WO2023174187A1 - 一种电动公交协调优化调度方法 - Google Patents

一种电动公交协调优化调度方法 Download PDF

Info

Publication number
WO2023174187A1
WO2023174187A1 PCT/CN2023/080951 CN2023080951W WO2023174187A1 WO 2023174187 A1 WO2023174187 A1 WO 2023174187A1 CN 2023080951 W CN2023080951 W CN 2023080951W WO 2023174187 A1 WO2023174187 A1 WO 2023174187A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
station
vehicle
bus
time
Prior art date
Application number
PCT/CN2023/080951
Other languages
English (en)
French (fr)
Inventor
戚湧
栾泊蓉
周竹萍
何流
Original Assignee
南京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京理工大学 filed Critical 南京理工大学
Publication of WO2023174187A1 publication Critical patent/WO2023174187A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to the technical field of smart public transportation, and specifically relates to a coordination and optimization dispatching method for electric public transportation.
  • Bus passenger flow has obvious peak characteristics in time and space.
  • a fixed and single departure plan cannot meet the passenger flow demand of the line network. It is necessary to re-program the driving plan for different time periods and station intervals, and adjust the departure arrangements between different lines according to the passenger flow.
  • Carry out coordinated dispatching of road network fleets Specifically, the number of passengers at the station, the total bus service cost, etc. are considered, and dispatching strategies such as skipping stations and adding additional vehicles are implemented in a targeted manner.
  • the purpose of the present invention is to provide a coordinated and optimized dispatching method for electric buses.
  • Data processing steps Clean and preprocess the bus operation data, line data, and passenger flow data of electric buses, and collect statistics on the start and end points of passenger flow traffic;
  • Steps for solving the optimal dispatch plan Based on the data obtained in the data processing step, a two-layer planning model is constructed, and the optimal bus departure interval and the best bus stop plan are obtained through genetic algorithm solution.
  • the two-layer planning model consists of the upper layer model and a lower-layer model.
  • the upper-layer model optimizes the bus stop plan to make the service time of all vehicles as short as possible and the operating energy consumption cost to the lowest. Its objective function is as follows:
  • f is the objective function value of the upper-layer model
  • is the total route travel time of all vehicles
  • Q l is a single vehicle on line l
  • the fixed service cost of a trip The value of represents whether the k-th vehicle on line l crosses the station at station i, where 1 means not to cross the station and 0 means it crosses the station; is the stopping time required for the k-th vehicle on line l at station i; is the number of people boarding the k-th car on line l at station i; Indicates whether the kth vehicle on line l needs to replace the battery after performing this shift.
  • C battery represents the single battery replacement cost of a pure electric bus vehicle
  • L is the total number of lines in the bus network
  • I is the total number of stops on the corresponding bus line
  • K is the total number of electric bus trips in the corresponding bus line
  • H l,k is the departure interval between the kth car on line l and the previous bus;
  • the value represents the line Whether the k-1th vehicle on road l crosses the station at station i; represents the energy consumption utility coefficient of unit power during the operation of the kth vehicle on line l;
  • e represents the battery power required for the vehicle to continuously operate at full load for a single shift;
  • d represents the average travel distance of all passengers;
  • t b represents the replacement of pure electric bus vehicles power time;
  • the lower-level model optimizes the bus departure interval and regulates the number of buses during peak hours in order to reduce the total waiting time of passengers. Its objective function is as follows:
  • F is the objective function value of the lower model, is the number of passengers on line l who want to take the k-th bus and get on at station i and get off at station j; is the traveling time of passengers taking the k-th vehicle on line l with the traffic starting and ending points being ij; is the waiting time of passengers taking the k-th vehicle on line l whose traffic starting and ending points are ij; is the number of stranded passengers who were unable to take the k-th bus at station i on line l due to limited remaining capacity; is the headway between the k+1th vehicle on line l and the previous vehicle at station i; The value indicates whether the k+1th vehicle on line l crosses the station at station i; The value indicates whether the k+1th vehicle on line l crosses the station at station j; is the headway between the k+2th vehicle on line l and the previous vehicle at station i;
  • h min and h max are the minimum and maximum departure intervals respectively; is the transfer time required for passengers on the kth car who need to transfer from line l to line m; is the remaining capacity of the k-th vehicle at site i on line l, C is the number of people on board the vehicle, and M is the line network scheduling time.
  • ⁇ i-1,i is the vehicle travel time from station i-1 to station i; ⁇ is the acceleration or deceleration time of the vehicle at the stop.
  • ⁇ l,ij is the arrival rate of passengers on line l who want to get on the bus at station i and get off at station j; is the headway between the kth car on line l and the previous car at station i;
  • the value indicates whether the k-1th vehicle on line l crosses the station at station i;
  • the value indicates whether the k-1th vehicle on line l crosses the station at station j; is the number of passengers on line l who want to take the k-1th bus and get on at station i and get off at station j; is the time when the k-th vehicle on line l arrives at station i; is the time when the k-1th vehicle on line l arrives at site i; is the time when the k-th vehicle on line l leaves station i-1;
  • the value indicates whether the k-th vehicle on line l crosses the station at station i-1; is the time when the k-th car on line l leaves site i.
  • ⁇ l,m is the probability that passengers on line l will transfer to line m; is the time when the p-th car on line m arrives at site i.
  • the method of obtaining the best bus departure interval and the best bus stop plan through genetic algorithm includes the following steps:
  • Initialization parameter steps Set the maximum number pop of the population size, and randomly generate individuals for the bus departure interval and bus stop plan, then set the maximum evolution generation max, and set the evolution generation counter to 1;
  • Encoding and initial solution steps Encode the variable departure interval and stop plan, and use random initial values to form the genes of the chromosome; if the variables meet the constraint conditions, go to the calculation and selection steps; if not, the initial solution should be regenerated;
  • Calculation and selection steps Calculate the fitness values of all chromosomes and select chromosomes through the roulette method. If the fitness of this generation of chromosomes is higher than the previous generation, this generation of chromosomes should be retained as the current best solution; If it is lower than the previous generation, give up selecting the chromosome of this generation;
  • Reproduction step The current chromosome produces the next generation of individuals through crossover and mutation behaviors; if each individual meets the constraint conditions, go to the stopping step; if not, re-reproduce the individuals;
  • Stop step If the current evolutionary generation is equal to max, stop the cycle and obtain the optimal solution; if it is not reached, return to the step calculation and selection step.
  • the beneficial effects of the present invention are as follows:
  • the present invention comprehensively optimizes the electric bus dispatching strategy from two scales of time and space, and can derive a complete, directly feasible spatio-temporal scheduling scheme for road network vehicle operation, which includes two spatio-temporal dimensions, and is more convenient and efficient.
  • different levels of the model form a highly coupled and tight whole, which has better global optimality than an isolated optimization model.
  • This invention takes into account the timetable optimization problem in electric bus dispatching, has the characteristics of real-time response, can realize dynamic control of bus dispatching, is more robust in responding to actual vehicle capacity updates, and can fit passenger flow changes in the line network.
  • This invention establishes an electric bus dynamic collaborative dispatching model that adds vehicle capacity constraints, recalculates the waiting time for passenger flow, and considers the energy consumption cost of electric buses, making the model more accurate and practical, optimizing line departure plans, and greatly reducing operational costs. It reduces the cost of travel and passenger travel time, making the travel arrangements between multiple lines more connected and making passenger transfers more convenient.
  • the invention solves the problem of mismatch between dynamic passenger flow and bus transportation capacity, makes the dispatching strategy more suitable for actual passenger flow conditions and more effective, and has broad application prospects in urban bus line networks.
  • Figure 1 is a schematic structural diagram of the two-layer planning model used in the present invention.
  • Figure 2 is a schematic flow chart of the genetic optimization algorithm used in the present invention.
  • One embodiment of the present invention mainly uses the two-layer planning model as shown in Figure 1 to solve the coordinated and optimal dispatch of electric buses, which specifically includes the following steps:
  • the S2 specifically includes:
  • ⁇ i-1,i is the vehicle travel time from station i-1 to station i; ⁇ is the acceleration or deceleration time of the vehicle at the stop; The value of represents whether the k-th vehicle on line l crosses the station at station i, where 1 means no crossing, and 0 means crossing the station.
  • ⁇ l,ij is the arrival rate of passengers on line l who want to get on the bus at station i and get off at station j; is the headway between the kth car on line l and the previous car at station i;
  • the value indicates whether the k-1th vehicle on line l crosses the station at station i;
  • the value indicates whether the k-1th vehicle on line l crosses the station at station j; is the number of passengers on line l who want to take the k-1th bus and get on at station i and get off at station j; is the time when the k-th vehicle on line l arrives at station i; is the time when the k-1th vehicle on line l arrives at site i; is the time when the k-th vehicle on line l leaves station i-1;
  • the value indicates whether the k-th vehicle on line l crosses the station at station i-1; is the time when the k-th car on line l leaves site i.
  • H l,k is the
  • the energy consumption cost in the present invention is specifically the battery replacement cost of the bus vehicle, and the real-time load capacity of passengers is related to the battery loss, where C battery represents the single battery replacement cost of the pure electric bus vehicle (yuan /Second-rate), Indicates that if the bus needs to replace the battery after performing this shift, otherwise
  • ⁇ l,m is the probability that passengers on line l will transfer to line m; is the time when the p-th car on line m arrives at site i. is the transfer time required for passengers on the kth car who need to transfer from line l to line m.
  • the S3 specifically includes:
  • Q l is the fixed service cost of a single vehicle trip on line l.
  • the two objectives can be calculated uniformly with different weights to achieve the effect of reducing the amount of calculation.
  • the battery energy consumption of pure electric vehicles is related to factors such as the speed and load of the vehicle during operation. After each bus completes the current shift, it is judged whether a battery swap is required, and the following constraints are imposed:
  • e represents the battery power required for the vehicle to continuously operate at full load for a single shift
  • d represents the average riding distance of all passengers.
  • t b is the battery replacement time of the pure electric bus vehicle.
  • the S4 specifically includes:
  • h min and h max are the minimum and maximum departure intervals respectively, which are obtained from historical data;
  • M is the line network scheduling time.
  • S5 specifically includes the following steps, as shown in Figure 2:
  • S501 Initialization parameters. Set the maximum number pop of the population size, and randomly generate individuals for the departure interval and stop-stop plan, then set the maximum evolution generation max, and set the evolution generation counter to 1.
  • variable departure intervals and stop plans are encoded to form the genes of the chromosome with random initial values. If the variable satisfies the constraint conditions, go to S503. If it is not satisfied, the initial solution should be regenerated.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • General Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Biophysics (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Physiology (AREA)
  • Genetics & Genomics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Primary Health Care (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种电动公交协调优化调度方法,属于智慧公交技术领域。本发明从时间、空间两个尺度全面优化电动公交调度策略,建立考虑车辆容量、考虑换乘问题、考虑电动公交特性的公交调度双层规划模型,并根据遗传算法对模型进行求解。本发明能够生成涵盖时间与空间两方面的电动公交调度策略,使调度策略更贴合实际客流情况、更有实际效益。

Description

一种电动公交协调优化调度方法
本申请要求于2022年03月12日提交中国专利局、申请号为202210240311.X、发明名称为“一种电动公交协调优化调度方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及智慧公交技术领域,具体涉及一种电动公交协调优化调度方法。
背景技术
公交客流具有明显的时间、空间峰值特征,固定、单一的发车计划难以满足线网客流需求,需要针对不同的时段、站点区间重新编制行车方案,并针对换乘客流调整不同线路间的发车安排,对路网车队进行协同调度。具体即为考虑站点客流数、公交总服务成本等,针对性地实施越站、增派车辆等调度策略。
然而现有针对公交调度的研究大多着眼于常规公交,无法适应电动公交的特性。由于中国新能源车辆的推广,大部分城市公交运营中使用纯电动公交逐渐成为主流,所以在调度中在对公交运营规范进行约束的同时,需要考虑电动公交运行特性,如换电成本、时变载客数对电池电量的消耗及换电需求的判定等,基于实时客流建立调度优化模型求解得出最优运营方案,提升运营方与乘客方的效益。
目前在电动公交运营调度方面主要面向实时充电模式的纯电动公交,然而也有大量城市采用的是换电式电动公交,换电式公交具有电价稳定、操作迅速无需排队、电力浪费小等特点,针对其换电特性与电池组成本进行公交运营优化的研究较少;对于线网车辆调度方面,现有方案多研究公交发车时刻表或行车模式问题的单一方向,或将服务站点的选择与发车频率结合进行静态调度,使线网发车安排的时间维度和空间维度不能良好结合进行同时优化、寻求全局最优;已有的公交多模式协同优化无法输出完整的运营安排,也难以动态拟合客流的实时变化,在线网背景下的多模式组合发车问题中如何进行高度集成化的动态协同调度,仍需探索。
发明内容
针对现有技术存在的缺点与不足,本发明的目的在于提供一种电动公交协调优化调度方法。
本发明公开的电动公交协调优化调度方法,其技术方案包括以下步骤:
数据处理的步骤:对电动公交的公交运营数据、线路数据、客流数据进行清洗、预处理,统计客流交通起止点数据;
优化调度方案求解的步骤:基于数据处理的步骤中获得的数据,构建双层规划模型,通过遗传算法进行求解获取最佳公交发车间隔与最佳公交停站方案,所述双层规划模型由上层模型和下层模型构成,其中所述上层模型通过优化公交停站方案,使得全部车辆服务时间尽可能短、运营能耗成本达到最低,其目标函数如下:
其中,f为上层模型的目标函数值,α、β分别为两个归一化加权系数,且α+β=1;Δ为全部车辆的总路径行驶时间;Ql为线路l上单辆车一趟行程的固定服务成本;的值表示线路l上第k辆车在站点i是否越站,其中1为不越站,0为越站;为线路l上第k辆车在站点i需要的停靠时间;为线路l上第k辆车在站点i的上车人数;表示线路l上第k辆车在执行该班次后是否需要更换电池,其中如需更换电池否则Cbattery表示纯电动公交车辆单次换电成本;L为公交路网的线路总数,I为相应公交线路的站点总数,K为相应公交线路中电动公交的车次总数;
所述上层模型的约束条件为:



其中,Hl,k为线路l上第k辆车与上一班车的发车间隔;的值表示线 路l上第k-1辆车在站点i是否越站;表示线路l上第k辆车运营行驶过程中单位电量能耗效用系数;e表示车辆持续满载运行单班次需要的电池电量,d表示所有乘客的平均乘车距离;tb为纯电动公交车辆换电时间;
所述下层模型通过优化公交发车间隔,在高峰时段调控发车数量,以期减少乘客的总候车时间,其目标函数如下:
其中,F为下层模型的目标函数值,为线路l上想搭乘第k辆车在i站上车并在j站下车的乘客数量;为线路l上搭乘第k辆车交通起止点为ij的乘客的乘车时间;为线路l上搭乘第k辆车交通起止点为ij的乘客的候车时间;为在线路l上站点i因剩余容量有限而未能搭乘第k辆车的滞留乘客数;为线路l上第k+1辆车在站点i与上一辆车的车头时距;的值表示线路l上第k+1辆车在站点i是否越站;的值表示线路l上第k+1辆车在站点j是否越站;为线路l上第k+2辆车在站点i与上一辆车的车头时距;
所述下层模型的约束条件为:



其中,hmin、hmax分别为最小、最大发车间隔;为第k辆车上需要从线路l转线路m的乘客需花费的换乘时间;为第k辆车在线路l上站点i的剩余容量,C为车辆核载人数;M为线网调度时长。
进一步而言,按以下公式计算全部车辆的总路径行驶时间Δ:
其中,δi-1,i为从i-1站到i站的车辆路程行驶时间;θ为车辆在停靠站点的加速或减速用时。
进一步而言,按以下公式计算线路l上想搭乘第k辆车在i站上车并在j站下车的乘客数量




Hl,1=0;
其中,λl,ij为线路l上想在站点i上车并在站点j下车的乘客的到达速率;为线路l上第k辆车在站点i与上一辆车的车头时距;的值表示线路l上第k-1辆车在站点i是否越站;的值表示线路l上第k-1辆车在站点j是否越站;为线路l上想搭乘第k-1辆车在i站上车并在j站下车的乘客数量;为线路l上第k辆车到达站点i的时刻;为线路l上第k-1辆车到达站点i的时刻;为线路l上第k辆车离开站点i-1的时刻;的值表示线路l上第k辆车在站点i-1是否越站;为线路l上第k辆车离开站点i的时刻。
进一步而言,按以下公式计算线路l上第k辆车在站点i的上车人数



其中,为第k-1辆车在线路l上站点i的剩余容量;为线路l上第k辆车在站点i的下车人数。
进一步而言,按以下公式计算线路l上搭乘第k辆车交通起止点为ij的乘客的候车时间

其中,ζl,m为线路l上乘客发生换乘线路m行为的概率;为线路m上第p辆车到达站点i的时刻。
进一步而言,按以下公式计算在线路l上站点i因剩余容量有限而未能搭乘第k辆车的滞留乘客数
进一步而言,所述通过遗传算法进行求解获取最佳公交发车间隔与最佳公交停站方案,包括以下步骤:
初始化参数步骤:设置种群规模的最大数量pop,并随机产生公交发车间隔、公交停站方案的个体,然后设置最大进化代数max,并设置进化代数计数器为1;
编码和初解步骤:对变量发车间隔和停站方案进行编码,以随机的初始值组成染色体的基因;如果变量满足约束条件,转计算和选择步骤;如果不满足,则应重新生成初始解;
计算和选择步骤:计算所有染色体的适应度值,通过轮盘赌法选择染色体,如果这一代染色体的适应度高于前一代,应保留这一代染色体作为当前最佳解; 如果低于前一代,则放弃选择这一代染色体;
繁衍步骤:当前染色体通过交叉和突变行为产生下一代个体;如果每个个体都满足约束条件,则转停止步骤;如果不满足,则重新繁殖个体;
停止步骤:如果当前进化代数等于max,则停止循环,得到最优解;如果没有达到,则返回步骤计算和选择步骤。
本发明的有益效果如下:本发明从时间、空间两个尺度全面优化电动公交调度策略,可得出完整、直接可行的路网车辆运营时空调度方案,包含两个时空维度,更为便捷高效,且模型不同层次间形成一个高度耦合的紧密整体,比孤立的优化模型更好地具有全局最优性。本发明考虑到了电动公交调度中的时刻表优化问题,具有实时响应的特点,可实现对公交调度的动态控制,应对车辆实际运力更新的鲁棒性更强,对线网的客流变化的拟合性更好,与均衡发车间隔的传统时刻表相比,对不规则客流更具匹配性与适应性,使得运力投放精准化,从而降低了资源的浪费。本发明建立了添加车容量约束、重新计算换乘客流等候时长、考虑电动公交能耗成本的电动公交动态协同调度模型,使模型更为准确且具有实用性,优化线路发车计划,大大降低了运营方的成本和乘客出行时间,使多线路间的行车安排衔接性更强,乘客换乘便捷度更高。本发明解决了动态客流与公交运力不匹配的问题,使调度策略更贴合实际客流情况、更有实际效益,在城市公交线网中的应用前景广泛。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明所用的双层规划模型结构示意图。
图2是本发明所用的遗传优化算法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是 全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的一个实施例,其主要采用如图1所示的双层规划模型求解电动公交协调优化调度,具体包括以下步骤:
S1、对模型算法所需的公交运营数据、线路数据、客流数据进行清洗、预处理,进一步基于IC卡数据统计客流OD(交通起止点)数据;
S2、设计模型所需的各变量(如全部车辆的总路径行驶时间Δ、因越站未能上车的乘客数量乘客的候车用时滞留乘客数车头时距上车人数下车人数是否换电等)的表达形式;
S3、基于S1的数据与S2所设计的变量表达形式,构建双层规划模型中的上层模型。上层模型中,通过优化公交停站方案,使得全部车辆服务时间尽可能短、运营能耗成本达到最低;
S4、基于S1的数据与S2所设计的变量表达形式,构建双层规划模型中的下层模型。下层模型中,通过优化公交发车间隔,在高峰时段调控发车数量,以期减少乘客的总候车时间;
S5、算法参数初始化,基于S3与S4建立的双层规划模型,设计遗传算法进行求解,最后获取最优公交调度方案。
进一步,所述S2具体包括:
S201、计算全部车辆的总路径行驶时间Δ:
其中,δi-1,i为从i-1站到i站的车辆路程行驶时间;θ为车辆在停靠站点的加速或减速用时;的值表示线路l上第k辆车在站点i是否越站,其中1为不越站,0为越站。
S202、计算计算线路l上想搭乘第k辆车在i站上车并在j站下车的乘客数量




Hl,1=0;
其中,λl,ij为线路l上想在站点i上车并在站点j下车的乘客的到达速率;为线路l上第k辆车在站点i与上一辆车的车头时距;的值表示线路l上第k-1辆车在站点i是否越站;的值表示线路l上第k-1辆车在站点j是否越站;为线路l上想搭乘第k-1辆车在i站上车并在j站下车的乘客数量;为线路l上第k辆车到达站点i的时刻;为线路l上第k-1辆车到达站点i的时刻;为线路l上第k辆车离开站点i-1的时刻;的值表示线路l上第k辆车在站点i-1是否越站;为线路l上第k辆车离开站点i的时刻。Hl,k为线路l上第k辆车与上一班车的发车间隔。为线路l上第k辆车在站点i需要的停靠时间。
S203、计算线路l上第k辆车在站点i的上、下车人数



其中,为第k辆车在线路l上站点i的剩余容量;为第k-1辆车在线路l上站点i的剩余容量;为线路l上第k辆车在站点i的下车人数;C 为车辆核载人数。
S204、计算周期内电动公交的能耗成本Cd
对于纯电动公交车辆而言,能耗成本在本发明中具体为公交车辆的换电成本,且乘客实时载重量关系到电池损耗,其中,Cbattery表示纯电动公交车辆单次换电成本(元/次),表示公交车辆在执行该班次后,若需更换电池否则
S205、计算线路l上搭乘第k辆车OD点(交通起止点)为ij的乘客的候车时间

其中,ζl,m为线路l上乘客发生换乘线路m行为的概率;为线路m上第p辆车到达站点i的时刻。为第k辆车上需要从线路l转线路m的乘客需花费的换乘时间。
S206、计算线路l上站点i因剩余容量有限而未能搭乘第k辆车的滞留乘客数
进一步,所述S3具体包括:
S301、基于S1的数据与S2所设计的变量表达形式,构建上层模型的目标函数:
其中,Ql为线路l上单辆车一趟行程的固定服务成本。
对这种双目标非线性优化问题,可以通过对两个目标取不同的权值统一计算,进而达到计算量降低的效果,α、β则分别为两个目标的的归一化加权系数,且α+β=1。
S302、基于S301的目标函数添加对应的约束条件:
为保证车头时距、不与上一趟车辆发生行驶冲突,车辆在一趟行程中通过越站而缩减的行程时间不能超过该班次的发车间隔,故为目标函数添加约束:
为防止某站点被持续越过导致部分乘客候车时间过长、乃至无法登车的情况,添加约束以保证每一个站点都不会被连续越过:
纯电动车辆电池耗能与车辆运行时的速度、载重等因素有关,对于每班车执行完当前班次后,判断是否需要进行换电,进行如下约束:
其中,表示纯电动公交运营行驶过程中单位电量能耗效用系数,e表示车辆持续满载运行单班次需要的电池电量,d表示所有乘客的平均乘车距离。
研究区域内公交公式运营公交车均为纯电动公交车,并采用换电模式补电,平均换电时间10min次/车,以防车辆出现故障,要保证相邻班次发车时间间隔大于换电时间,约束公式如下:
其中tb为纯电动公交车辆换电时间。
进一步,所述S4具体包括:
S401、基于S1的数据与S2所设计的变量表达形式,构建下层模型的目标函数:
其中,为线路l上搭乘第k辆车交通起止点为ij的乘客的乘车时间。
S402、基于S301的目标函数添加对应的约束条件:
其中,hmin、hmax分别为最小、最大发车间隔,由历史数据得出;
仅在一个最大发车间隔内的换乘点换乘行为被认证,否则视为两次独立乘车行为,不予单独计算约束,故添加约束:
为保证剩余容量在合理范围内,设置约束:
为确保在运营时间范围内线路中持续有车辆在服务,添加约束:
其中,M为线网调度时长。
进一步,所述S5具体包括以下步骤,如图2所示:
S501、初始化参数。设置种群规模的最大数量pop,并随机产生发车间隔、停站方案的个体,然后设置最大进化代数max,并设置进化代数计数器为1。
S502、编码和初解。对变量发车间隔和停站方案进行编码,以随机的初始值组成染色体的基因。如果变量满足约束条件,转S503。如果不满足,则应重新生成初始解。
S503、计算和选择。计算所有染色体的适应度值。通过轮盘赌法选择染色体。如果这一代染色体的适应度高于前一代,应保留这一代染色体作为当前最佳解。如果低于前一代,则放弃选择这一代染色体。
S504、繁衍。当前染色体通过交叉和突变行为产生下一代个体。如果每个个体都满足约束条件,则转S505,如果不满足,则重新繁殖个体。
S505、如果当前进化代数等于max,则停止循环,得到最优解。如果没有达到,则返回步骤S503。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (7)

  1. 一种电动公交协调优化调度方法,其特征在于,包括以下步骤:
    数据处理的步骤:对电动公交的公交运营数据、线路数据、客流数据进行清洗、预处理,统计客流交通起止点数据;
    优化调度方案求解的步骤:基于数据处理的步骤中获得的数据,构建双层规划模型,通过遗传算法进行求解获取最佳公交发车间隔与最佳公交停站方案;所述双层规划模型由上层模型和下层模型构成,其中所述上层模型通过优化公交停站方案,使得全部车辆服务时间尽可能短、运营能耗成本达到最低,其目标函数如下:
    其中,α、β分别为两个归一化加权系数,且α+β=1;Δ为全部车辆的总路径行驶时间;Ql为线路l上单辆车一趟行程的固定服务成本;的值表示线路l上第k辆车在站点i是否越站,其中1为不越站,0为越站;为线路l上第k辆车在站点i需要的停靠时间;为线路l上第k辆车在站点i的上车人数;表示线路l上第k辆车在执行该班次后是否需要更换电池,其中如需更换电池否则Cbattery表示纯电动公交车辆单次换电成本;L为公交路网的线路总数,I为相应公交线路的站点总数,K为相应公交线路中电动公交的车次总数;
    所述上层模型的约束条件为:



    其中,Hl,k为线路l上第k辆车与上一班车的发车间隔;的值表示线路l上第k-1辆车在站点i是否越站;表示线路l上第k辆车运营行驶过程中单位电量能耗效用系数;e表示车辆持续满载运行单班次需要的电池电量,d表示所有乘客的平均乘车距离;tb为纯电动公交车辆换电时间;
    所述下层模型通过优化公交发车间隔,在高峰时段调控发车数量,以期减少乘客的总候车时间,其目标函数如下:
    其中,为线路l上想搭乘第k辆车在i站上车并在j站下车的乘客数量;为线路l上搭乘第k辆车交通起止点为ij的乘客的乘车时间;为线路l上搭乘第k辆车交通起止点为ij的乘客的候车时间;为在线路l上站点i因剩余容量有限而未能搭乘第k辆车的滞留乘客数;为线路l上第k+1辆车在站点i与上一辆车的车头时距;的值表示线路l上第k+1辆车在站点i是否越站;的值表示线路l上第k+1辆车在站点j是否越站;为线路l上第k+2辆车在站点i与上一辆车的车头时距;
    所述下层模型的约束条件为:



    其中,hmin、hmax分别为最小、最大发车间隔;为第k辆车上需要从线路l转线路m的乘客需花费的换乘时间;为第k辆车在线路l上站点i的剩余容量,C为车辆核载人数;M为线网调度时长。
  2. 如权利要求1所述的电动公交协调优化调度方法,其特征在于,按以 下公式计算全部车辆的总路径行驶时间Δ:
    其中,δi-1,i为从i-1站到i站的车辆路程行驶时间;θ为车辆在停靠站点的加速或减速用时。
  3. 如权利要求2所述的电动公交协调优化调度方法,其特征在于,按以下公式计算线路l上想搭乘第k辆车在i站上车并在j站下车的乘客数量





    Hl,1=0;
    其中,λl,ij为线路l上想在站点i上车并在站点j下车的乘客的到达速率;为线路l上第k辆车在站点i与上一辆车的车头时距;的值表示线路l上第k-1辆车在站点i是否越站;的值表示线路l上第k-1辆车在站点j是否越站;为线路l上想搭乘第k-1辆车在i站上车并在j站下车的乘客数量;为线路l上第k辆车到达站点i的时刻;为线路l上第k-1辆车到达站点i的时刻;为线路l上第k辆车离开站点i-1的时刻;的值表示线路l上第k辆车在站点i-1是否越站;为线路l上第k辆车离开站点i的时刻。
  4. 如权利要求3所述的电动公交协调优化调度方法,其特征在于,按以下公式计算线路l上第k辆车在站点i的上车人数



    其中,为第k-1辆车在线路l上站点i的剩余容量;为线路l上第k辆车在站点i的下车人数。
  5. 如权利要求3所述的电动公交协调优化调度方法,其特征在于,按以下公式计算线路l上搭乘第k辆车交通起止点为ij的乘客的候车时间

    其中,ζl,m为线路l上乘客发生换乘线路m行为的概率;为线路m上第p辆车到达站点i的时刻。
  6. 如权利要求4所述的电动公交协调优化调度方法,其特征在于,按以下公式计算在线路l上站点i因剩余容量有限而未能搭乘第k辆车的滞留乘客数
  7. 如权利要求1~6任一项所述的电动公交协调优化调度方法,其特征在于,所述通过遗传算法进行求解获取最佳公交发车间隔与最佳公交停站方案,包括以下步骤:
    初始化参数步骤:设置种群规模的最大数量pop,并随机产生公交发车间隔、公交停站方案的个体,然后设置最大进化代数max,并设置进化代数计数器为1;
    编码和初解步骤:对变量发车间隔和停站方案进行编码,以随机的初始值组成染色体的基因;如果变量满足约束条件,转计算和选择步骤;如果不满足,则应重新生成初始解;
    计算和选择步骤:计算所有染色体的适应度值,通过轮盘赌法选择染色体,如果这一代染色体的适应度高于前一代,应保留这一代染色体作为当前最佳解;如果低于前一代,则放弃选择这一代染色体;
    繁衍步骤:当前染色体通过交叉和突变行为产生下一代个体;如果每个个体都满足约束条件,则转停止步骤;如果不满足,则重新繁殖个体;
    停止步骤:如果当前进化代数等于max,则停止循环,得到最优解;如果没有达到,则返回步骤计算和选择步骤。
PCT/CN2023/080951 2022-03-12 2023-03-11 一种电动公交协调优化调度方法 WO2023174187A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210240311.X 2022-03-12
CN202210240311.XA CN114912736A (zh) 2022-03-12 2022-03-12 一种电动公交协调优化调度方法

Publications (1)

Publication Number Publication Date
WO2023174187A1 true WO2023174187A1 (zh) 2023-09-21

Family

ID=82762473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080951 WO2023174187A1 (zh) 2022-03-12 2023-03-11 一种电动公交协调优化调度方法

Country Status (2)

Country Link
CN (1) CN114912736A (zh)
WO (1) WO2023174187A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117151313A (zh) * 2023-10-31 2023-12-01 杭州数知梦科技有限公司 综合多因素的公交车辆行车计划优化方法、系统及应用
CN117151419A (zh) * 2023-09-22 2023-12-01 南京智慧交通信息股份有限公司 一种用于公交行业运营监管的智能分析方法及其系统
CN117408436A (zh) * 2023-12-01 2024-01-16 智达信科技术股份有限公司 一种公交线路站点之间客流人数估计方法及系统
CN117669998A (zh) * 2024-02-01 2024-03-08 聊城大学 一种考虑乘客载荷变化的公交工况构建方法
CN117875518A (zh) * 2024-03-06 2024-04-12 北京阿帕科蓝科技有限公司 车辆调度方法、装置、计算机设备和存储介质
CN117910783A (zh) * 2024-03-19 2024-04-19 中国民用航空总局第二研究所 基于航班地面保障任务的地面保障人员排班方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114912736A (zh) * 2022-03-12 2022-08-16 南京理工大学 一种电动公交协调优化调度方法
CN116863701B (zh) * 2023-07-31 2024-02-06 大连海事大学 一种电动需求响应模块公交车调度方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106652434A (zh) * 2016-12-02 2017-05-10 东南大学 一种基于轨道交通协调的公交调度方法
US20170178070A1 (en) * 2015-12-21 2017-06-22 Sap Se Data analysis for dispatch scheduling optimization in the presence of time constraints
CN110119835A (zh) * 2019-03-26 2019-08-13 杭州电子科技大学 一种基于区间计算的公交动态发车调度优化方法
CN110245779A (zh) * 2019-05-10 2019-09-17 杭州电子科技大学 一种基于遗传算法的公交动态发车调度优化方法
CN114912736A (zh) * 2022-03-12 2022-08-16 南京理工大学 一种电动公交协调优化调度方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170178070A1 (en) * 2015-12-21 2017-06-22 Sap Se Data analysis for dispatch scheduling optimization in the presence of time constraints
CN106652434A (zh) * 2016-12-02 2017-05-10 东南大学 一种基于轨道交通协调的公交调度方法
CN110119835A (zh) * 2019-03-26 2019-08-13 杭州电子科技大学 一种基于区间计算的公交动态发车调度优化方法
CN110245779A (zh) * 2019-05-10 2019-09-17 杭州电子科技大学 一种基于遗传算法的公交动态发车调度优化方法
CN114912736A (zh) * 2022-03-12 2022-08-16 南京理工大学 一种电动公交协调优化调度方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117151419A (zh) * 2023-09-22 2023-12-01 南京智慧交通信息股份有限公司 一种用于公交行业运营监管的智能分析方法及其系统
CN117151419B (zh) * 2023-09-22 2024-01-30 南京智慧交通信息股份有限公司 一种用于公交行业运营监管的智能分析方法及其系统
CN117151313A (zh) * 2023-10-31 2023-12-01 杭州数知梦科技有限公司 综合多因素的公交车辆行车计划优化方法、系统及应用
CN117151313B (zh) * 2023-10-31 2024-02-02 杭州数知梦科技有限公司 综合多因素的公交车辆行车计划优化方法、系统及应用
CN117408436A (zh) * 2023-12-01 2024-01-16 智达信科技术股份有限公司 一种公交线路站点之间客流人数估计方法及系统
CN117408436B (zh) * 2023-12-01 2024-03-26 智达信科技术股份有限公司 一种公交线路站点之间客流人数估计方法及系统
CN117669998A (zh) * 2024-02-01 2024-03-08 聊城大学 一种考虑乘客载荷变化的公交工况构建方法
CN117875518A (zh) * 2024-03-06 2024-04-12 北京阿帕科蓝科技有限公司 车辆调度方法、装置、计算机设备和存储介质
CN117910783A (zh) * 2024-03-19 2024-04-19 中国民用航空总局第二研究所 基于航班地面保障任务的地面保障人员排班方法
CN117910783B (zh) * 2024-03-19 2024-05-24 中国民用航空总局第二研究所 基于航班地面保障任务的地面保障人员排班方法

Also Published As

Publication number Publication date
CN114912736A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
WO2023174187A1 (zh) 一种电动公交协调优化调度方法
Chen et al. Optimal routing and charging of an electric vehicle fleet for high-efficiency dynamic transit systems
Luo et al. Charging scheduling strategy for different electric vehicles with optimization for convenience of drivers, performance of transport system and distribution network
CN107092976B (zh) 一种多目标模型协同优化多条公交线路发车间隔的方法
CN110458456B (zh) 基于人工智能的需求响应式公交系统的调度方法及系统
CN103241130A (zh) 一种电动公交车充换电站的能量管理方法及系统
CN112633598A (zh) 城市轨道交通列车速度曲线与时刻表综合节能优化方法
CN112132551B (zh) 一种城市轨道交通应急客流协同疏运方法
CN113988371B (zh) 基于客流直达的城市轨道交通跨站停开行方案优化方法
CN112419716B (zh) 一种轨道站点换乘影响区内的共享单车设施布局配置方法
CN110598971B (zh) 一种基于蚁群算法的响应式公交服务规划方法
CN114298510A (zh) 基于nspso算法的时刻表和速度曲线优化方法
CN113724495B (zh) 一种城市共享出行的流量预测方法
Zhang et al. Real-time energy saving optimization method for urban rail transit train timetable under delay condition
CN111244990B (zh) 一种配电网v2g辅助服务日前调度方法
CN113592419B (zh) 考虑客流和节能的轨道交通快慢车时刻表优化方法
He et al. Expansion planning of electric vehicle charging stations considering the benefits of peak‐regulation frequency modulation
CN115239032B (zh) 计及能源自洽率的高速公路服务区微电网规划方法及系统
CN106682759A (zh) 针对电动出租车的电池供应系统及网络优化方法
CN115936330A (zh) 一种基于拉格朗日原理的需求响应式brt车辆调度算法
Ren et al. Coordinated passenger flow control and bus connection setting during peak hour of urban rail transit
Li et al. Flexible Bus Route Setting and Scheduling Optimization Adapted to Spatial-temporal Variation of Passenger Flow.
CN114493336A (zh) 一种基于交通电气化的电动出租车换电需求预测及换电站充电优化方法
Lai et al. Collaborative optimization model for the design and operation of feeder bus routes based on urban metro
Hai et al. Optimization of train working plan based on multiobjective bi-level programming model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769690

Country of ref document: EP

Kind code of ref document: A1