WO2023173623A1 - 齿轮变速装置、传动机构及风力发电机组 - Google Patents

齿轮变速装置、传动机构及风力发电机组 Download PDF

Info

Publication number
WO2023173623A1
WO2023173623A1 PCT/CN2022/102748 CN2022102748W WO2023173623A1 WO 2023173623 A1 WO2023173623 A1 WO 2023173623A1 CN 2022102748 W CN2022102748 W CN 2022102748W WO 2023173623 A1 WO2023173623 A1 WO 2023173623A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
planetary
planet
transmission device
idler
Prior art date
Application number
PCT/CN2022/102748
Other languages
English (en)
French (fr)
Inventor
艾晓岚
高斯
徐洪雷
杨玉良
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Publication of WO2023173623A1 publication Critical patent/WO2023173623A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/2809Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/2809Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels
    • F16H1/2836Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels by allowing limited movement of the planets relative to the planet carrier or by using free floating planets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02039Gearboxes for particular applications
    • F16H2057/02078Gearboxes for particular applications for wind turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02086Measures for reducing size of gearbox, e.g. for creating a more compact transmission casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a gear transmission device, which can be used in the transmission mechanism of a wind power generator set to increase the rotation speed of a blade hub to a speed suitable for the operation of the wind power generator set. It can also be widely used in other industrial equipment.
  • the planetary gear system of the traditional wind turbine gear transmission device uses a simple planetary gear system, that is, a planetary gear system composed of four parts: a sun gear, a planet gear bracket, a planet gear, and a ring gear.
  • a simple planetary gear system that is, a planetary gear system composed of four parts: a sun gear, a planet gear bracket, a planet gear, and a ring gear.
  • the gear transmission device includes a first planetary gear train.
  • the first planetary gear train includes a first ring gear, a first planet carrier, and a first planetary gear train.
  • Planetary gear, sun idler gear and planetary idler gear; the planetary idler gear and the first planetary gear are both installed on the first planet carrier;
  • the first planetary gear includes a pinion;
  • the planetary idler gear and the The pinion gears are meshed internally with the first ring gear and are meshed externally with the sun idler gear; the pinion gears can float along their own radial direction relative to the first planet carrier.
  • the planetary idler gear cannot float along its own radial direction relative to the first planet carrier, or the planetary idler gear can float along its own radial direction relative to the first planet carrier and the The maximum radial floating amount of the planetary idler gear is less than the maximum radial floating amount of the first planetary gear.
  • the first planetary gear train further includes a first sun gear; the first planetary gear further includes a large gear and a connecting shaft, the diameter of the large gear is larger than the diameter of the pinion gear , the large gear and the small gear are axially offset from each other and achieve coaxial transmission through the connecting shaft.
  • the large gear is externally meshed with the first sun gear; the number of the first planet gears is multiple, wherein the large gears of at least two first planet gears are along the The axes are offset from each other and the projections in a plane perpendicular to the axes partially overlap.
  • a first bearing is provided between the first planet gear and the first planet carrier.
  • the first bearing is an aligning bearing
  • the aligning bearing is used to realize the pinion gear floating in its own radial direction relative to the first planet carrier;
  • the connecting shaft includes a first shaft section connected to the pinion gear and a second shaft section connected to the large gear.
  • the first shaft section and the second shaft section are connected through a radially movable link.
  • the shaft is connected to realize that the pinion gear floats in its own radial direction relative to the first planet carrier; and/or
  • the connecting shaft adopts a flexible shaft that can be deformed in the radial direction, thereby enabling the pinion gear to float in its own radial direction relative to the first planet carrier.
  • the first bearing is provided at an end close to the large gear.
  • the first planet carrier includes a base and a bottom plate connected to one end of the base, the base has a base plate, and a base plate is formed between the base plate and the bottom plate.
  • Both the base plate and the bottom plate are provided with bearing seat holes for installing the first bearing.
  • a portion of the first planet gear passes through the first bearing. is supported on the base plate, and another part of the first planet gear is supported on the bottom plate through the first bearing.
  • the base further includes an end cover connected to the other end of the base, the end cover has an end cover plate, and a formation is formed between the end cover plate and the base plate.
  • the planetary idler gear is sleeved on the planetary idler gear shaft, and a second bearing is provided between the planetary idler gear and the planetary idler gear shaft.
  • one end of the planetary idler shaft is connected to the end cover plate, and the other end is connected to the base plate, one end of the connecting shaft of the first planetary gear extends into the second accommodation space, and the small The gear is mounted on the end of the connecting shaft.
  • the end cover further has an input shaft, one end of the input shaft is connected to the end cover plate, and the other end extends in an axial direction away from the end cover plate.
  • the ratio P torque of the planetary idler gear/torque of the first planetary gear
  • the number of the planetary idler gears is the same as the number of the first planetary gears, and each of the planetary idler gears and each of the first planetary gears are equal in length along the circumferential direction of the first ring gear. Arrange alternately one by one at intervals.
  • the gear transmission device further includes one or more stages of a second planetary gear train, the second planetary gear train includes a second ring gear, a second planet carrier, a second planet gear and a second sun gear, the second planet gear is installed on the second planet carrier, the second planet gear meshes internally with the second ring gear and externally meshes with the second sun gear; the second planet gear meshes internally with the second ring gear and externally meshes with the second sun gear; The planet carrier is drivingly connected to the first sun gear or the second sun gear of the previous stage.
  • the second planetary gear train includes a second ring gear, a second planet carrier, a second planet gear and a second sun gear
  • the second planet gear is installed on the second planet carrier, the second planet gear meshes internally with the second ring gear and externally meshes with the second sun gear; the second planet gear meshes internally with the second ring gear and externally meshes with the second sun gear;
  • the planet carrier is drivingly connected to the first sun gear or the second sun
  • the second planet carrier includes two mounting plates spaced apart along the axial direction, and an accommodation space for accommodating the second planet gear is formed between the two mounting plates.
  • the second planet gear is sleeved on the second planet gear shaft, a third bearing is provided between the second planet gear and the second planet gear shaft, and both ends of the second planet gear shaft are respectively connected to the two Mounting plate.
  • the second planet carrier includes a connecting sleeve.
  • One end of the connecting sleeve is connected to one of the mounting plates, and the other end is axially close to the first sun gear or the previous stage.
  • the second sun gear extends in the direction of the second sun gear, and the first sun gear or the second sun gear of the previous stage is connected to the connecting sleeve.
  • the gear transmission device includes a housing, the first ring gear and the second ring gear are both fixed to the housing, and the first planet carrier and the second planet carrier each have at least Partially installed inside the housing, the first planet carrier is supported on the housing through a fourth bearing, and the second planet carrier is supported on the housing through a fifth bearing.
  • the outer periphery of the housing is provided with a torque arm that plays a balancing role, and the housing is further provided with a flange connecting plate, through which the flange connecting plate is used to achieve connection and fixation with external equipment.
  • the present application provides a transmission mechanism, which includes the gear transmission device described in any one of the above.
  • this application also provides a wind power generator set, which includes a blade hub and a transmission mechanism, and the transmission mechanism adopts the above-mentioned transmission mechanism.
  • the planetary idler gear and the pinion gear of the gear transmission provided by the present application can share torque together, and the torque shared by the planetary idler gear is more than the torque shared by the pinion gear (that is, the torque shared by the planetary idler gear is equal to that shared by the pinion gear).
  • the torque ratio P is greater than 1), so the torque load of the pinion can be reduced and the torque load capacity of the entire first planetary gear train can be improved.
  • the torque load of the pinion is reduced, even a smaller-sized pinion can meet the load-bearing requirements. Therefore, more pinions can be arranged under the same volume, so that the small size can be achieved while taking into account the small size.
  • the torque load capacity of the entire first planetary gear train is further improved, so it has a higher torque load density.
  • the gear transmission device by staggering the large gears of at least two first planetary gears in the axial direction and partially overlapping the projections on a plane perpendicular to the axial direction, the gear transmission device can be small in size. and large transmission ratio.
  • the transmission mechanism and wind turbine generator set provided by this application also have the above technical effects because they include the above gear transmission device.
  • Figure 1 is a disassembled schematic diagram of the first planetary gear train of an embodiment of the gear transmission provided by the present application
  • Figure 2 is a cross-sectional view of the first planet carrier in Figure 1;
  • Figure 3 is a cross-sectional view of an embodiment of the gear transmission provided by the present application in an assembled state, with the section line along A-A in Figure 1;
  • Figure 4 is a cross-sectional view of the gear transmission shown in Figure 3 from another perspective, with the cross-sectional line along B-B in Figure 1;
  • Figure 5 is an overall view of the gear transmission shown in Figure 3;
  • Figure 6 is a force analysis diagram when the floating amount of the pinion part is large enough
  • Figure 7 is a disassembled schematic diagram of the second planetary gear train of an embodiment of the gear transmission provided by the present application.
  • FIGS 8 and 9 are schematic diagrams of the transmission path of an embodiment of the gear transmission provided by this application.
  • first planet carrier 1021 base, 1021a base plate, 1021b support ring, 1021c support arm, 1022 bottom plate, 1023 end cover, 1023a end cover plate, 1023b input shaft, A bearing connection part, B bearing seat hole;
  • 300 shell, 300a torque arm, 300b flange plate 300 shell, 300a torque arm, 300b flange plate.
  • the gear transmission device includes a first planetary gear train 100 .
  • the first planetary gear train 100 includes a first ring gear 101 , a first planet carrier 102 , a first planetary gear 103 , a sun idler gear 104 and a planetary idler gear 105 .
  • the first planet gear 103 includes a pinion gear 103a installed between the first ring gear 101 and the sun idler gear 104.
  • the pinion gear 103a meshes internally with the first ring gear 101 and externally meshes with the sun idler gear 104 .
  • a planetary idler gear 105 is also mounted between the first ring gear 101 and the sun idler gear 104 .
  • the planet idler gear 105 meshes internally with the first ring gear 101 and meshes externally with the sun idler gear 104 .
  • the planetary idler gear 105 only has direct torque transmission with the first ring gear 101 and the sun idler gear 104 .
  • the sun idler gear 104 has direct torque transmission only with the planet idler gear 105 and the pinion gear 103a.
  • the first planet gear 103 and the planet idler gear 105 are both supported and installed on the first planet carrier 102 .
  • the pinion gear 103a of the first planet gear 103 can float relative to the first planet carrier 102 along its own radial direction (the radial direction of the pinion gear 103a).
  • the planet idler gear 105 cannot float along its own radial direction (the radial direction of the planetary idler gear 105) relative to the first planet carrier 102, or the planetary idler gear 105 can float relative to the first planet carrier 102 along its own radial direction with maximum radial floating.
  • the amount is less than the maximum radial floating amount of the first planetary gear 103 .
  • the first planetary gear train 100 also includes a first sun gear 106 .
  • the first planetary gear 103 also includes a large gear 103b and a connecting shaft 103c.
  • the diameter of the large gear 103b is larger than the diameter of the small gear 103a.
  • the large gear 103b and the small gear 103a are axially staggered from each other and realize coaxial transmission connection through the connecting shaft 103c.
  • the large gear 103b of the first planet gear 103 is externally meshed with the first sun gear 106, so that the torque can be further transmitted to the first sun gear 106, and the first sun gear 106 performs torque output. Since the diameter of the large gear 103b is larger than the diameter of the pinion 103a, using the large gear 103b to mesh with the first sun gear 106 for torque output can enable the first planetary gear train 100 to obtain a larger transmission speed ratio.
  • the large gears 103b of at least two first planetary gears 103 are offset from each other along the axial direction and partially overlap in projection in a plane perpendicular to the axial direction.
  • the size of the large gear 103b can be set larger under the condition of the same volume, thereby helping the first planetary gear train 100 to obtain a larger transmission speed ratio.
  • the large gears 103b of the two first planetary gears 103 can be offset from each other in the axial direction by setting the connecting shafts 103c of the two first planetary gears 103 to different lengths.
  • the first planetary gear train 100 has a higher torque load. Capacity, larger transmission ratio and smaller size solve the problem that traditional gear transmission devices cannot take into account the three aspects.
  • a first bearing 107 is provided between the first planet gear 103 and the first planet carrier 102, so that when the first planet carrier 102 rotates, the first planet wheel 103 can rotate around its own axis relative to the first planet carrier 102. rotation.
  • one way is to use a self-aligning bearing as the first bearing 107, and use the self-aligning angle of the self-aligning bearing to realize radial floating of the pinion 103a.
  • the maximum radial floating amount is related to the self-aligning angle.
  • the self-aligning bearing at the end close to the big gear 103b or the end far away from the pinion gear 103a. This can ensure that the pinion gear 103a always remains in contact with the sun idler gear 104 and the first ring gear during the floating process. Good mesh for 101.
  • the connecting shaft 103c includes a first shaft section connected to the pinion gear 103a and a second shaft section connected to the large gear 103b.
  • the first shaft section and the second shaft section are connected to the small gear 103a.
  • the segments are connected by couplings that can move in the radial direction.
  • one way is: the connecting shaft 103c adopts a flexible shaft that can be deformed in the radial direction.
  • the maximum radial floating amount of the pinion gear 103a is related to the ratio P of the torque shared by the planetary idler gear 105 to the torque shared by the pinion gear 103a.
  • the maximum radial floating amount of the pinion gear 103a can be flexibly set according to actual needs, as long as the ratio P of the torque shared by the planetary idler gear 105 to the torque shared by the pinion gear 103a satisfies: 1 ⁇ P ⁇ K.
  • the number of planetary idler gears 105 and the number of first planetary gears 103 can be set to be the same, and each planetary idler gear 105 and each first planetary gear 103 can be arranged along the circumference of the first ring gear 101 Arranged alternately one by one at equal intervals. In this way, the overall force of the first planetary gear train 100 is more balanced, the transmission is smoother, and the service life is longer.
  • the first planet carrier 102 includes a base 1021 and a bottom plate 1022 .
  • the base 1021 has a base plate 1021a and a support arm 1021c. One end of the support arm 1021c is connected to the base plate 1021a, and the other end is connected to the bottom plate 1022.
  • a first accommodation space for accommodating the large gear 103b is formed between the base plate 1021a and the bottom plate 1022.
  • the base plate 1021a and the bottom plate 1022 are both provided with bearing seat holes B for installing the first bearing 107.
  • the first planet gear 103 with the longer connecting shaft 103 c is supported and connected to the base plate 1021 a through the first bearing 107 .
  • the first planet gear 103 with the shorter connecting shaft 103c is supported and connected to the base plate 1022 through the first bearing 107.
  • This can meet the installation requirement that the large gears 103b of at least two first planetary gears 103 be axially staggered from each other, and can meet the requirement that the first bearing 107 be installed close to the large gear 103b.
  • the first planet carrier 102 also includes an end cover 1023 .
  • the end cap 1023 has an end cap plate 1023a.
  • the base 1021 also includes a support ring 1021b. One end of the support ring 1021b is connected to the base plate 1021a, and the other end is connected to the end cover plate 1023a through fasteners.
  • a second accommodation space for accommodating the planet idler gear 105 and the pinion gear 103a is formed between the end cover plate 1023a and the base plate 1021a.
  • one end of the connecting shaft 103c of the first planetary gear 103 extends into the second accommodation space, and the pinion gear 103a is sleeved on this end of the connecting shaft 103c. This can meet the installation requirements of the planetary idler gear 105 and the pinion gear 103a.
  • the planetary idler gear 105 is sleeved on the planetary idler shaft 108 , and a second bearing 109 is provided between the planetary idler gear 105 and the planetary idler shaft 108 .
  • One end of the planetary idler shaft 108 is connected to the end cover plate 1023a, and the other end is connected to the base plate 1021a.
  • the first planet carrier 102 is also provided with a bearing connection part A.
  • the end of the first planet carrier 102 where the end cover 1023 is located and the end where the bottom plate 1022 is located are respectively provided with One bearing connection A.
  • the first planet carrier 102 is at least partially installed inside the housing 300.
  • a fourth bearing 400 is mounted outside the two bearing connection portions A at both ends of the first planet carrier 102.
  • the fourth bearings 400 are supported on the housing 300. on the bearing mounting surface.
  • the end cover 1023 of the first planet carrier 102 also has an input shaft 1023b.
  • One end of the input shaft 1023b is connected to the end cover plate 1023a, and the other end extends in the axial direction away from the end cover plate 1023a, and
  • One end port of the housing 300 is extended to allow external driving equipment to introduce torque.
  • the first planet carrier 102 with the above structure can meet the assembly requirements with the first planet gear 103, the planet idler gear 105, and the housing 300, and is small in size and highly integrated.
  • the structure of the first planet carrier 102 can be flexibly set according to actual needs and is not limited to the above structure, as long as it is a structure that can meet the assembly requirements of the first planet gear 103, the planet idler gear 105, and the housing 300.
  • the outer periphery of the housing 300 can be provided with a torque arm 300a for balancing, and the housing 300 can also be provided with a flange connecting plate 300b, through which the flange connecting plate 300b can be connected and fixed with external equipment.
  • the gear transmission device can also be provided with a second planetary gear train 200.
  • the second planetary gear train 200 includes a second ring gear 201, a second planet carrier 202, a second planet gear 203 and a second planetary gear train 200.
  • Sun wheel 206 is shown in Figure 7, the gear transmission device can also be provided with a second planetary gear train 200.
  • the second planet gear 203 is installed on the second planet carrier 202 .
  • the second planet gear 203 is installed between the second ring gear 201 and the second sun gear 206 .
  • the second planet gear 203 is in internal mesh with the second ring gear 201 and is in external mesh with the second sun gear 206 .
  • only one level of the second planetary gear train 200 can be provided, or a multi-stage (two or more levels) second planetary gear train 200 can be provided.
  • a multi-stage second planetary gear train 200 each level of the second planetary gear train 200
  • the two planetary gear trains 200 are arranged sequentially along the axial direction, and the second planet carrier 202 of the second planetary gear train 200 of the latter stage is drivingly connected to the second sun gear 206 of the second planetary gear train 200 of the previous stage.
  • the second planet carrier 202 includes two mounting plates 202a spaced apart along the axial direction and a connecting arm 202b connecting the two mounting plates 202a.
  • An accommodation space for accommodating the second planet gear 203 is formed between the two mounting plates 202a.
  • the second planet gear 203 is mounted on the second planet gear shaft 204 .
  • a third bearing 205 is provided between the second planet gear 203 and the second planet gear shaft 204 . Both ends of the second planetary shaft 204 are respectively connected to the two mounting plates 202a. This can meet the installation requirements of the second planetary gear 203.
  • the second planet carrier 202 may also include a connecting sleeve 202c.
  • One end of the connecting sleeve 202c is connected to a mounting plate 202a, and the other end is axially close to the first sun gear 106 or the second sun of the previous stage.
  • the direction of wheel 206 extends.
  • the connecting sleeve 202c is used to connect the first sun gear 106 or the second sun gear 206 of the previous stage.
  • the second sun gear 206 of the last stage is connected to an output shaft 207, and the output shaft 207 transmits torque to external equipment.
  • the second planet carrier 202 is also provided with a bearing connection part A.
  • Each is provided with a bearing connection A (only one is visible in Figure 7).
  • the second planet carrier 202 is at least partially installed inside the housing 300 .
  • the two bearing connection portions A at both ends of the second planet carrier 202 each have a fifth bearing 500 , which is supported on the bearing mounting surface of the housing 300 through the fifth bearing 500 .
  • the second planet carrier 202 with the above structure can meet the assembly requirements with the second planet gear 203 and the housing 300, and is small in size and highly integrated.
  • the structure of the second planet carrier 202 can be flexibly set according to actual needs and is not limited to the above structure, as long as it is a structure that can meet the assembly requirements with the second planet gear 203 and the housing 300 .
  • the transmission path of the gear transmission in this embodiment is:
  • the input torque acts on the first planet carrier 102 to drive the first planet carrier 102 to rotate.
  • the first planet carrier 102 distributes the torque in proportion P to the planetary idler gear 105 and the pinion 103a of the first planetary gear 103 to make the planet inert.
  • the wheel 105 and the pinion 103a revolve with the first planet carrier 102 and also rotate around their own axis.
  • at least part of the torque is first transmitted to the planetary idler gear 105, and then transmitted from the planetary idler gear 105 to the sun idler gear 104, and then transmitted from the sun idler gear 104 to the pinion 103a of the first planetary gear 103.
  • Each pinion gear 103a transmits the torque load to the connected large gear 103b.
  • Each large gear 103b further transmits torque to the first sun gear 106, and each large gear 103b jointly drives the first sun gear 106 and the second planet carrier 202 connected thereto to rotate.
  • the second planet carrier 202 transmits the torque to the second planet gear 203, which transmits the torque to the second sun gear 206 and the output shaft 207 connected thereto, and the output shaft 207 transmits the torque to the external device.
  • the core idea of the present application is to make the maximum radial floating amount of the pinion 103a of the first planetary gear 103 greater than the maximum radial floating amount of the planetary idler gear 105 (if it does not float, the maximum radial floating amount is zero ), the planetary idler gear 105 is used to share the torque and reduce the torque load borne by the first planetary gear 103.
  • This can take into account the small size and high torque load capacity, and achieve a higher torque load density.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Retarders (AREA)

Abstract

一种齿轮变速装置,齿轮变速装置包括第一行星轮系(100),第一行星轮系(100)包括第一齿圈(101)、第一行星架(102)、第一行星轮(103)、太阳惰轮(104)和行星惰轮(105);行星惰轮(105)和第一行星轮(103)均安装于第一行星架(102);第一行星轮(103)包括小齿轮(103a)和与小齿轮(103a)同轴相连的大齿轮(103b);行星惰轮(105)和小齿轮(103a)均与第一齿圈(101)内啮合并均与太阳惰轮(104)外啮合;小齿轮(103a)能相对第一行星架(102)沿自身径向浮动,小齿轮(103a)的最大径向浮动量大于行星惰轮(105)的最大径向浮动量,至少两个第一行星轮(103)的大齿轮(103b)在轴向上错开布置且在垂直于轴向的平面上的投影重叠,齿轮变速装置具有较高的扭矩载荷密度,能兼顾小体积、大传动速比和高扭矩载荷能力。

Description

齿轮变速装置、传动机构及风力发电机组
本申请要求于2022年03月15日提交中国专利局、申请号为202210253345.2、发明名称为“齿轮变速装置、传动机构及风力发电机组”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种齿轮变速装置,可用于风力发电机组的传动机构,用以将叶片轮毂的转速增加至适合风力发电机组运行的转速,也可以广泛运用于其他工业设备。
背景技术
传统的风力发电机组使用齿轮变速装置将主轴中低速但高扭矩的动力转换成有利于发电机发电的高转速低扭矩动力。
传统的风力发电机组的齿轮变速装置的行星轮系采用简单行星轮系,即由太阳轮、行星轮支架、行星轮、齿圈四部分组成的行星轮系。这种行星轮系传动过程中行星轮所受的扭矩较大,导致整个行星轮系的扭矩载荷能力受限,不能满足高扭矩载荷能力需求。
增加行星轮的个数能够提升扭矩载荷能力,这样会导致齿轮变速装置的体积增大,不利于在风力发电机组这种布置空间非常有限的设备上应用。而要想在齿轮变速装置的体积不变的情况下布置更多个行星轮,就需要缩小齿轮的尺寸,这又会导致传动速比的减小,不能满足风力发电机组的大 传动速比需求。
因此,单纯通过增加行星轮的个数来提升扭矩载荷能力这种方法并不能兼顾小体积、大传动速比需求,因此并不理想。
发明内容
为解决上述技术问题,一方面,本申请提供一种齿轮变速装置,所述齿轮变速装置包括第一行星轮系,所述第一行星轮系包括第一齿圈、第一行星架、第一行星轮、太阳惰轮和行星惰轮;所述行星惰轮和所述第一行星轮均安装于所述第一行星架;所述第一行星轮包括小齿轮;所述行星惰轮和所述小齿轮均与所述第一齿圈内啮合并均与所述太阳惰轮外啮合;所述小齿轮能相对所述第一行星架沿自身径向浮动。
齿轮变速装置的一种实施方式,所述行星惰轮不能相对所述第一行星架沿自身径向浮动,或者,所述行星惰轮能相对所述第一行星架沿自身径向浮动且所述行星惰轮的最大径向浮动量小于所述第一行星轮的最大径向浮动量。
齿轮变速装置的一种实施方式,所述第一行星轮系还包括第一太阳轮;所述第一行星轮还包括大齿轮和连接轴,所述大齿轮的直径大于所述小齿轮的直径,所述大齿轮和所述小齿轮沿轴向相互错开并通过所述连接轴实现同轴传动。
齿轮变速装置的一种实施方式,所述大齿轮与所述第一太阳轮外啮合;所述第一行星轮的数量为多个,其中,至少两个所述第一行星轮的大大齿轮沿轴向相互错开且在垂直于轴向的平面内投影部分重叠。
齿轮变速装置的一种实施方式,所述第一行星轮和所述第一行星架之间设有第一轴承。
齿轮变速装置的一种实施方式,所述第一轴承为调心轴承,利用所述调心轴承实现所述小齿轮相对所述第一行星架沿自身径向浮动;和/或,
所述连接轴包括与所述小齿轮连接的第一轴段、与所述大齿轮连接的第二轴段,所述第一轴段和所述第二轴段通过能沿径向移动的联轴器连接,以此实现所述小齿轮相对所述第一行星架沿自身径向浮动;和/或
所述连接轴采用能沿径向变形的柔性轴,以此实现所述小齿轮相对所述第一行星架沿自身径向浮动。
齿轮变速装置的一种实施方式,所述第一轴承设置在靠近所述大齿轮的一端。
齿轮变速装置的一种实施方式,所述第一行星架包括基座和连在所述基座一端的底板,所述基座具有基座板,所述基座板和所述底板之间形成用于容置所述大齿轮的第一容置空间,所述基座板和所述底板均设有用于安装所述第一轴承的轴承座孔,一部分所述第一行星轮通过第一轴承支撑于所述基座板,另一部分所述第一行星轮通过所述第一轴承支撑于所述底板。
齿轮变速装置的一种实施方式,所述基座还包括连在所述基座另一端的端盖,所述端盖具有端盖板,所述端盖板和所述基座板之间形成用于容置所述行星惰轮和所述小齿轮的第二容置空间,所述行星惰轮套装于行星惰轮轴且所述行星惰轮和所述行星惰轮轴之间设有第二轴承,所述行星惰轮轴一端连于所述端盖板、另一端连于所述基座板,所述第一行星轮的连 接轴的一端伸到所述第二容置空间中,所述小齿轮套装于所述连接轴的该端。
齿轮变速装置的一种实施方式,所述端盖还具有输入轴,所述输入轴的一端与所述端盖板连接,另一端沿轴向向远离所述端盖板的方向延伸。
齿轮变速装置的一种实施方式,所述比例P=行星惰轮的扭矩/第一行星轮的扭矩,所述比例P的范围为:1<P≤K,其中K=大齿轮的节圆半径/小齿轮的节圆半径。
齿轮变速装置的一种实施方式,所述行星惰轮的数量与所述第一行星轮的数量相同,各个所述行星惰轮和各个所述第一行星轮沿第一齿圈的周向等间隔地一一交替布置。
齿轮变速装置的一种实施方式,所述齿轮变速装置还包括一级或多级第二行星轮系,所述第二行星轮系包括第二齿圈、第二行星架、第二行星轮和第二太阳轮,所述第二行星轮安装于所述第二行星架,所述第二行星轮与所述第二齿圈内啮合并与所述第二太阳轮外啮合;所述第二行星架与所述第一太阳轮或者前一级的所述第二太阳轮传动连接。
齿轮变速装置的一种实施方式,所述第二行星架包括沿轴向间隔设置的两个安装板,两所述安装板之间形成用于容置所述第二行星轮的容置空间,所述第二行星轮套装于第二行星轮轴,所述第二行星轮和所述第二行星轮轴之间设有第三轴承,所述第二行星轮轴的两端分别连于两个所述安装板。
齿轮变速装置的一种实施方式,所述第二行星架包括连接套,所述连接套的一端与一所述安装板连接,另一端沿轴向向靠近所述第一太阳轮或 前一级的所述第二太阳轮的方向延伸,所述第一太阳轮或前一级的所述第二太阳轮连于所述连接套。
齿轮变速装置的一种实施方式,所述齿轮变速装置包括外壳,所述第一齿圈和所述第二齿圈均固定于所述外壳,所述第一行星架和第二行星架均至少部分安装在所述外壳内部,所述第一行星架通过第四轴承支撑于所述外壳,所述第二行星架通过第五轴承支撑于所述外壳。
齿轮变速装置的一种实施方式,所述外壳外周设有起平衡作用的扭力臂,所述外壳还设有法兰接板,通过所述法兰接板实现与外接设备的连接固定。
齿轮变速装置的上述各种实施方式在不冲突的情况下可以任意组合。
另一方面,本申请提供一种传动机构,所述传动机构包括上述任一项所述的齿轮变速装置。
再一方面,本申请还提供一种风力发电机组,所述风力发电机组包括叶片轮毂和传动机构,所述传动机构采用上述传动机构。
本申请提供的齿轮变速装置的行星惰轮和小齿轮能共同分担扭矩,并且,行星惰轮分担的扭矩多于小齿轮分担的扭矩(也就是说,行星惰轮分担的扭矩与小齿轮分担的扭矩的比值P大于1),因此能够降低小齿轮的扭矩载荷,提升整个第一行星轮系的扭矩载荷能力。
而且,由于小齿轮的扭矩载荷得以降低,所以即便采用较小尺寸的小齿轮也能够满足承载需求,因此,在同等体积条件下能够布置更多个小齿轮,从而能在兼顾小体积的情况下通过增多小齿轮的个数来进一步提升整 个第一行星轮系的扭矩载荷能力,因此具有较高的扭矩载荷密度。
齿轮变速装置的上述一种实施方式中,通过让至少两个第一行星轮的大齿轮在轴向上错开布置且垂直于轴向的平面上投影部分重叠,能使该齿轮变速装置兼顾小体积和大传动速比。
本申请提供的传动机构和风力发电机组,由于包括上述齿轮变速装置,因此也具有上述技术效果。
附图说明
图1为本申请提供的齿轮变速装置一种实施例的第一行星轮系的拆解示意图;
图2为图1中第一行星架的剖视图;
图3为本申请提供的齿轮变速装置一种实施例组装状态下的一个视角的剖视图,剖切线沿图1中A-A;
图4为图3所示的齿轮变速装置另一视角的剖视图,剖切线沿图1中B-B;
图5为图3所示的齿轮变速装置的整体视图;
图6为小齿轮部浮动量足够大时的受力分析图;
图7为本申请提供的齿轮变速装置一种实施例的第二行星轮系的拆解示意图;
图8和图9为本申请提供的齿轮变速装置一种实施例的传动路径简示图。
附图标记说明如下:
100第一行星轮系;
101第一齿圈;
102第一行星架,1021基座,1021a基座板,1021b支撑环,1021c支撑臂,1022底板,1023端盖,1023a端盖板,1023b输入轴,A轴承连接部,B轴承座孔;
103第一行星轮,103a小齿轮,103b大齿轮,103c连接轴;
104太阳惰轮;105行星惰轮;106第一太阳轮;107第一轴承;108行星惰轮轴;109第二轴承。
200第二行星轮系;
201第二齿圈;
202第二行星架,202a安装板,202b连接臂,202c连接套;
203第二行星轮;204第二行星轮轴;205第三轴承;
206第二太阳轮;
207输出轴。
300外壳,300a扭力臂,300b法兰接板。
400第四轴承。
500第五轴承。
具体实施方式
为了使本技术领域的技术人员更好地理解本申请的技术方案,下面结合附图和具体实施方式对本申请的技术方案作进一步的详细说明。
如图1,该齿轮变速装置包括第一行星轮系100。
第一行星轮系100包括第一齿圈101、第一行星架102、第一行星轮103、太阳惰轮104和行星惰轮105。
第一行星轮103包括小齿轮103a,小齿轮103a安装在第一齿圈101和太阳惰轮104之间。小齿轮103a与第一齿圈101内啮合、与太阳惰轮104外啮合。
行星惰轮105也安装在第一齿圈101和太阳惰轮104之间。行星惰轮105与第一齿圈101内啮合、与太阳惰轮104外啮合。行星惰轮105仅与第一齿圈101和太阳惰轮104有直接扭矩传递。太阳惰轮104仅与行星惰轮105和小齿轮103a有直接扭矩传递。
第一行星轮103和行星惰轮105均支撑安装于第一行星架102。安装好后,第一行星轮103的小齿轮103a能相对第一行星架102沿自身径向(小齿轮103a的径向)浮动。而行星惰轮105不能相对第一行星架102沿自身径向(行星惰轮105的径向)浮动,或者,行星惰轮105能相对第一行星架102沿自身径向浮动且最大径向浮动量小于第一行星轮103的最大径向浮动量。
采用上述浮动设计,当第一行星架102在输入扭矩作用下绕轴向旋转时(这时第一齿圈101固定),至少部分扭矩会先传递给行星惰轮105,然后由行星惰轮105经太阳惰轮104传递给第一行星轮103的小齿轮103a,使得行星惰轮105和小齿轮103a共同分担扭矩,并且,行星惰轮105分担的扭矩多于小齿轮103a分担的扭矩(也就是说,行星惰轮105分担的扭矩与小齿轮103a分担的扭矩的比值P大于1),因此能够降低小齿轮103a的扭矩载荷,提升整个第一行星轮系100的扭矩载荷能力。
而且,由于小齿轮103a的扭矩载荷得以降低,所以即便采用较小尺寸的小齿轮103a也能够满足承载需求,因此,在同等体积条件下能够布置更多个小齿轮103a,从而能在兼顾小体积的情况下通过增多小齿轮103a的个数来进一步提升整个第一行星轮系100的扭矩载荷能力,从而能达到较高的扭矩载荷密度。
进一步的,第一行星轮系100还包括第一太阳轮106。第一行星轮103还包括大齿轮103b和连接轴103c。大齿轮103b的直径大于小齿轮103a的直径,大齿轮103b和小齿轮103a沿轴向相互错开并通过连接轴103c实现同轴传动连接。
第一行星轮103的大齿轮103b与第一太阳轮106外啮合,从而能将扭矩进一步传递给第一太阳轮106,由第一太阳轮106进行扭矩输出。由于大齿轮103b的直径大于小齿轮103a的直径,所以利用大齿轮103b与第一太阳轮106啮合进行扭矩输出能使第一行星轮系100获得较大的传动速比。
当第一行星轮103的数量为多个(两个或两个以上)时,至少两个第一行星轮103的大齿轮103b沿轴向相互错开且在垂直于轴向的平面内投影部分重叠。这样设置,在同等体积条件下能够将大齿轮103b的尺寸设置得更大一些,从而利于第一行星轮系100获得更大的传动速比。
具体的,可以通过将两个第一行星轮103的连接轴103c设置成不同长度来使这两个第一行星轮103的大齿轮103b沿轴向相互错开。
通过采用上述浮动设计和让至少两个第一行星轮103的大齿轮103b沿轴向相互错开且在垂直于轴向的平面内投影部分重叠,使得第一行星轮系100具有较高的扭矩载荷能力、较大的传动速比和较小的体积,解决了 传统齿轮变速装置无法兼顾三者的问题。
具体的,如图4,第一行星轮103和第一行星架102之间设有第一轴承107,以便第一行星架102旋转时第一行星轮103能够相对第一行星架102绕自身轴线自转。
具体的,使第一行星轮103的小齿轮103a能够相对第一行星架102沿自身径向浮动的方式多种多样。
例如一种方式是,上述第一轴承107采用调心轴承,利用调心轴承的调心角实现小齿轮103a的径向浮动,最大径向浮动量的大小与调心角的大小相关。
这种实施方式下,优选将调心轴承设置在靠近大齿轮103b的一端或者说远离小齿轮103a的一端,这样能够保障小齿轮103a浮动的过程中始终保持与太阳惰轮104和第一齿圈101的良好啮合。
再例如,一种方式是:将连接轴103c分段设置,连接轴103c包括与小齿轮103a连接的第一轴段、与大齿轮103b连接的第二轴段,第一轴段和第二轴段通过能沿径向移动的联轴器连接。
再例如,一种方式是:连接轴103c采用能沿径向变形的柔性轴。
再例如,还可以采用上述几种方式中的任意两种或两种以上的组合。
具体的,小齿轮103a的最大径向浮动量的大小关系着行星惰轮105分担的扭矩与小齿轮103a分担的扭矩的比值P的大小。
当小齿轮103a的最大径向浮动量足够大时,全部的扭矩都会先传递给行星惰轮105,然后由行星惰轮105经太阳惰轮104传递给第一行星轮103的小齿轮103a,这时,如图5所示,行星惰轮105的受力2F=小齿轮103a 的受力F0×K,K=大齿轮103b的节圆半径/小齿轮103a的节圆半径。也就是说,当小齿轮103a的最大径向浮动量足够大时,行星惰轮105分担的扭矩与小齿轮103a分担的扭矩的比值P=K。
当然,小齿轮103a的最大径向浮动量的大小可以根据实际需要灵活设置,只要保障行星惰轮105分担的扭矩与小齿轮103a分担的扭矩的比值P满足:1<P≤K即可。
具体的,如图1,可以将行星惰轮105的数量与第一行星轮103的数量设置得相同,并让各个行星惰轮105的和各个第一行星轮103沿第一齿圈101的周向等间隔地一一交替布置。这样,第一行星轮系100的整体受力更均衡,传动更平稳,使用寿命更长。
具体的,如图1和图2,第一行星架102包括基座1021和底板1022。基座1021具有基座板1021a和支撑臂1021c,支撑臂1021c的一端连接基座板1021a,另一端连接底板1022。
基座板1021a和底板1022之间形成用于容置大齿轮103b的第一容置空间。基座板1021a和底板1022均设有用于安装第一轴承107的轴承座孔B。
如图3,连接轴103c较长的第一行星轮103通过第一轴承107支撑连接于基座板1021a。连接轴103c较短的第一行星轮103通过第一轴承107支撑连接于底板1022。这样能满足至少两个第一行星轮103的大齿轮103b沿轴向相互错开的安装要求,且能满足第一轴承107靠近大齿轮103b安装的需求。
具体的,如图1和图2,第一行星架102还包括端盖1023。端盖1023 具有端盖板1023a。基座1021还包括支撑环1021b,支撑环1021b的一端与基座板1021a连接,另一端与端盖板1023a通过紧固件连接。端盖板1023a和基座板1021a之间形成用于容置行星惰轮105和小齿轮103a的第二容置空间。
如图3,第一行星轮103的连接轴103c的一端伸到第二容置空间中,小齿轮103a套装于连接轴103c的该端。这样能够满足行星惰轮105和小齿轮103a的安装要求。
如图4,行星惰轮105套装于行星惰轮轴108,且行星惰轮105和行星惰轮轴108之间设有第二轴承109。行星惰轮轴108一端连于端盖板1023a、另一端连于基座板1021a。
具体的,如图1和图2,第一行星架102还设有轴承连接部A,图示实施例中,第一行星架102的端盖1023所在的一端和底板1022所在的一端各设有一个轴承连接部A。
如图3,第一行星架102至少部分安装在外壳300内部,第一行星架102两端的两个轴承连接部A外各套装有一个第四轴承400,通过第四轴承400支撑于外壳300的轴承安装面上。
具体的,如图3,第一行星架102的端盖1023还具有输入轴1023b,输入轴1023b的一端与端盖板1023a连接,另一端沿轴向向远离端盖板1023a的方向延伸,并延伸出外壳300的一端端口,以外接驱动设备,进行扭矩引入。
上述结构的第一行星架102能够满足与第一行星轮103、行星惰轮105、外壳300的组装需求,而且体积小,集成度高。当然,第一行星架102的 结构可以根据实际需要灵活设置,而不局限于上述结构,只要是能够满足与第一行星轮103、行星惰轮105、外壳300的组装需求的结构即可。
具体的,如图5,外壳300的外周可以设置起平衡作用的扭力臂300a,外壳300还可以设置法兰接板300b,通过法兰接板300b实现与外接设备的连接固定。
进一步的,如图7所示,该齿轮变速装置还可以设置第二行星轮系200,第二行星轮系200包括第二齿圈201、第二行星架202、第二行星轮203和第二太阳轮206。
第二行星轮203安装于第二行星架202。第二行星轮203安装在第二齿圈201和第二太阳轮206之间。第二行星轮203与第二齿圈201内啮合并与第二太阳轮206外啮合。
具体的,可以仅设置一级第二行星轮系200,也可以设置多级(两级或两级以上)第二行星轮系200,当设置多级第二行星轮系200时,各级第二行星轮系200沿轴向依次布置,后一级第二行星轮系200的第二行星架202与前一级第二行星轮系200的第二太阳轮206传动连接。
具体的,如图7,第二行星架202包括沿轴向间隔设置的两个安装板202a和连接两安装板202a的连接臂202b。两安装板202a之间形成用于容置第二行星轮203的容置空间。
如图3,第二行星轮203套装于第二行星轮轴204。第二行星轮203和第二行星轮轴204之间设有第三轴承205。第二行星轮轴204的两端分别连于两个安装板202a。这样能够满足第二行星轮203的安装需求。
具体的,如图7,第二行星架202还可以包括连接套202c,连接套202c 的一端与一安装板202a连接,另一端沿轴向靠近第一太阳轮106或前一级的第二太阳轮206的方向延伸。连接套202c用于连接第一太阳轮106或者前一级的第二太阳轮206。最后一级的第二太阳轮206连有输出轴207,由输出轴207将扭矩传递给外接设备。
具体的,如图7,第二行星架202还设有轴承连接部A,图示实施例中,第二行星架202的连接套202c所在的一端和远离连接套202c的安装板202a所在的一端各设有一个轴承连接部A(图7中仅一个可见)。第二行星架202至少部分安装在外壳300内部,第二行星架202两端的两个轴承连接部A各套装有一个第五轴承500,通过第五轴承500支撑于外壳300的轴承安装面上。
上述结构的第二行星架202能够满足与第二行星轮203、外壳300的组装需求,而且体积小,集成度高。当然,第二行星架202的结构可以根据实际需要灵活设置,而不局限于上述结构,只要是能够满足与第二行星轮203、外壳300的组装需求的结构即可。
如图8和图9,该实施例中的齿轮变速箱的传动路径是:
输入扭矩作用在第一行星架102上,驱动第一行星架102旋转,由第一行星架102将扭矩按比例P分配给行星惰轮105和第一行星轮103的小齿轮103a,使行星惰轮105和小齿轮103a随第一行星架102公转的同时还绕自身轴线自转。分配扭矩的过程中,至少部分扭矩先传递到行星惰轮105上,再由行星惰轮105传递给太阳惰轮104,再由太阳惰轮104传递给第一行星轮103的小齿轮103a。
每个小齿轮103a将所受扭矩载荷传递给与之相连接的大齿轮103b。 各个大齿轮103b进一步将扭矩传递给第一太阳轮106,各个大齿轮103b共同驱动第一太阳轮106以及与之连接的第二行星架202旋转。
第二行星架202将扭矩传递给第二行星轮203,由第二行星轮203传递给第二太阳轮206和与之连接的输出轴207,由输出轴207将扭矩传递给外接设备。
综上,本申请的核心思想是通过让第一行星轮103的小齿轮103a的最大径向浮动量大于行星惰轮105的最大径向浮动量(如果不浮动,则最大径向浮动量为零),利用行星惰轮105分担扭矩,降低第一行星轮103承担的扭矩载荷,这样能兼顾小体积和高扭矩载荷能力,达到较高的扭矩载荷密度。通过让至少两个第一行星轮103的大齿轮103b在轴向上错开布置且垂直于轴向的平面上投影部分重叠,来兼顾小体积和大传动速比。
以上应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。

Claims (19)

  1. 一种齿轮变速装置,其特征在于,所述齿轮变速装置包括第一行星轮系(100),所述第一行星轮系(100)包括第一齿圈(101)、第一行星架(102)、第一行星轮(103)、太阳惰轮(104)和行星惰轮(105);所述行星惰轮(105)和所述第一行星轮(103)均安装于所述第一行星架(102);所述第一行星轮(103)包括小齿轮(103a);所述行星惰轮(105)和所述小齿轮(103a)均与所述第一齿圈(101)内啮合并均与所述太阳惰轮(104)外啮合;所述小齿轮(103a)能相对所述第一行星架(102)沿自身径向浮动。
  2. 根据权利要求1所述的齿轮变速装置,其特征在于,所述行星惰轮(105)不能相对所述第一行星架(102)沿自身径向浮动,或者,所述行星惰轮(105)能相对所述第一行星架(102)沿自身径向浮动且所述行星惰轮(105)的最大径向浮动量小于所述第一行星轮(103)的最大径向浮动量。
  3. 根据权利要求2所述的齿轮变速装置,其特征在于,所述第一行星轮系(100)还包括第一太阳轮(106);所述第一行星轮(103)还包括大齿轮(103b)和连接轴(103c),所述大齿轮(103b)的直径大于所述小齿轮(103a)的直径,所述大齿轮(103b)和所述小齿轮(103a)沿轴向相互错开并通过所述连接轴(103c)实现同轴连接。
  4. 根据权利要求3所述的齿轮变速装置,其特征在于,所述大齿轮(103b)与所述第一太阳轮(106)外啮合;所述第一行星轮(103)的数量为多个,其中,至少两个所述第一行星轮(103)的大齿轮(103b)沿轴 向相互错开且在垂直于轴向的平面内投影部分重叠。
  5. 根据权利要求3所述的齿轮变速装置,其特征在于,所述第一行星轮(103)和所述第一行星架(102)之间设有第一轴承(107)。
  6. 根据权利要求5所述的齿轮变速装置,其特征在于,所述第一轴承(107)为调心轴承,利用所述调心轴承实现所述小齿轮(103a)的沿自身径向浮动;和/或,
    所述连接轴(103c)包括与所述小齿轮(103a)连接的第一轴段、与所述大齿轮(103b)连接的第二轴段,所述第一轴段和所述第二轴段通过沿径向移动的联轴器连接,以此实现所述小齿轮(103a)的沿自身径向浮动;和/或
    所述连接轴(103c)采用沿径向变形的柔性轴,以此实现所述小齿轮(103a)的沿自身径向浮动。
  7. 根据权利要求5所述的齿轮变速装置,其特征在于,所述第一轴承(107)设置在靠近所述大齿轮(103b)的一端。
  8. 根据权利要求5-7任一项所述的齿轮变速装置,其特征在于,所述第一行星架(102)包括基座(1021)和连在所述基座(1021)一端的底板(1022),所述基座(1021)具有基座板(1021a),所述基座板(1021a)和所述底板(1022)之间形成用于容置所述大齿轮(103b)的第一容置空间,所述基座板(1021a)和所述底板(1022)均设有用于安装所述第一轴承(107)的轴承座孔(B),一部分所述第一行星轮(103)通过第一轴承(107)支撑于所述基座板(1021a),另一部分所述第一行星轮(103)通过所述第一轴承(107)支撑于所述底板(1022)。
  9. 根据权利要求8所述的齿轮变速装置,其特征在于,所述基座(1021)还包括连在所述基座(1021)另一端的端盖(1023),所述端盖(1023)具有端盖板(1023a),所述端盖板(1023a)和所述基座板(1021a)之间形成用于容置所述行星惰轮(105)和所述小齿轮(103a)的第二容置空间,所述行星惰轮(105)套装于行星惰轮轴(108)且所述行星惰轮(105)和所述行星惰轮轴(108)之间设有第二轴承(109),所述行星惰轮轴(108)一端连于所述端盖板(1023a)、另一端连于所述基座板(1021a),所述第一行星轮(103)的连接轴(103c)的一端伸到所述第二容置空间中,所述小齿轮(103a)套装于所述连接轴(103c)的该端。
  10. 根据权利要求9所述的齿轮变速装置,其特征在于,所述端盖(1023)还具有输入轴(1023b),所述输入轴(1023b)的一端与所述端盖板(1023a)连接,另一端沿轴向向远离所述端盖板(1023a)的方向延伸。
  11. 根据权利要求3-7任一项所述的齿轮变速装置,其特征在于,行星惰轮(105)的扭矩/第一行星轮(103)的扭矩=比例P,所述比例P的范围为:1<P≤K,其中K=大齿轮(103b)的节圆半径/小齿轮(103a)的节圆半径。
  12. 根据权利要求4-7任一项所述的齿轮变速装置,其特征在于,所述行星惰轮(105)的数量与所述第一行星轮(103)的数量相同,各个所述行星惰轮(105)和各个所述第一行星轮(103)沿第一齿圈(101)的周向等间隔地一一交替布置。
  13. 根据权利要求3-7任一项所述的齿轮变速装置,其特征在于,所述齿轮变速装置还包括一级或多级第二行星轮系(200),所述第二行星轮 系(200)包括第二齿圈(201)、第二行星架(202)、第二行星轮(203)和第二太阳轮(206),所述第二行星轮(203)安装于所述第二行星架(202),所述第二行星轮(203)与所述第二齿圈(201)内啮合并与所述第二太阳轮(206)外啮合;所述第二行星架(202)与所述第一太阳轮(106)或者前一级的所述第二太阳轮(206)传动连接。
  14. 根据权利要求13所述的齿轮变速装置,其特征在于,所述第二行星架(202)包括沿轴向间隔设置的两个安装板(202a),两所述安装板(202a)之间形成用于容置所述第二行星轮(203)的容置空间,所述第二行星轮(203)套装于第二行星轮轴(204),所述第二行星轮(203)和所述第二行星轮轴(204)之间设有第三轴承(205),所述第二行星轮轴(204)的两端分别连于两个所述安装板(202a)。
  15. 根据权利要求14所述的齿轮变速装置,其特征在于,所述第二行星架(202)包括连接套(202c),所述连接套(202c)的一端与一所述安装板(202a)连接,另一端沿轴向向靠近所述第一太阳轮(106)或前一级的所述第二太阳轮(206)的方向延伸,所述第一太阳轮(106)或前一级的所述第二太阳轮(206)连于所述连接套(202c)。
  16. 根据权利要求15所述的齿轮变速装置,其特征在于,所述齿轮变速装置包括外壳(300),所述第一齿圈(101)和所述第二齿圈(201)均固定于所述外壳(300),所述第一行星架(102)和第二行星架(202)均至少部分安装在所述外壳(300)内部,所述第一行星架(102)通过第四轴承(400)支撑于所述外壳(300),所述第二行星架(202)通过第五轴承(500)支撑于所述外壳(300)。
  17. 根据权利要求16所述的齿轮变速装置,其特征在于,所述外壳(300)外周设有起平衡作用的扭力臂(300a),所述外壳(300)还设有法兰接板(300b),通过所述法兰接板(300b)实现与外接设备的连接固定。
  18. 传动机构,其特征在于,所述传动机构包括权利要求1-17任一项所述的齿轮变速装置。
  19. 风力发电机组,包括叶片轮毂和传动机构,其特征在于,所述传动机构采用权利要求18所述的传动机构,所述传动机构的所述齿轮变速装置与所述叶片轮毂连接,以将所述叶片轮毂增速到目标转速。
PCT/CN2022/102748 2022-03-15 2022-06-30 齿轮变速装置、传动机构及风力发电机组 WO2023173623A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210253345.2 2022-03-15
CN202210253345.2A CN114645925A (zh) 2022-03-15 2022-03-15 齿轮变速装置、传动机构及风力发电机组

Publications (1)

Publication Number Publication Date
WO2023173623A1 true WO2023173623A1 (zh) 2023-09-21

Family

ID=81993361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102748 WO2023173623A1 (zh) 2022-03-15 2022-06-30 齿轮变速装置、传动机构及风力发电机组

Country Status (2)

Country Link
CN (1) CN114645925A (zh)
WO (1) WO2023173623A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114645925A (zh) * 2022-03-15 2022-06-21 新疆金风科技股份有限公司 齿轮变速装置、传动机构及风力发电机组
CN114922941A (zh) * 2022-05-26 2022-08-19 北京金风科创风电设备有限公司 齿轮变速装置、传动机构及风力发电机组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120309583A1 (en) * 2010-02-12 2012-12-06 The Timken Company Epicyclical gear transmission with improved load carrying capability
US20130005528A1 (en) * 2010-03-12 2013-01-03 The Timken Company Gear transmission load sharing mechanism
US20130035194A1 (en) * 2010-04-13 2013-02-07 The Timken Company Load split mechanism for gear transmission
CN110094464A (zh) * 2019-04-29 2019-08-06 华东交通大学 一种风电齿轮箱
CN114645925A (zh) * 2022-03-15 2022-06-21 新疆金风科技股份有限公司 齿轮变速装置、传动机构及风力发电机组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120309583A1 (en) * 2010-02-12 2012-12-06 The Timken Company Epicyclical gear transmission with improved load carrying capability
US20130005528A1 (en) * 2010-03-12 2013-01-03 The Timken Company Gear transmission load sharing mechanism
US20130035194A1 (en) * 2010-04-13 2013-02-07 The Timken Company Load split mechanism for gear transmission
CN110094464A (zh) * 2019-04-29 2019-08-06 华东交通大学 一种风电齿轮箱
CN114645925A (zh) * 2022-03-15 2022-06-21 新疆金风科技股份有限公司 齿轮变速装置、传动机构及风力发电机组

Also Published As

Publication number Publication date
CN114645925A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2023173623A1 (zh) 齿轮变速装置、传动机构及风力发电机组
EP2184488B1 (en) Split torque compound planetary drivetrain for wind turbine applications
US8096917B2 (en) Planetary gearbox having multiple sun pinions
WO2015101288A1 (zh) 一体化的半直驱风力发电机传动链及其所用齿轮箱
US20170175717A1 (en) Wind turbine with a modular drive train
EP3662159B1 (en) Planet carrier of a wind turbine gearbox with improved lubricant path
US9441712B1 (en) Belt drive with fixed large disc
WO2023226266A1 (zh) 齿轮变速装置、传动机构及风力发电机组
CN109386434B (zh) 一种紧凑型半直驱风电齿轮箱多轴功率分流传动结构
US11846268B2 (en) Wind power generation transmission system
KR20210024134A (ko) 차량 동력 전달장치 및 차량
KR20120017807A (ko) 스타식 정,역 원 웨이 변속기
US20130294916A1 (en) Inverted Tooth Silent Drive Chain for Wind Turbine Powertrain Applications
CN220791992U (zh) 一种风电偏航变桨减速机
CN113266534A (zh) 风力发电传动系统
CN111520444A (zh) 紧凑半直驱风力发电机组齿轮箱多支路功率分流传动结构
CN217762020U (zh) 一种全退型大兆瓦风电齿轮箱
CN203822550U (zh) 风力发电机传动装置及风力发电机
CN117366174A (zh) 一种行星轮系和齿轮变速装置、风力发电机组
CN219605976U (zh) 一种差动行星减速机
CN217355415U (zh) 单行星架超大传动比行星传动装置
CN220378859U (zh) 大传动比风电齿轮箱传动系统
CN220151812U (zh) 一种基于弹性扭力轴系的nw复合行星齿轮机构
CN116989124A (zh) 一种少齿差减速结构
CN107781397B (zh) 风力发电增速齿轮箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931646

Country of ref document: EP

Kind code of ref document: A1