WO2023175698A1 - Storage battery and power storage device - Google Patents

Storage battery and power storage device Download PDF

Info

Publication number
WO2023175698A1
WO2023175698A1 PCT/JP2022/011469 JP2022011469W WO2023175698A1 WO 2023175698 A1 WO2023175698 A1 WO 2023175698A1 JP 2022011469 W JP2022011469 W JP 2022011469W WO 2023175698 A1 WO2023175698 A1 WO 2023175698A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
electrode
active material
storage battery
material layer
Prior art date
Application number
PCT/JP2022/011469
Other languages
French (fr)
Japanese (ja)
Inventor
靖生 鈴木
大輔 小松
モハメド ミザヌル ラフマン
信雄 安東
Original Assignee
武蔵精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武蔵精密工業株式会社 filed Critical 武蔵精密工業株式会社
Priority to PCT/JP2022/011469 priority Critical patent/WO2023175698A1/en
Publication of WO2023175698A1 publication Critical patent/WO2023175698A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general

Definitions

  • the present invention relates to a storage battery and a power storage device.
  • hybrid storage batteries having two types of cells with different output characteristics have been known (see Patent Documents 1 to 4 below).
  • a hybrid storage battery is known in which a negative electrode is placed between a first positive electrode containing a transition metal oxide (such as lithium cobalt oxide) and a second positive electrode containing activated carbon (phenol resin).
  • a first cell composed of a first positive electrode and a negative electrode has a relatively high internal resistance and exhibits relatively high capacity characteristics.
  • the second cell composed of the second positive electrode and the negative electrode has a relatively low internal resistance, so it exhibits relatively high output characteristics (high speed charging and discharging).
  • An object of the present invention is to provide a storage battery and a power storage device that can solve the above-mentioned problems.
  • the storage battery disclosed in this specification includes a first electrode having one of positive and negative polarities, a second electrode having one of the polarities, and a second electrode having one of positive and negative polarities. a common electrode having the other polarity.
  • the first electrode includes a first current collector foil and a first active material layer formed on both sides of the first current collector foil.
  • the second electrode includes a second current collecting foil and a second active material layer formed on both surfaces of the second current collecting foil and having a different operating potential from the first active material layer.
  • the common electrode is arranged between the first electrode and the second electrode, and includes a common current collecting foil in which a plurality of through holes are formed, and a common active material formed on both sides of the common current collecting foil. It has a layer.
  • the storage battery further includes a first external terminal connected to the first electrode, a second external terminal connected to the second electrode, and a common external terminal connected to the common electrode. Equipped with
  • the first active material layer of the first electrode and the second active material layer of the second electrode have different operating potentials. Therefore, the operating voltage of the first cell composed of the first electrode and the common electrode is different from the operating voltage of the second cell composed of the second electrode and the common electrode. Furthermore, charging and discharging is performed within the operating voltage range of the first cell by connecting an external device to the first external terminal and the common external terminal, and connecting an external device to the second external terminal and the common external terminal. By doing so, charging and discharging can be performed within the operating voltage range of the second cell. Furthermore, by using a common electrode, the number of parts of the storage battery can be reduced. That is, according to the present storage battery, charging and discharging can be performed in mutually different operating voltage ranges while reducing the number of parts.
  • the power storage device disclosed in this specification includes the storage battery of (1) above and a management device for managing the storage battery.
  • the management device In a first cell usage mode in which an external device is connected to the first external terminal and the common external terminal, when a predetermined switching condition is satisfied, the management device connects the external device to the second external terminal. It is also possible to include a cell switching section that switches to a second cell usage mode connected to the terminal and the common external terminal. In this power storage device, when a predetermined switching condition is met, the first cell usage mode can be automatically switched to the second cell usage mode.
  • the first electrode and the second electrode have positive polarity, the common electrode has negative polarity, and the operating potential of the second active material layer is The operating potential may be lower than the operating potential of the first active material layer.
  • the management device may further include a temperature acquisition unit that acquires the temperature of the storage battery.
  • the switching condition may include, as a necessary condition, that the temperature of the storage battery acquired by the temperature acquisition unit is equal to or higher than a first reference temperature. In this power storage device, when the temperature of the storage battery is lower than the first reference temperature, charging and discharging can be performed by using the first cell usage mode.
  • the first electrode and the second electrode have negative polarity, the common electrode has positive polarity, and the operating potential of the second active material layer is It may be higher than the operating potential of the first active material layer.
  • the management device may further include a temperature acquisition unit that acquires the temperature of the storage battery.
  • the switching condition may include that the temperature of the storage battery acquired by the temperature acquisition unit is equal to or lower than a second reference temperature. In this power storage device, when the temperature of the storage battery exceeds the second reference temperature, charging and discharging can be performed by using the first cell usage mode.
  • the temperature of the storage battery is equal to or lower than the second reference temperature
  • the second cell utilization mode with a relatively high operating potential, it is possible to suppress the precipitation of metal contained in the common electrode, for example. That is, according to the present power storage device, charging and discharging can be performed over a wide temperature range, while charging and discharging can be suppressed from being performed at a low voltage at low temperatures.
  • the technology disclosed in this specification can be realized in various forms, for example, a storage cell, a storage battery, a storage module including a plurality of storage batteries, a storage battery management device, a storage battery and a management device. It can be realized in the form of a power storage device, a method of managing the same, a computer program that implements the method, a non-temporary recording medium on which the computer program is recorded, and the like.
  • FIG. 1 is an explanatory diagram schematically showing the configuration of a power storage device 1 in the first embodiment.
  • the power storage device 1 includes a storage battery 3 and a management device 5.
  • Power storage device 1 is connected to external equipment (not shown) (load, external power source, charging device, etc.) via positive terminal 42 and negative terminal 44 .
  • the storage battery 3 includes a housing 30 and a storage cell 100.
  • the housing 30 is a container in which a housing space is formed in which the power storage cell 100 is housed.
  • the housing 30 is made of metal such as aluminum, or synthetic resin that does not absorb moisture.
  • the housing 30 is provided with a first positive terminal portion 40Pa, a second positive terminal portion 40Pb, and a negative terminal portion 40N.
  • the metal parts in the housing 30 may be configured to serve as any one of the first positive terminal portion 40Pa, the second positive terminal portion 40Pb, and the negative terminal portion 40N.
  • the storage battery 3 may have a configuration in which the storage battery 100 is housed in a bag such as a laminate film.
  • the first positive terminal part 40Pa is an example of the first external terminal in the claims
  • the second positive terminal part 40Pb is an example of the second external terminal in the claims
  • the negative electrode side terminal portion 40N is an example of a first common external terminal in the claims.
  • the power storage cell 100 is a hybrid power storage cell having a high potential cell 10 and a low potential cell 20.
  • the low potential cell 20 has a lower operating voltage range than the high potential cell 10. Note that the voltage operating range of the high potential cell 10 and the voltage operating range of the low potential cell 20 may partially overlap with each other.
  • the operating voltage range is the voltage range in which the storage battery can operate normally without problems such as metal deposition, and is determined by the composition of the active material.
  • the high potential cell 10 is connected between a first positive terminal portion 40Pa and a negative terminal portion 40N.
  • the low potential cell 20 is connected between the second positive terminal section 40Pb and the negative terminal section 40N. The detailed configuration of power storage cell 100 will be described later.
  • the management device 5 is a device for managing the storage battery 3.
  • the management device 5 includes a voltmeter 22, an ammeter 24, a thermometer 26, a monitoring section 28, a line switch 40, a changeover switch 50, a control section 60, a recording section 72, a history section 74, An interface (I/F) section 76 is provided.
  • a voltmeter 22 is provided for each of the high potential cell 10 and the low potential cell 20. Each voltmeter 22 is connected in parallel to each cell 10, 20, measures the voltage of each cell 10, 20, and outputs a signal indicating the voltage measurement value to the monitoring unit 28.
  • Ammeter 24 is connected in series to storage battery 3 . The ammeter 24 measures the current flowing through the storage battery 3 (each cell 10, 20) and outputs a signal indicating the current measurement value to the monitoring unit 28.
  • Thermometer 26 is placed near storage battery 3. The thermometer 26 measures the temperature of the storage battery 3 and outputs a signal indicating the measured temperature value to the monitoring unit 28 .
  • the monitoring unit 28 Based on the signals received from the voltmeter 22, ammeter 24, and thermometer 26, the monitoring unit 28 directs signals indicating the voltage of each cell 10, 20, the current flowing through the storage battery 3, and the temperature of the storage battery 3 to the control unit 60. and output it.
  • the thermometer 26 is an example of a temperature acquisition unit in the claims.
  • the line switch 40 is installed between the storage battery 3 (negative terminal part 40N) and the negative terminal 44.
  • the line switch 40 is controlled on and off by the control unit 60 to open and close connections between the storage battery 3 and a load and an external power source (not shown).
  • the changeover switch 50 selectively connects the positive terminal 42 to the first positive terminal portion 40Pa and the second positive terminal portion 40Pb of the storage battery 3.
  • a high potential cell usage mode is established in which the high potential cell 10 is used to charge and discharge external equipment.
  • a low potential cell usage mode is established in which the low potential cell 20 is used to charge and discharge external equipment.
  • the high potential cell usage mode is an example of the first cell usage mode in the claims, and the low potential cell usage mode is an example of the second cell usage mode in the claims. Note that in this specification, “charging and discharging” means performing at least one of charging and discharging.
  • the control unit 60 is composed using, for example, multicore CPU, multicore CPU, programmable device (Field PROGRAMMABLE GATE ARRAY (FPGA), PROGRAMMABLE LOGIC DEVICE (PLD), etc.). , Control the operation of the management device 5.
  • the control section 60 has a function as a cell switching section 62.
  • the recording unit 72 is composed of, for example, ROM, RAM, hard disk drive (HDD), etc., and is used to store various programs and data, and to be used as a work area and data storage area when executing various processes. .
  • the recording unit 72 stores a computer program for executing cell switching processing, which will be described later.
  • the computer program is provided in a state stored in a computer-readable recording medium (not shown) such as a CD-ROM, DVD-ROM, or USB memory, and is stored in the storage unit 72 by being installed in the power storage device 1. Stored.
  • the history section 74 is configured with, for example, a DVD-ROM, RAM, hard disk drive (HDD), etc., and records various histories regarding the power storage device 1 and the storage battery 3. Such history includes, for example, the OCV of the storage battery 3 and the history of charging and discharging when each cell 10, 20 is used.
  • the interface unit 76 communicates with other devices by wire or wirelessly. For example, the history recorded in the history section 74 is updated by communication with another device via the interface section 76.
  • FIG. 2 is an explanatory diagram showing the internal configuration of the storage battery 3.
  • FIG. 2 shows mutually orthogonal XYZ axes for specifying directions.
  • the Z-axis positive direction is referred to as “upward direction”
  • the Z-axis negative direction is referred to as “downward direction”
  • the storage battery 3 is actually oriented in a direction different from such directions. It may be installed in
  • the electricity storage cell 100 includes a plurality of high potential cells 10 and a plurality of low potential cells 20. Inside the housing 30, a plurality of high potential cells 10, a plurality of low potential cells 20, and an electrolytic solution (not shown) are housed in the same space. As shown in FIG. 2, a plurality of high potential cells 10 and a plurality of low potential cells 20 are arranged side by side in a predetermined direction (the Y-axis direction in this embodiment) in the same space within the housing 30.
  • the direction in which the high-potential cells 10 and the low-potential cells 20 are lined up (Y-axis direction) will be referred to as the "cell line-up direction.”
  • the electrolytic solution is, for example, a mixture of an electrolyte salt, an organic solvent, and an additive.
  • the electricity storage cell 100 has a pair of positive electrodes separated as a pair of electrodes (high potential positive electrode plate 110P, low potential positive electrode active material layer 214P) having active material layers having different operating potentials.
  • the electrodes are connected to individual external terminals (first positive terminal portion 40Pa, second positive terminal portion 40Pb).
  • the electricity storage cell 100 includes a plurality of high potential positive electrode plates 110P, a plurality of low potential positive electrode plates 210P, a plurality of common negative electrode plates 110N, and a separator 120. .
  • the high potential positive electrode plates 110P and the low potential positive electrode plates 210P are alternately arranged one by one in the cell arrangement direction.
  • the common negative electrode plate 110N is arranged to be interposed between the high potential positive electrode plate 110P and the low potential positive electrode plate 210P that face each other in the cell arrangement direction.
  • the separator 120 is provided between the high potential positive electrode plate 110P and the common negative electrode plate 110N, which face each other in the cell arrangement direction, and between the low potential positive electrode plate 210P and the common negative electrode plate 110N, which face each other in the cell arrangement direction. They are arranged so that they are interposed between each other. That is, the electricity storage cell 100 has a laminated structure in which a high potential positive electrode plate 110P, a low potential positive electrode plate 210P, a common negative electrode plate 110N, and a separator 120 are arranged side by side in a predetermined direction (in this embodiment, the cell arrangement direction). There is.
  • the high potential positive electrode plate 110P is an example of the first electrode in the claims
  • the low potential positive electrode plate 210P is an example of the second electrode in the claims
  • the common negative electrode plate 110N is an example of the second electrode in the claims. This is an example of a common electrode in the range of .
  • the high potential positive electrode plate 110P includes a positive current collector foil 112P and a pair of high potential positive electrode active material layers 114P, 114P supported by the positive current collector foil 112P.
  • the positive electrode current collector foil 112P may be a plain foil such as an aluminum foil, or may be a porous foil such as an etched foil or a punched foil. Further, the positive electrode current collector foil 112P has a positive electrode lug protruding upward near its upper end.
  • a pair of high potential positive electrode active material layers 114P are supported on both sides of the positive electrode current collector foil 112P, respectively.
  • the pair of high potential positive electrode active material layers 114P are formed of the same material.
  • the positive electrode current collector foil 112P is an example of a first current collector foil in the claims, and the high potential positive electrode active material layer 114P is an example of the first active material layer in the claims.
  • the low potential positive electrode plate 210P includes a positive current collector foil 212P and a pair of low potential positive electrode active material layers 214P, 214P supported by the positive current collector foil 212P.
  • the positive electrode current collector foil 212P may be a plain foil such as an aluminum foil, or may be a porous foil such as an etched foil or a punched foil. Further, the positive electrode current collector foil 212P has a positive electrode ear portion protruding upward near its upper end.
  • a pair of low potential positive electrode active material layers 214P are supported on both sides of the positive electrode current collector foil 212P, respectively.
  • the pair of low potential positive electrode active material layers 214P are formed of the same material.
  • the positive electrode current collector foil 212P is an example of a second current collector foil in the claims, and the low potential positive electrode active material layer 214P is an example of the second active material layer in the claims.
  • the operating potential of the low potential positive electrode active material layer 214P is lower than the operating potential of the high potential positive electrode active material layer 114P.
  • the material for forming the low potential positive electrode active material layer 214P is, for example, lithium iron phosphate (LFP).
  • Examples of materials for forming the high-potential positive electrode active material layer 114P include lithium metal oxides (lithium cobalt oxide (LiCoO 2 ), ternary lithium metal composite oxides, etc.), which have a higher operating potential (working potential) than lithium iron phosphate. (nickel manganese cobalt (NCA) type, etc.), lithium manganate (LMO), lithium nickel oxide (NCA), etc.).
  • the positive electrode active material layers 114P and 214P are further selected such that the capacitance characteristics of the high potential cell 10 are higher than the capacitance characteristics of the low potential cell 20.
  • the common negative electrode plate 110N includes a negative electrode current collector foil 112N and a pair of negative electrode active material layers 114N, 114N supported by the negative electrode current collector foil 112N.
  • the negative electrode current collector foil 112N is, for example, a copper foil, and may be a plain foil or a porous foil such as an etched foil or a punched foil. Further, the negative electrode current collector foil 112N has a negative electrode ear portion protruding upward near its upper end.
  • the pair of negative electrode active material layers 114N are supported on both sides of the negative electrode current collector foil 112N, respectively.
  • the pair of negative electrode active material layers 114N are formed of the same material.
  • Examples of materials used to form the negative electrode active material layer 114N include graphite, silicon-based materials, hard carbon, soft carbon, and lithium titanate (LTO).
  • the negative electrode current collector foil 112N is an example of a common current collector foil in the claims, and the negative electrode active material layer 114N is an example of a common active material layer in the claims.
  • the separator 120 is made of an insulating material (for example, paper, glass fiber, or synthetic resin (porous polyethylene film, etc.)).
  • the ears of the plurality of high potential positive electrode plates 110P are electrically connected to the first positive electrode side terminal part 40Pa, and the ears of the plurality of low potential positive electrode plates 210P are electrically connected to the second positive electrode side terminal part 40Pb. It is connected to the.
  • the ear portions of the plurality of common negative electrode plates 110N are electrically connected to the negative electrode side terminal portion 40N.
  • the high potential cell 10 is configured by the high potential positive electrode active material layer 114P of the high potential positive electrode plate 110P, the negative electrode active material layer 114N of the common negative electrode plate 110N, and the separator 120 interposed between them.
  • the low potential cell 20 is constituted by the low potential positive electrode active material layer 214P of the low potential positive electrode plate 210P, the negative electrode active material layer 114N of the common negative electrode plate 110N, and the separator 120 interposed between them. That is, the high potential cell 10 and the low potential cell 20 are connected in parallel to each other.
  • the power storage cell 100 is configured such that a predetermined plurality of high potential cells 10 and low potential cells 20 (two in FIG. 2) are arranged alternately in the cell arrangement direction.
  • a cell switching process executed by the control unit 60 of the management device 5 in the power storage device 1 of this embodiment will be described.
  • the cell switching process is a process of switching the usage mode of the storage battery 3 between a high potential cell usage format and a low potential cell usage format, depending on whether a predetermined switching condition is satisfied.
  • the cell switching process is started, for example, automatically when the management device 5 is started, or in response to an instruction from the administrator.
  • FIG. 3 is a flowchart showing cell switching processing.
  • the control unit 60 determines whether the switching condition is satisfied (S110).
  • the switching conditions include, as a necessary condition, that the temperature of the storage battery 3 is equal to or higher than the first reference temperature.
  • the control unit 60 determines whether the temperature of the storage battery 3 is equal to or higher than the first reference temperature.
  • the first reference temperature is a temperature at which the amount of gas generated due to oxidative decomposition of the electrolytic solution increases rapidly when the high potential cell 10 is used within the operating voltage range, and is, for example, 40°C.
  • the cell switching unit 62 controls the changeover switch 50 to change the usage mode of the storage battery 3 to the high potential cell usage mode. (S130, "first cell usage mode" in FIG. 3), and returns to S110.
  • the high potential cell 10 is used.
  • the high potential cell 10 has higher capacitance characteristics than the low potential cell 20, high capacity charging and discharging can be performed using the high potential cell 10. Since the operating potential of the high potential positive electrode active material layer 114P constituting the high potential cell 10 is relatively high, the operating voltage range of the high potential cell 10 is also relatively high.
  • control unit 60 controls charging and discharging of the storage battery 3 based on the signal received from the voltmeter 22 so that the terminal voltage of each high potential cell 10 becomes approximately 3.6V. At this time, since the temperature of the storage battery 3 is less than 40° C., generation of gas due to oxidative decomposition of the electrolytic solution can be suppressed.
  • the cell switching unit 62 controls the changeover switch 50 to change the usage mode of the storage battery 3 to the high potential cell
  • the usage mode is switched to the low potential cell usage format (S120, "second cell usage format" in FIG. 3), and the process returns to S110.
  • the temperature of the storage battery 3 is 40° C. or higher, the low potential cell 20 is used. Since the operating potential of the low potential positive electrode active material layer 214P constituting the low potential cell 20 is relatively low, the operating voltage range of the low potential cell 20 is also relatively low.
  • control unit 60 controls charging and discharging of the storage battery 3 based on the signal received from the voltmeter 22 so that the terminal voltage of each low potential cell 20 becomes approximately 3.2V. Therefore, compared to the case where the use of the high potential cell 10 is continued even if the temperature of the storage battery 3 exceeds the first reference temperature, the amount of gas generated by oxidative decomposition of the electrolytic solution is reduced by the amount of charging and discharging performed at a lower voltage. The occurrence of can be suppressed. That is, according to this embodiment, it is possible to suppress charging and discharging at high voltage at high temperatures while enabling high capacity charging and discharging.
  • FIG. 4 is an explanatory diagram showing the internal configuration of a storage battery 3A in the second embodiment.
  • the structure of the storage battery is different from the power storage device 1 of the first embodiment.
  • the storage battery 3A includes a storage cell 100A.
  • the power storage cell 100A includes a plurality of high potential cells 10A and a plurality of low potential cells 20A. Inside the housing 30, a plurality of high potential cells 10A, a plurality of low potential cells 20A, and an electrolytic solution (not shown) are housed in the same space. Note that in FIG. 4, one high potential cell 10A and one low potential cell 20A are illustrated, and other cells are omitted.
  • the negative electrode is separated into a pair of electrodes (a high potential negative electrode active material layer 114N, a low potential negative electrode active material layer 214N) having active material layers with different operating potentials in a "separated electrode".
  • a pair of electrodes are connected to individual external terminals (first negative terminal portion 40Na, second negative terminal portion 40Nb).
  • the electricity storage cell 100A includes a plurality of high potential negative electrode plates 110N, a plurality of low potential negative electrode plates 210N, a plurality of common positive electrode plates 110P, and a separator 120. .
  • the high potential negative electrode plates 110N and the low potential negative electrode plates 210N are alternately arranged one by one in the cell arrangement direction.
  • the common positive electrode plate 110P is arranged so as to be interposed between the high potential negative electrode plate 110N and the low potential negative electrode plate 210N that face each other in the cell arrangement direction.
  • the separator 120 is provided between the high potential negative electrode plate 110N and the common positive electrode plate 110P, which face each other in the cell arrangement direction, and between the low potential negative electrode plate 210N and the common positive electrode plate 110P, which face each other in the cell arrangement direction. They are arranged so that they are interposed between each other. That is, the electricity storage cell 100A has a laminated structure in which a high potential negative electrode plate 110N, a low potential negative electrode plate 210N, a common positive electrode plate 110P, and a separator 120 are arranged side by side in a predetermined direction (in this embodiment, the cell arrangement direction). There is.
  • the high potential negative electrode plate 110N is an example of the second electrode in the claims
  • the low potential negative electrode plate 210N is an example of the first electrode in the claims
  • the common positive electrode plate 110P is an example of the second electrode in the claims. This is an example of a common electrode in the range of .
  • the high potential negative electrode plate 110N includes a negative current collector foil 112N and a pair of high potential negative electrode active material layers 114N, 114N supported by the negative current collector foil 112N.
  • the negative electrode current collector foil 112N may be a plain foil such as a copper foil or an aluminum foil, or may be a porous foil such as an etched foil or a punched foil. Further, the negative electrode current collector foil 112N has a positive electrode lug protruding upward near its upper end.
  • a pair of high potential negative electrode active material layers 114N are supported on both sides of the negative electrode current collector foil 112N, respectively.
  • the pair of high potential negative electrode active material layers 114N are formed of the same material.
  • the negative electrode current collector foil 112N is an example of a second current collector foil in the claims, and the high potential negative electrode active material layer 114N is an example of the second active material layer in the claims.
  • the low potential negative electrode plate 210N includes a negative current collector foil 212N and a pair of low potential negative electrode active material layers 214N, 214N supported by the negative current collector foil 212N.
  • the negative electrode current collector foil 212N may be a plain foil such as a copper foil, or may be a porous foil such as an etched foil or a punched foil. Further, the negative electrode current collector foil 212N has a positive electrode lug protruding upward near its upper end.
  • a pair of low potential negative electrode active material layers 214N are supported on both sides of the negative electrode current collector foil 212N, respectively.
  • the pair of low potential negative electrode active material layers 214N are formed of the same material.
  • the negative electrode current collector foil 212N is an example of a first current collector foil in the claims, and the low potential negative electrode active material layer 214N is an example of the first active material layer in the claims.
  • the operating potential of the high potential negative electrode active material layer 114N is higher than the operating potential of the low potential negative electrode active material layer 214N.
  • the material for forming the high potential negative electrode active material layer 114N is, for example, LTO.
  • the material for forming the low potential negative electrode active material layer 214N is, for example, a carbon material (C) such as graphite.
  • each negative electrode active material layer 114N, 214N is further selected such that the capacitance characteristic of the low potential cell 20A is higher than that of the high potential cell 10A.
  • the common positive electrode plate 110P has, for example, the same configuration as the high potential positive electrode plate 110P of the first embodiment.
  • the ears of the plurality of low potential negative electrode plates 210N are electrically connected to the first negative electrode side terminal part 40Na, and the ears of the plurality of high potential negative electrode plates 110N are electrically connected to the second negative electrode side terminal part 40Nb. It is connected to the.
  • the ear portions of the plurality of common positive electrode plates 110P are electrically connected to the positive electrode side terminal portion 40P.
  • the high potential cell 10A is configured by the high potential negative electrode active material layer 114N of the high potential negative electrode plate 110N, the positive electrode active material layer 114P of the common positive electrode plate 110P, and the separator 120 interposed between them.
  • a low potential cell 20A is configured by the low potential negative electrode active material layer 214N of the low potential negative electrode plate 210N, the positive electrode active material layer 114P of the common positive electrode plate 110P, and the separator 120 interposed between them. That is, the high potential cell 10A and the low potential cell 20A are connected in parallel to each other.
  • the power storage cell 100A has a configuration in which a predetermined plurality of (two in FIG. 2) high potential cells 10A and low potential cells 20A are arranged alternately in the cell arrangement direction.
  • the switching conditions in S110 of the cell switching process in FIG. 3 include as a necessary condition that the temperature of the storage battery 3A is equal to or lower than the second reference temperature.
  • the control unit 60 determines whether the temperature of the storage battery 3A is below the second reference temperature.
  • the second reference temperature is a temperature at which the amount of precipitated lithium (Li) contained in the common positive electrode plate 110P increases rapidly when the low potential cell 20A is used within the operating voltage range, and is, for example, 0°C.
  • the cell switching unit 62 controls the changeover switch 50 to switch the positive terminal 42 to the first negative terminal part 40Na. Connect to.
  • a low potential cell usage mode is established in which the low potential cell 20A is used to charge/discharge an external device (S130, "first cell usage mode" in FIG. 3), and the process returns to S110.
  • the temperature of the storage battery 3A exceeds 0° C.
  • the low potential cell 20A is used.
  • the low potential cell 20A has higher capacity characteristics than the high potential cell 10A, high capacity charging and discharging can be performed using the low potential cell 20A.
  • the control unit 60 controls charging and discharging of the storage battery 3A based on the signal received from the voltmeter 22 so that the terminal voltage of each low potential cell 20A becomes approximately 0.2V. At this time, since the temperature of the storage battery 3A exceeds 0° C., precipitation of lithium contained in the common positive electrode plate 110P can be suppressed.
  • the cell switching unit 62 controls the changeover switch 50 to change the positive terminal 42 to the second negative terminal. Connect to section 40Nb.
  • the high potential cell usage mode is established in which the high potential cell 10A is used to charge and discharge external equipment (S120, "second cell usage mode" in FIG. 3), and the process returns to S110.
  • the temperature of the storage battery 3A is 0° C. or lower, the high potential cell 10A is used.
  • the control unit 60 controls charging and discharging of the storage battery 3A based on the signal received from the voltmeter 22 so that the terminal voltage of each high potential cell 10A becomes approximately 1.5V. Therefore, compared to the case where the low potential cell 20A is continued to be used even if the temperature of the storage battery 3A becomes 0°C or lower, lithium contained in the common positive electrode plate 110P is deposited by the amount of charging and discharging performed at a high voltage. can be suppressed. That is, according to this embodiment, it is possible to suppress charging and discharging at high voltage at high temperatures while enabling high capacity charging and discharging.
  • the configuration of the power storage device 1 in the above embodiment is just an example, and can be modified in various ways.
  • the changeover switch 50 may be a changeover switch that is manually switched.
  • activated carbon such as steam-activated carbon or alkali-activated carbon is used as the material for forming the first active material layer (positive electrode active material layer), and activated carbon such as steam activated carbon or alkali activated carbon is used as the forming material for the second active material layer (positive electrode active material layer).
  • a structure using lithium metal oxide such as LFP may be used.
  • the common electrode is, for example, the common negative electrode plate 110N.
  • the first cell is a lithium ion capacitor (hereinafter referred to as "LIC") that has a relatively low internal resistance and exhibits relatively high output characteristics, and the second cell has a relatively low internal resistance.
  • LIC lithium ion capacitor
  • LIB lithium ion battery
  • a renewable energy generation device that generates electricity using renewable energy (e.g. solar, wind, hydro, geothermal, thermal natural energy, etc.)
  • cell switching processing can be performed. That is, when voltage fluctuations are relatively small (for example, when solar power generation is stopped at night), charging and discharging at a high capacity can be performed by using LIB.
  • voltage fluctuations are relatively small (for example, when solar power generation is stopped at night)
  • charging and discharging at a high capacity can be performed by using LIB.
  • voltage fluctuations are relatively large (for example, during daytime solar power generation)
  • LIC it is possible to charge and discharge while absorbing sudden voltage fluctuations. can.
  • the first active material layer (negative electrode active material layer) is formed using a carbon material
  • the second active material layer (negative electrode active material layer) is formed by silicon (Si)
  • a structure using silicon monoxide (SiO) may also be used.
  • the common electrode is, for example, the common positive electrode plate 110P. In this configuration, the first cell has a relatively low internal resistance and exhibits relatively high output characteristics, and the second cell has a relatively high internal resistance and has relatively high capacitance characteristics. It becomes a cell that exhibits.
  • the power storage cell 100 includes a plurality of high potential cells 10 and a plurality of low potential cells 20, and a predetermined number of high potential cells 10 and low potential cells 20 are arranged alternately in the cell arrangement direction.
  • the configuration is such that they are arranged side by side, for example, only the high potential cells 10 or only the LIC cells may be arranged consecutively in the cell arrangement direction.
  • the number of high potential cells 10 and low potential cells 20 is not limited to the same number, and the ratio of the number of high potential cells 10 to low potential cells 20 may be changed.
  • a configuration may be adopted in which each power storage device includes one high potential cell 10 and one low potential cell 20.
  • the pair of negative electrode active material layers 114N attached to the common negative electrode plate 110N may be formed of mutually different materials. The same applies to the high potential cell 10A and the low potential cell 20A in the second embodiment.
  • a plurality of high potential cells 10, a plurality of low potential cells 20, and an electrolytic solution are housed in the same space, but one high potential cell 10 and one low potential cell
  • the cell 20 and the electrolyte may be housed in the same space, or the high potential cell 10 and the low potential cell 20 may be housed in different spaces (cell chamber, battery case).
  • both the high potential cell 10 and the low potential cell 20 have a laminated structure, but the structure is not limited to this, and for example, one of the positive electrode and the negative electrode may be wound around the other. A configuration having a wound structure may also be used. The same applies to the high potential cell 10A and the low potential cell 20A in the second embodiment.
  • the present invention is not limited to this, and the present invention can be applied to other storage batteries such as an all-solid-state battery, a sodium battery, a magnesium battery, etc. .
  • each member in the above embodiment are merely examples, and each member may be composed of other materials. Further, the method for manufacturing the power storage cell in the above embodiment is merely an example, and the battery cell may be manufactured by other manufacturing methods.
  • the predetermined switching condition may be a condition based on, for example, the voltage or current of the storage battery, in addition to the temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention makes it possible to reduce component count and to charge/discharge in different operating voltage ranges. A storage battery according to the present invention comprises a first electrode that has positive or negative polarity, a second electrode that has the same polarity as the first electrode, and a shared electrode that has the opposite polarity from the first and second electrodes. The first electrode has a first collector foil and first active material layers that are formed on the respective surfaces of the first collector foil. The second electrode has a second collector foil and second active material layers that are formed on the respective surfaces of the second collector foil and have a different operating voltage from that of the first active material layers. The shared electrode is positioned between the first electrode and the second electrode, and has a shared collector foil in which a plurality of through holes have been formed and shared active material layers which are formed on the respective surfaces of the shared collector foil. The storage battery also comprises a first external terminal that is connected to the first electrode, a second external terminal that is connected to the second electrode, and a shared external terminal that is connected to the shared electrode.

Description

蓄電池、および、蓄電装置Storage batteries and power storage devices
 本発明は、蓄電池、および、蓄電装置に関する。 The present invention relates to a storage battery and a power storage device.
 従来から、出力特性が互いに異なる2種類のセルを有するハイブリッドの蓄電池が知られている(下記特許文献1~4参照)。例えば、遷移金属酸化物(コバルト酸リチウム等)が含まれる第1の正極と、活性炭(フェノール樹脂)が含まれる第2の正極との間に負極が配置されたハイブリッドの蓄電池が知られている。このハイブリッドの蓄電池では、第1の正極と負極とで構成される第1のセルは、相対的に内部抵抗が高く、相対的に高い容量特性を発揮する。第2の正極と負極とで構成される第2のセルは、相対的に内部抵抗が低いため、相対的に高い出力特性(充放電の高速化)を発揮する。 Hitherto, hybrid storage batteries having two types of cells with different output characteristics have been known (see Patent Documents 1 to 4 below). For example, a hybrid storage battery is known in which a negative electrode is placed between a first positive electrode containing a transition metal oxide (such as lithium cobalt oxide) and a second positive electrode containing activated carbon (phenol resin). . In this hybrid storage battery, a first cell composed of a first positive electrode and a negative electrode has a relatively high internal resistance and exhibits relatively high capacity characteristics. The second cell composed of the second positive electrode and the negative electrode has a relatively low internal resistance, so it exhibits relatively high output characteristics (high speed charging and discharging).
特開2009-26480号公報JP2009-26480A 特開2014-7107号公報Unexamined Japanese Patent Publication No. 2014-7107 国際公開第2015/83954号International Publication No. 2015/83954 特開2012-114415号公報Japanese Patent Application Publication No. 2012-114415
 しかし、従来のハイブリッドの蓄電池では、2種類のセルの特性を十分に活かしきれておらず、ハイブリッドの蓄電池の有効活用について改良の余地がある。 However, in conventional hybrid storage batteries, the characteristics of the two types of cells cannot be fully utilized, and there is room for improvement in the effective use of hybrid storage batteries.
 なお、このような課題は、一対の正極の間に負極が配置された蓄電池に限らず、一対の負極の間に正極が配置された蓄電池にも共通の課題である。 Note that such a problem is not limited to storage batteries in which a negative electrode is arranged between a pair of positive electrodes, but is also common to storage batteries in which a positive electrode is arranged between a pair of negative electrodes.
 本発明は、上述した課題を解決することが可能な蓄電池、および、蓄電装置を提供することを目的とする。 An object of the present invention is to provide a storage battery and a power storage device that can solve the above-mentioned problems.
(1)本明細書に開示される蓄電池は、正極性と負極性との一方の極性を有する第1の電極と、前記一方の極性を有する第2の電極と、正極性と負極性との他方の極性を有する共通電極と、を備える。第1の電極は、第1の集電箔と、前記第1の集電箔の両面に形成された第1の活物質層とを有する。第2の電極は、第2の集電箔と、前記第2の集電箔の両面に形成され、かつ、前記第1の活物質層とは動作電位が異なる第2の活物質層とを有する。共通電極は、前記第1の電極と前記第2の電極との間に配置され、複数の貫通孔が形成された共通集電箔と、前記共通集電箔の両面に形成された共通活物質層とを有する。蓄電池は、さらに、前記第1の電極に接続される第1の外部端子と、前記第2の電極に接続される第2の外部端子と、前記共通電極に接続されている共通外部端子と、を備える。 (1) The storage battery disclosed in this specification includes a first electrode having one of positive and negative polarities, a second electrode having one of the polarities, and a second electrode having one of positive and negative polarities. a common electrode having the other polarity. The first electrode includes a first current collector foil and a first active material layer formed on both sides of the first current collector foil. The second electrode includes a second current collecting foil and a second active material layer formed on both surfaces of the second current collecting foil and having a different operating potential from the first active material layer. have The common electrode is arranged between the first electrode and the second electrode, and includes a common current collecting foil in which a plurality of through holes are formed, and a common active material formed on both sides of the common current collecting foil. It has a layer. The storage battery further includes a first external terminal connected to the first electrode, a second external terminal connected to the second electrode, and a common external terminal connected to the common electrode. Equipped with
 本蓄電池では、第1の電極が有する第1の活物質層と第2の電極が有する第2の活物質層とは、動作電位が互いに異なる。このため、第1の電極と共通電極とで構成される第1のセルの動作電圧と、第2の電極と共通電極とで構成される第2のセルの動作電圧とが互いに異なる。また、外部機器を第1の外部端子と共通外部端子とに接続することにより第1のセルの動作電圧範囲内で充放電を行い、外部機器を第2の外部端子と共通外部端子とに接続することにより第2のセルの動作電圧範囲内で充放電を行うことができる。また、共通電極を用いることにより、蓄電池の部品点数の低減を図ることができる。すなわち、本蓄電池によれば、部品点数の低減を図りつつ、互いに異なる動作電圧範囲で充放電を行うことができる。 In this storage battery, the first active material layer of the first electrode and the second active material layer of the second electrode have different operating potentials. Therefore, the operating voltage of the first cell composed of the first electrode and the common electrode is different from the operating voltage of the second cell composed of the second electrode and the common electrode. Furthermore, charging and discharging is performed within the operating voltage range of the first cell by connecting an external device to the first external terminal and the common external terminal, and connecting an external device to the second external terminal and the common external terminal. By doing so, charging and discharging can be performed within the operating voltage range of the second cell. Furthermore, by using a common electrode, the number of parts of the storage battery can be reduced. That is, according to the present storage battery, charging and discharging can be performed in mutually different operating voltage ranges while reducing the number of parts.
(2)本明細書に開示される蓄電装置は、上記(1)の蓄電池と、前記蓄電池を管理するための管理装置とを備える。前記管理装置は、外部機器を前記第1の外部端子と前記共通外部端子とに接続する第1のセル利用形態において、所定の切替条件が満たされた場合、前記外部機器を前記第2の外部端子と前記共通外部端子とに接続する第2のセル利用形態に切り替えるセル切替部を備えるとしてもよい。本蓄電装置では、所定の切替条件が満たされた場合、第1のセル利用形態から第2のセル利用形態に自動で切り替えることができる。 (2) The power storage device disclosed in this specification includes the storage battery of (1) above and a management device for managing the storage battery. In a first cell usage mode in which an external device is connected to the first external terminal and the common external terminal, when a predetermined switching condition is satisfied, the management device connects the external device to the second external terminal. It is also possible to include a cell switching section that switches to a second cell usage mode connected to the terminal and the common external terminal. In this power storage device, when a predetermined switching condition is met, the first cell usage mode can be automatically switched to the second cell usage mode.
(3)上記蓄電装置において、前記第1の電極と前記第2の電極とは正極性を有し、前記共通電極は負極性を有し、前記第2の活物質層の動作電位は、前記第1の活物質層の動作電位よりも低くしてもよい。前記管理装置は、さらに、前記蓄電池の温度を取得する温度取得部を備えるとしてもよい。前記切替条件は、前記温度取得部が取得した前記蓄電池の温度が第1の基準温度以上であることを必要条件として含むとしてもよい。本蓄電装置では、蓄電池の温度が第1の基準温度未満である場合、第1のセル利用形態とすることによって充放電を行うことができる。一方、蓄電池の温度が第1の基準温度以上である場合、動作電位が相対的に低い第2のセル利用形態とすることによって、例えば電解液の酸化分解によるガスの発生を抑制することができる。すなわち、本蓄電装置によれば、広い温度範囲で充放電を可能としつつ、高温時において高電圧で充放電を行うことを抑制することができる。 (3) In the power storage device, the first electrode and the second electrode have positive polarity, the common electrode has negative polarity, and the operating potential of the second active material layer is The operating potential may be lower than the operating potential of the first active material layer. The management device may further include a temperature acquisition unit that acquires the temperature of the storage battery. The switching condition may include, as a necessary condition, that the temperature of the storage battery acquired by the temperature acquisition unit is equal to or higher than a first reference temperature. In this power storage device, when the temperature of the storage battery is lower than the first reference temperature, charging and discharging can be performed by using the first cell usage mode. On the other hand, when the temperature of the storage battery is equal to or higher than the first reference temperature, by using a second cell usage mode with a relatively low operating potential, it is possible to suppress the generation of gas due to oxidative decomposition of the electrolyte, for example. . That is, according to the present power storage device, charging and discharging can be performed in a wide temperature range, while charging and discharging can be suppressed at high voltages at high temperatures.
(4)上記蓄電装置において、前記第1の電極と前記第2の電極とは負極性を有し、前記共通電極は正極性を有し、前記第2の活物質層の動作電位は、前記第1の活物質層の動作電位よりも高くてもよい。前記管理装置は、さらに、前記蓄電池の温度を取得する温度取得部を備えるとしてもよい。前記切替条件は、前記温度取得部が取得した前記蓄電池の温度が第2の基準温度以下であることを含むとしてもよい。本蓄電装置では、蓄電池の温度が第2の基準温度を超える場合、第1のセル利用形態とすることによって充放電を行うことができる。一方、蓄電池の温度が第2の基準温度以下である場合、動作電位が相対的に高い第2のセル利用形態とすることによって例えば共通電極に含まれる金属の析出を抑制することができる。すなわち、本蓄電装置によれば、広い温度範囲で充放電を可能としつつ、低温時において低電圧で充放電を行うことを抑制することができる。 (4) In the power storage device, the first electrode and the second electrode have negative polarity, the common electrode has positive polarity, and the operating potential of the second active material layer is It may be higher than the operating potential of the first active material layer. The management device may further include a temperature acquisition unit that acquires the temperature of the storage battery. The switching condition may include that the temperature of the storage battery acquired by the temperature acquisition unit is equal to or lower than a second reference temperature. In this power storage device, when the temperature of the storage battery exceeds the second reference temperature, charging and discharging can be performed by using the first cell usage mode. On the other hand, when the temperature of the storage battery is equal to or lower than the second reference temperature, by using the second cell utilization mode with a relatively high operating potential, it is possible to suppress the precipitation of metal contained in the common electrode, for example. That is, according to the present power storage device, charging and discharging can be performed over a wide temperature range, while charging and discharging can be suppressed from being performed at a low voltage at low temperatures.
 なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、蓄電セル、蓄電池、複数の蓄電池を備える蓄電モジュール、蓄電池管理装置、蓄電池と管理装置とを備える蓄電装置、それらの管理方法、それらの方法を実現するコンピュータプログラム、そのコンピュータプログラムを記録した一時的でない記録媒体等の形態で実現することができる。 Note that the technology disclosed in this specification can be realized in various forms, for example, a storage cell, a storage battery, a storage module including a plurality of storage batteries, a storage battery management device, a storage battery and a management device. It can be realized in the form of a power storage device, a method of managing the same, a computer program that implements the method, a non-temporary recording medium on which the computer program is recorded, and the like.
第1実施形態における蓄電装置1の構成を概略的に示す説明図An explanatory diagram schematically showing the configuration of power storage device 1 in the first embodiment 蓄電池3の内部構成を示す説明図Explanatory diagram showing the internal configuration of the storage battery 3 セル切替処理を示すフローチャートFlowchart showing cell switching process 第2実施形態における蓄電池3Aの内部構成を示す説明図An explanatory diagram showing the internal configuration of a storage battery 3A in the second embodiment
A.第1実施形態:
A-1.蓄電装置1の構成:
(蓄電装置1の構成):
 図1は、第1実施形態における蓄電装置1の構成を概略的に示す説明図である。蓄電装置1は、蓄電池3と、管理装置5とを備えている。蓄電装置1は、プラス端子42およびマイナス端子44を介して、図示しない外部機器(負荷、外部電源、充電装置等)に接続される。
A. First embodiment:
A-1. Configuration of power storage device 1:
(Configuration of power storage device 1):
FIG. 1 is an explanatory diagram schematically showing the configuration of a power storage device 1 in the first embodiment. The power storage device 1 includes a storage battery 3 and a management device 5. Power storage device 1 is connected to external equipment (not shown) (load, external power source, charging device, etc.) via positive terminal 42 and negative terminal 44 .
 図1に示すように、蓄電池3は、筐体30と、蓄電セル100とを備えている。 As shown in FIG. 1, the storage battery 3 includes a housing 30 and a storage cell 100.
 筐体30は、蓄電セル100が収容される収容空間が形成された容器である。筐体30は、例えばアルミニウムなどの金属、または水分吸収が無い合成樹脂により形成されている。筐体30には、第1の正極側端子部40Paと、第2の正極側端子部40Pbと、負極側端子部40Nとが設けられている。 The housing 30 is a container in which a housing space is formed in which the power storage cell 100 is housed. The housing 30 is made of metal such as aluminum, or synthetic resin that does not absorb moisture. The housing 30 is provided with a first positive terminal portion 40Pa, a second positive terminal portion 40Pb, and a negative terminal portion 40N.
 なお、例えば筐体30における一部または全部の金属部分が、第1の正極側端子部40Paと第2の正極側端子部40Pbと負極側端子部40Nとのいずれか一つを兼ねる構成でもよい。また、蓄電池3は、例えば、ラミネートフィルム等の袋体に蓄電セル100が収容された構成でもよい。第1の正極側端子部40Paは、特許請求の範囲における第1の外部端子の一例であり、第2の正極側端子部40Pbは、特許請求の範囲における第2の外部端子の一例であり、負極側端子部40Nは、特許請求の範囲における第1の共通外部端子の一例である。 Note that, for example, some or all of the metal parts in the housing 30 may be configured to serve as any one of the first positive terminal portion 40Pa, the second positive terminal portion 40Pb, and the negative terminal portion 40N. . Furthermore, the storage battery 3 may have a configuration in which the storage battery 100 is housed in a bag such as a laminate film. The first positive terminal part 40Pa is an example of the first external terminal in the claims, and the second positive terminal part 40Pb is an example of the second external terminal in the claims, The negative electrode side terminal portion 40N is an example of a first common external terminal in the claims.
 蓄電セル100は、高電位セル10と低電位セル20とを有するハイブリッドの蓄電セルである。低電位セル20は、高電位セル10に比べて、動作電圧範囲が低い。なお、高電位セル10の電圧動作範囲と低電位セル20の電圧動作範囲とは一部が互いに重なっていてもよい。動作電圧範囲は、金属の析出等の不具合なく正常に動作することができる蓄電池の電圧範囲であり、活物質の組成によって定まる。高電位セル10は、第1の正極側端子部40Paと負極側端子部40Nとの間に接続されている。低電位セル20は、第2の正極側端子部40Pbと負極側端子部40Nとの間に接続されている。蓄電セル100の詳細構成は後述する。 The power storage cell 100 is a hybrid power storage cell having a high potential cell 10 and a low potential cell 20. The low potential cell 20 has a lower operating voltage range than the high potential cell 10. Note that the voltage operating range of the high potential cell 10 and the voltage operating range of the low potential cell 20 may partially overlap with each other. The operating voltage range is the voltage range in which the storage battery can operate normally without problems such as metal deposition, and is determined by the composition of the active material. The high potential cell 10 is connected between a first positive terminal portion 40Pa and a negative terminal portion 40N. The low potential cell 20 is connected between the second positive terminal section 40Pb and the negative terminal section 40N. The detailed configuration of power storage cell 100 will be described later.
 管理装置5は、蓄電池3を管理するための装置である。管理装置5は、電圧計22と、電流計24と、温度計26と、監視部28と、ラインスイッチ40と、切替スイッチ50と、制御部60と、記録部72と、履歴部74と、インターフェース(I/F)部76とを備えている。 The management device 5 is a device for managing the storage battery 3. The management device 5 includes a voltmeter 22, an ammeter 24, a thermometer 26, a monitoring section 28, a line switch 40, a changeover switch 50, a control section 60, a recording section 72, a history section 74, An interface (I/F) section 76 is provided.
 電圧計22は、高電位セル10と低電位セル20とのそれぞれに対して設けられている。各電圧計22は、各セル10,20に対して並列に接続され、各セル10,20の電圧を計測して、電圧計測値を示す信号を監視部28に向けて出力する。電流計24は、蓄電池3に対して直列に接続されている。電流計24は、蓄電池3(各セル10,20)に流れる電流を計測して、電流計測値を示す信号を監視部28に向けて出力する。温度計26は、蓄電池3の近くに配置されている。温度計26は、蓄電池3の温度を計測して、温度計測値を示す信号を監視部28に向けて出力する。監視部28は、電圧計22、電流計24および温度計26から受け取った信号に基づき、各セル10,20の電圧、蓄電池3に流れる電流および蓄電池3の温度を示す信号を制御部60に向けて出力する。温度計26は、特許請求の範囲における温度取得部の一例である。 A voltmeter 22 is provided for each of the high potential cell 10 and the low potential cell 20. Each voltmeter 22 is connected in parallel to each cell 10, 20, measures the voltage of each cell 10, 20, and outputs a signal indicating the voltage measurement value to the monitoring unit 28. Ammeter 24 is connected in series to storage battery 3 . The ammeter 24 measures the current flowing through the storage battery 3 (each cell 10, 20) and outputs a signal indicating the current measurement value to the monitoring unit 28. Thermometer 26 is placed near storage battery 3. The thermometer 26 measures the temperature of the storage battery 3 and outputs a signal indicating the measured temperature value to the monitoring unit 28 . Based on the signals received from the voltmeter 22, ammeter 24, and thermometer 26, the monitoring unit 28 directs signals indicating the voltage of each cell 10, 20, the current flowing through the storage battery 3, and the temperature of the storage battery 3 to the control unit 60. and output it. The thermometer 26 is an example of a temperature acquisition unit in the claims.
 ラインスイッチ40は、蓄電池3(負極側端子部40N)とマイナス端子44との間に設置されている。ラインスイッチ40は、制御部60によってオン・オフ制御されることにより、蓄電池3と負荷および外部電源(図示しない)との間の接続を開閉する。 The line switch 40 is installed between the storage battery 3 (negative terminal part 40N) and the negative terminal 44. The line switch 40 is controlled on and off by the control unit 60 to open and close connections between the storage battery 3 and a load and an external power source (not shown).
 切替スイッチ50は、プラス端子42を、蓄電池3の第1の正極側端子部40Paと第2の正極側端子部40Pbとに選択的に接続する。プラス端子42が第1の正極側端子部40Paに接続されると、高電位セル10を利用して外部機器への充放電を行う、高電位セル利用形態になる。プラス端子42が第2の正極側端子部40Pbに接続されると、低電位セル20を利用して外部機器への充放電を行う、低電位セル利用形態になる。高電位セル利用形態は、特許請求の範囲における第1のセル利用形態の一例であり、低電位セル利用形態は、特許請求の範囲における第2のセル利用形態の一例である。なお、本明細書で「充放電」とは、充電と放電との少なくとも一方を行うことを意味する。 The changeover switch 50 selectively connects the positive terminal 42 to the first positive terminal portion 40Pa and the second positive terminal portion 40Pb of the storage battery 3. When the positive terminal 42 is connected to the first positive terminal portion 40Pa, a high potential cell usage mode is established in which the high potential cell 10 is used to charge and discharge external equipment. When the positive terminal 42 is connected to the second positive terminal portion 40Pb, a low potential cell usage mode is established in which the low potential cell 20 is used to charge and discharge external equipment. The high potential cell usage mode is an example of the first cell usage mode in the claims, and the low potential cell usage mode is an example of the second cell usage mode in the claims. Note that in this specification, "charging and discharging" means performing at least one of charging and discharging.
 制御部60は、例えば、マルチコアCPU、マルチコアCPU、プログラマブルなデバイス(Field Programmable Gate Array(FPGA)、Programmable Logic Device(PLD)等)を用いて構成され、管理装置5の動作を制御する。制御部60は、セル切替部62としての機能を有する。 The control unit 60 is composed using, for example, multicore CPU, multicore CPU, programmable device (Field PROGRAMMABLE GATE ARRAY (FPGA), PROGRAMMABLE LOGIC DEVICE (PLD), etc.). , Control the operation of the management device 5. The control section 60 has a function as a cell switching section 62.
 記録部72は、例えばROMやRAM、ハードディスクドライブ(HDD)等により構成され、各種のプログラムやデータを記憶したり、各種の処理を実行する際の作業領域やデータの記憶領域として利用されたりする。例えば、記録部72には、後述のセル切替処理を実行するためのコンピュータプログラムが格納されている。該コンピュータプログラムは、例えば、CD-ROMやDVD-ROM、USBメモリ等のコンピュータ読み取り可能な記録媒体(不図示)に格納された状態で提供され、蓄電装置1にインストールすることにより記録部72に格納される。 The recording unit 72 is composed of, for example, ROM, RAM, hard disk drive (HDD), etc., and is used to store various programs and data, and to be used as a work area and data storage area when executing various processes. . For example, the recording unit 72 stores a computer program for executing cell switching processing, which will be described later. The computer program is provided in a state stored in a computer-readable recording medium (not shown) such as a CD-ROM, DVD-ROM, or USB memory, and is stored in the storage unit 72 by being installed in the power storage device 1. Stored.
 履歴部74は、例えばDVD-ROMやRAM、ハードディスクドライブ(HDD)等により構成され、蓄電装置1や蓄電池3に関する各種履歴を記録する。このような履歴としては、例えば、蓄電池3のOCVや、各セル10,20を使用したときの充放電の履歴が挙げられる。インターフェース部76は、有線または無線により他の装置との通信を行う。例えば、インターフェース部76を介した他の装置との通信により、履歴部74に記録された履歴が更新される。 The history section 74 is configured with, for example, a DVD-ROM, RAM, hard disk drive (HDD), etc., and records various histories regarding the power storage device 1 and the storage battery 3. Such history includes, for example, the OCV of the storage battery 3 and the history of charging and discharging when each cell 10, 20 is used. The interface unit 76 communicates with other devices by wire or wirelessly. For example, the history recorded in the history section 74 is updated by communication with another device via the interface section 76.
(蓄電池3の詳細構成):
 図2は、蓄電池3の内部構成を示す説明図である。図2には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を「上方向」といい、Z軸負方向を「下方向」というものとするが、蓄電池3は実際にはそのような向きとは異なる向きで設置されてもよい。
(Detailed configuration of storage battery 3):
FIG. 2 is an explanatory diagram showing the internal configuration of the storage battery 3. FIG. 2 shows mutually orthogonal XYZ axes for specifying directions. In this specification, for convenience, the Z-axis positive direction is referred to as "upward direction" and the Z-axis negative direction is referred to as "downward direction," but the storage battery 3 is actually oriented in a direction different from such directions. It may be installed in
 本実施形態では、蓄電セル100は、複数の高電位セル10と複数の低電位セル20とを有している。筐体30内では、複数の高電位セル10と複数の低電位セル20と電解液(図示しない)とが同一の空間内に収容されている。図2に示すように、筐体30内の同一の空間において、複数の高電位セル10と複数の低電位セル20とが所定方向(本実施形態ではY軸方向)に並べて配置されている。以下、高電位セル10と低電位セル20とが並ぶ方向(Y軸方向)を、「セル並び方向」という。筐体30内には、高電位セル10と低電位セル20とが電解液中に浸かっている。なお、電解液は、例えば電解質塩と有機溶媒と添加剤とを混合したものである。 In this embodiment, the electricity storage cell 100 includes a plurality of high potential cells 10 and a plurality of low potential cells 20. Inside the housing 30, a plurality of high potential cells 10, a plurality of low potential cells 20, and an electrolytic solution (not shown) are housed in the same space. As shown in FIG. 2, a plurality of high potential cells 10 and a plurality of low potential cells 20 are arranged side by side in a predetermined direction (the Y-axis direction in this embodiment) in the same space within the housing 30. Hereinafter, the direction in which the high-potential cells 10 and the low-potential cells 20 are lined up (Y-axis direction) will be referred to as the "cell line-up direction." Inside the housing 30, a high potential cell 10 and a low potential cell 20 are immersed in an electrolytic solution. Note that the electrolytic solution is, for example, a mixture of an electrolyte salt, an organic solvent, and an additive.
 蓄電セル100は、正極性の電極が、動作電位が互いに異なる活物質層を有する一対の電極(高電位正極板110P、低電位正極活物質層214P)として分離された「分離電極」において、一対の電極が個別の外部端子(第1の正極側端子部40Pa、第2の正極側端子部40Pb)に接続されている。 The electricity storage cell 100 has a pair of positive electrodes separated as a pair of electrodes (high potential positive electrode plate 110P, low potential positive electrode active material layer 214P) having active material layers having different operating potentials. The electrodes are connected to individual external terminals (first positive terminal portion 40Pa, second positive terminal portion 40Pb).
 具体的には、図2に示すように、蓄電セル100は、複数の高電位正極板110Pと、複数の低電位正極板210Pと、複数の共通負極板110Nと、セパレータ120とを備えている。高電位正極板110Pと低電位正極板210Pとは、セル並び方向に、1つずつ交互に配列されている。共通負極板110Nは、セル並び方向において互いに対向する高電位正極板110Pと低電位正極板210Pとの間に介在するように配置されている。また、セパレータ120は、セル並び方向において互いに対向する高電位正極板110Pと共通負極板110Nとの間と、セル並び方向において互いに対向する低電位正極板210Pと共通負極板110Nとの間とにそれぞれ介在するように配置されている。すなわち、蓄電セル100は、高電位正極板110Pと低電位正極板210Pと共通負極板110Nとセパレータ120とが所定方向(本実施形態ではセル並び方向)に並べて配置された積層構造を有している。高電位正極板110Pは、特許請求の範囲における第1の電極の一例であり、低電位正極板210Pは、特許請求の範囲における第2の電極の一例であり、共通負極板110Nは、特許請求の範囲における共通電極の一例である。 Specifically, as shown in FIG. 2, the electricity storage cell 100 includes a plurality of high potential positive electrode plates 110P, a plurality of low potential positive electrode plates 210P, a plurality of common negative electrode plates 110N, and a separator 120. . The high potential positive electrode plates 110P and the low potential positive electrode plates 210P are alternately arranged one by one in the cell arrangement direction. The common negative electrode plate 110N is arranged to be interposed between the high potential positive electrode plate 110P and the low potential positive electrode plate 210P that face each other in the cell arrangement direction. Furthermore, the separator 120 is provided between the high potential positive electrode plate 110P and the common negative electrode plate 110N, which face each other in the cell arrangement direction, and between the low potential positive electrode plate 210P and the common negative electrode plate 110N, which face each other in the cell arrangement direction. They are arranged so that they are interposed between each other. That is, the electricity storage cell 100 has a laminated structure in which a high potential positive electrode plate 110P, a low potential positive electrode plate 210P, a common negative electrode plate 110N, and a separator 120 are arranged side by side in a predetermined direction (in this embodiment, the cell arrangement direction). There is. The high potential positive electrode plate 110P is an example of the first electrode in the claims, the low potential positive electrode plate 210P is an example of the second electrode in the claims, and the common negative electrode plate 110N is an example of the second electrode in the claims. This is an example of a common electrode in the range of .
 高電位正極板110Pは、正極集電箔112Pと、正極集電箔112Pに支持された一対の高電位正極活物質層114P,114Pとを有する。正極集電箔112Pは、アルミニウム箔等のプレーン箔を使用してもよいし、エッチング箔やパンチング箔等の多孔箔を使用してもよい。また、正極集電箔112Pは、その上端付近に、上方に突出する正極耳部を有している。一対の高電位正極活物質層114Pは、正極集電箔112Pの両面にそれぞれ支持されている。一対の高電位正極活物質層114Pは、互いに同一材料により形成されている。正極集電箔112Pは、特許請求の範囲における第1の集電箔の一例であり、高電位正極活物質層114Pは、特許請求の範囲における第1の活物質層の一例である。 The high potential positive electrode plate 110P includes a positive current collector foil 112P and a pair of high potential positive electrode active material layers 114P, 114P supported by the positive current collector foil 112P. The positive electrode current collector foil 112P may be a plain foil such as an aluminum foil, or may be a porous foil such as an etched foil or a punched foil. Further, the positive electrode current collector foil 112P has a positive electrode lug protruding upward near its upper end. A pair of high potential positive electrode active material layers 114P are supported on both sides of the positive electrode current collector foil 112P, respectively. The pair of high potential positive electrode active material layers 114P are formed of the same material. The positive electrode current collector foil 112P is an example of a first current collector foil in the claims, and the high potential positive electrode active material layer 114P is an example of the first active material layer in the claims.
 低電位正極板210Pは、正極集電箔212Pと、正極集電箔212Pに支持された一対の低電位正極活物質層214P,214Pとを有する。正極集電箔212Pは、アルミニウム箔等のプレーン箔を使用してもよいし、エッチング箔やパンチング箔等の多孔箔を使用してもよい。また、正極集電箔212Pは、その上端付近に、上方に突出する正極耳部を有している。一対の低電位正極活物質層214Pは、正極集電箔212Pの両面にそれぞれ支持されている。一対の低電位正極活物質層214Pは、互いに同一材料により形成されている。正極集電箔212Pは、特許請求の範囲における第2の集電箔の一例であり、低電位正極活物質層214Pは、特許請求の範囲における第2の活物質層の一例である。 The low potential positive electrode plate 210P includes a positive current collector foil 212P and a pair of low potential positive electrode active material layers 214P, 214P supported by the positive current collector foil 212P. The positive electrode current collector foil 212P may be a plain foil such as an aluminum foil, or may be a porous foil such as an etched foil or a punched foil. Further, the positive electrode current collector foil 212P has a positive electrode ear portion protruding upward near its upper end. A pair of low potential positive electrode active material layers 214P are supported on both sides of the positive electrode current collector foil 212P, respectively. The pair of low potential positive electrode active material layers 214P are formed of the same material. The positive electrode current collector foil 212P is an example of a second current collector foil in the claims, and the low potential positive electrode active material layer 214P is an example of the second active material layer in the claims.
 低電位正極活物質層214Pの動作電位は、高電位正極活物質層114Pの動作電位よりも低い。低電位正極活物質層214Pの形成材料としては、例えばリン酸鉄リチウム(LFP)である。高電位正極活物質層114Pの形成材料としては、例えば、リン酸鉄リチウムよりも動作電位(作動電位)が高いリチウム金属酸化物(コバルト酸リチウム(LiCoO)、三元系リチウム金属複合酸化物(ニッケルマンガンコバルト(NCA)系等)、マンガン酸リチウム(LMO)、ニッケル酸リチウム(NCA)など)である。本実施形態では、さらに、高電位セル10の容量特性が低電位セル20の容量特性よりも高くなるように、各正極活物質層114P,214Pが選択されている。 The operating potential of the low potential positive electrode active material layer 214P is lower than the operating potential of the high potential positive electrode active material layer 114P. The material for forming the low potential positive electrode active material layer 214P is, for example, lithium iron phosphate (LFP). Examples of materials for forming the high-potential positive electrode active material layer 114P include lithium metal oxides (lithium cobalt oxide (LiCoO 2 ), ternary lithium metal composite oxides, etc.), which have a higher operating potential (working potential) than lithium iron phosphate. (nickel manganese cobalt (NCA) type, etc.), lithium manganate (LMO), lithium nickel oxide (NCA), etc.). In this embodiment, the positive electrode active material layers 114P and 214P are further selected such that the capacitance characteristics of the high potential cell 10 are higher than the capacitance characteristics of the low potential cell 20.
 共通負極板110Nは、負極集電箔112Nと、負極集電箔112Nに支持された一対の負極活物質層114N,114Nとを有する。負極集電箔112Nは、例えば銅箔であり、プレーン箔を使用してもよいし、エッチング箔やパンチング箔等の多孔箔を使用してもよい。また、負極集電箔112Nは、その上端付近に、上方に突出する負極耳部を有している。一対の負極活物質層114Nは、負極集電箔112Nの両面にそれぞれ支持されている。一対の負極活物質層114Nは、互いに同一材料により形成されている。負極活物質層114Nの形成材料としては、例えば黒鉛(グラファイト)、シリコン系材料、ハードカーボン、ソフトカーボン、チタン酸リチウム(LTO)が使用される。負極集電箔112Nは、特許請求の範囲における共通集電箔の一例であり、負極活物質層114Nは、特許請求の範囲における共通活物質層の一例である。 The common negative electrode plate 110N includes a negative electrode current collector foil 112N and a pair of negative electrode active material layers 114N, 114N supported by the negative electrode current collector foil 112N. The negative electrode current collector foil 112N is, for example, a copper foil, and may be a plain foil or a porous foil such as an etched foil or a punched foil. Further, the negative electrode current collector foil 112N has a negative electrode ear portion protruding upward near its upper end. The pair of negative electrode active material layers 114N are supported on both sides of the negative electrode current collector foil 112N, respectively. The pair of negative electrode active material layers 114N are formed of the same material. Examples of materials used to form the negative electrode active material layer 114N include graphite, silicon-based materials, hard carbon, soft carbon, and lithium titanate (LTO). The negative electrode current collector foil 112N is an example of a common current collector foil in the claims, and the negative electrode active material layer 114N is an example of a common active material layer in the claims.
 セパレータ120は、絶縁性材料(例えば、紙、ガラス繊維や合成樹脂(多孔質のポリエチレン膜など))により形成されている。 The separator 120 is made of an insulating material (for example, paper, glass fiber, or synthetic resin (porous polyethylene film, etc.)).
 複数の高電位正極板110Pの耳部は、第1の正極側端子部40Paに電気的に接続され、複数の低電位正極板210Pの耳部は、第2の正極側端子部40Pbに電気的に接続されている。複数の共通負極板110Nの耳部は、負極側端子部40Nに電気的に接続されている。 The ears of the plurality of high potential positive electrode plates 110P are electrically connected to the first positive electrode side terminal part 40Pa, and the ears of the plurality of low potential positive electrode plates 210P are electrically connected to the second positive electrode side terminal part 40Pb. It is connected to the. The ear portions of the plurality of common negative electrode plates 110N are electrically connected to the negative electrode side terminal portion 40N.
 以上の構成により、高電位正極板110Pの高電位正極活物質層114Pと、共通負極板110Nの負極活物質層114Nと、それらの間に介在するセパレータ120とによって、高電位セル10が構成されている。また、低電位正極板210Pの低電位正極活物質層214Pと、共通負極板110Nの負極活物質層114Nと、それらの間に介在するセパレータ120とによって、低電位セル20が構成されている。すなわち、高電位セル10と低電位セル20とは、互いに並列接続されている。また、蓄電セル100は、高電位セル10と低電位セル20とが、所定の複数個(図2では2つ)ずつ、セル並び方向に交互に並ぶように配置された構成とされている。 With the above configuration, the high potential cell 10 is configured by the high potential positive electrode active material layer 114P of the high potential positive electrode plate 110P, the negative electrode active material layer 114N of the common negative electrode plate 110N, and the separator 120 interposed between them. ing. Further, the low potential cell 20 is constituted by the low potential positive electrode active material layer 214P of the low potential positive electrode plate 210P, the negative electrode active material layer 114N of the common negative electrode plate 110N, and the separator 120 interposed between them. That is, the high potential cell 10 and the low potential cell 20 are connected in parallel to each other. Moreover, the power storage cell 100 is configured such that a predetermined plurality of high potential cells 10 and low potential cells 20 (two in FIG. 2) are arranged alternately in the cell arrangement direction.
A-2.セル切替処理:
 本実施形態の蓄電装置1において管理装置5の制御部60により実行されるセル切替処理について説明する。セル切替処理は、所定の切替条件を満たすか否かに応じて、蓄電池3の利用形態を、高電位セル利用形態と低電位セル利用形態との間で切り替える処理である。セル切替処理は、例えば、管理装置5が起動された場合に、自動的に、または、管理者からの指示に応じて開始される。
A-2. Cell switching process:
A cell switching process executed by the control unit 60 of the management device 5 in the power storage device 1 of this embodiment will be described. The cell switching process is a process of switching the usage mode of the storage battery 3 between a high potential cell usage format and a low potential cell usage format, depending on whether a predetermined switching condition is satisfied. The cell switching process is started, for example, automatically when the management device 5 is started, or in response to an instruction from the administrator.
 図3は、セル切替処理を示すフローチャートである。図3に示すように、制御部60は、切替条件が満たされたか否かを判断する(S110)。本実施形態では、切替条件は、蓄電池3の温度が第1の基準温度以上であることを必要条件として含む。制御部60は、温度計26から受け取った信号に基づき、蓄電池3の温度が第1の基準温度以上であるか否かを判断する。第1の基準温度は、高電位セル10の動作電圧範囲での使用時において電解液の酸化分解によるガス発生量が急激に増加する温度であり、例えば40℃である。 FIG. 3 is a flowchart showing cell switching processing. As shown in FIG. 3, the control unit 60 determines whether the switching condition is satisfied (S110). In this embodiment, the switching conditions include, as a necessary condition, that the temperature of the storage battery 3 is equal to or higher than the first reference temperature. Based on the signal received from the thermometer 26, the control unit 60 determines whether the temperature of the storage battery 3 is equal to or higher than the first reference temperature. The first reference temperature is a temperature at which the amount of gas generated due to oxidative decomposition of the electrolytic solution increases rapidly when the high potential cell 10 is used within the operating voltage range, and is, for example, 40°C.
 蓄電池3の温度が第1の基準温度未満であると判断されている場合(S110:NO)、セル切替部62は、切替スイッチ50を制御して、蓄電池3の利用形態を高電位セル利用形態にして(S130 図3では「第1のセル利用形態」)、S110に戻る。具体的には、蓄電池3の温度が40℃未満である場合、高電位セル10が利用される。特に、高電位セル10は、低電位セル20よりも容量特性が高いため、高電位セル10を利用して高容量の充放電を行うことができる。高電位セル10を構成する高電位正極活物質層114Pの動作電位は相対的に高いため、高電位セル10の動作電圧範囲も相対的に高い。例えば制御部60は、電圧計22から受け取った信号に基づき、各高電位セル10の端子電圧が蓄電池3.6V程度になるように蓄電池3の充放電を制御する。このとき、蓄電池3の温度は40℃未満であるため、電解液の酸化分解によるガスの発生を抑制することができる。 If the temperature of the storage battery 3 is determined to be lower than the first reference temperature (S110: NO), the cell switching unit 62 controls the changeover switch 50 to change the usage mode of the storage battery 3 to the high potential cell usage mode. (S130, "first cell usage mode" in FIG. 3), and returns to S110. Specifically, when the temperature of the storage battery 3 is less than 40° C., the high potential cell 10 is used. In particular, since the high potential cell 10 has higher capacitance characteristics than the low potential cell 20, high capacity charging and discharging can be performed using the high potential cell 10. Since the operating potential of the high potential positive electrode active material layer 114P constituting the high potential cell 10 is relatively high, the operating voltage range of the high potential cell 10 is also relatively high. For example, the control unit 60 controls charging and discharging of the storage battery 3 based on the signal received from the voltmeter 22 so that the terminal voltage of each high potential cell 10 becomes approximately 3.6V. At this time, since the temperature of the storage battery 3 is less than 40° C., generation of gas due to oxidative decomposition of the electrolytic solution can be suppressed.
 一方、蓄電池3の温度が第1の基準温度以上であると判断された場合(S110:YES)、セル切替部62は、切替スイッチ50を制御して、蓄電池3の利用形態を、高電位セル利用形態から低電位セル利用形態に切り替えて(S120 図3では「第2のセル利用形態」)、S110に戻る。具体的には、蓄電池3の温度が40℃以上である場合、低電位セル20が利用される。低電位セル20を構成する低電位正極活物質層214Pの動作電位は相対的に低いため、低電位セル20の動作電圧範囲も相対的に低い。例えば制御部60は、電圧計22から受け取った信号に基づき、各低電位セル20の端子電圧が蓄電池3.2V程度になるように蓄電池3の充放電を制御する。このため、蓄電池3の温度が第1の基準温度以上になっても高電位セル10の利用を続行する場合に比べて、低電圧で充放電が行われる分だけ、電解液の酸化分解によるガスの発生を抑制することができる。すなわち、本実施形態によれば、高容量の充放電を可能としつつ、高温時において高電圧で充放電を行うことを抑制することができる。 On the other hand, when it is determined that the temperature of the storage battery 3 is equal to or higher than the first reference temperature (S110: YES), the cell switching unit 62 controls the changeover switch 50 to change the usage mode of the storage battery 3 to the high potential cell The usage mode is switched to the low potential cell usage format (S120, "second cell usage format" in FIG. 3), and the process returns to S110. Specifically, when the temperature of the storage battery 3 is 40° C. or higher, the low potential cell 20 is used. Since the operating potential of the low potential positive electrode active material layer 214P constituting the low potential cell 20 is relatively low, the operating voltage range of the low potential cell 20 is also relatively low. For example, the control unit 60 controls charging and discharging of the storage battery 3 based on the signal received from the voltmeter 22 so that the terminal voltage of each low potential cell 20 becomes approximately 3.2V. Therefore, compared to the case where the use of the high potential cell 10 is continued even if the temperature of the storage battery 3 exceeds the first reference temperature, the amount of gas generated by oxidative decomposition of the electrolytic solution is reduced by the amount of charging and discharging performed at a lower voltage. The occurrence of can be suppressed. That is, according to this embodiment, it is possible to suppress charging and discharging at high voltage at high temperatures while enabling high capacity charging and discharging.
B.第2実施形態:
B-1.蓄電装置の構成:
 図4は、第2実施形態における蓄電池3Aの内部構成を示す説明図である。本第2実施形態の蓄電装置(全体構成は図示しない)では、上記第1実施形態の蓄電装置1に対して、蓄電池の構成が異なる。以下では、本第2実施形態の蓄電装置の構成の内、上述した第1実施形態の蓄電装置1の構成と同一の構成については、同一の符号を付すことによってその説明を適宜省略する。
B. Second embodiment:
B-1. Configuration of power storage device:
FIG. 4 is an explanatory diagram showing the internal configuration of a storage battery 3A in the second embodiment. In the power storage device of the second embodiment (the overall configuration is not shown), the structure of the storage battery is different from the power storage device 1 of the first embodiment. Below, among the configurations of the power storage device according to the second embodiment, the same components as those of the power storage device 1 according to the first embodiment described above will be given the same reference numerals, and the description thereof will be omitted as appropriate.
 図4に示すように、蓄電池3Aは、蓄電セル100Aを備えている。蓄電セル100Aは、複数の高電位セル10Aと複数の低電位セル20Aとを有している。筐体30内では、複数の高電位セル10Aと複数の低電位セル20Aと電解液(図示しない)とが同一の空間内に収容されている。なお、図4では、高電位セル10Aと低電位セル20Aとが1つずつ図示されており、他のセルは省略されている。 As shown in FIG. 4, the storage battery 3A includes a storage cell 100A. The power storage cell 100A includes a plurality of high potential cells 10A and a plurality of low potential cells 20A. Inside the housing 30, a plurality of high potential cells 10A, a plurality of low potential cells 20A, and an electrolytic solution (not shown) are housed in the same space. Note that in FIG. 4, one high potential cell 10A and one low potential cell 20A are illustrated, and other cells are omitted.
 蓄電セル100Aは、負極性の電極が、動作電位が互いに異なる活物質層を有する一対の電極(高電位負極活物質層114N、低電位負極活物質層214N)として分離された「分離電極」において、一対の電極が個別の外部端子(第1の負極側端子部40Na、第2の負極側端子部40Nb)に接続されている。 In the electricity storage cell 100A, the negative electrode is separated into a pair of electrodes (a high potential negative electrode active material layer 114N, a low potential negative electrode active material layer 214N) having active material layers with different operating potentials in a "separated electrode". , a pair of electrodes are connected to individual external terminals (first negative terminal portion 40Na, second negative terminal portion 40Nb).
 具体的には、図4に示すように、蓄電セル100Aは、複数の高電位負極板110Nと、複数の低電位負極板210Nと、複数の共通正極板110Pと、セパレータ120とを備えている。高電位負極板110Nと低電位負極板210Nとは、セル並び方向に、1つずつ交互に配列されている。共通正極板110Pは、セル並び方向において互いに対向する高電位負極板110Nと低電位負極板210Nとの間に介在するように配置されている。また、セパレータ120は、セル並び方向において互いに対向する高電位負極板110Nと共通正極板110Pとの間と、セル並び方向において互いに対向する低電位負極板210Nと共通正極板110Pとの間とにそれぞれ介在するように配置されている。すなわち、蓄電セル100Aは、高電位負極板110Nと低電位負極板210Nと共通正極板110Pとセパレータ120とが所定方向(本実施形態ではセル並び方向)に並べて配置された積層構造を有している。高電位負極板110Nは、特許請求の範囲における第2の電極の一例であり、低電位負極板210Nは、特許請求の範囲における第1の電極の一例であり、共通正極板110Pは、特許請求の範囲における共通電極の一例である。 Specifically, as shown in FIG. 4, the electricity storage cell 100A includes a plurality of high potential negative electrode plates 110N, a plurality of low potential negative electrode plates 210N, a plurality of common positive electrode plates 110P, and a separator 120. . The high potential negative electrode plates 110N and the low potential negative electrode plates 210N are alternately arranged one by one in the cell arrangement direction. The common positive electrode plate 110P is arranged so as to be interposed between the high potential negative electrode plate 110N and the low potential negative electrode plate 210N that face each other in the cell arrangement direction. Furthermore, the separator 120 is provided between the high potential negative electrode plate 110N and the common positive electrode plate 110P, which face each other in the cell arrangement direction, and between the low potential negative electrode plate 210N and the common positive electrode plate 110P, which face each other in the cell arrangement direction. They are arranged so that they are interposed between each other. That is, the electricity storage cell 100A has a laminated structure in which a high potential negative electrode plate 110N, a low potential negative electrode plate 210N, a common positive electrode plate 110P, and a separator 120 are arranged side by side in a predetermined direction (in this embodiment, the cell arrangement direction). There is. The high potential negative electrode plate 110N is an example of the second electrode in the claims, the low potential negative electrode plate 210N is an example of the first electrode in the claims, and the common positive electrode plate 110P is an example of the second electrode in the claims. This is an example of a common electrode in the range of .
 高電位負極板110Nは、負極集電箔112Nと、負極集電箔112Nに支持された一対の高電位負極活物質層114N,114Nとを有する。負極集電箔112Nは、銅箔やアルミニウム箔等のプレーン箔を使用してもよいし、エッチング箔やパンチング箔等の多孔箔を使用してもよい。また、負極集電箔112Nは、その上端付近に、上方に突出する正極耳部を有している。一対の高電位負極活物質層114Nは、負極集電箔112Nの両面にそれぞれ支持されている。一対の高電位負極活物質層114Nは、互いに同一材料により形成されている。負極集電箔112Nは、特許請求の範囲における第2の集電箔の一例であり、高電位負極活物質層114Nは、特許請求の範囲における第2の活物質層の一例である。 The high potential negative electrode plate 110N includes a negative current collector foil 112N and a pair of high potential negative electrode active material layers 114N, 114N supported by the negative current collector foil 112N. The negative electrode current collector foil 112N may be a plain foil such as a copper foil or an aluminum foil, or may be a porous foil such as an etched foil or a punched foil. Further, the negative electrode current collector foil 112N has a positive electrode lug protruding upward near its upper end. A pair of high potential negative electrode active material layers 114N are supported on both sides of the negative electrode current collector foil 112N, respectively. The pair of high potential negative electrode active material layers 114N are formed of the same material. The negative electrode current collector foil 112N is an example of a second current collector foil in the claims, and the high potential negative electrode active material layer 114N is an example of the second active material layer in the claims.
 低電位負極板210Nは、負極集電箔212Nと、負極集電箔212Nに支持された一対の低電位負極活物質層214N,214Nとを有する。負極集電箔212Nは、銅箔等のプレーン箔を使用してもよいし、エッチング箔やパンチング箔等の多孔箔を使用してもよい。また、負極集電箔212Nは、その上端付近に、上方に突出する正極耳部を有している。一対の低電位負極活物質層214Nは、負極集電箔212Nの両面にそれぞれ支持されている。一対の低電位負極活物質層214Nは、互いに同一材料により形成されている。負極集電箔212Nは、特許請求の範囲における第1の集電箔の一例であり、低電位負極活物質層214Nは、特許請求の範囲における第1の活物質層の一例である。 The low potential negative electrode plate 210N includes a negative current collector foil 212N and a pair of low potential negative electrode active material layers 214N, 214N supported by the negative current collector foil 212N. The negative electrode current collector foil 212N may be a plain foil such as a copper foil, or may be a porous foil such as an etched foil or a punched foil. Further, the negative electrode current collector foil 212N has a positive electrode lug protruding upward near its upper end. A pair of low potential negative electrode active material layers 214N are supported on both sides of the negative electrode current collector foil 212N, respectively. The pair of low potential negative electrode active material layers 214N are formed of the same material. The negative electrode current collector foil 212N is an example of a first current collector foil in the claims, and the low potential negative electrode active material layer 214N is an example of the first active material layer in the claims.
 高電位負極活物質層114Nの動作電位は、低電位負極活物質層214Nの動作電位よりも高い。高電位負極活物質層114Nの形成材料としては、例えばLTOである。低電位負極活物質層214Nの形成材料としては、例えば黒鉛等の炭素材料(C)である。本実施形態では、さらに、低電位セル20Aの容量特性が高電位セル10Aの容量特性よりも高くなるように、各負極活物質層114N,214Nが選択されている。 The operating potential of the high potential negative electrode active material layer 114N is higher than the operating potential of the low potential negative electrode active material layer 214N. The material for forming the high potential negative electrode active material layer 114N is, for example, LTO. The material for forming the low potential negative electrode active material layer 214N is, for example, a carbon material (C) such as graphite. In this embodiment, each negative electrode active material layer 114N, 214N is further selected such that the capacitance characteristic of the low potential cell 20A is higher than that of the high potential cell 10A.
 共通正極板110Pは、例えば上記第1実施形態の高電位正極板110Pと同じ構成である。 The common positive electrode plate 110P has, for example, the same configuration as the high potential positive electrode plate 110P of the first embodiment.
 複数の低電位負極板210Nの耳部は、第1の負極側端子部40Naに電気的に接続され、複数の高電位負極板110Nの耳部は、第2の負極側端子部40Nbに電気的に接続されている。複数の共通正極板110Pの耳部は、正極側端子部40Pに電気的に接続されている。 The ears of the plurality of low potential negative electrode plates 210N are electrically connected to the first negative electrode side terminal part 40Na, and the ears of the plurality of high potential negative electrode plates 110N are electrically connected to the second negative electrode side terminal part 40Nb. It is connected to the. The ear portions of the plurality of common positive electrode plates 110P are electrically connected to the positive electrode side terminal portion 40P.
 以上の構成により、高電位負極板110Nの高電位負極活物質層114Nと、共通正極板110Pの正極活物質層114Pと、それらの間に介在するセパレータ120とによって、高電位セル10Aが構成されている。また、低電位負極板210Nの低電位負極活物質層214Nと、共通正極板110Pの正極活物質層114Pと、それらの間に介在するセパレータ120とによって、低電位セル20Aが構成されている。すなわち、高電位セル10Aと低電位セル20Aとは、互いに並列接続されている。また、蓄電セル100Aは、高電位セル10Aと低電位セル20Aとが、所定の複数個(図2では2つ)ずつ、セル並び方向に交互に並ぶように配置された構成とされている。 With the above configuration, the high potential cell 10A is configured by the high potential negative electrode active material layer 114N of the high potential negative electrode plate 110N, the positive electrode active material layer 114P of the common positive electrode plate 110P, and the separator 120 interposed between them. ing. Further, a low potential cell 20A is configured by the low potential negative electrode active material layer 214N of the low potential negative electrode plate 210N, the positive electrode active material layer 114P of the common positive electrode plate 110P, and the separator 120 interposed between them. That is, the high potential cell 10A and the low potential cell 20A are connected in parallel to each other. Furthermore, the power storage cell 100A has a configuration in which a predetermined plurality of (two in FIG. 2) high potential cells 10A and low potential cells 20A are arranged alternately in the cell arrangement direction.
B-2.セル切替処理:
 本実施形態では、図3のセル切替処理のS110における切替条件は、蓄電池3Aの温度が第2の基準温度以下であることを必要条件として含む。制御部60は、温度計26から受け取った信号に基づき、蓄電池3Aの温度が第2の基準温度以下であるか否かを判断する。第2の基準温度は、低電位セル20Aの動作電圧範囲での使用時において共通正極板110Pに含まれるリチウム(Li)の析出量が急激に増加する温度であり、例えば0℃である。
B-2. Cell switching process:
In this embodiment, the switching conditions in S110 of the cell switching process in FIG. 3 include as a necessary condition that the temperature of the storage battery 3A is equal to or lower than the second reference temperature. Based on the signal received from the thermometer 26, the control unit 60 determines whether the temperature of the storage battery 3A is below the second reference temperature. The second reference temperature is a temperature at which the amount of precipitated lithium (Li) contained in the common positive electrode plate 110P increases rapidly when the low potential cell 20A is used within the operating voltage range, and is, for example, 0°C.
 蓄電池3Aの温度が第2の基準温度を超えると判断されている場合(S110:NO)、セル切替部62は、切替スイッチ50を制御して、プラス端子42を第1の負極側端子部40Naに接続する。これにより、低電位セル20Aを利用して外部機器への充放電を行う、低電位セル利用形態になり(S130 図3では「第1のセル利用形態」)、S110に戻る。具体的には、蓄電池3Aの温度が0℃を超える場合、低電位セル20Aが利用される。特に、低電位セル20Aは、高電位セル10Aよりも容量特性が高いため、低電位セル20Aを利用して高容量の充放電を行うことができる。低電位セル20Aを構成する低電位負極活物質層214Nの動作電位は相対的に低いため、低電位セル20Aの動作電圧範囲も相対的に低い。例えば制御部60は、電圧計22から受け取った信号に基づき、各低電位セル20Aの端子電圧が0.2V程度になるように蓄電池3Aの充放電を制御する。このとき、蓄電池3Aの温度は0℃を超えるため、共通正極板110Pに含まれるリチウムの析出を抑制することができる。 If it is determined that the temperature of the storage battery 3A exceeds the second reference temperature (S110: NO), the cell switching unit 62 controls the changeover switch 50 to switch the positive terminal 42 to the first negative terminal part 40Na. Connect to. As a result, a low potential cell usage mode is established in which the low potential cell 20A is used to charge/discharge an external device (S130, "first cell usage mode" in FIG. 3), and the process returns to S110. Specifically, when the temperature of the storage battery 3A exceeds 0° C., the low potential cell 20A is used. In particular, since the low potential cell 20A has higher capacity characteristics than the high potential cell 10A, high capacity charging and discharging can be performed using the low potential cell 20A. Since the operating potential of the low potential negative electrode active material layer 214N constituting the low potential cell 20A is relatively low, the operating voltage range of the low potential cell 20A is also relatively low. For example, the control unit 60 controls charging and discharging of the storage battery 3A based on the signal received from the voltmeter 22 so that the terminal voltage of each low potential cell 20A becomes approximately 0.2V. At this time, since the temperature of the storage battery 3A exceeds 0° C., precipitation of lithium contained in the common positive electrode plate 110P can be suppressed.
 一方、蓄電池3Aの温度が第2の基準温度以下であると判断された場合(S110:YES)、セル切替部62は、切替スイッチ50を制御して、プラス端子42を第2の負極側端子部40Nbに接続する。これにより、高電位セル10Aを利用して外部機器への充放電を行う、高電位セル利用形態になり(S120 図3では「第2のセル利用形態」)、S110に戻る。具体的には、蓄電池3Aの温度が0℃以下である場合、高電位セル10Aが利用される。高電位セル10Aを構成する高電位負極活物質層114Nの動作電位は相対的に高いため、高電位セル10Aの動作電圧範囲も相対的に高い。例えば制御部60は、電圧計22から受け取った信号に基づき、各高電位セル10Aの端子電圧が1.5V程度になるように蓄電池3Aの充放電を制御する。このため、蓄電池3Aの温度が0℃以下になっても低電位セル20Aの利用を続行する場合に比べて、高電圧で充放電が行われる分だけ、共通正極板110Pに含まれるリチウムの析出を抑制することができる。すなわち、本実施形態によれば、高容量の充放電を可能としつつ、高温時において高電圧で充放電を行うことを抑制することができる。 On the other hand, if it is determined that the temperature of the storage battery 3A is equal to or lower than the second reference temperature (S110: YES), the cell switching unit 62 controls the changeover switch 50 to change the positive terminal 42 to the second negative terminal. Connect to section 40Nb. As a result, the high potential cell usage mode is established in which the high potential cell 10A is used to charge and discharge external equipment (S120, "second cell usage mode" in FIG. 3), and the process returns to S110. Specifically, when the temperature of the storage battery 3A is 0° C. or lower, the high potential cell 10A is used. Since the operating potential of the high potential negative electrode active material layer 114N constituting the high potential cell 10A is relatively high, the operating voltage range of the high potential cell 10A is also relatively high. For example, the control unit 60 controls charging and discharging of the storage battery 3A based on the signal received from the voltmeter 22 so that the terminal voltage of each high potential cell 10A becomes approximately 1.5V. Therefore, compared to the case where the low potential cell 20A is continued to be used even if the temperature of the storage battery 3A becomes 0°C or lower, lithium contained in the common positive electrode plate 110P is deposited by the amount of charging and discharging performed at a high voltage. can be suppressed. That is, according to this embodiment, it is possible to suppress charging and discharging at high voltage at high temperatures while enabling high capacity charging and discharging.
C.変形例:
 本発明は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
C. Variant:
The present invention is not limited to the above-described embodiments, and can be modified in various forms without departing from the gist thereof. For example, the following modifications are also possible.
 上記実施形態における蓄電装置1の構成は、あくまで一例であり、種々変形可能である。例えば上記第1実施形態において、高電位セル10と低電位セル20とは1つずつでもよい。また、切替スイッチ50は、手動により切り替える切替スイッチでもよい。 The configuration of the power storage device 1 in the above embodiment is just an example, and can be modified in various ways. For example, in the first embodiment, there may be one high potential cell 10 and one low potential cell 20. Further, the changeover switch 50 may be a changeover switch that is manually switched.
 蓄電池は、第1の活物質層(正極活物質層)の形成材料として、例えば水蒸気賦活炭、アルカリ賦活炭等の活性炭が使用され、第2の活物質層(正極活物質層)の形成材料としては、例えばLFP等のリチウム金属酸化物が使用された構成でもよい。共通電極は、例えば、上記共通負極板110Nとする。この構成では、第1のセルは、相対的に内部抵抗が低く、相対的に高い出力特性を発揮するリチウムイオンキャパシタ(以下、「LIC」という)となり、第2のセルは、相対的に内部抵抗が高く、相対的に高い容量特性を発揮するリチウムイオン電池(以下、「LIB」という)となる。このような蓄電池では、例えば再生可能エネルギー(例えば太陽光、風力、水力、地熱、火力の自然エネルギーなど)を利用して発電する再生可能エネルギー利用発電装置に電気的に接続されている場合に次のセル切替処理を行うことができる。すなわち、比較的に電圧変動が小さい場合(例えば夜間で太陽光発電の停止時など)には、LIBを利用する形態にすることにより、高容量での充放電を行うことができる。一方、比較的に電圧変動が大きい場合(例えば日中で太陽光発電の発電時など)には、LICを利用する形態にすることにより、急激な電圧変動を吸収しつつ充放電を行うことができる。 In the storage battery, activated carbon such as steam-activated carbon or alkali-activated carbon is used as the material for forming the first active material layer (positive electrode active material layer), and activated carbon such as steam activated carbon or alkali activated carbon is used as the forming material for the second active material layer (positive electrode active material layer). For example, a structure using lithium metal oxide such as LFP may be used. The common electrode is, for example, the common negative electrode plate 110N. In this configuration, the first cell is a lithium ion capacitor (hereinafter referred to as "LIC") that has a relatively low internal resistance and exhibits relatively high output characteristics, and the second cell has a relatively low internal resistance. This is a lithium ion battery (hereinafter referred to as "LIB") that has high resistance and exhibits relatively high capacity characteristics. For example, when such a storage battery is electrically connected to a renewable energy generation device that generates electricity using renewable energy (e.g. solar, wind, hydro, geothermal, thermal natural energy, etc.), cell switching processing can be performed. That is, when voltage fluctuations are relatively small (for example, when solar power generation is stopped at night), charging and discharging at a high capacity can be performed by using LIB. On the other hand, when voltage fluctuations are relatively large (for example, during daytime solar power generation), by using LIC, it is possible to charge and discharge while absorbing sudden voltage fluctuations. can.
 蓄電池は、第1の活物質層(負極活物質層)の形成材料として、例えば炭素材料が使用され、第2の活物質層(負極活物質層)の形成材料としては、ケイ素(Si)、一酸化ケイ素(SiO)が使用された構成でもよい。共通電極は、例えば、上記共通正極板110Pとする。この構成では、第1のセルは、相対的に内部抵抗が低く、相対的に高い出力特性を発揮するセルとなり、第2のセルは、相対的に内部抵抗が高く、相対的に高い容量特性を発揮するセルとなる。 In the storage battery, the first active material layer (negative electrode active material layer) is formed using a carbon material, and the second active material layer (negative electrode active material layer) is formed by silicon (Si), A structure using silicon monoxide (SiO) may also be used. The common electrode is, for example, the common positive electrode plate 110P. In this configuration, the first cell has a relatively low internal resistance and exhibits relatively high output characteristics, and the second cell has a relatively high internal resistance and has relatively high capacitance characteristics. It becomes a cell that exhibits.
 上記第1実施形態では、蓄電セル100は、複数の高電位セル10と複数の低電位セル20とを備え、所定数ずつの高電位セル10と低電位セル20とがセル並び方向に交互に並ぶように配置された構成であったが、例えば高電位セル10のみ、または、LICセルのみをセル並び方向に連続して配置してもよい。また、高電位セル10と低電位セル20とは同数に限らず、高電位セル10と低電位セル20と数の比率を変更してもよい。また、例えば高電位セル10と低電位セル20とを蓄電装置1つずつ備える構成でもよい。また、上記実施形態の図2の構成に対して、共通負極板110Nに付された一対の負極活物質層114Nが互いに異なる材料により形成されていてもよい。第2実施形態における高電位セル10Aと低電位セル20Aとについても同様である。 In the first embodiment, the power storage cell 100 includes a plurality of high potential cells 10 and a plurality of low potential cells 20, and a predetermined number of high potential cells 10 and low potential cells 20 are arranged alternately in the cell arrangement direction. Although the configuration is such that they are arranged side by side, for example, only the high potential cells 10 or only the LIC cells may be arranged consecutively in the cell arrangement direction. Furthermore, the number of high potential cells 10 and low potential cells 20 is not limited to the same number, and the ratio of the number of high potential cells 10 to low potential cells 20 may be changed. Alternatively, for example, a configuration may be adopted in which each power storage device includes one high potential cell 10 and one low potential cell 20. Moreover, with respect to the configuration of FIG. 2 of the above embodiment, the pair of negative electrode active material layers 114N attached to the common negative electrode plate 110N may be formed of mutually different materials. The same applies to the high potential cell 10A and the low potential cell 20A in the second embodiment.
 上記第1実施形態では、複数の高電位セル10と複数の低電位セル20と電解液とが同一の空間内に収容された構成であったが、1つの高電位セル10と1つの低電位セル20と電解液とが同一の空間内に収容された構成でもよいし、高電位セル10と低電位セル20とが互いに異なる空間(セル室、電槽)にそれぞれ収容された構成でもよい。上記第1実施形態では、高電位セル10及び低電位セル20は、いずれも積層構造を有する構成であったが、これに限らず、例えば正極と負極との一方が他方の周りに巻かれた巻回構造を有する構成でもよい。第2実施形態における高電位セル10Aと低電位セル20Aとについても同様である。 In the first embodiment, a plurality of high potential cells 10, a plurality of low potential cells 20, and an electrolytic solution are housed in the same space, but one high potential cell 10 and one low potential cell The cell 20 and the electrolyte may be housed in the same space, or the high potential cell 10 and the low potential cell 20 may be housed in different spaces (cell chamber, battery case). In the first embodiment, both the high potential cell 10 and the low potential cell 20 have a laminated structure, but the structure is not limited to this, and for example, one of the positive electrode and the negative electrode may be wound around the other. A configuration having a wound structure may also be used. The same applies to the high potential cell 10A and the low potential cell 20A in the second embodiment.
 上記実施形態では、本発明をリチウム蓄電池に適用した例を説明したが、これに限らず、本発明は、例えば全固体電池、ナトリウム電池やマグネシウム電池など、他の蓄電池にも適用することができる。 In the above embodiment, an example in which the present invention is applied to a lithium storage battery has been described, but the present invention is not limited to this, and the present invention can be applied to other storage batteries such as an all-solid-state battery, a sodium battery, a magnesium battery, etc. .
 上記実施形態における各部材を構成する材料は、あくまで例示であり、各部材が他の材料により構成されていてもよい。また、上記実施形態における蓄電セルの作製方法は、あくまで例示であり、他の作製方法により作製されてもよい。 The materials constituting each member in the above embodiment are merely examples, and each member may be composed of other materials. Further, the method for manufacturing the power storage cell in the above embodiment is merely an example, and the battery cell may be manufactured by other manufacturing methods.
 上記実施形態におけるセル切替処理の内容は、あくまで一例であり、種々変形可能である。例えば、所定の切替条件は、温度以外に、例えば蓄電池の電圧や電流に基づく条件等でもよい。 The content of the cell switching process in the above embodiment is just an example, and can be modified in various ways. For example, the predetermined switching condition may be a condition based on, for example, the voltage or current of the storage battery, in addition to the temperature.
1:蓄電装置 3,3A:蓄電池 5:管理装置 10,10A:高電位セル 20,20A:低電位セル 22:電圧計 24:電流計 26:温度計 28:監視部 30:筐体 40:ラインスイッチ 40N:負極側端子部 40Na:第1の負極側端子部 40Nb:第2の負極側端子部 40P:正極側端子部 40Pa:第1の正極側端子部 40Pb:第2の正極側端子部 42:プラス端子 44:マイナス端子 50:切替スイッチ 60:制御部 62:セル切替部 72:記録部 74:履歴部 76:インターフェース部 100,100A:蓄電セル 110N:共通負極板、高電位負極板 110P:共通正極板、高電位正極板 112N,212N:負極集電箔 112P,212P:正極集電箔 114N:負極活物質層、高電位負極活物質層 114P:高電位正極活物質層、正極活物質層 120:セパレータ 210N:低電位負極板 210P:低電位正極板 214N:低電位負極活物質層 214P:低電位正極活物質層 1: Power storage device 3, 3A: Storage battery 5: Management device 10, 10A: High potential cell 20, 20A: Low potential cell 22: Voltmeter 24: Ammeter 26: Thermometer 28: Monitoring unit 30: Housing 40: Line Switch 40N: Negative terminal part 40Na: First negative terminal part 40Nb: Second negative terminal part 40P: Positive terminal part 40Pa: First positive terminal part 40Pb: Second positive terminal part 42 : Positive terminal 44: Negative terminal 50: Changeover switch 60: Control section 62: Cell switching section 72: Recording section 74: History section 76: Interface section 100, 100A: Storage cell 110N: Common negative electrode plate, high potential negative electrode plate 110P: Common positive electrode plate, high potential positive electrode plate 112N, 212N: negative electrode current collector foil 112P, 212P: positive electrode current collector foil 114N: negative electrode active material layer, high potential negative electrode active material layer 114P: high potential positive electrode active material layer, positive electrode active material layer 120: Separator 210N: Low potential negative electrode plate 210P: Low potential positive electrode plate 214N: Low potential negative electrode active material layer 214P: Low potential positive electrode active material layer

Claims (4)

  1.  正極性と負極性との一方の極性を有する第1の電極であって、第1の集電箔と、前記第1の集電箔の両面に形成された第1の活物質層とを有する第1の電極と、
     前記一方の極性を有する第2の電極であって、第2の集電箔と、前記第2の集電箔の両面に形成され、かつ、前記第1の活物質層とは動作電位が異なる第2の活物質層とを有する第2の電極と、
     前記第1の電極と前記第2の電極との間に配置され、正極性と負極性との他方の極性を有する共通電極であって、複数の貫通孔が形成された共通集電箔と、前記共通集電箔の両面に形成された共通活物質層とを有する共通電極と、
     前記第1の電極に接続される第1の外部端子と、
     前記第2の電極に接続される第2の外部端子と、
     前記共通電極に接続されている共通外部端子と、
     を備える、
     蓄電池。
    A first electrode having one of positive and negative polarities, comprising a first current collector foil and a first active material layer formed on both sides of the first current collector foil. a first electrode;
    The second electrode having one polarity is formed on a second current collector foil and on both sides of the second current collector foil, and has an operating potential different from that of the first active material layer. a second electrode having a second active material layer;
    a common current collector foil disposed between the first electrode and the second electrode, the common electrode having the other polarity of positive polarity and negative polarity, and in which a plurality of through holes are formed; a common electrode having a common active material layer formed on both sides of the common current collector foil;
    a first external terminal connected to the first electrode;
    a second external terminal connected to the second electrode;
    a common external terminal connected to the common electrode;
    Equipped with
    Storage battery.
  2.  請求項1に記載の蓄電池と、前記蓄電池を管理するための管理装置とを備える蓄電装置であって、
     前記管理装置は、
      外部機器を前記第1の外部端子と前記共通外部端子とに接続する第1のセル利用形態において、所定の切替条件が満たされた場合、前記外部機器を前記第2の外部端子と前記共通外部端子とに接続する第2のセル利用形態に切り替えるセル切替部を備える、
     蓄電装置。
    A power storage device comprising the storage battery according to claim 1 and a management device for managing the storage battery,
    The management device includes:
    In a first cell usage mode in which an external device is connected to the first external terminal and the common external terminal, when a predetermined switching condition is satisfied, the external device is connected to the second external terminal and the common external terminal. comprising a cell switching unit that switches to a second cell usage mode connected to the terminal;
    Power storage device.
  3.  請求項2に記載の蓄電装置であって、
     前記第1の電極と前記第2の電極とは正極性を有し、前記共通電極は負極性を有し、
     前記第2の活物質層の動作電位は、前記第1の活物質層の動作電位よりも低く、
     前記管理装置は、さらに、前記蓄電池の温度を取得する温度取得部を備え、
     前記切替条件は、前記温度取得部が取得した前記蓄電池の温度が第1の基準温度以上であることを必要条件として含む、
     蓄電装置。
    The power storage device according to claim 2,
    The first electrode and the second electrode have positive polarity, and the common electrode has negative polarity,
    The operating potential of the second active material layer is lower than the operating potential of the first active material layer,
    The management device further includes a temperature acquisition unit that acquires the temperature of the storage battery,
    The switching condition includes, as a necessary condition, that the temperature of the storage battery acquired by the temperature acquisition unit is equal to or higher than a first reference temperature.
    Power storage device.
  4.  請求項2に記載の蓄電装置であって、
     前記第1の電極と前記第2の電極とは負極性を有し、前記共通電極は正極性を有し、
     前記第2の活物質層の動作電位は、前記第1の活物質層の動作電位よりも高くなっており、
     前記管理装置は、さらに、前記蓄電池の温度を取得する温度取得部を備え、
     前記切替条件は、前記温度取得部が取得した前記蓄電池の温度が第2の基準温度以下であることを含む、
     蓄電装置。
    The power storage device according to claim 2,
    The first electrode and the second electrode have negative polarity, and the common electrode has positive polarity,
    The operating potential of the second active material layer is higher than the operating potential of the first active material layer,
    The management device further includes a temperature acquisition unit that acquires the temperature of the storage battery,
    The switching condition includes that the temperature of the storage battery acquired by the temperature acquisition unit is equal to or lower than a second reference temperature.
    Power storage device.
PCT/JP2022/011469 2022-03-15 2022-03-15 Storage battery and power storage device WO2023175698A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/011469 WO2023175698A1 (en) 2022-03-15 2022-03-15 Storage battery and power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/011469 WO2023175698A1 (en) 2022-03-15 2022-03-15 Storage battery and power storage device

Publications (1)

Publication Number Publication Date
WO2023175698A1 true WO2023175698A1 (en) 2023-09-21

Family

ID=88022857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011469 WO2023175698A1 (en) 2022-03-15 2022-03-15 Storage battery and power storage device

Country Status (1)

Country Link
WO (1) WO2023175698A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582178A (en) * 1991-09-20 1993-04-02 Tdk Corp Battery
JPH11135151A (en) * 1997-10-30 1999-05-21 Sanyo Electric Co Ltd Battery from which a plurality of output voltages can be taken out
WO2011093126A1 (en) * 2010-01-28 2011-08-04 三菱電機株式会社 Power storage device cell, process for producing same, method for storing same, and electricity storage device
US20170162899A1 (en) * 2015-12-04 2017-06-08 Microsoft Technology Licensing, Llc Shared Electrode Battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582178A (en) * 1991-09-20 1993-04-02 Tdk Corp Battery
JPH11135151A (en) * 1997-10-30 1999-05-21 Sanyo Electric Co Ltd Battery from which a plurality of output voltages can be taken out
WO2011093126A1 (en) * 2010-01-28 2011-08-04 三菱電機株式会社 Power storage device cell, process for producing same, method for storing same, and electricity storage device
US20170162899A1 (en) * 2015-12-04 2017-06-08 Microsoft Technology Licensing, Llc Shared Electrode Battery

Similar Documents

Publication Publication Date Title
US11888160B2 (en) Electrode, secondary battery, battery pack, and vehicle
Goodenough Electrochemical energy storage in a sustainable modern society
JP6870914B2 (en) Non-aqueous electrolyte batteries, battery packs and vehicles
US20060024582A1 (en) Battery and method of manufacturing the same
JP2013138014A (en) Nonaqueous electrolyte battery and battery system
JPH11238528A (en) Lithium secondary battery
WO2007006123A1 (en) Lithium ion rocking chair rechargeable battery
JP2019096476A (en) Series laminate type all-solid battery
KR20150137541A (en) Li Secondary Battery
US20100230191A1 (en) Electrochemical cell with a non-graphitizable carbon electrode and energy storage assembly
US20150162139A1 (en) Power storage device and super capacitor device
JP2017199667A (en) Battery cell, battery module, and detection system, and determination system
JP2016136490A (en) Manufacturing method of lamination type all-solid battery
JP5856611B2 (en) Lithium electrochemical accumulator with specific bipolar structure
US20220231326A1 (en) All-solid-state batteries comprising composite electrode
US20140370379A1 (en) Secondary battery and manufacturing method thereof
JP2023182616A (en) Non-aqueous solvent electrolyte compositions for energy storage devices
KR20140058508A (en) Lithium accumulator
JP2013044701A (en) Battery system
WO2023175698A1 (en) Storage battery and power storage device
JP2011142040A (en) Solid-state battery module
US20230063684A1 (en) Anode-free solid-state battery and method of battery fabrication
JP2020009596A (en) All-solid-state battery
KR20230073277A (en) A cathode active material, and a lithium ion-battery comprising the cathode active material
JPH0452592B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931983

Country of ref document: EP

Kind code of ref document: A1