WO2023174444A1 - 一种杂合式光生物反应器 - Google Patents

一种杂合式光生物反应器 Download PDF

Info

Publication number
WO2023174444A1
WO2023174444A1 PCT/CN2023/092147 CN2023092147W WO2023174444A1 WO 2023174444 A1 WO2023174444 A1 WO 2023174444A1 CN 2023092147 W CN2023092147 W CN 2023092147W WO 2023174444 A1 WO2023174444 A1 WO 2023174444A1
Authority
WO
WIPO (PCT)
Prior art keywords
water tank
pipe
transparent
horizontal
tube
Prior art date
Application number
PCT/CN2023/092147
Other languages
English (en)
French (fr)
Inventor
韩丹翔
赵亮
Original Assignee
德默特生物科技(珠海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德默特生物科技(珠海)有限公司 filed Critical 德默特生物科技(珠海)有限公司
Publication of WO2023174444A1 publication Critical patent/WO2023174444A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/14Pressurized fluid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/26Conditioning fluids entering or exiting the reaction vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/10Means for providing, directing, scattering or concentrating light by light emitting elements located inside the reactor, e.g. LED or OLED
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M37/00Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M39/00Means for cleaning the apparatus or avoiding unwanted deposits of microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/24Heat exchange systems, e.g. heat jackets or outer envelopes inside the vessel

Definitions

  • the invention relates to the technical field of microalgae cultivation and production, and in particular to a hybrid photobioreactor.
  • Microalgae cells are rich in a variety of high value-added biological substances such as sugars, proteins, fats, vitamins, pigments, biological cleaning substances, and trace elements. They are becoming an important source of materials in the fields of human food, medicine, dyes, and fine chemicals. have a broad vision of application.
  • the core technology for large-scale cultivation of microalgae is photobioreactor.
  • Open culture system closed culture system
  • solid culture system Open culture systems were developed earlier and are most widely used. However, it occupies a large area, has low culture density, low light energy utilization rate, is greatly affected by external environmental factors, is easily contaminated, and has large water evaporation.
  • Representative open photobioreactors include track-type culture tanks, circular culture tanks, etc.
  • closed culture systems are less susceptible to contamination, have high light energy utilization, easy temperature control, small water evaporation, and high cell density.
  • the cost of the body is more expensive, the operation and maintenance costs are high, and it is difficult to Large-scale cultivation.
  • Representative closed photobioreactors include fermentation photobioreactors, horizontal or vertical pipeline photobioreactors, etc. Fermentation photobioreactors are mainly vertical fermentation tanks. Horizontal or vertical pipeline photobioreactors are usually extremely difficult to effectively clean and disinfect, which will affect the next round of culture.
  • the existing photobioreactors have the following technical problems: 1
  • the open track pool occupies a large area, the culture density is low, the energy consumption of culture solution circulation is high, and it is susceptible to external contamination; 2
  • the cost of the closed light-transmitting container is high , especially glass containers, are limited by the particularity of the glass processing technology and cannot be molded at one time.
  • the manufacturing cost, installation and maintenance costs are very high, and there are also problems such as low cell density, insufficient space utilization, and high energy consumption. After use, It is difficult to clean and disinfect, affecting repeated production.
  • 3Solid-state culture photobioreactors are highly dependent on the material itself, have low light utilization efficiency, and their applicability is relatively limited.
  • the liquid supply device is an energy-consuming device, so it cannot further reduce the culture cost.
  • existing photobioreactors cannot be sterilized by high-temperature steam, which is not conducive to the effective isolation and control of pollution sources.
  • the current photobioreactors generally rely solely on natural light or artificial light sources, resulting in poor adaptability to use, and the energy consumption and cost of pure artificial light sources are also high.
  • the purpose of the present invention is to provide a hybrid photobioreactor, which has low cost, low energy consumption, high light utilization efficiency, easy cleaning and disinfection, wide applicability, and is suitable for large-scale microalgae industry.
  • the advantages of chemical culture can be used to reduce the overall production cost of microalgae.
  • the main technical solutions adopted by the present invention include:
  • the invention provides a hybrid photobioreactor, which includes:
  • the reactor body is provided with a water tank, and the water tank is used to accommodate the microalgae culture liquid; the reactor body is also equipped with a light source device and a high-pressure flushing and disinfection device;
  • the light source device includes a transparent sleeve and an LED light strip located in the transparent sleeve, and the transparent sleeves are arranged in the water tank in a parallel and spaced arrangement;
  • the high-pressure washing and disinfection device includes a plurality of horizontal pipes, and the bottom of each horizontal pipe is connected with There are dry vertical tubes, and each horizontal tube is connected to the vertical tube below to form a comb-shaped structure; the wall of each vertical tube is provided with multiple liquid nozzles from top to bottom; the vertical tube The lower end of the tube is close to the bottom of the water tank; the plurality of horizontal tubes are connected to a general liquid inlet, and the general liquid inlet is connected to high-pressure clean water, sterilizing water or sterilizing steam; the transparent casing and the horizontal tube are in The projections of the bottom of the tank are at alternating intervals.
  • the reactor body is made of one or more materials among cement, plastic, stainless steel, and fiberglass.
  • the depth of the water tank of the reactor body is 20 cm-40 cm, and the shape of the water tank is a circle, a square, an ellipse, an oval, or a square with four corners transitioning into arcs.
  • the area of the water tank can be (8m-12m) ⁇ (4m-6m).
  • the water tank is a closed water tank or a water tank with an open top, or a closed water tank with a movable cover on the top.
  • the water tank includes a set of opposite side walls, both ends of each transparent sleeve penetrate the side walls, and the openings at both ends of the transparent sleeve face the outside of the water tank.
  • the connection between the transparent sleeve and the side wall of the water tank is a sealed connection.
  • a plurality of holes are provided on the opposite side walls, the holes are arranged in pairs on the side walls, and the transparent sleeve is installed on the opposite side walls. on the holes on.
  • the transparent sleeve is an acrylic tube or a glass tube, and the transparent sleeve is distributed in the horizontal direction and the vertical direction of the water tank;
  • two adjacent transparent casings are aligned in both vertical and horizontal directions and are arranged at a certain distance apart in the water tank, or two adjacent transparent casings are In the vertical direction, they are in the same vertical plane, and in the horizontal direction, they are arranged in a high and low staggered manner.
  • the reactor body is made of cement or fiberglass.
  • the transparent casing is pre-buried in a suitable position so that the reactor body is in contact with the reactor body.
  • the transparent casing is an integrated structure; each transparent casing runs through the The two opposite side walls of the water tank, the openings at both ends of the transparent sleeve are connected to the outside of the water tank, and the transparent sleeve and the side walls of the water tank are water-tightly connected to prevent the culture solution in the water tank from entering the water tank. Water seeps out from the installation position of the transparent sleeve.
  • This structure is conducive to the maintenance and repair of LED light strips, as well as convenient wiring and wiring, as well as the installation and removal of heat pipes.
  • the reactor body is made of stainless steel or plastic material.
  • a hole for installing the transparent sleeve is reserved or after the reactor body is made. , dig holes on the side walls of the reactor body; each of the transparent sleeves penetrates the holes on the two opposite side walls of the water tank, so that the openings at both ends of the transparent sleeve are connected to the outside of the water tank, The hole and the transparent casing are coated with sealing structural glue to prevent the culture solution in the water tank from seeping out from the installation position of the transparent casing.
  • the light source device further includes a heat dissipation pipe and a support frame.
  • the heat dissipation pipe is fixed in the middle of the transparent sleeve through the support frame, and the LED light strip is fixed on the heat dissipation pipe.
  • the heat dissipation tube is a long tube, one end of which passes from one transparent casing into another adjacent transparent casing, passes out from the other transparent casing and then enters the adjacent third transparent casing.
  • a transparent sleeve is passed through each of the transparent sleeves by analogy; circulating refrigerant is introduced into the heat dissipation pipe for cooling the LED light strip.
  • the heat dissipation pipe penetrates each of the transparent sleeves in an S-shape in a horizontal direction or in a horizontal direction.
  • the LED light strip can work intermittently to emit light, and the light intensity can be adjusted.
  • the high-pressure washing and disinfection device further includes a frame with a hollow tube inside or an intermediate thick tube, and the horizontal tube is connected with the frame or with the intermediate thick tube.
  • the liquid nozzle is a 360° rotating liquid nozzle.
  • a gas supply device is also assembled in the reactor body.
  • the gas supply device includes at least one set of ventilation pipes. One end of the ventilation pipes is connected to a gas supply source.
  • the ventilation pipes laid on the bottom of the water tank, and the ventilation pipe is provided with multiple Air outlet.
  • the ventilation duct includes a closed and extended pipe, and the shape of the closed and extended pipe is consistent with the shape of the bottom of the water tank; the ventilation duct further includes a fishbone-shaped pipe, so
  • the fishbone-shaped pipe includes a main pipe extending along the central axis of the water tank and branch pipes extending to the left and right sides of the main pipe, and the branch pipes are connected with the main pipe; the closed extended pipe and the A plurality of air outlets are arranged at intervals on the fishbone-shaped pipe; the closed and extended pipe and the fishbone-shaped pipe are respectively connected to a high-pressure air supply source through an air inlet pipe.
  • a culture medium temperature regulating device is further included, which includes a plurality of heat exchangers.
  • the heat exchangers are vertically installed in the water tank of the reactor body and are connected with the transparent jacket.
  • the tubes and horizontal tubes are alternately arranged at intervals.
  • the heat exchanger is a heat exchange tube bent into an S shape in a plane.
  • the heat medium or refrigerant is passed into the heat exchange tube; the inlet and outlet of the heat exchange tube correspond to Located on the outside of the two opposite side walls of the sink.
  • the water tank is used to accommodate the culture liquid and algae species.
  • the light source device can provide lighting conditions to the algae below the liquid surface, so that the algae in the algae liquid All algae cells can receive light to promote photosynthesis.
  • the light source device includes a heat pipe and an LED light strip.
  • the LED light strip is set in a transparent casing. The transparent casing is immersed below the algae liquid level, so it can provide lighting conditions for the algae liquid inside the liquid level.
  • the LED light strip is fixed on the side wall of the heat pipe.
  • the transparent casing is fixed on the side wall of the water tank of the reactor body, and its opening faces the outside. Structures such as LED light strips can be directly installed into the transparent casing, making it easy to disassemble and connect electricity.
  • the high-pressure washing and disinfection device includes a plurality of horizontal pipes and a plurality of vertical pipes located under each horizontal pipe, and each vertical pipe extends toward the bottom of the sink. Multiple horizontal pipes are connected to a main liquid inlet.
  • the main liquid inlet is connected to high-pressure clean water, sterilizing water or sterilizing steam, which can clean the inner wall of the water tank, The outer wall of the transparent casing and so on are cleaned and disinfected to facilitate the next round of microalgae cultivation.
  • the high-pressure flushing and disinfection device can also be used to introduce the culture liquid, which can also stir the microalgae being cultured.
  • the transparent casing and a row of multiple vertical tubes below each horizontal tube are interspersed with each other and arranged at intervals.
  • the present invention is further provided with an air supply device.
  • the air supply device includes a ventilation pipe, which is laid at the bottom of the water tank and can provide the algae liquid with CO 2 (or introduce air) required for the growth of microalgae.
  • the air bubbles can also float up. It plays the role of stirring the algae liquid, dispersing the culture medium evenly, preventing algae liquid deposition, and allowing algae cells in the water tank to grow and reproduce evenly.
  • the present invention is further provided with a temperature adjustment device, including a plurality of heat exchangers formed by bending heat exchange tubes. These heat exchangers are also installed in the water tank, preferably in the width direction, and the heat exchangers are The inlet and outlet are located outside the water tank. The heat exchanger, the transparent casing, and a row of vertical tubes below each horizontal tube are arranged at intervals.
  • the photobioreactor of the present invention actually combines the characteristics of water tank reactors, runway pool reactors, vertical pipeline reactors, and horizontal pipeline reactors, and is a "hybrid" reactor.
  • the hybrid photobioreactor of the present invention organically combines sunlight and artificial light sources, openness and closure, sterilization and open environment culture. It has small specific surface area, low cost per unit volume, low energy consumption, large culture volume, light It has the characteristics of high energy utilization, constant temperature adjustment of the culture temperature, easy cleaning and disinfection, wide applicability, and is suitable for large-scale industrial cultivation of microalgae.
  • Figure 1 is a schematic diagram of the reactor body of the hybrid photobioreactor of the present invention.
  • Figure 2 is a schematic diagram of a light source device installed on the reactor body in an embodiment.
  • FIG. 3 is a partial enlarged view of the light source device in FIG. 2 .
  • Figure 4 is a schematic diagram of a light source device provided on the reactor body in another embodiment.
  • FIG. 5 is a schematic diagram of the way in which the heat dissipation pipe in the light source device penetrates the transparent sleeve in one embodiment.
  • Figure 6 is a partial enlarged view of Figure 5.
  • FIG. 7 is a schematic diagram of the way in which the heat dissipation pipe in the light source device penetrates the transparent sleeve in another embodiment.
  • Figure 8 is a schematic structural diagram of an air supply device in an embodiment.
  • Figure 9 is a schematic structural diagram of a high-pressure washing and disinfection device in an embodiment.
  • Figure 10 is a schematic diagram of the high-pressure washing and disinfection device of Figure 9 installed in the reactor body.
  • Figure 11 is a schematic structural diagram of a high-pressure washing and disinfection device in another embodiment.
  • Figure 12 is a schematic side structural view of a temperature regulating device in a water tank according to an embodiment.
  • Fig. 13 is a schematic structural view of the end side of the temperature regulating device in the water tank shown in Fig. 12.
  • FIG. 1 it is a schematic diagram of the reactor body 10 of the hybrid photobioreactor of the present invention.
  • the reactor body 10 has a water tank 11 inside, which can accommodate microalgae culture liquid and install other components.
  • the reactor body 10 can be made of one or more materials among cement, plastic, stainless steel, and fiberglass.
  • the shape of the water tank 11 is not limited, and may be one or more of a circle, a square, an ellipse, an oblong, or a square with four corners transitioning into arcs.
  • the water tank 11 may be made according to local conditions.
  • the depth of the water tank 11 is 20cm-40cm.
  • the sink 11 can be closed to isolate the external environment, or a sink with an opening at the top to receive natural light, or an opening with a removable cover, making the form of the sink 11 more flexible and diverse. As shown in Figure 1, it is a sink 11 with an open top, but two lids 12 are provided on the top, and handles 121 are provided on the lids 12 to facilitate opening the lids 12.
  • the water tank 11 is a rectangular water tank with a depth of 28cm, a length of 10m, and a width of 5m.
  • the water tank 11 includes a set of opposite side walls 111, and a plurality of holes 110 are provided on the pair of side walls 111. These holes 110 can be used to accommodate the light source device 20 .
  • the holes 110 are arranged in pairs on the side walls 111, that is, one hole is provided on one side wall 111.
  • the hole 110 is provided with a corresponding hole 110 on the corresponding side wall 111 on the other side.
  • the light source device 20 includes a transparent sleeve 21 , a heat dissipation pipe 22 , an LED light strip 23 and a support frame 24 .
  • These transparent sleeves 21 are installed in the holes 110 of the side walls 111 , and the transparent sleeves 21 are made of highly transparent material, such as acrylic or glass.
  • the transparent sleeve 21 is used to install the heat dissipation pipe 22, the LED light strip 23 and the support frame 24.
  • a heat dissipation pipe 22 runs through the middle of the transparent sleeve 21 .
  • the LED light strip 23 is fixed on the outer wall of the heat dissipation pipe 22 .
  • the heat dissipation pipe 22 is fixed in the middle of the transparent sleeve 21 through a support frame 24 .
  • the support frame 24 has a support base 241 and legs 242 (not numbered in the figure).
  • the support base 241 is C-shaped and wrapped around the outer wall of the heat dissipation pipe 22.
  • the legs 242 are connected to the support base 241 and fixed to the inner wall of the transparent sleeve 21 ( It can also be placed directly in the transparent sleeve 21).
  • two adjacent transparent sleeves 21 are aligned in both the vertical and horizontal directions (in the same plane) and are arranged in the water tank 11 at a certain distance, and each transparent sleeve is
  • the LED light strips 23 installed in 21 are light strips with the same configuration and specifications.
  • FIG. 4 shows a schematic view of the side of a water tank in another embodiment.
  • two adjacent transparent sleeves 21 are in the same vertical plane in the vertical direction, but are arranged in a staggered manner in the horizontal direction, and the LED light strips installed in different transparent sleeves 21 23 can be light strips with different configurations and specifications.
  • some LED light strips in the transparent sleeve 21 emit red light, some emit blue light, etc., and can also be set to LED light strips with different light intensities and different powers.
  • the installation method of the transparent sleeve 21 on the side wall 111 of the sink 11 is not limited, but both ends of each transparent sleeve 21 penetrate the side wall 111, and the openings of the two ends of the transparent sleeve 21 face the outside, while ensuring that The connection between the transparent sleeve 21 and the side wall 111 of the water tank 11 is impermeable to water.
  • This structure can not only protect the LED light strip 23 from being unable to work due to water intrusion, but also ensure that the LED light strip 23 is immersed in the culture medium in the water tank 11 (the culture medium has a built-in light source) and directly illuminates the algae cells to improve the utilization of light. Efficiency, and more importantly, this structure is very conducive to the maintenance and repair of the LED light strip 23, as well as convenient wiring, replacement, installation and disassembly of the heat pipe 22, etc.
  • the reactor body 10 is made of cement or fiberglass
  • the transparent casing 21 is pre-buried in a suitable position, and then when poured with cement, the reactor body 10 and the transparent casing 21 form an integrated structure.
  • Each transparent casing 21 penetrates the two opposite side walls 111 of the water tank 10, and anti-seepage treatment is performed at the connection between the transparent casing 21 and the side walls 111.
  • the reactor body 10 is made of stainless steel or plastic material.
  • a hole 110 for installing the transparent sleeve 21 is reserved or the hole 110 is dug in the side wall 111 after the fabrication is completed. After the transparent sleeves 21 are installed in a bunch of holes 110 on the two opposite side walls, the spaces between the holes 110 and the transparent sleeves 21 are coated with sealing structural glue to avoid water seepage.
  • FIG. 5 is a schematic top view of the water tank 11 , showing how the heat dissipation pipe 22 in the light source device 20 penetrates the transparent sleeve 21 .
  • FIG. 6 is a partial enlarged view of FIG. 5 .
  • the heat dissipation pipe 22 penetrates a plurality of transparent sleeves 21 in the same horizontal plane. Specifically, one end of the heat dissipation pipe 22 penetrates from one transparent sleeve 21, penetrates into another adjacent transparent sleeve 21 in the same horizontal plane, and then continues to penetrate into the third adjacent transparent sleeve in the same horizontal plane. in the tube 21 until all the transparent sleeves 21 in the horizontal plane are penetrated.
  • One end of the heat dissipation pipe 22 is a refrigerant inlet, and the other end is an outlet.
  • the refrigerant is preferably cooling water.
  • FIG. 7 is a schematic end side view of the water tank 11 , showing how the heat dissipation pipe 22 in the light source device 20 penetrates the transparent sleeve 21 .
  • the heat dissipation pipe 22 penetrates multiple transparent sleeves 21 in the same vertical plane. Specifically, one end of the heat dissipation pipe 22 penetrates from one transparent sleeve 21, penetrates into another adjacent transparent sleeve 21 in the same vertical plane, and then continues to penetrate into the adjacent third adjacent transparent sleeve 21 in the same vertical plane. three transparent sleeves 21 until all the transparent sleeves 21 in the vertical plane are penetrated.
  • One end of the heat dissipation pipe 22 is a refrigerant inlet, and the other end is an outlet.
  • the refrigerant is preferably cooling water.
  • a heat dissipation pipe 22 can penetrate all the transparent sleeves 21 in a specific order. It can penetrate the transparent sleeves 21 on the bottom layer in sequence, reach one end of the water tank 11, and then continue to penetrate the transparent sleeves 21 on the second layer in sequence. The pipe 21 reaches one end of the water tank 11 and then continues to penetrate each transparent sleeve 21 on the third layer... until all the transparent sleeves 21 provided on the water tank 11 have penetrated the heat dissipation pipe 22.
  • the support frame 24 can be pre-set on In each transparent sleeve 21, the C-shaped support seat 241 of the support frame 24 is an opening. Then, the LED light strips 23 are bonded and fixed on both sides of the heat dissipation pipe 22 using thermally conductive adhesive. The LED light strips 23 are bonded at regular intervals, leaving a curved section of the heat dissipation pipe 22 outside the water tank 11. This curved section There are no LED light strips.
  • the heat dissipation pipe 22 that has been bonded to the LED light strip 23 is penetrated and installed into each transparent sleeve 21 in sequence according to the above three methods or other methods, and is fixed on the C-shaped support base 241, and then uses pliers, etc. Use the tool to pinch the support base 241 tightly and fix the heat dissipation pipe 22 and the LED light strip 23.
  • FIG. 8 it is a schematic structural diagram of the air supply device 30 provided at the bottom of the water tank 11 .
  • the air supply device 30 includes a closed and extended pipe 31.
  • the closed and extended pipe 31 is consistent with the shape of the bottom of the water tank 11. If the bottom of the water tank 11 is square, the closed and extended pipe 31 forms a square shape and is connected to the high pressure through the air inlet pipe 310. CO2 gas source.
  • the closed and extended pipe 31 is provided with a plurality of air outlets dispersedly, which can introduce CO 2 bubbles into the water tank 11 to promote the autotrophic photosynthesis of microalgae, and can also provide the functions of adjusting the pH of the culture solution and stirring the algae solution to avoid The algae cells settle to the bottom of the water tank 11.
  • the air supply device 30 also includes a fishbone-shaped pipe 32.
  • the fishbone-shaped pipe 32 includes a main pipe 321 extending along the central axis of the water tank and branch pipes 322 extending to the left and right sides of the main pipe 321.
  • the branch pipe 322 is connected with the main pipe 321 .
  • the fishbone-shaped pipe 32 is also provided with a number of air outlets (air outlets are provided in the middle and top of each branch pipe 322).
  • the main pipe 321 is connected to a high-pressure air supply source (such as an air source) through the air inlet pipe 320, which mainly functions Stirring effect.
  • FIG. 9 it is a schematic structural diagram of a high-pressure washing and disinfecting device 40 according to a preferred embodiment of the present invention.
  • the high-pressure washing and disinfection device 40 is installed in the water tank 11 .
  • the high-pressure washing and disinfection device 40 includes a frame 41, which is a hollow tube inside.
  • a plurality of horizontal tubes 42 are provided in the frame 41.
  • the horizontal tubes 42 are connected with the hollow tubes of the frame 41, and each horizontal tube 42 Several vertical tubes 421 are connected below, and each horizontal tube 42 forms a comb-shaped structure with the vertical tube 421 connected below.
  • a plurality of liquid nozzles 422 are provided on the wall of each vertical tube 421 from top to bottom.
  • the lower end of the vertical pipe 421 extends into the water tank 11 and is close to the bottom of the water tank 11 .
  • these vertical tubes 421 are located between two adjacent vertical rows of transparent casings 21; in other words, the projections of the transparent casings 21 and the horizontal tubes 42 on the bottom of the water tank 11 are arranged at alternating intervals. .
  • the high-pressure washing and disinfection device 40' may not be provided with a frame 41, but may be composed of a middle thick tube 41' and several horizontal tubes 42' connected on both sides. It consists of several vertical tubes 421' arranged vertically below the horizontal tube 42'. The wall of each vertical tube 421' is provided with a plurality of liquid nozzles 422' from top to bottom. The lower end of the vertical pipe 421′ extends into the water tank 11.
  • the middle thick pipe 41' is provided with a general liquid inlet 410' (not numbered in the figure), and the general liquid inlet 410' is connected to high-pressure clean water, sterilizing water or sterilizing steam.
  • the projections of the transparent sleeve 21 and the horizontal tube 42' on the bottom of the water tank 11 are arranged at alternating intervals.
  • the above-mentioned liquid nozzles 422 and 422' can both be set as 360° rotating liquid nozzles.
  • the inner wall of the water tank 11 can be quickly cleaned and disinfected to prepare for the next round of culture.
  • the culture medium can also be replenished through the high-pressure washing and disinfection device 40, and strong stirring of the algae liquid can also be achieved during replenishment.
  • the photobioreactor of the present invention is also equipped with a culture medium temperature regulating device.
  • a culture medium temperature regulating device As shown in Figures 12-13, the photobioreactor of the present invention is also equipped with a culture medium temperature regulating device.
  • it includes a plurality of heat exchangers 51. These heat exchangers 51 are vertically installed in the water tank 11 at intervals, and a certain distance is spaced between the two heat exchangers 51 for transparent sleeves. 21.
  • the vertical pipe 421 (421') is provided therebetween.
  • each heat exchanger 51 is composed of a heat exchange tube bent into an S shape in a plane.
  • the heating medium or refrigerant is introduced into the heat exchange tube.
  • the inlets and outlets of the heat exchange tube are respectively located in the water tank 11. Opposite the outside of the side wall 111 .
  • Each heat exchanger 51 is connected to the heating medium or refrigerant individually, or all the heat exchangers 51 are connected end to end outside the water tank 11 to connect the circulating heating medium or refrigerant, so as to effectively control the temperature of the algae liquid in the water tank 11 adjust.
  • the above-mentioned transparent sleeves 21, heat exchange tubes, horizontal tubes 42 (42'), vertical tubes 42 (421'), etc. divide the water tank 11 into a plurality of interconnected small partitions, so that the culture solution can be circulated in these small partitions. Internal circulation flow. Therefore, the photobioreactor of the present invention actually combines the characteristics of water tank reactors, runway pool reactors, vertical pipeline reactors, and horizontal pipeline reactors, and is a "hybrid" reactor.
  • the hybrid photobioreactor of the present invention organically combines sunlight and artificial light sources, openness and closure, sterilization and open environment culture. It has small specific surface area, low cost per unit volume, low energy consumption, large culture volume, light It has the characteristics of high energy utilization, constant temperature adjustment of culture temperature, and easy cleaning and disinfection.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种杂合式光生物反应器,其包括反应器本体(10),反应器本体(10)设有水槽(11);反应器本体(10)内还组装有光源装置(20)和高压冲洗及消毒装置(40);光源装置(20)包含透明套管(21)和位于所述透明套管(21)内的LED灯带(23);透明套管(21)平行间隔排列地设置水槽(11)内;高压冲洗及消毒装置(40)包括多根水平管(42),每根水平管(42)下方连接若干根竖向管(421),每根竖向管(421)的管壁从上到下设有多个液体喷嘴(422),水平管(42)连接一■个总进液口(410),总进液口(410)连接高压清水、消毒水或消毒蒸汽;透明套管(21)与水平管(42)在水槽(11)底部的投影为交替间隔设置。所述的杂合式光生物反应器具有光源利用效率高,维修保养简便,易于清洗和消毒等特点。

Description

一种杂合式光生物反应器 技术领域
本发明涉及微藻培养及生产技术领域,具体涉及一种杂合式光生物反应器。
背景技术
微藻细胞富含糖、蛋白质、脂肪、维生素、色素、生物洁性物质、和微量元素等多种高附加值的生物物质,正在成为人类食品、医药、染料、精细化工领域的重要材料来源,具有广阔的应用前景。
微藻规模化培养的核心技术是光生物反应器,目前主要有开放式培养系统、封闭式培养系统和固态培养系统三种方式。开放式培养系统开发较早、应用最普遍。但占地大、培养密度低、光能利用率低、受外界环境因素影响大、易被污染、水分蒸发大。代表性的开放式光生物反应器有跑道式培养池、圆形培养池等。相较于开放式培养系统,封闭式培养系统不容易受污染、光能利用率高、温度易于控制、水蒸发量较小、细胞密度高,但本体的造价较昂贵,运行维护成本高,难于规模化培养。代表性的封闭式光生物反应器有发酵式光生物反应器、卧式或立式管道光生物反应器等,发酵式光生物反应器主要是立式发酵罐。卧式或立式管道光生物反应器通常极难有效清洗和消毒,给下一轮培养带来影响。
还有一类固态培养系统,将藻种附着在能够吸附并释放水分的多孔质材料表面,通过慢慢向多孔质材料供应培养液,供附着其上的藻种生长。然而这种固态培养方法,往往在很大程度上要依赖多孔质材料的保水性能以及藻种附着特性。因此,若材质保水性差,则需要不停地供水,耗费能量:若藻种附着性差,藻种易脱离,则无法使藻种正常生长。其次,这些多孔材质往往是不透光材料,会吸附较多光能,藻种对光的利用效率不高,其多孔性还会让藻种进入其内部堵塞孔道,给后续供液、收获、清洁及消毒带来困难,很多这类材质经过一两次培养后还会生霉 腐烂等。这些固态培养方法往往非常不适用于体积较大的藻类,如发菜、螺旋藻、葛仙米及地皮菜等的培养。
综合以上,现有的光生物反应器存在如下一些技术问题:①开放式跑道池占地大,培养密度低,培养液循环能耗高,易受外界污染;②封闭式的透光容器造价高,尤其玻璃容器,受限于玻璃加工工艺的特殊性,无法一次成型,制造成本、安装及维护成本都非常高,且同样存在细胞密度低,空间利用度不足,能耗高的问题,使用后难以清洗和消毒,影响重复生产。③固态培养光生物反应器,对于材质本身的依赖性很大、光利用效率低,其适用性也比较受局限,其供液装置是一种耗能装置,故无法进一步降低培养成本。④现有的光生物反应器均不能高温蒸汽灭菌,不利于污染源的有效隔离和控制。⑤目前的光生物反应器普遍单纯依赖自然光或人工光源,造成其使用的适应性较差、纯人工光源的能耗和造价也偏高。
发明内容
(一)要解决的技术问题
针对这些缺点,本发明的目的是提供一种杂合式光生物反应器,其具有造价成本低廉、能耗低、光利用效率高、易清洗和消毒、适用性广、适于微藻大规模产业化培养的优点,以便整体降低微藻的生产成本。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
本发明提供一种杂合式光生物反应器,其包括:
反应器本体,所述反应器本体设有水槽,所述水槽用于容纳微藻培养液;所述反应器本体内还组装有光源装置和高压冲洗及消毒装置;
所述光源装置包含透明套管和位于所述透明套管内的LED灯带,所述透明套管平行间隔排列地设置所述水槽内;
所述高压冲洗及消毒装置包括多根水平管,每根水平管下方连接若 干根竖向管,每根水平管与其下方连接的竖向管形成梳齿状结构;所述每根竖向管的管壁上,从上到下设有多个液体喷嘴;所述竖向管的下端接近所述水槽的底部;所述多根水平管连接一个总进液口,所述总进液口连接高压清水、消毒水或消毒蒸汽;所述透明套管与所述水平管在所述水槽底部的投影为交替间隔。
根据本发明较佳实施例,其中,所述反应器本体采用水泥、塑料、不锈钢、玻璃钢中一种材料或几种材料制成。
根据本发明较佳实施例,其中,所述反应器本体的水槽深度为20cm-40cm,所述水槽的形状为圆形、方形、椭圆形、长圆形或四角为圆弧过渡的方形。水槽的面积可为(8m-12m)×(4m-6m)。所述水槽为封闭水槽或顶部为开口的水槽,或者设为封闭水槽但顶部具有一个活动的盖子。
根据本发明较佳实施例,其中,所述水槽包括一组相对的侧壁,每透明套管的两端均贯穿所述侧壁,所述透明套管的两端开口朝向所述水槽的外部,所述透明套管与所述水槽的侧壁上的连接处为密封连接。
根据本发明较佳实施例,其中,相对的所述侧壁上均设有多个孔洞,所述孔洞在所述侧壁上为成对设置,所述透明套管安装在相对所述侧壁上的孔洞上。
根据本发明较佳实施例,其中,所述透明套管为亚克力管或玻璃管,所述透明套管分布在所述水槽的水平面方向和竖直面方向;
根据本发明较佳实施例,其中,相邻两个所述透明套管在竖直方向及水平方向上均为对齐且间隔一定距离设置在水槽内,或者,相邻两个所述透明套管在竖直方向上在同一个竖直平面内,在水平方向上呈高低交错排布。
根据本发明较佳实施例,其中,所述反应器本体采用水泥或玻璃钢制成,在制作所述反应器本体时将所述透明套管预埋在合适位置,使所述反应器本体与所述透明套管为一体结构;每根所述透明套管贯穿所述 水槽的两个相对侧壁,所述透明套管的两端开口连通所述水槽外部,且所述透明套管与所述水槽的侧壁之间为水密封连接,以防止水槽内的培养液从透明套管的安装位置往外渗水。
该结构有利于LED灯带的保养和维修,以及方便接电走线,以及便于散热管的安装和拆卸等。
根据本发明较佳实施例,其中,所述反应器本体为不锈钢材料或塑料材料制成,在制作反应器本体时预留安装所述透明套管的孔洞或者在制作完成所述反应器本体后,在所述反应器本体的侧壁上挖出孔洞;每根所述透明套管贯穿所述水槽的两个相对侧壁上的孔洞,使透明套管的两端开口连通所述水槽外部,所述孔洞与所述透明套管之间采用密封结构胶涂覆,以防止水槽内的培养液从透明套管的安装位置往外渗水。
根据本发明较佳实施例,其中,所述光源装置还包括散热管和支撑架,所述散热管通过支撑架固定在所述透明套管的中间,所述LED灯带固定在所述散热管的外壁上,所述散热管为一根长管,其一端从一个透明套管内穿过进入相邻的另一个透明套管,从所述另一个透明套管穿出再进入相邻的第三个透明套管,以此类推贯穿所述各个透明套管;所述散热管内通入循环流动的冷媒,用于对LED灯带进行降温。
根据本发明较佳实施例,其中,所述散热管在水平方向或水平方向上以S形贯穿每个所述透明套管。
其中,LED灯带可间歇工作发光,且光照强度可调节。
根据本发明较佳实施例,所述高压冲洗及消毒装置还包括内部为空心管的框架或一根中间粗管,所述水平管与所述框架相连通或与中间粗管相连通。
根据本发明较佳实施例,所述液体喷嘴为360°旋转液体喷嘴。
根据本发明较佳实施例,其中,所述反应器本体内还组装有供气装置,所述供气装置包括至少一组通气管道,所述通气管道的一端连接供气源,所述通气管道铺设在所述水槽的底部,所述通气管道上设有多个 出气口。
根据本发明较佳实施例,其中,所述通气管道包括一个闭合延伸的管道,所述闭合延伸的管道的形状与所述水槽底部的形状一致;所述通气管道还包括一个鱼刺状管道,所述鱼刺状管道包括一根沿所述水槽中轴线延伸的主管道和向所述主管道左右两侧延伸的分管道,所述分管道与所述主管道连通;所述闭合延伸的管道和所述鱼刺状管道上间隔设置多个出气嘴;所述闭合延伸的管道和所述鱼刺状管道分别通过进气管连接至高压供气源。
根据本发明较佳实施例,其中,还包括培养液温度调节装置,其包括多个热交换器,所述热交换器竖直安装到所述反应器本体的水槽内,并且与所述透明套管、水平管交替间隔设置,所述热交换器为在一个平面内弯折成S形状的换热管,所述换热管内通入热媒或冷媒;所述换热管的进出口分别对应位于所述水槽两个相对侧壁的外部。
(三)有益效果
本发明的杂合式光生物反应器在进行微藻培养时,水槽用于容纳培养液和藻种,在自然光不足或者夜晚时,光源装置可以向液面以下的藻提供光照条件,使藻液内的藻细胞都可以接受到光照,促进其光合作用。其中光源装置包含散热管和LED灯带,LED灯带设于透明套管中,透明套管浸没于藻液液面以下,因此可对液面内部的藻液提供光照条件。
LED灯带固定在散热管侧壁上,散热管内设有循环流动的冷媒,可以带走LED灯带发光时产生的热量,避免热量集中导致藻液升温,进而影响微藻生长。透明套管固定在反应器本体的水槽侧壁上,且其开口朝向外部,LED灯带等结构可以直接安装到该透明套管内,很容易进行拆卸以及接电等操作。
高压冲洗及消毒装置包括多根水平管和设在每根水平管下方的多根竖向管,每根竖向管都朝向水槽底部延伸。多根水平管连接一个总进液口,所述总进液口连接高压清水、消毒水或消毒蒸汽,可以对水槽内壁、 透明套管外壁等等进行清洗和消毒,以便于下轮的微藻养殖。此外,在培养液蒸发而变少时,还可以利用高压冲洗及消毒装置通入培养液,同样可以起到对正在培养的微藻进行搅拌的作用。所述透明套管、每根水平管下方的一排多根竖向管为相互穿插间隔设置。
本发明还进一步设有供气装置,所述供气装置包括通气管道,其铺设在水槽底部,能给藻液提供微藻生长所需的CO2(或通入空气),空气气泡上浮还可以起到搅拌藻液的作用,使培养基分散均匀,防止藻液沉积,使水槽内藻细胞都可均匀生长和繁殖。
本发明还进一步设有温度调节装置,包括若干根由换热管弯折形成的热交换器,这些热交换器也安装在水槽中,较佳是选择在宽度方向上安装,且该热交换器的进出口均位于水槽外部,热交换器与透明套管、每根水平管下方的一排多根竖向管为相互穿插间隔设置。
上述这些透明套管、换热管、水平管、竖向管等将水槽分割成多个相互连通的小分隔区,使培养液能够在这些小分区内循环流动。因此,本发明的光生物反应器实际上集中了水槽反应器、跑道池反应器、立式管道反应器、卧式管道反应器的各项特点,是一种“杂合”式反应器。
本发明的杂合式光生物反应器将太阳光与人工光源、开放与封闭、灭菌与开放环境培养有机结合在一起,具有比表面积小,单位体积造价低,能耗小,培养体积大,光能利用率高,可恒温调节培养温度、易清洗消毒的特点,适用性广,适于微藻大规模产业化培养。
附图说明
图1为本发明杂合式光生物反应器的反应器本体示意图。
图2为一种实施例中反应器本体上设置光源装置的示意图。
图3为图2中光源装置的局部放大图。
图4为另一种实施例中反应器本体上设置光源装置的示意图。
图5为一种实施例中光源装置内散热管在透明套管中贯穿方式示意图。
图6为图5的局部放大图。
图7为另一种实施例中光源装置内散热管在透明套管中贯穿方式示意图。
图8为一种实施例中供气装置的结构示意图。
图9为一种实施例中高压冲洗及消毒装置的结构示意图。
图10为图9的高压冲洗及消毒装置安装在反应器本体内的示意图。
图11为另一种实施例中高压冲洗及消毒装置的结构示意图。
图12为一种实施例水槽中温度调节装置的侧面结构示意图。
图13为图12所示水槽中温度调节装置的端侧面结构示意图。
具体实施方式
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。
如图1所示,为本发明杂合式光生物反应器的反应器本体10示意图。该反应器本体10内部为水槽11,可以容纳微藻培养液,以及安装其他组件。其中,反应器本体10可采用水泥、塑料、不锈钢、玻璃钢中一种材料或几种材料制成。水槽11的形状不限制,可为圆形、方形、椭圆形、长圆形或四角为圆弧过渡的方形等中一种或几种,具体可因地制宜制作该水槽11。水槽11的深度为20cm-40cm,若是长方形、长圆形或四角为圆弧过渡的方形时,其面积可设为(8m-12m)×(4m-6m)。水槽11可为封闭以隔绝外部环境,或者为顶部开口的水槽,可以接受自然光照,或者设为开口但同时设置一个可移动的盖子,使水槽11的形式更加灵活多样。如图1所示,为一个顶部开口的水槽11,但顶面设有两扇盖子12,盖子12上设有把手121,以便将盖子12打开。
如图1所示,在本具体实施例中水槽11为长方形水槽,深度为28cm,长度为10m,宽度为5m。其中,水槽11包括一组相对的侧壁111,在该对侧壁111上设有多个孔洞110。这些孔洞110可用于安置光源装置20。孔洞110在侧壁111上为成对设置,即在一侧的侧壁111上设有一个孔 洞110,在对应的另一侧侧壁111上设有对应的孔洞110。
如图2和图3所示,光源装置20包括透明套管21、散热管22、LED灯带23和支撑架24。这些透明套管21安装在侧壁111的孔洞110中,且透明套管21为高透光材质制成,例如为亚克力或玻璃。透明套管21用于安装散热管22、LED灯带23和支撑架24。具体如图3所示,透明套管21的中间贯穿有散热管22,LED灯带23固定在散热管22的外壁上,散热管22通过支撑架24固定在透明套管21的中间。支撑架24具有一个支撑座241和支脚242(图中未标号),支撑座241为C字型,包裹在散热管22的外壁,支脚242连接支撑座241,并与透明套管21内壁固定(也可以直接放置在透明套管21内)。在图2所示实施例中,相邻两个透明套管21在竖直方向及水平方向上均为对齐(在同一平面内)且间隔一定距离设置在水槽11内,且每根透明套管21内安装的LED灯带23为相同配置和规格的灯带。
如图4所示为另一个实施例中水槽侧面的示意图。在这个实施例中,相邻两个透明套管21在竖直方向上在同一个竖直平面内,但水平方向则呈一定高低交错排布,且不同透明套管21内安装的LED灯带23可为不同配置和规格的灯带,如有的透明套管21内的LED灯带发红光,有的发蓝光等,还可以设置为不同光强、不同功率的LED灯带等。
透明套管21在水槽11的侧壁111上的安装方式不做限制,但每透明套管21的两端都贯穿侧壁111,且使透明套管21的的两端开口朝向外部,同时保证透明套管21与水槽11的侧壁111上的连接处不渗水。这种结构不仅可以保护LED灯带23,避免其进水无法工作,可以保证LED灯带23浸没在水槽11内的培养液中(培养液内置光源),直接照射藻细胞,以便提高光的利用效率,更重要的是,这种结构十分有利于LED灯带23的保养和维修,以及方便接电走线、散热管22更换、安装和拆卸等。
例如,当反应器本体10采用水泥或玻璃钢制成时,在制作过程中, 将透明套管21预埋在合适位置,再用水泥浇筑时使反应器本体10与透明套管21为一体结构。每根透明套管21贯穿水槽10相对的两个侧壁111,并在透明套管21与侧壁111连接处做防渗水处理。或者,反应器本体10为不锈钢材料或塑料材料制成,在制作反应器本体10时预留安装透明套管21的孔洞110或者在制作完成后,再在侧壁111上挖出孔洞110。将透明套管21安装在两个相对侧壁上的一堆孔洞110之后,再将孔洞110与透明套管21之间用密封结构胶涂覆处理,避免渗水。
如图5所示为水槽11的俯视示意图,表示光源装置20中散热管22在透明套管21中的贯穿方式,图6为图5的局部放大图。在本实施例中,散热管22在同一水平面内的多个透明套管21内贯穿。具体地,散热管22的一端从一个透明套管21中贯穿出来,穿入同一水平面内相邻的另一个透明套管21中,然后再继续穿入同一水平面内相邻的第三个透明套管21中,直到将该水平面内所有的透明套管21贯穿完毕。该散热管22的一端为冷媒入口,另一端为出口。所述冷媒优选为冷却水。
如图7所示为水槽11的端侧面示意图,表示光源装置20中散热管22在透明套管21中的贯穿方式。在本实施例中,散热管22在同一竖直面内的多个透明套管21内贯穿。具体地,散热管22的一端从一个透明套管21中贯穿出来,穿入同一竖直面内相邻的另一个透明套管21中,然后再继续穿入同一竖直面内相邻的第三个透明套管21中,直到将该竖直面内所有透明套管21贯穿完。该散热管22的一端为冷媒入口,另一端为出口。所述冷媒优选为冷却水。
再或者,一根散热管22按照特定的顺序贯穿所有的透明套管21,可以依次贯穿最底层的各个透明套管21,到水槽11的一端侧后再继续依次贯穿第二层的各个透明套管21,到水槽11的一端侧后再继续依次贯穿第三层的各个透明套管21……直至该水槽11上设置的所有透明套管21中都贯穿了该散热管22。
在组装时,为了便于组装LED灯带23,可将支撑架24预先设置在 各个透明套管21中,支撑架24的C型的支撑座241为开口。然后将LED灯带23采用导热胶粘接固定在散热管22的两侧壁,LED灯带23每隔一段距离粘接一段,预留出散热管22位于水槽11外部的弯曲段,该弯曲段是不设置LED灯带的。将粘接好LED灯带23的散热管22再按照上文的三种方式或其他方式,依次贯穿和安装到各个透明套管21中,固定在C型的支撑座241上,再用钳子等工具将支撑座241捏紧,将散热管22和LED灯带23固定。
如图8所示,为水槽11底部设置的供气装置30的结构示意图。供气装置30包括一个闭合延伸的管道31,闭合延伸的管道31与水槽11底部的形状一致,如水槽11底部为方形,则闭合延伸的管道31围成一个方形,其通过进气管310连接高压CO2气源。闭合延伸的管道31上分散地设有多个出气嘴,可以向水槽11内通入CO2气泡,促进微藻的自养光合作用,也可以提供调节培养液pH以及搅拌藻液的作用,避免藻细胞沉积到水槽11底部。供气装置30还包括一个鱼刺状管道32,该鱼刺状管道32包括一根沿所述水槽中轴线延伸的主管道321和向该主管道321左右两侧延伸的分管道322。分管道322与主管道321连通。鱼刺状管道32上也设有若干出气嘴(在各分管道322中间及顶端均设有出气嘴),主管道321通过进气管320连接至高压供气源(如空气源),其主要起到搅拌作用。
如图9所示,为本发明较佳实施例的高压冲洗及消毒装置40的结构示意图。高压冲洗及消毒装置40安装在水槽11内。高压冲洗及消毒装置40包括一个框架41,该框架41内部为空心管,在该框架41内设有多根水平管42,水平管42与该框架41的空心管连通,而每根水平管42下方连接若干根竖向管421,每根水平管42与其下方连接的竖向管421形成梳齿状结构。结合图9所示,每根竖向管421的管壁上,从上到下设有多个液体喷嘴422。竖向管421的下端伸入到水槽11内,接近水槽11的底部。框架41上有一个总进液口410(图中未标号),每根水平管42 均可连通该总进液口410,而总进液口410与高压清水、消毒水或消毒蒸汽连接。
如图10所示,这些竖向管421都位于两个相邻竖排的透明套管21的之间;换句话说,透明套管21与水平管42在水槽11底部的投影为交替间隔设置。
在本发明的另一个实施例中,如图11所示,高压冲洗及消毒装置40’也可不设置框架41,而是由一根中间粗管41’、两侧连接的若干根水平管42’和垂直设置在水平管42’下方的若干根竖向管421’组成,每根竖向管421’的管壁上,从上到下设有多个液体喷嘴422’。竖向管421’的下端伸入到水槽11内。同样的,中间粗管41’上设有总进液口410’(图中未标号),总进液口410’与高压清水、消毒水或消毒蒸汽连接。同样地,透明套管21与水平管42’在水槽11底部的投影为交替间隔设置。
上述液体喷嘴422和422’均可设为360°旋转液体喷嘴。通过上述高压冲洗及消毒装置40(40’)的结构,可快速对水槽11内壁进行清洗和消毒处理,以便为下一轮培养做好准备。此外,在培养基因蒸发变少时,还可以通过该高压冲洗及消毒装置40补充培养基,补充时也可以对藻液实现强力搅拌作用。
再如图12-13所示,本发明的光生物反应器还配设有培养液温度调节装置。具体地,如图12所示,其包括多个热交换器51,这些热交换器51间隔地竖直安装到水槽11内,两个热交换器51之间间隔一定距离,以供透明套管21、竖直管421(421’)设于其间。如图13所示,每个热交换器51由一个平面内弯折成S形状的换热管组成,换热管内通入热媒或冷媒,换热管的进出口分别对应位于水槽11两个相对侧壁111的外部。每个热交换器51单独连接热媒或冷媒,或者所有热交换器51在水槽11的外部进行首尾连接,以连接循环流动的热媒或冷媒,以便于对水槽11内的藻液温度进行有效调节。
上述这些透明套管21、换热管、水平管42(42’)、竖向管42(421’)等将水槽11分割成多个相互连通的小分隔区,使培养液能够在这些小分区内循环流动。因此,本发明的光生物反应器实际上集中了水槽反应器、跑道池反应器、立式管道反应器、卧式管道反应器的各项特点,是一种“杂合”式反应器。本发明的杂合式光生物反应器将太阳光与人工光源、开放与封闭、灭菌与开放环境培养有机结合在一起,具有比表面积小,单位体积造价低,能耗小,培养体积大,光能利用率高,可恒温调节培养温度、易清洗消毒的特点。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (15)

  1. 一种杂合式光生物反应器,其特征在于,其包括:
    反应器本体,所述反应器本体设有水槽,所述水槽用于容纳微藻培养液;所述反应器本体内还组装有光源装置和高压冲洗及消毒装置;
    所述光源装置包含透明套管和位于所述透明套管内的LED灯带,所述透明套管平行间隔排列地设置所述水槽内;
    所述高压冲洗及消毒装置包括多根水平管,每根水平管下方连接若干根竖向管,每根水平管与其下方连接的竖向管形成梳齿状结构;所述每根竖向管的管壁上,从上到下设有多个液体喷嘴;所述竖向管的下端接近所述水槽的底部;所述多根水平管连接一个总进液口,所述总进液口连接高压清水、消毒水或消毒蒸汽;所述透明套管与所述水平管在所述水槽底部的投影为交替间隔。
  2. 根据权利要求1所述的杂合式光生物反应器,其特征在于,所述反应器本体采用水泥、塑料、不锈钢、玻璃钢中一种材料或几种材料制成;所述反应器本体的水槽深度为20cm-40cm,所述水槽的形状为圆形、方形、椭圆形、长圆形或四角为圆弧过渡的方形;所述水槽为封闭水槽或顶部为开口的水槽或设为封闭水槽但顶部具有活动的盖子。
  3. 根据权利要求1或2所述的杂合式光生物反应器,其特征在于,所述水槽包括一组相对的侧壁,每根所述透明套管的两端均贯穿所述侧壁,所述透明套管的两端开口朝向所述水槽的外部,所述透明套管与所述水槽的侧壁上的连接处为密封连接。
  4. 根据权利要求3所述的杂合式光生物反应器,其特征在于,相对的所述侧壁上均设有多个孔洞,所述孔洞在所述侧壁上为成对设置,所述透明套管安装在相对所述侧壁上的孔洞上。
  5. 根据权利要求4所述的杂合式光生物反应器,其特征在于,所述透明套管为亚克力管或玻璃管,所述透明套管分布在所述水槽的水平面方向和竖直面方向。
  6. 根据权利要求5所述的杂合式光生物反应器,其特征在于,相邻 两个所述透明套管在竖直方向及水平方向上均为对齐且间隔一定距离设置在水槽内,或者,相邻两个所述透明套管在竖直方向上在同一个竖直平面内,在水平方向上呈高低交错排布。
  7. 根据权利要求1所述的杂合式光生物反应器,其特征在于,所述光源装置还包括散热管和支撑架,所述散热管通过支撑架固定在所述透明套管的中间,所述LED灯带固定在所述散热管的外壁上,所述散热管为一根长管,其一端从一个透明套管内穿过进入相邻的另一个透明套管,从所述另一个透明套管穿出再进入相邻的第三个透明套管,以此类推贯穿各个所述透明套管;所述散热管内通入循环流动的冷媒,用于对所述LED灯带进行降温。
  8. 根据权利要求7所述的杂合式光生物反应器,其特征在于,所述散热管在水平方向或竖直方向上以S形贯穿每个所述透明套管。
  9. 根据权利要求1所述的杂合式光生物反应器,其特征在于,所述LED灯带可间歇工作发光,且光照强度可调节。
  10. 根据权利要求1所述的杂合式光生物反应器,其特征在于,所述高压冲洗及消毒装置还包括内部为空心管的框架或一根中间粗管,所述水平管与所述框架相连通或与中间粗管相连通。
  11. 根据权利要求1或10所述的杂合式光生物反应器,其特征在于,所述液体喷嘴为360°旋转液体喷嘴。
  12. 根据权利要求1所述的杂合式光生物反应器,其特征在于,所述反应器本体内还组装有供气装置,所述供气装置包括至少一组通气管道,所述通气管道的一端连接供气源,所述通气管道铺设在所述水槽的底部,所述通气管道上设有多个出气口。
  13. 根据权利要求12所述的杂合式光生物反应器,其特征在于,所述通气管道包括一个闭合延伸的管道,所述闭合延伸的管道的形状与所述水槽底部的形状一致;所述通气管道还包括一个鱼刺状管道,所述鱼刺状管道包括一根沿所述水槽中轴线延伸的主管道和向该主管道左右两 侧延伸的分管道,所述分管道与所述主管道连通;所述闭合延伸的管道和所述鱼刺状管道上间隔设置多个出气嘴;所述闭合延伸的管道和所述鱼刺状管道分别通过进气管连接至高压供气源。
  14. 根据权利要求1所述的杂合式光生物反应器,其特征在于,还包括培养液温度调节装置,其包括多个热交换器,所述热交换器竖直安装到所述反应器本体的水槽内,并且与所述透明套管、水平管交替间隔设置。
  15. 根据权利要求14所述的杂合式光生物反应器,其特征在于,所述热交换器为在一个平面内弯折成S形状的换热管,所述换热管内通入热媒或冷媒,所述换热管的进出口分别对应位于所述水槽两个相对侧壁的外部。
PCT/CN2023/092147 2022-03-16 2023-05-05 一种杂合式光生物反应器 WO2023174444A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210257049.X 2022-03-16
CN202210257049.XA CN114606103B (zh) 2022-03-16 2022-03-16 一种杂合式光生物反应器

Publications (1)

Publication Number Publication Date
WO2023174444A1 true WO2023174444A1 (zh) 2023-09-21

Family

ID=81863343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092147 WO2023174444A1 (zh) 2022-03-16 2023-05-05 一种杂合式光生物反应器

Country Status (2)

Country Link
CN (1) CN114606103B (zh)
WO (1) WO2023174444A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114606103B (zh) * 2022-03-16 2023-07-25 德默特生物科技(珠海)有限公司 一种杂合式光生物反应器
CN115960697B (zh) * 2022-12-19 2023-07-11 原初科技(北京)有限公司 一种基于太阳能的固碳装置及其使用方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07184630A (ja) * 1993-12-27 1995-07-25 Hitachi Ltd 光合成生物の培養装置
US20030059932A1 (en) * 2001-07-23 2003-03-27 National Research Council Of Canada Photobioreactor
CA2393188A1 (en) * 2001-10-17 2003-04-17 Co2 Solution Inc. Photobioreactor
US20130023044A1 (en) * 2011-07-19 2013-01-24 Cornel Gleason System and Method for Fuel Generation from Algae
CN107101096A (zh) * 2017-06-29 2017-08-29 常州市武进区半导体照明应用技术研究院 一种UVled灯管
CN112625891A (zh) * 2020-12-29 2021-04-09 深圳大学 一种在宽广水域漂浮的大型光生物反应器
CN112680331A (zh) * 2020-12-29 2021-04-20 深圳大学 一种在大型水体中运行的光生物反应器
CN114606103A (zh) * 2022-03-16 2022-06-10 德默特生物科技(珠海)有限公司 一种杂合式光生物反应器
CN218811632U (zh) * 2022-05-11 2023-04-07 V·E·格拉巴尼克 一种微藻生物质培养装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101307891A (zh) * 2007-05-16 2008-11-19 史杰 高效散热的led灯具
CN101497473A (zh) * 2009-03-20 2009-08-05 上海大祺环保工程有限公司 曝气式光生物反应器及其应用方法
TWM362360U (en) * 2009-04-08 2009-08-01 Trend Vrild Co Ltd Improved heat dissipation structure for LED lamps
CN101870953B (zh) * 2009-04-24 2013-06-26 中国石油化工股份有限公司 一种养殖微藻的方法
CN101550393B (zh) * 2009-05-06 2012-05-02 兆凯生物工程研发中心(深圳)有限公司 用于微藻室外养殖的反应器
KR101418297B1 (ko) * 2012-08-06 2014-07-10 인하대학교 산학협력단 미세조류 반응장치 및 배양방법
NL2012157C2 (en) * 2014-01-28 2015-07-29 Photanol B V Arrangement of a photobioreactor or a microbiological reactor.
CN104611221A (zh) * 2014-07-14 2015-05-13 安徽省农业科学院水产研究所 一种封闭跑道池式光生物反应器
CN206033741U (zh) * 2016-05-27 2017-03-22 农业部沼气科学研究所 跑道池光生物反应器
CN206188489U (zh) * 2016-08-29 2017-05-24 武汉东川自来水科技开发有限公司 一种序批式间歇曝气三相流化床
CN106242031B (zh) * 2016-09-14 2020-03-13 霍普科技(天津)股份有限公司 一种微生物污水处理曝气装置
CN108077053A (zh) * 2016-11-22 2018-05-29 株式会社昰燏 用于栽培花生芽的容器
CN207478322U (zh) * 2017-09-27 2018-06-12 河北松赫再生资源股份有限公司 一种用于废铅酸蓄电池的废酸处理的无机膜过滤装置
CN207533422U (zh) * 2017-10-19 2018-06-26 浙江茂丰工艺品有限公司 一种固类杂质污水处理釜的自洁喷嘴
CN208429944U (zh) * 2018-06-20 2019-01-25 金柏生态环境股份有限公司 黑臭水体综合治理生态修复用水力曝气装置
CN209511731U (zh) * 2019-02-25 2019-10-18 华南理工大学 一种培养大型海藻的led照明装置
CN109775875A (zh) * 2019-03-21 2019-05-21 广东紫方环保技术有限公司 一种河涌曝气治理可提升式曝气系统
CN111704990B (zh) * 2020-07-13 2024-01-12 浙江大学 管池结合式闪光生物反应器系统及其微藻生长固碳方法
CN112063519B (zh) * 2020-09-14 2022-06-10 中国科学院重庆绿色智能技术研究院 一种光合细菌连续培养装置及其控制方法
CN112759075A (zh) * 2021-02-01 2021-05-07 张家港市大新污水处理有限公司 用于水解酸化区的穿孔布水系统
CN114032161B (zh) * 2021-11-12 2024-03-19 深圳市元琦生物科技有限公司 一种藻类养殖系统
CN216997830U (zh) * 2021-12-27 2022-07-19 上海砼仁环保技术发展有限公司 用于水质净化的移动床藻类生物膜反应器
CN217437884U (zh) * 2022-06-14 2022-09-16 福建省环境保护设计院有限公司 一种高效精准脱氮生化反应器
CN218025794U (zh) * 2022-07-25 2022-12-13 河南欣博矿山装备技术有限公司 一种污泥生物动态发酵曝气管道系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07184630A (ja) * 1993-12-27 1995-07-25 Hitachi Ltd 光合成生物の培養装置
US20030059932A1 (en) * 2001-07-23 2003-03-27 National Research Council Of Canada Photobioreactor
CA2393188A1 (en) * 2001-10-17 2003-04-17 Co2 Solution Inc. Photobioreactor
US20130023044A1 (en) * 2011-07-19 2013-01-24 Cornel Gleason System and Method for Fuel Generation from Algae
CN107101096A (zh) * 2017-06-29 2017-08-29 常州市武进区半导体照明应用技术研究院 一种UVled灯管
CN112625891A (zh) * 2020-12-29 2021-04-09 深圳大学 一种在宽广水域漂浮的大型光生物反应器
CN112680331A (zh) * 2020-12-29 2021-04-20 深圳大学 一种在大型水体中运行的光生物反应器
CN114606103A (zh) * 2022-03-16 2022-06-10 德默特生物科技(珠海)有限公司 一种杂合式光生物反应器
CN218811632U (zh) * 2022-05-11 2023-04-07 V·E·格拉巴尼克 一种微藻生物质培养装置

Also Published As

Publication number Publication date
CN114606103A (zh) 2022-06-10
CN114606103B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
WO2023174444A1 (zh) 一种杂合式光生物反应器
KR102043623B1 (ko) 조류 양식용 광생물반응기 및 조류 양식 시스템
US5846816A (en) Apparatus for biomass production
CN102994367B (zh) 一种纯培养光合细菌的光生物反应系统及其灭菌方法
US20170137764A1 (en) Light emitting diode photobioreactors and methods of use
KR101843935B1 (ko) 광합성생물 배양을 위한 배양시스템에 사용되는 배양기체공급조립체
CN108060058B (zh) 一种用于高密度养殖微藻的光生物反应器
CN210193886U (zh) 一种高效封闭式海洋微藻培养光生物反应器
CN104611221A (zh) 一种封闭跑道池式光生物反应器
WO2010115655A1 (en) Photobioreactor
JP2007061086A (ja) 植物性藻類・微生物光合成反応器
KR20200046557A (ko) 미세조류 광배양장치
CN106957790A (zh) 一种微藻藻种光生物反应半封闭式培养管道及其使用方法
KR20160099803A (ko) 공기를 이용한 순환형 미세조류 고밀도 배양장치
CN111676126B (zh) 一种用于微藻培养的气升式光生物反应器
JP5324532B2 (ja) 循環型の光生物反応器
JP7174588B2 (ja) 藻類培養装置
CN201395597Y (zh) 一种快速养殖微藻的装置
CN109251847A (zh) 利用阳光培养光合微生物的装置及方法
CN104928172B (zh) 用于藻类养殖的通气温控系统及藻类养殖系统
CN112897636A (zh) 用大功率uvc发生器处理循环冷却水的方法
TWI531648B (zh) 漂浮式光生物反應系統
CN204727882U (zh) 一种雨生红球藻藻种培养系统
CN107034135B (zh) 一种平板气升环流式光合微生物培养装置
CN212199233U (zh) 一种吨桶封闭式光生物反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769946

Country of ref document: EP

Kind code of ref document: A1