WO2023175006A1 - Motorised ventilation unit - Google Patents

Motorised ventilation unit Download PDF

Info

Publication number
WO2023175006A1
WO2023175006A1 PCT/EP2023/056614 EP2023056614W WO2023175006A1 WO 2023175006 A1 WO2023175006 A1 WO 2023175006A1 EP 2023056614 W EP2023056614 W EP 2023056614W WO 2023175006 A1 WO2023175006 A1 WO 2023175006A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
outlet
ventilation unit
air
motorized
Prior art date
Application number
PCT/EP2023/056614
Other languages
French (fr)
Inventor
Fabrice Ailloud
Thierry Barbier
Nestor Ismaël VARELA SANTOYO
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2023175006A1 publication Critical patent/WO2023175006A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00457Ventilation unit, e.g. combined with a radiator
    • B60H1/00471The ventilator being of the radial type, i.e. with radial expulsion of the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/166Combinations of two or more pumps ; Producing two or more separate gas flows using fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/424Double entry casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/4246Fan casings comprising more than one outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00078Assembling, manufacturing or layout details
    • B60H2001/00085Assembling, manufacturing or layout details of air intake
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00078Assembling, manufacturing or layout details
    • B60H2001/00092Assembling, manufacturing or layout details of air deflecting or air directing means inside the device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00114Heating or cooling details
    • B60H2001/00135Deviding walls for separate air flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00185Distribution of conditionned air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet

Definitions

  • the present invention relates to ventilation, heating and/or air conditioning devices for regulating a temperature of an air flow directed towards different areas of a vehicle passenger compartment. More particularly, the invention relates to the means for setting in motion the air flow within this ventilation, heating and/or air conditioning device.
  • Motor vehicles usually include a passenger compartment into which at least one flow of air arrives, conventionally from a ventilation, heating and/or air conditioning device, in which it has undergone heat treatment.
  • a ventilation, heating and/or air conditioning device can be supplied either with air from outside the passenger compartment, also called fresh air, or with recycled air, that is to say coming from the passenger compartment of the vehicle.
  • a motorized ventilation unit of the ventilation, heating and/or air conditioning device is used to circulate this flow of recycled air.
  • Motorized ventilation units capable of allowing this separation of air flows, although effective, can be improved.
  • the homogeneity of the distribution of the air flow at the outlet of the motorized ventilation unit can be improved.
  • the separation of air flows within the ventilation, heating and/or air conditioning device can also be optimized.
  • the aim of the present invention is therefore to propose a motorized ventilation unit which effectively ensures the separation of air flows at the inlet and outlet of the motorized ventilation unit, while optimizing the homogeneity of the distribution of the air flow. at the outlet of said motorized ventilation unit.
  • the invention then relates to a motorized ventilation unit for a ventilation, heating and/or air conditioning device, comprising at least one turbine configured to be driven in rotation around an axis of rotation, a motor intended to rotate the turbine, an air inlet box configured to bring at least one air flow to the turbine and a volute surrounding the turbine and configured to channel the at least one air flow out of the turbine, the box air inlet comprising at least a first air inlet and a second air inlet distinct from each other, the motorized ventilation unit comprising at least one separation member arranged at least partly in a volume delimited by the turbine such that it delimits at least a first air path and a second air path a crizllically connected respectively to the first air inlet and the second air inlet of the inlet box of air, the volute comprising at least two portions separated from each other by a separation wall, a first portion being in aeraulic communication with the first air path and a second portion being in aeraulic communication with the second air path, the motorized ventilation unit comprising at least
  • the ventilation, heating and/or air conditioning device can be used to regulate a temperature of an air flow directed towards a passenger compartment of a vehicle, for example an automobile.
  • the ventilation, heating and/or air conditioning system can then use an air flow coming from the passenger compartment and/or an air flow coming from an environment outside the passenger compartment, in order to heat or cool the air flow directed towards the passenger compartment.
  • the origin of one or the other of the air flows is conditioned by the zone to which this air flow is sent in the passenger compartment of the vehicle.
  • the motorized ventilation unit has the particular function of capturing air flows and aerally separating their path within it according to their origin, from the volume of the passenger compartment or from the environment outside it.
  • the separation member in that it optimizes the segmentation of the air flows before their entry into the volute, and therefore before their entry into the turbine.
  • first outlet duct and the second outlet duct and in particular their divergent profile, in that they increase and optimize the homogeneous distribution of the air flow at the outlet of the motorized ventilation unit.
  • the structure of the outlet ducts makes it possible to obtain the same quantity of air flow independently of their origin, from the first portion of the volute, or from its second portion.
  • the divergent profile of each of the outlet conduits extends in two directions intersecting one another taken in the same plane.
  • the two directions are perpendicular to each other.
  • each of the outlet ducts diverges following the direction of movement of the air flow in these ducts, and opens in two directions perpendicular to each other.
  • the first outlet conduit and the second outlet conduit are terminated respectively by a first outlet mouth and a second outlet mouth which each have a surface of mouth substantially identical. This ensures the homogenization of the distribution of the air flow at the outlet of the motorized ventilation unit.
  • the separation member extends axially beyond the volume of the turbine.
  • the separation member comprises at least one cylindrical portion and a flared portion which extends the cylindrical portion.
  • the cylindrical portion of the separation member extends at least partly axially beyond the volume of the turbine.
  • the separation member therefore projects from the turbine and extends at least partly into the air inlet housing.
  • the flared portion of the separation member extends into the volume of the turbine.
  • the cylindrical portion of the separation member comprises a circular air intake mouth.
  • the first outlet conduit and the second outlet conduit each respectively comprise an inlet section also forming an evacuation mouth for each portion of the volute, the inlet section having a surface of section strictly less than that of the outlet mouth.
  • the first portion and the second portion of the volute are at least partly superimposed axially on one another. According to an example of the invention, the first portion and the second portion are strictly superimposed on one another.
  • the first portion of the volute and the second portion of the volute are angularly offset relative to each other around the axis of rotation R of the turbine, this angular offset being preferably equal to the angular offset between the first outlet conduit and the second outlet conduit.
  • the first portion of the volute and the second portion of the volute have profiles which are strictly superimposable. by rotation around the axis of rotation of the turbine combined with translation along the axis of rotation of the turbine.
  • the outlet mouths of the outlet ducts extend in a common plane which is parallel to the axis of rotation of the turbine. More particularly, the common plane of the outlets comprises at least one straight line parallel to the axis of rotation of the turbine.
  • the outlet mouths of the outlet ducts are aligned along an axis which is perpendicular to the axis of rotation of the turbine.
  • an opening plane of an outlet opening of the separation member is offset axially from a separation plane of the separation wall of the volute.
  • the invention also relates to a ventilation, heating and/or air conditioning device for a passenger compartment of a vehicle comprising at least one motorized ventilation unit according to any of the preceding characteristics, the motorized ventilation unit being configured to simultaneously supply an air flow which comes from the passenger compartment or an air flow which comes from an environment outside the passenger compartment.
  • FIG 1 is a general perspective view of a vehicle comprising at least one ventilation, heating and/or air conditioning device;
  • FIG 2 is a perspective view of a motorized ventilation unit of the ventilation, heating and/or air conditioning device of Figure i;
  • FIG 3 is a sectional view along a Y-Y plane illustrated in Figure 2 of the motorized ventilation unit of Figure 2;
  • FIG 4 is a perspective view of part of the motorized ventilation unit of Figure 2;
  • FIG 5 is an axial sectional view of the motorized ventilation group taken in a plan XX illustrated in Figure 4;
  • FIG 6 is a front view of the at least two outlet ducts of the motorized ventilation unit according to the invention.
  • Figure 1 illustrates a ventilation, heating and/or air conditioning device 1 for a passenger compartment 3 of a vehicle 5, here automobile, intended to regulate the temperature of an air flow F sent into the passenger compartment 3.
  • the device ventilation, heating and/or air conditioning 1, hereinafter called device 1 ensures aeraulic and thermal treatment of the air flow
  • the air flow F leaving the device 1 when the air flow F leaving the device 1 is directed towards a glazed surface 7 of the passenger compartment 3, the majority use of the air flow F2 coming from the environment outside the passenger compartment 3 is preferred, while the majority use of the air flow Fi coming from the passenger compartment 3 is preferred when the air flow F leaving the device 1 is directed into an area of the passenger compartment 3 at distances from the glass surfaces 7.
  • the air flow Fi coming from the passenger compartment 3 although at a temperature close to the desired temperature, is more loaded with humidity, in particular by the breathing of at least one user of the vehicle 5 and can therefore cause condensation phenomena on the glass surfaces 7 of the vehicle 5.
  • the air Fi coming from the passenger compartment 3 is less loaded with humidity than the latter and is therefore preferred when the air flow F at the outlet of device i is directed towards one of the glass surfaces 7, in order to avoid condensation phenomena.
  • the device 1 can use a mixture of the air flow Fi coming from the passenger compartment 3 and the air flow F2 coming from the environment outside the passenger compartment 3.
  • the device 1 comprises at least one motorized ventilation unit 2 particularly visible in Figures 2 to 6.
  • the motorized ventilation unit 2 comprises at least one turbine 4, visible in Figure 5, configured to be driven in rotation around an axis of rotation R, a motor 6, partially visible in Figure 2, intended to drive in rotation the turbine 4.
  • the motorized ventilation unit 2 also comprises an air inlet box 8, visible in Figures 2 and 3, configured to bring at least one of the air flows Fi, F2 to the turbine 4 and a volute 10 surrounding the turbine 4 and configured to channel the air flows leaving the turbine 4.
  • the air inlet box 8, visible in Figures 2 and 3, comprises at least a first air inlet 12 and a second air inlet 14 distinct from the first air inlet 12. More precisely, the first air inlet 12 is intended to receive the air flow F2 coming from the environment outside the passenger compartment, while the second air inlet 14 is intended to receive the air flow Fi coming of the passenger compartment. Thus, we understand that the first air inlet 12 and the second air inlet 14 ensure the routing of the air flows Fi, F2 towards the turbine 4, and in particular towards an opening 16 of the turbine 4.
  • the first air inlet 12 and the second air inlet 14 each comprise a closing member 15 removable between an open position and a closed position, in order to authorize or block the passage of the air flow Fi, F2 towards the turbine 4.
  • the first air inlet 12 allows the routing of the air flow F2 coming from the environment outside the passenger compartment when its closing member 15 is in an open position as visible in Figure 3 illustrating a sectional view along the plane YY visible in Figure 2
  • the second air inlet 14 allows the routing of the air flow Fi coming from the passenger compartment when its closing member 15 is in an open position as visible in Figure 3.
  • the air inlet box 8 comprises two first air inlets 12 arranged on either side of the closing member 15.
  • the turbine 4 or otherwise called propeller, is intended to suck in and expel the air flows Fi, F2 coming from the first air inlets 12 or the second air inlet 14.
  • the turbine 4 comprises a plurality of blades 18, arranged radially around the axis of rotation R of said turbine 4 and aligned along this axis of rotation R, being spaced from each other. The rotation of the blades 18 of the turbine 4 generates movement of the air flows Fi, F 2 and their expulsion outside a volume 22 of the turbine, towards the volute 10.
  • the turbine 4 comprises at least one bowl 20 and the aforementioned opening 16, opposite each other along the axis of rotation R of the turbine 4, the opening 16 allowing the passage of air flows from the air inlets of the air inlet box towards a volume 22 delimited by the opening 16, the blades 18 and the bowl 20 of the turbine 4. It is understood that the bowl 20 allows to close the volume 22 of the turbine 8 opposite the opening 16 in an axial direction relative to the axis of rotation R of the latter.
  • At least one separation member 24 is arranged at least partly in the volume 22 delimited by the turbine 4.
  • the separation member 24 makes it possible to separate the volume 22 from the turbine 4 into a first air path 26 and a second air path 28.
  • the external face 30 of the separation member 24 and the blades 18 of the turbine 4 delimit the first air path 26, while the internal face 32 of the separation member 24 delimits the second air path 28.
  • the first air path 26 and the second air path 28 are aerulically connected respectively to the first air inlet 12, here to the first two air inlets 12, and to the second air inlet 14.
  • the first air path 26 corresponds to a first part of the volume 22 delimited by the turbine 4
  • the second air path 28 corresponds to a second part of the volume 22 delimited by the turbine 4, distinct from the first part.
  • the first air inlet 12 and the first air path 26 are aerulically isolated from the second air inlet 14 and the second air path 28.
  • the separation member 24 extends axially beyond the volume 22 delimited at least in part by the turbine 4. More precisely, a cylindrical portion 34 and a flared portion 36 of the separation member 24 are defined, the flared portion 36 extending the cylindrical portion 34.
  • the cylindrical portion 34 has in particular an air intake mouth 38 of circular shape, the intake mouth 38 being aeraullically connected with the second air inlet 14 of the air inlet box 8.
  • the flared portion 36 then extends into the volume 22 delimited by the turbine 4, while the cylindrical portion 34 extends at least partly axially above the volume 22 of the turbine 4, in a space delimited by the housing air inlet 8. It is further understood that the flared portion 36 extends radially towards the blades 18 so as to participate in the aeraulic separation between the first air path 26 and the second air path 28 .
  • the volute 10 comprises at least two portions 40, visible in Figure 5, aerally distinct from each other by being separated by a separation wall 42.
  • a first portion 40a and a second portion 40b of the volute 10 which in particular has a snail shape, as visible in Figure 4, extending around the axis of rotation R of the turbine 4.
  • the first portion 40a and the second portion 40b forms two hollow cylinders whose central space is occupied by the volume 22 of the turbine 4.
  • the first portion 40a and the second portion 40b of the volute 10 are thus superimposed one on the other the axis of rotation R.
  • Such superposition of the portions 40 of the volute 10 allows the first portion 40a to be in aeraulic communication with the first air path 26 and the second portion 40b to be in aeraulic communication with the second path air 28.
  • the separation member 24 comprises an outlet opening 44 which terminates the flared portion 36, forming a free end of the latter.
  • the outlet opening 44 then extends in an opening plane PO which is offset axially with respect to a plane of IO separation PS in which the separation wall 42 of the volute 10 extends.
  • the flared portion 36 of the separation member 24 then has a flaring curvature inscribed in a circle with a diameter between 40 and 55 mm, preferably 50mm, the center of this circle being placed substantially in the vicinity of 25mm from the cylindrical portion 34 of the separation member 24.
  • Such an arrangement makes it possible to accompany the air flows circulating both along the external face 30 and both along the internal face 32 of the separation member 24.
  • the particular combination of the position of the outlet opening 44 of the separation member 24 relative to the separation wall 42, and the radius of the flared portion 36 of said separation member 24, advantageously makes it possible to optimize the circulation and distribution of the air flow from the first air path 26 towards the first portion 40a of the volute 10 and from the second air path 28 towards the second portion 40b of the volute 10. We thus exploit the entire height of the portions 40 of the volute 10 for the circulation of air flows coming from the air paths 26, 28 respectively.
  • the motorized ventilation unit 2 comprises at least a first outlet duct 46 and a second outlet duct 48 in aeraulic communication respectively with the first portion 40a and the second portion 40b of the volute 10.
  • the first outlet conduit 46 and the second outlet conduit 48 are angularly offset relative to each other around the axis of rotation R of the turbine 4, such that a section inlet SE of each of the outlet conduits 46, 48, also forming an evacuation mouth of each portion 40 of the volute 10, are offset angularly relative to each other, along the axis of rotation R of the turbine 4. It is understood in particular that the angular offset is taken in a plane perpendicular to the axis of rotation R of the turbine 4.
  • the first portion 40a of the volute 10 and the second portion 40b of the volute lo are offset angularly relative to each other around the axis of rotation R of the turbine 4, this angular offset being preferably equal to the offset angular between the first outlet conduit 46 and the second outlet conduit 48.
  • the first portion 40a of the volute 10 and the second portion 4ob of the volute 10 have profiles which are strictly superimposable by rotation around the axis of rotation R of the turbine 4 combined with a translation along the axis of rotation R of the turbine 4.
  • each of the outlet ducts 46, 48 has a divergent profile following a direction of movement of the air flows within the motorized ventilation group 2.
  • the divergent profile of each of the ducts of outlet 46, 48 extends in two directions intersecting each other, here perpendicular to each other and one of the directions is axial.
  • the divergent profile of the outlet conduit 46 and/or 48 widens starting from their inlet section SE in two directions Ai and A2 perpendicular to each other.
  • the direction A2 is parallel to the axis of rotation R of the turbine 4.
  • each of the outlet conduits 46, 48 we define an outlet mouth 50 of each of the outlet conduits 46, 48, and in particular a first outlet mouth 50a of the first outlet conduit 46 and a second outlet mouth 50b of the second outlet conduit 48.
  • the first outlet mouth 50a and the second outlet mouth 50b each have a rectangular shape.
  • each of the outlet mouths 50 of the outlet conduits 46 have a mouth surface SB close to one another.
  • the outlet mouths 50 of each of the outlet ducts 46, 48 are opposite the inlet sections SE of their respective outlet ducts 46, 48, following a direction of movement of the air flow within said outlet ducts 46 , 48.
  • inlet section SE of the first outlet conduit 46 is offset axially, that is to say along the axis of rotation R, relative to the section SE inlet of the second outlet conduit 48.
  • each of the inlet sections SE of each of the outlet conduits 46, 48 has a section surface Si strictly less than the mouth surface SB of the corresponding outlet mouth 50 .
  • a characteristic of the invention is implemented by the divergent nature of the outlet conduits 46, 48 mentioned previously. Such a characteristic contributes in particular to increasing the surface area used by the air flows leaving the motorized ventilation unit 2.
  • the first outlet 50a and the second outlet 50b of the outlet ducts 46, 48 extend in a common plane PC which is parallel to the axis of rotation R of the turbine 4.
  • the common plane PC of the outlets 50 of the outlet ducts 46, 48 comprises at least one straight line which is parallel to the axis of rotation R of the turbine 4.
  • the outlets of outlet 50 of the outlet conduits 46, 48 are aligned along an axis Ai which is perpendicular to the axis of rotation R of the turbine 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The invention relates to a motorised ventilation unit (2) for a ventilation, heating and/or air conditioning device, the unit comprising at least one turbine (4) configured to be rotated about an axis of rotation (R), a motor (6) for rotating the turbine (4), an air inlet housing configured to supply at least one airflow to the turbine (4) and a spiral casing (10) surrounding the turbine (4), which spiral casing is configured to channel the at least one airflow at the outlet of the turbine (4), the motorised ventilation unit (2) comprising at least one separating member (24) at least partly arranged in a volume (22) of the turbine (4), the motorised ventilation unit (2) comprising at least a first outlet duct (46) and a second outlet duct (48 that are angularly offset from each other along the axis of rotation (R), the motorised ventilation unit also having a diverging profile.

Description

GROUPE MOTORISÉ DE VENTILATION MOTORIZED VENTILATION UNIT
La présente invention concerne des dispositifs de ventilation, chauffage et/ou climatisation pour réguler une température d’un flux d’air dirigé vers différentes zones d’un habitacle du véhicule. Plus particulièrement, l’invention concerne les moyens pour mettre en mouvement le flux d’air au sein de ce dispositif de ventilation, chauffage et/ou climatisation. The present invention relates to ventilation, heating and/or air conditioning devices for regulating a temperature of an air flow directed towards different areas of a vehicle passenger compartment. More particularly, the invention relates to the means for setting in motion the air flow within this ventilation, heating and/or air conditioning device.
Les véhicules automobiles comportent habituellement un habitacle dans lequel arrive au moins un flux d’air issu classiquement d’un dispositif de ventilation, chauffage et/ou climatisation, dans lequel il a subi un traitement thermique. Un tel dispositif de ventilation, chauffage et/ou climatisation peut être alimenté soit en air extérieur à l’habitacle, appelé aussi air frais, soit en air de recyclé, c’est-à-dire provenant de l’habitacle du véhicule. De façon connue, un groupe motorisé de ventilation du dispositif de ventilation, chauffage et/ ou climatisation est mis en œuvre pour faire circuler ce flux d’air recyclé. Motor vehicles usually include a passenger compartment into which at least one flow of air arrives, conventionally from a ventilation, heating and/or air conditioning device, in which it has undergone heat treatment. Such a ventilation, heating and/or air conditioning device can be supplied either with air from outside the passenger compartment, also called fresh air, or with recycled air, that is to say coming from the passenger compartment of the vehicle. In known manner, a motorized ventilation unit of the ventilation, heating and/or air conditioning device is used to circulate this flow of recycled air.
Afin d’améliorer les performances du dispositif de ventilation, chauffage et/ou climatisation, il est connu de dissocier les flux d’air frais et recyclé lors de leur passage au sein du dispositif, afin de permettre l’utilisation majoritaire ou exclusive d’un des flux d’air en fonction des besoins des occupants du véhicule. Il est notamment avantageux d’utiliser majoritairement le flux d’air recyclé qui présente une température proche d’une température à atteindre, à l’inverse du flux d’air frais en provenance de l’extérieur. Cependant, l’air recyclé est plus chargé en humidité que l’air frais et peut se condenser sur des surfaces vitrées du véhicule, tel qu’un parebrise, mettant ainsi en danger les occupants du véhicule lors de l’utilisation du véhicule. Ainsi, lorsque le flux d’air en sortie du dispositif est dirigé à proximité ou vers une surface vitrée, il est préférable d’utiliser en majorité le flux d’air en provenance de l’extérieur du véhicule. In order to improve the performance of the ventilation, heating and/or air conditioning device, it is known to dissociate the fresh and recycled air flows as they pass through the device, in order to allow the majority or exclusive use of one of the air flows according to the needs of the vehicle occupants. It is particularly advantageous to use mainly the flow of recycled air which has a temperature close to a temperature to be reached, unlike the flow of fresh air coming from the outside. However, recirculated air is higher in humidity than fresh air and can condense on glass surfaces of the vehicle, such as a windshield, thus endangering vehicle occupants when using the vehicle. Thus, when the air flow leaving the device is directed near or towards a glass surface, it is preferable to use mainly the air flow coming from outside the vehicle.
Les groupes motorisés de ventilation aptes à permettre cette séparation des flux d’air, bien qu’efficaces, peuvent être améliorés. Notamment, l’homogénéité de la répartition du flux d’air en sortie du groupe motorisé de ventilation peut être améliorée. D’autre part, la séparation des flux d’air au sein du dispositif de ventilation, chauffage et/ou climatisation peut également être optimisée. Motorized ventilation units capable of allowing this separation of air flows, although effective, can be improved. In particular, the homogeneity of the distribution of the air flow at the outlet of the motorized ventilation unit can be improved. On the other hand, the separation of air flows within the ventilation, heating and/or air conditioning device can also be optimized.
Le but de la présente invention est donc de proposer un groupe motorisé de ventilation qui assure efficacement la séparation des flux d’air en entrée et en sortie du groupe motorisé de ventilation, tout en optimisant l’homogénéité de la répartition du flux d’air en sortie dudit groupe motorisé de ventilation. The aim of the present invention is therefore to propose a motorized ventilation unit which effectively ensures the separation of air flows at the inlet and outlet of the motorized ventilation unit, while optimizing the homogeneity of the distribution of the air flow. at the outlet of said motorized ventilation unit.
L’invention porte alors sur un groupe motorisé de ventilation pour un dispositif de ventilation, chauffage et/ou climatisation, comprenant au moins une turbine configurée pour être entraînée en rotation autour d’un axe de rotation, un moteur destiné à entrainer en rotation la turbine, un boitier d’entrée d’air configuré pour amener au moins un flux d’air à la turbine et une volute entourant la turbine et configurée pour canaliser l’au moins un flux d’air en sortie de la turbine, le boitier d’entrée d’air comprenant au moins une première entrée d’air et une deuxième entrée d’air distinctes l’une de l’autre, le groupe motorisé de ventilation comprenant au moins un organe de séparation disposé au moins en partie dans un volume délimité par la turbine de telle sorte qu’il délimite au moins un premier chemin d’air et un deuxième chemin d’air reliés aérauliquement respectivement à la première entrée d’air et à la deuxième entrée d’air du boitier d’entrée d’air, la volute comprenant au moins deux portions séparées l’une de l’autre par une paroi de séparation, une première portion étant en communication aéraulique avec le premier chemin d’air et une deuxième portion étant en communication aéraulique avec le deuxième chemin d’air, le groupe motorisé de ventilation comprenant au moins un premier conduit de sortie en communication aéraulique avec la première portion et un deuxième conduit de sortie en communication aéraulique avec la deuxième portion, le premier conduit de sortie et le deuxième conduit de sortie étant au moins en partie décalés angulairement l’un par rapport à l’autre suivant l’axe de rotation et chacun des conduits de sortie présentant un profil divergent suivant un sens de déplacement du au moins un flux d’air au sein des conduits de sortie. The invention then relates to a motorized ventilation unit for a ventilation, heating and/or air conditioning device, comprising at least one turbine configured to be driven in rotation around an axis of rotation, a motor intended to rotate the turbine, an air inlet box configured to bring at least one air flow to the turbine and a volute surrounding the turbine and configured to channel the at least one air flow out of the turbine, the box air inlet comprising at least a first air inlet and a second air inlet distinct from each other, the motorized ventilation unit comprising at least one separation member arranged at least partly in a volume delimited by the turbine such that it delimits at least a first air path and a second air path aeraullically connected respectively to the first air inlet and the second air inlet of the inlet box of air, the volute comprising at least two portions separated from each other by a separation wall, a first portion being in aeraulic communication with the first air path and a second portion being in aeraulic communication with the second air path, the motorized ventilation unit comprising at least a first outlet duct in aeraulic communication with the first portion and a second outlet duct in aeraulic communication with the second portion, the first outlet duct and the second outlet duct being at least partly angularly offset relative to each other along the axis of rotation and each of the outlet ducts having a divergent profile following a direction of movement of at least one air flow within the ducts of exit.
Le dispositif de ventilation, chauffage et/ ou climatisation peut être utilisé pour réguler une température d’un flux d’air dirigé vers un habitacle d’un véhicule, par exemple automobile. Le dispositif de ventilation, chauffage et/ou climatisation peut alors utiliser un flux d’air provenant de l’habitacle et/ ou un flux d’air provenant d’un environnement extérieur à l’habitacle, afin de chauffer ou refroidir le flux d’air dirigé vers l’habitacle. Notamment, la provenance de l’un ou l’autre des flux d’air est conditionnée par la zone vers laquelle ce flux d’air est envoyé dans l’habitacle du véhicule. L’utilisation d’un flux d’air en provenance majoritairement de l’environnement extérieur au véhicule sera privilégiée lorsque le flux d’air est dirigé vers une surface vitrée de l’habitacle, celui-ci étant moins chargé en humidité, tandis que l’utilisation du flux d’air en provenance majoritairement de l’habitacle sera privilégiée lorsque le flux d’air est dirigé à distance des surfaces vitrées de l’habitacle, par exemple vers les pieds des usagers du véhicule. The ventilation, heating and/or air conditioning device can be used to regulate a temperature of an air flow directed towards a passenger compartment of a vehicle, for example an automobile. The ventilation, heating and/or air conditioning system can then use an air flow coming from the passenger compartment and/or an air flow coming from an environment outside the passenger compartment, in order to heat or cool the air flow directed towards the passenger compartment. In particular, the origin of one or the other of the air flows is conditioned by the zone to which this air flow is sent in the passenger compartment of the vehicle. The use of an air flow coming mainly from the environment outside the vehicle will be favored when the air flow is directed towards a glass surface of the passenger compartment, the latter being less loaded with humidity, while the use of the air flow coming mainly from the passenger compartment will be favored when the air flow is directed away from the glass surfaces of the passenger compartment, for example towards the feet of the vehicle users.
Le groupe motorisé de ventilation a notamment pour fonction de capter les flux d’air est de séparer aérauliquement leur trajet en son sein en fonction de leur provenance, depuis le volume de l’habitacle ou depuis l’environnement extérieur à celui-ci. Ainsi, on tire avantage de l’organe de séparation en ce qu’il optimise la segmentation des flux d’air avant leurs entrées dans la volute, et donc avant leurs entrées dans la turbine. The motorized ventilation unit has the particular function of capturing air flows and aerally separating their path within it according to their origin, from the volume of the passenger compartment or from the environment outside it. Thus, we take advantage of the separation member in that it optimizes the segmentation of the air flows before their entry into the volute, and therefore before their entry into the turbine.
D’autre part, on tire avantage du premier conduit de sortie et du deuxième conduit de sortie, et notamment de leur profil divergent, en ce qu’ils augmentent et optimisent la distribution homogène du flux d’air en sortie du groupe motorisé de ventilation. Plus particulièrement, la structure des conduits de sortie permet d’obtenir une même quantité de flux d’air indépendamment de leur provenance, depuis la première portion de la volute, ou depuis sa deuxième portion. On the other hand, we take advantage of the first outlet duct and the second outlet duct, and in particular their divergent profile, in that they increase and optimize the homogeneous distribution of the air flow at the outlet of the motorized ventilation unit. . More particularly, the structure of the outlet ducts makes it possible to obtain the same quantity of air flow independently of their origin, from the first portion of the volute, or from its second portion.
Selon une caractéristique de l’invention, le profil divergent de chacun des conduits de sortie s’étend suivant deux directions sécantes l’une de l’autre prises dans un même plan. Selon un exemple de l’invention, les deux directions sont perpendiculaires l’une de l’autre. Dit autrement, chacun des conduits de sortie est divergent en suivant le sens de déplacement du flux d’air dans ces conduits, et s’ouvrent dans deux directions perpendiculaires l’une par rapport à l’autre. According to a characteristic of the invention, the divergent profile of each of the outlet conduits extends in two directions intersecting one another taken in the same plane. According to an example of the invention, the two directions are perpendicular to each other. In other words, each of the outlet ducts diverges following the direction of movement of the air flow in these ducts, and opens in two directions perpendicular to each other.
Selon une caractéristique de l’invention, le premier conduit de sortie et le deuxième conduit de sortie sont terminés respectivement par une première bouche de sortie et une deuxième bouche de sortie qui présentent chacune une surface de bouche sensiblement identiques. On assure ainsi l’homogénéisation de la répartition du flux d’air en sortie du groupe motorisé de ventilation. According to one characteristic of the invention, the first outlet conduit and the second outlet conduit are terminated respectively by a first outlet mouth and a second outlet mouth which each have a surface of mouth substantially identical. This ensures the homogenization of the distribution of the air flow at the outlet of the motorized ventilation unit.
Selon une caractéristique de l’invention, l’organe de séparation s’étend axialement au-delà du volume de la turbine. According to one characteristic of the invention, the separation member extends axially beyond the volume of the turbine.
Selon une caractéristique de l’invention, l’organe de séparation comprend au moins une portion cylindrique et une portion évasée qui prolonge la portion cylindrique. According to one characteristic of the invention, the separation member comprises at least one cylindrical portion and a flared portion which extends the cylindrical portion.
Selon une caractéristique de l’invention, la portion cylindrique de l’organe de séparation s’étend au moins en partie axialement au-delà du volume de la turbine. L’organe de séparation fait donc saillie de la turbine et s’étend au moins en partie dans le boîtier d’entrée d’air. According to one characteristic of the invention, the cylindrical portion of the separation member extends at least partly axially beyond the volume of the turbine. The separation member therefore projects from the turbine and extends at least partly into the air inlet housing.
Selon une caractéristique de l’invention, la portion évasée de l’organe de séparation s’étend dans le volume de la turbine. According to one characteristic of the invention, the flared portion of the separation member extends into the volume of the turbine.
Selon une caractéristique de l’invention, la portion cylindrique de l’organe de séparation comprend une bouche d’admission d’air circulaire. According to one characteristic of the invention, the cylindrical portion of the separation member comprises a circular air intake mouth.
Selon une caractéristique de l’invention, le premier conduit de sortie et le deuxième conduit de sortie comprennent chacun respectivement une section d’entrée formant également une bouche d’évacuation de chaque portion de la volute, la section d’entrée présentant une surface de section strictement inférieure à celle de la bouche de sortie. According to one characteristic of the invention, the first outlet conduit and the second outlet conduit each respectively comprise an inlet section also forming an evacuation mouth for each portion of the volute, the inlet section having a surface of section strictly less than that of the outlet mouth.
Selon une caractéristique de l’invention, la première portion et la deuxième portion de la volute sont au moins en partie superposées axialement l’une sur l’autre. Selon un exemple de l’invention, la première portion et la deuxième portion sont strictement superposées l’une sur l’autre. According to one characteristic of the invention, the first portion and the second portion of the volute are at least partly superimposed axially on one another. According to an example of the invention, the first portion and the second portion are strictly superimposed on one another.
Selon une caractéristique de l’invention, la première portion de la volute et la deuxième portion de la volute sont décalées angulairement l’une par rapport à l’autre autour de l’axe de rotation R de la turbine, ce décalage angulaire étant de préférence égal au décalage angulaire entre le premier conduit de sortie et le deuxième conduit de sortie. According to one characteristic of the invention, the first portion of the volute and the second portion of the volute are angularly offset relative to each other around the axis of rotation R of the turbine, this angular offset being preferably equal to the angular offset between the first outlet conduit and the second outlet conduit.
Selon une caractéristique de l’invention, la première portion de la volute et la deuxième portion de la volute ont des profils qui sont strictement superposables par rotation autour de l’axe de rotation de la turbine combinée à une translation selon l’axe de rotation de la turbine. According to a characteristic of the invention, the first portion of the volute and the second portion of the volute have profiles which are strictly superimposable. by rotation around the axis of rotation of the turbine combined with translation along the axis of rotation of the turbine.
Selon une caractéristique de l’invention, les bouches de sortie des conduits de sortie s’étendent dans un plan commun qui est parallèle à l’axe de rotation de la turbine. Plus particulièrement, le plan commun des bouches de sortie comprend au moins une droite parallèle à l’axe de rotation de la turbine. According to one characteristic of the invention, the outlet mouths of the outlet ducts extend in a common plane which is parallel to the axis of rotation of the turbine. More particularly, the common plane of the outlets comprises at least one straight line parallel to the axis of rotation of the turbine.
Selon une caractéristique de l’invention, les bouches de sortie des conduits de sortie sont alignées le long d’un axe qui est perpendiculaire à l’axe de rotation de la turbine. According to one characteristic of the invention, the outlet mouths of the outlet ducts are aligned along an axis which is perpendicular to the axis of rotation of the turbine.
Selon une caractéristique de l’invention, un plan d’ouverture d’une ouverture de sortie de l’organe de séparation est décalé axialement d’un plan de séparation de la paroi de séparation de la volute. According to one characteristic of the invention, an opening plane of an outlet opening of the separation member is offset axially from a separation plane of the separation wall of the volute.
L’invention porte également sur un dispositif de ventilation, chauffage et/ou climatisation pour un habitacle d’un véhicule comprenant au moins un groupe motorisé de ventilation selon l’une quelconque des caractéristiques précédentes, le groupe motorisé de ventilation étant configuré pour fournir simultanément un flux d’air qui provient de l’habitacle ou un flux d’air qui provient d’un environnement extérieur à l’habitacle. The invention also relates to a ventilation, heating and/or air conditioning device for a passenger compartment of a vehicle comprising at least one motorized ventilation unit according to any of the preceding characteristics, the motorized ventilation unit being configured to simultaneously supply an air flow which comes from the passenger compartment or an air flow which comes from an environment outside the passenger compartment.
D'autres caractéristiques, détails et avantages de l'invention ressortiront plus clairement à la lecture de la description donnée ci-après à titre indicatif en relation avec des dessins dans lesquels : Other characteristics, details and advantages of the invention will emerge more clearly on reading the description given below for information purposes in relation to the drawings in which:
[Fig 1] est une vue générale en perspective d'un véhicule comprenant au moins un dispositif de ventilation, chauffage et/ou climatisation ; [Fig 1] is a general perspective view of a vehicle comprising at least one ventilation, heating and/or air conditioning device;
[Fig 2] est une vue en perspective d’un groupe motorisé de ventilation du dispositif de ventilation, chauffage et/ou climatisation de la figure i ; [Fig 2] is a perspective view of a motorized ventilation unit of the ventilation, heating and/or air conditioning device of Figure i;
[Fig 3] est une vue en coupe selon un plan Y-Y illustré sur la figure 2 du groupe motorisé de ventilation de la figure 2 ; [Fig 3] is a sectional view along a Y-Y plane illustrated in Figure 2 of the motorized ventilation unit of Figure 2;
[Fig 4] est une vue en perspective d’une partie du groupe motorisé de ventilation de la figure 2 ; [Fig 4] is a perspective view of part of the motorized ventilation unit of Figure 2;
[Fig 5] est une vue en coupe axiale du groupe motorisé de ventilation pris dans un plan X-X illustré sur la figure 4 ; [Fig 5] is an axial sectional view of the motorized ventilation group taken in a plan XX illustrated in Figure 4;
[Fig 6] est une vue de face des au moins deux conduits de sortie du groupe motorisé de ventilation selon l’invention. [Fig 6] is a front view of the at least two outlet ducts of the motorized ventilation unit according to the invention.
Il faut tout d’abord noter que si les figures exposent l’invention de manière détaillée pour sa mise en œuvre, ces figures peuvent bien entendu servir à mieux définir l’invention, le cas échéant. Il est également à noter que ces figures n’exposent que quelques exemples de réalisation de l’invention. It should first be noted that if the figures present the invention in detail for its implementation, these figures can of course be used to better define the invention, if necessary. It should also be noted that these figures only show a few examples of implementation of the invention.
La figure 1 illustre un dispositif de ventilation, chauffage et/ ou climatisation 1 pour un habitacle 3 d’un véhicule 5, ici automobile, destiné à réguler la température d’un flux d’air F envoyé dans l’habitacle 3. Le dispositif de ventilation, chauffage et/ou climatisation 1, ci-après nommé le dispositif 1, assure un traitement aéraulique et thermique du flux d’air Figure 1 illustrates a ventilation, heating and/or air conditioning device 1 for a passenger compartment 3 of a vehicle 5, here automobile, intended to regulate the temperature of an air flow F sent into the passenger compartment 3. The device ventilation, heating and/or air conditioning 1, hereinafter called device 1, ensures aeraulic and thermal treatment of the air flow
F dirigé vers l’habitacle 3 du véhicule en modifiant la température d’un flux d’air Fi provenant de l’habitacle 3 et/ou d’un flux d’air F2 provenant d’un environnement extérieur à l’habitacle 3. L’utilisation de l’un et/ ou l’autre des flux d’air Fi, F2 provenant de l’habitacle 3 ou de l’environnement extérieur de l’habitacle 3 est conditionnée aux besoins d’un utilisateur du véhicule 5, et notamment en fonction d’une zone de l’habitacle 3 au niveau de laquelle est dirigé le flux d’air F en sortie du dispositif 1. F directed towards the passenger compartment 3 of the vehicle by modifying the temperature of an air flow Fi coming from the passenger compartment 3 and/or an air flow F2 coming from an environment outside the passenger compartment 3. The use of one and/or the other of the air flows Fi, F2 coming from the passenger compartment 3 or from the external environment of the passenger compartment 3 is conditioned on the needs of a user of the vehicle 5, and in particular as a function of a zone of the passenger compartment 3 at which the air flow F at the outlet of the device 1 is directed.
Selon un exemple non limitatif de l’invention, lorsque le flux d’air F en sortie du dispositif 1 est dirigé vers une surface vitrée 7 de l’habitacle 3, l’utilisation majoritaire du flux d’air F2 provenant de l’environnement extérieur à l’habitacle 3 est préférée, tandis que l’utilisation majoritaire du flux d’air Fi provenant de l’habitacle 3 est préférée lorsque le flux d’air F en sortie du dispositif 1 est dirigé dans une zone de l’habitacle 3 à distances des surfaces vitrées 7. En effet, le flux d’air Fi provenant de l’habitacle 3, bien qu’à une température proche de la température souhaitée, est plus chargé en humidité, notamment par la respiration du au moins un utilisateur du véhicule 5 et peut donc occasionner des phénomènes de condensation sur les surfaces vitrées 7 du véhicule 5. Par ailleurs, le flux d’air F2 provenant de l’environnement extérieur à l’habitacle 3, bien que plus frais que le flux d’air Fi provenant de l’habitacle 3, est moins chargé en humidité que ce dernier et est donc préféré lorsque le flux d’air F en sortie du dispositif i est dirigé vers une des surfaces vitrées 7, afin d’éviter des phénomènes de condensation. According to a non-limiting example of the invention, when the air flow F leaving the device 1 is directed towards a glazed surface 7 of the passenger compartment 3, the majority use of the air flow F2 coming from the environment outside the passenger compartment 3 is preferred, while the majority use of the air flow Fi coming from the passenger compartment 3 is preferred when the air flow F leaving the device 1 is directed into an area of the passenger compartment 3 at distances from the glass surfaces 7. Indeed, the air flow Fi coming from the passenger compartment 3, although at a temperature close to the desired temperature, is more loaded with humidity, in particular by the breathing of at least one user of the vehicle 5 and can therefore cause condensation phenomena on the glass surfaces 7 of the vehicle 5. Furthermore, the air flow F2 coming from the environment outside the passenger compartment 3, although cooler than the flow The air Fi coming from the passenger compartment 3, is less loaded with humidity than the latter and is therefore preferred when the air flow F at the outlet of device i is directed towards one of the glass surfaces 7, in order to avoid condensation phenomena.
On comprend par ailleurs, que le dispositif 1 peut utiliser un mélange du flux d’air Fi provenant de l’habitacle 3 et du flux d’air F2 provenant de l’environnement extérieur à l’habitacle 3. It is also understood that the device 1 can use a mixture of the air flow Fi coming from the passenger compartment 3 and the air flow F2 coming from the environment outside the passenger compartment 3.
Le dispositif 1 selon l’invention comprend au moins un groupe motorisé de ventilation 2 particulièrement visible aux figures 2 à 6. The device 1 according to the invention comprises at least one motorized ventilation unit 2 particularly visible in Figures 2 to 6.
Le groupe motorisé de ventilation 2 comprend au moins une turbine 4, visible à la figure 5, configurée pour être entraînée en rotation autour d’un axe de rotation R, un moteur 6, partiellement visible à la figure 2, destiné à entrainer en rotation la turbine 4. Le groupe motorisé de ventilation 2 comprend également un boitier d’entrée d’air 8, visible aux figures 2 et 3, configuré pour amener au moins un des flux d’air Fi, F2 à la turbine 4 et une volute 10 entourant la turbine 4 et configurée pour canaliser les flux d’air en sortie de la turbine 4. The motorized ventilation unit 2 comprises at least one turbine 4, visible in Figure 5, configured to be driven in rotation around an axis of rotation R, a motor 6, partially visible in Figure 2, intended to drive in rotation the turbine 4. The motorized ventilation unit 2 also comprises an air inlet box 8, visible in Figures 2 and 3, configured to bring at least one of the air flows Fi, F2 to the turbine 4 and a volute 10 surrounding the turbine 4 and configured to channel the air flows leaving the turbine 4.
Le boitier d’entrée d’air 8, visible aux figures 2 et 3, comprend au moins une première entrée d’air 12 et une deuxième entrée d’air 14 distinctes de la première entrée d’air 12. De manière plus précise, la première entrée d’air 12 est destinée à recevoir le flux d’air F2 en provenance de l’environnement extérieur à l’habitacle, tandis que la deuxième entrée d’air 14 est destinée à recevoir le flux d’air Fi en provenance de l’habitacle. Ainsi, on comprend que la première entrée d’air 12 et la deuxième entrée d’air 14 assurent l’acheminement des flux d’air Fi, F2 vers la turbine 4, et notamment vers une ouverture 16 de la turbine 4. The air inlet box 8, visible in Figures 2 and 3, comprises at least a first air inlet 12 and a second air inlet 14 distinct from the first air inlet 12. More precisely, the first air inlet 12 is intended to receive the air flow F2 coming from the environment outside the passenger compartment, while the second air inlet 14 is intended to receive the air flow Fi coming of the passenger compartment. Thus, we understand that the first air inlet 12 and the second air inlet 14 ensure the routing of the air flows Fi, F2 towards the turbine 4, and in particular towards an opening 16 of the turbine 4.
A cette fin et tel que visible aux figures 2 et 3, la première entrée d’air 12 et la deuxième entrée d’air 14 comprennent chacune un organe de fermeture 15 amovible entre une position ouverte et une position fermée, afin d’autoriser ou bloquer le passage du flux d’air Fi, F2 vers la turbine 4. Ainsi, la première entrée d’air 12 permet l’acheminement du flux d’air F2 provenant de l’environnement extérieur à l’habitacle lorsque son organe de fermeture 15 est dans une position ouverte telle que visible à la figure 3 illustrant une vue en coupe selon le plan Y-Y visible à la figure 2, et la deuxième entrée d’air 14 permet l’acheminement du flux d’air Fi provenant de l’habitacle lorsque son organe de fermeture 15 est dans une position ouverte telle que visible à la figure 3. Selon un exemple non limitatif de l’invention, le boitier d’entrée d’air 8 comprend deux premières entrées d’air 12 disposées de part et d’autre de l’organe de fermeture 15. To this end and as visible in Figures 2 and 3, the first air inlet 12 and the second air inlet 14 each comprise a closing member 15 removable between an open position and a closed position, in order to authorize or block the passage of the air flow Fi, F2 towards the turbine 4. Thus, the first air inlet 12 allows the routing of the air flow F2 coming from the environment outside the passenger compartment when its closing member 15 is in an open position as visible in Figure 3 illustrating a sectional view along the plane YY visible in Figure 2, and the second air inlet 14 allows the routing of the air flow Fi coming from the passenger compartment when its closing member 15 is in an open position as visible in Figure 3. According to a non-limiting example of the invention, the air inlet box 8 comprises two first air inlets 12 arranged on either side of the closing member 15.
La turbine 4, ou autrement appelée hélice, est destinée à aspirer et expulser les flux d’air Fi, F2 en provenance des premières entrées d’air 12 ou de la deuxième entrée d’air 14. En outre, la turbine 4 comprend une pluralité de pales 18, disposées radialement autour de l’axe de rotation R de ladite turbine 4 et alignées le long de cet axe de rotation R, en étant espacées les unes des autres. L’entrainement en rotation des pales 18 de la turbine 4 génère une mise en mouvement des flux d’air Fi, F 2 et leur expulsion en dehors d’un volume 22 de la turbine, vers la volute 10.The turbine 4, or otherwise called propeller, is intended to suck in and expel the air flows Fi, F2 coming from the first air inlets 12 or the second air inlet 14. In addition, the turbine 4 comprises a plurality of blades 18, arranged radially around the axis of rotation R of said turbine 4 and aligned along this axis of rotation R, being spaced from each other. The rotation of the blades 18 of the turbine 4 generates movement of the air flows Fi, F 2 and their expulsion outside a volume 22 of the turbine, towards the volute 10.
Tel que visible à la figure 5, la turbine 4 comprend au moins un bol 20 et l’ouverture 16 précitée, opposés l’un de l’autre suivant l’axe de rotation R de la turbine 4, l’ouverture 16 permettant le passage des flux d’air depuis les entrées d’air du boitier d’entrée d’air vers un volume 22 délimité par l’ouverture 16, les pales 18 et le bol 20 de la turbine 4. On comprend que le bol 20 permet de fermer le volume 22 de la turbine 8 à l’opposé de l’ouverture 16 suivant une direction axiale par rapport à l’axe de rotation R de cette dernière. As visible in Figure 5, the turbine 4 comprises at least one bowl 20 and the aforementioned opening 16, opposite each other along the axis of rotation R of the turbine 4, the opening 16 allowing the passage of air flows from the air inlets of the air inlet box towards a volume 22 delimited by the opening 16, the blades 18 and the bowl 20 of the turbine 4. It is understood that the bowl 20 allows to close the volume 22 of the turbine 8 opposite the opening 16 in an axial direction relative to the axis of rotation R of the latter.
Selon l’exemple de l’invention illustré, au moins un organe de séparation 24 est disposé au moins en partie dans le volume 22 délimité par la turbine 4. Ainsi, l’organe de séparation 24 permet de séparer le volume 22 de la turbine 4 en un premier chemin d’air 26 et en un deuxième chemin d’air 28. On définit alors une face externe 30 de l’organe de séparation 24 tournée face aux pales 18 de la turbine 4 et une face interne 32 opposée à la face externe 30. Ainsi, la face externe 30 de l’organe de séparation 24 et les pales 18 de la turbine 4 délimitent le premier chemin d’air 26, tandis que la face interne 32 de l’organe de séparation 24 délimite le deuxième chemin d’air 28. According to the example of the invention illustrated, at least one separation member 24 is arranged at least partly in the volume 22 delimited by the turbine 4. Thus, the separation member 24 makes it possible to separate the volume 22 from the turbine 4 into a first air path 26 and a second air path 28. We then define an external face 30 of the separation member 24 facing the blades 18 of the turbine 4 and an internal face 32 opposite the external face 30. Thus, the external face 30 of the separation member 24 and the blades 18 of the turbine 4 delimit the first air path 26, while the internal face 32 of the separation member 24 delimits the second air path 28.
Ainsi et tel que visible à la figure 3, le premier chemin d’air 26 et le deuxième chemin d’air 28 sont reliés aérauliquement respectivement à la première entrée d’air 12, ici aux deux premières entrées d’air 12, et à la deuxième entrée d’air 14. Dit autrement, le premier chemin d’air 26 correspond à une première partie du volume 22 délimité par la turbine 4 et le deuxième chemin d’air 28 correspond à une deuxième partie du volume 22 délimité par la turbine 4, distincte de la première partie. Ainsi, la première entrée d’air 12 et le premier chemin d’air 26 sont isolés aérauliquement de la deuxième entrée d’air 14 et du deuxième chemin d’air 28. Thus and as visible in Figure 3, the first air path 26 and the second air path 28 are aerulically connected respectively to the first air inlet 12, here to the first two air inlets 12, and to the second air inlet 14. In other words, the first air path 26 corresponds to a first part of the volume 22 delimited by the turbine 4 and the second air path 28 corresponds to a second part of the volume 22 delimited by the turbine 4, distinct from the first part. Thus, the first air inlet 12 and the first air path 26 are aerulically isolated from the second air inlet 14 and the second air path 28.
Selon l’exemple de l’invention et tel que particulièrement visible aux figures 3 et 5, l’organe de séparation 24 s’étend axialement au-delà du volume 22 délimité au moins en partie par la turbine 4. De manière plus précise, on définit une portion cylindrique 34 et une portion évasée 36 de l’organe de séparation 24, la portion évasée 36 prolongeant la portion cylindrique 34. La portion cylindrique 34 présente notamment une bouche d’admission 38 de l’air de forme circulaire, la bouche d’admission 38 étant reliée aérauliquement avec la deuxième entrée d’air 14 du boitier d’entrée d’air 8. According to the example of the invention and as particularly visible in Figures 3 and 5, the separation member 24 extends axially beyond the volume 22 delimited at least in part by the turbine 4. More precisely, a cylindrical portion 34 and a flared portion 36 of the separation member 24 are defined, the flared portion 36 extending the cylindrical portion 34. The cylindrical portion 34 has in particular an air intake mouth 38 of circular shape, the intake mouth 38 being aeraullically connected with the second air inlet 14 of the air inlet box 8.
La portion évasée 36 s’étend alors dans le volume 22 délimité par la turbine 4, tandis que la portion cylindrique 34 s’étend au moins en partie axialement au- dessus du volume 22 de la turbine 4, dans un espace délimité par le boîtier d’entrée d’air 8. On comprend par ailleurs, que la portion évasée 36 s’étend radialement vers les pales 18 de sorte à participer à la séparation aéraulique entre le premier chemin d’air 26 et le deuxième chemin d’air 28. The flared portion 36 then extends into the volume 22 delimited by the turbine 4, while the cylindrical portion 34 extends at least partly axially above the volume 22 of the turbine 4, in a space delimited by the housing air inlet 8. It is further understood that the flared portion 36 extends radially towards the blades 18 so as to participate in the aeraulic separation between the first air path 26 and the second air path 28 .
Selon l’invention, la volute 10 comprend au moins deux portions 40, visibles à la figure 5, aérauliquement distinctes l’une de l’autre en étant séparées par une paroi de séparation 42. On définit alors une première portion 40a et une deuxième portion 40b de la volute 10 qui présentent notamment une forme en escargot, telle que visible à la figure 4, en s’étendant autour de l’axe de rotation R de la turbine 4. En d’autres termes, la première portion 40a et la deuxième portion 40b forment deux cylindres creux dont l’espace central est occupé par le volume 22 de la turbine 4. La première portion 40a et la deuxième portion 40b de la volute 10 sont ainsi superposées l’une sur l’autre l’axe de rotation R. Une telle superposition des portions 40 de la volute 10 permet à la première portion 40a d’être en communication aéraulique avec le premier chemin d’air 26 et à la deuxième portion 40b d’être en communication aéraulique avec le deuxième chemin d’air 28.According to the invention, the volute 10 comprises at least two portions 40, visible in Figure 5, aerally distinct from each other by being separated by a separation wall 42. We then define a first portion 40a and a second portion 40b of the volute 10 which in particular has a snail shape, as visible in Figure 4, extending around the axis of rotation R of the turbine 4. In other words, the first portion 40a and the second portion 40b forms two hollow cylinders whose central space is occupied by the volume 22 of the turbine 4. The first portion 40a and the second portion 40b of the volute 10 are thus superimposed one on the other the axis of rotation R. Such superposition of the portions 40 of the volute 10 allows the first portion 40a to be in aeraulic communication with the first air path 26 and the second portion 40b to be in aeraulic communication with the second path air 28.
Tel que cela est particulièrement visible à la figure 5, l’organe de séparation 24 comprend une ouverture de sortie 44 qui termine la portion évasée 36, en formant une extrémité libre de cette dernière. L’ouverture de sortie 44 s’étend alors dans un plan d’ouverture PO qui est décalé axialement par rapport à un plan de IO séparation PS dans lequel s’étend la paroi de séparation 42 de la volute 10. La portion évasée 36 de l’organe de séparation 24 présente alors une courbure d’évasement en s’inscrivant dans un cercle de diamètre compris entre 40 et 55 mm, de préférence 50mm, le centre de ce cercle étant placé sensiblement au voisinage de 25mm de la portion cylindrique 34 de l’organe de séparation 24. Une telle disposition permet d’accompagner les flux d’air circulant à la fois le long de la face externe 30 et à la fois le long de la face interne 32 de l’organe de séparation 24. En outre, la combinaison particulière de la position de l’ouverture de sortie 44 de l’organe de séparation 24 par rapport à la paroi de séparation 42, et le rayon de la portion évasée 36 dudit organe de séparation 24, permet de manière avantageuse d’optimiser la circulation et la répartition du flux d’air depuis le premier chemin d’air 26 vers la première portion 40a de la volute 10 et depuis le deuxième chemin d’air 28 vers la deuxième portion 40b de la volute 10. On exploite ainsi toute la hauteur des portions 40 de la volute 10 pour la circulation des flux d’air en provenance des chemins d’air 26, 28 respectifs. As is particularly visible in Figure 5, the separation member 24 comprises an outlet opening 44 which terminates the flared portion 36, forming a free end of the latter. The outlet opening 44 then extends in an opening plane PO which is offset axially with respect to a plane of IO separation PS in which the separation wall 42 of the volute 10 extends. The flared portion 36 of the separation member 24 then has a flaring curvature inscribed in a circle with a diameter between 40 and 55 mm, preferably 50mm, the center of this circle being placed substantially in the vicinity of 25mm from the cylindrical portion 34 of the separation member 24. Such an arrangement makes it possible to accompany the air flows circulating both along the external face 30 and both along the internal face 32 of the separation member 24. In addition, the particular combination of the position of the outlet opening 44 of the separation member 24 relative to the separation wall 42, and the radius of the flared portion 36 of said separation member 24, advantageously makes it possible to optimize the circulation and distribution of the air flow from the first air path 26 towards the first portion 40a of the volute 10 and from the second air path 28 towards the second portion 40b of the volute 10. We thus exploit the entire height of the portions 40 of the volute 10 for the circulation of air flows coming from the air paths 26, 28 respectively.
Selon l’invention et tel que visible aux figures 4 ou 6, le groupe motorisé de ventilation 2 comprend au moins un premier conduit de sortie 46 et un deuxième conduit de sortie 48 en communication aéraulique respectivement avec la première portion 40a et la deuxième portion 40b de la volute 10. Le premier conduit de sortie 46 et le deuxième conduit de sortie 48 sont décalés angulairement l’un par rapport à l’autre autour de l’axe de rotation R de la turbine 4, de telle sorte qu’une section d’entrée SE de chacun des conduits de sortie 46, 48, formant également une bouche d’évacuation de chaque portion 40 de la volute 10, soient décalées angulairement l’une par rapport à l’autre, suivant l’axe de rotation R de la turbine 4. On comprend notamment que le décalage angulaire est pris dans un plan perpendiculaire à l’axe de rotation R de la turbine 4. According to the invention and as visible in Figures 4 or 6, the motorized ventilation unit 2 comprises at least a first outlet duct 46 and a second outlet duct 48 in aeraulic communication respectively with the first portion 40a and the second portion 40b of the volute 10. The first outlet conduit 46 and the second outlet conduit 48 are angularly offset relative to each other around the axis of rotation R of the turbine 4, such that a section inlet SE of each of the outlet conduits 46, 48, also forming an evacuation mouth of each portion 40 of the volute 10, are offset angularly relative to each other, along the axis of rotation R of the turbine 4. It is understood in particular that the angular offset is taken in a plane perpendicular to the axis of rotation R of the turbine 4.
La première portion 40a de la volute 10 et la deuxième portion 40b de la volute losont décalées angulairement l’une par rapport à l’autre autour de l’axe de rotation R de la turbine 4, ce décalage angulaire étant de préférence égal au décalage angulaire entre le premier conduit de sortie 46 et le deuxième conduit de sortie 48. The first portion 40a of the volute 10 and the second portion 40b of the volute lo are offset angularly relative to each other around the axis of rotation R of the turbine 4, this angular offset being preferably equal to the offset angular between the first outlet conduit 46 and the second outlet conduit 48.
La première portion 40a de la volute 10 et la deuxième portion4ob de la volute 10 ont des profils qui sont strictement superposables par rotation autour de l’axe de rotation R de la turbine 4 combinée à une translation selon l’axe de rotation R de la turbine 4. The first portion 40a of the volute 10 and the second portion 4ob of the volute 10 have profiles which are strictly superimposable by rotation around the axis of rotation R of the turbine 4 combined with a translation along the axis of rotation R of the turbine 4.
Tel qu’illustré à la figure 6, chacun des conduits de sortie 46, 48 présente un profil divergent suivant un sens de déplacement des flux d’air au sein du groupe motorisé de ventilation 2. Notamment, le profil divergent de chacun des conduits de sortie 46, 48 s’étend suivant deux directions sécantes l’une de l’autre, ici perpendiculaires l’une par rapport à l’autre et dont une des directions est axiale.As illustrated in Figure 6, each of the outlet ducts 46, 48 has a divergent profile following a direction of movement of the air flows within the motorized ventilation group 2. In particular, the divergent profile of each of the ducts of outlet 46, 48 extends in two directions intersecting each other, here perpendicular to each other and one of the directions is axial.
On comprend ainsi que le profil divergent du conduit de sortie 46 et/ou 48 s’élargit en partant de leur section d’entrée SE dans deux directions Ai et A2 perpendiculaires l’une par rapport à l’autre. Selon un aspect, la direction A2 est parallèle à l’axe de rotation R de la turbine 4. It is thus understood that the divergent profile of the outlet conduit 46 and/or 48 widens starting from their inlet section SE in two directions Ai and A2 perpendicular to each other. According to one aspect, the direction A2 is parallel to the axis of rotation R of the turbine 4.
On définit une bouche de sortie 50 de chacun des conduits de sortie 46, 48, et notamment une première bouche de sortie 50a du premier conduit de sortie 46 et une deuxième bouche de sortie 50b du deuxième conduit de sortie 48. Selon l’exemple de l’invention illustré, la première bouche de sortie 50a et la deuxième bouche de sortie 50b présentent chacune une forme rectangulaire. Plus particulièrement, chacune des bouches de sortie 50 des conduits de sortie 46 présentent une surface de bouche SB proche l’une de l’autre. On offre ainsi la possibilité de répartir la sortie des flux d’air de manière homogène entre le flux d’air circulant dans le premier conduit de sortie 46 et le flux d’air circulant dans le deuxième conduit de sortie 48. On comprend par ailleurs que les bouches de sortie 50 de chacun des conduits de sortie 46, 48 sont opposées aux sections d’entrée SE de leurs conduits de sortie 46, 48 respectifs, suivant un sens de déplacement du flux d’air au sein desdits conduits de sortie 46, 48. We define an outlet mouth 50 of each of the outlet conduits 46, 48, and in particular a first outlet mouth 50a of the first outlet conduit 46 and a second outlet mouth 50b of the second outlet conduit 48. According to the example of the invention illustrated, the first outlet mouth 50a and the second outlet mouth 50b each have a rectangular shape. More particularly, each of the outlet mouths 50 of the outlet conduits 46 have a mouth surface SB close to one another. We thus offer the possibility of distributing the output of the air flows in a homogeneous manner between the air flow circulating in the first outlet duct 46 and the air flow circulating in the second outlet duct 48. We also understand that the outlet mouths 50 of each of the outlet ducts 46, 48 are opposite the inlet sections SE of their respective outlet ducts 46, 48, following a direction of movement of the air flow within said outlet ducts 46 , 48.
Selon un aspect visible sur la figure 6, on note que la section d’entrée SE du premier conduit de sortie 46 est décalée axialement, c’est-à-dire le long de l’axe de rotation R, par rapport à la section d’entrée SE du deuxième conduit de sortie 48.According to an aspect visible in Figure 6, we note that the inlet section SE of the first outlet conduit 46 is offset axially, that is to say along the axis of rotation R, relative to the section SE inlet of the second outlet conduit 48.
Selon une caractéristique de l’invention visible à la figure 6, chacune des sections d’entrée SE de chacun des conduits de sortie 46, 48 présente une surface de section Si strictement inférieure à la surface de bouche SB de la bouche de sortie 50 correspondante. On comprend qu’une telle caractéristique est mise en œuvre par le caractère divergent des conduits de sortie 46, 48 évoqué précédemment. Une telle caractéristique participe notamment à augmenter la surface exploitée par les flux d’air en sortie du groupe motorisé de ventilation 2. According to a characteristic of the invention visible in Figure 6, each of the inlet sections SE of each of the outlet conduits 46, 48 has a section surface Si strictly less than the mouth surface SB of the corresponding outlet mouth 50 . We understand that such a characteristic is implemented by the divergent nature of the outlet conduits 46, 48 mentioned previously. Such a characteristic contributes in particular to increasing the surface area used by the air flows leaving the motorized ventilation unit 2.
Tel que visible aux figures 4 et 6, la première bouche de sortie 50a et la deuxième bouche de sortie 50b des conduits de sortie 46, 48 s’étendent dans un plan commun PC qui est parallèle à l’axe de rotation R de la turbine 4. En d’autres termes, le plan commun PC des bouches de sortie 50 des conduits de sortie 46, 48 comprend au moins une droite qui est parallèle à l’axe de rotation R de la turbine 4. Par ailleurs, les bouches de sortie 50 des conduits de sortie 46, 48 sont alignées le long d’un axe Ai qui est perpendiculaire à l’axe de rotation R de la turbine 4.As visible in Figures 4 and 6, the first outlet 50a and the second outlet 50b of the outlet ducts 46, 48 extend in a common plane PC which is parallel to the axis of rotation R of the turbine 4. In other words, the common plane PC of the outlets 50 of the outlet ducts 46, 48 comprises at least one straight line which is parallel to the axis of rotation R of the turbine 4. Furthermore, the outlets of outlet 50 of the outlet conduits 46, 48 are aligned along an axis Ai which is perpendicular to the axis of rotation R of the turbine 4.
On tire avantage de l’invention telle qu’elle vient d’être décrite en ce qu’elle permet de segmenter l’intégralité du groupe motorisé de ventilation en fonction des flux d’air provenant de l’habitacle ou de l’environnement extérieur, par la mise en place de l’organe de séparation au sein du volume délimité par la turbine. L’invention permet également d’augmenter et d’optimiser l’homogénéisation de la répartition du flux d’air en sortie du groupe motorisé de ventilation, notamment au moyen des conduits de sortie au profil divergent. We take advantage of the invention as it has just been described in that it makes it possible to segment the entire motorized ventilation unit according to the air flows coming from the passenger compartment or the external environment. , by the installation of the separation member within the volume delimited by the turbine. The invention also makes it possible to increase and optimize the homogenization of the distribution of the air flow leaving the motorized ventilation unit, in particular by means of outlet ducts with a divergent profile.
L’invention telle qu’elle vient d’être décrite ne saurait toutefois se limiter aux moyens et configurations exclusivement décrits et illustrés, et s’applique également à tous moyens ou configurations, équivalents et à toute combinaison de tels moyens ou configurations. The invention as it has just been described cannot, however, be limited to the means and configurations exclusively described and illustrated, and also applies to all equivalent means or configurations and to any combination of such means or configurations.

Claims

REVENDICATIONS
1. Groupe motorisé de ventilation (2) pour un dispositif de ventilation, chauffage et/ou climatisation (1) d’un véhicule, comprenant au moins une turbine (4) configurée pour être entraînée en rotation autour d’un axe de rotation (R), un moteur (6) destiné à entrainer en rotation la turbine (4), un boitier d’entrée d’air (8) configuré pour amener au moins un flux d’air (Fl, F2) à la turbine (4) et une volute (10) entourant la turbine (4) et configurée pour canaliser l’au moins un flux d’air (Fi, F2) en sortie de la turbine (4), le boitier d’entrée d’air (8) comprenant au moins une première entrée d’air (12) et une deuxième entrée d’air (14) distinctes l’une de l’autre, le groupe motorisé de ventilation (2) comprenant au moins un organe de séparation (24) disposé au moins en partie dans un volume (22) délimité par la turbine (4) de telle sorte qu’il délimite au moins un premier chemin d’air (26) et un deuxième chemin d’air (28) reliés aérauliquement respectivement à la première entrée d’air (12) et à la deuxième entrée d’air (14) du boitier d’entrée d’air (8), la volute (10) comprenant au moins deux portions (40, 40a, 40b) séparées l’une de l’autre par une paroi de séparation (42), une première portion (40a) étant en communication aéraulique avec le premier chemin d’air (26) et une deuxième portion (40b) étant en communication aéraulique avec le deuxième chemin d’air (28), le groupe motorisé de ventilation (2) comprenant au moins un premier conduit de sortie (46) en communication aéraulique avec la première portion (40a) et un deuxième conduit de sortie (48) en communication aéraulique avec la deuxième portion (40b), le premier conduit de sortie (46) et le deuxième conduit de sortie (48) étant au moins en partie décalés angulairement l’un par rapport à l’autre suivant l’axe de rotation (R) et chacun des conduits de sortie (46, 48) présentant un profil divergent suivant un sens de déplacement du au moins un flux d’air (Fi, F2) au sein des conduits de sortie (46, 48). 1. Motorized ventilation unit (2) for a ventilation, heating and/or air conditioning device (1) of a vehicle, comprising at least one turbine (4) configured to be driven in rotation around an axis of rotation ( R), a motor (6) intended to rotate the turbine (4), an air inlet box (8) configured to bring at least one air flow (Fl, F2) to the turbine (4 ) and a volute (10) surrounding the turbine (4) and configured to channel at least one air flow (Fi, F2) at the outlet of the turbine (4), the air inlet box (8 ) comprising at least a first air inlet (12) and a second air inlet (14) distinct from each other, the motorized ventilation unit (2) comprising at least one separation member (24) arranged at least partly in a volume (22) delimited by the turbine (4) such that it delimits at least a first air path (26) and a second air path (28) aeraullically connected respectively to the first air inlet (12) and the second air inlet (14) of the air inlet housing (8), the volute (10) comprising at least two separate portions (40, 40a, 40b) one from the other by a separation wall (42), a first portion (40a) being in aeraulic communication with the first air path (26) and a second portion (40b) being in aeraulic communication with the second air path (28), the motorized ventilation unit (2) comprising at least a first outlet duct (46) in aeraulic communication with the first portion (40a) and a second outlet duct (48) in aeraulic communication with the second portion (40b), the first outlet conduit (46) and the second outlet conduit (48) being at least partly angularly offset relative to each other along the axis of rotation (R) and each of the outlet ducts (46, 48) having a divergent profile following a direction of movement of at least one air flow (Fi, F2) within the outlet ducts (46, 48).
2. Groupe motorisé de ventilation (2) selon la revendication précédente, dans lequel le profil divergent de chacun des conduits de sortie (46, 48) s’étend suivant deux directions sécantes l’une de l’autre prises dans un même plan. 2. Motorized ventilation unit (2) according to the preceding claim, in which the diverging profile of each of the outlet ducts (46, 48) extends in two directions intersecting one another taken in the same plane.
3. Groupe motorisé de ventilation (2) selon l’une quelconque des revendications précédentes, dans lequel le premier conduit de sortie (46) et le deuxième conduit de sortie (48) sont terminés respectivement par une première bouche de sortie (50a) et une deuxième bouche de sortie (50b) qui présentent chacune une surface de bouche (SB) sensiblement identiques. 3. Motorized ventilation unit (2) according to any one of the preceding claims, in which the first outlet duct (46) and the second outlet duct (48) are terminated respectively by a first outlet mouth (50a) and a second outlet mouth (50b) which each have a substantially identical mouth surface (SB).
4. Groupe motorisé de ventilation (2) selon l’une quelconque des revendications précédentes, dans lequel l’organe de séparation (24) s’étend axialement au-delà du volume (22) de la turbine (4). 4. Motorized ventilation unit (2) according to any one of the preceding claims, in which the separation member (24) extends axially beyond the volume (22) of the turbine (4).
5. Groupe motorisé de ventilation (2) selon l’une quelconque des revendications précédentes, dans lequel l’organe de séparation (24) comprend au moins une portion cylindrique (34) et une portion évasée (36) qui prolonge la portion cylindrique (34). 5. Motorized ventilation unit (2) according to any one of the preceding claims, wherein the separation member (24) comprises at least one cylindrical portion (34) and a flared portion (36) which extends the cylindrical portion ( 34).
6. Groupe motorisé de ventilation (2) selon la revendication précédente, dans lequel la portion cylindrique (34) de l’organe de séparation (24) s’étend au moins en partie axialement au-delà du volume (22) de la turbine (4). 6. Motorized ventilation unit (2) according to the preceding claim, in which the cylindrical portion (34) of the separation member (24) extends at least partly axially beyond the volume (22) of the turbine (4).
7. Groupe motorisé de ventilation (2) selon la revendication 5 ou 6, dans lequel la portion évasée (36) de l’organe de séparation (24) s’étend dans le volume (22) de la turbine (4). 7. Motorized ventilation unit (2) according to claim 5 or 6, in which the flared portion (36) of the separation member (24) extends into the volume (22) of the turbine (4).
8. Groupe motorisé de ventilation (2) selon l’une quelconque des revendications 5 à 7, dans lequel la portion cylindrique (34) de l’organe de séparation (24) comprend une bouche d’admission (38) d’air circulaire. 8. Motorized ventilation unit (2) according to any one of claims 5 to 7, in which the cylindrical portion (34) of the separation member (24) comprises a circular air intake port (38). .
9. Groupe motorisé de ventilation (2) selon l’une quelconque des revendications précédentes, dans lequel le premier conduit de sortie (46) et le deuxième conduit de sortie (48) comprennent chacun respectivement une section d’entrée (SE) formant également une bouche d’évacuation de chaque portion (40) de la volute (10), la section d’entrée (SE) présentant une surface de section (Si) strictement inférieure à celle de la bouche de sortie (50). 9. Motorized ventilation unit (2) according to any one of the preceding claims, in which the first outlet duct (46) and the second outlet duct (48) each respectively comprise an inlet section (SE) also forming an evacuation mouth for each portion (40) of the volute (10), the inlet section (SE) having a cross-sectional area (Si) strictly less than that of the outlet mouth (50).
10. Groupe motorisé de ventilation (2) selon l’une quelconque des revendications précédentes, dans lequel la première portion (40a) et la deuxième portion (40b) de la volute (10) sont au moins en partie superposées axialement l’une sur l’autre. 10. Motorized ventilation unit (2) according to any one of the preceding claims, in which the first portion (40a) and the second portion (40b) of the volute (10) are at least partly superposed axially on one another. the other.
11. Groupe motorisé de ventilation (2) selon l’une quelconque des revendications précédentes en combinaison avec la revendication 3, dans lequel les bouches de sortie (50, 50a, 50b) des conduits de sortie (46, 48) s’étendent dans un plan commun (PC) qui est parallèle à l’axe de rotation (R) de la turbine (4). 11. Motorized ventilation unit (2) according to any one of the preceding claims in combination with claim 3, in which the outlets (50, 50a, 50b) of the outlet ducts (46, 48) extend into A common plane (PC) which is parallel to the axis of rotation (R) of the turbine (4).
12. Groupe motorisé de ventilation (2) selon l’une quelconque des revendications précédentes, dans lequel un plan d’ouverture (PO) d’une ouverture de sortie (44) de l’organe de séparation (24) est décalé axialement d’un plan de séparation (PS) de la paroi de séparation (42) de la volute (10). 12. Motorized ventilation unit (2) according to any one of the preceding claims, in which an opening plane (PO) of an outlet opening (44) of the separation member (24) is offset axially d a separation plane (PS) of the separation wall (42) of the volute (10).
13. Groupe motorisé de ventilation (2) selon l’une quelconque des revendications précédentes, dans lequel la première portion (40a) de la volute (10) et la deuxième portion (40b) de la volute (10) sont décalées angulairement l’une par rapport à l’autre autour de l’axe de rotation (R) de la turbine (4), ce décalage angulaire étant de préférence égal au décalage angulaire entre le premier conduit de sortie (46) et le deuxième conduit de sortie (48). 13. Motorized ventilation unit (2) according to any one of the preceding claims, in which the first portion (40a) of the volute (10) and the second portion (40b) of the volute (10) are angularly offset the one relative to the other around the axis of rotation (R) of the turbine (4), this angular offset being preferably equal to the angular offset between the first outlet conduit (46) and the second outlet conduit ( 48).
14. Groupe motorisé de ventilation (2) selon l’une quelconque des revendications précédentes, dans lequel la première portion (40a) de la volute (10) et la deuxième portion (40b) de la volute (10) ont des profils qui sont strictement superposables par rotation autour de l’axe de rotation (R)de la turbine (4) combinée à une translation selon l’axe de rotation (R) de la turbine (4). 14. Motorized ventilation unit (2) according to any one of the preceding claims, in which the first portion (40a) of the volute (10) and the second portion (40b) of the volute (10) have profiles which are strictly superimposable by rotation around the axis of rotation (R) of the turbine (4) combined with a translation along the axis of rotation (R) of the turbine (4).
15. Dispositif de ventilation, chauffage et/ ou climatisation (1) pour un habitacle (3) d’un véhicule (5) comprenant au moins un groupe motorisé de ventilation (2) selon l’une quelconque des revendications précédentes, le groupe motorisé de ventilation (2) étant configuré pour fournir simultanément un flux d’air (Fi) qui provient de l’habitacle (3) ou un flux d’air (F2) qui provient d’un environnement extérieur à l’habitacle (3). 15. Ventilation, heating and/or air conditioning device (1) for a passenger compartment (3) of a vehicle (5) comprising at least one motorized ventilation unit (2) according to any one of the preceding claims, the motorized unit ventilation (2) being configured to simultaneously provide a flow of air (Fi) which comes from the passenger compartment (3) or an air flow (F2) which comes from an environment outside the passenger compartment (3) .
PCT/EP2023/056614 2022-03-18 2023-03-15 Motorised ventilation unit WO2023175006A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2202391 2022-03-18
FR2202391A FR3133661B1 (en) 2022-03-18 2022-03-18 Motorized ventilation unit

Publications (1)

Publication Number Publication Date
WO2023175006A1 true WO2023175006A1 (en) 2023-09-21

Family

ID=81648653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/056614 WO2023175006A1 (en) 2022-03-18 2023-03-15 Motorised ventilation unit

Country Status (2)

Country Link
FR (1) FR3133661B1 (en)
WO (1) WO2023175006A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100108A (en) * 2008-10-21 2010-05-06 Denso Corp Blower and vehicular air-conditioner having the same
US20160355069A1 (en) * 2013-12-04 2016-12-08 Valeo Systemes Thermiques Suction pulser intended for a heating, ventilation and/or air-conditioning device of a motor vehicle
FR3072054A1 (en) * 2017-10-11 2019-04-12 Valeo Systemes Thermiques AIR INLET HOUSING, AND SUCTION PULSER AND HEATING, VENTILATION AND / OR AIR CONDITIONING DEVICE FOR MOTOR VEHICLE CORRESPONDING THERETO
JP2019137371A (en) * 2018-02-15 2019-08-22 株式会社ヴァレオジャパン Blower unit for air conditioner for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100108A (en) * 2008-10-21 2010-05-06 Denso Corp Blower and vehicular air-conditioner having the same
US20160355069A1 (en) * 2013-12-04 2016-12-08 Valeo Systemes Thermiques Suction pulser intended for a heating, ventilation and/or air-conditioning device of a motor vehicle
FR3072054A1 (en) * 2017-10-11 2019-04-12 Valeo Systemes Thermiques AIR INLET HOUSING, AND SUCTION PULSER AND HEATING, VENTILATION AND / OR AIR CONDITIONING DEVICE FOR MOTOR VEHICLE CORRESPONDING THERETO
JP2019137371A (en) * 2018-02-15 2019-08-22 株式会社ヴァレオジャパン Blower unit for air conditioner for vehicle

Also Published As

Publication number Publication date
FR3133661A1 (en) 2023-09-22
FR3133661B1 (en) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2017103358A1 (en) Intake blower intended for a motor vehicle heating, ventilation and/or air conditioning device, and heating, ventilation and/or air conditioning device
WO2015082436A1 (en) Suction pulser intended for a heating, ventilation and/or air-conditioning device of a motor vehicle
EP3046786B1 (en) Heating, ventilation and/or air conditioning installation for a motor vehicle passenger compartment
EP2889168B1 (en) Heating, ventilation and/or air conditioning device
WO2018020105A1 (en) Heating, ventilation and/or air conditioning device for a motor vehicle
EP3921193B1 (en) Heating, ventilation and/or air-conditioning device for a motor vehicle
WO2021038153A1 (en) Heating, ventilation and/or air-conditioning device for a motor vehicle
WO2018020106A1 (en) Member for controlling an air flow for a heating, ventilation and/or air-conditioning device for a motor vehicle
FR2786437A1 (en) MOTOR VEHICLE HEATING AND / OR AIR CONDITIONING DEVICE WITH COMPACT MOTOR-FAN GROUP
FR3069489B1 (en) PULSEUR AND DEVICE FOR HEATING, VENTILATION AND / OR AIR CONDITIONING FOR A MOTOR VEHICLE CORRESPONDING THERETO
EP0709241B1 (en) Device for heating and/or ventilating a vehicle interior
EP3737573B1 (en) Air intake housing and blower for a corresponding motor vehicle heating, ventilation and/or air conditioning device
EP3737572B1 (en) Air intake housing and blower for a corresponding motor vehicle heating, ventilation and/or air conditioning device
FR3072054B1 (en) AIR INLET HOUSING, AND SUCTION PULSER AND HEATING, VENTILATION AND / OR AIR CONDITIONING DEVICE FOR MOTOR VEHICLE CORRESPONDING THERETO
EP1515416A1 (en) Support device for an electric motor driving a fan wheel, specially for a heating, ventilating and /or air conditioning apparatus of an automotive vehicle
WO2023175006A1 (en) Motorised ventilation unit
WO2022207837A1 (en) Heating, ventilation and/or air-conditioning device for a motor vehicle
FR3054488B1 (en) DEVICE FOR HEATING, VENTILATION AND / OR AIR CONDITIONING FOR A MOTOR VEHICLE
EP4135989A1 (en) Heating, ventilation and/or air-conditioning device for a motor vehicle
EP4136331A1 (en) Heating, ventilation and/or air-conditioning device for a motor vehicle
WO2021255063A1 (en) Ventilation device for a vehicle ventilation, heating and/or air-conditioning system
FR3092525A1 (en) Heating, ventilation and / or air conditioning device for a motor vehicle
FR3066581A1 (en) SUCTION PULSER FOR A DEVICE FOR HEATING, VENTILATION AND / OR AIR CONDITIONING OF A MOTOR VEHICLE AND DEVICE FOR HEATING, VENTILATION AND / OR AIR CONDITIONING
WO2021123551A1 (en) Ventilation module for a motor vehicle, comprising a tangential flow turbomachine
WO2023021197A1 (en) Housing of a heating, ventilation and/or air-conditioning system of a motor vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23711076

Country of ref document: EP

Kind code of ref document: A1