WO2023173455A1 - 一种多层分流液冷板 - Google Patents

一种多层分流液冷板 Download PDF

Info

Publication number
WO2023173455A1
WO2023173455A1 PCT/CN2022/082366 CN2022082366W WO2023173455A1 WO 2023173455 A1 WO2023173455 A1 WO 2023173455A1 CN 2022082366 W CN2022082366 W CN 2022082366W WO 2023173455 A1 WO2023173455 A1 WO 2023173455A1
Authority
WO
WIPO (PCT)
Prior art keywords
inlet
outlet
plate
liquid cooling
guide plate
Prior art date
Application number
PCT/CN2022/082366
Other languages
English (en)
French (fr)
Inventor
马挺
许金海
赵烨占
王秋旺
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2023173455A1 publication Critical patent/WO2023173455A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds

Definitions

  • the present invention relates to a liquid cooling plate, in particular to a multi-layer split flow liquid cooling plate used in industries such as electronic devices and high-temperature components.
  • liquid cooling plate is suitable for high heat flux density heat dissipation fields. It has been widely used in high-power electronic device heat dissipation, power battery heat dissipation, etc.
  • the traditional flow guide device of the liquid cooling plate adopts a planar structure layout. For example, in the patent CN102767983A, the main heat exchange flow channel and the inlet and outlet split flow channels are located on the same plane to form a Z-shaped fluid channel, which occupies a large area and is difficult to meet the requirements of the application.
  • the purpose of the present invention is to provide a multi-layer split liquid cooling plate that changes the traditional planar split structure into a space stacked split structure, which can effectively reduce the plane size to meet the requirements of limited plane space. Thermal cooling requirements of high heat flux density electronic devices.
  • a multi-layer split liquid cooling plate which is characterized in that it includes a main heat exchange plate, an inlet guide plate, an outlet guide plate, an inlet and outlet pipe and an inlet and outlet joint, a main heat exchange plate, an inlet guide plate and an outlet guide.
  • the plates are stacked from top to bottom to form a liquid cooling plate core. This stacking sequence can reduce the temperature of the main heat exchange plate and improve the heat exchange capacity. At the same time, it can reduce the temperature rise of the main heat exchange plate and improve the temperature uniformity of the liquid cooling plate.
  • the hot plate consists of a cover plate, fins, seals and partitions. There is a gap between the seal and the inlet and outlet of the fin channel. There are two rows of throttling holes on the partition board.
  • the inlet guide plate and the outlet guide plate are engraved with The guide trough and bus trough, and the cavity in the inlet and outlet pipes are connected to the guide trough and bus trough of the inlet and outlet guide plates respectively, located on both sides of the core; the internal threaded holes of the inlet and outlet joints are connected to the cavity of the inlet and outlet pipes.
  • the fins are staggered-toothed fins, corrugated fins, or porous fins, which destroy the boundary layer of the cooling fluid and greatly improve the heat exchange capacity of the device.
  • the thickness of the seal is the same as the height of the fins, surrounding the fins. There is a gap around the fins and between the inlet and outlet of the fin channel, and the seals and fins are located on the underside of the cover.
  • the throttling holes are round holes or square holes.
  • the flow channels before and after the throttling holes shrink and expand suddenly, which plays a certain buffering and decelerating effect on the flow, making different flows
  • the pressure distribution of the cooling fluid in the channel is more uniform after flowing through the orifice, and the flow splitting effect is better, which improves the flow uniformity of the liquid cooling plate.
  • the orifice is connected to the gap between the fins and the seal, and the partition is located Under fins and seals.
  • the inlet guide plate is engraved with a primary guide groove and a secondary guide groove through machining. There is a gap at the outlet of the secondary guide groove channel. The gap is connected to the throttle hole on the partition plate.
  • the inlet guide groove is There is a row of throttling holes drilled on the flow plate, which are connected with the throttling holes on the partition, and the inlet guide plate is located under the partition.
  • the outlet guide plate is engraved with a primary bus trough and a secondary bus trough through machining. There is a gap at the outlet of the primary bus trough channel. The gap is connected to the throttle hole on the inlet guide plate.
  • the outlet guide plate The flow direction of the cooling medium in the channel is the same as that of the inlet guide plate.
  • the lower surface of the outlet guide plate is polished smooth and flat. The outlet guide plate is located at the bottom of the liquid cooling plate core.
  • the surface of the inlet pipe is horizontal to the surface of the liquid cooling plate core, and its internal cavity is connected to the primary guide channel of the inlet guide plate.
  • the inlet pipe is welded to the narrow end side of the liquid cooling plate.
  • the surface of the outlet pipe is horizontal to the surface of the liquid cooling plate core, and its internal cavity is connected to the secondary bus channel of the outlet guide plate.
  • the outlet pipe is welded to the other side of the narrow end of the liquid cooling plate.
  • a threaded hole is drilled inside the inlet joint.
  • the inlet threaded hole and the inlet pipe cavity are connected through the through hole on the inlet pipe.
  • the inlet joint is welded to the lower side or horizontal side of the inlet pipe.
  • a threaded hole is also drilled inside the outlet joint.
  • the outlet threaded hole and the outlet pipe cavity are connected through the outlet pipe through hole.
  • the outlet joint is welded to the lower side or the horizontal side of the outlet pipe, and is centrally symmetrically arranged with the inlet joint.
  • the liquid cooling plate of the present invention has a compact structure, changing the traditional plane split structure into a sandwich split structure stacked in space, which is easy to process and is suitable for cooling and heat dissipation of long and narrow devices with high temperature uniformity requirements. , is especially suitable for cooling and dissipating electronic devices with high heat flux density. While the main heat exchange flow channel remains unchanged, the area and mass of the liquid cooling plate can be greatly reduced.
  • the inlet and outlet of the main heat exchange flow channel in the liquid cooling plate of the present invention are located on the long side.
  • the number of heat exchange flow channels is larger, and a single heat exchange flow channel The length is shorter.
  • the total flow rate of the liquid cooling plate is the same, the flow rate and flow length of the cooling medium in the main heat exchange channel are reduced, and the flow resistance of the liquid cooling plate is reduced; the flow rate in the main heat exchange channel is reduced.
  • the local temperature rise of the cooling medium during the cooling process is reduced.
  • the presence of orifices, guide grooves, and confluence grooves avoids flow unevenness caused by an increase in the number of channels, further enhancing the temperature uniformity of the liquid cooling plate.
  • Figure 1 is an exploded view of the present invention.
  • Figure 2 is an overall view of the present invention.
  • Figure 3 is a schematic diagram of the cover plate.
  • Figure 4 is a schematic diagram of the fins and seals.
  • Figure 5 is a schematic diagram of the partition.
  • Figure 6 is a schematic diagram of the inlet deflector.
  • Figure 7 is a schematic diagram of the outlet guide plate.
  • Figure 8 is a schematic diagram of the inlet pipe and inlet joint.
  • Figure 9 is a schematic diagram of the outlet pipe and outlet joint.
  • a multi-layer split liquid cold plate includes a main heat exchange plate 1, an inlet guide plate 13, an outlet guide plate 18, an inlet pipe 2, an outlet pipe 3, an inlet joint 4 and an outlet joint 5.
  • the main heat exchange plate 1 is composed of a cover plate 6, fins 8, seals 9, and partitions 11.
  • the main heat exchange plate 1, the inlet guide plate 13 and the outlet guide plate 18 are stacked from top to bottom to form a liquid cooling plate.
  • the core body 7, the inlet joint 4 and the outlet joint 5 are centrally symmetrically arranged.
  • the cover plate 6 is a metal sheet, which is located on the uppermost layer of the main heat exchange plate 1 and is also the uppermost layer of the liquid cooling plate core 7.
  • the fin 8 is a staggered-toothed fin.
  • the thickness of the seal 9 is the same as the height of the fin 8 and surrounds the fin.
  • the seal 9 and the fin is located on the lower side of the cover plate 6, and both are located on the same layer.
  • two rows of throttling holes 12 are drilled on the partition 11.
  • the throttling effect of the two rows of throttling holes 12 makes the flow of the cooling medium more uniform.
  • the throttling holes 12, the fins 8 and the seals 9 The gaps 10 between them are connected, and the partition 11 is located on the lower layer of the fins 8 and the seal 9 .
  • the inlet guide plate 13 is engraved with a primary guide groove 14 and a secondary guide groove 15 through machining. There is a gap 16 at the exit of the secondary guide groove 15. The gap 16 is connected with the partition 11
  • the inlet guide plate 13 is also drilled with a row of orifices 17 connected with the orifices 12 on the partition plate 11 .
  • the inlet guide plate 13 is located on the partition plate 11 . 11 times.
  • the primary bus trough 20 and the secondary bus trough 19 are engraved on the outlet guide plate 18 through machining.
  • the gap 21 is connected to the upper section of the inlet guide plate 13.
  • the flow holes 17 are connected, and the flow direction of the cooling medium in the channel of the outlet guide plate 18 is the same as that of the inlet guide plate 13 .
  • the outlet guide plate 18 is located at the lowest layer of the liquid cooling plate core 7 .
  • the internal cavity 22 of the inlet pipe 2 is connected with the primary guide groove 14 of the inlet guide plate 13.
  • the inlet pipe 2 is welded to the narrow end side of the liquid cooling plate core 7.
  • the inlet pipe 2 2 surface is level with the outer surface of the liquid cooling plate core 7 .
  • a threaded hole 24 is drilled inside the inlet joint 4 .
  • the inlet threaded hole 24 is connected to the internal cavity 22 of the inlet pipe 2 through a through hole 23 .
  • the inlet joint 4 is welded to the lower side of the inlet pipe 2 .
  • the internal cavity 25 of the outlet pipe 3 is connected with the secondary bus trough 19 of the outlet guide plate 18.
  • the outlet pipe 3 is welded to the other side of the narrow end of the liquid cooling plate core 7.
  • the outlet The surface of the pipe 3 is horizontal to the outer surface of the liquid cooling plate core 7 .
  • a threaded hole 27 is drilled inside the outlet joint 5 .
  • the outlet threaded hole 27 is connected to the internal cavity 25 of the outlet pipe 3 through a through hole 26 .
  • the outlet joint 5 is welded to the lower side of the outlet pipe 3 .
  • the cooled electronic components are fixed on the upper surface of the cover plate 6 .
  • the liquid cooling plate is connected to the circulation pipe using the threaded hole 24 inside the inlet connector 4 and the threaded hole 27 inside the outlet connector 5 .
  • the cooling fluid flows in from the threaded hole 24 inside the left inlet joint 4, reaches the internal cavity 22 of the inlet pipe 2 through the through hole 23, and flows through the primary guide groove 14 and the secondary guide in turn.
  • the flow channel 15 makes the flow more uniform. It flows through the gap 16 at the channel outlet of the secondary flow channel 15 and upwards through the orifice 12 on the partition 11 to reach the gap 10 between the seal 9 and the channel inlet and outlet of the fin 8. , and then flow and exchange heat along the fin 8 channel.
  • the heat of the electronic device is transferred to the liquid cooling plate, and the temperature of the cooling medium increases.
  • the cooling fluid then flows out from the other end of the fin 8 channel, passes through the gap 10 at the other end between the seal 9 and the inlet and outlet of the fin 8 channel downwards and sequentially passes through the holes on the partition 11
  • the orifice 12 and the orifice 17 on the inlet guide plate 13 reach the outlet guide plate 18. After flowing through the gap 21 on the outlet guide plate, it flows through the primary confluence groove 20 and the secondary confluence groove 19 in sequence. , reaches the internal cavity 25 of the outlet pipe 3, enters the threaded hole 27 inside the outlet joint 5 through the through hole 26, and finally flows back to the circulation pipe.
  • the cooling medium flows in and out from the narrow end of the liquid cooling plate core 7, and a primary flow guide groove 14, a secondary guide groove 15 and a primary confluence groove 20 are provided.
  • the cooling fluid flows in and out from the long side.
  • the flow mode when the flow rate in the main heat exchange channel is the same, increases the total flow rate of the liquid cooling plate, thereby reducing the local temperature rise of the cooling medium during the cooling process of high heat flux density electronic devices. Under the same circumstances, the flow rate and flow length of the cooling fluid in the main heat exchange channel are reduced, thereby reducing the flow resistance of the liquid cooling plate.
  • the liquid cooling plate core in the present invention adopts a traditional planar flow guide structure, that is, the inlet guide plate, the outlet guide plate and the heat exchange main plate are on the same horizontal plane, and the main heat exchange channel of the liquid cooling plate remains unchanged, That is, when the heat dissipation and cooling effect of electronic devices remains unchanged, the cooling surface area of the liquid cooling plate core will be greatly increased. At the same time, considering that a certain machining thickness should be reserved on the upper and lower surfaces of the liquid cooling plate, the quality of the liquid cooling plate core will will increase significantly.
  • the structural form of the present invention the above problems can be avoided and the area and mass of the liquid cooling plate can be greatly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明涉及了一种多层分流液冷板,包括主换热板、进口导流板、出口导流板、进出口管道及进出口接头,主换热板、进口导流板及出口导流板从上到下堆叠组成液冷板芯体,主换热板由盖板、翅片、封条、隔板组成,封条与翅片通道进出口之间留有空隙,所述隔板上有两排节流孔,进口导流板及出口导流板上刻有导流槽及汇流槽,进出口管道内空腔分别与进出口导流板的导流槽及汇流槽连通,位于芯体两侧;进出口接头内部螺纹孔与进出口管道空腔连通。本发明的多层分流液冷板将传统平面分流结构变为空间三明治分流结构,具有分流均匀、结构紧凑的优点,适用于受限空间条件下的电子器件散热。

Description

一种多层分流液冷板 技术领域
本发明涉及一种液冷板,特别涉及一种在电子器件、高温部件等工业中使用的多层分流液冷板。
背景技术
随着电子器件集成度的不断提高,各类电子器件的发热功率和热流密度也大幅提高,对液冷板的散热性能提出了更高的要求。液冷板作为一种具有高传热性能的散热装置,适用于高热流密度散热领域,已被广泛应用于高功率电子器件散热、动力电池散热等。传统的液冷板的导流装置采用平面结构布局,例如在专利CN102767983A中,主换热流道及进出口分流流道位于同一平面上构成Z字形流体通道,占地面积较大,难以满足在平面空间有限情况下的高热流电子器件的散热需求。而对于类似的多层结构,例如在专利CN112106190A及专利CN111052360A中,采用喷射式冷却,没有对应的导流槽结构以实现较好的分流效果,流动的均匀性差,导致液冷板的工作稳定性和均温性较差,难以满足对于高热流电子器件的高均温性散热需求。
发明内容
为了克服上述不足之处,本发明的目的在于提供一种多层分流液冷板,将传统平面分流结构变为空间堆叠分流结构,可以有效减小平面尺寸,以满足在平面空间有限情况下的高热流密度电子器件的散热冷却要求。
本发明解决其技术问题所采取的技术方案是:
一种多层分流液冷板,其特征在于,包括主换热板、进口导流板、出口导流板、进出口管道及进出口接头,主换热板、进口导流板及出口导流板从上到下堆叠组成液冷板芯体,该堆叠顺序可以降低主换热板温度,提高换热能力,同时可以减小主换热板温升,提高液冷板均温性,主换热板由盖板、翅片、封条、隔板组成,封条与翅片通道进出口之间留有空隙,隔板上有两排节流孔,进口导流板及出口导流板上刻有导流槽及汇流槽,进出口管道内空腔分别与进出口导流板的导流槽及汇流槽连通,位于芯体两侧;进出口接头内部螺纹孔与进出口管道空腔连通。
进一步地,所述翅片为错齿翅片或者波纹翅片或者多孔翅片,这样破坏了冷却工质的边界层,大大提高了装置的换热能力,封条厚度与翅片高度相同,包围翅片四周,与翅片通道进出口之间留有空隙,封条及翅片位于盖板下侧。
进一步地,所述隔板上钻有两排节流孔,节流孔为圆孔或方孔,节流孔前后流道突缩突扩,对流动起一定的缓冲降速作用,使不同流道的冷却工质在流经节流孔之后的压力分布更加均匀,分流效果更好,提高了液冷板的流动均匀性,节流孔与翅片和封条之间的空隙连通,隔板位于翅片与封条下。
进一步地,所述进口导流板上通过机加工刻有一次导流槽及二次导流槽,二次导流槽通道出口处留有空隙,空隙与隔板上节流孔连通,进口导流板上钻有一排节流孔,该节流孔与隔板上节流孔连通,进口导流板位于隔板下。
进一步地,所述出口导流板上通过机加工刻有一次汇流槽及二次汇流槽,一次汇流槽通道出口处留有空隙,空隙与进口导流板上节流孔连通,出口导流板通道内冷却工质的流动方向与进口导流板相同,出口导流板下表面打磨光滑平整,出口导流板位于液冷板芯体最下层。
进一步地,所述进口管道表面与液冷板芯体表面水平,其内部空腔与进口导流板的一次导流槽通道连通,进口管道焊接于液冷板窄端一侧。
进一步地,所述出口管道表面与液冷板芯体表面水平,其内部空腔与出口导流板的二次汇流槽通道连通,出口管道焊接于液冷板窄端的另一侧。
进一步地,所述进口接头内部钻有螺纹孔,进口螺纹孔与进口管道空腔通过进口管道上通孔连通,进口接头焊接于进口管道下侧或者水平侧,出口接头内部同样钻有螺纹孔,出口螺纹孔与出口管道空腔通过出口管道通孔连通,出口接头焊接于出口管道下侧或者水平侧,且与进口接头呈中心对称布置。
本发明具有以下优点:
(1)本发明所述液冷板结构紧凑,将传统平面上的分流结构变为空间上堆叠而成的三明治分流结构,加工方便,适用于高均温性要求的长窄型器件的冷却散热,尤其适用于高热流密度的电子器件的冷却散热,在主换热流道不变的情况下,液冷板面积和质量可以大幅度减小。
(2)本发明所述液冷板中主换热流道的进出口位于长侧,相比于传统的窄侧进出口流道结构,其换热流道数目更多,单个换热流道长度更短,在液冷板总流量相同的情况下,由于降低了冷却工质在主换热通道中的流速及流动长度,减小了液冷板的流动阻力;在主换热通道中流速相同的情况下,由于增大了液冷板总流量,降低了在冷却过程中冷却工质的局部温升。同时,节流孔和导流槽、汇流槽的存在避免了通道数目增多带来的流动不均匀性,进一步增强了液冷板的均温性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,下面描述中的附图仅仅是本发明的一种实施例。其中:
图1为本发明的拆解图。
图2为本发明的整体图。
图3为盖板示意图。
图4为翅片及封条示意图。
图5为隔板示意图。
图6为进口导流板示意图。
图7为出口导流板示意图。
图8为进口管道及进口接头示意图。
图9为出口管道及出口接头示意图。
具体实施方式
下面将结合本发明实施例中的附图,对实施例中的技术方案进行描述。
在本发明的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
如图2所示,一种多层分流液冷板,包括主换热板1、进口导流板13、出口导流板18、进口管道2、出口管道3、进口接头4及出口接头5,所述主换热板1由盖板6、翅片8、封条9、隔板11组成,主换热板1与进口导流板13及出口导流板18从上到下堆叠组成液冷板芯体7,进口接头4与出口接头5呈中心对称布置。
如图3所示,盖板6为金属薄板,位于主换热板1最上层,也是液冷板芯体7最上 层。
如图4所示,翅片8为错齿翅片,封条9厚度与翅片8高度相同,包围翅片四周,封条9与翅片8通道进出口之间留有空隙10,封条9及翅片8位于盖板6下侧,两者位于同一层。
如图5所示,隔板11上钻有两排节流孔12,通过两排节流孔12的节流作用使冷却工质的流动更加均匀,节流孔12与翅片8和封条9之间的空隙10连通,隔板11位于翅片8与封条9下层。
如图6所示,进口导流板13上通过机加工刻有一次导流槽14及二次导流槽15,二次导流槽15通道出口处留有空隙16,空隙16与隔板11上的节流孔12连通,所述进口导流板13上还钻有一排节流孔17,该节流孔17与隔板11上的节流孔12连通,进口导流板13位于隔板11下。
如图7所示,出口导流板18上通过机加工刻有一次汇流槽20及二次汇流槽19,一次汇流槽20通道出口处留有空隙21,空隙21与进口导流板13上节流孔17连通,所述出口导流板18通道内冷却工质的流动方向与进口导流板13相同,所述出口导流板18位于液冷板芯体7最下层。
如图8所示,进口管道2内部空腔22与进口导流板13的一次导流槽14通道连通,所述进口管道2焊接于液冷板芯体7窄端一侧,所述进口管道2表面与液冷板芯体7的外表面水平。
如图8所示,进口接头4内部钻有螺纹孔24,进口螺纹孔24与进口管道2内部空腔22通过通孔23连通,所述进口接头4焊接于进口管道2下侧。
如图9所示,出口管道3内部空腔25与出口导流板18的二次汇流槽19通道连通,所述出口管道3焊接于液冷板芯体7窄端的另一侧,所述出口管道3表面与液冷板芯体7的外表面水平。
如图9所示,出口接头5内部钻有螺纹孔27,出口螺纹孔27与出口管道3内部空腔25通过通孔26连通,所述出口接头5焊接于出口管道3下侧。
当本发明所述液冷板正常工作时,被冷却的电子器件固定于盖板6上表面。利用进口接头4内部的螺纹孔24及出口接头5内部的螺纹孔27,将液冷板接入循环管道中。
如图1及图2所示,冷却工质从左侧进口接头4内部的螺纹孔24流入,通过通孔23到达进口管道2内部空腔22,依次流过一次导流槽14及二次导流槽15使流动更加均匀,在二次导流槽15通道出口处流经空隙16向上穿过隔板11上的节流孔12,到达封条9与翅片8通道进出口之间的空隙10,接着沿翅片8通道流动换热。
电子器件的热量传递至液冷板,冷却工质的温度升高。
如图1及图2所示,接着冷却工质从翅片8通道的另一端流出,经过封条9与翅片8通道进出口之间的另一端空隙10向下依次穿过隔板11上的节流孔12及进口导流板13上的节流孔17,到达出口导流板18上,流经出口导流板上的空隙21后,依次流经一次汇流槽20及二次汇流槽19,到达出口管道3的内部空腔25,通过通孔26进入出口接头5内部的螺纹孔27中,最后流回循环管道。
如图1及图2所示,本发明中,冷却工质从液冷板芯体7的窄端流入流出,且设有一次导流槽14及二次导流槽15和一次汇流槽20及二次汇流槽19,不同层直接通过节流孔连通,有效确保了流动的均匀性;其次,在主换热通道中,冷却工质从长边流入流出,相比于从窄边流入流出的流动方式,在主换热通道中流速相同的情况下,增大了液冷板总流量,从而降低了在高热流密度电子器件冷却过程中冷却工质的局部温升,在液冷板总流量相同的情况下,降低了冷却工质在主换热通道中的流速及流动长度,从而减小了液冷板的流动阻力。
本发明中液冷板芯体若采用传统的平面导流结构,即,进口导流板、出口导流板及 换热主板处于同一水平面,液冷板的主换热通道不变的情况下,即对于电子器件的散热冷却效果不变时,液冷板芯体的冷却表面面积将大幅增加,同时,考虑到液冷板上下表面应预留一定的机加工厚度,液冷板芯体的质量将大幅增加。而采用本发明的结构形式,则可以避免上述问题,实现液冷板面积和质量的大幅度减小。
本发明所描述的实施例,只是用于帮助理解本发明,不应理解为对本发明保护范围的限定,对于本技术领域的普通技术人员而言,还可以对本发明进行改进和修饰或者采用类似的结构进行替代,在不脱离本发明思想精神或者超越所附权利要求书定义的范围下,这些改进、修饰和替代等也落入本发明权利要求保护的范围内。

Claims (8)

  1. 一种多层分流液冷板,包括主换热板、进口导流板、出口导流板、进出口管道及进出口接头,其特征在于,所述的主换热板、进口导流板及出口导流板从上到下堆叠组成液冷板芯体,主换热板由盖板、翅片、封条、隔板组成,封条与翅片通道进出口之间留有空隙,隔板上有两排节流孔;进口导流板上刻有使流体均匀分流的一次导流槽及二次导流槽,还钻有一排节流孔;出口导流板上刻有一次汇流槽及二次汇流槽;进出口管道内空腔分别与进出口导流板的导流槽及汇流槽连通,位于芯体两侧;进出口接头内部螺纹孔与进出口管道空腔连通。
  2. 如权利要求1所述的多层分流液冷板,其特征在于,所述翅片为错齿翅片或者波纹翅片或者多孔翅片。
  3. 如权利要求1所述的多层分流液冷板,其特征在于,所述封条厚度与翅片高度相同,包围翅片四周,与翅片通道进出口之间留有空隙,所述封条及翅片位于盖板下侧。
  4. 如权利要求1所述的多层分流液冷板,其特征在于,所述节流孔为方孔或者圆孔,节流孔与翅片和封条之间的空隙连通,所述隔板位于翅片与封条下。
  5. 如权利要求1所述的多层分流液冷板,其特征在于,所述进口导流板上的一次导流槽与进口管道联通,二次导流槽通道出口处留有空隙,空隙与主换热板上的翅片通道通过隔板上节流孔连通,进口导流板上的节流孔与隔板上节流孔连通。
  6. 如权利要求1所述的多层分流液冷板,其特征在于,所述出口导流板上的一次汇流槽通道出口处留有空隙,空隙与主换热板上的翅片通道通过进口导流板及隔板上的节流孔连通,二次汇流槽与出口管道连通,出口导流板通道内冷却工质的流动方向与进口导流板相同。
  7. 如权利要求1所述的多层分流液冷板,其特征在于,所述进出口管道为圆管或方管,进出口管道表面与液冷板芯体表面水平,分别焊接于液冷板窄端两侧。
  8. 如权利要求1所述的多层分流液冷板,其特征在于,所述进口接头内部钻有螺纹孔,进口螺纹孔与进口管道空腔通过进口管道上通孔连通,进口接头焊接于进口管道下侧或水平侧,出口接头内部同样钻有螺纹孔,出口螺纹孔与出口管道空腔通过出口管道通孔连通,出口接头焊接于出口管道下侧或者水平侧,且与进口接头呈中心对称布置。
PCT/CN2022/082366 2022-03-14 2022-03-23 一种多层分流液冷板 WO2023173455A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210245020.X 2022-03-14
CN202210245020.XA CN114630566A (zh) 2022-03-14 2022-03-14 一种多层分流液冷板

Publications (1)

Publication Number Publication Date
WO2023173455A1 true WO2023173455A1 (zh) 2023-09-21

Family

ID=81901136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082366 WO2023173455A1 (zh) 2022-03-14 2022-03-23 一种多层分流液冷板

Country Status (2)

Country Link
CN (1) CN114630566A (zh)
WO (1) WO2023173455A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117470003A (zh) * 2023-12-27 2024-01-30 中国核动力研究设计院 基于热力循环夹点问题解决的换热器及布雷顿循环系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769830A (zh) * 2003-01-17 2006-05-10 西安交通大学 板翅式换热器流体分配封头
US20100032147A1 (en) * 2008-08-08 2010-02-11 Mikros Manufacturing, Inc. Heat exchanger having winding micro-channels
CN102767983A (zh) * 2012-08-10 2012-11-07 湖南创化低碳环保科技有限公司 一种可实现流体均匀分配的导流装置及换热器
CN111052360A (zh) * 2017-08-29 2020-04-21 株式会社威工 散热片

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769830A (zh) * 2003-01-17 2006-05-10 西安交通大学 板翅式换热器流体分配封头
US20100032147A1 (en) * 2008-08-08 2010-02-11 Mikros Manufacturing, Inc. Heat exchanger having winding micro-channels
CN102767983A (zh) * 2012-08-10 2012-11-07 湖南创化低碳环保科技有限公司 一种可实现流体均匀分配的导流装置及换热器
CN111052360A (zh) * 2017-08-29 2020-04-21 株式会社威工 散热片

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117470003A (zh) * 2023-12-27 2024-01-30 中国核动力研究设计院 基于热力循环夹点问题解决的换热器及布雷顿循环系统

Also Published As

Publication number Publication date
CN114630566A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
US20100319889A1 (en) Heat exchanger for cooling high-temperature gas
WO2017113571A1 (zh) 一体化相变抑制传热换热板结构及其制造方法
WO2020001125A1 (zh) 一种换热器
CN105202960A (zh) 一种铝管式换热器
WO2022052535A1 (zh) 一种液冷板散热器和计算设备
CN111148409B (zh) 一种射流微通道冷板
CN111721151A (zh) 一种正弦形通道结构印刷电路板式换热器芯体
TWI672471B (zh) 熱交換裝置
WO2023173455A1 (zh) 一种多层分流液冷板
CN110319729A (zh) 基于仿生堆叠三维构型的换热器芯体及换热器
US20090288811A1 (en) Aluminum plate-fin heat exchanger utilizing titanium separator plates
CN210602865U (zh) 一种可防止冷热介质串漏的带泄流通道的冷却器
CN109323607A (zh) 一种蜂窝型超紧凑板式热交换器
JP2007266463A (ja) 冷却器
CN112399779A (zh) 一种梯形与波形结合的混合微通道散热器
CN107966057A (zh) 一种板式换热器及其使用方法
CN113606961B (zh) 一种具有辅助换热结构的三介质换热器
KR102539336B1 (ko) 반도체 소자 열관리 모듈 및 이의 제조 방법
CN115720439A (zh) 一种含肋微通道散热装置及方法
CN212721041U (zh) 一种正弦形通道结构印刷电路板式换热器芯体
CN213455064U (zh) 一种均热冷板换热器
CN211178065U (zh) 一种集成式水冷却板式换热器
CN217275754U (zh) 一种换热器及车辆
CN113365469B (zh) 一种液冷板
CN218975584U (zh) 一种液冷板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931485

Country of ref document: EP

Kind code of ref document: A1