 2CW PUSCH (hereinafter also referred to as UCI on 2CW PUSCH), UCI is assigned to only one transport block (TB) (for example, corresponding to a lower TB index). It may be multiplexed (only on the TB), it may be divided into two parts and each is multiplexed on a different Transport Block (TB), or it may be copied and the same UCI is multiplexed on each TB. may be done.
  • TB transport block
  • the present inventors conceived of a beta offset setting method suitable for 2 CW PUSCH.
  • A/B and “at least one of A and B” may be read interchangeably. Furthermore, in the present disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC messages
  • IEs information elements
  • CE Medium Access Control Element
  • update command activation/deactivation command
  • MAC CE Medium Access Control Element
  • the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like.
  • Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
  • MIB master information block
  • SIB system information block
  • RMSI minimum system information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
  • DCI downlink control information
  • UCI uplink control information
  • an index an identifier (ID), an indicator, a resource ID, etc.
  • ID an identifier
  • indicator an indicator
  • resource ID a resource ID
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
  • a panel, a UE panel, a panel group, a beam, a beam group, a precoder, an uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, and a spatial relation information (SRI) are described.
  • SRS resource indicator SRI
  • control resource set CONtrol REsource SET (CORESET)
  • Physical Downlink Shared Channel PDSCH
  • codeword CW
  • Transport Block Transport Block
  • TB transport Block
  • RS reference signal
  • antenna port e.g. demodulation reference signal (DMRS) port
  • antenna port group e.g.
  • DMRS port group groups (e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups), resources (e.g., reference signal resources, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI Unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read interchangeably.
  • groups e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups
  • resources e.g., reference signal resources, SRS resource
  • resource set for example, reference signal resource set
  • CORESET pool downlink Transmission Configuration Indication state (TCI state) (DL TCI state), up
  • spatial relationship information identifier (TCI status ID) and the spatial relationship information (TCI status) may be read interchangeably.
  • “Spatial relationship information” may be interchangeably read as “a set of spatial relationship information”, “one or more pieces of spatial relationship information”, etc. TCI status and TCI may be read interchangeably.
  • 1 CW PUSCH and 2 CW PUSCH may be read as PUSCH for the first number of CWs and PUSCH for the second number of CWs, respectively. The first number and the second number may each be arbitrary integers.
  • UCI on PUSCH for XCW PUSCH may be mutually read as UCI on XCW PUSCH.
  • Dynamic PUSCH may be interchanged with PUSCH dynamically scheduled according to the DCI format.
  • the subsequent DCI format 0_2 may be replaced with a specific DCI format (for example, any future DCI format).
  • fields, parameters, information elements (IEs), etc. may be read interchangeably.
  • repetition one repetition
  • occasion and channel
  • channel may be read interchangeably.
  • UL data, TB, CW, and UCI may be read interchangeably.
  • two CWs transmitted using PUSCH may have different contents or may have the same contents.
  • a PUSCH transmitting two CWs may be considered as one PUSCH transmitted simultaneously or repeatedly.
  • the number of layers of PUSCH transmission in the following embodiments may be greater than 4 or may be less than or equal to 4.
  • PUSCH transmission of two CWs in the present disclosure may be performed using four or fewer layers (for example, two).
  • the maximum number of layers is not limited to four or more, and may be less than four.
  • PUSCH transmission in the following embodiments may or may not be based on the use of multiple panels (it may be applied regardless of the panel).
  • the first embodiment relates to a dynamic PUSCH scheduled by a DCI format other than DCI format 0_2 (hereinafter referred to as dynamic PUSCH of the first embodiment).
  • the UE separately (or independently or differently) RRC parameters for UCI on 1 CW PUSCH and RRC parameters for UCI on 2 CW PUSCH. May be set.
  • RRC parameters may correspond to at least one of the UCI-OnPUSCH information element, the betaOffsets parameter, the scaling parameter, and the BetaOffsets information element.
  • the UE determines the beta offset to utilize based on the Beta Offsets information element corresponding to the RRC parameter for UCI on 1 CW PUSCH.
  • the UE determines the beta offset to utilize based on the beta offsets information element corresponding to the RRC parameters for UCI on 2 CW PUSCH.
  • FIG. 4 shows an example of the UCI-OnPUSCH information element for UCI on 1 CW PUSCH and the UCI-OnPUSCH information element for UCI on 2 CW PUSCH for the dynamic PUSCH of the first embodiment. It is a diagram.
  • -rXX in this disclosure refers to 3GPP Rel. Indicates that the parameter is scheduled to be specified in XX.
  • the name of the parameter is not limited to the example name (for example, "-rXX” may not be included).
  • parameters marked with "-rXX” may be referred to by names with "-rXX” removed.
  • the 3GPP release to which this disclosure applies is Rel. It is not limited to 18.
  • the UCI-OnPUSCH information element defined in 15/16 NR includes settings for UCI on 1 CW PUSCH (betaOffsets parameter, scaling parameter) for the dynamic PUSCH of the first embodiment.
  • the UCI-OnPUSCH-2codeword-r18 information element includes settings for UCI on 2CW PUSCH (betaOffsets parameter (betaOffsets-2codeword-r18), scaling parameter (scaling- 2codeword-r18)).
  • Diagram containing PUSCH configuration information (PUSCH-Config information element) as shown in example 4 may be configured in the UE.
  • FIG. 5 shows an example of the betaOffsets parameters and scaling parameters for UCI on 1 CW PUSCH and the betaOffsets parameters and scaling parameters for UCI on 2 CW PUSCH regarding the dynamic PUSCH of the first embodiment. show It is a diagram.
  • the betaOffsets parameter (betaOffsets) and the scaling parameter (scaling) defined in 15/16 NR correspond to the betaOffsets parameter and scaling parameter for the UCI on 1 CW PUSCH for the dynamic PUSCH of the first embodiment.
  • the new betaOffsets parameter (betaOffsets-2codeword-r18) and the new scaling parameter (scaling-2codeword-r18) included in one UCI-OnPUSCH information element are as follows for the dynamic PUSCH of the first embodiment: This corresponds to the betaOffsets parameter and scaling parameter for UCI on 2 CW PUSCH.
  • PUSCH configuration information including a UCI-OnPUSCH information element as shown in FIG. 5 may be configured in the UE.
  • FIG. 6 is a diagram illustrating an example of UCI-OnPUSCH information elements for UCI on 1 CW PUSCH and UCI on 2 CW PUSCH for dynamic PUSCH of the first embodiment.
  • the new UCI-OnPUSCH information element (UCI-OnPUSCH-r18) includes the settings for UCI on 1 CW PUSCH and the settings for UCI on 2 CW PUSCH regarding the dynamic PUSCH of the first embodiment. Contains settings for.
  • the betaOffsets parameter includes "dynamic”
  • the first four of the BetaOffsets information elements of size 8 that is, eight
  • the last four may correspond to the BetaOffsets information element for UCI on 2 CW PUSCH. Note that “first” and “last” may be reversed.
  • BetaOffsets parameter includes "semiStatic”
  • the first one of the size 2 (that is, two) BetaOffsets information elements corresponding to "semiStatic” is the BetaOffsets information element for UCI on 1 CW PUSCH.
  • the last one may correspond to the BetaOffsets information element for UCI on 2 CW PUSCH. Note that “first” and “last” may be reversed.
  • the first one corresponds to the scaling parameter for UCI on 1 CW PUSCH
  • the last one corresponds to the scaling parameter for UCI on 1 CW PUSCH.
  • 2 CW It may correspond to the scaling parameter for PUSCH. Note that “first” and “last” may be reversed.
  • PUSCH configuration information including a new UCI-OnPUSCH information element as shown in FIG. 6 may be configured in the UE. Note that when a new UCI-OnPUSCH information element is notified, the existing UCI-OnPUSCH information element (UCI-OnPUSCH) may be ignored by the UE. If a new UCI-OnPUSCH information element is signaled, the UE may not expect an existing UCI-OnPUSCH information element (UCI-OnPUSCH) to be signaled.
  • UCI-OnPUSCH UCI-OnPUSCH
  • BetaOffsets consists of the existing BetaOffsets information element (BetaOffsets) for UCI on 1 CW PUSCH and the existing BetaOffsets information element (BetaOffsets) for UCI on 2 CW PUSCH.
  • Information elements e.g. BetaOffsets-r18
  • “dynamic” may include BetaOffsets-r18 of size 4 instead of the BetaOffsets information element of size 8.
  • siStatic may include BetaOffsets-r18 instead of the BetaOffsets information element of size 2.
  • UCI on 1 CW PUSCH and UCI on 2 CW PUSCH have at least one RRC parameter (for example, UCI-OnPUSCH information element, betaOffsets parameter, scaling parameter, BetaOffsets information at least one of the elements ) may be commonly used.
  • RRC parameter for example, UCI-OnPUSCH information element, betaOffsets parameter, scaling parameter, BetaOffsets information at least one of the elements
  • betaOffsets-2codeword-r18, scaling-2codeword-r18, etc. described above in FIGS. 4 and 5 may not be included in UCI-OnPUSCH-2codeword-r18 or UCI-OnPUSCH, and scaling in FIG.
  • a parameter may contain only one enumerated type.
  • the RRC parameters defined in the NR e.g., at least one of the UCI-OnPUSCH information element, the betaOffsets parameter, the scaling parameter, the BetaOffsets information element
  • the configuration for the first CW in PUSCH may also apply.
  • the UE sets new RRC parameters for UCI on 2 CW PUSCH (betaOffsets-2codeword-r18, scaling-2codeword-r18, One set of at least one codeword such as UCI-OnPUSCH-2codeword-r18 may be set.
  • the UE sets new RRC parameters for UCI on 2 CW PUSCH (betaOffsets-2codeword-r18, scaling-2codeword-r18, Two sets of at least one codeword such as UCI-OnPUSCH-2codeword-r18 may be set.
  • the first set of new RRC parameters is used for the first CW in UCI on 2 CW PUSCH
  • the second set of new RRC parameters is , UCI on 2 CW may be used for the second CW in PUSCH.
  • Modification 1-3 of the first embodiment is modified from Modification 1-1/1-2 above by changing "UCI on 2 CW first CW in PUSCH” to "UCI is multiplexed on PUSCH related to the same panel". This may correspond to an embodiment in which "UCI on 2 CW second CW in PUSCH” is replaced with "case where UCI is multiplexed on PUSCHs related to different panels”. Note that these readings may be reversed.
  • the UCI-OnPUSCH information element (UCI-OnPUSCH or UCI-OnPUSCH-2codeword-r18) may be included in UCI-OnPUSCH-ListDCI-0-1-r16. , may be used to determine the beta offset for the transmission of UCI on 2 CW PUSCH for DCI format 0_1.
  • the UE can appropriately determine the beta offset for 2 CW PUSCH for dynamic PUSCH scheduled by a DCI format other than DCI format 0_2.
  • the second embodiment relates to a dynamic PUSCH scheduled by DCI format 0_2 (hereinafter referred to as dynamic PUSCH of the second embodiment).
  • the UE separately (or independently or differently) sets the RRC parameters for UCI on 1 CW PUSCH and the RRC parameters for UCI on 2 CW PUSCH. May be set.
  • RRC parameters are the UCI-OnPUSCH information element (UCI-OnPUSCH-DCI-0-2 IE) for DCI format 0_2, the betaOffsets parameter (betaOffsetsDCI-0-2) for DCI format 0_2, and the scaling for DCI format 0_2. It may correspond to at least one of the parameter (scalingDCI-0-2) and the BetaOffsets information element (BetaOffsets IE).
  • Rel. 15/16 RRC parameters defined in NR for example, UCI-OnPUSCH information element (UCI-OnPUSCH IE), betaOffsets parameter (betaOffsets), scaling parameter (scaling), BetaOffsets information element (BetaOffsets IE)
  • UCI-OnPUSCH information element UCI-OnPUSCH information element
  • betaOffsets parameter betaOffsets
  • scaling parameter scaling
  • BetaOffsets information element BetaOffsets IE
  • Corresponding RRC parameters for DCI format 0_2 defined in NR e.g.
  • UCI-OnPUSCH information element for DCI format 0_2 (UCI-OnPUSCH-DCI-0-2 IE), betaOffsets parameter for DCI format 0_2 (betaOffsetsDCI -0-2), a scaling parameter for DCI format 0_2 (scalingDCI-0-2), and a BetaOffsets information element (BetaOffsets IE)).
  • the second embodiment adds new RRC parameters for UCI on 2 CW PUSCH (for example, UCI-OnPUSCH information element (UCI-OnPUSCH-2codeword- DCI format 0_2 corresponding new RRC parameters for the 2-2codeword-r18), scaling parameter for DCI format 0_2 (scalingDCI-0-2-2codeword-r18), BetaOffsets information element (BetaOffsets IE/BetaOffsets-2codeword-r18)) good. Note that the BetaOffsets information element may be replaced with a new BetaOffsets information element for DCI format 0_2.
  • FIG. 7 shows an example of the betaOffsets parameters and scaling parameters for UCI on 1 CW PUSCH and the betaOffsets parameters and scaling parameters for UCI on 2 CW PUSCH regarding the dynamic PUSCH of the second embodiment. show It is a diagram.
  • the betaOffsets parameter (betaOffsetsDCI-0-2-r16) and scaling parameter (scalingDCI-0-2) defined in 16 NR are the betaOffsets for UCI on 1 CW PUSCH for dynamic PUSCH of the second embodiment. It may also correspond to parameters and scaling parameters.
  • a new betaOffsets parameter (betaOffsetsDCI-0-2-2codeword-r18) and a new scaling parameter (scalingDCI-0 -2-2codeword-r18) may correspond to the betaOffsets parameter and scaling parameter for UCI on 2CW PUSCH for the dynamic PUSCH of the second embodiment.
  • the UE can appropriately determine the beta offset for the 2 CW PUSCH for the dynamic PUSCH scheduled by DCI format 0_2.
  • the third embodiment relates to CG PUSCH.
  • the UE configures RRC parameters for UCI on 1 CW PUSCH and RRC parameters for UCI on 2 CW PUSCH separately (or independently or differently). may be done.
  • RRC parameters include the CG-UCI-OnPUSCH information element (CG-UCI-OnPUSCH IE) for CG PUSCH, the BetaOffsets information element (BetaOffsets IE), and the betaOffset parameter for CG-UCI in CG PUSCH (betaOffsetCG-UCI- r16) may apply.
  • CG-UCI-OnPUSCH IE CG-UCI-OnPUSCH information element
  • BetaOffsets information element BetaOffsets information element
  • betaOffsetCG-UCI- r16 betaOffset parameter for CG-UCI in CG PUSCH
  • the UE determines the beta offset to utilize based on the Beta Offsets information element corresponding to the RRC parameter for UCI on 1 CW PUSCH.
  • the UE determines the beta offset to utilize based on the beta offsets information element corresponding to the RRC parameters for UCI on 2 CW PUSCH.
  • FIG. 8 shows the CG-UCI-OnPUSCH information element for UCI on 1 CW PUSCH and the CG-UCI-OnPUSCH information element for UCI on 2 CW PUSCH regarding CG PUSCH of the third embodiment. It is a figure showing an example.
  • the CG-UCI-OnPUSCH information element defined in NR is the configuration for UCI on 1 CW PUSCH when transmitting UCI (HARQ-ACK/CSI) not including CG-UCI on CG PUSCH ( one or more BetaOffsets information elements corresponding to "dynamic” or "semiStatic").
  • the CG-UCI-OnPUSCH-2 codeword-r18 information element is the configuration for UCI on 2 CW PUSCH (“dynamic ” or one or more BetaOffsets information elements corresponding to “semiStatic”).
  • the betaOffset parameter (betaOffsetCG-UCI-r16) for CG-UCI in CG PUSCH defined in 16 NR relates to the beta offset for UCI on 1 CW PUSCH when only CG-UCI is transmitted on CG PUSCH. Indicates the index.
  • the new betaOffset parameter (betaOffsetCG-UCI-2codeword-r18) for CG-UCI in CG PUSCH is related to the beta offset for UCI on 2 CW PUSCH when only CG-UCI is transmitted on CG PUSCH. Indicates the index.
  • UCI on 1 CW PUSCH CG-UCI-OnPUSCH information element/CG-UCI new betaOffset parameter for UCI CG PUSCH configuration information (ConfiguredGrantConfig information element) as shown in the example of FIG. may be set to .
  • FIG. 9 is a diagram illustrating an example of CG-UCI-OnPUSCH information elements for UCI on 1 CW PUSCH and UCI on 2 CW PUSCH for CG PUSCH of the third embodiment.
  • the new CG-UCI-OnPUSCH information element (CG-UCI-OnPUSCH-r18) includes settings for UCI on 1 CW PUSCH and UCI on 2. Contains settings for CW PUSCH.
  • the new betaOffsets parameter (betaOffsets-18) included in one CG-UCI-OnPUSCH information element corresponds to the betaOffsets parameter for UCI on 1 CW PUSCH.
  • the betaOffsets parameter is the setting for UCI on 1 CW PUSCH (one corresponding to "dynamic” or "semiStatic") when transmitting UCI (HARQ-ACK/CSI) that does not include CG-UCI on CG PUSCH. BetaOffsets information element).
  • the new betaOffsets parameter (betaOffsets-2codeword-r18) included in one UCI-OnPUSCH information element corresponds to the betaOffsets parameter for UCI on 2 CW PUSCH.
  • the betaOffsets parameter is the setting for UCI on 2 CW PUSCH (one corresponding to "dynamic” or "semiStatic") when transmitting UCI (HARQ-ACK/CSI) that does not include CG-UCI on CG PUSCH. BetaOffsets information element).
  • betaOffsetCG-UCI-r16, betaOffsetCG-UCI-2codeword-r18 are the same as those described with respect to FIG. 8, so a redundant explanation will not be provided.
  • CG PUSCH configuration information (ConfiguredGrantConfig information element) including the CG-UCI-OnPUSCH-r18 information element as shown in FIG. 9 may be configured in the UE.
  • the UE can appropriately determine the beta offset for 2 CW PUSCH for CG PUSCH.
  • the fourth embodiment relates to multiplexing of different priorities (in other words, multiplexing of the UCI on the PUSCH in a case where the priority of the UCI and the priority of the PUSCH are different (UCI on PUSCH)).
  • the fourth embodiment may correspond to an embodiment in which the first to third embodiments described above are replaced with respect to the above case.
  • One embodiment of the fourth embodiment may correspond to an embodiment in which the following readings have been made in the first embodiment (including variations 1-5): ⁇ Rel. 15/16
  • the RRC parameters defined in NR eg, betaOffsets parameter (betaOffsets), BetaOffsets information element (BetaOffsets IE)
  • BetaOffsets IE BetaOffsets information element
  • betaOffsets parameters (betaOffsetsCrossPri0-r17) for LP HARQ-ACK multiplexed on HP dynamic PUSCH, multiplexed on LP dynamic PUSCH) betaOffsets parameter for HP HARQ-ACK (betaOffsetsCrossPri1-r17), betaOffsets information element (BetaOffsetsCrossPri0 IE) for LP HARQ-ACK multiplexed on HP dynamic PUSCH, HP multiplexed on LP dynamic PUSCH BetaOffsets information element for HARQ-ACK (BetaOffsetsCrossPri1 IE)) - Add new RRC parameters (for example, betaOffsets parameter (betaOffsets-2codeword-r18), BetaOffsets information element (BetaOffsets IE/BetaOffsets-2codeword-r18)) for UCI on 2 CW PUSCH to UCI on 2 CW PUSCH.
  • betaOffsets parameter for HP HARQ-ACK
  • betaOffsets parameters e.g. betaOffsetsCrossPri0-2codeword-r18
  • betaOffsets parameter for HP HARQ-ACK e.g., betaOffsetsCrossPri1-2codeword-r18
  • betaOffsets information element for LP HARQ-ACK multiplexed on HP dynamic PUSCH e.g., BetaOffsetsCrossPri0-2codeword-r18 IE
  • BetaOffsetsCrossPri1-2codeword-r18 IE LP Replaced with BetaOffsets information element for HP HARQ-ACK multiplexed on dynamic PUSCH.
  • One embodiment of the fourth embodiment may correspond to an embodiment in which the following readings have been made in the second embodiment (including variations 1-5): ⁇ Rel.
  • the corresponding RRC parameters for DCI format 0_2 defined in Rel.16 NR e.g., betaOffsets parameter for DCI format 0_2 (betaOffsetsDCI-0-2), BetaOffsets information element (BetaOffsets IE)
  • betaOffsets parameter for DCI format 0_2 (betaOffsetsDCI-0-2)
  • BetaOffsets information element (BetaOffsets IE)
  • Corresponding RRC parameters for multiplexing of different priorities that may be defined in NR (e.g.
  • betaOffsets parameter for LP HARQ-ACK multiplexed in HP dynamic PUSCH (betaOffsetsCrossPri0DCI-0-2-r17), LP dynamic betaOffsets parameter for HP HARQ-ACK multiplexed on PUSCH (betaOffsetsCrossPri1DCI-0-2-r17), betaoffsets information element for LP HARQ-ACK multiplexed on HP dynamic PUSCH (BetaOffsetsCrossPri0 IE), LP BetaOffsets information element (BetaOffsetsCrossPri1 IE) for HP HARQ-ACK multiplexed on dynamic PUSCH) - New RRC parameters for UCI on 2 CW PUSCH (e.g.
  • betaOffsets parameter for DCI format 0_2 (betaOffsetsDCI-0-2-2codeword-r18), BetaOffsets information element (BetaOffsets IE/BetaOffsets-2codeword-r18 IE)) and corresponding new RRC parameters for multiplexing of different priorities for UCI on 2 CW PUSCH (e.g. betaOffsets parameters for LP HARQ-ACK multiplexed on HP dynamic PUSCH (e.g.
  • betaOffsetsCrossPri0DCI-0- 2-2codeword-r18 betaOffsets parameter for HP HARQ-ACK multiplexed on LP dynamic PUSCH (for example, betaOffsetsCrossPri1DCI-0-2-2codeword-r18), LP HARQ-ACK multiplexed on HP dynamic PUSCH
  • BetaOffsets information element e.g., BetaOffsetsCrossPri0-2codeword-r18 IE
  • BetaOffsetsCrossPri1-2codeword-r18 IE Replace it with .
  • One embodiment of the fourth embodiment may correspond to an embodiment in which at least one of the following readings is replaced in the third embodiment: ⁇ Rel. 15/16 RRC parameters defined in NR or new RRC parameters for UCI on 1 CW PUSCH (e.g. CG-UCI-OnPUSCH information element (CG-UCI-OnPUSCH IE) for CG PUSCH, betaOffsets parameter (betaOffsets -r18), BetaOffsets information element (BetaOffsets IE)) in Rel. 17
  • RRC parameters for multiplexing of different priorities that may be defined in NR (e.g.
  • BetaoffSets for LP HARQ -ACK BetaoftSets parameters (eg, BetaoftSetsCrospri1-R17), BetaoftSets (eg, BetaoftSetsCrosspri1-R17), for HP HP HARQ-ACK, which are multiple in parameters (, BetaoftSetsCrosspri0-R17) and LP PUSCH (CG PUSCH).
  • LP HARQ -ACK which is multiple in HP PUSCH (CG PUSCH) BetaOffsets information element (BetaOffsetsCrossPri0 IE) for HP HARQ-ACK multiplexed on LP PUSCH (CG PUSCH) (BetaOffsetsCrossPri1 IE)) - New RRC parameters for UCI on 2 CW PUSCH (e.g.
  • CG-UCI-OnPUSCH information element (CG-UCI-OnPUSCH-2codeword-r18 IE) for CG PUSCH, betaOffsets parameter (betaOffsets-2codeword-r18), BetaOffsets information element (BetaOffsets-2codeword-r18 IE)) and corresponding new RRC parameters for multiplexing of different priorities for UCI on 2 CW PUSCH (e.g. for LP HARQ-ACK multiplexed on HP CG PUSCH).
  • betaOffsets parameter (betaOffsets-2codeword-r18)
  • BetaOffsets information element (BetaOffsets-2codeword-r18 IE))
  • new RRC parameters for multiplexing of different priorities for UCI on 2 CW PUSCH (e.g. for LP HARQ-ACK multiplexed on HP CG PUSCH).
  • betaOffsets parameter for example, CG-betaOffsetsCrossPri0-2codeword-r18 equivalent to the CG-UCI-OnPUSCH information element for betaOffsets parameters for LP HARQ-ACK multiplexed on HP PUSCH (CG PUSCH) (e.g. betaOffsetsCrossPri0-2codeword-r18), LP PUSCH (CG PUSCH) PUSCH) betaOffsets parameter for HP HARQ-ACK multiplexed in the HP 2codeword-r18 IE), BetaOffsets information element for HP HARQ-ACK multiplexed on LP PUSCH (CG PUSCH) (for example, BetaOffsetsCrossPri1-2codeword-r18 IE)).
  • the UE when the RRC parameter regarding the activation (application) of beta offset configuration extension regarding multiplexing of different priorities is configured, the UE configures the existing Rel.
  • the RRC parameters related to the beta offset of 15/16 are used as settings for HP (LP) HARQ-ACK multiplexed on the LP (HP) PUSCH, and the RRC parameters related to the newly defined beta offset are ) It may be used as a setting for LP (HP) HARQ-ACK multiplexed on PUSCH.
  • the UE when the RRC parameter regarding the activation (application) of beta offset configuration extension for multiplexing of different priorities is configured, the UE configures the existing Rel.
  • the RRC parameter for the 15/16 beta offset may be ignored (if set at all).
  • the UE may be configured with two sets of RRC parameters for beta offsets if the RRC parameters for enabling (applying) beta offset configuration extensions for multiplexes of different priorities are configured.
  • the UE uses the RRC parameters related to the beta offset of the first set of the above two sets as settings for HP (LP) HARQ-ACK multiplexed on the LP (HP) PUSCH, and
  • the RRC parameters regarding the beta offset of the second set of the two sets may be used as settings for LP(HP) HARQ-ACK multiplexed on HP(LP) PUSCH.
  • the UE performs an existing Rel.
  • RRC parameters for a beta offset of 15/16 may be used to determine the beta offset.
  • the UE can perform multiplexing with different priorities (for example, a case of multiplexing HP HARQ-ACK on LP PUSCH, a case of multiplexing LP HARQ-ACK on HP PUSCH), Even if there is, the beta offset for 2 CW PUSCH can be appropriately determined.
  • the interpretation of the bit value may be different from the existing one.
  • the Beta Offset Indicator field determines the settings for the first CW and the second CW. Settings for CW may be indicated.
  • the beta offset indicator field 010
  • the beta offset indicator field is the beta offsets information element for the first CW and the second offset index (corresponding to the second offset index provided by RRC). Beta Offsets information element for CW).
  • the configuration for 1CW PUSCH may be indicated by the beta offset indicator field.
  • the beta offset indicator field "01" included in the DCI that schedules 1CW PUSCH may mean the second offset index (corresponding beta offsets information element) provided by RRC for 1CW PUSCH. good.
  • the UCI may be multiplexed only on one TB (for example, only on the TB corresponding to a lower TB index) or may be divided into two parts. They may be copied and multiplexed onto different TBs, or they may be copied and the same UCI may be multiplexed onto each TB.
  • the UE in the case where UCI is multiplexed into only one TB, the UE is configured with settings regarding the beta offset for the TB (information elements, parameters, etc. described in each of the above embodiments), Settings regarding beta offsets for other TBs may not be configured.
  • the particular UE capability may indicate at least one of the following: - Regarding PUSCH scheduled by a DCI format other than DCI format 0_2, whether to support separate settings for UCI on 1 CW PUSCH and UCI on 2 CW PUSCH, - Regarding PUSCH scheduled by DCI format 0_2, whether to support separate settings for UCI on 1 CW PUSCH and UCI on 2 CW PUSCH, - Whether to support separate settings for UCI on 1 CW PUSCH and UCI on 2 CW PUSCH for PUSCH scheduled by any DCI format; - Regarding CG PUSCH, whether to support separate settings for UCI on 1 CW PUSCH and UCI on 2 CW PUSCH, - Regarding CG PUSCH, whether to support separate settings for CG-UCI on 1 CW PUSCH and CG-UCI on 2 CW PUSCH, - For multiplexing cases with different priorities (for example, multiplexing HP HARQ-ACK on LP PUSCH, multiplex
  • the above-mentioned specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency), or may be a capability for each frequency (for example, cell, band, BWP). , the capability may be for each frequency range (for example, FR1, FR2, FR3, FR4, FR5), or the capability may be for each subcarrier interval.
  • the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex).
  • the capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
  • the UE is configured with specific information related to the embodiment described above by upper layer signaling.
  • the specific information may be configuration information for UCI on 2 CW PUSCH, arbitrary RRC parameters for a specific release (for example, Rel. 18), etc.
  • the UE does not support at least one of the specific UE capabilities or is not configured with the specific information, for example, Rel. 15/16 operation may be applied, it may be assumed that the same settings (e.g. default settings) are applied to 1 CW PUSCH and 2 CW PUSCH, or new RRC parameters are applied to 1 CW PUSCH and 2 CW PUSCH. If it indicates that the assumption that the same settings are applied to PUSCH is enabled, then such an assumption may be made.
  • the same settings e.g. default settings
  • new RRC parameters are applied to 1 CW PUSCH and 2 CW PUSCH.
  • wireless communication system The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 10 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • RATs Radio Access Technologies
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN
  • the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)).
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
  • the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
  • TDD time division duplex
  • FDD frequency division duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication).
  • wire for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
  • IAB Integrated Access Backhaul
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a wireless access method may also be called a waveform.
  • other wireless access methods for example, other single carrier transmission methods, other multicarrier transmission methods
  • the UL and DL radio access methods may be used as the UL and DL radio access methods.
  • the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • PDCCH downlink control channel
  • uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH physical uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, upper layer control information, etc. may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted via the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates).
  • PDCCH candidates PDCCH candidates
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • the PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted.
  • CSI channel state information
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • UCI Uplink Control Information including at least one of SR
  • a random access preamble for establishing a connection with a cell may be transmitted by PRACH.
  • downlinks, uplinks, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical” at the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation).
  • Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
  • DMRS Downlink Reference Signal
  • UL-RS uplink reference signals
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signals
  • UE-specific reference signal user terminal-specific reference signal
  • FIG. 11 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like.
  • the control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120.
  • the control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123.
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212.
  • the transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
  • the transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 1211 and an RF section 122.
  • the reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmitting/receiving unit 120 performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted.
  • a baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
  • IFFT Inverse Fast Fourier Transform
  • the transmitting/receiving unit 120 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
  • the transmitting/receiving section 120 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmitting/receiving unit 120 may perform measurements regarding the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR) )) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured.
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30, other base stations 10, etc., and transmits and receives user data (user plane data) for the user terminal 20, control plane It is also possible to acquire and transmit data.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • control unit 110 provides first configuration information regarding beta offsets for the physical uplink shared channel for one codeword (for example, betaOffsets, scaling, UCI-OnPUSCH) and information for two codewords. Second configuration information regarding beta offsets for the physical uplink shared channel (eg, betaOffsets-2codeword-r18, scaling-2codeword-r18, UCI-OnPUSCH-2codeword-r18) may be generated.
  • the transmitting/receiving unit 120 may transmit the first setting information and the second setting information to the user terminal 20.
  • FIG. 12 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
  • the transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223.
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212.
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
  • the transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 2211 and an RF section 222.
  • the reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
  • the transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
  • the transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing e.g. RLC retransmission control
  • MAC layer processing e.g. , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
  • DFT processing may be based on the settings of transform precoding.
  • the transmitting/receiving unit 220 transmits the above processing in order to transmit the channel using the DFT-s-OFDM waveform.
  • DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
  • the transmitting/receiving unit 220 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
  • the transmitting/receiving unit 220 may perform measurements regarding the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transmitting/receiving unit 220 transmits first configuration information regarding beta offsets for the physical uplink shared channel for one codeword (for example, betaOffsets, scaling, UCI-OnPUSCH) and information for two codewords.
  • Second configuration information regarding beta offsets for the physical uplink shared channel eg, betaOffsets-2codeword-r18, scaling-2codeword-r18, UCI-OnPUSCH-2codeword-r18 may be received.
  • the control unit 210 may determine a beta offset for transmission on the physical uplink shared channel for the two codewords based on the second configuration information.
  • the physical uplink shared channel may be a physical uplink shared channel scheduled according to a DCI format other than Downlink Control Information (DCI) format 0_2.
  • DCI Downlink Control Information
  • the physical uplink shared channel may be a physical uplink shared channel scheduled according to Downlink Control Information (DCI) format 0_2.
  • DCI Downlink Control Information
  • the physical uplink shared channel may be a configured grant physical uplink shared channel.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 13 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be implemented using one or more chips.
  • Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
  • predetermined software program
  • the processor 1001 operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • channel, symbol and signal may be interchanged.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame structure. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI TTI in 3GPP Rel. 8-12
  • normal TTI long TTI
  • normal subframe normal subframe
  • long subframe slot
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
  • PRB Physical RB
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB. They may also be called pairs.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer.
  • Information, signals, etc. may be input and output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of prescribed information is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
  • the determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology such as infrared, microwave, etc.
  • Network may refer to devices (eg, base stations) included in the network.
  • precoding "precoding weight”
  • QCL quadsi-co-location
  • TCI state "Transmission Configuration Indication state
  • space space
  • spatial relation "spatial domain filter”
  • transmission power "phase rotation”
  • antenna port "antenna port group”
  • layer "number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable.
  • Base Station BS
  • Wireless base station Wireless base station
  • Fixed station NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • cell “sector,” “cell group,” “carrier,” “component carrier,” and the like
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)).
  • a base station subsystem e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)
  • RRH Remote Radio Communication services
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • a transmitting device may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon.
  • the mobile object may be a mobile object that autonomously travels based on a travel command.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • a vehicle for example, a car, an airplane, etc.
  • an unmanned moving object for example, a drone, a self-driving car, etc.
  • a robot manned or unmanned.
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 14 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60.
  • current sensor 50 including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58
  • an information service section 59 including a communication module 60.
  • the drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49.
  • the electronic control section 49 may be called an electronic control unit (ECU).
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52.
  • air pressure signals of the front wheels 46/rear wheels 47 a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor.
  • 56 a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
  • the information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • LiDAR Light Detection and Ranging
  • GNSS Global Navigation Satellite System
  • HD High Definition
  • maps for example, autonomous vehicle (AV) maps, etc.
  • gyro systems e.g.,
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40.
  • Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the base station 10, user terminal 20, etc. described above.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
  • the communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the functions that the base station 10 described above has.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to inter-terminal communication (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be replaced with sidelink channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 10 may have the functions that the user terminal 20 described above has.
  • the operations performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is an integer or decimal number, for example
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New Radio Access
  • FX Future Generation Radio Access
  • G Global System for Mobile Communications
  • CDMA2000 Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods.
  • the present invention may be applied to systems to be used, next-generation systems expanded, modified, created, or defined based on these
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions. For example, “judgment” can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be “determining.”
  • judgment (decision) includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be “determining”, such as accessing data in memory (eg, accessing data in memory).
  • judgment is considered to mean “judging” resolving, selecting, choosing, establishing, comparing, etc. Good too.
  • judgment (decision) may be considered to be “judgment (decision)” of some action.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements.
  • the coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • microwave when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to one aspect of the present disclosure comprises: a reception unit that receives first setting information pertaining to the beta offset for a physical uplink shared channel for one code word, and second setting information pertaining to the beta offset for the physical uplink shared channel for two code words; and a control unit that, on the basis of the second setting information, determines the beta offset for transmission via the physical uplink shared channel for the two code words. According to one aspect of the present disclosure, a UCI on PUSCH transmission for a plurality of code words can be appropriately performed.

Description

端末、無線通信方法及び基地局Terminal, wireless communication method and base station
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 The present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of higher data rates, lower delays, etc. (Non-Patent Document 1). Additionally, LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Releases (Rel.) 8 and 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 Successor systems to LTE (for example, also referred to as 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 or later) are also being considered. .
 NRにおいて、端末(ユーザ端末(user terminal)、User Equipment(UE))は、物理上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))を利用して、上りリンク制御情報(Uplink Control Information(UCI))を送信することができる。PUSCHにおいてUCIを送信する動作のことは、UCI on PUSCHとも呼ばれる。 In NR, a terminal (user terminal, User Equipment (UE)) uses a physical uplink shared channel (PUSCH) to transmit uplink control information (UCI). ) can be sent. The operation of transmitting UCI on PUSCH is also referred to as UCI on PUSCH.
 UEは、UCI on PUSCHの場合に、ベータオフセット(beta offset)に基づいて、上記UCIの送信のためのリソース量(例えば、レイヤごとの符号化された変調シンボル数)を決定する。複数のベータオフセットに関するセットが、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング)によってUEに設定されてもよい。 In the case of UCI on PUSCH, the UE determines the amount of resources (for example, the number of coded modulation symbols per layer) for the transmission of the UCI based on the beta offset. A set of multiple beta offsets may be configured in the UE by higher layer signaling (eg, RRC (Radio Resource Control) signaling).
 Rel.15/16 NRでは、UEは、1つのPUSCHを用いて1つのコードワード(Codeword(CW))を送信する。将来の無線通信システム(例えば、Rel.17 NR)では、UEが、1つのPUSCHを用いて1つより多いCWを送信することが検討されている。 Rel. 15/16 In NR, the UE transmits one codeword (CW) using one PUSCH. In future wireless communication systems (eg, Rel. 17 NR), it is being considered that the UE will transmit more than one CW using one PUSCH.
 しかしながら、1つより多いCWを送信するPUSCHに関するベータオフセットの設定をどのように行うかは、まだ検討が進んでいない。複数のCWのためのUCI on PUSCH送信が適切に行われなければ、スループットが低下したり、通信品質が劣化したりするおそれがある。 However, consideration has not yet been made as to how to set the beta offset for PUSCH that transmits more than one CW. If UCI on PUSCH transmission for multiple CWs is not performed appropriately, there is a risk that throughput may decrease or communication quality may deteriorate.
 そこで、本開示は、複数コードワードのためのUCI on PUSCH送信を適切に行うことができる端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one object of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can appropriately perform UCI on PUSCH transmission for multiple codewords.
 本開示の一態様に係る端末は、1つのコードワードのための物理上りリンク共有チャネルのためのベータオフセットに関する第1の設定情報と、2つのコードワードのための前記物理上りリンク共有チャネルのためのベータオフセットに関する第2の設定情報と、を受信する受信部と、前記第2の設定情報に基づいて、前記2つのコードワードのための前記物理上りリンク共有チャネルの送信のためのベータオフセットを決定する制御部と、を有する。 A terminal according to an aspect of the present disclosure includes first configuration information regarding a beta offset for a physical uplink shared channel for one codeword and for the physical uplink shared channel for two codewords. second configuration information regarding a beta offset for the two codewords; and a control unit that makes the decision.
 本開示の一態様によれば、複数コードワードのためのUCI on PUSCH送信を適切に行うことができる。 According to one aspect of the present disclosure, UCI on PUSCH transmission for multiple codewords can be appropriately performed.
図1は、Rel.15/16 NRにおける、複数のベータオフセットに関するセットの情報要素の一例を示す図である。FIG. 1 shows Rel. 15/16 is a diagram illustrating an example of a set of information elements regarding a plurality of beta offsets in NR. 図2は、Rel.15/16 NRにおける、ベータオフセッツ情報要素を含むPUSCH設定情報の一例を示す図である。FIG. 2 shows Rel. 15/16 is a diagram showing an example of PUSCH configuration information including a beta offset information element in NR. 図3は、Rel.15/16 NRにおける、ベータオフセッツ情報要素を含むCG PUSCH設定情報の一例を示す図である。FIG. 3 shows Rel. 15/16 is a diagram showing an example of CG PUSCH setting information including a beta offset information element in NR. 図4は、第1の実施形態の動的PUSCHについての、UCI on 1 CW PUSCHのためのUCI-OnPUSCH情報要素と、UCI on 2 CW PUSCHのためのUCI-OnPUSCH情報要素と、の一例を示す図である。FIG. 4 shows an example of the UCI-OnPUSCH information element for UCI on 1 CW PUSCH and the UCI-OnPUSCH information element for UCI on 2 CW PUSCH for the dynamic PUSCH of the first embodiment. It is a diagram. 図5は、第1の実施形態の動的PUSCHについての、UCI on 1 CW PUSCHのためのbetaOffsetsパラメータ及びscalingパラメータと、UCI on 2 CW PUSCHのためのbetaOffsetsパラメータ及びscalingパラメータと、の一例を示す図である。FIG. 5 shows an example of the betaOffsets parameters and scaling parameters for UCI on 1 CW PUSCH and the betaOffsets parameters and scaling parameters for UCI on 2 CW PUSCH regarding the dynamic PUSCH of the first embodiment. show It is a diagram. 図6は、第1の実施形態の動的PUSCHについての、UCI on 1 CW PUSCH及びUCI on 2 CW PUSCHのためのUCI-OnPUSCH情報要素の一例を示す図である。FIG. 6 is a diagram illustrating an example of UCI-OnPUSCH information elements for UCI on 1 CW PUSCH and UCI on 2 CW PUSCH for dynamic PUSCH of the first embodiment. 図7は、第2の実施形態の動的PUSCHについての、UCI on 1 CW PUSCHのためのbetaOffsetsパラメータ及びscalingパラメータと、UCI on 2 CW PUSCHのためのbetaOffsetsパラメータ及びscalingパラメータと、の一例を示す図である。FIG. 7 shows an example of the betaOffsets parameters and scaling parameters for UCI on 1 CW PUSCH and the betaOffsets parameters and scaling parameters for UCI on 2 CW PUSCH regarding the dynamic PUSCH of the second embodiment. show It is a diagram. 図8は、第3の実施形態のCG PUSCHについての、UCI on 1 CW PUSCHのためのCG-UCI-OnPUSCH情報要素と、UCI on 2 CW PUSCHのためのCG-UCI-OnPUSCH情報要素と、の一例を示す図である。FIG. 8 shows the CG-UCI-OnPUSCH information element for UCI on 1 CW PUSCH and the CG-UCI-OnPUSCH information element for UCI on 2 CW PUSCH regarding CG PUSCH of the third embodiment. It is a figure showing an example. 図9は、第3の実施形態のCG PUSCHについての、UCI on 1 CW PUSCH及びUCI on 2 CW PUSCHのためのCG-UCI-OnPUSCH情報要素の一例を示す図である。FIG. 9 is a diagram illustrating an example of CG-UCI-OnPUSCH information elements for UCI on 1 CW PUSCH and UCI on 2 CW PUSCH for CG PUSCH of the third embodiment. 図10は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. 図11は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of the configuration of a base station according to an embodiment. 図12は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. 図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 13 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. 図14は、一実施形態に係る車両の一例を示す図である。FIG. 14 is a diagram illustrating an example of a vehicle according to an embodiment.
(ベータオフセット)
 NRにおいて、UEは、物理上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))を利用して、上りリンク制御情報(Uplink Control Information(UCI))を送信することができる。PUSCHにおいてUCIを送信する動作のことは、UCI on PUSCHとも呼ばれる。
(beta offset)
In NR, the UE can transmit uplink control information (UCI) using a physical uplink shared channel (PUSCH). The operation of transmitting UCI on PUSCH is also referred to as UCI on PUSCH.
 UEは、UCI on PUSCHの場合に、UCIの送信に用いられるリソース量(例えば、レイヤごとの符号化された変調シンボル数、リソースエレメント(Resource Element(RE))の数)、UCIのビット数、変調次数などに基づいて、当該PUSCHを用いて送信されるUCIの符号化率を決定してもよい。 In the case of UCI on PUSCH, the UE determines the amount of resources used for UCI transmission (for example, the number of coded modulation symbols for each layer, the number of resource elements (Resource Elements (RE)), the number of UCI bits, The coding rate of UCI transmitted using the PUSCH may be determined based on the modulation order or the like.
 UEは、ベータオフセット(beta offset)に基づいて、上記UCIの送信のためのリソース量(例えば、レイヤごとの符号化された変調シンボル数)を決定する。ベータオフセットは、βOffsetなどとも表現され、UCIの種類又は内容(HARQ-ACK、CSIパート1、CSIパート2など)ごとに異なってもよい。また、ベータオフセットに基づいて、UCIを含むPUSCHの送信電力が決定されてもよい。 The UE determines the amount of resources (eg, the number of coded modulation symbols per layer) for the transmission of the UCI based on the beta offset. The beta offset is also expressed as β Offset , and may differ depending on the type or content of UCI (HARQ-ACK, CSI part 1, CSI part 2, etc.). Furthermore, the transmission power of PUSCH including UCI may be determined based on the beta offset.
 複数のベータオフセットに関するセットが、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング)によってUEに設定されてもよい。 A set of multiple beta offsets may be configured in the UE by upper layer signaling (for example, RRC (Radio Resource Control) signaling).
 図1は、Rel.15/16 NRにおける、複数のベータオフセットに関するセットの情報要素の一例を示す図である。本例は、Abstract Syntax Notation One(ASN.1)記法を用いて記載されている(なお、あくまで例であるため、完全な記載とは限らない。以降の類似する図面も同様である)。 Figure 1 shows Rel. 15/16 is a diagram illustrating an example of a set of information elements regarding a plurality of beta offsets in NR. This example is described using Abstract Syntax Notation One (ASN.1) notation (note that this is just an example and is not necessarily a complete description. The same applies to similar drawings that follow).
 複数のベータオフセットに関するセットの情報要素(ベータオフセッツ情報要素(BetaOffsets IE))は、ベータオフセットに関するインデックスを示す7つのパラメータを含む。 The information element of the set regarding multiple beta offsets (BetaOffsets information element (BetaOffsets IE)) includes seven parameters indicating the index regarding the beta offsets.
 パラメータbetaOffsetACK-Index1、betaOffsetACK-Index2及びbetaOffsetACK-Index3は、それぞれ2ビットまで、11ビットまで及び11ビットより大きいHARQ-ACKをPUSCHにおいて送信する場合に適用されるベータオフセットに関するインデックスを示す。 The parameters betaOffsetACK-Index1, betaOffsetACK-Index2, and betaOffsetACK-Index3 indicate the index regarding the beta offset applied when transmitting HARQ-ACK up to 2 bits, up to 11 bits, and larger than 11 bits on the PUSCH, respectively.
 パラメータbetaOffsetCSI-Part1-Index1及びbetaOffsetCSI-Part1-Index2は、それぞれ11ビットまで及び11ビットより大きいCSIパート1をPUSCHにおいて送信する場合に適用されるベータオフセットに関するインデックスを示す。 The parameters betaOffsetCSI-Part1-Index1 and betaOffsetCSI-Part1-Index2 indicate the index regarding the beta offset applied when transmitting CSI part 1 up to 11 bits and larger than 11 bits on the PUSCH, respectively.
 パラメータbetaOffsetCSI-Part2-Index1及びbetaOffsetCSI-Part2-Index2は、それぞれ11ビットまで及び11ビットより大きいCSIパート2をPUSCHにおいて送信する場合に適用されるベータオフセットに関するインデックスを示す。 The parameters betaOffsetCSI-Part2-Index1 and betaOffsetCSI-Part2-Index2 indicate the index regarding the beta offset applied when transmitting CSI part 2 up to 11 bits and larger than 11 bits on the PUSCH, respectively.
 UEは、送信するUCIの種類(又は内容)及びビット数(ペイロードサイズ)に基づいて、1つのセット内の1つのインデックスを参照し、対応するベータオフセット値を決定する。なお、インデックス及びベータオフセット値の対応関係は、規格によって規定されている。当該対応関係は、UCIの内容ごとに異なってもよい。 Based on the type (or content) and number of bits (payload size) of the UCI to be transmitted, the UE refers to one index in one set and determines the corresponding beta offset value. Note that the correspondence between the index and the beta offset value is defined by the standard. The correspondence relationship may differ depending on the contents of the UCI.
 NRにおいては、動的な(dynamic)ベータオフセット及び準静的な(semi-static)ベータオフセットが規定されている。UEは、動的なベータオフセットを設定されると、PUSCHをスケジュールする下りリンク制御情報(Downlink Control Information(DCI))フォーマットに含まれるベータオフセットインディケーターフィールドによって、最大4つのオフセットインデックスから1つを指定される。UEは、指定されるオフセットインデックスに対応するベータオフセッツ情報要素を、上記PUSCHにおいて送信されるUCIのためのベータオフセットの決定に利用する。 In NR, a dynamic beta offset and a semi-static beta offset are defined. When configured with a dynamic beta offset, the UE selects one of up to four offset indices by the beta offset indicator field included in the Downlink Control Information (DCI) format for scheduling the PUSCH. It is specified. The UE uses the beta offsets information element corresponding to the specified offset index to determine the beta offset for the UCI transmitted on the PUSCH.
 UEは、準静的なベータオフセットを設定されると、PUSCHをスケジュールするDCIフォーマットに含まれるベータオフセットインディケーターフィールドは0ビットであると判断する。また、UEは、RRCによって設定される1つのベータオフセッツ情報要素を、上記PUSCHにおいて送信されるUCIのためのベータオフセットの決定に利用する。 When the UE is configured with a semi-static beta offset, it determines that the beta offset indicator field included in the DCI format for scheduling the PUSCH is 0 bits. The UE also uses one beta offsets information element configured by RRC to determine the beta offset for the UCI transmitted on the PUSCH.
 DCIフォーマットによってスケジュールされるPUSCH(動的PUSCH(dynamic PUSCH)、動的スケジューリングPUSCHなどと呼ばれてもよい)についての動的なベータオフセット又は準静的なベータオフセットに関するベータオフセッツ情報要素は、PUSCH設定情報(PUSCH-Config情報要素)に含まれてUEに設定される。なお、PUSCHをスケジュールするDCIは、動的グラント(dynamic grant)と呼ばれてもよく、例えば、DCIフォーマット0_0、0_1、0_2などが規定されている。 The Beta Offsets information element regarding the dynamic beta offset or quasi-static beta offset for the PUSCH (which may be referred to as dynamic PUSCH, dynamic scheduling PUSCH, etc.) scheduled according to the DCI format is: It is included in the PUSCH configuration information (PUSCH-Config information element) and configured in the UE. Note that the DCI that schedules PUSCH may be called a dynamic grant, and for example, DCI formats 0_0, 0_1, 0_2, etc. are defined.
 図2は、Rel.15/16 NRにおける、ベータオフセッツ情報要素を含むPUSCH設定情報の一例を示す図である。 FIG. 2 shows Rel. 15/16 is a diagram showing an example of PUSCH configuration information including a beta offset information element in NR.
 Rel.15/16 NRにおいて規定されるUCI-OnPUSCH情報要素(UCI-OnPUSCH IE)は、betaOffsetsパラメータ(betaOffsets)及びscalingパラメータ(scaling)を含んでもよい。betaOffsetsパラメータが“dynamic”を含む場合、DCIフォーマット0_2以外のDCIフォーマットのために動的なベータオフセットが用いられることを示し、“semiStatic”を含む場合、DCIフォーマット0_2以外のDCIフォーマットのために準静的なベータオフセットが用いられることを示す。“dynamic”には、サイズ4(つまり、4つ)のベータオフセッツ(BetaOffsets)情報要素が含まれ、“semiStatic”には、1つのベータオフセッツ(BetaOffsets)情報要素が含まれる。 Rel. The UCI-OnPUSCH information element (UCI-OnPUSCH IE) defined in 15/16 NR may include a betaOffsets parameter (betaOffsets) and a scaling parameter (scaling). If the betaOffsets parameter contains "dynamic", it indicates that dynamic beta offsets are used for DCI formats other than DCI format 0_2, and if it contains "semiStatic", it indicates that dynamic beta offsets are used for DCI formats other than DCI format 0_2. Indicates that a static beta offset is used. "dynamic" includes a BetaOffsets information element of size 4 (ie, four), and "semiStatic" includes one BetaOffsets information element.
 scalingパラメータは、DCIフォーマット0_2以外のDCIフォーマットのためのUCI on PUSCHに割り当てられるRE数の制限のためのスケーリング係数を示す。例えば、f0p5は0.5に対応する。 The scaling parameter indicates a scaling factor for limiting the number of REs allocated to UCI on PUSCH for DCI formats other than DCI format 0_2. For example, f0p5 corresponds to 0.5.
 Rel.16 NRにおいて規定されるUCI-OnPUSCH-DCI-0-2情報要素(UCI-OnPUSCH-DCI-0-2 IE)は、DCIフォーマット0_2のためのbetaOffsetsパラメータ(betaOffsetsDCI-0-2)及びscalingパラメータ(scalingDCI-0-2)を示す。動的なベータオフセットについて、サイズ4のベータオフセッツ情報要素の代わりにサイズ2のベータオフセッツ情報要素が設定可能な点がUCI-OnPUSCH情報要素とは異なる。このサイズに応じて、DCIフォーマット0_2に含まれるベータオフセットインディケーターフィールドのサイズは、1ビットか2ビットに変動する。なお、準静的なベータオフセットを設定される場合、DCIフォーマット0_2に含まれるベータオフセットインディケーターフィールドのサイズは、やはり0ビットである。 Rel. The UCI-OnPUSCH-DCI-0-2 information element (UCI-OnPUSCH-DCI-0-2 IE) specified in 16 NR includes the betaOffsets parameter (betaOffsetsDCI-0-2) and the scaling parameter ( scalingDCI-0-2). Regarding the dynamic beta offset, it differs from the UCI-OnPUSCH information element in that a beta offsets information element of size 2 can be set instead of a beta offsets information element of size 4. Depending on this size, the size of the beta offset indicator field included in DCI format 0_2 varies from 1 bit to 2 bits. Note that when a quasi-static beta offset is set, the size of the beta offset indicator field included in DCI format 0_2 is also 0 bits.
 Rel.16 NRでは、UEは、2つのHARQ-ACKコードブックを生成することを上位レイヤパラメータ(pdsch-HARQ-ACK-CodebookList)によって設定されることがある。この場合、UEは、DCIフォーマット0_1について、2つのUCI-OnPUSCH情報要素(UCI-OnPUSCH IE)をリスト(UCI-OnPUSCH-ListDCI-0-1-r16)によって設定され得る。また、UEは、DCIフォーマット0_2について、2つのUCI-OnPUSCH-DCI-0-2情報要素(UCI-OnPUSCH-DCI-0-2 IE)をリスト(UCI-OnPUSCH-ListDCI-0-2-r16)によって設定され得る。これらのリストにおける第1のエントリが第1のHARQ-ACKコードブックに対応し、第2のエントリが第2のHARQ-ACKコードブックに対応してもよい。 Rel. In NR.16, the UE may be configured by an upper layer parameter (pdsch-HARQ-ACK-CodebookList) to generate two HARQ-ACK codebooks. In this case, the UE may be configured with two UCI-OnPUSCH information elements (UCI-OnPUSCH IE) for DCI format 0_1 by a list (UCI-OnPUSCH-ListDCI-0-1-r16). The UE also lists two UCI-OnPUSCH-DCI-0-2 information elements (UCI-OnPUSCH-DCI-0-2 IE) for DCI format 0_2 (UCI-OnPUSCH-ListDCI-0-2-r16). can be set by A first entry in these lists may correspond to a first HARQ-ACK codebook and a second entry may correspond to a second HARQ-ACK codebook.
 なお、第1のHARQ-ACKコードブックは、優先度インデックス(priority index)0のPhysical Uplink Control Channel(PUCCH)に関連し、第2のHARQ-ACKコードブックは、優先度インデックス1のPUCCHに関連する。優先度インデックスの値が大きいほど優先度は高い。優先度については後述する。 Note that the first HARQ-ACK codebook is related to the Physical Uplink Control Channel (PUCCH) with a priority index of 0, and the second HARQ-ACK codebook is related to the PUCCH with a priority index of 1. do. The larger the value of the priority index, the higher the priority. The priority will be described later.
 動的グラントなしの上りリンク送信(PUSCH送信)は、コンフィギュアドグラントPUSCH(configured grant(CG) PUSCH)とも呼ばれる。CG PUSCHの実際の上りリンクグラント(UL grant)は、タイプ1 CG PUSCHの場合はRRCシグナリング(ConfiguredGrantConfig情報要素)によって設定され、タイプ2 CG PUSCHの場合は、PDCCH(DCI)によって提供される。 Uplink transmission without dynamic grant (PUSCH transmission) is also called configured grant (CG) PUSCH. The actual uplink grant (UL grant) of CG PUSCH is configured by RRC signaling (ConfiguredGrantConfig information element) for type 1 CG PUSCH, and provided by PDCCH (DCI) for type 2 CG PUSCH.
 CG PUSCHについての動的なベータオフセット又は準静的なベータオフセットに関するベータオフセッツ情報要素は、CG PUSCH設定情報(ConfiguredGrantConfig情報要素)に含まれてUEに設定される。 The Beta Offsets information element regarding the dynamic beta offset or quasi-static beta offset for the CG PUSCH is included in the CG PUSCH configuration information (ConfiguredGrantConfig information element) and configured in the UE.
 図3は、Rel.15/16 NRにおける、ベータオフセッツ情報要素を含むCG PUSCH設定情報の一例を示す図である。 FIG. 3 shows Rel. 15/16 is a diagram showing an example of CG PUSCH setting information including a beta offset information element in NR.
 Rel.15/16 NRにおいて規定されるCG-UCI-OnPUSCH情報要素(CG-UCI-OnPUSCH IE)は、CG-UCIを含まないUCI(HARQ-ACK/CSI)をCG PUSCHで送信する場合の設定(“dynamic”又は“semiStatic”に対応する1つ以上のBetaOffsets情報要素)を含む。CG-UCI-OnPUSCH情報要素が“dynamic”を含む場合、UCI on CG PUSCHのために動的なベータオフセットが用いられることを示し、“semiStatic”を含む場合、UCI on CG PUSCHのために準静的なベータオフセットが用いられることを示す。“dynamic”には、サイズ1以上4以下のベータオフセッツ(BetaOffsets)情報要素が含まれ、“semiStatic”には、1つのベータオフセッツ(BetaOffsets)情報要素が含まれる。 Rel. 15/16 The CG-UCI-OnPUSCH information element (CG-UCI-OnPUSCH IE) specified in NR is the setting (“ one or more BetaOffsets information elements corresponding to "dynamic" or "semiStatic"). If the CG-UCI-OnPUSCH information element contains “dynamic”, it indicates that a dynamic beta offset is used for UCI on CG PUSCH, and if it contains “semiStatic”, it indicates that a semi-static beta offset is used for UCI on CG PUSCH. indicates that a standard beta offset is used. "Dynamic" includes a BetaOffsets information element of size 1 to 4, and "semiStatic" includes one BetaOffsets information element.
 なお、タイプ1 CG PUSCHについては“semiStatic”が設定される。また、タイプ2 CG PUSCHについては“dynamic”が設定されると、UEは、CG PUSCHのアクティベーションのためのDCIに含まれるベータオフセットインディケーターフィールドによって、最大4つのオフセットインデックスから1つを指定される。UEは、指定されるオフセットインデックスに対応するベータオフセッツ情報要素を、上記CG PUSCHにおいて送信されるUCIのためのベータオフセットの決定に利用する。 Note that "semiStatic" is set for type 1 CG PUSCH. In addition, when “dynamic” is set for type 2 CG PUSCH, the UE can specify one of up to four offset indexes by the beta offset indicator field included in the DCI for CG PUSCH activation. Ru. The UE uses the beta offsets information element corresponding to the specified offset index to determine the beta offset for the UCI transmitted on the CG PUSCH.
 Rel.16 NRにおいて規定されるCG PUSCHにおけるCG-UCIのためのbetaOffsetパラメータ(betaOffsetCG-UCI-r16)は、CG-UCIのみをCG PUSCHで送信する場合のベータオフセットに関するインデックスを示す。なお、CG PUSCHにおいてHARQ-ACK及びCG-UCIが送信される場合、適用されるベータオフセットは、HARQ-ACKのためのベータオフセットであってもよい。 Rel. The betaOffset parameter (betaOffsetCG-UCI-r16) for CG-UCI in CG PUSCH specified in 16 NR indicates an index regarding the beta offset when only CG-UCI is transmitted on CG PUSCH. Note that when HARQ-ACK and CG-UCI are transmitted on CG PUSCH, the applied beta offset may be a beta offset for HARQ-ACK.
 なお、CG-UCIは、HARQプロセス番号(HARQ Process Number(HPN))フィールド、冗長バージョン(Redundancy Version(RV))フィールド、新規データインディケーター(New Data Indicator(NDI))フィールド及びチャネル占有時間(Channel Occupancy Time(COT))シェアリング情報フィールドを含んでもよい。 Note that CG-UCI includes the HARQ Process Number (HPN) field, Redundancy Version (RV) field, New Data Indicator (NDI) field, and Channel Occupancy Time (Channel Occupancy Time (COT) sharing information field may also be included.
(優先度)
 Rel.16以降のNRでは、信号/チャネルに対して複数レベル(例えば、2レベル)の優先度を設定することができる。例えば、異なるトラフィックタイプ(サービス、サービスタイプ、通信タイプ、ユースケースなどともいう)にそれぞれ対応する信号/チャネルに対して別々の優先度を設定して通信を制御(例えば、衝突時の送信制御)することが想定される。これにより、同じ信号/チャネルに対して、サービスタイプなどに応じて異なる優先度に基づく通信制御が可能となる。
(priority)
Rel. In NR 16 and above, multiple levels (eg, two levels) of priority can be set for signals/channels. For example, communication is controlled by setting separate priorities for signals/channels corresponding to different traffic types (also called services, service types, communication types, use cases, etc.) (e.g., transmission control in case of collision) It is assumed that This enables communication control for the same signal/channel based on different priorities depending on the service type and the like.
 優先度は、情報(例えば、UCI、チャネル状態情報(CSI))、チャネル(Physical Downlink Shared Channel(PDSCH)、PUSCH、PUCCHなど)、参照信号(例えば、CSI-RS、SRSなど)、及びHARQ-ACKコードブックの少なくとも1つに対して設定/規定されてもよい。また、SRの送信に利用されるPUCCH、HARQ-ACKの送信に利用されるPUCCH及びCSIの送信に利用されるPUCCHに対して、それぞれ異なる優先度が設定されてもよい。 The priorities are information (e.g. UCI, channel state information (CSI)), channel (Physical Downlink Shared Channel (PDSCH), PUSCH, PUCCH, etc.), reference signal (e.g. CSI-RS, SRS, etc.), and HARQ- It may be set/defined for at least one of the ACK codebooks. Furthermore, different priorities may be set for the PUCCH used for SR transmission, the PUCCH used for HARQ-ACK transmission, and the PUCCH used for CSI transmission.
 優先度は、第1の優先度(例えば、high、1など)と、当該第1の優先度より優先度が低い第2の優先度(例えば、low、0など)で定義されてもよい。あるいは、3種類以上の優先度が設定されてもよい。優先度は、優先度インデックス(priority index)によって表されてもよく、優先度インデックスが大きいほど高い優先度に該当してもよい。 The priority may be defined as a first priority (for example, high, 1, etc.) and a second priority (for example, low, 0, etc.) that is lower in priority than the first priority. Alternatively, three or more types of priorities may be set. The priority may be expressed by a priority index, and the larger the priority index, the higher the priority.
 優先度が高いことは、high priority(HP)と表現されてもよく、優先度が低いことは、low priority(LP)と表現されてもよい。例えば、優先度が高いPUSCHは、HP PUSCHと表現されてもよいし、優先度が低いHARQ-ACKは、LP HARQ-ACKと表現されてもよい。 A high priority may be expressed as high priority (HP), and a low priority may be expressed as low priority (LP). For example, PUSCH with a high priority may be expressed as HP PUSCH, and HARQ-ACK with a low priority may be expressed as LP HARQ-ACK.
 動的にスケジュールされるPDSCH用のHARQ-ACK、セミパーシステントスケジューリング(Semi-persistent Scheduling(SPS))PDSCH用のHARQ-ACK、SPS PDSCHリリース用のHARQ-ACKに対して優先度が設定されてもよい。これらのHARQ-ACKに対応するHARQ-ACKコードブックに対して優先度が設定されてもよい。なお、PDSCHに優先度を設定する場合、PDSCHの優先度を当該PDSCHに対するHARQ-ACKの優先度と読み替えてもよい。 Priority is set for HARQ-ACK for dynamically scheduled PDSCH, Semi-persistent scheduling (SPS) HARQ-ACK for PDSCH, SPS HARQ-ACK for PDSCH release Good too. Priorities may be set for HARQ-ACK codebooks corresponding to these HARQ-ACKs. Note that when setting a priority to a PDSCH, the priority of the PDSCH may be replaced with the priority of HARQ-ACK for the PDSCH.
 また、動的PUSCH、CG PUSCHなどに対して優先度が設定されてもよい。 Additionally, priorities may be set for dynamic PUSCH, CG PUSCH, etc.
 優先度に関する情報は、上位レイヤシグナリング及びDCIの少なくとも一つを利用して基地局からUEに通知されてもよい。例えば、スケジューリングリクエストの優先度は、上位レイヤパラメータ(例えば、schedulingRequestPriority)で設定されてもよい。DCIでスケジュールされるPDSCH(例えば、ダイナミックPDSCH)に対するHARQ-ACKの優先度は、当該DCIによって通知されてもよい。SPS PDSCHに対するHARQ-ACKの優先度は、上位パラメータ(例えば、HARQ-ACK-Codebook-indicator-forSPS)によって設定されてもよいし、SPS PDSCHのアクティブ化を指示するDCIによって通知されてもよい。 Information regarding the priority may be notified from the base station to the UE using at least one of upper layer signaling and DCI. For example, the priority of a scheduling request may be set with an upper layer parameter (eg, schedulingRequestPriority). The priority of HARQ-ACK for a PDSCH (eg, dynamic PDSCH) scheduled on a DCI may be notified by the DCI. The priority of HARQ-ACK for SPS PDSCH may be set by a higher-level parameter (for example, HARQ-ACK-Codebook-indicator-forSPS), or may be notified by DCI that instructs activation of SPS PDSCH.
 PUCCHで送信される非周期的CSI(Aperiodic CSI(A-CSI))/セミパーシステントCSI(Semi-persistent CSI(SP-CSI))は、所定の優先度(例えば、low)が設定されてもよい。一方で、PUSCHで送信される非周期的CSI(Aperiodic CSI(A-CSI))/SP-CSIは、DCI(例えば、トリガ用DCI又はアクティブ化用DCI)によって優先度が通知されてもよい。 Aperiodic CSI (A-CSI)/Semi-persistent CSI (SP-CSI) transmitted on PUCCH is good. On the other hand, the priority of aperiodic CSI (A-CSI)/SP-CSI transmitted on PUSCH may be notified by DCI (for example, trigger DCI or activation DCI).
 ダイナミックグラントベースのPUSCHの優先度は、当該PUSCHをスケジュールするDCIの優先度インディケーター(priority indicator)フィールドによって通知されてもよい。設定グラントベースのPUSCHの優先度は、上位レイヤパラメータ(例えば、priority)で設定されてもよい。P-SRS/SP-SRS、DCI(例えば、DCIフォーマット0_1/DCIフォーマット2_3)でトリガされるA-SRSは、所定の優先度(例えば、low)が設定されてもよい。 The priority of a dynamic grant-based PUSCH may be notified by the priority indicator field of the DCI that schedules the PUSCH. The configuration grant-based PUSCH priority may be configured with an upper layer parameter (eg, priority). A predetermined priority (eg, low) may be set for P-SRS/SP-SRS and A-SRS triggered by DCI (eg, DCI format 0_1/DCI format 2_3).
 UEは、複数のUL信号/ULチャネルがオーバーラップ(又は、衝突)する場合、優先度に基づいてUL送信を制御してもよい。 The UE may control UL transmission based on priority when multiple UL signals/UL channels overlap (or collide).
 複数のUL信号/ULチャネルがオーバーラップするとは、複数のUL信号/ULチャネルの時間リソース(又は、時間リソースと周波数リソース)がオーバーラップする場合、又は複数のUL信号/ULチャネルの送信タイミングがオーバーラップする場合であってもよい。時間リソースは、時間領域又は時間ドメインと読み替えられてもよい。時間リソースは、シンボル、スロット、サブスロット、又はサブフレーム単位であってもよい。 Multiple UL signals/UL channels overlap when the time resources (or time resources and frequency resources) of multiple UL signals/UL channels overlap, or when the transmission timings of multiple UL signals/UL channels overlap. They may overlap. Time resources may be read as time domain or time domain. The time resource may be in units of symbols, slots, subslots, or subframes.
 同一UE(例えば、intra-UE)において複数のUL信号/ULチャネルがオーバーラップすることは、少なくとも同一の時間リソース(例えば、シンボル)において複数のUL信号/ULチャネルがオーバーラップすることを意味してもよい。また、異なるUE(例えば、inter-UE)においてUL信号/ULチャネルが衝突することは、同一の時間リソース(例えば、シンボル)及び周波数リソース(例えば、RB)において複数のUL信号/ULチャネルがオーバーラップすることを意味してもよい。 Overlapping of multiple UL signals/UL channels in the same UE (e.g., intra-UE) means that multiple UL signals/UL channels overlap at least in the same time resource (e.g., symbol). It's okay. Also, collision of UL signals/UL channels in different UEs (e.g., inter-UE) means that multiple UL signals/UL channels overlap in the same time resource (e.g., symbol) and frequency resource (e.g., RB). It can also mean wrapping.
 例えば、優先度が同じ複数のUL信号/ULチャネルがオーバーラップする場合、UEは、当該複数のUL信号/ULチャネルを、1つのULチャネルに多重(multiplex)して送信するように制御してもよい。 For example, when multiple UL signals/UL channels with the same priority overlap, the UE controls the multiplexed UL signals/UL channels to be multiplexed into one UL channel and transmitted. Good too.
 例えば、第1の優先度(high)が設定されるHARQ-ACK(又は、HARQ-ACK送信用のPUCCH)と、第1の優先度(high)が設定されるULデータ/UL-SCH(又は、ULデータ/UL-SCH送信用のPUSCH)がオーバーラップする場合、UEは、HARQ-ACKをPUSCHに多重(又は、マッピング)してULデータとHARQ-ACKの両方を送信してもよい。 For example, HARQ-ACK (or PUCCH for HARQ-ACK transmission) to which the first priority (high) is set, and UL data/UL-SCH (or , UL data/PUSCH for UL-SCH transmission) overlap, the UE may multiplex (or map) HARQ-ACK onto PUSCH and transmit both UL data and HARQ-ACK.
 優先度が異なる複数のUL信号/ULチャネルがオーバーラップする場合、UEは、優先度が高いUL送信を行い(例えば、優先度が高いUL送信を優先し)、優先度が低いUL送信を行わない(例えば、ドロップする)ように制御してもよい。 When multiple UL signals/UL channels with different priorities overlap, the UE performs the UL transmission with the higher priority (e.g., prioritizes the UL transmission with the higher priority) and the UL transmission with the lower priority. It may also be controlled so that it does not occur (for example, it is dropped).
 第1の優先度(high)が設定されるULデータ/HARQ-ACK(又は、ULデータ/HARQ-ACK送信用のULチャネル)と、第2の優先度(low)が設定されるULデータ/HARQ-ACK(又は、ULデータ/HARQ-ACK送信用のULチャネル)がオーバーラップする場合、UEは、優先度が低いULデータ/HARQ-ACKをドロップし、優先度が高いULデータ/HARQ-ACKを優先(prioritize)して送信するように制御してもよい。なお、UEは、優先度が低いUL送信の送信タイミングを変更(例えば、延期又はシフト)してもよい。 UL data/HARQ-ACK (or UL channel for UL data/HARQ-ACK transmission) to which the first priority (high) is set and UL data/HARQ-ACK to which the second priority (low) is set. If the HARQ-ACKs (or UL channels for UL data/HARQ-ACK transmission) overlap, the UE drops the UL data/HARQ-ACK with lower priority and drops the UL data/HARQ-ACK with higher priority. Control may be performed to prioritize and transmit ACK. Note that the UE may change (eg, postpone or shift) the transmission timing of UL transmission with low priority.
 2個より多い(又は、3個以上の)UL信号/ULチャネルが時間領域においてオーバーラップする場合、2つのステップにより送信が制御されてもよい。ステップ1では、優先度が同じUL送信でそれぞれ送信されるUL信号を多重する1つのULチャネルが選択される。ステップ2では、優先度が異なるUL送信間で、優先度が高いUL送信を優先して送信し、優先度が低いUL送信をドロップするように制御してもよい。 If more than two (or three or more) UL signals/UL channels overlap in the time domain, the transmission may be controlled by two steps. In step 1, one UL channel is selected that multiplexes UL signals transmitted in UL transmissions with the same priority. In step 2, control may be performed such that among UL transmissions with different priorities, UL transmissions with a higher priority are transmitted with priority, and UL transmissions with a lower priority are dropped.
 このように、UEは、ステップ1により同じ優先度を有する複数のUL送信間の衝突を解決し、ステップ2により異なる優先度を有する複数のUL送信間の衝突を解決することができる。 In this way, the UE can resolve collisions between multiple UL transmissions with the same priority through step 1 and resolve collisions between multiple UL transmissions with different priorities through step 2.
(優先度が異なるUL送信の同時送信/多重)
 異なるキャリア(又は、セル、CC)でそれぞれ送信される複数のUL送信が時間領域でオーバーラップし、複数のUL送信間の優先度が異なるケースも考えられる。
(Simultaneous transmission/multiplexing of UL transmissions with different priorities)
There may also be a case in which multiple UL transmissions transmitted using different carriers (or cells, CCs) overlap in the time domain, and the priorities among the multiple UL transmissions differ.
 例えば、ULチャネル/UL信号が、異なるRF(Radio Frequency)によりサポートされるインターセル(inter-cell)の異なるキャリアでスケジュールされる場合、各ULチャネル/UL信号を送信することは、低遅延化及びスペクトル効率の観点からは有用となる。UEが、異なるキャリア(CC)に対してそれぞれRF処理をサポートする場合、各キャリアでULチャネル/UL信号を送信することにより、リソースの利用効率の向上、低遅延化を図ることができる。 For example, if UL channels/UL signals are scheduled on different carriers inter-cell supported by different RF (Radio Frequency), transmitting each UL channel/UL signal can be and useful from the viewpoint of spectral efficiency. When the UE supports RF processing for different carriers (CCs), it is possible to improve resource utilization efficiency and reduce delay by transmitting UL channels/UL signals on each carrier.
 例えば、バンド間キャリアアグリゲーション(例えば、inter-band CA)機能をサポートするUE毎に、異なるセルにおける異なる優先度(例えば、PHY優先度)のPUCCH/PUSCH同時送信が、同一PUCCHグループ内でRRC設定されることがサポートされてもよい。 For example, for each UE that supports inter-band carrier aggregation (e.g., inter-band CA) function, simultaneous transmission of PUCCH/PUSCH with different priorities (e.g., PHY priority) in different cells may be configured using RRC within the same PUCCH group. may be supported.
 あるいは、優先度が異なる複数のUL送信が、セル内(intra-cell)/セル間(inter-cell)でスケジュールされる場合等に、優先度が異なるUL送信を多重(例えば、同じULチャネルを利用して送信)することがサポートされてもよい。例えば、ある優先度のUL送信を他の優先度のUL送信用のULチャネルに多重して送信当該複数のUL送信がサポートされてもよい。 Alternatively, if multiple UL transmissions with different priorities are scheduled intra-cell/inter-cell, UL transmissions with different priorities can be multiplexed (e.g. on the same UL channel). may also be supported. For example, multiple UL transmissions may be supported by multiplexing UL transmissions of one priority onto UL channels for UL transmissions of other priorities.
 UCI(例えば、HARQ-ACK)を当該UCIと優先度が異なるULチャネル(例えば、PUSCH)へ多重/マッピングするか否か(例えば、enable/disable、又はアクティブ化/ディアクティブ化)は、上位レイヤシグナリングにより設定されてもよい。 Whether to multiplex/map a UCI (for example, HARQ-ACK) to a UL channel (for example, PUSCH) with a different priority from that of the UCI (for example, enable/disable, or activate/deactivate) is determined by the upper layer. It may also be set by signaling.
 Rel.17では、優先度が高いPUSCH(HP PUSCH)に対して優先度が低いHARQ-ACK(LP HARQ-ACK)を多重化する場合、0<ベータオフセット<1をサポートすることが検討されている。また、HP PUSCHにおいてLP HARQ-ACKを多重するケースと、LP PUSCHにおいてHP HARQ-ACKを多重するケースと、について、他のケースとは異なるベータオフセットに関するインデックスを設定することが検討されている。 Rel. 17, when multiplexing HARQ-ACK (LP HARQ-ACK) with low priority to PUSCH (HP PUSCH) with high priority, supporting 0<beta offset<1 is considered. Furthermore, setting indexes related to beta offsets that are different from those for other cases is being considered for the case where LP HARQ-ACK is multiplexed on HP PUSCH and the case where HP HARQ-ACK is multiplexed on LP PUSCH.
 例えば、HP 動的PUSCHにおいて多重されるLP HARQ-ACKのためのベータオフセッツ情報要素(例えば、BetaOffsetsCrossPri0 IEと呼ばれてもよい)、LP 動的PUSCHにおいて多重されるHP HARQ-ACKのためのベータオフセッツ情報要素(例えば、BetaOffsetsCrossPri1 IEと呼ばれてもよい)などが新たに規定されることが検討されている。なお、これらのベータオフセッツ情報要素は、既存のベータオフセッツ情報要素(BetaOffsets IE)のbetaOffsetACK-Index1、betaOffsetACK-Index2及びbetaOffsetACK-Index3に相当するパラメータを含んでもよい(CSIパート1、CSIパート2に関するパラメータは含まなくてもよい)。 For example, BetaOffsets information element for LP HARQ-ACK multiplexed on HP dynamic PUSCH (e.g., may be called BetaOffsetsCrossPri0 IE), for HP HARQ-ACK multiplexed on LP dynamic PUSCH It is being considered that a new BetaOffsets information element (for example, it may be called BetaOffsetsCrossPri1IE) will be defined. Note that these beta offsets information elements may include parameters corresponding to betaOffsetACK-Index1, betaOffsetACK-Index2, and betaOffsetACK-Index3 of existing betaoffsets information elements (BetaOffsets IE) (CSI Part 1, CSI Part 2 parameters may not be included).
 また、既存のbetaOffsetsパラメータ(betaOffsets)、DCIフォーマット0_2のためのbetaOffsetsパラメータ(betaOffsetsDCI-0-2)、CG-UCI-OnPUSCH情報要素(CG-UCI-OnPUSCH IE)における既存のベータオフセッツ情報要素(BetaOffsets IE)を上記BetaOffsetsCrossPri0 IE又はBetaOffsetsCrossPri1 IEで置き替えたパラメータ/情報要素(例えば、betaOffsetsCrossPri0-r17、betaOffsetsCrossPri1-r17、betaOffsetsCrossPri0DCI-0-2-r17、betaOffsetsCrossPri1DCI-0-2-r17、CG-betaOffsetsCrossPri0、CG-betaOffsetsCrossPri1)が検討されている。 In addition, the existing betaOffsets parameter (betaOffsets), the betaOffsets parameter (betaOffsetsDCI-0-2) for DCI format 0_2, and the existing betaoffsets information element (CG-UCI-OnPUSCH IE) in the CG-UCI-OnPUSCH information element (CG-UCI-OnPUSCH IE) Parameters/information elements (for example, betaOffsetsCrossPri0-r17, betaOffsetsCrossPri1-r17, betaOffsetsCrossPri0DCI-0-2-r17, betaOffsetsCrossPri1DCI -0-2-r17,CG-betaOffsetsCrossPri0,CG -betaOffsetsCrossPri1) is being considered.
(2コードワードのPUSCH送信)
 Rel.15/16 NRでは、UEは、1つのPUSCHを用いて1つのコードワード(Codeword(CW))を送信する。Rel.17 NRでは、UEが、1つのPUSCHを用いて1つより多いCWを送信することが検討されている。例えば、ランク5-8のための2CW送信のサポート、ランク2-8のための2CW送信のサポートなどが検討されている。
(PUSCH transmission of 2 code words)
Rel. In 15/16 NR, the UE transmits one codeword (CW) using one PUSCH. Rel. In T.17 NR, it is considered that the UE transmits more than one CW using one PUSCH. For example, support for 2CW transmission for ranks 5-8, support for 2CW transmission for ranks 2-8, etc. are being considered.
 また、Rel.15及びRel.16のUEにおいては、ある時間においては1つのみのビーム及びパネルがUL送信に用いられると想定されるが、Rel.17以降においては、ULのスループット及び信頼性(reliability)の改善のために、1以上のTRPに対して、複数ビーム及び複数パネルの同時UL送信(例えば、PUSCH送信)が検討されている。 Also, Rel. 15 and Rel. 16 UEs, it is assumed that only one beam and panel is used for UL transmission at a given time, but Rel. In order to improve UL throughput and reliability, simultaneous UL transmission of multiple beams and multiple panels (eg, PUSCH transmission) for one or more TRPs is being considered.
 基地局は、UL TCI又はパネルIDを用いて、UL送信のためのパネル固有送信を設定又は指示してもよい。UL TCI(UL TCI状態)は、Rel.15においてサポートされるDLビーム指示と類似するシグナリングに基づいてもよい。パネルIDは、ターゲットRSリソース(又はターゲットRSリソースセット)及びPUCCH/PUSCH/SRS/PRACHの少なくとも1つの送信に、暗示的に又は明示的に適用されてもよい。パネルIDが明示的に通知される場合、パネルIDは、ターゲットRSと、ターゲットチャネルと、リファレンスRSと、の少なくとも1つ(例えば、DL RSリソース設定又は空間関係情報)において設定されてもよい。 The base station may use the UL TCI or panel ID to configure or direct panel-specific transmission for UL transmission. UL TCI (UL TCI status) is Rel. It may be based on signaling similar to the DL beam indication supported in X.15. The panel ID may be implicitly or explicitly applied to a target RS resource (or target RS resource set) and at least one transmission of PUCCH/PUSCH/SRS/PRACH. If the panel ID is explicitly notified, the panel ID may be configured in at least one of the target RS, target channel, and reference RS (eg, DL RS resource configuration or spatial relationship information).
 マルチパネルの同時UL送信について、4以下のランク(レイヤ)の2CW PUSCHのサポートが検討されている。 For simultaneous multi-panel UL transmission, support for 2CW PUSCH with ranks (layers) of 4 or lower is being considered.
 2CW PUSCHにおいて、UCI on PUSCHが利用される(以下、UCI on 2 CW PUSCHとも呼ぶ)場合、UCIは、1つのトランスポートブロック(Transport Block(TB))にだけ(例えば、より低いTBインデックスに対応するTBにだけ)多重されてもよいし、2つの部分に分けられてそれぞれが異なるトランスポートブロック(Transport Block(TB))に多重されてもよいし、コピーされて同じUCIが各TBに多重されてもよい。 When UCI on PUSCH is used in 2CW PUSCH (hereinafter also referred to as UCI on 2CW PUSCH), UCI is assigned to only one transport block (TB) (for example, corresponding to a lower TB index). It may be multiplexed (only on the TB), it may be divided into two parts and each is multiplexed on a different Transport Block (TB), or it may be copied and the same UCI is multiplexed on each TB. may be done.
 しかしながら、UCI on 2 CW PUSCHについて、ベータオフセットの設定をどのように行うかは、まだ検討が進んでいない。例えば、1CW PUSCHにおいてUCI on PUSCHが利用される(以下、UCI on 1 CW PUSCHとも呼ぶ)場合と、UCI on 2 CW PUSCHの場合とで、同じベータオフセット設定を用いるか否かは、まだ検討されていない。複数のCWのためのUCI on PUSCH送信が適切に行われなければ、スループットが低下したり、通信品質が劣化したりするおそれがある。 However, consideration has not yet been made as to how to set the beta offset for UCI on 2 CW PUSCH. For example, it is still being considered whether to use the same beta offset settings in the case where UCI on PUSCH is used in 1CW PUSCH (hereinafter also referred to as UCI on 1 CW PUSCH) and in the case of UCI on 2 CW PUSCH. Not yet. If UCI on PUSCH transmission for multiple CWs is not performed appropriately, there is a risk that throughput may decrease or communication quality may deteriorate.
 そこで、本発明者らは、2 CW PUSCHに好適なベータオフセットの設定方法を着想した。 Therefore, the present inventors conceived of a beta offset setting method suitable for 2 CW PUSCH.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication methods according to each embodiment may be applied singly or in combination.
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。 In the present disclosure, "A/B" and "at least one of A and B" may be read interchangeably. Furthermore, in the present disclosure, "A/B/C" may mean "at least one of A, B, and C."
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。 In the present disclosure, "activate", "deactivate", "indicate", "select", "configure", "update", "determine", etc. may be read interchangeably. In this disclosure, supporting, controlling, being able to control, operating, capable of operating, etc. may be read interchangeably.
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、情報要素(IE)、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。なお、設定はRRCシグナリングに基づいて行われてもよい(又は通知されてもよい)し、アクティベーション/ディアクティベーションはMAC CEに基づいて行われてもよい(又は通知されてもよい)。 In the present disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, upper layer parameters, information elements (IEs), settings, etc. may be read interchangeably. In the present disclosure, the terms Medium Access Control Element (CE), update command, activation/deactivation command, etc. may be read interchangeably. Note that configuration may be performed (or notified) based on RRC signaling, and activation/deactivation may be performed (or notified) based on MAC CE.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 In the present disclosure, MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like. Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。 In the present disclosure, the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In this disclosure, an index, an identifier (ID), an indicator, a resource ID, etc. may be read interchangeably. In this disclosure, sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。 In this disclosure, a panel, a UE panel, a panel group, a beam, a beam group, a precoder, an uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, and a spatial relation information (SRI) are described. )), spatial relationship, SRS resource indicator (SRI), control resource set (CONtrol REsource SET (CORESET)), Physical Downlink Shared Channel (PDSCH), codeword (CW), transport Block (Transport Block (TB)), reference signal (RS), antenna port (e.g. demodulation reference signal (DMRS) port), antenna port group (e.g. DMRS port group), groups (e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups), resources (e.g., reference signal resources, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI Unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read interchangeably.
 また、空間関係情報Identifier(ID)(TCI状態ID)と空間関係情報(TCI状態)は、互いに読み替えられてもよい。「空間関係情報」は、「空間関係情報のセット」、「1つ又は複数の空間関係情報」などと互いに読み替えられてもよい。TCI状態及びTCIは、互いに読み替えられてもよい。 Additionally, the spatial relationship information identifier (ID) (TCI status ID) and the spatial relationship information (TCI status) may be read interchangeably. “Spatial relationship information” may be interchangeably read as “a set of spatial relationship information”, “one or more pieces of spatial relationship information”, etc. TCI status and TCI may be read interchangeably.
 本開示において、X CW PUSCH(Xは整数。例えば、X=1、2、…)は、X個のCWを送信するためのPUSCH、X個のCWのためのPUSCHなどと互いに読み替えられてもよい。また、1 CW PUSCH及び2 CW PUSCHはそれぞれ、第1の数のCWのためのPUSCH及び第2の数のCWのためのPUSCHで読み替えられてもよい。第1の数及び第2の数は、それぞれ任意の整数であってもよい。 In this disclosure, X CW PUSCH (X is an integer. For example, X = 1, 2, ...) may be interchanged with PUSCH for transmitting X CWs, PUSCH for X CWs, etc. good. Furthermore, 1 CW PUSCH and 2 CW PUSCH may be read as PUSCH for the first number of CWs and PUSCH for the second number of CWs, respectively. The first number and the second number may each be arbitrary integers.
 本開示において、X CW PUSCH向けのUCI on PUSCH(又は、X CW PUSCHを用いたUCIの送信)は、UCI on X CW PUSCHと互いに読み替えられてもよい。 In the present disclosure, UCI on PUSCH for XCW PUSCH (or transmission of UCI using XCW PUSCH) may be mutually read as UCI on XCW PUSCH.
 動的PUSCHは、DCIフォーマットによって動的にスケジュールされるPUSCHと互いに読み替えられてもよい。 Dynamic PUSCH may be interchanged with PUSCH dynamically scheduled according to the DCI format.
 以降のDCIフォーマット0_2は、特定のDCIフォーマット(例えば、将来の任意のDCIフォーマット)で読み替えられてもよい。 The subsequent DCI format 0_2 may be replaced with a specific DCI format (for example, any future DCI format).
 本開示において、フィールド、パラメータ、情報要素(Information Element(IE))などは、互いに読み替えられてもよい。 In the present disclosure, fields, parameters, information elements (IEs), etc. may be read interchangeably.
 本開示において、繰り返し(repetition(1つのrepetition))、オケージョン、チャネルは、互いに読み替えられてもよい。本開示において、ULデータ、TB、CW、UCIは、互いに読み替えられてもよい。 In this disclosure, repetition (one repetition), occasion, and channel may be read interchangeably. In this disclosure, UL data, TB, CW, and UCI may be read interchangeably.
 本開示において、PUSCHを用いて送信される2つのCWは、内容が異なるCWであってもよいし、内容が同じCWであってもよい。2つのCWを送信するPUSCHは、同時に又は繰り返し送信される1つのPUSCHと見なされてもよい。 In the present disclosure, two CWs transmitted using PUSCH may have different contents or may have the same contents. A PUSCH transmitting two CWs may be considered as one PUSCH transmitted simultaneously or repeatedly.
 以下の実施形態において、「複数」及び「2つ」は互いに読み替えられてもよい。 In the following embodiments, "plurality" and "two" may be read interchangeably.
 以下の実施形態におけるPUSCH送信のレイヤ数は、4より大きくてもよいし、4以下でもよい。例えば、本開示における2つのCWのPUSCH送信は、4以下のレイヤ数(例えば、2)で行われてもよい。また、最大レイヤ数も、4以上に限られず、4未満が適用されてもよい。 The number of layers of PUSCH transmission in the following embodiments may be greater than 4 or may be less than or equal to 4. For example, PUSCH transmission of two CWs in the present disclosure may be performed using four or fewer layers (for example, two). Furthermore, the maximum number of layers is not limited to four or more, and may be less than four.
 また、以下の実施形態におけるPUSCH送信は、複数パネルを用いることを前提としてもよいし、前提としなくてもよい(パネルに関わらず適用されてもよい)。 Furthermore, PUSCH transmission in the following embodiments may or may not be based on the use of multiple panels (it may be applied regardless of the panel).
(無線通信方法)
<第1の実施形態>
 第1の実施形態は、DCIフォーマット0_2以外のDCIフォーマットによってスケジュールされる動的PUSCH(以下、第1の実施形態の動的PUSCHと呼ぶ)に関する。
(Wireless communication method)
<First embodiment>
The first embodiment relates to a dynamic PUSCH scheduled by a DCI format other than DCI format 0_2 (hereinafter referred to as dynamic PUSCH of the first embodiment).
 UEは、第1の実施形態の動的PUSCHについて、UCI on 1 CW PUSCHのためのRRCパラメータと、UCI on 2 CW PUSCHのためのRRCパラメータと、を別々に(又は独立して又は異なって)設定されてもよい。 Regarding the dynamic PUSCH of the first embodiment, the UE separately (or independently or differently) RRC parameters for UCI on 1 CW PUSCH and RRC parameters for UCI on 2 CW PUSCH. May be set.
 これらのRRCパラメータは、UCI-OnPUSCH情報要素、betaOffsetsパラメータ、scalingパラメータ、BetaOffsets情報要素の少なくとも1つに該当してもよい。 These RRC parameters may correspond to at least one of the UCI-OnPUSCH information element, the betaOffsets parameter, the scaling parameter, and the BetaOffsets information element.
 UEは、UCI on 1 CW PUSCHの送信の場合は、UCI on 1 CW PUSCHのためのRRCパラメータに対応するベータオフセッツ情報要素に基づいて、利用するベータオフセットを決定する。UEは、UCI on 2 CW PUSCHの送信の場合は、UCI on 2 CW PUSCHのためのRRCパラメータに対応するベータオフセッツ情報要素に基づいて、利用するベータオフセットを決定する。 In the case of UCI on 1 CW PUSCH transmission, the UE determines the beta offset to utilize based on the Beta Offsets information element corresponding to the RRC parameter for UCI on 1 CW PUSCH. In the case of UCI on 2 CW PUSCH transmission, the UE determines the beta offset to utilize based on the beta offsets information element corresponding to the RRC parameters for UCI on 2 CW PUSCH.
 図4は、第1の実施形態の動的PUSCHについての、UCI on 1 CW PUSCHのためのUCI-OnPUSCH情報要素と、UCI on 2 CW PUSCHのためのUCI-OnPUSCH情報要素と、の一例を示す図である。 FIG. 4 shows an example of the UCI-OnPUSCH information element for UCI on 1 CW PUSCH and the UCI-OnPUSCH information element for UCI on 2 CW PUSCH for the dynamic PUSCH of the first embodiment. It is a diagram.
 なお、本開示における「-rXX」は、3GPP Rel.XXで規定される予定のパラメータであることを示す。パラメータの名称は、例示される名称に限られない(例えば、「-rXX」がなくてもよい)。以下では、「-rXX」が付されるパラメータについて、「-rXX」を取った名称で呼ぶこともある。本開示が適用される3GPPのリリースは、Rel.18に限られない。 Note that "-rXX" in this disclosure refers to 3GPP Rel. Indicates that the parameter is scheduled to be specified in XX. The name of the parameter is not limited to the example name (for example, "-rXX" may not be included). In the following, parameters marked with "-rXX" may be referred to by names with "-rXX" removed. The 3GPP release to which this disclosure applies is Rel. It is not limited to 18.
 図4の例では、Rel.15/16 NRにおいて定義されるUCI-OnPUSCH情報要素は、第1の実施形態の動的PUSCHについての、UCI on 1 CW PUSCHのための設定(betaOffsetsパラメータ、scalingパラメータ)を含む。 In the example of FIG. 4, Rel. The UCI-OnPUSCH information element defined in 15/16 NR includes settings for UCI on 1 CW PUSCH (betaOffsets parameter, scaling parameter) for the dynamic PUSCH of the first embodiment.
 また、UCI-OnPUSCH-2codeword-r18情報要素は、第1の実施形態の動的PUSCHについての、UCI on 2 CW PUSCHのための設定(betaOffsetsパラメータ(betaOffsets-2codeword-r18)、scalingパラメータ(scaling-2codeword-r18))を含む。 Further, the UCI-OnPUSCH-2codeword-r18 information element includes settings for UCI on 2CW PUSCH (betaOffsets parameter (betaOffsets-2codeword-r18), scaling parameter (scaling- 2codeword-r18)).
 2 CW PUSCHがUEに設定される場合には、UCI on 1 CW PUSCHのためのUCI-OnPUSCH情報要素と、UCI on 2 CW PUSCHのためのUCI-OnPUSCH-2codeword-r18情報要素と、を含む図4の例に示すようなPUSCH設定情報(PUSCH-Config情報要素)が、当該UEに設定されてもよい。 When 2 CW PUSCH is configured in the UE, a UCI-OnPUSCH information element for UCI on 1 CW PUSCH and a UCI-OnPUSCH-2 codeword-r18 information element for UCI on 2 CW PUSCH; Diagram containing PUSCH configuration information (PUSCH-Config information element) as shown in example 4 may be configured in the UE.
 図5は、第1の実施形態の動的PUSCHについての、UCI on 1 CW PUSCHのためのbetaOffsetsパラメータ及びscalingパラメータと、UCI on 2 CW PUSCHのためのbetaOffsetsパラメータ及びscalingパラメータと、の一例を示す図である。 FIG. 5 shows an example of the betaOffsets parameters and scaling parameters for UCI on 1 CW PUSCH and the betaOffsets parameters and scaling parameters for UCI on 2 CW PUSCH regarding the dynamic PUSCH of the first embodiment. show It is a diagram.
 図5の例では、1つのUCI-OnPUSCH情報要素に含まれる、Rel.15/16 NRにおいて定義されるbetaOffsetsパラメータ(betaOffsets)及びscalingパラメータ(scaling)は、第1の実施形態の動的PUSCHについての、UCI on 1 CW PUSCHのためのbetaOffsetsパラメータ及びscalingパラメータに該当する。 In the example of FIG. 5, Rel. The betaOffsets parameter (betaOffsets) and the scaling parameter (scaling) defined in 15/16 NR correspond to the betaOffsets parameter and scaling parameter for the UCI on 1 CW PUSCH for the dynamic PUSCH of the first embodiment.
 また、1つのUCI-OnPUSCH情報要素に含まれる、新たなbetaOffsetsパラメータ(betaOffsets-2codeword-r18)及び新たなscalingパラメータ(scaling-2codeword-r18)は、第1の実施形態の動的PUSCHについての、UCI on 2 CW PUSCHのためのbetaOffsetsパラメータ及びscalingパラメータに該当する。 In addition, the new betaOffsets parameter (betaOffsets-2codeword-r18) and the new scaling parameter (scaling-2codeword-r18) included in one UCI-OnPUSCH information element are as follows for the dynamic PUSCH of the first embodiment: This corresponds to the betaOffsets parameter and scaling parameter for UCI on 2 CW PUSCH.
 2 CW PUSCHがUEに設定される場合には、図5に示すようなUCI-OnPUSCH情報要素を含むPUSCH設定情報(PUSCH-Config情報要素)が、当該UEに設定されてもよい。 2. CW When PUSCH is configured in a UE, PUSCH configuration information (PUSCH-Config information element) including a UCI-OnPUSCH information element as shown in FIG. 5 may be configured in the UE.
 図6は、第1の実施形態の動的PUSCHについての、UCI on 1 CW PUSCH及びUCI on 2 CW PUSCHのためのUCI-OnPUSCH情報要素の一例を示す図である。 FIG. 6 is a diagram illustrating an example of UCI-OnPUSCH information elements for UCI on 1 CW PUSCH and UCI on 2 CW PUSCH for dynamic PUSCH of the first embodiment.
 図6の例では、新たなUCI-OnPUSCH情報要素(UCI-OnPUSCH-r18)は、第1の実施形態の動的PUSCHについての、UCI on 1 CW PUSCHのための設定及びUCI on 2 CW PUSCHのための設定を含む。例えば、betaOffsetsパラメータが“dynamic”を含む場合、当該“dynamic”に対応するサイズ8(つまり、8つ)のBetaOffsets情報要素のうち、最初の4つが、UCI on 1 CW PUSCHのためのBetaOffsets情報要素に該当し、最後の4つがUCI on 2 CW PUSCHのためのBetaOffsets情報要素に該当してもよい。なお、「最初の」及び「最後の」は互いに逆でもよい。 In the example of FIG. 6, the new UCI-OnPUSCH information element (UCI-OnPUSCH-r18) includes the settings for UCI on 1 CW PUSCH and the settings for UCI on 2 CW PUSCH regarding the dynamic PUSCH of the first embodiment. Contains settings for. For example, if the betaOffsets parameter includes "dynamic", the first four of the BetaOffsets information elements of size 8 (that is, eight) corresponding to "dynamic" are the BetaOffsets information elements for UCI on 1 CW PUSCH. and the last four may correspond to the BetaOffsets information element for UCI on 2 CW PUSCH. Note that "first" and "last" may be reversed.
 また、betaOffsetsパラメータが“semiStatic”を含む場合、当該“semiStatic”に対応するサイズ2(つまり、2つ)のBetaOffsets情報要素のうち、最初の1つが、UCI on 1 CW PUSCHのためのBetaOffsets情報要素に該当し、最後の1つがUCI on 2 CW PUSCHのためのBetaOffsets情報要素に該当してもよい。なお、「最初の」及び「最後の」は互いに逆でもよい。 Furthermore, if the betaOffsets parameter includes "semiStatic", the first one of the size 2 (that is, two) BetaOffsets information elements corresponding to "semiStatic" is the BetaOffsets information element for UCI on 1 CW PUSCH. , and the last one may correspond to the BetaOffsets information element for UCI on 2 CW PUSCH. Note that "first" and "last" may be reversed.
 また、scalingパラメータに対応するサイズ2(つまり、2つ)の列挙型(ENUMERATED型)のうち、最初の1つが、UCI on 1 CW PUSCHのためのscalingパラメータに該当し、最後の1つがUCI on 2 CW PUSCHのためのscalingパラメータに該当してもよい。なお、「最初の」及び「最後の」は互いに逆でもよい。 Also, among the enumerated types (ENUMERATED types) of size 2 (that is, two) corresponding to the scaling parameters, the first one corresponds to the scaling parameter for UCI on 1 CW PUSCH, and the last one corresponds to the scaling parameter for UCI on 1 CW PUSCH. 2 CW It may correspond to the scaling parameter for PUSCH. Note that "first" and "last" may be reversed.
 2 CW PUSCHがUEに設定される場合には、図6に示すような新たなUCI-OnPUSCH情報要素を含むPUSCH設定情報(PUSCH-Config情報要素)が、当該UEに設定されてもよい。なお、新たなUCI-OnPUSCH情報要素が通知される場合、既存のUCI-OnPUSCH情報要素(UCI-OnPUSCH)は、UEによって無視(ignore)されてもよい。新たなUCI-OnPUSCH情報要素が通知される場合には、UEは、既存のUCI-OnPUSCH情報要素(UCI-OnPUSCH)が通知されることを予期しなくてもよい。 2. CW When PUSCH is configured in a UE, PUSCH configuration information (PUSCH-Config information element) including a new UCI-OnPUSCH information element as shown in FIG. 6 may be configured in the UE. Note that when a new UCI-OnPUSCH information element is notified, the existing UCI-OnPUSCH information element (UCI-OnPUSCH) may be ignored by the UE. If a new UCI-OnPUSCH information element is signaled, the UE may not expect an existing UCI-OnPUSCH information element (UCI-OnPUSCH) to be signaled.
 なお、UCI on 1 CW PUSCHのための既存のBetaOffsets情報要素(BetaOffsets)と、UCI on 2 CW PUSCHのための既存のBetaOffsets情報要素(BetaOffsets)と、から構成される新たなBetaOffsets情報要素(例えば、BetaOffsets-r18)が導入されてもよい。例えば、図6の例において、“dynamic”は、サイズ8のBetaOffsets情報要素の代わりに、サイズ4のBetaOffsets-r18を含んでもよい。また、図6の例において、“semiStatic”は、サイズ2のBetaOffsets情報要素の代わりに、BetaOffsets-r18を含んでもよい。 Note that the new BetaOffsets consists of the existing BetaOffsets information element (BetaOffsets) for UCI on 1 CW PUSCH and the existing BetaOffsets information element (BetaOffsets) for UCI on 2 CW PUSCH. Information elements (e.g. BetaOffsets-r18) may be introduced. For example, in the example of FIG. 6, "dynamic" may include BetaOffsets-r18 of size 4 instead of the BetaOffsets information element of size 8. Furthermore, in the example of FIG. 6, "semiStatic" may include BetaOffsets-r18 instead of the BetaOffsets information element of size 2.
 なお、第1の実施形態において、UCI on 1 CW PUSCHとUCI on 2 CW PUSCHとで、少なくとも1つのRRCパラメータ(例えば、UCI-OnPUSCH情報要素、betaOffsetsパラメータ、scalingパラメータ、BetaOffsets情報要素の少なくとも1つ)が共通に用いられてもよい。この場合、例えば、図4、5において上述したbetaOffsets-2codeword-r18、scaling-2codeword-r18などは、UCI-OnPUSCH-2codeword-r18又はUCI-OnPUSCHに含まれなくてもよいし、図6のscalingパラメータは1つの列挙型だけを含んでもよい。 Note that in the first embodiment, UCI on 1 CW PUSCH and UCI on 2 CW PUSCH have at least one RRC parameter (for example, UCI-OnPUSCH information element, betaOffsets parameter, scaling parameter, BetaOffsets information at least one of the elements ) may be commonly used. In this case, for example, betaOffsets-2codeword-r18, scaling-2codeword-r18, etc. described above in FIGS. 4 and 5 may not be included in UCI-OnPUSCH-2codeword-r18 or UCI-OnPUSCH, and scaling in FIG. A parameter may contain only one enumerated type.
[第1の実施形態の変形例1]
 上述した第1の実施形態は、UCI on 2 CW PUSCHについて、第1のCW(例えば、CW1と呼ぶが、CW0と呼ばれてもよい)にUCIが多重される場合と、第2のCW(例えば、CW2と呼ぶが、CW1と呼ばれてもよい)にUCIが多重される場合と、で同じbetaOffsets/scalingが参照される(用いられる)という想定に従っている。一方で、これらの場合で異なるbetaOffsets/scalingが参照されてもよい。以下で、この変形例について説明する。
[Modification 1 of the first embodiment]
In the first embodiment described above, regarding UCI on 2 CW PUSCH, there are cases where UCI is multiplexed on the first CW (for example, called CW1, but may also be called CW0), and cases where UCI is multiplexed on the second CW (for example, called CW1, but may also be called CW0). For example, the assumption is that the same betaOffsets/scaling is referenced (used) in the case where UCI is multiplexed in CW2 (which may also be called CW1). On the other hand, different betaOffsets/scaling may be referenced in these cases. This modification will be explained below.
[[第1の実施形態の変形例1-1]]
 第1の実施形態の変形例1-1においては、Rel.15/16 NRにおいて定義されるRRCパラメータ(例えば、UCI-OnPUSCH情報要素、betaOffsetsパラメータ、scalingパラメータ、BetaOffsets情報要素の少なくとも1つ)は、UCI on 1 CW PUSCHのための設定と、UCI on 2 CW PUSCHにおける第1のCWのための設定と、に該当してもよい。
[[Modification 1-1 of the first embodiment]]
In modification 1-1 of the first embodiment, Rel. 15/16 The RRC parameters defined in the NR (e.g., at least one of the UCI-OnPUSCH information element, the betaOffsets parameter, the scaling parameter, the BetaOffsets information element) are configured for UCI on 1 CW PUSCH and UCI on 2 CW. The configuration for the first CW in PUSCH may also apply.
 2 CW PUSCHがUEに設定される場合、当該UEは、第1の実施形態で述べたようなUCI on 2 CW PUSCHのための新たなRRCパラメータ(betaOffsets-2codeword-r18、scaling-2codeword-r18、UCI-OnPUSCH-2codeword-r18などの少なくとも1つ)を、1セット設定されてもよい。 When 2 CW PUSCH is configured in a UE, the UE sets new RRC parameters for UCI on 2 CW PUSCH (betaOffsets-2codeword-r18, scaling-2codeword-r18, One set of at least one codeword such as UCI-OnPUSCH-2codeword-r18 may be set.
 2 CW PUSCHがUEに設定される場合、Rel.15/16 NRにおいて定義されるRRCパラメータは、UCI on 2 CW PUSCHにおける第1のCWのために用いられ、上記新たなRRCパラメータの1セットは、UCI on 2 CW PUSCHにおける第2のCWのために用いられてもよい。 2 CW When PUSCH is configured in the UE, Rel. The RRC parameters defined in 15/16 NR are used for the first CW in UCI on 2 CW PUSCH, and the above set of new RRC parameters is used for the second CW in UCI on 2 CW PUSCH. May be used for.
[[第1の実施形態の変形例1-2]]
 第1の実施形態の変形例1-2においては、Rel.15/16 NRにおいて定義されるRRCパラメータ(例えば、UCI-OnPUSCH情報要素、betaOffsetsパラメータ、scalingパラメータ、BetaOffsets情報要素の少なくとも1つ)は、UCI on 1 CW PUSCHのための設定のみに該当しUCI on 2 CW PUSCHのための設定には該当しなくてもよい。
[[Modification 1-2 of the first embodiment]]
In modification 1-2 of the first embodiment, Rel. 15/16 The RRC parameters defined in the NR (e.g., at least one of the UCI-OnPUSCH information element, the betaOffsets parameter, the scaling parameter, the BetaOffsets information element) apply only to the configuration for UCI on 1 CW PUSCH. 2. It may not apply to the settings for CW PUSCH.
 2 CW PUSCHがUEに設定される場合、当該UEは、第1の実施形態で述べたようなUCI on 2 CW PUSCHのための新たなRRCパラメータ(betaOffsets-2codeword-r18、scaling-2codeword-r18、UCI-OnPUSCH-2codeword-r18などの少なくとも1つ)を、2セット設定されてもよい。 When 2 CW PUSCH is configured in a UE, the UE sets new RRC parameters for UCI on 2 CW PUSCH (betaOffsets-2codeword-r18, scaling-2codeword-r18, Two sets of at least one codeword such as UCI-OnPUSCH-2codeword-r18 may be set.
 2 CW PUSCHがUEに設定される場合、上記新たなRRCパラメータの第1のセットは、UCI on 2 CW PUSCHにおける第1のCWのために用いられ、上記新たなRRCパラメータの第2のセットは、UCI on 2 CW PUSCHにおける第2のCWのために用いられてもよい。 If 2 CW PUSCH is configured in the UE, the first set of new RRC parameters is used for the first CW in UCI on 2 CW PUSCH, and the second set of new RRC parameters is , UCI on 2 CW may be used for the second CW in PUSCH.
[[第1の実施形態の変形例1-3]]
 第1の実施形態の変形例1-3においては、同じパネルに関連するPUSCHにUCIが多重される場合と、異なるパネルに関連するPUSCHにUCIが多重される場合と、で同じbetaOffsets/scalingが参照されてもよいし、異なるbetaOffsets/scalingが参照されてもよい。
[[Modification 1-3 of the first embodiment]]
In modification 1-3 of the first embodiment, the same betaOffsets/scaling is used when UCIs are multiplexed on PUSCHs related to the same panel and when UCIs are multiplexed on PUSCHs related to different panels. or different betaOffsets/scaling may be referenced.
 第1の実施形態の変形例1-3は、上記変形例1-1/1-2において、「UCI on 2 CW PUSCHにおける第1のCW」を「同じパネルに関連するPUSCHにUCIが多重されるケース」で、「UCI on 2 CW PUSCHにおける第2のCW」を「異なるパネルに関連するPUSCHにUCIが多重されるケース」で、読み替えた実施形態に該当してもよい。なお、これらの読み替えは逆であってもよい。 Modification 1-3 of the first embodiment is modified from Modification 1-1/1-2 above by changing "UCI on 2 CW first CW in PUSCH" to "UCI is multiplexed on PUSCH related to the same panel". This may correspond to an embodiment in which "UCI on 2 CW second CW in PUSCH" is replaced with "case where UCI is multiplexed on PUSCHs related to different panels". Note that these readings may be reversed.
[第1の実施形態の変形例2]
 第1の実施形態及び変形例1において、betaOffsetsパラメータ(betaOffsets又はbetaOffsets-2codeword-r18)を構成する“dynamic(又はdynamic-2codeword-r18)”及び“semiStatic(又はsemiStatic-2codeword-r18)”のうち、両方がUCI on 2 CW PUSCHのために用いられてもよいし、一方のみ(例えば“dynamic(又はdynamic-2codeword-r18)”のみ)がUCI on 2 CW PUSCHのために用いられてもよい。なお、一方のみ(例えば“dynamic(又はdynamic-2codeword-r18)”のみ)がUCI on 2 CW PUSCHのために用いられる場合、他方(例えば“semiStatic(又はsemiStatic-2codeword-r18)”)は上記betaOffsetsパラメータに含まれなくてもよい。
[Modification 2 of the first embodiment]
In the first embodiment and modification 1, among "dynamic (or dynamic-2codeword-r18)" and "semiStatic (or semiStatic-2codeword-r18)" that constitute the betaOffsets parameter (betaOffsets or betaOffsets-2codeword-r18), , both may be used for UCI on 2 CW PUSCH, or only one (for example only "dynamic (or dynamic-2codeword-r18)") may be used for UCI on 2 CW PUSCH. In addition, if only one (for example, "dynamic (or dynamic-2codeword-r18)" only) is used for UCI on 2 CW PUSCH, the other (for example, "semiStatic (or semiStatic-2codeword-r18)") is used for the above betaOffsets. It does not need to be included in the parameters.
[第1の実施形態の変形例3]
 第1の実施形態及び変形例1及び2において、UCI-OnPUSCH情報要素(UCI-OnPUSCH又はUCI-OnPUSCH-2codeword-r18)は、UCI-OnPUSCH-ListDCI-0-1-r16に含まれてもよく、DCIフォーマット0_1についての、UCI on 2 CW PUSCHの送信のためのベータオフセットの決定に用いられてもよい。
[Modification 3 of the first embodiment]
In the first embodiment and modifications 1 and 2, the UCI-OnPUSCH information element (UCI-OnPUSCH or UCI-OnPUSCH-2codeword-r18) may be included in UCI-OnPUSCH-ListDCI-0-1-r16. , may be used to determine the beta offset for the transmission of UCI on 2 CW PUSCH for DCI format 0_1.
 以上説明した第1の実施形態によれば、UEは、DCIフォーマット0_2以外のDCIフォーマットによってスケジュールされる動的PUSCHについて、2 CW PUSCHのためのベータオフセットを適切に決定できる。 According to the first embodiment described above, the UE can appropriately determine the beta offset for 2 CW PUSCH for dynamic PUSCH scheduled by a DCI format other than DCI format 0_2.
<第2の実施形態>
 第2の実施形態は、DCIフォーマット0_2によってスケジュールされる動的PUSCH(以下、第2の実施形態の動的PUSCHと呼ぶ)に関する。
<Second embodiment>
The second embodiment relates to a dynamic PUSCH scheduled by DCI format 0_2 (hereinafter referred to as dynamic PUSCH of the second embodiment).
 UEは、第2の実施形態の動的PUSCHについて、UCI on 1 CW PUSCHのためのRRCパラメータと、UCI on 2 CW PUSCHのためのRRCパラメータと、を別々に(又は独立して又は異なって)設定されてもよい。 Regarding the dynamic PUSCH of the second embodiment, the UE separately (or independently or differently) sets the RRC parameters for UCI on 1 CW PUSCH and the RRC parameters for UCI on 2 CW PUSCH. May be set.
 これらのRRCパラメータは、DCIフォーマット0_2向けのUCI-OnPUSCH情報要素(UCI-OnPUSCH-DCI-0-2 IE)、DCIフォーマット0_2向けのbetaOffsetsパラメータ(betaOffsetsDCI-0-2)、DCIフォーマット0_2向けのscalingパラメータ(scalingDCI-0-2)、BetaOffsets情報要素(BetaOffsets IE)の少なくとも1つに該当してもよい。 These RRC parameters are the UCI-OnPUSCH information element (UCI-OnPUSCH-DCI-0-2 IE) for DCI format 0_2, the betaOffsets parameter (betaOffsetsDCI-0-2) for DCI format 0_2, and the scaling for DCI format 0_2. It may correspond to at least one of the parameter (scalingDCI-0-2) and the BetaOffsets information element (BetaOffsets IE).
 第2の実施形態は、第1の実施形態(変形例1-5を含む)において、Rel.15/16 NRにおいて定義されるRRCパラメータ(例えば、UCI-OnPUSCH情報要素(UCI-OnPUSCH IE)、betaOffsetsパラメータ(betaOffsets)、scalingパラメータ(scaling)、BetaOffsets情報要素(BetaOffsets IE))を、Rel.16 NRにおいて定義されるDCIフォーマット0_2向けの対応するRRCパラメータ(例えば、DCIフォーマット0_2向けのUCI-OnPUSCH情報要素(UCI-OnPUSCH-DCI-0-2 IE)、DCIフォーマット0_2向けのbetaOffsetsパラメータ(betaOffsetsDCI-0-2)、DCIフォーマット0_2向けのscalingパラメータ(scalingDCI-0-2)、BetaOffsets情報要素(BetaOffsets IE))で読み替えた実施形態に該当してもよい。 In the second embodiment, Rel. 15/16 RRC parameters defined in NR (for example, UCI-OnPUSCH information element (UCI-OnPUSCH IE), betaOffsets parameter (betaOffsets), scaling parameter (scaling), BetaOffsets information element (BetaOffsets IE)) are defined in Rel. 16 Corresponding RRC parameters for DCI format 0_2 defined in NR (e.g. UCI-OnPUSCH information element for DCI format 0_2 (UCI-OnPUSCH-DCI-0-2 IE), betaOffsets parameter for DCI format 0_2 (betaOffsetsDCI -0-2), a scaling parameter for DCI format 0_2 (scalingDCI-0-2), and a BetaOffsets information element (BetaOffsets IE)).
 第2の実施形態は、第1の実施形態(変形例1-5を含む)において、UCI on 2 CW PUSCHのための新たなRRCパラメータ(例えば、UCI-OnPUSCH情報要素(UCI-OnPUSCH-2codeword-r18 IE/UCI-OnPUSCH-r18 IE)、betaOffsetsパラメータ(betaOffsets-2codeword-r18)、scalingパラメータ(scaling-2codeword-r18)、BetaOffsets情報要素(BetaOffsets IE/BetaOffsets-2codeword-r18))を、DCIフォーマット0_2向けの対応する新たなRRCパラメータ(例えば、DCIフォーマット0_2向けのUCI-OnPUSCH情報要素(UCI-OnPUSCH-DCI-0-2-2codeword-r18 IE)、DCIフォーマット0_2向けのbetaOffsetsパラメータ(betaOffsetsDCI-0-2-2codeword-r18)、DCIフォーマット0_2向けのscalingパラメータ(scalingDCI-0-2-2codeword-r18)、BetaOffsets情報要素(BetaOffsets IE/BetaOffsets-2codeword-r18))で読み替えた実施形態に該当してもよい。なお、BetaOffsets情報要素の読み替えは、DCIフォーマット0_2向けの新たなBetaOffsets情報要素に読み替えられてもよい。 The second embodiment adds new RRC parameters for UCI on 2 CW PUSCH (for example, UCI-OnPUSCH information element (UCI-OnPUSCH-2codeword- DCI format 0_2 corresponding new RRC parameters for the 2-2codeword-r18), scaling parameter for DCI format 0_2 (scalingDCI-0-2-2codeword-r18), BetaOffsets information element (BetaOffsets IE/BetaOffsets-2codeword-r18)) good. Note that the BetaOffsets information element may be replaced with a new BetaOffsets information element for DCI format 0_2.
 図7は、第2の実施形態の動的PUSCHについての、UCI on 1 CW PUSCHのためのbetaOffsetsパラメータ及びscalingパラメータと、UCI on 2 CW PUSCHのためのbetaOffsetsパラメータ及びscalingパラメータと、の一例を示す図である。 FIG. 7 shows an example of the betaOffsets parameters and scaling parameters for UCI on 1 CW PUSCH and the betaOffsets parameters and scaling parameters for UCI on 2 CW PUSCH regarding the dynamic PUSCH of the second embodiment. show It is a diagram.
 図7の例では、1つのUCI-OnPUSCH情報要素(UCI-OnPUSCH-DCI-0-2-r16)に含まれる、Rel.16 NRにおいて定義されるbetaOffsetsパラメータ(betaOffsetsDCI-0-2-r16)及びscalingパラメータ(scalingDCI-0-2)は、第2の実施形態の動的PUSCHについての、UCI on 1 CW PUSCHのためのbetaOffsetsパラメータ及びscalingパラメータに該当してもよい。 In the example of FIG. 7, Rel. The betaOffsets parameter (betaOffsetsDCI-0-2-r16) and scaling parameter (scalingDCI-0-2) defined in 16 NR are the betaOffsets for UCI on 1 CW PUSCH for dynamic PUSCH of the second embodiment. It may also correspond to parameters and scaling parameters.
 また、1つのUCI-OnPUSCH情報要素(UCI-OnPUSCH-DCI-0-2-r16)に含まれる、新たなbetaOffsetsパラメータ(betaOffsetsDCI-0-2-2codeword-r18)及び新たなscalingパラメータ(scalingDCI-0-2-2codeword-r18)は、第2の実施形態の動的PUSCHについての、UCI on 2 CW PUSCHのためのbetaOffsetsパラメータ及びscalingパラメータに該当してもよい。 In addition, a new betaOffsets parameter (betaOffsetsDCI-0-2-2codeword-r18) and a new scaling parameter (scalingDCI-0 -2-2codeword-r18) may correspond to the betaOffsets parameter and scaling parameter for UCI on 2CW PUSCH for the dynamic PUSCH of the second embodiment.
 以上説明した第2の実施形態によれば、UEは、DCIフォーマット0_2によってスケジュールされる動的PUSCHについて、2 CW PUSCHのためのベータオフセットを適切に決定できる。 According to the second embodiment described above, the UE can appropriately determine the beta offset for the 2 CW PUSCH for the dynamic PUSCH scheduled by DCI format 0_2.
<第3の実施形態>
 第3の実施形態は、CG PUSCHに関する。
<Third embodiment>
The third embodiment relates to CG PUSCH.
 UEは、第3の実施形態のCG PUSCHについて、UCI on 1 CW PUSCHのためのRRCパラメータと、UCI on 2 CW PUSCHのためのRRCパラメータと、を別々に(又は独立して又は異なって)設定されてもよい。 Regarding the CG PUSCH of the third embodiment, the UE configures RRC parameters for UCI on 1 CW PUSCH and RRC parameters for UCI on 2 CW PUSCH separately (or independently or differently). may be done.
 これらのRRCパラメータは、CG PUSCH向けのCG-UCI-OnPUSCH情報要素(CG-UCI-OnPUSCH IE)、BetaOffsets情報要素(BetaOffsets IE)、CG PUSCHにおけるCG-UCIのためのbetaOffsetパラメータ(betaOffsetCG-UCI-r16)の少なくとも1つに該当してもよい。 These RRC parameters include the CG-UCI-OnPUSCH information element (CG-UCI-OnPUSCH IE) for CG PUSCH, the BetaOffsets information element (BetaOffsets IE), and the betaOffset parameter for CG-UCI in CG PUSCH (betaOffsetCG-UCI- r16) may apply.
 UEは、UCI on 1 CW PUSCHの送信の場合は、UCI on 1 CW PUSCHのためのRRCパラメータに対応するベータオフセッツ情報要素に基づいて、利用するベータオフセットを決定する。UEは、UCI on 2 CW PUSCHの送信の場合は、UCI on 2 CW PUSCHのためのRRCパラメータに対応するベータオフセッツ情報要素に基づいて、利用するベータオフセットを決定する。 In the case of UCI on 1 CW PUSCH transmission, the UE determines the beta offset to utilize based on the Beta Offsets information element corresponding to the RRC parameter for UCI on 1 CW PUSCH. In the case of UCI on 2 CW PUSCH transmission, the UE determines the beta offset to utilize based on the beta offsets information element corresponding to the RRC parameters for UCI on 2 CW PUSCH.
 図8は、第3の実施形態のCG PUSCHについての、UCI on 1 CW PUSCHのためのCG-UCI-OnPUSCH情報要素と、UCI on 2 CW PUSCHのためのCG-UCI-OnPUSCH情報要素と、の一例を示す図である。 FIG. 8 shows the CG-UCI-OnPUSCH information element for UCI on 1 CW PUSCH and the CG-UCI-OnPUSCH information element for UCI on 2 CW PUSCH regarding CG PUSCH of the third embodiment. It is a figure showing an example.
 図8の例では、Rel.15/16 NRにおいて定義されるCG-UCI-OnPUSCH情報要素は、CG-UCIを含まないUCI(HARQ-ACK/CSI)をCG PUSCHで送信する場合の、UCI on 1 CW PUSCHのための設定(“dynamic”又は“semiStatic”に対応する1つ以上のBetaOffsets情報要素)を含む。 In the example of FIG. 8, Rel. 15/16 The CG-UCI-OnPUSCH information element defined in NR is the configuration for UCI on 1 CW PUSCH when transmitting UCI (HARQ-ACK/CSI) not including CG-UCI on CG PUSCH ( one or more BetaOffsets information elements corresponding to "dynamic" or "semiStatic").
 また、CG-UCI-OnPUSCH-2codeword-r18情報要素は、CG-UCIを含まないUCI(HARQ-ACK/CSI)をCG PUSCHで送信する場合の、UCI on 2 CW PUSCHのための設定(“dynamic”又は“semiStatic”に対応する1つ以上のBetaOffsets情報要素)を含む。 In addition, the CG-UCI-OnPUSCH-2 codeword-r18 information element is the configuration for UCI on 2 CW PUSCH (“dynamic ” or one or more BetaOffsets information elements corresponding to “semiStatic”).
 さらに、図8の例では、Rel.16 NRにおいて定義されるCG PUSCHにおけるCG-UCIのためのbetaOffsetパラメータ(betaOffsetCG-UCI-r16)は、CG-UCIのみをCG PUSCHで送信する場合の、UCI on 1 CW PUSCHのためのベータオフセットに関するインデックスを示す。 Furthermore, in the example of FIG. 8, Rel. The betaOffset parameter (betaOffsetCG-UCI-r16) for CG-UCI in CG PUSCH defined in 16 NR relates to the beta offset for UCI on 1 CW PUSCH when only CG-UCI is transmitted on CG PUSCH. Indicates the index.
 また、CG PUSCHにおけるCG-UCIのための新たなbetaOffsetパラメータ(betaOffsetCG-UCI-2codeword-r18)は、CG-UCIのみをCG PUSCHで送信する場合の、UCI on 2 CW PUSCHのためのベータオフセットに関するインデックスを示す。 In addition, the new betaOffset parameter (betaOffsetCG-UCI-2codeword-r18) for CG-UCI in CG PUSCH is related to the beta offset for UCI on 2 CW PUSCH when only CG-UCI is transmitted on CG PUSCH. Indicates the index.
 2 CW PUSCH(又は2 CWのCG PUSCH)がUEに設定される場合には、UCI on 1 CW PUSCHのためのCG-UCI-OnPUSCH情報要素/CG-UCIのための新たなbetaOffsetパラメータと、UCI on 2 CW PUSCHのためのCG-UCI-OnPUSCH情報要素/CG-UCIのための新たなbetaOffsetパラメータと、を含む図8の例に示すようなCG PUSCH設定情報(ConfiguredGrantConfig情報要素)が、当該UEに設定されてもよい。 If 2 CW PUSCH (or 2 CW CG PUSCH) is configured in the UE, UCI on 1 CW PUSCH CG-UCI-OnPUSCH information element/CG-UCI new betaOffset parameter for UCI CG PUSCH configuration information (ConfiguredGrantConfig information element) as shown in the example of FIG. may be set to .
 図9は、第3の実施形態のCG PUSCHについての、UCI on 1 CW PUSCH及びUCI on 2 CW PUSCHのためのCG-UCI-OnPUSCH情報要素の一例を示す図である。 FIG. 9 is a diagram illustrating an example of CG-UCI-OnPUSCH information elements for UCI on 1 CW PUSCH and UCI on 2 CW PUSCH for CG PUSCH of the third embodiment.
 図9の例では、新たなCG-UCI-OnPUSCH情報要素(CG-UCI-OnPUSCH-r18)は、第1の実施形態の動的PUSCHについての、UCI on 1 CW PUSCHのための設定及びUCI on 2 CW PUSCHのための設定を含む。 In the example of FIG. 9, the new CG-UCI-OnPUSCH information element (CG-UCI-OnPUSCH-r18) includes settings for UCI on 1 CW PUSCH and UCI on 2. Contains settings for CW PUSCH.
 図9の例では、1つのCG-UCI-OnPUSCH情報要素に含まれる、新たなbetaOffsetsパラメータ(betaOffsets-18)は、UCI on 1 CW PUSCHのためのbetaOffsetsパラメータに該当する。当該betaOffsetsパラメータは、CG-UCIを含まないUCI(HARQ-ACK/CSI)をCG PUSCHで送信する場合の、UCI on 1 CW PUSCHのための設定(“dynamic”又は“semiStatic”に対応する1つ以上のBetaOffsets情報要素)を含む。 In the example of FIG. 9, the new betaOffsets parameter (betaOffsets-18) included in one CG-UCI-OnPUSCH information element corresponds to the betaOffsets parameter for UCI on 1 CW PUSCH. The betaOffsets parameter is the setting for UCI on 1 CW PUSCH (one corresponding to "dynamic" or "semiStatic") when transmitting UCI (HARQ-ACK/CSI) that does not include CG-UCI on CG PUSCH. BetaOffsets information element).
 また、1つのUCI-OnPUSCH情報要素に含まれる、新たなbetaOffsetsパラメータ(betaOffsets-2codeword-r18)は、UCI on 2 CW PUSCHのためのbetaOffsetsパラメータに該当する。当該betaOffsetsパラメータは、CG-UCIを含まないUCI(HARQ-ACK/CSI)をCG PUSCHで送信する場合の、UCI on 2 CW PUSCHのための設定(“dynamic”又は“semiStatic”に対応する1つ以上のBetaOffsets情報要素)を含む。 Additionally, the new betaOffsets parameter (betaOffsets-2codeword-r18) included in one UCI-OnPUSCH information element corresponds to the betaOffsets parameter for UCI on 2 CW PUSCH. The betaOffsets parameter is the setting for UCI on 2 CW PUSCH (one corresponding to "dynamic" or "semiStatic") when transmitting UCI (HARQ-ACK/CSI) that does not include CG-UCI on CG PUSCH. BetaOffsets information element).
 CG-UCIのためのbetaOffsetパラメータ(betaOffsetCG-UCI-r16、betaOffsetCG-UCI-2codeword-r18)は、図8について説明したのと同様であるため、重複した説明は行わない。 The betaOffset parameters for CG-UCI (betaOffsetCG-UCI-r16, betaOffsetCG-UCI-2codeword-r18) are the same as those described with respect to FIG. 8, so a redundant explanation will not be provided.
 2 CW PUSCHがUEに設定される場合には、図9に示すようなCG-UCI-OnPUSCH-r18情報要素を含むCG PUSCH設定情報(ConfiguredGrantConfig情報要素)が、当該UEに設定されてもよい。 2. When CW PUSCH is configured in the UE, CG PUSCH configuration information (ConfiguredGrantConfig information element) including the CG-UCI-OnPUSCH-r18 information element as shown in FIG. 9 may be configured in the UE.
 以上説明した第3の実施形態によれば、UEは、CG PUSCHについて、2 CW PUSCHのためのベータオフセットを適切に決定できる。 According to the third embodiment described above, the UE can appropriately determine the beta offset for 2 CW PUSCH for CG PUSCH.
<第4の実施形態>
 第4の実施形態は、異なる優先度の多重(言い換えると、UCIの優先度とPUSCHの優先度が異なるケースにおける当該PUSCHへの当該UCIの多重(UCI on PUSCH))に関する。
<Fourth embodiment>
The fourth embodiment relates to multiplexing of different priorities (in other words, multiplexing of the UCI on the PUSCH in a case where the priority of the UCI and the priority of the PUSCH are different (UCI on PUSCH)).
 第4の実施形態は、これまで述べた第1-第3の実施形態を、上記ケースについて読み替えた実施形態に該当してもよい。 The fourth embodiment may correspond to an embodiment in which the first to third embodiments described above are replaced with respect to the above case.
 第4の実施形態の1つの実施形態は、第1の実施形態(変形例1-5を含む)において、以下の読み替えを行った実施形態に該当してもよい:
 ・Rel.15/16 NRにおいて定義されるRRCパラメータ(例えば、betaOffsetsパラメータ(betaOffsets)、ベータオフセッツ情報要素(BetaOffsets IE))を、Rel.17 NRにおいて定義され得る、異なる優先度の多重に関する対応するRRCパラメータ(例えば、HP 動的PUSCHにおいて多重されるLP HARQ-ACKのためのbetaOffsetsパラメータ(betaOffsetsCrossPri0-r17)、LP 動的PUSCHにおいて多重されるHP HARQ-ACKのためのbetaOffsetsパラメータ(betaOffsetsCrossPri1-r17)、HP 動的PUSCHにおいて多重されるLP HARQ-ACKのためのベータオフセッツ情報要素(BetaOffsetsCrossPri0 IE)、LP 動的PUSCHにおいて多重されるHP HARQ-ACKのためのベータオフセッツ情報要素(BetaOffsetsCrossPri1 IE))で読み替え、
 ・UCI on 2 CW PUSCHのための新たなRRCパラメータ(例えば、betaOffsetsパラメータ(betaOffsets-2codeword-r18)、BetaOffsets情報要素(BetaOffsets IE/BetaOffsets-2codeword-r18))を、UCI on 2 CW PUSCHのための、異なる優先度の多重に関する対応する新たなRRCパラメータ(例えば、HP 動的PUSCHにおいて多重されるLP HARQ-ACKのためのbetaOffsetsパラメータ(例えば、betaOffsetsCrossPri0-2codeword-r18)、LP 動的PUSCHにおいて多重されるHP HARQ-ACKのためのbetaOffsetsパラメータ(例えば、betaOffsetsCrossPri1-2codeword-r18)、HP 動的PUSCHにおいて多重されるLP HARQ-ACKのためのベータオフセッツ情報要素(例えば、BetaOffsetsCrossPri0-2codeword-r18 IE)、LP 動的PUSCHにおいて多重されるHP HARQ-ACKのためのベータオフセッツ情報要素(例えば、BetaOffsetsCrossPri1-2codeword-r18 IE))で読み替え。
One embodiment of the fourth embodiment may correspond to an embodiment in which the following readings have been made in the first embodiment (including variations 1-5):
・Rel. 15/16 The RRC parameters defined in NR (eg, betaOffsets parameter (betaOffsets), BetaOffsets information element (BetaOffsets IE)) are defined in Rel. 17 NR, corresponding RRC parameters for multiplexing of different priorities (e.g. betaOffsets parameters (betaOffsetsCrossPri0-r17) for LP HARQ-ACK multiplexed on HP dynamic PUSCH, multiplexed on LP dynamic PUSCH) betaOffsets parameter for HP HARQ-ACK (betaOffsetsCrossPri1-r17), betaOffsets information element (BetaOffsetsCrossPri0 IE) for LP HARQ-ACK multiplexed on HP dynamic PUSCH, HP multiplexed on LP dynamic PUSCH BetaOffsets information element for HARQ-ACK (BetaOffsetsCrossPri1 IE))
- Add new RRC parameters (for example, betaOffsets parameter (betaOffsets-2codeword-r18), BetaOffsets information element (BetaOffsets IE/BetaOffsets-2codeword-r18)) for UCI on 2 CW PUSCH to UCI on 2 CW PUSCH. , corresponding new RRC parameters for multiplexing of different priorities (e.g. betaOffsets parameters (e.g. betaOffsetsCrossPri0-2codeword-r18) for LP HARQ-ACK multiplexed on HP dynamic PUSCH, multiplexed on LP dynamic PUSCH betaOffsets parameter for HP HARQ-ACK (e.g., betaOffsetsCrossPri1-2codeword-r18), betaOffsets information element for LP HARQ-ACK multiplexed on HP dynamic PUSCH (e.g., BetaOffsetsCrossPri0-2codeword-r18 IE) , LP Replaced with BetaOffsets information element (eg, BetaOffsetsCrossPri1-2codeword-r18 IE) for HP HARQ-ACK multiplexed on dynamic PUSCH.
 第4の実施形態の1つの実施形態は、第2の実施形態(変形例1-5を含む)において、以下の読み替えを行った実施形態に該当してもよい:
 ・Rel.16 NRにおいて定義されるDCIフォーマット0_2向けの対応するRRCパラメータ(例えば、DCIフォーマット0_2向けのbetaOffsetsパラメータ(betaOffsetsDCI-0-2)、BetaOffsets情報要素(BetaOffsets IE))を、Rel.17 NRにおいて定義され得る、異なる優先度の多重に関する対応するRRCパラメータ(例えば、HP 動的PUSCHにおいて多重されるLP HARQ-ACKのためのbetaOffsetsパラメータ(betaOffsetsCrossPri0DCI-0-2-r17)、LP 動的PUSCHにおいて多重されるHP HARQ-ACKのためのbetaOffsetsパラメータ(betaOffsetsCrossPri1DCI-0-2-r17)、HP 動的PUSCHにおいて多重されるLP HARQ-ACKのためのベータオフセッツ情報要素(BetaOffsetsCrossPri0 IE)、LP 動的PUSCHにおいて多重されるHP HARQ-ACKのためのベータオフセッツ情報要素(BetaOffsetsCrossPri1 IE))で読み替え、
 ・UCI on 2 CW PUSCHのための新たなRRCパラメータ(例えば、DCIフォーマット0_2向けのbetaOffsetsパラメータ(betaOffsetsDCI-0-2-2codeword-r18)、BetaOffsets情報要素(BetaOffsets IE/BetaOffsets-2codeword-r18 IE))を、UCI on 2 CW PUSCHのための、異なる優先度の多重に関する対応する新たなRRCパラメータ(例えば、HP 動的PUSCHにおいて多重されるLP HARQ-ACKのためのbetaOffsetsパラメータ(例えば、betaOffsetsCrossPri0DCI-0-2-2codeword-r18)、LP 動的PUSCHにおいて多重されるHP HARQ-ACKのためのbetaOffsetsパラメータ(例えば、betaOffsetsCrossPri1DCI-0-2-2codeword-r18)、HP 動的PUSCHにおいて多重されるLP HARQ-ACKのためのベータオフセッツ情報要素(例えば、BetaOffsetsCrossPri0-2codeword-r18 IE)、LP 動的PUSCHにおいて多重されるHP HARQ-ACKのためのベータオフセッツ情報要素(例えば、BetaOffsetsCrossPri1-2codeword-r18 IE))で読み替え。
One embodiment of the fourth embodiment may correspond to an embodiment in which the following readings have been made in the second embodiment (including variations 1-5):
・Rel. The corresponding RRC parameters for DCI format 0_2 defined in Rel.16 NR (e.g., betaOffsets parameter for DCI format 0_2 (betaOffsetsDCI-0-2), BetaOffsets information element (BetaOffsets IE)) are defined in Rel.16 NR. 17 Corresponding RRC parameters for multiplexing of different priorities that may be defined in NR (e.g. betaOffsets parameter for LP HARQ-ACK multiplexed in HP dynamic PUSCH (betaOffsetsCrossPri0DCI-0-2-r17), LP dynamic betaOffsets parameter for HP HARQ-ACK multiplexed on PUSCH (betaOffsetsCrossPri1DCI-0-2-r17), betaoffsets information element for LP HARQ-ACK multiplexed on HP dynamic PUSCH (BetaOffsetsCrossPri0 IE), LP BetaOffsets information element (BetaOffsetsCrossPri1 IE) for HP HARQ-ACK multiplexed on dynamic PUSCH)
- New RRC parameters for UCI on 2 CW PUSCH (e.g. betaOffsets parameter for DCI format 0_2 (betaOffsetsDCI-0-2-2codeword-r18), BetaOffsets information element (BetaOffsets IE/BetaOffsets-2codeword-r18 IE)) and corresponding new RRC parameters for multiplexing of different priorities for UCI on 2 CW PUSCH (e.g. betaOffsets parameters for LP HARQ-ACK multiplexed on HP dynamic PUSCH (e.g. betaOffsetsCrossPri0DCI-0- 2-2codeword-r18), betaOffsets parameter for HP HARQ-ACK multiplexed on LP dynamic PUSCH (for example, betaOffsetsCrossPri1DCI-0-2-2codeword-r18), LP HARQ-ACK multiplexed on HP dynamic PUSCH BetaOffsets information element (e.g., BetaOffsetsCrossPri0-2codeword-r18 IE) for HP HARQ-ACK multiplexed on LP dynamic PUSCH (e.g., BetaOffsetsCrossPri1-2codeword-r18 IE) Replace it with .
 第4の実施形態の1つの実施形態は、第3の実施形態において、以下の少なくとも1つの読み替えを行った実施形態に該当してもよい:
 ・Rel.15/16 NRにおいて定義されるRRCパラメータ又はUCI on 1 CW PUSCHのための新たなRRCパラメータ(例えば、CG PUSCH向けのCG-UCI-OnPUSCH情報要素(CG-UCI-OnPUSCH IE)、betaOffsetsパラメータ(betaOffsets-r18)、BetaOffsets情報要素(BetaOffsets IE))を、Rel.17 NRにおいて定義され得る、異なる優先度の多重に関する対応するRRCパラメータ(例えば、HP CG PUSCHにおいて多重されるLP HARQ-ACKのためのCG-UCI-OnPUSCH情報要素相当のbetaOffsetsパラメータ(CG-betaOffsetsCrossPri0)、LP CG PUSCHにおいて多重されるHP HARQ-ACKのためのCG-UCI-OnPUSCH情報要素相当のbetaOffsetsパラメータ(CG-betaOffsetsCrossPri1)、HP PUSCH(CG PUSCH)において多重されるLP HARQ-ACKのためのbetaOffsetsパラメータ(例えば、betaOffsetsCrossPri0-r17)、LP PUSCH(CG PUSCH)において多重されるHP HARQ-ACKのためのbetaOffsetsパラメータ(例えば、betaOffsetsCrossPri1-r17)、HP PUSCH(CG PUSCH)において多重されるLP HARQ-ACKのためのベータオフセッツ情報要素(BetaOffsetsCrossPri0 IE)、LP PUSCH(CG PUSCH)において多重されるHP HARQ-ACKのためのベータオフセッツ情報要素(BetaOffsetsCrossPri1 IE))で読み替え、
 ・UCI on 2 CW PUSCHのための新たなRRCパラメータ(例えば、CG PUSCH向けのCG-UCI-OnPUSCH情報要素(CG-UCI-OnPUSCH-2codeword-r18 IE)、betaOffsetsパラメータ(betaOffsets-2codeword-r18)、BetaOffsets情報要素(BetaOffsets-2codeword-r18 IE))を、UCI on 2 CW PUSCHのための、異なる優先度の多重に関する対応する新たなRRCパラメータ(例えば、HP CG PUSCHにおいて多重されるLP HARQ-ACKのためのCG-UCI-OnPUSCH情報要素相当のbetaOffsetsパラメータ(例えば、CG-betaOffsetsCrossPri0-2codeword-r18)、LP PUSCH(CG PUSCH)において多重されるHP HARQ-ACKのためのCG-UCI-OnPUSCH情報要素相当のbetaOffsetsパラメータ(例えば、CG-betaOffsetsCrossPri1-2codeword-r18)、HP PUSCH(CG PUSCH)において多重されるLP HARQ-ACKのためのbetaOffsetsパラメータ(例えば、betaOffsetsCrossPri0-2codeword-r18)、LP PUSCH(CG PUSCH)において多重されるHP HARQ-ACKのためのbetaOffsetsパラメータ(例えば、betaOffsetsCrossPri1-2codeword-r18)、HP PUSCH(CG PUSCH)において多重されるLP HARQ-ACKのためのベータオフセッツ情報要素(例えば、BetaOffsetsCrossPri0-2codeword-r18 IE)、LP PUSCH(CG PUSCH)において多重されるHP HARQ-ACKのためのベータオフセッツ情報要素(例えば、BetaOffsetsCrossPri1-2codeword-r18 IE))で読み替え。
One embodiment of the fourth embodiment may correspond to an embodiment in which at least one of the following readings is replaced in the third embodiment:
・Rel. 15/16 RRC parameters defined in NR or new RRC parameters for UCI on 1 CW PUSCH (e.g. CG-UCI-OnPUSCH information element (CG-UCI-OnPUSCH IE) for CG PUSCH, betaOffsets parameter (betaOffsets -r18), BetaOffsets information element (BetaOffsets IE)) in Rel. 17 Corresponding RRC parameters for multiplexing of different priorities that may be defined in NR (e.g. betaOffsets parameter corresponding to CG-UCI-OnPUSCH information element for LP HARQ-ACK multiplexed on HP CG PUSCH (CG-betaOffsetsCrossPri0) , LP CG PUSCH, multiply in the BetaoffSets parameter (CG-BetaoffsetSetscrosspri1) and HP PUSCH (CG PUSCH) for CG-UCI-ONPUSCH information elements equivalent to HP HP HARQ-ACK. BetaoffSets for LP HARQ -ACK BetaoftSets parameters (eg, BetaoftSetsCrospri1-R17), BetaoftSets (eg, BetaoftSetsCrosspri1-R17), for HP HP HARQ-ACK, which are multiple in parameters (, BetaoftSetsCrosspri0-R17) and LP PUSCH (CG PUSCH). LP HARQ -ACK, which is multiple in HP PUSCH (CG PUSCH) BetaOffsets information element (BetaOffsetsCrossPri0 IE) for HP HARQ-ACK multiplexed on LP PUSCH (CG PUSCH) (BetaOffsetsCrossPri1 IE))
- New RRC parameters for UCI on 2 CW PUSCH (e.g. CG-UCI-OnPUSCH information element (CG-UCI-OnPUSCH-2codeword-r18 IE) for CG PUSCH, betaOffsets parameter (betaOffsets-2codeword-r18), BetaOffsets information element (BetaOffsets-2codeword-r18 IE)) and corresponding new RRC parameters for multiplexing of different priorities for UCI on 2 CW PUSCH (e.g. for LP HARQ-ACK multiplexed on HP CG PUSCH). betaOffsets parameter (for example, CG-betaOffsetsCrossPri0-2codeword-r18) equivalent to the CG-UCI-OnPUSCH information element for betaOffsets parameters for LP HARQ-ACK multiplexed on HP PUSCH (CG PUSCH) (e.g. betaOffsetsCrossPri0-2codeword-r18), LP PUSCH (CG PUSCH) PUSCH) betaOffsets parameter for HP HARQ-ACK multiplexed in the HP 2codeword-r18 IE), BetaOffsets information element for HP HARQ-ACK multiplexed on LP PUSCH (CG PUSCH) (for example, BetaOffsetsCrossPri1-2codeword-r18 IE)).
 なお、第4の実施形態において、UEは、異なる優先度の多重に関するベータオフセットの設定拡張の有効化(適用)に関するRRCパラメータが設定される場合には、既存のRel.15/16のベータオフセットに関するRRCパラメータを、LP(HP) PUSCHにおいて多重されるHP(LP) HARQ-ACKのための設定として利用し、新たに規定されるベータオフセットに関するRRCパラメータを、HP(LP) PUSCHにおいて多重されるLP(HP) HARQ-ACKのための設定として利用してもよい。 Note that in the fourth embodiment, when the RRC parameter regarding the activation (application) of beta offset configuration extension regarding multiplexing of different priorities is configured, the UE configures the existing Rel. The RRC parameters related to the beta offset of 15/16 are used as settings for HP (LP) HARQ-ACK multiplexed on the LP (HP) PUSCH, and the RRC parameters related to the newly defined beta offset are ) It may be used as a setting for LP (HP) HARQ-ACK multiplexed on PUSCH.
 また、第4の実施形態において、UEは、異なる優先度の多重に関するベータオフセットの設定拡張の有効化(適用)に関するRRCパラメータが設定される場合には、既存のRel.15/16のベータオフセットに関するRRCパラメータを(仮に設定される場合でも)無視してもよい。UEは、異なる優先度の多重に関するベータオフセットの設定拡張の有効化(適用)に関するRRCパラメータが設定される場合には、ベータオフセットに関するRRCパラメータの2つのセットを設定されてもよい。この場合、UEは、上記2つのセットのうち第1のセットのベータオフセットに関するRRCパラメータを、LP(HP) PUSCHにおいて多重されるHP(LP) HARQ-ACKのための設定として利用し、上記2つのセットのうち第2のセットのベータオフセットに関するRRCパラメータを、HP(LP) PUSCHにおいて多重されるLP(HP) HARQ-ACKのための設定として利用してもよい。 Furthermore, in the fourth embodiment, when the RRC parameter regarding the activation (application) of beta offset configuration extension for multiplexing of different priorities is configured, the UE configures the existing Rel. The RRC parameter for the 15/16 beta offset may be ignored (if set at all). The UE may be configured with two sets of RRC parameters for beta offsets if the RRC parameters for enabling (applying) beta offset configuration extensions for multiplexes of different priorities are configured. In this case, the UE uses the RRC parameters related to the beta offset of the first set of the above two sets as settings for HP (LP) HARQ-ACK multiplexed on the LP (HP) PUSCH, and The RRC parameters regarding the beta offset of the second set of the two sets may be used as settings for LP(HP) HARQ-ACK multiplexed on HP(LP) PUSCH.
 また、第4の実施形態において、UEは、異なる優先度の多重に関するベータオフセットの設定拡張の有効化(適用)に関するRRCパラメータが設定されない場合には、既存のRel.15/16のベータオフセットに関するRRCパラメータを、ベータオフセットの決定に用いてもよい。 In addition, in the fourth embodiment, if the RRC parameter regarding the activation (application) of beta offset configuration extension regarding multiplexing of different priorities is not configured, the UE performs an existing Rel. RRC parameters for a beta offset of 15/16 may be used to determine the beta offset.
 以上説明した第4の実施形態によれば、UEは、異なる優先度の多重のケース(例えば、LP PUSCHにおいてHP HARQ-ACKを多重するケース、HP PUSCHにおいてLP HARQ-ACKを多重するケース)であっても、2 CW PUSCHのためのベータオフセットを適切に決定できる。 According to the fourth embodiment described above, the UE can perform multiplexing with different priorities (for example, a case of multiplexing HP HARQ-ACK on LP PUSCH, a case of multiplexing LP HARQ-ACK on HP PUSCH), Even if there is, the beta offset for 2 CW PUSCH can be appropriately determined.
<補足>
 上述の実施形態において、DCIのベータオフセットインディケーターフィールドは、拡張されなくてもよいが、ビット値の解釈が既存と異なってもよい。DCIが2CW PUSCHをスケジュールする(示す/暗示する)場合、ベータオフセットインディケーターフィールドによって2CW PUSCHのための設定が指示されてもよい。例えば、2CW PUSCHをスケジュールするDCIに含まれるベータオフセットインディケーターフィールド=“01”は、2CW PUSCH に対してRRCが提供する第2オフセットインデックス(に対応するベータオフセッツ情報要素)を意味してもよい。
<Supplement>
In the embodiments described above, the beta offset indicator field of the DCI may not be expanded, but the interpretation of the bit value may be different from the existing one. If the DCI schedules (indicates/implies) 2CW PUSCH, the configuration for 2CW PUSCH may be indicated by the beta offset indicator field. For example, the beta offset indicator field = "01" included in the DCI that schedules 2CW PUSCH may mean the second offset index (corresponding beta offsets information element) provided by RRC for 2CW PUSCH. good.
 なお、拡張されなくてもよいが、ビット値の解釈が既存と異なってもよい。DCIが2CW PUSCHをスケジュールする場合であって、第1のCW及び第2のCWに別々のベータオフセットが使用される場合、ベータオフセットインディケーターフィールドによって第1のCWのための設定及び第2のCWのための設定が指示されてもよい。例えば、2CW PUSCHをスケジュールするDCIに含まれるベータオフセットインディケーターフィールド=“01”は、RRCが提供する第2オフセットインデックス(に対応する第1のCWのためのベータオフセッツ情報要素及び第2のCWのためのベータオフセッツ情報要素)を意味してもよい。 Note that although it does not need to be expanded, the interpretation of the bit value may be different from the existing one. If the DCI schedules a 2CW PUSCH and separate beta offsets are used for the first and second CWs, the Beta Offset Indicator field determines the settings for the first CW and the second CW. Settings for CW may be indicated. For example, the beta offset indicator field="01" included in the DCI that schedules the 2CW PUSCH is the beta offsets information element for the first CW and the second offset index (corresponding to the second offset index provided by RRC). Beta Offsets information element for CW).
 また、DCIが1CW PUSCHをスケジュールする(示す/暗示する)場合、ベータオフセットインディケーターフィールドによって1CW PUSCHのための設定が指示されてもよい。例えば、1CW PUSCHをスケジュールするDCIに含まれるベータオフセットインディケーターフィールド=“01”は、1CW PUSCH に対してRRCが提供する第2オフセットインデックス(に対応するベータオフセッツ情報要素)を意味してもよい。 Additionally, when the DCI schedules (indicates/implies) 1CW PUSCH, the configuration for 1CW PUSCH may be indicated by the beta offset indicator field. For example, the beta offset indicator field = "01" included in the DCI that schedules 1CW PUSCH may mean the second offset index (corresponding beta offsets information element) provided by RRC for 1CW PUSCH. good.
 なお、上述の実施形態においては、UCI on 2 CW PUSCHについて、UCIは、1つのTBにだけ(例えば、より低いTBインデックスに対応するTBにだけ)多重されてもよいし、2つの部分に分けられてそれぞれが異なるTBに多重されてもよいし、コピーされて同じUCIが各TBに多重されてもよい。UCI on 2 CW PUSCHについて、UCIが1つのTBにだけ多重されるケースでは、UEは、当該TBについてのベータオフセットに関する設定(上述の各実施形態で説明した情報要素、パラメータなど)を設定され、他のTBについてのベータオフセットに関する設定は設定されなくてもよい。 Note that in the embodiments described above, for UCI on 2 CW PUSCH, the UCI may be multiplexed only on one TB (for example, only on the TB corresponding to a lower TB index) or may be divided into two parts. They may be copied and multiplexed onto different TBs, or they may be copied and the same UCI may be multiplexed onto each TB. Regarding UCI on 2 CW PUSCH, in the case where UCI is multiplexed into only one TB, the UE is configured with settings regarding the beta offset for the TB (information elements, parameters, etc. described in each of the above embodiments), Settings regarding beta offsets for other TBs may not be configured.
 なお、上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。 Note that at least one of the embodiments described above may be applied only to UEs that have reported or support a specific UE capability.
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・DCIフォーマット0_2以外のDCIフォーマットによってスケジュールされるPUSCHについて、UCI on 1 CW PUSCHとUCI on 2 CW PUSCHとで別々の設定をサポートするか否か、
 ・DCIフォーマット0_2によってスケジュールされるPUSCHについて、UCI on 1 CW PUSCHとUCI on 2 CW PUSCHとで別々の設定をサポートするか否か、
 ・任意のDCIフォーマットによってスケジュールされるPUSCHについて、UCI on 1 CW PUSCHとUCI on 2 CW PUSCHとで別々の設定をサポートするか否か、
 ・CG PUSCHについて、UCI on 1 CW PUSCHとUCI on 2 CW PUSCHとで別々の設定をサポートするか否か、
 ・CG PUSCHについて、CG-UCI on 1 CW PUSCHとCG-UCI on 2 CW PUSCHとで別々の設定をサポートするか否か、
 ・異なる優先度の多重のケース(例えば、LP PUSCHにおいてHP HARQ-ACKを多重するケース、HP PUSCHにおいてLP HARQ-ACKを多重するケース)について、CG-UCI on 1 CW PUSCHとCG-UCI on 2 CW PUSCHとで別々の設定をサポートするか否か、
 ・2 CW PUSCHをサポートするか否か。
The particular UE capability may indicate at least one of the following:
- Regarding PUSCH scheduled by a DCI format other than DCI format 0_2, whether to support separate settings for UCI on 1 CW PUSCH and UCI on 2 CW PUSCH,
- Regarding PUSCH scheduled by DCI format 0_2, whether to support separate settings for UCI on 1 CW PUSCH and UCI on 2 CW PUSCH,
- Whether to support separate settings for UCI on 1 CW PUSCH and UCI on 2 CW PUSCH for PUSCH scheduled by any DCI format;
- Regarding CG PUSCH, whether to support separate settings for UCI on 1 CW PUSCH and UCI on 2 CW PUSCH,
- Regarding CG PUSCH, whether to support separate settings for CG-UCI on 1 CW PUSCH and CG-UCI on 2 CW PUSCH,
- For multiplexing cases with different priorities (for example, multiplexing HP HARQ-ACK on LP PUSCH, multiplexing LP HARQ-ACK on HP PUSCH), CG-UCI on 1 CW PUSCH and CG-UCI on 2 Whether or not to support separate settings for CW PUSCH,
・Whether or not to support 2 CW PUSCH.
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、BWP)ごとの能力であってもよいし、周波数レンジ(例えば、FR1、FR2、FR3、FR4、FR5)ごとの能力であってもよいし、サブキャリア間隔ごとの能力であってもよい。 Further, the above-mentioned specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency), or may be a capability for each frequency (for example, cell, band, BWP). , the capability may be for each frequency range (for example, FR1, FR2, FR3, FR4, FR5), or the capability may be for each subcarrier interval.
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。 Furthermore, the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex). The capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリングによって上述の実施形態に関連する特定の情報を設定された場合に適用されてもよい。例えば、当該特定の情報は、UCI on 2 CW PUSCH向けの設定情報、特定のリリース(例えば、Rel.18)向けの任意のRRCパラメータなどであってもよい。 Also, at least one of the embodiments described above may be applied when the UE is configured with specific information related to the embodiment described above by upper layer signaling. For example, the specific information may be configuration information for UCI on 2 CW PUSCH, arbitrary RRC parameters for a specific release (for example, Rel. 18), etc.
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよいし、1 CW PUSCH及び2 CW PUSCHに同じ設定(例えば、デフォルトの設定)を適用すると想定してもよいし、新しいRRCパラメータが1 CW PUSCH及び2 CW PUSCHに同じ設定を適用するという想定を有効化することを示すのであれば、そのように想定してもよい。 If the UE does not support at least one of the specific UE capabilities or is not configured with the specific information, for example, Rel. 15/16 operation may be applied, it may be assumed that the same settings (e.g. default settings) are applied to 1 CW PUSCH and 2 CW PUSCH, or new RRC parameters are applied to 1 CW PUSCH and 2 CW PUSCH. If it indicates that the assumption that the same settings are applied to PUSCH is enabled, then such an assumption may be made.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(wireless communication system)
The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this wireless communication system, communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
 図10は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 10 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Additionally, the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare. User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). Macro cell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used. For example, in at least one of the downlink (DL) and uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 A wireless access method may also be called a waveform. Note that in the wireless communication system 1, other wireless access methods (for example, other single carrier transmission methods, other multicarrier transmission methods) may be used as the UL and DL radio access methods.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In the wireless communication system 1, uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH. User data, upper layer control information, etc. may be transmitted by PUSCH. Furthermore, a Master Information Block (MIB) may be transmitted via the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 Note that the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. Note that PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH. CORESET corresponds to a resource for searching DCI. The search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. in the present disclosure may be read interchangeably.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 The PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted. A random access preamble for establishing a connection with a cell may be transmitted by PRACH.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 Note that in this disclosure, downlinks, uplinks, etc. may be expressed without adding "link". Furthermore, various channels may be expressed without adding "Physical" at the beginning.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 In addition, in the wireless communication system 1, measurement reference signals (Sounding Reference Signal (SRS)), demodulation reference signals (DMRS), etc. are transmitted as uplink reference signals (UL-RS). good. Note that DMRS may be called a user terminal-specific reference signal (UE-specific reference signal).
(基地局)
 図11は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 11 is a diagram illustrating an example of the configuration of a base station according to an embodiment. The base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like. The control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140. The control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120. The control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123. The baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212. The transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section. The transmitting section may include a transmitting processing section 1211 and an RF section 122. The reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 120 (transmission processing unit 1211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted. A baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmitting/receiving unit 120 (RF unit 122) may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 120 (RF section 122) may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmitting/receiving unit 120 (measuring unit 123) may perform measurements regarding the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal. The measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR) )) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured. The measurement results may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30, other base stations 10, etc., and transmits and receives user data (user plane data) for the user terminal 20, control plane It is also possible to acquire and transmit data.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 Note that the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
 なお、制御部110は、1つのコードワードのための物理上りリンク共有チャネルのためのベータオフセットに関する第1の設定情報(例えば、betaOffsets、scaling、UCI-OnPUSCH)と、2つのコードワードのための前記物理上りリンク共有チャネルのためのベータオフセットに関する第2の設定情報(例えば、betaOffsets-2codeword-r18、scaling-2codeword-r18、UCI-OnPUSCH-2codeword-r18)と、を生成してもよい。 Note that the control unit 110 provides first configuration information regarding beta offsets for the physical uplink shared channel for one codeword (for example, betaOffsets, scaling, UCI-OnPUSCH) and information for two codewords. Second configuration information regarding beta offsets for the physical uplink shared channel (eg, betaOffsets-2codeword-r18, scaling-2codeword-r18, UCI-OnPUSCH-2codeword-r18) may be generated.
 送受信部120は、前記第1の設定情報と、前記第2の設定情報と、をユーザ端末20に送信してもよい。 The transmitting/receiving unit 120 may transmit the first setting information and the second setting information to the user terminal 20.
(ユーザ端末)
 図12は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(user terminal)
FIG. 12 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. The user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, etc. The control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like. The control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223. The baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212. The transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section. The transmitting section may include a transmitting processing section 2211 and an RF section 222. The reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Note that whether or not to apply DFT processing may be based on the settings of transform precoding. When transform precoding is enabled for a certain channel (for example, PUSCH), the transmitting/receiving unit 220 (transmission processing unit 2211) performs the above processing in order to transmit the channel using the DFT-s-OFDM waveform. DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmitting/receiving unit 220 (RF unit 222) may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 220 (RF section 222) may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmitting/receiving unit 220 (measuring unit 223) may perform measurements regarding the received signal. For example, the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal. The measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement results may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 Note that the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
 なお、送受信部220は、1つのコードワードのための物理上りリンク共有チャネルのためのベータオフセットに関する第1の設定情報(例えば、betaOffsets、scaling、UCI-OnPUSCH)と、2つのコードワードのための前記物理上りリンク共有チャネルのためのベータオフセットに関する第2の設定情報(例えば、betaOffsets-2codeword-r18、scaling-2codeword-r18、UCI-OnPUSCH-2codeword-r18)と、を受信してもよい。 Note that the transmitting/receiving unit 220 transmits first configuration information regarding beta offsets for the physical uplink shared channel for one codeword (for example, betaOffsets, scaling, UCI-OnPUSCH) and information for two codewords. Second configuration information regarding beta offsets for the physical uplink shared channel (eg, betaOffsets-2codeword-r18, scaling-2codeword-r18, UCI-OnPUSCH-2codeword-r18) may be received.
 制御部210は、前記第2の設定情報に基づいて、前記2つのコードワードのための前記物理上りリンク共有チャネルの送信のためのベータオフセットを決定してもよい。 The control unit 210 may determine a beta offset for transmission on the physical uplink shared channel for the two codewords based on the second configuration information.
 前記物理上りリンク共有チャネルは、下りリンク制御情報(Downlink Control Information(DCI))フォーマット0_2以外のDCIフォーマットによってスケジュールされる物理上りリンク共有チャネルであってもよい。 The physical uplink shared channel may be a physical uplink shared channel scheduled according to a DCI format other than Downlink Control Information (DCI) format 0_2.
 前記物理上りリンク共有チャネルは、下りリンク制御情報(Downlink Control Information(DCI))フォーマット0_2によってスケジュールされる物理上りリンク共有チャネルであってもよい。 The physical uplink shared channel may be a physical uplink shared channel scheduled according to Downlink Control Information (DCI) format 0_2.
 前記物理上りリンク共有チャネルは、コンフィギュアドグラント物理上りリンク共有チャネルであってもよい。 The physical uplink shared channel may be a configured grant physical uplink shared channel.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
It should be noted that the block diagram used to explain the above embodiment shows blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 13 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. The base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in this disclosure, words such as apparatus, circuit, device, section, unit, etc. can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Also, the processing may be performed by one processor, or the processing may be performed by two or more processors simultaneously, sequentially, or using other techniques. Note that the processor 1001 may be implemented using one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, at least a portion of the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like. The memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include. For example, the above-described transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004. The transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modified example)
Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, channel, symbol and signal may be interchanged. Also, the signal may be a message. The reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard. Further, a component carrier (CC) may be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting a radio frame may be called a subframe. Furthermore, a subframe may be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame structure. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Additionally, an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier. Good too. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be configured within one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various names assigned to these various channels and information elements are not in any way exclusive designations. .
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Additionally, information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer. Information, signals, etc. may be input and output via multiple network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like. Further, MAC signaling may be notified using, for example, a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Further, notification of prescribed information (for example, notification of "X") is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (such as infrared, microwave, etc.) to , a server, or other remote source, these wired and/or wireless technologies are included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. "Network" may refer to devices (eg, base stations) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In this disclosure, "precoding", "precoder", "weight (precoding weight)", "quasi-co-location (QCL)", "Transmission Configuration Indication state (TCI state)", "space "spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", and "panel" are interchangeable. can be used.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "Base Station (BS)", "Wireless base station", "Fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel" , "cell," "sector," "cell group," "carrier," "component carrier," and the like may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)). The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" are used interchangeably. can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc. Note that at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。 The moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped. The mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon. Furthermore, the mobile object may be a mobile object that autonomously travels based on a travel command.
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 The moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 図14は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。 FIG. 14 is a diagram illustrating an example of a vehicle according to an embodiment. The vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60. Be prepared.
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。 The drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor. The steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。 The electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49. The electronic control section 49 may be called an electronic control unit (ECU).
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 The signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52. air pressure signals of the front wheels 46/rear wheels 47, a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor. 56, a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。 The information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。 The communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63. For example, the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40. Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。 The communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 60 may be located either inside or outside the electronic control unit 49. The external device may be, for example, the base station 10, user terminal 20, etc. described above. Further, the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication. The electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by the communication module 60 may include information based on the above input.
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。 The communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle. The information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。 The communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be replaced by a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have the functions that the base station 10 described above has. Further, words such as "uplink" and "downlink" may be replaced with words corresponding to inter-terminal communication (for example, "sidelink"). For example, uplink channels, downlink channels, etc. may be replaced with sidelink channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a base station. In this case, the base station 10 may have the functions that the user terminal 20 described above has.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this disclosure, the operations performed by the base station may be performed by its upper node in some cases. In a network that includes one or more network nodes having a base station, various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is an integer or decimal number, for example)), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New Radio Access (NX), Future Generation Radio Access (FX), Global System for Mobile Communications ), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802 .11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods. The present invention may be applied to systems to be used, next-generation systems expanded, modified, created, or defined based on these systems. Furthermore, a combination of multiple systems (for example, a combination of LTE or LTE-A and 5G) may be applied.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "judgment" can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be "determining."
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be "determining", such as accessing data in memory (eg, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment" is considered to mean "judging" resolving, selecting, choosing, establishing, comparing, etc. Good too. In other words, "judgment (decision)" may be considered to be "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Furthermore, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected", "coupled", or any variations thereof refer to any connection or coupling, direct or indirect, between two or more elements. can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access."
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be "connected" or "coupled" to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include", "including" and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising". It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is clear for those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the invention as determined based on the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and does not have any limiting meaning on the invention according to the present disclosure.

Claims (6)

  1.  1つのコードワードのための物理上りリンク共有チャネルのためのベータオフセットに関する第1の設定情報と、2つのコードワードのための前記物理上りリンク共有チャネルのためのベータオフセットに関する第2の設定情報と、を受信する受信部と、
     前記第2の設定情報に基づいて、前記2つのコードワードのための前記物理上りリンク共有チャネルの送信のためのベータオフセットを決定する制御部と、を有する端末。
    first configuration information regarding a beta offset for a physical uplink shared channel for one codeword; and second configuration information regarding a beta offset for the physical uplink shared channel for two codewords. a receiving unit that receives ,
    a control unit that determines a beta offset for transmission of the physical uplink shared channel for the two codewords based on the second configuration information.
  2.  前記物理上りリンク共有チャネルは、下りリンク制御情報(Downlink Control Information(DCI))フォーマット0_2以外のDCIフォーマットによってスケジュールされる物理上りリンク共有チャネルである請求項1に記載の端末。 The terminal according to claim 1, wherein the physical uplink shared channel is a physical uplink shared channel scheduled by a DCI format other than Downlink Control Information (DCI) format 0_2.
  3.  前記物理上りリンク共有チャネルは、下りリンク制御情報(Downlink Control Information(DCI))フォーマット0_2によってスケジュールされる物理上りリンク共有チャネルである請求項1に記載の端末。 The terminal according to claim 1, wherein the physical uplink shared channel is a physical uplink shared channel scheduled according to Downlink Control Information (DCI) format 0_2.
  4.  前記物理上りリンク共有チャネルは、コンフィギュアドグラント物理上りリンク共有チャネルである請求項1に記載の端末。 The terminal according to claim 1, wherein the physical uplink shared channel is a configured grant physical uplink shared channel.
  5.  1つのコードワードのための物理上りリンク共有チャネルのためのベータオフセットに関する第1の設定情報と、2つのコードワードのための前記物理上りリンク共有チャネルのためのベータオフセットに関する第2の設定情報と、を受信するステップと、
     前記第2の設定情報に基づいて、前記2つのコードワードのための前記物理上りリンク共有チャネルの送信のためのベータオフセットを決定するステップと、を有する端末の無線通信方法。
    first configuration information regarding a beta offset for a physical uplink shared channel for one codeword; and second configuration information regarding a beta offset for the physical uplink shared channel for two codewords. , a step of receiving ,
    determining a beta offset for transmission on the physical uplink shared channel for the two codewords based on the second configuration information.
  6.  1つのコードワードのための物理上りリンク共有チャネルのためのベータオフセットに関する第1の設定情報と、2つのコードワードのための前記物理上りリンク共有チャネルのためのベータオフセットに関する第2の設定情報と、を生成する制御部と、
     前記第1の設定情報と、前記第2の設定情報と、を送信する送信部と、を有する基地局。
    first configuration information regarding a beta offset for a physical uplink shared channel for one codeword; and second configuration information regarding a beta offset for the physical uplink shared channel for two codewords. a control unit that generates ,
    A base station comprising: a transmitter that transmits the first configuration information and the second configuration information.
PCT/JP2022/011983 2022-03-16 2022-03-16 Terminal, wireless communication method, and base station WO2023175786A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/011983 WO2023175786A1 (en) 2022-03-16 2022-03-16 Terminal, wireless communication method, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/011983 WO2023175786A1 (en) 2022-03-16 2022-03-16 Terminal, wireless communication method, and base station

Publications (1)

Publication Number Publication Date
WO2023175786A1 true WO2023175786A1 (en) 2023-09-21

Family

ID=88022607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011983 WO2023175786A1 (en) 2022-03-16 2022-03-16 Terminal, wireless communication method, and base station

Country Status (1)

Country Link
WO (1) WO2023175786A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020506602A (en) * 2017-02-03 2020-02-27 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Dynamic MCS offset for short TTI
JP2020167568A (en) * 2019-03-29 2020-10-08 シャープ株式会社 Base station device, terminal device and communication method
WO2021090409A1 (en) * 2019-11-06 2021-05-14 株式会社Nttドコモ Terminal and wireless communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020506602A (en) * 2017-02-03 2020-02-27 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Dynamic MCS offset for short TTI
JP2020167568A (en) * 2019-03-29 2020-10-08 シャープ株式会社 Base station device, terminal device and communication method
WO2021090409A1 (en) * 2019-11-06 2021-05-14 株式会社Nttドコモ Terminal and wireless communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Introduction of CPA and inter-SN CPC", 3GPP DRAFT; R2-2204004, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20220221 - 20220303, 1 March 2022 (2022-03-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052118960 *

Similar Documents

Publication Publication Date Title
WO2023170826A1 (en) Terminal, wireless communication method, and base station
WO2023170827A1 (en) Terminal, wireless communication method, and base station
WO2023175786A1 (en) Terminal, wireless communication method, and base station
WO2023073908A1 (en) Terminal, wireless communication method, and base station
WO2023209992A1 (en) Terminal, radio communication method, and base station
WO2024029029A1 (en) Terminal, wireless communication method, and base station
WO2024029030A1 (en) Terminal, wireless communication method, and base station
WO2023203713A1 (en) Terminal, wireless communication method, and base station
WO2024043179A1 (en) Terminal, wireless communication method, and base station
WO2023063233A1 (en) Terminal, wireless communication method and base station
WO2023085354A1 (en) Terminal, wireless communication method, and base station
WO2023136055A1 (en) Terminal, radio communication method, and base station
WO2023162435A1 (en) Terminal, radio communication method, and base station
WO2024009476A1 (en) Terminal, radio communication method, and base station
WO2023148871A1 (en) Terminal, wireless communication method, and base station
WO2023085352A1 (en) Terminal, wireless communication method, and base station
WO2023053390A1 (en) Terminal, wireless communication method, and base station
WO2023090341A1 (en) Terminal, radio communication method, and base station
WO2023037450A1 (en) Terminal, wireless communication method, and base station
WO2023152903A1 (en) Terminal, wireless communication method, and base station
WO2023063232A1 (en) Terminal, wireless communication method, and base station
WO2023152902A1 (en) Terminal, wireless communication method, and base station
WO2023079711A1 (en) Terminal, wireless communication method, and base station
WO2023152905A1 (en) Terminal, wireless communication method, and base station
WO2023162726A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932065

Country of ref document: EP

Kind code of ref document: A1