WO2023175770A1 - エアロゾル生成装置の電源ユニット及びその制御方法 - Google Patents

エアロゾル生成装置の電源ユニット及びその制御方法 Download PDF

Info

Publication number
WO2023175770A1
WO2023175770A1 PCT/JP2022/011910 JP2022011910W WO2023175770A1 WO 2023175770 A1 WO2023175770 A1 WO 2023175770A1 JP 2022011910 W JP2022011910 W JP 2022011910W WO 2023175770 A1 WO2023175770 A1 WO 2023175770A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
power supply
power
circuit
supply unit
Prior art date
Application number
PCT/JP2022/011910
Other languages
English (en)
French (fr)
Inventor
拓嗣 川中子
健太郎 山田
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to JP2024507293A priority Critical patent/JPWO2023175770A1/ja
Priority to PCT/JP2022/011910 priority patent/WO2023175770A1/ja
Publication of WO2023175770A1 publication Critical patent/WO2023175770A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection

Definitions

  • the present invention relates to a power supply unit of an aerosol generation device and a control method thereof.
  • Patent Document 1 discloses an aerosol generation system that includes a heating element for heating an aerosol forming substrate, a power source for supplying power to the heating element, and an electric circuit communicating with the heating element and the power source. There is.
  • the electrical circuitry responds to user input to adjust the power delivery to the heating element during a plurality of separate heating cycles, determines the maximum electrical resistance of the heating element during each heating cycle, and determines the maximum electrical resistance of the heating element during each heating cycle. Calculate the moving average value of the maximum electrical resistance of the heating element during the cycle, compare the electrical resistance of the heating element with the calculated moving average value, and determine a failure when the electrical resistance is greater than the moving average value by more than a threshold value.
  • the power supplied to the heating element is controlled based on whether there is a problem with the heating element.
  • Patent Document 2 describes an aerosol generation system that includes an electric heater including a heating element for heating an aerosol-forming substrate, a power source, and an electric circuit connected to the electric heater and the power source. This electrical circuit determines a harmful condition when the ratio of the electrical heater's initial electrical resistance and the change in electrical resistance from the initial electrical resistance is greater than a maximum threshold, and if a harmful condition exists, the electrical heater The power supplied is limited.
  • a processor that controls power supply to a heating element for heating an aerosol forming substrate controls the temperature of the heating element or the aerosol heated by the heating element.
  • Techniques are known that limit the power supply to the heating element when the temperature of the formation substrate is high.
  • the processor there is a possibility that the power supply to the heating element cannot be restricted.
  • An object of the present invention is to provide a power supply unit for an aerosol generation device with improved safety and a control method thereof.
  • a power supply unit of an aerosol generation device includes: a power supply; a first control that supplies first power from the power supply to a heating element that heats an aerosol source and/or a flavor source; a processor that performs second control to supply second power to the heating element; an output element that performs an output according to a voltage applied to the heating element; and a processor that supplies second power from the power source to the heating element.
  • a protection circuit that limits the supply of the protection circuit; and when only the second control of the first control and the second control is performed and the voltage of the output element exceeds a first threshold; and a control circuit that operates the circuit.
  • a method for controlling a power supply unit of an aerosol generation device includes first control for supplying first power from a power source to a heating element that heats an aerosol source and/or a flavor source; a processor that performs second control to supply second power to the heating element; a protection circuit that limits supply of power from the power supply to the heating element; an output element that performs an output, wherein only the second control of the first control and the second control is performed; The protection circuit is activated when the voltage of the element exceeds a first threshold value.
  • FIG. 1 is a schematic diagram schematically showing a configuration example of an aerosol generation device.
  • 2 is a diagram showing a specific example of an electronic circuit 10 involved in heating a base material portion in the power supply unit 110 shown in FIG. 1.
  • FIG. It is a timing chart for explaining the operation of the MCU 11 in the aerosol generation mode.
  • 3 is a diagram showing an example of a protection circuit 30.
  • FIG. It is a figure showing an example of a heating profile.
  • 3 is a diagram showing an electronic circuit 10A that is a modification of the electronic circuit 10 shown in FIG. 2.
  • FIG. It is a timing chart for explaining operation of MCU11 in a second modification.
  • 3 is a diagram showing an electronic circuit 10B that is a modification of the electronic circuit 10 shown in FIG. 2.
  • FIG. 1 is a schematic diagram schematically showing a configuration example of an aerosol generation device.
  • 2 is a diagram showing a specific example of an electronic circuit 10 involved in heating a base material portion in the power supply unit 110 shown
  • the aerosol generating device of the embodiment is a device that atomizes an aerosol source contained in an attached aerosol forming body to generate an aerosol by consuming electric power, and makes it possible to inhale the generated aerosol.
  • an aerosol generation device there are various configurations of the aerosol generation device and are not particularly limited, a typical configuration example of the aerosol generation device will be described below with reference to FIG. 1.
  • FIG. 1 is a schematic diagram schematically showing a configuration example of an aerosol generation device.
  • the power supply unit 111A stores power.
  • the power supply unit 111A supplies power to each component of the aerosol generation device 100A under the control of the control unit 116A.
  • the power supply unit 111A may be configured with a rechargeable battery such as a lithium ion secondary battery, for example.
  • the sensor unit 112A acquires various information regarding the aerosol generation device 100A.
  • the sensor unit 112A includes a suction sensor including a pressure sensor such as a condenser microphone, a flow rate sensor, a temperature sensor, etc., and acquires a value associated with suction by the user.
  • the sensor unit 112A is configured by an input device such as a button or a switch that receives information input from the user.
  • the notification unit 113A notifies the user of information.
  • the notification unit 113A includes, for example, a light emitting device that emits light, a display device that displays an image, a sound output device that outputs sound, a vibration device that vibrates, or the like.
  • the storage unit 114A stores various information for the operation of the aerosol generation device 100A.
  • the storage unit 114A is composed of, for example, a nonvolatile storage medium such as a flash memory.
  • the communication unit 115A is a communication interface that can perform communication compliant with any wired or wireless communication standard.
  • a communication standard for example, Wi-Fi (registered trademark) or Bluetooth (registered trademark) may be adopted.
  • the control unit 116A controls overall operations within the aerosol generation device 100A according to various programs.
  • the control unit 116A is realized by an electronic circuit including a processor such as a CPU (Central Processing Unit) or an MCU (Micro Controller Unit).
  • a processor such as a CPU (Central Processing Unit) or an MCU (Micro Controller Unit).
  • the holding part 140 has an internal space 141 and holds the stick-type base material 150 while accommodating a part of the stick-type base material 150 in the internal space 141.
  • the holding part 140 has an opening 142 that communicates the internal space 141 with the outside, and holds the stick-shaped base material 150 inserted into the internal space 141 through the opening 142.
  • the holding part 140 is a cylindrical body having an opening 142 and a bottom part 143 as the bottom surface, and defines a columnar internal space 141.
  • the holding part 140 also has the function of defining a flow path for air to be supplied to the stick-type base material 150.
  • An air inlet hole which is an entrance of air to the flow path, is arranged, for example, at the bottom portion 143.
  • the air outlet hole which is the outlet of the air from the flow path, is the opening 142.
  • the stick-type base material 150 includes a base material part 151 and a mouthpiece part 152.
  • Base portion 151 includes an aerosol source. Aerosols are generated by atomizing the aerosol source. Aerosol sources are, for example, polyhydric alcohols such as glycerin and propylene glycol, or liquids such as water. Note that in this configuration example, the aerosol source is not limited to a liquid, and may be a solid.
  • the base portion 151 may further include a flavor source.
  • a flavor source is a component for imparting a flavor component to an aerosol. Flavor sources include flavor components derived from tobacco or non-tobacco (derived from additives such as menthol or flavoring agents).
  • the heating section 121A is a sheet-shaped heater, and is arranged to cover the outer periphery of the holding section 140.
  • the heating part 121A When the heating part 121A generates heat, the base material part 151 of the stick-type base material 150 is heated from the outer periphery, and an aerosol is generated.
  • the sheet-shaped heater described above constitutes a heating element for heating the aerosol source (or the flavor source if the base portion 151 includes a flavor source) included in the base portion 151.
  • the heat insulating section 144 prevents heat transfer from the heating section 121A to other components.
  • the heat insulating section 144 is made of a vacuum heat insulating material, an airgel heat insulating material, or the like.
  • the configuration example of the aerosol generation device 100A has been described above.
  • the configuration of the aerosol generation device 100A is not limited to the above, and may take various configurations as exemplified below.
  • the heating unit 121A may be configured by a blade-shaped heater, and may be arranged to protrude from the bottom 143 of the holding unit 140 into the internal space 141. In that case, the heating unit 121A is inserted into the base portion 151 of the stick-type base material 150 and heats the base portion 151 of the stick-type base material 150 from inside.
  • a sheet-shaped heater constituting the heating section 121A may be arranged to cover the bottom 143 of the holding section 140.
  • the heating section 121A is a combination of two or more of a first heating section that covers the outer periphery of the holding section 140, a blade-shaped second heating section, and a third heating section that covers the bottom 143 of the holding section 140. It may be configured as
  • the holding part 140 may include an opening/closing mechanism such as a hinge that opens and closes a part of the outer shell that forms the internal space 141.
  • the holding part 140 may hold the stick-shaped base material 150 inserted into the internal space 141 by opening and closing the outer shell.
  • the heating section 121A may be provided at the relevant clamping location in the holding section 140, and may heat the stick-shaped base material 150 while pressing it.
  • the means for heating the base material part 151 is not limited to direct heating by the heating part 121A.
  • the base material portion 151 may be heated by induction heating.
  • the heating section 121A may be a reactor (coil), and the susceptor may be housed inside the base section 151. With this configuration, the susceptor can be heated by induction heating by supplying power to the reactor, and the base material portion 151 can be heated. In this case, the reactor constitutes the heating element.
  • the aerosol generation device 100A can accommodate a container filled with an aerosol source and a flavor source, or only an aerosol source, in the internal space 141 instead of the stick-type base material 150, and the heating unit 121A heats the container. It may be something.
  • the aerosol generation device 100A also includes a first container that accommodates a liquid aerosol source and a heating unit (heater) that heats the aerosol source, and an aerosol generated by heating the aerosol source in the first container.
  • a second container that can be placed on a path that can be passed through and that houses a flavor source is configured to be detachable from the power supply unit 110, and the control section 116A controls the power supply to the heating section of the first container to generate the flavor.
  • the applied aerosol may also be generated.
  • the power supply unit 110 is further provided with a heating section that heats the second container, and the control section 116A controls power supply to the heating section that heats the second container to heat the flavor source. You can also do this.
  • FIG. 2 is a diagram showing a specific example of the electronic circuit 10 involved in heating the base member 151 in the power supply unit 110 (hereinafter also simply referred to as a power supply unit) shown in FIG.
  • the electronic circuit 10 includes a battery 12 which is an example of a power supply section 111A, an MCU 11 which is an example of a control section 116A, an LDO (Low Drop Out) regulator 14, a suction sensor 15 which is an example of a sensor section 112A, and a switch.
  • SW1a, switch SW1b, switch SW2, switch SW3, operational amplifier 16, resistance element Rs, comparator 17, comparator 18, comparator 21, resistance element 22, capacitor 23, resistance element 24, and A monitoring circuit 20 including a switch SW4 and a protection circuit 30 are provided.
  • the MCU 11 includes an analog-to-digital converter (hereinafter referred to as ADC) 50b and a memory 50a that stores various information.
  • ADC analog-to-digital converter
  • the switch SW1a or the switch SW1b will also be collectively referred to as the switch SW1.
  • the resistance element described in this specification may be any element having a fixed electrical resistance value, such as a resistor, diode, or transistor.
  • the resistance element Rs, the resistance element 22, and the resistance element 24 are each resistors.
  • the heater 40 is a resistor.
  • the switch described in this specification is a semiconductor switching element such as a transistor that switches between disconnection and conduction of a wiring path, or a load switch configured by combining a capacitor, a resistor, a transistor, etc.
  • the state in which the switch conducts between the input and output is described as an on state, and the state in which the switch disconnects between the input and output is described as an off state.
  • the input terminal of the LDO regulator 14 and one end of the switch SW1a are connected to the main positive bus LU connected to the positive electrode of the battery 12.
  • LDO regulator 14 steps down the voltage from battery 12 and outputs it.
  • the output voltage Vs of the LDO regulator 14 is also used as the operating voltage of each of the MCU 11 , the operational amplifier 16 , the comparator 17 , the comparator 18 , and the comparator 21 of the monitoring circuit 20 .
  • the MCU 11 is connected to the LDO regulator 14 and the main negative bus LD connected to the negative electrode of the battery 12.
  • the MCU 11 is also connected to each of the switches SW1 to SW4, and performs on/off control of these switches.
  • the MCU 11 is also connected to an enable terminal of the operational amplifier 16 and controls the operational amplifier 16.
  • the MCU11 inputs the control signal SIG1 to the control terminal of the switch SW1.
  • the switch SW1 is in a conductive state
  • the switch SW1 is in a cutoff state.
  • the MCU11 inputs the control signal SIG2 to the control terminal of the switch SW2.
  • the switch SW2 is in a conductive state
  • the switch SW2 is in a cutoff state.
  • the MCU 11 inputs a control signal SIG3 to each of the control terminal of the switch SW3 and the enable terminal of the operational amplifier 16.
  • a control signal SIG3 to each of the control terminal of the switch SW3 and the enable terminal of the operational amplifier 16.
  • the switch SW3 is in a conductive state
  • the control signal SIG3 is at a low level
  • the switch SW3 is in a cutoff state.
  • the operational amplifier 16 operates (outputs based on the input voltage), and when the control signal SIG3 is at a low level, the operational amplifier 16 stops outputting.
  • the MCU11 inputs the control signal SIG4 to the control terminal of the switch SW4.
  • the switch SW4 is in a conductive state
  • the switch SW4 is in a cutoff state.
  • a series circuit composed of the heater 40 and the switch SW2 is connected between the other end of the switch SW1a and the main negative bus LD.
  • One end of the switch SW1b is connected to a power line to which the output voltage Vs is supplied.
  • An RC series circuit composed of a resistance element 22 and a capacitor 23 is connected between the other end of the switch SW1b and the main negative bus LD. Note that this RC series circuit may be any circuit that can set a time constant, and is not limited to the configuration shown in FIG. 2. For example, a constant current circuit may be provided in place of the resistance element 22.
  • the other end of the switch SW1a is connected to one end of the heater 40.
  • the other end of the heater 40 is connected to the main negative bus LD via a switch SW2.
  • the other end of the switch SW1b is connected to one end of the resistance element 22.
  • the other end of the resistance element 22 is connected to the main negative bus LD via a capacitor 23.
  • One end of the resistance element Rs is connected to the node N1 that connects the switch SW1a and the heater 40.
  • the other end of the resistance element Rs is connected to one end of the switch SW3.
  • the other end of the switch SW3 is connected to a power line to which the output voltage Vs is supplied.
  • a non-inverting input terminal of the operational amplifier 16 is connected to a node N2 that connects the node N1 and the heater 40.
  • the inverting input terminal of the operational amplifier 16 is connected to a node connecting the heater 40 and the switch SW2.
  • the operational amplifier 16 is a differential amplifier that amplifies the voltage across the heater 40 and outputs the amplified voltage.
  • the output terminal of the operational amplifier 16 is connected to the ADC 50b built in the MCU 11 and the first input terminal of the comparator 17.
  • a circuit that generates a voltage value of the threshold value TH1 is connected to the second input terminal of the comparator 17, and the threshold value TH1 is inputted from this circuit.
  • the comparator 17 outputs a high-level or low-level high temperature detection signal when the voltage value input to the first input terminal exceeds the threshold value TH1.
  • the threshold value TH1 may be generated by dividing the output voltage Vs by resistance. In this case, together with the output voltage of the operational amplifier 16, that is, the voltage value input to the first input terminal of the comparator 17, the threshold TH1 also follows the fluctuations in the output voltage Vs, canceling the fluctuations in the output voltage Vs. Effects can be obtained. More specifically, since the output voltage Vs is input to the operational amplifier 16 after being divided by a resistor, when the output voltage Vs fluctuates, the output voltage of the operational amplifier 16, that is, the voltage input to the first input terminal of the comparator 17 increases. The value also fluctuates.
  • the threshold TH1 is also generated by dividing the output voltage Vs with resistance, the threshold TH1 will also change as the output voltage Vs changes, so the voltage input to either the first input terminal or the second input terminal of the comparator 17 will vary.
  • the value can also be set to follow fluctuations in the output voltage Vs.
  • One end of the resistance element 24 is connected to a node connecting the resistance element 22 and the capacitor 23 in the monitoring circuit 20.
  • the other end of the resistance element 24 is connected to the main negative bus LD via a switch SW4.
  • a first input terminal of the comparator 21 is further connected to the node connecting the resistive element 22 and the capacitor 23.
  • a circuit that generates a voltage value of the threshold value TH2 is connected to the second input terminal of the comparator 21, and the threshold value TH2 is inputted from this circuit.
  • the comparator 21 outputs a high-level or low-level abnormality detection signal when the voltage value input to the first input terminal exceeds the threshold value TH2.
  • the threshold value TH2 may be generated by dividing the output voltage Vs by resistance.
  • the threshold value TH2 also follows the fluctuations in the output voltage Vs, resulting in the effect of canceling the fluctuations in the output voltage Vs. More specifically, since the output voltage Vs is resistance-divided and inputted to the operational amplifier 16, when the output voltage Vs fluctuates, the voltage value input to the first input terminal of the comparator 21 also fluctuates. If the threshold value TH2 is also generated by dividing the output voltage Vs with resistance, the threshold value TH2 will also change as the output voltage Vs changes, so the voltage input to either the first input terminal or the second input terminal of the comparator 21 will vary. The value can also be set to follow fluctuations in the output voltage Vs.
  • the output terminal of the comparator 17 is connected to the first input terminal of the comparator 18.
  • the output terminal of the comparator 21 is connected to the second input terminal of the comparator 18 .
  • the output terminal of the comparator 18 is connected to the protection circuit 30.
  • the comparator 18 outputs a high-level or low-level protection start signal for activating the protection circuit 30 when at least one of the abnormality detection signal and the high temperature detection signal is input.
  • the comparator 18 may be composed of, for example, an OR circuit. Further, the comparator 18 may have a configuration in which the outputs of the comparator 17 and the comparator 21 are respectively open drain outputs, and the outputs are connected by wired OR.
  • the protection circuit 30 is a circuit for suppressing or stopping power being supplied to the heater 40, and various configurations can be adopted.
  • the protection circuit 30 is a circuit for forcibly turning off the switch SW2 or the switch SW1a, regardless of control from the MCU 11, or a circuit for cutting off the power supply from the battery 12 to the switch SW1a. (For example, when a booster circuit is provided between the switch SW1a and the battery 12, a circuit that stops the output of this booster circuit) etc.
  • the MCU 11 When the MCU 11 shifts to an aerosol generation mode, which is an operation mode for generating aerosol, by a user operation or the like, it controls supplying power from the battery 12 to the heater 40.
  • the above-mentioned control includes heating control, which is control for supplying electric power to the heater 40 to heat the heater 40 (in other words, the base material part 151), and measurement of the temperature of the heater 40 (in other words, the base material part 151).
  • measurement control which is control for supplying power to the heater 40 in order to perform the measurement.
  • FIG. 3 is a timing chart for explaining the operation of the MCU 11 in the aerosol generation mode.
  • FIG. 3 shows time changes in the control signal SIG3 of the switch SW3, the control signal SIG1 of the switch SW1, the control signal SIG4 of the switch SW4, and the voltage of the capacitor 23.
  • FIG. 3 shows a heating period TH during which heating control is performed, a measurement period TD during which measurement control is performed, and a control cycle TC of the MCU 11.
  • the heating period TH and the measurement period TD each have a predetermined length, and in the example of FIG.
  • the start timings match, and the end timings of the heating period TH and the control period TC match.
  • the heating control is a control in which the switch SW3 is turned off and the switch SW1 is turned on for a variable period of time during the heating period TH.
  • the MCU 11 performs PWM (pulse width modulation) control to control the ratio (DUTY ratio) of the above variable time to the length of the heating period TH.
  • the DUTY ratio is varied between 0% and 100%, for example.
  • FIG. 3 shows an example where the DUTY ratio is 100%.
  • the control cycle TC is the cycle of supplying heating power to the heater 40.
  • the output voltage Vs is supplied to the RC series circuit consisting of the resistive element 22 and the capacitor 23.
  • the MCU 11 controls the switch SW4 to be in the OFF state during the heating period TH. Therefore, during the heating period TH, the capacitor 23 is charged with the output voltage Vs. It should be noted that the amount of electric charge charged to the capacitor 23 during one heating period TH increases as the DUTY ratio increases (as the time for applying the heating voltage to the heater 40 increases).
  • Measurement control operates the operational amplifier 16 during the measurement period TD, turns the switch SW1 off, turns the switch SW3 on, and supplies the measurement power (output voltage Vs) lower than the heating power to the resistance element. This is control to supply Rs and the heater 40.
  • the voltage applied to the heater 40 by this measurement control is referred to as a measurement voltage. Since the electrical resistance value of the resistance element Rs is sufficiently larger than the electrical resistance value of the heater 40, the measurement voltage is sufficiently smaller than the heating voltage.
  • the MCU 11 also executes discharge control to turn on the switch SW4. Since this discharge control is executed every time the control period TC starts, it can be said that it is executed at a timing based on the control period TC. Further, since this discharge control is executed every time the heating period TH ends, it can also be said that it is executed at a timing synchronized with the end timing of the heating period TH. When two timings are synchronized, it means that the difference between the two timings is less than a threshold value (ideally 0). This includes cases where this occurs at two timings.
  • a threshold value ideally 0
  • the measurement power from the LDO regulator 14 is supplied to the voltage dividing circuit consisting of the resistance element Rs and the heater 40.
  • the electrical resistance value of the resistance element Rs is set to a value that is sufficiently larger than the electrical resistance value of the heater 40. Therefore, a minute current can be passed through the heater 40 while measurement control is being performed.
  • the operational amplifier 16 outputs a voltage corresponding to the voltage applied to the heater 40.
  • the output voltage of the operational amplifier 16 increases as the electric resistance value of the heater 40 increases.
  • the heater 40 has PTC characteristics (Positive-Temperature-Coefficient). Therefore, the higher the temperature of the heater 40 (in other words, the temperature of the aerosol source), the higher the output voltage of the operational amplifier 16 becomes.
  • the MCU 11 obtains the output value of the ADC 50b, and obtains the temperature of the heater 40 based on this output value.
  • the MCU 11 adjusts the above-mentioned DUTY ratio based on the obtained temperature of the heater 40.
  • the switch SW4 is turned on by discharge control. Therefore, the voltage charged in the capacitor 23 during the heating period TH immediately before the measurement period TD is discharged by the discharge control performed during the measurement period TD.
  • the time constant of the RC series circuit composed of the resistive element 22 and the capacitor 23 is the maximum voltage that can be charged to the capacitor 23 by one heating control (voltage that can be charged when the DUTY ratio is 100%, in Figure 3). All of the voltage values V1) are set to values that allow discharge during the measurement period TD.
  • the voltage of the capacitor 23 repeatedly increases from an initial value (for example, 0V) by heating control, and then is discharged and returns to the initial value by subsequent discharge control. That is, as long as the MCU 11 appropriately executes the discharge control, the voltage of the capacitor 23 does not exceed the maximum voltage (voltage value V1).
  • the monitoring circuit 20 determines whether the voltage of the capacitor 23 is at a value that cannot be reached when the MCU 11 is operating normally, and if it is in such a state, the protection circuit 30 is activated. provided for operation.
  • the comparator 21 of the monitoring circuit 20 compares the voltage of the capacitor 23 with a threshold value TH2, and outputs an abnormality detection signal when the voltage of the capacitor 23 exceeds the threshold value TH2.
  • the threshold value TH2 is set to a value larger than the maximum voltage (voltage value V1).
  • the threshold value TH2 may be generated by dividing the output voltage Vs by resistance. In this case, together with the voltage value input to the first input terminal of the comparator 21, the threshold value TH2 also follows the fluctuations in the output voltage Vs, resulting in the effect of canceling the fluctuations in the output voltage Vs.
  • the output voltage Vs is resistance-divided and inputted to the operational amplifier 16, when the output voltage Vs fluctuates, the voltage value input to the first input terminal of the comparator 21 also fluctuates. If the threshold value TH2 is also generated by dividing the output voltage Vs with resistance, the threshold value TH2 will also change as the output voltage Vs changes, so the voltage input to either the first input terminal or the second input terminal of the comparator 21 will vary. The value can also be set to follow fluctuations in the output voltage Vs.
  • the voltage of the capacitor 23 becomes larger than the voltage value V1.
  • the discharge control that is supposed to be executed during the measurement period TD starting at time ta for example, is not executed.
  • the voltage of the capacitor 23 continues to rise, exceeding the voltage value V1 and exceeding the threshold value TH2. .
  • the comparator 21 outputs an abnormality detection signal.
  • FIG. 4 is a diagram showing an example of the protection circuit 30.
  • FIG. 4 shows a resistance element 32 connected to the MCU 11, an N-channel MOSFET which is an example of the switch SW2, a resistance element 33 connected to the gate and source of the N-channel MOSFET, and a resistance element 33 connected to the comparator 18.
  • a resistive element 31 is shown.
  • the resistance element 32 is connected to the MCU 11, and the other end of the resistance element 32 is connected to the gate of the N-channel MOSFET.
  • the drain of the N-channel MOSFET is connected to the heater 40, and the source of the N-channel MOSFET is connected to the ground (main negative bus LD).
  • the other end of the resistance element 31 is connected to a node N3 that connects the gate of the N-channel MOSFET and the resistance element 32.
  • One end of the resistive element 31 is connected to the output terminal of the comparator 18.
  • a node connecting the node N3 and the gate of the N-channel MOSFET is connected to the ground (main negative bus LD) via the resistance element 33.
  • the protection circuit 30 includes a portion from the comparator 18 to the node N3 and a resistive element 32.
  • the resistance element 32 is a resistor that limits the current value flowing from the MCU 11 to the comparator 18, and also serves as a gate resistance of the N-channel MOSFET.
  • the resistance element 31 is a resistor that limits the value of current flowing from the gate of the N-channel MOSFET to the comparator 18.
  • the resistance element 33 is a resistor for fixing the gate potential of the N-channel MOSFET. In the example shown in FIG. 4, when a low-level protection start signal is output from the comparator 18, the gate potential of the N-channel MOSFET becomes low level, and the switch SW2 is turned off. As a result, power supply to the heater 40 becomes impossible, and heating of the heater 40 is stopped.
  • the position of the resistive element 31 may be changed between the node N3 and the node connecting the resistive element 33 and the gate of the N-channel MOSFET.
  • the resistance element 32 and the resistance element 31 may be combined into one resistance element, and this resistance element may be placed at the position of the resistance element 31.
  • the MCU 11 controls the supply of heating power to the heater 40 in accordance with a heating profile that defines the temperature transition of the heater 40 (in the case of induction heating, a susceptor that is induction heated by a reactor corresponding to the heater 40).
  • FIG. 5 is a diagram showing an example of a heating profile.
  • the horizontal axis in the figure indicates the elapsed time after shifting to the aerosol generation mode, and the vertical axis in the figure indicates the temperature of the heater 40.
  • the heating profile shown in FIG. 5 includes a temperature increase period T1 in which the temperature of the heater 40 is increased to the target temperature TP1, a temperature maintenance period T2 in which the temperature of the heater 40 is determined to be maintained at the target temperature TP1, A cooling period T3 is defined to lower the temperature of the heater 40 to the target temperature TP3, a temperature maintenance period T4 is defined to maintain the temperature of the heater 40 at the target temperature TP3, and a temperature maintenance period T4 is defined to lower the temperature of the heater 40 to the target temperature TP2.
  • a temperature increase period T5 in which it is determined to increase the temperature
  • a temperature maintenance period T6 in which it is determined to maintain the temperature of the heater 40 at the target temperature TP2
  • a cooling period T7 in which it is determined to stop heating the heater 40. configured.
  • the target temperature TP1 is larger than the target temperature TP2, and the target temperature TP2 is larger than the target temperature TP3.
  • the slope of the temperature transition of the heater 40 during the temperature increase period T1 is larger than the slope of the temperature transition of the heater 40 during the temperature increase period T5, and is the largest among all the periods forming the heating profile.
  • the heating profile has a first period (temperature rise period T1, T5) in which the slope of the temperature transition of the heater 40 is greater than the slope threshold value (for example, 0), and a period in which the slope of the temperature transition of the heater 40 is less than or equal to the slope threshold value. It includes a second period (temperature maintenance period T2, T4, T6).
  • the MCU 11 When the MCU 11 shifts to the aerosol generation mode, the MCU 11 repeatedly executes a set of measurement control, heating control, and discharge control so that the temperature of the heater 40 converges to the target temperature TP1 over the temperature increase period T1. Next, the MCU 11 repeatedly executes a set of measurement control, heating control, and discharge control so that the temperature of the heater 40 is maintained at the target temperature TP1 during the temperature maintenance period T2. Next, the MCU 11 executes only the measurement control and the discharge control of the measurement control, heating control, and discharge control until the temperature of the heater 40 falls to the target temperature TP3, and then stops the heating control.
  • the MCU 11 repeatedly executes a set of measurement control, heating control, and discharge control so that the temperature of the heater 40 is maintained at the target temperature TP3 during the temperature maintenance period T4.
  • the MCU 11 repeatedly executes a set of measurement control, heating control, and discharge control so that the temperature of the heater 40 converges to the target temperature TP2 over the temperature increase period T5.
  • the MCU 11 repeatedly executes a set of measurement control, heating control, and discharge control so that the temperature of the heater 40 is maintained at the target temperature TP2.
  • the MCU 11 ends the measurement control, heating control, and discharge control, and lowers the temperature of the heater 40.
  • periods in which control is performed according to different setting conditions of temperature increase period T1, temperature maintenance period T2, temperature maintenance period T4, temperature increase period T5, and temperature maintenance period T6 are referred to as period S1 and period S2. , period S4, period S5, and period S6.
  • the period during which suction by the user is recommended is from the start of period S2 to the end of period S7.
  • the cooling period T3 power supply to the heater 40 is stopped. Alternatively, only measurement control and discharge control may be performed during this period. Therefore, it should be noted that the voltage of the capacitor 23 is at the initial value at the start of the period S4. Note that when stopping power supply to the heater 40, the temperature of the heater 40 may be measured by a thermistor (not shown) installed near the heater 40.
  • the voltage of the capacitor 23 charged by one supply of heating power to the heater 40 is completely discharged by one discharge control by the MCU 11. I have to. Therefore, a state in which the MCU 11 is not performing discharge control (a state in which an abnormality has occurred in the MCU 11) can be determined based on the magnitude of the voltage of the capacitor 23.
  • the protection circuit 30 limits the supply of heating power to the heater 40 when the voltage of the capacitor 23 is higher than the threshold value TH2, so that even if an abnormality occurs in the MCU 11, the power supply to the heater 40 is appropriately controlled. can be restricted to increase the safety of the power supply unit.
  • the operational amplifier 16 when heating control is performed, the operational amplifier 16 stops outputting, so the high temperature detection signal is not output from the comparator 17.
  • a large amount of heating power can be supplied to the heater 40, so if the operational amplifier 16 is operating, the output of the operational amplifier 16 tends to become large. If the operational amplifier 16 is operating during heating control, this large output of the operational amplifier 16 may be input to the comparator 17, and a high temperature detection signal may be output from the comparator 17.
  • the operational amplifier 16 operates only during the period when measurement control is performed. Therefore, when the temperature of the heater 40 becomes excessively high, the high temperature detection signal can be appropriately output from the comparator 17. In this way, the protection circuit 30 can be operated appropriately to improve safety.
  • FIG. 6 is a diagram showing an electronic circuit 10A that is a modification of the electronic circuit 10 shown in FIG.
  • the electronic circuit 10A shown in FIG. 6 has the same configuration as the electronic circuit 10, except that a comparator 19 is added and the operational amplifier 16 is changed to be always activated in the aerosol generation mode.
  • the first input terminal of the comparator 19 is connected to the output terminal of the comparator 17.
  • a second input terminal of the comparator 19 is connected to the MCU 11.
  • a control signal SIG3 is input from the MCU 11 to a second input terminal of the comparator 19.
  • the output terminal of comparator 19 is connected to the first input terminal of comparator 18.
  • the operational amplifier 16 is operating when both heating control and measurement control are performed. Therefore, even if the temperature of the heater 40 is not excessive, a large voltage is output from the operational amplifier 16 during heating control, and as a result of comparing this voltage with the threshold value TH1, a high temperature detection signal can be output from the comparator 17. .
  • the comparator 19 receives the high temperature detection signal from the comparator 17 while the high-level control signal SIG3 is being input from the MCU 11 (that is, only the measurement control of heating control and measurement control is being performed).
  • the device is configured to output a high temperature detection signal only when the high temperature detection signal is received. Therefore, when the temperature of the heater 40 becomes excessively high, the high temperature detection signal can be appropriately output from the comparator 19.
  • the operational amplifier 16 since the operational amplifier 16 can be operated at all times, there is an advantage that the output of the operational amplifier 16 can be stabilized. Further, there is an advantage that an operational amplifier 16 that does not have a control function using a control signal can be used. Note that the state in which only measurement control of heating control and measurement control is performed does not prevent the MCU 11 from performing controls other than heating control or measurement control.
  • the second input terminal of the comparator 19 only needs to be input with a signal that can determine whether heating control or measurement control is being performed, and even if the control signal SIG1 is input from the MCU 11. good.
  • the comparator 19 receives the input of the high temperature detection signal from the comparator 17 while the control signal SIG1 is at a low level (that is, the heating voltage is not applied to the heater 40).
  • the configuration may be such that the high temperature detection signal is output only when the temperature is high. Even with this configuration, when the temperature of the heater 40 becomes excessively high, the high temperature detection signal can be appropriately output from the comparator 19.
  • the current flowing between the switch SW1a and the node N1 is detected, and if a current is detected, it is determined that heating control is being performed, and a signal is input to the second input terminal of the comparator 19. You can also do this.
  • the comparator 19 may be configured with an AND circuit.
  • the RC series circuit composed of the resistive element 22 and the capacitor 23 is configured such that the voltage charged in the capacitor 23 by one heating control is not completely discharged during the measurement period TD.
  • a constant may be set. In this case, the conditions for the threshold value TH2 change.
  • the DUTY ratio tends to be larger than in other periods, so the maximum number of consecutive executions N (N is a natural number of 2 or more) of heating control with the maximum DUTY ratio is set.
  • the maximum number of consecutive executions N is a numerical value at which it is determined that it is a design error to continuously perform heating control at the maximum DUTY ratio exceeding this number of times.
  • the threshold value TH2 in the second modification is set after the heating period TH (the DUTY ratio is maximum) and the immediately following measurement period TD is repeated N times, and then the heating period TH (the DUTY ratio is the maximum) is set. It is set to a value reached by applying the heating voltage to the heater 40 at (2).
  • FIG. 7 is a timing chart for explaining the operation of the MCU 11 in the second modification.
  • the timing chart shown in FIG. 7 is for when control is executed during the temperature rise period T1, and the voltage waveform of the capacitor 23 is changed from the timing chart shown in FIG. 3.
  • the maximum number of consecutive executions N in period S1 is "4".
  • the voltage of the capacitor 23 that is not completely discharged during the measurement period TD is the voltage value Va.
  • a value obtained by adding three times the voltage value Va to the voltage value V1 is set as the threshold value TH2.
  • the DUTY ratio during heating control may be smaller than the maximum DUTY ratio. Even if an abnormality occurs in the MCU 11 and heating control is repeated at a DUTY ratio smaller than the maximum DUTY ratio, the voltage of the capacitor 23 exceeds the threshold value TH2 during some heating period TH. Therefore, an abnormality in the MCU 11 can be detected.
  • the protection circuit 30 operates.
  • the second modification even when the discharge control by the MCU 11 is appropriately executed, the supply of heating power to the heater 40 (that is, heating control) is repeated, so that the capacitor 23 The voltage can be gradually increased. If the heating control is not performed appropriately, the voltage of the capacitor 23 exceeds the threshold value TH2 and the protection circuit 30 is activated. In other words, if the MCU 11 is properly performing discharge control but not properly performing heating control, it is possible to limit the power supply to the heater 40 and prevent the heater 40 from overheating. can increase safety.
  • the comparator 21 can determine whether or not there is an abnormality regarding the heating control by the MCU 11, and the protection circuit 30 can be activated. Heating control is more advanced control than discharge control.
  • the safety of the power supply unit can be further improved by being able to detect abnormalities in such advanced control.
  • the threshold value TH2a is, for example, the heating period TH immediately after the set of the heating period TH (DUTY ratio is half of the maximum) and the immediately following measurement period TD is repeated M times (M is a natural number of 2 or more). (DUTY ratio is half of the maximum) is set to a value reached by applying the heating voltage to the heater 40.
  • period S2 is a period in which the temperature of the heater 40 is maintained at a high temperature
  • the DUTY ratio tends to be larger than periods S4 and S6. Therefore, in the period S2, the threshold value TH2 may be set to be the same as the value set in the period S1, for example.
  • the suction operation by the user is performed after the period S2, when the suction operation is performed, the temperature of the heater 40 temporarily decreases. Therefore, in order to return the temperature of the heater 40 to the target temperature, the MCU 11 performs control to temporarily increase the DUTY ratio. In other words, there is a possibility that the amount of increase in the voltage of the capacitor 23 becomes temporarily large due to the suction operation. Therefore, in each period other than the period S1, when a suction operation is detected, the preset threshold TH2 may be increased by a predetermined amount for a certain period of time. Thereby, abnormality determination of the MCU 11 can be performed with high accuracy.
  • the MCU 11 controls the switch SW1 and the switch SW4 to turn on and off in the same manner as the actual heating control and discharge control, and monitors the voltage of the capacitor 23 while controlling the switch SW2 to the off state.
  • Calibration that determines how many V it takes for the voltage of the capacitor 23 to reach from the initial value (0 V) state, and corrects the predetermined threshold TH2, threshold TH2a, and threshold TH2b based on the determination result. Processing may be performed.
  • the MCU 11 turns off the switch SW4 in the same way as in actual discharge control, monitors the voltage of the capacitor 23, and determines how much the voltage of the capacitor 23 is.
  • Calibration processing may be performed to determine how many volts are discharged per hour and to correct the predetermined thresholds TH2, TH2a, and TH2b based on the determination result. For example, it may be determined how long it takes for the voltage of the capacitor 23 to be discharged to the initial value (0V), and the calibration process may be performed based on the determination result.
  • the MCU 11 may perform both calibration regarding charging of the capacitor 23 and calibration regarding discharging of the capacitor 23. Thereby, individual differences can be absorbed and abnormality determination of the MCU 11 can be performed with high accuracy.
  • This calibration process may be performed at the time of manufacturing the power supply unit, at the time of startup, or at the time of transition to the aerosol generation mode.
  • the threshold value in this calibration process may be changed using an IC built into the power supply unit, a DA converter included in the MCU 11, an external DA converter, a direct digital synthesizer, or the like.
  • a plurality of voltage dividing circuits having different electrical resistance values may be provided, one of the voltage dividing circuits may be selected, and the output of the selected voltage dividing circuit may be used as the threshold value.
  • FIG. 8 is a diagram showing an electronic circuit 10B that is a modification of the electronic circuit 10 shown in FIG.
  • the electronic circuit 10B shown in FIG. 8 has the same configuration as the electronic circuit 10, except that a comparator 25 is added to the monitoring circuit 20, and the threshold value TH2 input to the comparator 21 is changed to the threshold value TH3.
  • the threshold value TH3 is determined by the voltage of the capacitor 23 from the initial value state (the state at the start of period S1 and the state at the start of period S4) for a predetermined time when the heater 40 is heated according to the heating profile shown in FIG. This is the voltage value reached after the elapsed time.
  • the threshold value TH3 is, for example, an average value of a plurality of actually measured values.
  • the voltage of the capacitor 23 reaches the threshold value TH3 when the elapsed time from the start of control during the temperature increase period T1 reaches time t1.
  • the voltage of the capacitor 23 reaches the threshold value TH3 when the elapsed time from the start of control during the temperature maintenance period T4 reaches time t2.
  • the time t1 and the time t2 are values determined by actual measurement, and the time t1 is shorter than the time t2.
  • the time t1 is inputted as the threshold value TH4 in the period S1 and the period S2, and the time t2 is inputted as the threshold value TH4 in each period after the period S4.
  • Ru The other of the two input terminals of the comparator 25 is connected to the MCU 11.
  • Information on the elapsed time t3 from the start of period S1 or period S4 is input from the MCU 11 to this other input terminal.
  • Comparator 25 has an enable terminal connected to the output terminal of comparator 21.
  • the output terminal of comparator 25 is connected to the second input terminal of comparator 18.
  • the comparator 25 when the output of the comparator 21 becomes high level (in other words, the voltage of the capacitor 23 reaches the threshold value TH3), the comparator 25 is enabled, and the elapsed time t3 and the threshold value TH4 (time t1 or time t2) are compared. As a result of this comparison, if the difference between the elapsed time t3 and the threshold TH4 is greater than or equal to the difference threshold (that is, if there is an abnormality in the heating control of the MCU 11), a high-level signal is output from the comparator 25, and this difference is less than the difference threshold, the comparator 25 outputs a low level signal.
  • the comparator 18 outputs a protection start signal for activating the protection circuit 30 when the voltage input to either one of the two input terminals becomes high level.
  • the electronic circuit 10B determines whether there is an abnormality regarding the heating control of the MCU 11 based on the comparison between the elapsed time t3 until the voltage of the capacitor 23 reaches the threshold value TH3 from the initial value (0V) and the threshold value TH4.
  • the safety of the power supply unit can be increased.
  • the configuration of the monitoring circuit 20 of the electronic circuit 10B is also applicable to the electronic circuit 10A.
  • the timing at which the voltage of the capacitor 23 reaches its initial value is the start time of each of the periods S1 and S4 in the period in which the control according to the heating profile is performed.
  • a period may be provided in which only discharge control and measurement control are performed without heating control, and the voltage of the capacitor 23 may be returned to the initial value.
  • the threshold value TH4 set in the period S1 and the period S5 is smaller than the threshold value TH4 set in the periods S2, S4, and S6.
  • the threshold TH4 in the period S1 is the minimum
  • the threshold TH4 in the period S5 is larger than the threshold TH4 in the period S1
  • the threshold TH4 in the periods S2, S4, and S6 is the threshold in the period S5. It is preferable to set it as a value larger than TH4. In this way, by setting the threshold value TH4 suitable for the content of the heating control, it is possible to determine whether or not there is an abnormality in the MCU 11 with higher accuracy.
  • the threshold TH4 may be decreased by a predetermined amount from a preset value. Thereby, the presence or absence of abnormality in the MCU 11 can be determined with higher accuracy.
  • the threshold value TH4 can be adjusted by a calibration process similar to that described for the electronic circuits 10 and 10A.
  • the monitoring circuit 20 and the comparator 18 may be deleted, and the output of the comparator 17 may be directly connected to the protection circuit 30. Even with this configuration, when the temperature of the heater 40 is high, the protection circuit 30 can be appropriately activated by the high temperature detection signal to improve safety. Further, in the electronic circuit 10 and the electronic circuit 10B, the comparator 17 and the comparator 18 may be deleted, and the output of the monitoring circuit 20 may be directly connected to the protection circuit 30. Even with this configuration, when an abnormality occurs in the MCU 11, the protection circuit 30 can be appropriately activated by the abnormality detection signal to improve safety.
  • the monitoring circuit 20 and the comparator 18 may be deleted, and the output of the comparator 19 may be directly connected to the protection circuit 30. Even with this configuration, when the temperature of the heater 40 is high, the protection circuit 30 can be appropriately activated by the high temperature detection signal to improve safety. Further, in the electronic circuit 10A, the comparator 17, the comparator 18, and the comparator 19 may be deleted, and the output of the monitoring circuit 20 may be directly connected to the protection circuit 30. Even with this configuration, when an abnormality occurs in the MCU 11, the protection circuit 30 can be appropriately activated by the abnormality detection signal to improve safety.
  • the switch SW1b is deleted, a step-up circuit is provided between the main positive bus LU and the switch SW1a, and one end of the resistance element 22 is connected to the node N1. You can also use it as
  • the power supply unit 110 has a configuration in which the first container and the second container are detachable and has a heating section that heats the second container, the heater 40 in each of the electronic circuit 10, the electronic circuit 10A, and the electronic circuit 10B By replacing this with this heating part, overheating of the second container can be prevented and safety can be improved.
  • a power source (battery 12), a first control (heating control) that supplies first power (heating voltage) from the power source to a heating element (heater 40) that heats the aerosol source and/or flavor source; and a second power source from the power source.
  • a processor that performs second control (measurement control) to supply (measurement voltage) to the heating element; an output element (op-amp 16) that outputs an output according to the voltage applied to the heating element; a protection circuit (protection circuit 30) that limits the supply of power from the power source to the heating element;
  • the protection circuit A power supply unit (power supply unit 110) of an aerosol generation device, comprising: a control circuit (a comparator 17, or a comparator 17 and a comparator 19) for operating the aerosol generator.
  • (1) for example, assume that the first control supplies a larger amount of power to the heating element than the second control. According to (1), in this case, since the protection circuit is not activated during the first control, an appropriate voltage can be applied to the heating element during the first control, and the function of the first control (aerosol generation ) can be realized appropriately. Further, when the voltage applied to the heating element increases when the second control is performed, it means that the electrical resistance value of the heating element is large, and for example, the temperature of the heating element is high. . In such a case, the protection circuit can be activated, thereby increasing safety.
  • the control circuit is an aerosol generating device that determines which of the first control and the second control is being executed based on a control signal (control signal SIG1 or control signal SIG3) input from the processor. power supply unit.
  • control signal since the control signal is used for multiple purposes, the circuit configuration can be simplified.
  • the power supply unit of the aerosol generation device includes a switch (switch SW1) connected to the heating element and controlled to be turned on and off during the first control, or a resistance element (resistance element Rs) connected in series to the heating element and the A power supply unit of an aerosol generation device, which is a switch (switch SW3) connected between a power source and controlled to be in an on state during the second control.
  • the state in which the first control or the second control is being performed can be determined with high accuracy based on the control signal of the switch.
  • a power supply unit for the aerosol generation device further comprising a resistance element (resistance element Rs) connected in series to the heating element
  • the first control is a control in which the first power is supplied only to the heating element of the resistance element and the heating element
  • the second control is a control for supplying the second electric power to the resistance element and the heating element
  • the control circuit includes a first comparator (comparator 17) that compares the output of the output element and the first threshold (threshold TH1), and a second comparator (comparator 17) that compares the output of the first comparator and the control signal.
  • a power supply unit for an aerosol generation device comprising:
  • the protection circuit can be prevented from operating by the second comparator.
  • the protection circuit can be activated by the second comparator only when the output of the output element exceeds the first threshold value due to the second control.
  • a power supply unit for the aerosol generation device further comprising a resistance element (resistance element Rs) connected in series to the heating element
  • the first control is a control in which the first power is supplied only to the heating element of the resistance element and the heating element
  • the second control is a control for supplying the second electric power to the resistance element and the heating element, The output element outputs only when the second control is performed among the first control and the second control
  • the control circuit is a power supply unit of an aerosol generation device, including a first comparator (comparator 17) that compares the output of the output element with the first threshold (threshold TH1).
  • the protection circuit is activated by the first comparator only when the second control is being performed and the output of the output element exceeds the first threshold. can be operated. With this configuration, since the output element can be operated intermittently, power consumption can be suppressed.
  • a power supply unit for the aerosol generation device further comprising a monitoring circuit (monitoring circuit 20) that monitors the operating state of the processor,
  • the protection circuit is a power supply unit of the aerosol generation device, and the protection circuit limits supply of the first electric power to the heating element based on the output of the monitoring circuit.
  • the protection circuit can be activated based on the output from the monitoring circuit, so even if an abnormality occurs in the processor, the protection circuit can be appropriately activated to improve safety.
  • a power supply unit for an aerosol generation device further comprising an output circuit (comparator 18) that outputs a signal (protection start signal) for activating the protection circuit based on the output of the monitoring circuit and the output of the control circuit.
  • the protection circuit can be activated based on the two outputs of the monitoring circuit and the output circuit, so the protection circuit can be activated when an abnormality occurs in the processor or when the temperature of the heating element is high. can improve safety.
  • the power supply unit of the aerosol generation device is a control for heating the heating element
  • the second control is control for obtaining the temperature of the heating element
  • the monitoring circuit includes a charging circuit (resistance element 22 and capacitor 23) capable of storing electricity using power from the power source during the first control
  • the protection circuit limits supply of the first power to the heating element based on the voltage of the charge circuit
  • the processor performs discharge control to discharge the voltage of the charge circuit at a timing (start timing of a measurement period TD) based on a supply cycle (control cycle TC) of the first power to the heating element, and is configured to generate an aerosol.
  • Device power supply unit is configured to generate an aerosol.
  • the voltage of the charging circuit that is charged by one supply of first power to the heating element can be completely discharged by one discharge control by the processor.
  • a state in which the processor is not discharging the charge circuit (a state in which an abnormality has occurred in the processor) can be determined based on the magnitude of the voltage in the charge circuit.
  • the protection circuit restricts the supply of first power to the heating element when the voltage of the charge circuit is higher than a threshold value, thereby preventing the supply of power to the heating element even if an abnormality occurs in the processor.
  • the safety of the aerosol generation device can be increased by appropriately limiting the Furthermore, according to (9), for example, the voltage of the charging circuit that is charged by one supply of the first power to the heating element can be prevented from being completely discharged by one discharge control by the processor. In this case, it is possible to determine a state in which the processor is not properly supplying the first power to the heating element (a state in which an abnormality has occurred in the processor) based on the magnitude of the voltage of the charging circuit.
  • the protection circuit may limit the supply of the first power to the heating element when the voltage of the charging circuit is greater than a threshold, for example, in case the processor is not properly supplying the first power to the heating element.
  • the safety of the aerosol generation device can be increased by appropriately limiting the power supply to the heating element.
  • the voltage of the charging circuit charged by one supply of first power to the heating element is prevented from being completely discharged by one discharge control by the processor, and , when the processor is properly supplying the first power to the heating element, the elapsed time until the voltage of the charging circuit reaches the threshold value is within a predetermined range, so that the processor can properly supply the first power to the heating element.
  • a state in which power is not being appropriately supplied to the heating element can be determined based on the elapsed time until the voltage of the charging circuit reaches a threshold value.
  • the protection circuit limits the supply of the first power to the heating element when the elapsed time falls outside a predetermined range, thereby ensuring that the processor is not properly supplying the first power to the heating element. If not, the power supply to the heating element can be appropriately limited to increase the safety of the aerosol generation device.
  • the power supply unit of the aerosol generation device according to (9),
  • the monitoring circuit is a power supply unit of the aerosol generation device that activates the protection circuit when the voltage of the charge circuit exceeds a second threshold (threshold TH2).
  • the power supply unit of the aerosol generation device according to (10), The voltage of the charging circuit that is charged by one supply of the first power to the heating element can be completely discharged by the discharge control,
  • the second threshold value is a power supply unit of the aerosol generating device, wherein the second threshold value is larger than a maximum voltage value (voltage value V1) that can be charged by one time supply of the first power to the heating element.
  • the state in which the processor is not discharging the charge circuit (the state in which an abnormality has occurred in the processor) can be determined based on the magnitude of the voltage in the charge circuit.
  • the voltage of the charging circuit can be increased by repeatedly supplying the first power to the heating element and discharging the charging circuit. If the first power is being properly supplied, the second threshold can be set so that the voltage of the charging circuit does not exceed the second threshold, and the voltage of the charging circuit can be adjusted according to the magnitude relationship between the second threshold and the voltage of the charging circuit. , it becomes possible to determine whether or not the first power is being supplied appropriately.
  • the power supply unit of the aerosol generation device according to (12),
  • the second threshold is a value reached by charging the charging circuit during a period in which the first power is supplied to the heating element after the charging and discharging of the charging circuit is repeated a plurality of times.
  • Power supply unit for aerosol generator for aerosol generator.
  • the voltage of the charging circuit exceeds the second threshold. Therefore, it is possible to detect a state in which a large amount of first power is being unintentionally supplied to the heating element.
  • the power supply unit of the aerosol generation device is configured to operate the protection circuit based on a first time (elapsed time t3) until the voltage of the charge circuit reaches a third threshold (threshold TH3) from an initial value (0V).
  • a power supply unit for the aerosol generator that outputs signals (abnormality detection signals).
  • the power supply unit of the aerosol generation device is a power supply unit of the arosol generator that activates the protection circuit when the difference between the first time and the time threshold (threshold TH4) is equal to or greater than the difference threshold.
  • the protection circuit can be operated appropriately.
  • a first control that supplies first power (heating voltage) from a power source (battery 12) to a heating element (heater 40) that heats the aerosol source and/or flavor source
  • a processor MCU11
  • second control measure control
  • protection circuit MCU11
  • a method for controlling a power supply unit of an aerosol generation device including a protection circuit (30) and an output element (operational amplifier 16) that outputs an output according to the voltage applied to the heating element, the method comprising: When only the second control (measurement control) of the first control and the second control is performed, and the voltage of the output element exceeds the first threshold (threshold TH1), the protection circuit control method for operating.

Landscapes

  • Control Of Resistance Heating (AREA)

Abstract

安全性の高いエアロゾル生成装置を提供する。電源ユニット(110)は、バッテリ(12)からの加熱用電力をヒータ(40)に供給する第1制御(加熱制御)、及び、バッテリ(12)からの測定用電力をヒータ(40)に供給する第2制御(測定制御)を行うMCU(11)と、ヒータ(40)に印加される電圧に応じた出力を行うオペアンプ(16)と、バッテリ(12)からの電力のヒータ(40)への供給を制限する保護回路(30)と、上記第1制御と上記第2制御のうちの上記第2制御のみが行われており、且つ、オペアンプ(16)の出力電圧が閾値(TH1)を超える場合に、保護回路(30)を作動させる制御回路(コンパレータ(17))と、を備える。

Description

エアロゾル生成装置の電源ユニット及びその制御方法
 本発明は、エアロゾル生成装置の電源ユニット及びその制御方法に関する。
 特許文献1には、エアロゾル形成基体を加熱するための発熱体と、発熱体に電力を供給するための電源と、発熱体および電源と連通する電気回路とを備える、エアロゾル発生システムが開示されている。この電気回路は、ユーザ入力に応答して複数の個別の加熱サイクル中の発熱体への電力供給を調節し、各加熱サイクル中の発熱体の最大電気抵抗を判定し、n個の先の加熱サイクルの間の発熱体の最大電気抵抗の移動平均値を計算し、発熱体の電気抵抗を計算した移動平均値と比較し、電気抵抗が移動平均値よりも閾値よりも多く大きい時に不具合を判定し、発熱体に不具合があるかどうかに基づいて発熱体に供給される電力を制御している。
 特許文献2には、エアロゾル形成基体を加熱するための発熱体を備える電気ヒータと、電源と、電気ヒータおよび電源に接続される電気回路と、を備えるエアロゾル発生システムが記載されている。この電気回路は、電気ヒータの当初の電気抵抗と当初の電気抵抗からの電気抵抗の変化との比が最大閾値より大きい時、有害な状態を決定し、有害な状態がある場合、電気ヒータに供給される電力を制限している。
日本国特表2021-526015号公報 日本国特表2018-514191号公報
 特許文献1,2のように、エアロゾル生成装置において、エアロゾル形成基体を加熱するための加熱用素子への電力供給制御を行うプロセッサが、加熱用素子の温度又はその加熱用素子によって加熱されるエアロゾル形成基体の温度が高い場合等に、その加熱用素子への電力供給を制限する技術が知られている。しかし、プロセッサに何らかの異常が発生していると、加熱用素子への電力供給を制限できなくなる可能性がある。
 本発明の目的は、安全性を高めたエアロゾル生成装置の電源ユニットとその制御方法を提供することにある。
 本発明の一態様のエアロゾル生成装置の電源ユニットは、電源と、前記電源からの第1電力をエアロゾル源及び/又は香味源を加熱する加熱用素子に供給する第1制御、及び、前記電源からの第2電力を前記加熱用素子に供給する第2制御を行うプロセッサと、前記加熱用素子に印加される電圧に応じた出力を行う出力素子と、前記電源からの電力の前記加熱用素子への供給を制限する保護回路と、前記第1制御と前記第2制御のうちの前記第2制御のみが行われており、且つ、前記出力素子の電圧が第1閾値を超える場合に、前記保護回路を作動させる制御回路と、を備える、ものである。
 本発明の一態様のエアロゾル生成装置の電源ユニットの制御方法は、電源からの第1電力をエアロゾル源及び/又は香味源を加熱する加熱用素子に供給する第1制御、及び、前記電源からの第2電力を前記加熱用素子に供給する第2制御を行うプロセッサと、前記電源からの電力の前記加熱用素子への供給を制限する保護回路と、前記加熱用素子に印加される電圧に応じた出力を行う出力素子と、を含むエアロゾル生成装置の電源ユニットの制御方法であって、前記第1制御と前記第2制御のうちの前記第2制御のみが行われており、且つ、前記出力素子の電圧が第1閾値を超える場合に、前記保護回路を作動させるものである。
 本発明によれば、安全性を高めることができる。
エアロゾル生成装置の構成例を模式的に示す模式図である。 図1に示す電源ユニット110における基材部の加熱にかかわる電子回路10の具体例を示す図である。 エアロゾル生成モードにおけるMCU11の動作を説明するためのタイミングチャートである。 保護回路30の一例を示す図である。 加熱プロファイルの一例を示す図である。 図2に示す電子回路10の変形例である電子回路10Aを示す図である。 第二変形例におけるMCU11の動作を説明するためのタイミングチャートである。 図2に示す電子回路10の変形例である電子回路10Bを示す図である。
 実施形態のエアロゾル生成装置は、電力を消費することで、装着されたエアロゾル形成体に含まれるエアロゾル源を霧化してエアロゾルを生成し、この生成されたエアロゾルを吸引可能とする装置である。エアロゾル生成装置の構成は様々であり、特に限定されるものではないが、以下では、図1を参照してエアロゾル生成装置の代表的な構成例を説明する。
 図1は、エアロゾル生成装置の構成例を模式的に示す模式図である。図1に示すエアロゾル生成装置100Aは、電源部111A、センサ部112A、通知部113A、記憶部114A、通信部115A、制御部116A、加熱部121A、保持部140、及び断熱部144を含む電源ユニット110と、エアロゾル形成体を構成するスティック型基材150と、を備える。
 電源部111Aは、電力を蓄積する。そして、電源部111Aは、制御部116Aによる制御に基づいて、エアロゾル生成装置100Aの各構成要素に電力を供給する。電源部111Aは、例えば、リチウムイオン二次電池等の充電式バッテリにより構成され得る。
 センサ部112Aは、エアロゾル生成装置100Aに関する各種情報を取得する。一例として、センサ部112Aは、コンデンサマイクロホン等の圧力センサ、流量センサ、又は温度センサ等により構成された吸引センサにより構成され、ユーザによる吸引に伴う値を取得する。他の一例として、センサ部112Aは、ボタン又はスイッチ等の、ユーザからの情報の入力を受け付ける入力装置により構成される。
 通知部113Aは、情報をユーザに通知する。通知部113Aは、例えば、発光する発光装置、画像を表示する表示装置、音を出力する音出力装置、又は振動する振動装置等により構成される。
 記憶部114Aは、エアロゾル生成装置100Aの動作のための各種情報を記憶する。記憶部114Aは、例えば、フラッシュメモリ等の不揮発性の記憶媒体により構成される。
 通信部115Aは、有線又は無線の任意の通信規格に準拠した通信を行うことが可能な通信インタフェースである。かかる通信規格としては、例えば、Wi-Fi(登録商標)、又はBluetooth(登録商標)等が採用され得る。
 制御部116Aは、各種プログラムに従ってエアロゾル生成装置100A内の動作全般を制御する。制御部116Aは、例えばCPU(Central Processing Unit)、又はMCU(Micro Controller Unit)等のプロセッサを含む電子回路によって実現される。
 保持部140は、内部空間141を有し、内部空間141にスティック型基材150の一部を収容しながらスティック型基材150を保持する。保持部140は、内部空間141を外部に連通する開口142を有し、開口142から内部空間141に挿入されたスティック型基材150を保持する。例えば、保持部140は、開口142及び底部143を底面とする筒状体であり、柱状の内部空間141を画定する。保持部140は、スティック型基材150へ供給される空気の流路を画定する機能も有する。かかる流路への空気の入り口である空気流入孔は、例えば底部143に配置される。他方、かかる流路からの空気の出口である空気流出孔は、開口142である。
 スティック型基材150は、基材部151及び吸口部152を含む。基材部151は、エアロゾル源を含む。エアロゾル源が霧化されることで、エアロゾルが生成される。エアロゾル源は、例えば、グリセリン及びプロピレングリコール等の多価アルコール、又は水等の液体である。なお、本構成例において、エアロゾル源は液体に限られるものではなく、固体であってもよい。基材部151は、香味源を更に含んでいてもよい。香味源は、エアロゾルに香味成分を付与するための構成要素である。香味源は、たばこ由来又は非たばこ由来(メンソール又は香料などの添加物由来)の香味成分を含む。
 スティック型基材150が保持部140に保持された状態において、基材部151の少なくとも一部は内部空間141に収容され、吸口部152の少なくとも一部は開口142から突出する。そして、開口142から突出した吸口部152をユーザが咥えて吸引すると、図示しない空気流入孔から内部空間141に空気が流入し、基材部151から発生するエアロゾルと共にユーザの口内に到達する。
 図1に示した例では、加熱部121Aは、シート状のヒータであり、保持部140の外周を覆うように配置される。加熱部121Aが発熱すると、スティック型基材150の基材部151が外周から加熱され、エアロゾルが生成される。上記のシート状のヒータが、基材部151に含まれるエアロゾル源(基材部151が香味源を含む場合には更にその香味源)を加熱するための加熱用素子を構成する。
 断熱部144は、加熱部121Aから他の構成要素への伝熱を防止する。例えば、断熱部144は、真空断熱材、又はエアロゲル断熱材等により構成される。
 以上、エアロゾル生成装置100Aの構成例を説明した。もちろんエアロゾル生成装置100Aの構成は上記に限定されず、以下に例示する多様な構成をとり得る。一例として、加熱部121Aは、ブレード状のヒータによって構成され、保持部140の底部143から内部空間141に突出するように配置されてもよい。その場合、加熱部121Aは、スティック型基材150の基材部151に挿入され、スティック型基材150の基材部151を内部から加熱する。他の一例として、加熱部121Aを構成するシート状のヒータは、保持部140の底部143を覆うように配置されてもよい。また、加熱部121Aは、保持部140の外周を覆う第1の加熱部、ブレード状の第2の加熱部、及び保持部140の底部143を覆う第3の加熱部のうち、2以上の組み合わせとして構成されてもよい。
 他の一例として、保持部140は、内部空間141を形成する外殻の一部を開閉する、ヒンジ等の開閉機構を含んでいてもよい。そして、保持部140は、外殻を開閉することで、内部空間141に挿入されたスティック型基材150を挟持してもよい。その場合、加熱部121Aは、保持部140における当該挟持箇所に設けられ、スティック型基材150を押圧しながら加熱してもよい。また、基材部151を加熱する手段は、加熱部121Aによる直接的な加熱に限定されない。例えば、誘導加熱によって基材部151を加熱してもよい。誘導加熱を採用する場合には、加熱部121Aをリアクトル(コイル)とし、基材部151の内部にサセプタを収容する構成としてもよい。この構成により、リアクトルへの電力供給によってサセプタを誘導加熱により加熱して、基材部151を加熱することができる。この場合には、リアクトルが加熱用素子を構成する。
 また、エアロゾル生成装置100Aは、スティック型基材150の代わりに、エアロゾル源及び香味源、或いは、エアロゾル源のみを充填した容器を内部空間141に収容可能とし、加熱部121Aは当該容器を加熱するものであってもよい。
 また、エアロゾル生成装置100Aは、液状のエアロゾル源及びこのエアロゾル源を加熱する加熱部(ヒータ)を収容する第1容器と、この第1容器のエアロゾル源が加熱されることで生成されたエアロゾルが通過可能な経路に配置可能且つ香味源を収容した第2容器と、を電源ユニット110に着脱可能に構成し、制御部116Aが第1容器の加熱部への電力供給制御を行って、香味の付与されたエアロゾルを生成するものとしてもよい。また、この構成において、第2容器を加熱する加熱部を電源ユニット110に更に設け、制御部116Aが、第2容器を加熱する加熱部への電力供給制御を行って、香味源を加熱するようにしてもよい。
(電源ユニットの回路構成例)
 図2は、図1に示す電源ユニット110(以下、単に電源ユニットとも記載)における基材部151の加熱にかかわる電子回路10の具体例を示す図である。
 電子回路10は、電源部111Aの一例であるバッテリ12と、制御部116Aの一例であるMCU11と、LDO(Low Drop Out)レギュレータ14と、センサ部112Aの一例である吸引センサ15と、開閉器SW1aと、開閉器SW1bと、開閉器SW2と、開閉器SW3と、オペアンプ16と、抵抗素子Rsと、コンパレータ17と、コンパレータ18と、コンパレータ21、抵抗素子22、コンデンサ23、抵抗素子24、及び開閉器SW4を含む監視回路20と、保護回路30と、を備える。MCU11には、アナログデジタル変換器(以下、ADCと記載)50bと、各種情報を記憶するメモリ50aと、が含まれている。以下では、開閉器SW1a又は開閉器SW1bを総称して開閉器SW1とも記載する。
 本明細書にて説明する抵抗素子とは、固定の電気抵抗値を持つ素子であればよく、例えば抵抗器、ダイオード、又はトランジスタ等である。図2の例では、抵抗素子Rs、抵抗素子22、及び抵抗素子24が、それぞれ抵抗器となっている。また、図2の例では、ヒータ40は抵抗器となっている。
 本明細書にて説明する開閉器とは、配線路の遮断と導通を切り替えるトランジスタ等の半導体スイッチング素子、或いは、コンデンサ、抵抗器、及びトランジスタ等を組み合わせて構成されたロードスイッチ等である。開閉器が入出力間を導通する状態をオン状態と記載し、開閉器が入出力間を遮断する状態をオフ状態と記載する。
 バッテリ12の正極に接続された主正母線LUには、LDOレギュレータ14の入力端子と開閉器SW1aの一端が接続されている。LDOレギュレータ14は、バッテリ12からの電圧を降圧して出力する。LDOレギュレータ14の出力電圧Vsは、MCU11、オペアンプ16、コンパレータ17、コンパレータ18、及び監視回路20のコンパレータ21の各々の動作電圧としても利用される。
 MCU11は、LDOレギュレータ14と、バッテリ12の負極に接続された主負母線LDとに接続されている。MCU11は、開閉器SW1~SW4の各々にも接続されており、これらのオンオフ制御を行う。MCU11は、オペアンプ16のイネーブル端子にも接続されており、オペアンプ16の制御を行う。
 MCU11は、開閉器SW1の制御端子に制御信号SIG1を入力する。以下では、制御信号SIG1がハイレベルのときに開閉器SW1は導通状態となり、制御信号SIG1がローレベルのときに開閉器SW1は遮断状態になるものとする。
 MCU11は、開閉器SW2の制御端子に制御信号SIG2を入力する。以下では、制御信号SIG2がハイレベルのときに開閉器SW2は導通状態となり、制御信号SIG2がローレベルのときに開閉器SW2は遮断状態になるものとする。
 MCU11は、開閉器SW3の制御端子とオペアンプ16のイネーブル端子の各々に制御信号SIG3を入力する。以下では、制御信号SIG3がハイレベルのときに開閉器SW3は導通状態となり、制御信号SIG3がローレベルのときに開閉器SW3は遮断状態になるものとする。また、制御信号SIG3がハイレベルのときに、オペアンプ16は作動し(入力された電圧に基づく出力を行い)、制御信号SIG3がローレベルのときに、オペアンプ16は出力を停止するものとする。
 MCU11は、開閉器SW4の制御端子に制御信号SIG4を入力する。以下では、制御信号SIG4がハイレベルのときに開閉器SW4は導通状態となり、制御信号SIG4がローレベルのときに開閉器SW4は遮断状態になるものとする。
 開閉器SW1aの他端と主負母線LDの間には、ヒータ40及び開閉器SW2から構成される直列回路が接続されている。開閉器SW1bの一端は、出力電圧Vsが供給される電源ラインに接続されている。開閉器SW1bの他端と主負母線LDの間には、抵抗素子22及びコンデンサ23から構成されるRC直列回路が接続されている。なお、このRC直列回路は、時定数を設定できる回路であればよく、図2に示した構成に限定されるものではない。例えば、抵抗素子22の代わりに定電流回路を設ける構成であってもよい。
 具体的には、開閉器SW1aの他端は、ヒータ40の一端に接続されている。ヒータ40の他端は、開閉器SW2を介して、主負母線LDに接続されている。また、開閉器SW1bの他端は、抵抗素子22の一端に接続されている。抵抗素子22の他端は、コンデンサ23を介して、主負母線LDに接続されている。
 開閉器SW1aとヒータ40とを接続するノードN1には、抵抗素子Rsの一端が接続されている。抵抗素子Rsの他端は、開閉器SW3の一端に接続されている。開閉器SW3の他端は、出力電圧Vsが供給される電源ラインに接続されている。
 ノードN1とヒータ40とを接続するノードN2には、オペアンプ16の非反転入力端子が接続されている。オペアンプ16の反転入力端子は、ヒータ40と開閉器SW2とを接続するノードに接続されている。オペアンプ16は、ヒータ40の両端の電圧を増幅して出力する差動アンプである。オペアンプ16の出力端子は、MCU11に内蔵されたADC50bと、コンパレータ17の第一入力端子とに接続されている。コンパレータ17の第二入力端子には、閾値TH1の電圧値を生成する回路が接続され、この回路から閾値TH1が入力されている。コンパレータ17は、第一入力端子に入力される電圧値が閾値TH1を超えた場合に、ハイレベル又はローレベルの高温検知信号を出力する。閾値TH1は、出力電圧Vsを抵抗分圧して生成してもよい。このようにした場合には、オペアンプ16の出力電圧すなわちコンパレータ17の第一入力端子に入力される電圧値とともに、出力電圧Vsの変動に閾値TH1も追従して、出力電圧Vsの変動をキャンセルする効果が得られる。より詳細には、オペアンプ16への入力は出力電圧Vsが抵抗分圧されて入力されているため、出力電圧Vsが変動するとオペアンプ16の出力電圧すなわちコンパレータ17の第一入力端子に入力される電圧値も変動する。閾値TH1も出力電圧Vsを抵抗分圧して生成される場合、出力電圧Vsが変動すると閾値TH1も同様に変動するため、コンパレータ17の第一入力端子と第二入力端子のいずれに入力される電圧値も出力電圧Vsの変動に追従したものとすることができる。
 監視回路20における抵抗素子22とコンデンサ23とを接続するノードには、抵抗素子24の一端が接続されている。抵抗素子24の他端は、開閉器SW4を介して主負母線LDに接続されている。抵抗素子22とコンデンサ23とを接続するノードには、更に、コンパレータ21の第一入力端子が接続されている。コンパレータ21の第二入力端子には、閾値TH2の電圧値を生成する回路が接続され、この回路から閾値TH2が入力されている。コンパレータ21は、第一入力端子に入力される電圧値が閾値TH2を超えた場合に、ハイレベル又はローレベルの異常検知信号を出力する。閾値TH2は、出力電圧Vsを抵抗分圧して生成してもよい。このようにした場合には、コンパレータ21の第一入力端子に入力される電圧値とともに、出力電圧Vsの変動に閾値TH2も追従して、出力電圧Vsの変動をキャンセルする効果が得られる。より詳細には、オペアンプ16への入力は出力電圧Vsが抵抗分圧されて入力されているため、出力電圧Vsが変動するとコンパレータ21の第一入力端子に入力される電圧値も変動する。閾値TH2も出力電圧Vsを抵抗分圧して生成される場合、出力電圧Vsが変動すると閾値TH2も同様に変動するため、コンパレータ21の第一入力端子と第二入力端子のいずれに入力される電圧値も出力電圧Vsの変動に追従したものとすることができる。
 コンパレータ18の第一入力端子にはコンパレータ17の出力端子が接続されている。コンパレータ18の第二入力端子にはコンパレータ21の出力端子が接続されている。コンパレータ18の出力端子は、保護回路30に接続されている。コンパレータ18は、異常検知信号と高温検知信号の少なくともいずれか一方が入力された場合に、保護回路30を作動させるためのハイレベル又はローレベルの保護開始信号を出力する。コンパレータ18は、例えばOR回路で構成してもよい。また、コンパレータ18は、コンパレータ17とコンパレータ21の出力をそれぞれオープンドレイン出力とし、その出力がワイヤードオアで接続される構成としてもよい。
 保護回路30は、ヒータ40に電力が供給されるのを抑制又は停止させるための回路であり、様々な構成を採用できる。例えば、保護回路30は、MCU11からの制御に関係なく、開閉器SW2又は開閉器SW1aを強制的にオフ状態にするための回路や、開閉器SW1aへのバッテリ12からの電力供給を遮断するための回路(例えば、開閉器SW1aとバッテリ12の間に昇圧回路を設ける場合に、この昇圧回路の出力を停止させる回路)等により構成される。
 MCU11は、ユーザ操作等によって、エアロゾルの生成を行う動作モードであるエアロゾル生成モードに移行すると、バッテリ12からの電力をヒータ40に供給する制御を行う。上記制御には、ヒータ40(換言すると、基材部151)を加熱するためにヒータ40に電力を供給する制御である加熱制御と、ヒータ40(換言すると、基材部151)の温度を測定するためにヒータ40に電力を供給する制御である測定制御と、が含まれる。
 図3は、エアロゾル生成モードにおけるMCU11の動作を説明するためのタイミングチャートである。図3には、開閉器SW3の制御信号SIG3、開閉器SW1の制御信号SIG1、開閉器SW4の制御信号SIG4、及びコンデンサ23の電圧の時間変化が示されている。
 MCU11は、エアロゾル生成モードに移行すると、開閉器SW2をオン状態に制御した状態で、加熱制御及び測定制御のセットを、既定の制御周期TCで繰り返し実行する。図3には、加熱制御が行われる加熱期間THと、測定制御が行われる測定期間TDと、MCU11の制御周期TCが示されている。加熱期間THと測定期間TDはそれぞれ既定の長さであり、図3の例では、制御周期TCの開始タイミングと測定期間TDの開始タイミングが一致し、測定期間TDの終了タイミングと加熱期間THの開始タイミングが一致し、加熱期間THの終了タイミングと制御周期TCの終了タイミングとが一致している。
 加熱制御は、加熱期間THにおいて、開閉器SW3をオフ状態にし、且つ、開閉器SW1を可変時間だけオン状態にする制御である。MCU11は、加熱期間THの長さに対する上記の可変時間の割合(DUTY比)を制御するPWM(pulse width modulation)制御を行う。DUTY比は、例えば0%~100%の間で変動される。図3は、DUTY比が100%の例を示している。
 この加熱制御により、電源12からの電力がヒータ40に供給されて、ヒータ40が加熱される。この加熱制御によってヒータ40に供給される電力を加熱用電力と記載し、この加熱制御によってヒータ40に印加される電圧を加熱用電圧と記載する。加熱期間THにおいてヒータ40への加熱用電圧の印加が終了するタイミングは、その加熱期間THの終了タイミングと一致している。したがって、制御周期TCは、加熱用電力のヒータ40への供給周期となっている。
 加熱期間THにおいて開閉器SW1がオン状態になっている間、抵抗素子22及びコンデンサ23からなるRC直列回路には、出力電圧Vsが供給される。図3に示したように、MCU11は、加熱期間THでは、開閉器SW4をオフ状態に制御する。このため、加熱期間THにおいては、出力電圧Vsによって、コンデンサ23の蓄電(チャージ)が行われる。1回の加熱期間THにおけるコンデンサ23への電荷のチャージ量は、DUTY比が大きくなるほど(加熱用電圧のヒータ40への印加時間が長くなるほど)、多くなる点に留意されたい。
 測定制御は、測定期間TDの間、オペアンプ16を作動させ、開閉器SW1をオフ状態にし、開閉器SW3をオン状態にして、加熱用電力よりも低い測定用電力(出力電圧Vs)を抵抗素子Rs及びヒータ40に供給する制御である。この測定制御によってヒータ40に印加される電圧を測定用電圧と記載する。抵抗素子Rsの電気抵抗値はヒータ40の電気抵抗値よりも十分に大きいため、測定用電圧は、加熱用電圧よりも十分に小さくなる。
 図3に示すように、MCU11は、測定期間TDにおいては、開閉器SW4をオン状態にする放電制御を併せて実行する。この放電制御は、制御周期TCの開始毎に実行されるため、制御周期TCに基づくタイミングで実行されるものということができる。また、この放電制御は、加熱期間THの終了毎に実行されるため、加熱期間THの終了タイミングに同期したタイミングで実行されるものということもできる。2つのタイミングが同期するとは、2つのタイミングの差が閾値以下(理想的には0)であることを意味し、2つのタイミングが一致する場合の他、回路の遅延時間等の僅かな差が2つのタイミングに生じている場合を含む。
 この測定制御により、LDOレギュレータ14からの測定用電力が抵抗素子Rsとヒータ40からなる分圧回路に供給される。抵抗素子Rsの電気抵抗値は、ヒータ40の電気抵抗値よりも十分に大きい値に設定されている。したがって、測定制御が行われている状態では、ヒータ40に微小電流を流すことができる。この状態では、オペアンプ16から、ヒータ40に印加されている電圧に応じた電圧が出力される。オペアンプ16の出力電圧は、ヒータ40の電気抵抗値が大きいほど大きい値になる。ここでは、ヒータ40がPTC特性(Positive-Temperature-Coefficient)を持つものとする。したがって、ヒータ40の温度(換言すると、エアロゾル源の温度)が高いほど、オペアンプ16の出力電圧は大きくなる。MCU11は、この状態にて、ADC50bの出力値を取得し、この出力値に基づいてヒータ40の温度を取得する。MCU11は、取得したヒータ40の温度に基づいて、上述したDUTY比を調整する。
 図3に示すように、測定期間TDでは、放電制御によって開閉器SW4がオン状態になる。このため、測定期間TDの直前の加熱期間THにおいてコンデンサ23にチャージされた電圧は、その測定期間TDに実行される放電制御によって放電されることになる。抵抗素子22とコンデンサ23で構成されるRC直列回路の時定数は、1回の加熱制御によってコンデンサ23にチャージ可能な最大電圧(DUTY比が100%のときにチャージ可能な電圧値、図3中の電圧値V1)の全てが、測定期間TDにおいて放電できるような値に設定されている。
 したがって、コンデンサ23の電圧は、加熱制御によって初期値(例えば0V)から上昇した後、その後の放電制御によって放電されて初期値に戻る状態を繰り返す。つまり、MCU11が放電制御を適切に実行している限りは、コンデンサ23の電圧は上記最大電圧(電圧値V1)を超えないようになっている。
 監視回路20は、コンデンサ23の電圧が、MCU11が正常に作動している場合には到達し得ない値になっているかを判定し、そのような状態になっている場合に、保護回路30を作動させるために設けられている。
 具体的には、監視回路20のコンパレータ21は、エアロゾル生成モードにおいては、コンデンサ23の電圧と閾値TH2とを比較し、コンデンサ23の電圧が閾値TH2を超えた場合に、異常検知信号を出力する。閾値TH2は、上記最大電圧(電圧値V1)よりも大きな値が設定される。閾値TH2は、出力電圧Vsを抵抗分圧して生成してもよい。このようにした場合には、コンパレータ21の第一入力端子に入力される電圧値とともに、出力電圧Vsの変動に閾値TH2も追従して、出力電圧Vsの変動をキャンセルする効果が得られる。より詳細には、オペアンプ16への入力は出力電圧Vsが抵抗分圧されて入力されているため、出力電圧Vsが変動するとコンパレータ21の第一入力端子に入力される電圧値も変動する。閾値TH2も出力電圧Vsを抵抗分圧して生成される場合、出力電圧Vsが変動すると閾値TH2も同様に変動するため、コンパレータ21の第一入力端子と第二入力端子のいずれに入力される電圧値も出力電圧Vsの変動に追従したものとすることができる。
 例えば、MCU11が何らかの要因で放電制御を実行できなくなっている場合には、コンデンサ23の電圧が電圧値V1よりも大きくなる。図3において、例えば時刻taで開始される測定期間TDで実行されるはずの放電制御が実行されていない場合を想定する。この場合には、図中の破線で示すように、時刻ta直後の測定期間TD及び加熱期間THにおいて、コンデンサ23の電圧が上昇を継続して、電圧値V1を超え閾値TH2を超えることになる。このような状態になると、コンパレータ21から異常検知信号が出力されることになる。
 図4は、保護回路30の一例を示す図である。図4には、MCU11に接続された抵抗素子32と、開閉器SW2の一例であるNチャネル型MOSFETと、Nチャネル型MOSFETのゲートとソースに接続された抵抗素子33と、コンパレータ18に接続された抵抗素子31と、が示されている。
 抵抗素子32の一端はMCU11に接続され、抵抗素子32の他端はNチャネル型MOSFETのゲートに接続されている。Nチャネル型MOSFETのドレインはヒータ40に接続され、Nチャネル型MOSFETのソースはグランド(主負母線LD)に接続されている。Nチャネル型MOSFETのゲートと抵抗素子32とを接続するノードN3には、抵抗素子31の他端が接続されている。抵抗素子31の一端はコンパレータ18の出力端子に接続されている。ノードN3とNチャネル型MOSFETのゲートを接続するノードは、抵抗素子33を介して、グランド(主負母線LD)に接続されている。図4の例では、保護回路30は、コンパレータ18からノードN3に至る部分と、抵抗素子32とによって構成されている。
 抵抗素子32は、MCU11からコンパレータ18へ流れる電流値を制限する抵抗器であり、Nチャネル型MOSFETのゲート抵抗の役割も兼ねている。抵抗素子31は、Nチャネル型MOSFETのゲートからコンパレータ18へ流れる電流値を制限する抵抗器である。抵抗素子33は、Nチャネル型MOSFETのゲート電位を固定するための抵抗器である。図4に示す例では、コンパレータ18からローレベルの保護開始信号が出力されると、Nチャネル型MOSFETのゲート電位がローレベルとなって、開閉器SW2はオフ状態になる。これにより、ヒータ40への電力供給は不能な状態になり、ヒータ40の加熱が停止されることになる。
 なお、図4に示す回路において、抵抗素子31の位置を、抵抗素子33とNチャネル型MOSFETのゲートとを接続するノードとノードN3との間に変更してもよい。また、抵抗素子32と抵抗素子31をまとめて1つの抵抗素子とし、この抵抗素子を抵抗素子31の位置に配置してもよい。
(加熱プロファイル)
 MCU11は、ヒータ40(誘導加熱の場合にはヒータ40に相当するリアクトルによって誘導加熱されるサセプタ)の温度推移を定めた加熱プロファイルにしたがって、加熱用電力のヒータ40への供給制御を行う。
 図5は、加熱プロファイルの一例を示す図である。図中の横軸はエアロゾル生成モードに移行してからの経過時間を示し、図中の縦軸はヒータ40の温度を示す。図5に示す加熱プロファイルは、ヒータ40の温度を目標温度TP1まで上昇させることを定めた温度上昇期間T1と、ヒータ40の温度を目標温度TP1で維持することを定めた温度維持期間T2と、ヒータ40の温度を目標温度TP3まで低下させることを定めた冷却期間T3と、ヒータ40の温度を目標温度TP3で維持することを定めた温度維持期間T4と、ヒータ40の温度を目標温度TP2まで上昇させることを定めた温度上昇期間T5と、ヒータ40の温度を目標温度TP2で維持することを定めた温度維持期間T6と、ヒータ40の加熱を停止することを定めた冷却期間T7と、から構成される。
 目標温度TP1は目標温度TP2よりも大きく、目標温度TP2は目標温度TP3よりも大きい。温度上昇期間T1におけるヒータ40の温度推移の傾きは、温度上昇期間T5におけるヒータ40の温度推移の傾きよりも大きくなっており、加熱プロファイルを構成する全期間の中で最大となっている。
 このように、加熱プロファイルは、ヒータ40の温度推移の傾きが傾き閾値(例えば0)より大きい第1期間(温度上昇期間T1、T5)と、ヒータ40の温度推移の傾きが上記傾き閾値以下の第2期間(温度維持期間T2、T4、T6)と、を含んでいる。
 MCU11は、エアロゾル生成モードに移行すると、ヒータ40の温度が温度上昇期間T1の時間をかけて目標温度TP1に収束するように、測定制御と加熱制御と放電制御のセットを繰り返し実行する。次に、MCU11は、温度維持期間T2の間、ヒータ40の温度が目標温度TP1で維持されるように、測定制御と加熱制御と放電制御のセットを繰り返し実行する。次に、MCU11は、ヒータ40の温度が目標温度TP3に低下するまでは、測定制御と加熱制御と放電制御のうちの測定制御と放電制御のみを実行し、加熱制御を停止する。なお、測定制御と加熱制御と放電制御のうちの測定制御と放電制御のみを実行するとは、MCU11が測定制御、加熱制御、又は放電制御以外の他の制御を行うことを妨げるものではない。次に、MCU11は、温度維持期間T4の間、ヒータ40の温度が目標温度TP3で維持されるように、測定制御と加熱制御と放電制御のセットを繰り返し実行する。次に、MCU11は、ヒータ40の温度が温度上昇期間T5の時間をかけて目標温度TP2に収束するように、測定制御と加熱制御と放電制御のセットを繰り返し実行する。次に、MCU11は、温度維持期間T6の間、ヒータ40の温度が目標温度TP2で維持されるように、測定制御と加熱制御と放電制御のセットを繰り返し実行する。最後に、MCU11は、測定制御と加熱制御と放電制御を終了して、ヒータ40の温度を低下させる。以下では、温度上昇期間T1、温度維持期間T2、温度維持期間T4、温度上昇期間T5、及び温度維持期間T6のそれぞれ異なる設定条件にしたがった制御が行われる期間のことを、期間S1、期間S2、期間S4、期間S5、及び期間S6と記載する。
 ユーザによる吸引を推奨している期間は、期間S2の開始から期間S7の終了までである。
 期間S1、S5では、ヒータ40の温度を上昇させる必要があるため、上記のDUTY比は大きくなる傾向にある。特に、期間S1は、加熱開始からエアロゾルの吸引開始に適する温度までなるべく短い時間でヒータ40の温度を上昇させることが好ましく、温度の上昇傾きが大きいため、DUTY比は特に大きくなる傾向にある。一方、期間S2、S4、S6では、ヒータ40の温度が維持されればよいため、期間S1、S5と比べて、上記のDUTY比は小さくなる傾向にある。
 冷却期間T3においては、ヒータ40への給電が停止されている。若しくは、この期間においては、測定制御と放電制御のみが行われるようにしてもよい。このため、期間S4の開始時点では、コンデンサ23の電圧は初期値となっていることに留意されたい。なお、ヒータ40への給電を停止する場合、ヒータ40の温度はヒータ40の付近に設置したサーミスタ(不図示)により測定してもよい。
 以上のように、電子回路10を含む電源ユニットでは、ヒータ40への1回の加熱用電力の供給によってチャージされるコンデンサ23の電圧が、MCU11による1回の放電制御によって完全に放電されるようにしている。このため、MCU11が放電制御を実施していない状態(MCU11に異常が発生した状態)を、コンデンサ23の電圧の大きさによって判断可能となる。保護回路30は、コンデンサ23の電圧が閾値TH2よりも大きい場合に、加熱用電力のヒータ40への供給を制限するため、MCU11に異常が発生した場合でも、ヒータ40への電力供給を適切に制限して、電源ユニットの安全性を高めることができる。
 また、電子回路10を含む電源ユニットによれば、加熱制御が行われているときには、オペアンプ16は出力を停止しているため、コンパレータ17から高温検知信号が出力されることはない。加熱制御中は、ヒータ40に大きな加熱用電力が供給され得るため、オペアンプ16が作動していると、オペアンプ16の出力も大きくなりやすい。そして、加熱制御中にオペアンプ16が作動していると、オペアンプ16のこの大きな出力がコンパレータ17に入力され、高温検知信号がコンパレータ17から出力される可能性がある。本形態では、測定制御が行われる期間においてのみオペアンプ16が作動する。このため、ヒータ40の温度が過度に高くなった場合に、コンパレータ17から高温検知信号を適切に出力させることができる。このように、保護回路30を適切に動作させて安全性を高めることができる。
 以下、電子回路10の変形例について説明する。
(第一変形例)
 図6は、図2に示す電子回路10の変形例である電子回路10Aを示す図である。図6に示す電子回路10Aは、コンパレータ19が追加され、オペアンプ16がエアロゾル生成モードにおいては常時作動するものに変更された点を除いては、電子回路10と同じ構成である。
 コンパレータ19の第一入力端子は、コンパレータ17の出力端子に接続されている。コンパレータ19の第二入力端子は、MCU11に接続されている。コンパレータ19の第二入力端子には、MCU11から制御信号SIG3が入力される。コンパレータ19の出力端子は、コンパレータ18の第一入力端子に接続されている。
 電子回路10Aでは、加熱制御と測定制御のいずれが行われるときもオペアンプ16が作動している。このため、ヒータ40の温度が過大となっていなくても、加熱制御時には、オペアンプ16から大きな電圧が出力され、この電圧と閾値TH1の比較の結果、コンパレータ17からは高温検知信号が出力され得る。コンパレータ19は、MCU11からハイレベルの制御信号SIG3が入力されている状態(すなわち、加熱制御と測定制御のうちの測定制御のみが行われている状態)で、コンパレータ17からの高温検知信号の入力を受けた場合にのみ、高温検知信号を出力するように構成されている。したがって、ヒータ40の温度が過度に高くなった場合に、コンパレータ19から高温検知信号を適切に出力させることができる。第一変形例では、オペアンプ16を常時作動させることができるため、オペアンプ16の出力を安定化できる利点がある。また、オペアンプ16において制御信号による制御機能がないものを使用できる利点がある。なお、加熱制御と測定制御のうちの測定制御のみが行われている状態とは、MCU11が加熱制御又は測定制御以外の制御を行うことを妨げるものではない。
 なお、コンパレータ19の第二入力端子には、加熱制御と測定制御のどちらの制御が行われているかを判別できる信号が入力されればよく、MCU11から制御信号SIG1が入力されるようにしてもよい。この場合、コンパレータ19は、制御信号SIG1がローレベルとなっている状態(つまり、ヒータ40への加熱用電圧の印加が行われていない状態)において、コンパレータ17からの高温検知信号の入力を受けた場合にのみ、高温検知信号を出力するように構成すればよい。この構成であっても、ヒータ40の温度が過度に高くなった場合に、コンパレータ19から高温検知信号を適切に出力させることができる。また、例えば開閉器SW1aからノードN1の間に流れる電流を検出し、電流が検出される場合は加熱制御が行われていると判別して、コンパレータ19の第二入力端子に信号を入力するようにしてもよい。また、コンパレータ19は、AND回路で構成してもよい。
(第二変形例)
 電子回路10又は電子回路10Aにおいては、1回の加熱制御によってコンデンサ23にチャージされる電圧が、測定期間TDにおいてすべて放電されないように、抵抗素子22とコンデンサ23で構成されるRC直列回路の時定数を設定してもよい。この場合、閾値TH2の条件が変わる。
 例えば、期間S1では、DUTY比が他の期間と比べて大きくなる傾向にあることから、最大DUTY比の加熱制御の最大連続実行回数N(Nは2以上の自然数)が設定される。最大連続実行回数Nは、この回数を超えて連続して最大DUTY比の加熱制御を行うことは設計上エラーと判断するという数値である。
 第二変形例における閾値TH2は、加熱期間TH(DUTY比は最大とする)とその直後の測定期間TDのセットが上記のN回繰り返された後、その直後の加熱期間TH(DUTY比は最大とする)における加熱用電圧のヒータ40への印加によって到達する値に設定される。
 図7は、第二変形例におけるMCU11の動作を説明するためのタイミングチャートである。図7に示すタイミングチャートは、温度上昇期間T1における制御が実行されるときのものであり、図3に示すタイミングチャートに対して、コンデンサ23の電圧波形が変更されたものとなっている。
 図7の例では、期間S1における最大連続実行回数Nを“4”としている。また、図7の例では、測定期間TDにおいて放電しきれないコンデンサ23の電圧が電圧値Vaとなっている。そして、電圧値V1に、電圧値Vaの3倍を加算した値が、閾値TH2として設定されている。このように閾値TH2を設定することで、コンデンサ23の電圧が初期値にある状態から5回の加熱制御が行われることで、コンデンサ23の電圧が閾値TH2を超える。コンデンサ23の電圧が閾値TH2を超えた状態では、最大連続実行回数N(=4)を超えて加熱制御が行われており、MCU11に異常が発生している可能性がある。このため、保護回路30を作動させることで、ヒータ40の過加熱を防ぐことができる。
 なお、期間S1において、加熱制御時のDUTY比は、最大DUTY比よりも小さくなり得る。仮に、MCU11に異常が発生しており、最大DUTY比よりも小さいDUTY比で加熱制御が繰り返された場合でも、どこかの加熱期間THにおいて、コンデンサ23の電圧は閾値TH2を超える。このため、MCU11の異常を検知可能である。また、図7において例えば2回目の測定期間TDにおいて放電制御が行われなかった場合には、2回目の加熱期間THにおいてコンデンサ23の電圧が閾値TH2を超えるため、放電制御に関する異常が発生した場合でも、保護回路30は作動する。
 以上のように、第二変形例では、MCU11による放電制御が適切に実行されている場合であっても、加熱用電力のヒータ40への供給(すなわち加熱制御)が繰り返されることで、コンデンサ23の電圧を徐々に増加させていくことができる。そして、加熱制御が適切に行われていない場合には、コンデンサ23の電圧が閾値TH2を超えて保護回路30が作動する。つまり、MCU11が放電制御を適切に実行してはいるものの、加熱制御を適切に実行できていない場合には、ヒータ40への電力供給を制限することができ、ヒータ40の過加熱等を防いで安全性を高めることができる。
 第二変形例によれば、MCU11による加熱制御に関する異常の有無を、コンパレータ21により判定して、保護回路30を作動させることができる。加熱制御は、放電制御と比べて高度な制御である。第二変形例では、このような高度な制御の異常を検知できることで、電源ユニットの安全性をより高めることができる。
 なお、期間S2、S4、S6では、DUTY比が他の期間と比べて小さくなる傾向にある。このため、加熱制御及び放電制御が繰り返されることによるコンデンサ23の電圧の増加速度は、期間S1におけるコンデンサ23の電圧の増加速度よりも遅くなる。つまり、期間S2、S4、S6では、加熱期間THと測定期間TDのセットが上記のN回よりも十分に多い回数繰り返されないと、コンデンサ23の電圧が閾値TH2を超えず、MCU11の異常を早期に検出することが難しくなる。
 そこで、期間S2、S4、S6においては、閾値TH2を、期間S1よりも小さい値(=閾値TH2a)に設定することが好ましい。閾値TH2aは、例えば、加熱期間TH(DUTY比は最大の半分とする)とその直後の測定期間TDのセットがM回(Mは2以上の自然数)繰り返された後、その直後の加熱期間TH(DUTY比は最大の半分)における加熱用電圧のヒータ40への印加によって到達する値に設定される。このように閾値TH2aを設定することで、期間S2、S4、S6においても、加熱制御が適切に行われていない状態を早期に検知して、保護回路30を作動させることができる。
 同様の理由から、DUTY比が期間S2、S4、S6よりも大きく且つ期間S1よりも小さくなる傾向にある期間S5においては、閾値TH2を、期間S1よりも小さく、且つ、期間S2、S4、S6よりも大きい値(=閾値TH2b)に設定することが好ましい。
 なお、期間S2は、ヒータ40の温度を高温に維持する期間であるため、期間S4、S6と比べると、DUTY比は大きくなる傾向にある。そこで、期間S2では、閾値TH2を、例えば期間S1で設定する値と同じにしてもよい。
 また、ユーザによる吸引動作は、期間S2以降に行われるが、吸引動作が行われると、ヒータ40の温度が一時的に低下する。このため、ヒータ40の温度を目標温度まで戻すために、MCU11は、DUTY比を一時的に大きくする制御を行う。つまり、吸引動作によって、コンデンサ23の電圧の増加量が一時的に大きくなる可能性がある。そこで、期間S1以外の各期間においては、吸引動作を検知した場合に、一定時間、事前に設定している閾値TH2を所定量増加させるようにしてもよい。これにより、MCU11の異常判定を高精度に行うことができる。
 監視回路20のRC直列回路の時定数には個体差がある。そこで、MCU11は、例えば、開閉器SW2をオフ状態に制御した状態で、実際の加熱制御及び放電制御と同様に開閉器SW1と開閉器SW4をオンオフ制御して、コンデンサ23の電圧をモニタし、コンデンサ23の電圧が初期値(0V)の状態から何秒で何Vに達するかを判定し、その判定結果に基づいて、予め決められている閾値TH2、閾値TH2a、閾値TH2bを補正するキャリブレーション処理を行ってもよい。また、MCU11は、例えば、開閉器SW1をオフ状態に制御した状態で、実際の放電制御と同様に開閉器SW4をオフして、コンデンサ23の電圧をモニタし、コンデンサ23の電圧がどの程度の時間で何Vまで放電されるかを判定し、その判定結果に基づいて、予め決められている閾値TH2、閾値TH2a、閾値TH2bを補正するキャリブレーション処理を行ってもよい。例えば、コンデンサ23の電圧がどの程度の時間で初期値(0V)まで放電されるかを判定し、その判定結果に基づいてキャリブレーション処理を行ってもよい。また、MCU11は、コンデンサ23の充電に関するキャリブレーションと、コンデンサ23の放電に関するキャリブレーションの両方を行うようにしてもよい。これにより、個体差を吸収して、MCU11の異常判定を高精度に行うことができる。このキャリブレーション処理は、電源ユニットの製造時、起動時、又はエアロゾル生成モード移行時等のタイミングで行えばよい。
 このキャリブレーション処理における閾値の変更は、電源ユニットに内蔵されるIC、MCU11が備えるDAコンバータ、外付けDAコンバータ、又はダイレクトデジタルシンセサイザー等を用いて行えばよい。または、異なる電気抵抗値を持つ複数の分圧回路を設けて、いずれかの分圧回路を選択し、選択した分圧回路の出力を閾値として利用するようにしてもよい。
(第三変形例)
 図8は、図3に示す電子回路10の変形例である電子回路10Bを示す図である。図8に示す電子回路10Bは、監視回路20にコンパレータ25が追加され、コンパレータ21に入力される閾値TH2が閾値TH3に変更された点を除いては、電子回路10と同じ構成である。
 閾値TH3は、図5に示す加熱プロファイルにしたがってヒータ40の加熱を行った場合に、コンデンサ23の電圧が、初期値の状態(期間S1の開始時、期間S4の開始時の状態)から既定時間経過後に到達する電圧の値である。閾値TH3は、例えば、複数回の実測値の平均値とされる。
 例えば、MCU11が正常に作動している場合には、温度上昇期間T1における制御の開始からの経過時間が時間t1になると、コンデンサ23の電圧は閾値TH3に到達するものものとする。同様に、MCU11が正常に作動している場合には、温度維持期間T4における制御の開始からの経過時間が時間t2になると、コンデンサ23の電圧が閾値TH3に到達するものとする。時間t1と時間t2は、実測によって求められる値であり、時間t1の方が時間t2よりも短くなる。
 このように時間t1、t2が決められていると、MCU11に異常が発生しており、期間S1及び期間S2において、意図せずDUTY比が大きい状態が継続すると、期間S1の開始からの経過時間が時間t1になるよりも速いタイミングで、コンデンサ23の電圧は閾値TH3となる。また、MCU11に異常が発生しており、期間S1及び期間S2において、意図せずDUTY比が小さい状態が継続すると、期間S1の開始からの経過時間が時間t1に達したタイミングよりも更に後のタイミングで、コンデンサ23の電圧は閾値TH3となる。
 つまり、期間S1及び期間S2では、コンデンサ23の電圧が閾値TH3に達した時点での、コンデンサ23の電圧が初期値(0V)の時点からの経過時間と、時間t1との差が大きい場合には、MCU11がDUTY比の制御を正常に行えていないことになる。同様に、期間S4以降では、コンデンサ23の電圧が閾値TH3に達した時点での、コンデンサ23の電圧が初期値(0V)の時点(期間S4の開始時点)からの経過時間と、時間t2との差が大きい場合には、MCU11がDUTY比の制御を正常に行えていないことになる。
 監視回路20のコンパレータ25における2つの入力端子の一方には、期間S1及び期間S2においては、閾値TH4として時間t1が入力され、期間S4以降の各期間においては、閾値TH4として時間t2が入力される。コンパレータ25における2つの入力端子の他方は、MCU11に接続されている。この他方の入力端子には、MCU11から、期間S1又は期間S4の開始からの経過時間t3の情報が入力される。コンパレータ25は、コンパレータ21の出力端子に接続されたイネーブル端子を持つ。コンパレータ25の出力端子は、コンパレータ18の第二入力端子へ接続されている。
 電子回路10Bの監視回路20では、コンパレータ21の出力がハイレベルになる(換言すると、コンデンサ23の電圧が閾値TH3に達する)と、コンパレータ25がイネーブルとなり、経過時間t3と閾値TH4(時間t1又は時間t2)が比較される。この比較の結果、経過時間t3と閾値TH4の差が差分閾値以上であった場合(つまり、MCU11の加熱制御に異常がある場合)には、コンパレータ25からハイレベルの信号が出力され、この差が差分閾値未満であった場合には、コンパレータ25からローレベルの信号が出力される。コンパレータ18は、2つの入力端子のいずれか一方に入力された電圧がハイレベルとなった場合に、保護回路30を作動させるための保護開始信号を出力する。
 このように、電子回路10Bでは、コンデンサ23の電圧が初期値(0V)の状態から閾値TH3に達するまでの経過時間t3と閾値TH4の比較に基づいて、MCU11の加熱制御に関する異常の有無を判定することができ、電源ユニットの安全性を高めることができる。電子回路10Bの監視回路20の構成は、電子回路10Aにも適用可能である。
 なお、以上の説明では、加熱プロファイルにしたがった制御が行われる期間において、コンデンサ23の電圧が初期値となるタイミングが、期間S1及び期間S4のそれぞれの開始時点とした。
 しかし、例えば、期間S2、S5、S6の各々の開始時点で、加熱制御は行わずに放電制御と測定制御のみを行う期間を設け、コンデンサ23の電圧を初期値に戻すようにしてもよい。この場合には、期間S1及び期間S5において設定する閾値TH4を、期間S2、S4、S6において設定する閾値TH4よりも小さくすることが好ましい。
 より好ましくは、期間S1での閾値TH4を最小とし、期間S5での閾値TH4を期間S1での閾値TH4よりも大きい値とし、期間S2、S4、S6での閾値TH4を、期間S5での閾値TH4よりも大きい値とすることが好ましい。このように、加熱制御の内容に適した閾値TH4を設定することで、MCU11の異常の有無の判定をより高精度に行うことができる。
 また、ユーザによる吸引動作が行われた場合には、上記閾値TH4を、事前に設定している値から所定量減少させるようにしてもよい。これにより、MCU11の異常の有無の判定をより高精度に行うことができる。
 閾値TH4は、電子回路10、10Aにおいて説明したのと同様のキャリブレーション処理によって調整できるようにすることが好ましい。
 電子回路10と電子回路10Bにおいては、監視回路20とコンパレータ18を削除し、コンパレータ17の出力が保護回路30に直接接続される構成としてもよい。この構成であっても、ヒータ40の温度が高い場合に、高温検知信号によって保護回路30を適切に作動させて安全性を高めることができる。また、電子回路10と電子回路10Bにおいて、コンパレータ17とコンパレータ18を削除し、監視回路20の出力が保護回路30に直接接続される構成としてもよい。この構成であっても、MCU11に異常が発生している場合に、異常検知信号によって保護回路30を適切に作動させて安全性を高めることができる。
 電子回路10Aにおいては、監視回路20とコンパレータ18を削除し、コンパレータ19の出力が保護回路30に直接接続される構成としてもよい。この構成であっても、ヒータ40の温度が高い場合に、高温検知信号によって保護回路30を適切に作動させて安全性を高めることができる。また、電子回路10Aにおいて、コンパレータ17とコンパレータ18とコンパレータ19を削除し、監視回路20の出力が保護回路30に直接接続される構成としてもよい。この構成であっても、MCU11に異常が発生している場合に、異常検知信号によって保護回路30を適切に作動させて安全性を高めることができる。
 電子回路10、電子回路10A、及び電子回路10Bにおいては、開閉器SW1bを削除し、主正母線LUと開閉器SW1aの間に昇圧回路を設け、ノードN1に抵抗素子22の一端を接続する構成としてもよい。
 電源ユニット110が、第1容器と第2容器を着脱可能且つ第2容器を加熱する加熱部を有する構成である場合には、電子回路10、電子回路10A、及び電子回路10Bの各々におけるヒータ40を、この加熱部に読み替えることで、第2容器の過加熱を防止することができ、安全性を高めることができる。
 本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
(1)
 電源(バッテリ12)と、
 上記電源からの第1電力(加熱用電圧)をエアロゾル源及び/又は香味源を加熱する加熱用素子(ヒータ40)に供給する第1制御(加熱制御)、及び、上記電源からの第2電力(測定用電圧)を上記加熱用素子に供給する第2制御(測定制御)を行うプロセッサ(MCU11)と、
 上記加熱用素子に印加される電圧に応じた出力を行う出力素子(オペアンプ16)と、
 上記電源からの電力の上記加熱用素子への供給を制限する保護回路(保護回路30)と、
 上記第1制御と上記第2制御のうちの上記第2制御(測定制御)のみが行われており、且つ、上記出力素子の電圧が第1閾値(閾値TH1)を超える場合に、上記保護回路を作動させる制御回路(コンパレータ17、又は、コンパレータ17及びコンパレータ19)と、を備える、エアロゾル生成装置の電源ユニット(電源ユニット110)。
 (1)において、例えば、第1制御が、第2制御と比較して加熱用素子に大きい電力を供給するものである場合を想定する。(1)によれば、この場合、第1制御時には保護回路が作動しないことで、第1制御時において適切な大きさの電圧を加熱用素子に印加でき、第1制御による機能(エアロゾルの生成)を適切に実現できる。また、第2制御が行われている場合に、加熱用素子に印加される電圧が大きくなる場合には、加熱用素子の電気抵抗値が大きく、例えば加熱用素子の温度が高いことを意味する。このような場合には保護回路を作動させることができるため、安全性を高めることができる。
(2)
 (1)に記載のエアロゾル生成装置の電源ユニットであって、
 上記制御回路は、上記プロセッサから入力される制御信号(制御信号SIG1又は制御信号SIG3)に基づいて、上記第1制御と上記第2制御のうちのどちらが実行されているかを判定する、エアロゾル生成装置の電源ユニット。
 (2)によれば、プロセッサの制御信号を利用して第1制御と第2制御のうちのどちらが実行されているかを判定するため、制御回路の簡素化が可能になる。
(3)
 (2)に記載のエアロゾル生成装置の電源ユニットであって、
 上記制御信号は、上記制御回路とは別の能動素子(開閉器SW1又は開閉器SW3)に更に入力される、エアロゾル生成装置の電源ユニット。
 (3)によれば、制御信号を複数の用途に利用するため、回路構成を簡素化できる。
(4)
 (3)に記載のエアロゾル生成装置の電源ユニットであって、
 上記能動素子は、上記加熱用素子に接続され且つ上記第1制御時にオンオフ制御される開閉器(開閉器SW1)、又は、上記加熱用素子に直列接続された抵抗素子(抵抗素子Rs)と上記電源の間に接続され且つ上記第2制御時にオン状態に制御される開閉器(開閉器SW3)である、エアロゾル生成装置の電源ユニット。
 (4)によれば、開閉器の制御信号によって、第1制御又は第2制御が行われている状態を高精度に判定できる。
(5)
 (2)から(4)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
 上記加熱用素子に直列接続された抵抗素子(抵抗素子Rs)を更に備え、
 上記第1制御は、上記抵抗素子と上記加熱用素子のうちの上記加熱用素子のみに上記第1電力を供給する制御であり、
 上記第2制御は、上記抵抗素子及び上記加熱用素子に上記第2電力を供給する制御であり、
 上記制御回路は、上記出力素子の出力と上記第1閾値(閾値TH1)を比較する第1コンパレータ(コンパレータ17)と、上記第1コンパレータの出力と上記制御信号とを比較する第2コンパレータ(コンパレータ19)と、を含む、エアロゾル生成装置の電源ユニット。
 (5)によれば、第1制御によって出力素子の出力が第1閾値を超えた場合でも、第2コンパレータによって保護回路を作動させないようにできる。換言すると、第2制御によって出力素子の出力が第1閾値を超えた場合にのみ、第2コンパレータによって保護回路を作動させることができる。この構成では、出力素子を常時作動させることができるため、出力素子の出力を安定化でき、保護回路を適切に作動させることができる。
(6)
 (1)に記載のエアロゾル生成装置の電源ユニットであって、
 上記加熱用素子に直列接続された抵抗素子(抵抗素子Rs)を更に備え、
 上記第1制御は、上記抵抗素子と上記加熱用素子のうちの上記加熱用素子のみに上記第1電力を供給する制御であり、
 上記第2制御は、上記抵抗素子及び上記加熱用素子に上記第2電力を供給する制御であり、
 上記出力素子は、上記第1制御と上記第2制御のうち上記第2制御が行われている場合にのみ出力を行い、
 上記制御回路は、上記出力素子の出力と上記第1閾値(閾値TH1)を比較する第1コンパレータ(コンパレータ17)を含む、エアロゾル生成装置の電源ユニット。
 (6)によれば、第1制御時には出力素子が出力を行わないため、第2制御が行われており且つ出力素子の出力が第1閾値を超えた場合にのみ、第1コンパレータによって保護回路を作動させることができる。この構成では、出力素子を間欠動作させることができるため、電力消費を抑制できる。
(7)
 (1)から(6)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
 上記プロセッサの動作状態を監視する監視回路(監視回路20)を更に備え、
 上記保護回路は、上記監視回路の出力に基づいて、上記第1電力の上記加熱用素子への供給を制限する、エアロゾル生成装置の電源ユニット。
 (7)によれば、監視回路からの出力に基づいて保護回路が作動可能なため、プロセッサに異常が発生した場合でも適切に保護回路を作動させて安全性を高めることができる。
(8)
 (7)に記載のエアロゾル生成装置の電源ユニットであって、
 上記監視回路の出力と上記制御回路の出力に基づいて、上記保護回路を作動させる信号(保護開始信号)を出力する出力回路(コンパレータ18)を更に備える、エアロゾル生成装置の電源ユニット。
 (8)によれば、監視回路と出力回路の2つの出力に基づいて保護回路が作動可能なため、プロセッサに異常が発生した場合と加熱用素子の温度が高い場合とで保護回路を作動させて安全性を高めることができる。
(9)
 (7)に記載のエアロゾル生成装置の電源ユニットであって、
 上記第1制御は、上記加熱用素子を加熱するための制御であり、
 上記第2制御は、上記加熱用素子の温度を取得するための制御であり、
 上記監視回路は、上記第1制御時に上記電源からの電力により蓄電可能なチャージ回路(抵抗素子22及びコンデンサ23)を含み、
 上記保護回路は、上記チャージ回路の電圧に基づいて、上記第1電力の上記加熱用素子への供給を制限し、
 上記プロセッサは、上記第1電力の上記加熱用素子への供給周期(制御周期TC)に基づくタイミング(測定期間TDの開始タイミング)で、上記チャージ回路の電圧を放電させる放電制御を行う、エアロゾル生成装置の電源ユニット。
 (9)によれば、例えば、加熱用素子への1回の第1電力の供給によってチャージされるチャージ回路の電圧が、プロセッサによる1回の放電制御によって完全に放電されるようにすることで、プロセッサがチャージ回路の放電を実施していない状態(プロセッサに異常が発生した状態)を、チャージ回路の電圧の大きさによって判断可能となる。保護回路は、例えば、チャージ回路の電圧が閾値よりも大きい場合に、第1電力の加熱用素子への供給を制限することで、プロセッサに異常が発生した場合でも、加熱用素子への電力供給を適切に制限して、エアロゾル生成装置の安全性を高めることができる。
 また、(9)によれば、例えば、加熱用素子への1回の第1電力の供給によってチャージされるチャージ回路の電圧が、プロセッサによる1回の放電制御によって完全に放電されないようにすることで、プロセッサが第1電力を加熱用素子に適切に供給していない状態(プロセッサに異常が発生した状態)を、チャージ回路の電圧の大きさによって判断可能となる。保護回路は、例えば、チャージ回路の電圧が閾値よりも大きい場合に第1電力の加熱用素子への供給を制限することで、プロセッサが第1電力を加熱用素子に適切に供給していない場合に、加熱用素子への電力供給を適切に制限して、エアロゾル生成装置の安全性を高めることができる。
 また、(9)によれば、例えば、加熱用素子への1回の第1電力の供給によってチャージされるチャージ回路の電圧が、プロセッサによる1回の放電制御によって完全に放電されないようにし、且つ、プロセッサが適切に第1電力を加熱用素子に供給している場合には、チャージ回路の電圧が閾値に達するまでの経過時間が所定範囲内となるように構成することで、プロセッサが第1電力を加熱用素子に適切に供給していない状態を、チャージ回路の電圧が閾値に達するまでの経過時間によって判断可能となる。保護回路は、例えば、この経過時間が所定範囲外となった場合に、第1電力の加熱用素子への供給を制限することで、プロセッサが第1電力を加熱用素子に適切に供給していない場合に、加熱用素子への電力供給を適切に制限して、エアロゾル生成装置の安全性を高めることができる。
(10)
 (9)に記載のエアロゾル生成装置の電源ユニットであって、
 上記監視回路は、上記チャージ回路の電圧が第2閾値(閾値TH2)を超えた場合に、上記保護回路を作動させる、エアロゾル生成装置の電源ユニット。
 (10)によれば、電圧と閾値の比較だけで加熱用素子への加熱用電力の供給を制限可能なため、制御を簡素化することができる。
(11)
 (10)に記載のエアロゾル生成装置の電源ユニットであって、
 上記加熱用素子への1回の上記第1電力の供給によってチャージされる上記チャージ回路の電圧は、上記放電制御によってすべて放電可能であり、
 上記第2閾値は、上記加熱用素子への1回の上記第1電力の供給によってチャージ可能な最大の電圧値(電圧値V1)よりも大きい、エアロゾル生成装置の電源ユニット。
 (11)によれば、プロセッサがチャージ回路の放電を実施していない状態(プロセッサに異常が発生した状態)を、チャージ回路の電圧の大きさによって判断可能となる。
(12)
 (10)に記載のエアロゾル生成装置の電源ユニットであって、
 上記加熱用素子への1回の上記第1電力の供給によってチャージされる上記チャージ回路の電圧は、上記放電制御によって放電される上記チャージ回路の電圧よりも大きい、エアロゾル生成装置の電源ユニット。
 (12)によれば、第1電力の加熱用素子への供給とチャージ回路の放電が繰り返されることで、チャージ回路の電圧を増加させていくことができる。第1電力の供給が適切に行われている場合には、チャージ回路の電圧が第2閾値を超えないように第2閾値を設定することで、第2閾値とチャージ回路の電圧の大小関係によって、第1電力の供給が適切に行われているか否かの判定が可能になる。
(13)
 (12)に記載のエアロゾル生成装置の電源ユニットであって、
 上記第2閾値は、上記チャージ回路のチャージ及び放電が複数回繰り返された後の、上記第1電力が上記加熱用素子へ供給される期間における上記チャージ回路へのチャージにより到達する値である、エアロゾル生成装置の電源ユニット。
 (13)によれば、必要以上のチャージ及び放電が多く繰り返された場合に、チャージ回路の電圧が第2閾値を超える。このため、第1電力が意図せず加熱用素子に多く供給されている状態を検知可能となる。
(14)
 (12)に記載のエアロゾル生成装置の電源ユニットであって、
 上記監視回路は、上記チャージ回路の電圧が初期値(0V)の状態から第3閾値(閾値TH3)に達するまでの第1時間(経過時間t3)に基づいて、上記保護回路を作動させるための信号(異常検知信号)を出力する、エアロゾル生成装置の電源ユニット。
 (14)によれば、第1電力の供給が適切に行われている場合には、第1時間が時間閾値に近い値となるように時間閾値を設定することで、時間閾値と第1時間の関係によって、第1電力の供給が適切に行われているか否かの判定が可能になり、保護回路を適切に動作させることができる。
(15)
 (14)に記載のエアロゾル生成装置の電源ユニットであって、
 上記監視回路は、上記第1時間と時間閾値(閾値TH4)との差が差分閾値以上の場合に、上記保護回路を作動させる、アロゾル生成装置の電源ユニット。
 (15)によれば、保護回路を適切に動作させることができる。
(16)
 電源(バッテリ12)からの第1電力(加熱用電圧)をエアロゾル源及び/又は香味源を加熱する加熱用素子(ヒータ40)に供給する第1制御(加熱制御)、及び、上記電源からの第2電力(測定用電圧)を上記加熱用素子に供給する第2制御(測定制御)を行うプロセッサ(MCU11)と、上記電源からの電力の上記加熱用素子への供給を制限する保護回路(保護回路30)と、上記加熱用素子に印加される電圧に応じた出力を行う出力素子(オペアンプ16)と、を含むエアロゾル生成装置の電源ユニットの制御方法であって、
 上記第1制御と上記第2制御のうちの上記第2制御(測定制御)のみが行われており、且つ、上記出力素子の電圧が第1閾値(閾値TH1)を超える場合に、上記保護回路を作動させる制御方法。
12 バッテリ(電源)
16 オペアンプ(出力素子)
30 保護回路
40 ヒータ(加熱用素子)
110 電源ユニット
11 MCU(プロセッサ)
TH1 閾値(第1閾値)

Claims (15)

  1.  電源と、
     前記電源からの第1電力をエアロゾル源及び/又は香味源を加熱する加熱用素子に供給する第1制御、及び、前記電源からの第2電力を前記加熱用素子に供給する第2制御を行うプロセッサと、
     前記加熱用素子に印加される電圧に応じた出力を行う出力素子と、
     前記電源からの電力の前記加熱用素子への供給を制限する保護回路と、
     前記第1制御と前記第2制御のうちの前記第2制御のみが行われており、且つ、前記出力素子の電圧が第1閾値を超える場合に、前記保護回路を作動させる制御回路と、を備える、エアロゾル生成装置の電源ユニット。
  2.  請求項1に記載のエアロゾル生成装置の電源ユニットであって、
     前記制御回路は、前記プロセッサから入力される制御信号に基づいて、前記第1制御と前記第2制御のうちのどちらが実行されているかを判定する、エアロゾル生成装置の電源ユニット。
  3.  請求項2に記載のエアロゾル生成装置の電源ユニットであって、
     前記制御信号は、前記制御回路とは別の能動素子に更に入力される、エアロゾル生成装置の電源ユニット。
  4.  請求項3に記載のエアロゾル生成装置の電源ユニットであって、
     前記能動素子は、前記加熱用素子に接続され且つ前記第1制御時にオンオフ制御される開閉器、又は、前記加熱用素子に直列接続された抵抗素子と前記電源の間に接続され且つ前記第2制御時にオン状態に制御される開閉器である、エアロゾル生成装置の電源ユニット。
  5.  請求項2から4のいずれか1項に記載のエアロゾル生成装置の電源ユニットであって、
     前記加熱用素子に直列接続された抵抗素子を更に備え、
     前記第1制御は、前記抵抗素子と前記加熱用素子のうちの前記加熱用素子のみに前記第1電力を供給する制御であり、
     前記第2制御は、前記抵抗素子及び前記加熱用素子に前記第2電力を供給する制御であり、
     前記制御回路は、前記出力素子の出力と前記第1閾値を比較する第1コンパレータと、前記第1コンパレータの出力と前記制御信号とを比較する第2コンパレータと、を含む、エアロゾル生成装置の電源ユニット。
  6.  請求項1に記載のエアロゾル生成装置の電源ユニットであって、
     前記加熱用素子に直列接続された抵抗素子を更に備え、
     前記第1制御は、前記抵抗素子と前記加熱用素子のうちの前記加熱用素子のみに前記第1電力を供給する制御であり、
     前記第2制御は、前記抵抗素子及び前記加熱用素子に前記第2電力を供給する制御であり、
     前記出力素子は、前記第1制御と前記第2制御のうち前記第2制御が行われている場合にのみ出力を行い、
     前記制御回路は、前記出力素子の出力と前記第1閾値を比較する第1コンパレータを含む、エアロゾル生成装置の電源ユニット。
  7.  請求項1から6のいずれか1項に記載のエアロゾル生成装置の電源ユニットであって、
     前記プロセッサの動作状態を監視する監視回路を更に備え、
     前記保護回路は、前記監視回路の出力に基づいて、前記第1電力の前記加熱用素子への供給を制限する、エアロゾル生成装置の電源ユニット。
  8.  請求項7に記載のエアロゾル生成装置の電源ユニットであって、
     前記監視回路の出力と前記制御回路の出力に基づいて、前記保護回路を作動させる信号を出力する出力回路を更に備える、エアロゾル生成装置の電源ユニット。
  9.  請求項7に記載のエアロゾル生成装置の電源ユニットであって、
     前記第1制御は、前記加熱用素子を加熱するための制御であり、
     前記第2制御は、前記加熱用素子の温度を取得するための制御であり、
     前記監視回路は、前記第1制御時に前記電源からの電力により蓄電可能なチャージ回路を含み、
     前記保護回路は、前記チャージ回路の電圧に基づいて、前記第1電力の前記加熱用素子への供給を制限し、
     前記プロセッサは、前記第1電力の前記加熱用素子への供給周期に基づくタイミングで、前記チャージ回路の電圧を放電させる放電制御を行う、エアロゾル生成装置の電源ユニット。
  10.  請求項9に記載のエアロゾル生成装置の電源ユニットであって、
     前記監視回路は、前記チャージ回路の電圧が第2閾値を超えた場合に、前記保護回路を作動させる、エアロゾル生成装置の電源ユニット。
  11.  請求項10に記載のエアロゾル生成装置の電源ユニットであって、
     前記加熱用素子への1回の前記第1電力の供給によってチャージされる前記チャージ回路の電圧は、前記放電制御によってすべて放電可能であり、
     前記第2閾値は、前記加熱用素子への1回の前記第1電力の供給によってチャージ可能な最大の電圧値よりも大きい、エアロゾル生成装置の電源ユニット。
  12.  請求項10に記載のエアロゾル生成装置の電源ユニットであって、
     前記加熱用素子への1回の前記第1電力の供給によってチャージされる前記チャージ回路の電圧は、前記放電制御によって放電される前記チャージ回路の電圧よりも大きい、エアロゾル生成装置の電源ユニット。
  13.  請求項12に記載のエアロゾル生成装置の電源ユニットであって、
     前記第2閾値は、前記チャージ回路のチャージ及び放電が複数回繰り返された後の、前記第1電力が前記加熱用素子へ供給される期間における前記チャージ回路へのチャージにより到達する値である、エアロゾル生成装置の電源ユニット。
  14.  請求項12に記載のエアロゾル生成装置の電源ユニットであって、
     前記監視回路は、前記チャージ回路の電圧が初期値の状態から第3閾値に達するまでの第1時間に基づいて、前記保護回路を作動させるための信号を出力する、エアロゾル生成装置の電源ユニット。
  15.  電源からの第1電力をエアロゾル源及び/又は香味源を加熱する加熱用素子に供給する第1制御、及び、前記電源からの第2電力を前記加熱用素子に供給する第2制御を行うプロセッサと、前記電源からの電力の前記加熱用素子への供給を制限する保護回路と、前記加熱用素子に印加される電圧に応じた出力を行う出力素子と、を含むエアロゾル生成装置の電源ユニットの制御方法であって、
     前記第1制御と前記第2制御のうちの前記第2制御のみが行われており、且つ、前記出力素子の電圧が第1閾値を超える場合に、前記保護回路を作動させる制御方法。
PCT/JP2022/011910 2022-03-16 2022-03-16 エアロゾル生成装置の電源ユニット及びその制御方法 WO2023175770A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024507293A JPWO2023175770A1 (ja) 2022-03-16 2022-03-16
PCT/JP2022/011910 WO2023175770A1 (ja) 2022-03-16 2022-03-16 エアロゾル生成装置の電源ユニット及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/011910 WO2023175770A1 (ja) 2022-03-16 2022-03-16 エアロゾル生成装置の電源ユニット及びその制御方法

Publications (1)

Publication Number Publication Date
WO2023175770A1 true WO2023175770A1 (ja) 2023-09-21

Family

ID=88022581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011910 WO2023175770A1 (ja) 2022-03-16 2022-03-16 エアロゾル生成装置の電源ユニット及びその制御方法

Country Status (2)

Country Link
JP (1) JPWO2023175770A1 (ja)
WO (1) WO2023175770A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017536083A (ja) * 2014-10-13 2017-12-07 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 電気加熱式の喫煙システムにおけるスイッチ不良の監視
JP2018514191A (ja) 2015-03-26 2018-06-07 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム ヒーター管理
JP2021526015A (ja) 2018-05-30 2021-09-30 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム エアロゾル発生システム内のヒーター状態を検出するための方法
JP2021528084A (ja) * 2018-06-25 2021-10-21 ジュール・ラブズ・インコーポレイテッドJuul Labs, Inc. 気化器デバイスのヒータ制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017536083A (ja) * 2014-10-13 2017-12-07 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 電気加熱式の喫煙システムにおけるスイッチ不良の監視
JP2018514191A (ja) 2015-03-26 2018-06-07 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム ヒーター管理
JP2021526015A (ja) 2018-05-30 2021-09-30 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム エアロゾル発生システム内のヒーター状態を検出するための方法
JP2021528084A (ja) * 2018-06-25 2021-10-21 ジュール・ラブズ・インコーポレイテッドJuul Labs, Inc. 気化器デバイスのヒータ制御装置

Also Published As

Publication number Publication date
JPWO2023175770A1 (ja) 2023-09-21

Similar Documents

Publication Publication Date Title
JP7562425B2 (ja) 気化器デバイスのヒータ制御装置
JP7379225B2 (ja) エアロゾル吸引器用の電源ユニット、エアロゾル吸引器用の電源ユニットの制御方法及びプログラム
CA3066129C (en) Power supply for aerosol inhaler, and control method and control program of the same
RU2711465C2 (ru) Специализированная интегральная схема для устройства доставки аэрозоля
RU2753571C1 (ru) Блок питания устройства генерации ингаляционных компонентов и способ выбора значения электрического сопротивления известного резистора в блоке питания устройства генерации ингаляционных компонентов
EA038385B1 (ru) Ароматический ингалятор
CN111246760A (zh) 气溶胶生成装置
US12108801B2 (en) External unit for inhalation component generation device, inhalation component generation system, method for controlling external unit for inhalation component generation device, and non-transitory computer readable medium
JP6667709B1 (ja) エアロゾル吸引器の電源ユニット
JP6855611B1 (ja) 吸引器用コントローラ
CN111246759A (zh) 气溶胶生成装置、气溶胶生成装置的控制方法、以及用于使处理器执行该方法的程序
JP6667708B1 (ja) エアロゾル吸引器の電源ユニット
JP2021136992A (ja) エアロゾル吸引器の電源ユニット及びエアロゾル吸引器
RU2760406C1 (ru) Аэрозольный ингалятор и блок питания аэрозольного ингалятора
US11445764B2 (en) Aerosol generation system
JP6919088B1 (ja) エアロゾル生成装置並びにこれを動作させる方法及びプログラム
WO2023175770A1 (ja) エアロゾル生成装置の電源ユニット及びその制御方法
WO2023175769A1 (ja) エアロゾル生成装置の電源ユニット及びその制御方法
US20230096818A1 (en) Power source unit for aerosol inhaler
KR20240144444A (ko) 에어로졸 생성 장치의 전원 유닛 및 그의 제어 방법
KR20240144443A (ko) 에어로졸 생성 장치의 전원 유닛 및 그의 제어 방법
WO2022239279A1 (ja) エアロゾル生成装置の電源ユニット
WO2024127655A1 (ja) エアロゾル生成装置
WO2022239280A1 (ja) エアロゾル生成装置の電源ユニット
WO2022239475A1 (ja) エアロゾル生成装置の電源ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024507293

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247031066

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247031066

Country of ref document: KR