WO2023172123A1 - Solar concentrator device with asymmetrical semicircular mirror - Google Patents

Solar concentrator device with asymmetrical semicircular mirror Download PDF

Info

Publication number
WO2023172123A1
WO2023172123A1 PCT/MX2023/050006 MX2023050006W WO2023172123A1 WO 2023172123 A1 WO2023172123 A1 WO 2023172123A1 MX 2023050006 W MX2023050006 W MX 2023050006W WO 2023172123 A1 WO2023172123 A1 WO 2023172123A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
solar
semicircular
concentrating
concentrator device
Prior art date
Application number
PCT/MX2023/050006
Other languages
Spanish (es)
French (fr)
Inventor
Yuri Nahmad Molinari
Mario ECHENIQUE LIMA
Fátima María Isabel DE LOS SANTOS GARCÍA
Original Assignee
Yuri Nahmad Molinari
Echenique Lima Mario
De Los Santos Garcia Fatima Maria Isabel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuri Nahmad Molinari, Echenique Lima Mario, De Los Santos Garcia Fatima Maria Isabel filed Critical Yuri Nahmad Molinari
Publication of WO2023172123A1 publication Critical patent/WO2023172123A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention belongs to the technical field of mechanical engineering, particularly it belongs to the field of solar thermal absorption and/or heat absorption and transmission devices for energy generation, and even more particularly it refers to a solar concentrator device with a mirror. asymmetrical semicircular.
  • the optics are inspired by the design of the largest and most modern radio telescopes, such as the Arecibo telescope, Puerto Rico, the National Astronomy and Ionosphere Center (NAIC) and the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in Tianyan, China .
  • the name of this latest telescope (the largest built in history) includes the adjective spherical, which is of great importance to understand the principle of operation of the concentrator systems that will be described in this patent.
  • the design of the optics is related to non-imaging optics in that it uses a large or extended receiver as a fundamental design criterion, but differs in the way in which the geometry of the reflecting surfaces is determined. (W02002012799A2, US3899672A).
  • the present invention refers to the development of a system for concentrating solar radiation by means of non-imaging optics that differs from the etendu principles described in the literature used in said systems.
  • concentration systems presented in this report due to their aerodynamic and lightness characteristics, can be adapted to all types of buildings without having to reinforce the structure, which allows controlling the solar radiation incident on the building and, simultaneously, the generation of photovoltaic electricity and manage thermal energy, which would otherwise produce secondary costs in cooling for thermal comfort of the building, for use in process heat.
  • the object of the invention of the present patent is an optical reflector system for concentrating solar radiation or mirror in a cylindrical-flat channel, with a finned linear receiver with photovoltaic cells through which a heat transfer fluid circulates.
  • the characteristics of lightness and aerodynamic profile allow it to be placed on the roofs of any industrial warehouse or other type of buildings, without requiring structural reinforcements or special anchors to withstand wind forces and without the need for monitoring systems.
  • the main object of protection refers to a solar concentrator device with an asymmetric semicircular mirror, characterized in that it is composed of a semicircular concentrator mirror whose guideline consists of an arc of a circle, said semicircular concentrator mirror is rotated with respect to the axis vertical, so that it defines a pair of straight edges at the extreme points of the circular arc, one of the straight edges being at a higher height than the other straight edge; at least one section of straight sheet (6) tangent to the arc of a circle at at least one of its ends, which extends to the maximum height reached by the winter or summer focus of the concentrating mirror, forming an angle (G) with the horizontal equal to the minimum solar altitude at noon on the winter (summer) solstice; and a photothermal solar energy collection receiving tube, arranged longitudinally, through which the heat transfer fluid, said receiving tube is located between the winter and summer focuses of the semicircular concentrating mirror.
  • Figure 1 Shows a side view of the concentrating mirror (A) whose cross section is semicircular, showing the paraxial region (1) defined by a central angle of 90 s (H) bisected by the mirror's symmetry axis and shaded. the non-paraxial region is found (8). Two incident rays parallel to the axis of symmetry are also shown; the ray (7) for the paraxial region that is reflected towards the paraxial focus (4) and another ray for the non-paraxial region (5) that is reflected out of focus.
  • H central angle of 90 s
  • Figure 2 Shows a cross-sectional view of the asymmetrical planar semicircular concentrating mirror showing the incident rays (B) vertically from the Sun in summer.
  • the semicircular section subtends, from the center of curvature (C), an angle of 136 s (D).
  • the rays after being reflected in the mirror (A) mostly affect the extended receiving tube (E) which is located touching, tangentially below, the vernal FV and winter Fl paraxial foci.
  • the flat section (6) of the mirror It forms an angle (G) with the horizontal equal to the minimum solar altitude at noon on the Boreal winter solstice (Austral summer), which is reached.
  • Figure 3 Shows a cross-sectional view of the concentrating mirror (A) showing the incident rays (B) from the Sun in winter.
  • the semicircular section subtends, from the center of curvature (C), an angle of 136 s (D).
  • the rays after being reflected in the mirror (A) mostly affect the extended receiving tube (E) which is located tangentially touching the foci below. paraxial vernal FV and winter Fl.
  • the flat section (6) of the mirror forms an angle (G) with the horizontal equal to the minimum solar altitude at noon on the Boreal winter solstice (Austral summer), which is reached.
  • Figure 4 Shows a cross-sectional view of a second modality that consists of a hybrid thermal-photovoltaic system with the asymmetrical flat semi-cylindrical concentrating mirror (A) and a finned receiving tube (F), whose metal fin (2) is covered by photovoltaic cells. (3).
  • a heat transfer fluid circulates through the finned receiving tube (F) and is located between the vernal and winter foci of the concentrator system; incident winter rays are also shown (B).
  • FIG. 5 A cross-sectional view of a modular arrangement of four asymmetrical flat semi-cylindrical concentrating mirrors (A) is shown, only those modules (Mi) that have the extended receiver tube (E) functioning as a photothermal system and as a hybrid thermal-photovoltaic system with those modules (M2) that have the finned receiving tube (F) with photovoltaic cells (3).
  • the mirrors (A) have a foam of polymeric material (e.g. polyurethane or expanded polystyrene) as a filler to provide them with mechanical support and a thin, highly transparent polymeric cover (9) (e.g. polycarbonate with UV treatment) to protect the mirrors and prevent losses. by convection or advection.
  • the aerodynamic profile of the arrangement is notable, which gives it an optimal wind drag section that minimizes the stresses produced by the wind.
  • FIGS 6a-6b The modular arrangement of four asymmetrical flat semi-cylindrical concentrating mirrors (A) is shown, functioning as a hybrid thermal-photovoltaic system with those modules (M2) that have the finned receiving tube (F) with photovoltaic cells (3).
  • the mirrors (A) have a foam of polymeric material (eg polyurethane or expanded polystyrene) as a filler to provide them with mechanical support and a thin, highly transparent polymeric cover (9) (eg polycarbonate with UV treatment) to protect the mirrors and prevent losses. by convection or advection.
  • the aerodynamic profile of the arrangement is notable, which gives it an optimal wind drag section that minimizes the stresses produced by the wind. DESCRIPTION OF THE INVENTION
  • a cylinder In geometry, a cylinder is a surface formed by the parallel displacement of a straight line called the generatrix, along a plane curve, called the directrix.
  • the most used reflecting surfaces are cylindrical-parabolic, that is, they are surfaces whose straight section is the directrix of the cylinder and has a parabolic shape.
  • These concentrating mirrors are called “parabolic trough” and are widely used in solar thermal power plants, in which the concentrating mirror must follow the Sun during the day.
  • a cylindrical surface is made up of parallel lines, called generatrices, which contain the points of a plane curve, called the cylinder directrix.
  • generatrices which contain the points of a plane curve, called the cylinder directrix.
  • the cylindrical lateral surface is obtained by rotating a straight line around an axis.
  • a nanoparticle means one nanoparticle or more than one nanoparticle.
  • the terms “comprising”, “comprises” as used herein are synonymous with “including”, “includes” or “containing”, “contains”, and are included or open-ended and do not exclude additional, no recited members, elements or stages of the procedure. It will be appreciated that the terms “comprising”, “comprises” and “comprising” as used herein comprise the terms “consisting of", “consists of” and “consists of”.
  • endpoints includes all whole numbers and, where appropriate, subsumed fractions within that range (for example 1 to 5 may include 1, 2, 3, 4 when referring to, for example, a series of elements, and may also include 1.5, 2, 2.75 and 3.80, when referring to, for example, measurements). Recitation of endpoints also includes the endpoint rates themselves (e.g., 1.0 to 5.0 includes both 1.0 and 5.0). Any numerical range cited herein is intended to include all subranges subsumed therein.
  • an embodiment or “an embodiment” is used to mean a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Therefore, appearances of the phrases “in an embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, particular features, structures or features may be combined in any suitable manner, as would be apparent to one skilled in the art from this description, in one or more embodiments. Furthermore, although some embodiments described herein include some, but not other features included in other embodiments, combinations of features of different embodiments are intended to be within the scope of the invention, and form different embodiments, such as would be understood by those in the technique. For example, in the appended claims, any of the claimed embodiments may be used in any combination.
  • Figure 1 shows how the parallel rays (7) coming from the sun are reflected in a semicircular mirror surface that defines an asymmetric flat semi-cylindrical concentrator (A) and are largely concentrated in a focus located at half the radius of curvature of the mirror, on the ray that crosses said center, called paraxial focus (4), however, as they move away from the ray that crosses the center of curvature or axial ray, the other rays (5) are reflected towards positions that are increasingly below the paraxial focus (4).
  • the paraxial section of the mirror as that for which the reflected rays form an angle less than or equal to 90 s with their corresponding incident ray. That is, the paraxial region of the semicircular mirror corresponds to an arc of a circle that subtends an angle (H) of the same 90 s from the center of curvature (central angle) of the mirror.
  • the solar concentrator device comprises a semicircular concentrating mirror (A) consisting of a highly reflective sheet of anodized aluminum that is wound with a radius of curvature twice the maximum diameter of a receiving tube (E).
  • Figure 2 shows that the semicircular concentrating mirror (A) defines an arc of circumference that subtends an angle (D) from the center of curvature of 136 e that corresponds to 90 s of the paraxial section (H) of the mirror, plus 46 s corresponding to the maximum seasonal variation of the solar altitude at noon, said semicircular concentrating mirror is rotated with respect to the vertical axis, so that said semicircular concentrating mirror (A) defines a pair of straight edges at the end points of the arc circular, with one of the straight edges being at a higher height than the other straight edge.
  • a section of straight sheet (6) is projected forming an angle (G) with the horizontal equal to the minimum solar altitude at noon on the winter solstice (summer) and its length is extended until it reaches the maximum height above the horizontal that the winter paraxial focus of the Boreal (Fl) (vernal in the Southern Hemisphere) of the mirror will reach.
  • semi-circular (A) thus constructed. With this, a semi-cylindrical channel is achieved whose guideline is the curve composed of the circular arc and the straight sections (segments in the torrid zone) described above.
  • the guideline is an arc of a circle, seasonal variations in the solar altitude at noon will cause most of the radiation to focus on the winter and summer foci respectively, where a receiving tube (E) is arranged, if this , due to its size, is located intercepting both foci (which is the case, as will be seen later).
  • the lower part of the receiving tube (E) will intercept the rays reflected in the distal, non-paraxial regions of the mirror.
  • the solar concentrator device may include a single straight sheet section (6) on one of its straight edges or may include two straight sheet sections (6), one on each straight edge, depending on the latitude of the installation, being tangent(s) to the arc of a circle at its end(s).
  • the generators of the concentrating mirror (A), thus constructed, must be oriented from East to West (avoiding clockwise tracking) and the straight and flat sheet section (6) of the mirror will form an angle (G) with the horizontal equal to the minimum altitude. solar at noon on the Boreal winter solstice (Austral summer), which is reached. Said section of straight sheet (6) must have its normal facing south or north depending on the hemisphere where the system is located.
  • the geometry of the semicircular concentrating mirror (A) is defined from the maximum diameter of the receiving tube (E), through which the fluid to be heated circulates.
  • This receiving tube (E) is placed in a location that tangentially touches the two paraxial foci (winter and vernal) (Fl and FV) of the semicircular concentrating mirror (A). This guarantees that all the light incident in the paraxial regions corresponding to each season of the year is collected by the receiving tube (E). Additionally, since the maximum diameter of the receiving tube is equal to the paraxial focal length of the circular mirror, it will intercept most of the rays. reflected in both the paraxial and non-paraxial sections corresponding to the time of year. It should be noted that the receiving tube (E) must be covered with a selective material, which can extend from the tube forming receiving fins whose dimensions must be considered when defining the largest diameter of the receiving tube.
  • the mirror will not have self-shading during the hours of maximum intensity of radiation incident on them. iii) During the summer, when the solar altitude at noon is higher than the rest of the year, the flat segments of the mirror will be providing a greater amount of reflected light that falls on the receiver.
  • the extended receiving tube (E) of sunlight can be modified to be a hybrid element that provides photothermal and photovoltaic energy simultaneously.
  • the receiving tube (E) can be replaced by a finned receiving tube (F) that consists of a copper tube with a diameter much smaller than the radius of curvature of the semicircular concentrating mirror (approximately 1/8 of said radius of curvature).
  • a finned receiving tube (F) that consists of a copper tube with a diameter much smaller than the radius of curvature of the semicircular concentrating mirror (approximately 1/8 of said radius of curvature).
  • said fin (2) is covered with photovoltaic cells (3), as shown in Fig. 4, interconnected partially in series and partially in parallel to achieve output voltages and currents in accordance with the power electronics elements or microinverters. available on the market.
  • the photovoltaic cells (3) must make good thermal contact with the metal fin (2) to be able to transfer the residual heat due to the sunlight concentrated on them, after producing electricity and dissipating said heat in the metal fin (2), which will transfer it to the finned receiving tube (F) and to the water or circulating fluid in said finned receiving tube (F) in an active solar heating system, because it is forced circulation.
  • the concentrating channels defined by the semicircular concentrating mirrors (A) can be arranged in a modular way, repeating in parallel one after another, in order to make a module or arrangement that is placed horizontally and flush on the roof as shown in Fig. . 5, presenting an optimal aerodynamic profile to avoid the wind stress exerted on these systems.
  • the structure that gives support and strength to the reflective aluminum of the concentrating mirrors is achieved by injecting polyurethane foam (not shown), between the semicircular concentrating mirror (A) and the sheet support box (10), inside a mold that It has the shape of the concentrator designed according to the optical principles described above. With this, modular arrangements of concentrators are achieved that are assembled one after another, to later place the arrangements of extended receiver tubes (E) or the finned receiver tubes (F) and the transparent protection covers (D) as shown in Fig. . 5.
  • concentrator modules are achieved such as those shown schematically in Figure 5, whose weight for each square meter of reflecting surface does not exceed 4 kg and which, with the receiving tubes and protective covers, does not exceed 10 kg/m2. .
  • a highly transparent polycarbonate cover (D) and side covers are placed on the system.
  • Said cover (D) must be light in order to maintain a low weight of the systems and be able to place them on industrial roofs without the need to reinforce the structures.
  • the solar concentrator device is modular and can include modular arrangements with only photothermal systems (Mi) or hybrid (M2) combining photothermal systems with photovoltaic systems, as in Figure 5 where a modular arrangement of four asymmetric flat semi-cylindrical concentrator mirrors is shown ( A), functioning only as a photothermal system those modules (Mi) that have the extended receiver tube (E) and as a hybrid thermal-photovoltaic system with those modules (M2) that have the finned receiver tube (F) with photovoltaic cells (3) .

Abstract

The present invention relates to an optical reflector system for concentrating solar radiation in a cylindrical channel, the directrix or cross-section thereof being formed by a circular arc and a straight segment or a pair of straight segments. The receiver is a linear elongate receiver (or a finned receiver with photovoltaic cells) and has a maximum diameter equal to half the radius of the curvature of the mirror. The receiver surface should be located between the mirror and the winter and summer paraxial focuses, touching the focuses tangentially in the case of a purely photothermal system. With this optical system, the solar radiation is concentrated on the receiver and converted into photovoltaic and photothermal energy, the residual heat being guided to a thermal tank or reservoir for use in industrial processes or processes for the thermal comfort of buildings. In turn, the circulation of heat-carrying liquid keeps the operating temperature of the photovoltaic cells below the boiling point of the heat-carrying liquid, helping to improve power generation efficiency, since it is a concentration system. The efficiency, light weight and low aerodynamic profile of the system enable it to be placed on the roof of any industrial unit or other type of building, without the need for structural reinforcements or special anchoring elements to bear the weight thereof or withstand the force of the wind, and without the need for tracking systems. All of this allows the solar radiation incident on the building to be harvested and controlled and, simultaneously, electrical and thermal energy to be managed and administered for use in various processes.

Description

DISPOSITIVO CONCENTRADOR SOLAR CON ESPEJO SEMICIRCULAR ASIMÉTRICO SOLAR CONCENTRATOR DEVICE WITH ASYMMETRIC SEMI-CIRCULAR MIRROR
CAMPO TÉCNICO TECHNICAL FIELD
La presente invención pertenece al campo técnico de la ingeniería mecánica, particularmente pertenece al campo de los dispositivos solares de absorción térmica y/o de absorción y transmisión de calor para generación de energía, y aún más particular se refiere a un dispositivo concentrador solar con espejo semicircular asimétrico. The present invention belongs to the technical field of mechanical engineering, particularly it belongs to the field of solar thermal absorption and/or heat absorption and transmission devices for energy generation, and even more particularly it refers to a solar concentrator device with a mirror. asymmetrical semicircular.
ANTECEDENTES BACKGROUND
Cerca de la tercera parte de los combustibles fósiles tienen como uso final el calor de procesos industriales, siendo las industrias siderúrgica, petroquímica, minera y del cemento, las más demandantes y para las cuales los sistemas de calor solar aún no alcanzan una escala que sea rentable. Por otra parte, el uso final de la energía en edificaciones ha representado históricamente la tercera parte del consumo energético global tanto eléctrico como para confort térmico (calefacción y enfriamiento), por lo que es un sector de atención prioritaria en la transición hacia energías renovables. Así, el calentamiento de agua con energía solar es un nicho industrial y comercial de enormes dimensiones y es el sector al que se dirige nuestra invención. Nearly a third of fossil fuels have as their final use heat from industrial processes, with the steel, petrochemical, mining and cement industries being the most demanding and for which solar heat systems have not yet reached a scale that is profitable. On the other hand, the final use of energy in buildings has historically represented a third of global energy consumption, both electrical and for thermal comfort (heating and cooling), making it a sector of priority attention in the transition to renewable energies. Thus, water heating with solar energy is an industrial and commercial niche of enormous dimensions and is the sector to which our invention is directed.
La concentración de la radiación solar por medio de lentes o espejos tiene antecedentes tan antiguos como el uso de los escudos abrillantados de los guerreros de Siracusa a manera de espejos para concentrar los rayos solares sobre los bajeles de los invasores romanos, ¡dea propuesta por Arquímedes y emulada en los sistemas actuales de Torre Central para producción de electricidad. En energía solar fototérmica, se han utilizado espejos con diferentes geometrías tales como el plato parabólico de revolución, el canal parabólico (ES89A1 ) o las configuraciones equivalentes de Fresnel para sistemas de torre central (ES2625688T3) o Fresnel-lineal (GB2482553A). Además, inspirados en detectores de radiación de Cherenkov para el estudio de radiación cósmica, se ha desarrollado la óptica no formadora de imágenes de la que el canal parabólico compuesto es la configuración paradigmática (US3899672A, W02004090437A1 ). Así mismo, concentradores cilindricos multisegmentados (EP0033054A1 ) o con espejos secundarios (CN204421389U). The concentration of solar radiation through lenses or mirrors has antecedents as old as the use of the polished shields of the warriors of Syracuse as mirrors to concentrate the solar rays on the ships of the Roman invaders, an idea proposed by Archimedes! and emulated in the current Central Tower systems for electricity production. In photothermal solar energy, mirrors with different geometries have been used such as the parabolic dish of revolution, the parabolic trough (ES89A1) or the equivalent Fresnel configurations for central tower systems. (ES2625688T3) or Fresnel-linear (GB2482553A). Furthermore, inspired by Cherenkov radiation detectors for the study of cosmic radiation, non-imaging optics have been developed of which the compound parabolic channel is the paradigmatic configuration (US3899672A, W02004090437A1). Likewise, multi-segmented cylindrical concentrators (EP0033054A1) or with secondary mirrors (CN204421389U).
La tecnología que se pretende proteger, a través de la presente solicitud de patente, busca cosechar la energía radiante que incide sobre las edificaciones, para su almacenamiento y gestión del confort térmico del edificio y el consiguiente uso de la energía térmica y eléctrica en procesos industriales. La óptica se inspira en el diseño de los más grandes y modernos radiotelescopios, como el telescopio de Arecibo, Puerto Rico, el National Astronomy and Ionosphere Center (NAIC) y Five- hundred-meter Aperture Spherical radio Telescope (FAST) de Tianyan, China. El nombre de este último telescopio (el mayor construido en la historia) incluye el calificativo de esférico, lo que resulta de gran importancia para entender el principio de funcionamiento de los sistemas concentradores que se describirán en la presente patente. Además, el diseño de la óptica está emparentado con la óptica no formadora de imágenes en el sentido de que se parte de un receptor grande o extendido como criterio fundamental de diseño, pero difiere en la forma en que se determina la geometría de las superficies reflectoras (W02002012799A2, US3899672A). The technology that is intended to be protected, through this patent application, seeks to harvest the radiant energy that affects buildings, for its storage and management of the thermal comfort of the building and the consequent use of thermal and electrical energy in industrial processes. . The optics are inspired by the design of the largest and most modern radio telescopes, such as the Arecibo telescope, Puerto Rico, the National Astronomy and Ionosphere Center (NAIC) and the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in Tianyan, China . The name of this latest telescope (the largest built in history) includes the adjective spherical, which is of great importance to understand the principle of operation of the concentrator systems that will be described in this patent. Furthermore, the design of the optics is related to non-imaging optics in that it uses a large or extended receiver as a fundamental design criterion, but differs in the way in which the geometry of the reflecting surfaces is determined. (W02002012799A2, US3899672A).
Los sistemas de concentración que se presentan en esta memoria, por sus características aerodinámicas y de ligereza, se pueden adaptar a todo tipo de edificaciones sin tener que reforzar la estructura, por lo que permiten gestionar la energía radiante que incide sobre los edificios convertir una fracción de esta energía incidente en electricidad y colectar, almacenar y administrar el calor residual para confort térmico o para su uso en calor de procesos. OBJETO DE LA INVENCIÓN The concentration systems presented in this report, due to their aerodynamic and light characteristics, can be adapted to all types of buildings without having to reinforce the structure, which is why they allow the management of the radiant energy that affects the buildings to convert a fraction of this incident energy into electricity and collect, store and manage residual heat for thermal comfort or for use in process heat. OBJECT OF THE INVENTION
La presente invención se refiere al desarrollo de un sistema de concentración de la radiación solar por medio de una óptica no formadora de imágenes que difiere de los principios de étendu descritos en la literatura usada en dichos sistemas. Los sistemas de concentración que se presentan en esta memoria, por sus características aerodinámicas y de ligereza, se pueden adaptar a todo tipo de edificaciones sin tener que reforzar la estructura, lo que permite controlar la radiación solar incidente sobre el edificio y, simultáneamente, la generación de electricidad fotovoltaica y administrar la energía térmica, que de otra forma produciría gastos secundarios en el enfriamiento para confort térmico del edificio, para su uso en calor de procesos. The present invention refers to the development of a system for concentrating solar radiation by means of non-imaging optics that differs from the etendu principles described in the literature used in said systems. The concentration systems presented in this report, due to their aerodynamic and lightness characteristics, can be adapted to all types of buildings without having to reinforce the structure, which allows controlling the solar radiation incident on the building and, simultaneously, the generation of photovoltaic electricity and manage thermal energy, which would otherwise produce secondary costs in cooling for thermal comfort of the building, for use in process heat.
Así, el objeto de la invención de la presente patente es un sistema óptico reflector de concentración de la radiación solar o espejo en canal cilíndrico-plano, con un receptor lineal aleteado con celdas fotovoltaicas por el que circula un fluido caloportador. Las características de ligereza y perfil aerodinámico le permiten ser ubicado sobre las techumbres de cualquier nave industrial u otro tipo de edificaciones, sin requerimiento de refuerzos estructurales ni anclajes especiales para soportar esfuerzos eólicos y sin necesidad de sistemas de seguimiento. Thus, the object of the invention of the present patent is an optical reflector system for concentrating solar radiation or mirror in a cylindrical-flat channel, with a finned linear receiver with photovoltaic cells through which a heat transfer fluid circulates. The characteristics of lightness and aerodynamic profile allow it to be placed on the roofs of any industrial warehouse or other type of buildings, without requiring structural reinforcements or special anchors to withstand wind forces and without the need for monitoring systems.
Por lo tanto, el objeto principal de protección se refiere a un dispositivo concentrador solar con espejo semicircular asimétrico, caracterizado porque se compone de un espejo concentrador semicircular cuya directriz consiste de un arco de círculo, dicho espejo concentrador semicircular se encuentra rotado con respecto al eje vertical, de manera que define un par de bordes rectos en los puntos extremos del arco circular, quedando uno de los bordes rectos a una altura mayor que el otro borde recto; al menos una sección de lámina recta (6) tangente al arco de círculo en al menos uno de sus extremos, que se prolonga hasta la altura máxima que alcance el foco de invierno o de verano del espejo concentrador, formando un ángulo (G) con la horizontal igual a la altitud solar mínima al mediodía del solsticio de invierno (verano); y un tubo receptor de recolección de energía solar fototérmica, dispuesto longitudinalmente, por donde circula de manera forzada el fluido caloportador, dicho tubo receptor se encuentra ubicado entre los focos de invierno y verano del espejo concentrador semicircular. Therefore, the main object of protection refers to a solar concentrator device with an asymmetric semicircular mirror, characterized in that it is composed of a semicircular concentrator mirror whose guideline consists of an arc of a circle, said semicircular concentrator mirror is rotated with respect to the axis vertical, so that it defines a pair of straight edges at the extreme points of the circular arc, one of the straight edges being at a higher height than the other straight edge; at least one section of straight sheet (6) tangent to the arc of a circle at at least one of its ends, which extends to the maximum height reached by the winter or summer focus of the concentrating mirror, forming an angle (G) with the horizontal equal to the minimum solar altitude at noon on the winter (summer) solstice; and a photothermal solar energy collection receiving tube, arranged longitudinally, through which the heat transfer fluid, said receiving tube is located between the winter and summer focuses of the semicircular concentrating mirror.
Los objetivos de la presente invención antes referidos y aun otros no mencionados, serán evidentes a partir de la descripción de la invención y las figuras que con carácter ilustrativo y no limitativo la acompañan, que a continuación se presentan. The objectives of the present invention referred to above and even others not mentioned, will be evident from the description of the invention and the figures that accompany it with an illustrative and non-limiting character, which are presented below.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1. Muestra una vista lateral del espejo concentrador (A) cuya sección transversal es semicircular en el que se muestran la región paraxial (1 ) definida por un ángulo central de 90s (H) bisectado por el eje de simetría del espejo y sombreada se encuentra la región no paraxial (8). Se muestran además dos rayos incidentes paralelos al eje de simetría; el rayo (7) para la región paraxial que es reflejado hacia el foco paraxial (4) y otro rayo para la región no paraxial (5) que se refleja fuera de foco. Figure 1. Shows a side view of the concentrating mirror (A) whose cross section is semicircular, showing the paraxial region (1) defined by a central angle of 90 s (H) bisected by the mirror's symmetry axis and shaded. the non-paraxial region is found (8). Two incident rays parallel to the axis of symmetry are also shown; the ray (7) for the paraxial region that is reflected towards the paraxial focus (4) and another ray for the non-paraxial region (5) that is reflected out of focus.
Figura 2. Muestra una vista transversal del espejo concentrador semicircular plano asimétrico que muestra los rayos incidentes (B) verticalmente desde el Sol en verano. La sección semicircular subtiende, desde el centro de curvatura (C), un ángulo de 136s (D). Los rayos después de ser reflejados en el espejo (A), inciden mayoñtañamente sobre el tubo receptor extendido (E) que se ubica tocando, tangencialmente por debajo, a los focos paraxiales vernal FV e invernal Fl. La sección plana (6) del espejo forma un ángulo (G) con la horizontal igual a la mínima altitud solar al mediodía en el solsticio de invierno Boreal (verano Austral), que se alcanza. Figure 2. Shows a cross-sectional view of the asymmetrical planar semicircular concentrating mirror showing the incident rays (B) vertically from the Sun in summer. The semicircular section subtends, from the center of curvature (C), an angle of 136 s (D). The rays after being reflected in the mirror (A), mostly affect the extended receiving tube (E) which is located touching, tangentially below, the vernal FV and winter Fl paraxial foci. The flat section (6) of the mirror It forms an angle (G) with the horizontal equal to the minimum solar altitude at noon on the Boreal winter solstice (Austral summer), which is reached.
Figura 3. Muestra una vista transversal del espejo concentrador (A) que muestra los rayos incidentes (B) desde el Sol en invierno. La sección semicircular subtiende, desde el centro de curvatura (C), un ángulo de 136s (D). Los rayos después de ser reflejados en el espejo (A), inciden mayoñtañamente sobre el tubo receptor extendido (E) que se ubica tocando, tangencialmente por debajo, a los focos paraxiales vernal FV e invernal Fl. La sección plana (6) del espejo forma un ángulo (G) con la horizontal igual a la mínima altitud solar al mediodía en el solsticio de invierno Boreal (verano Austral), que se alcanza. Figure 3. Shows a cross-sectional view of the concentrating mirror (A) showing the incident rays (B) from the Sun in winter. The semicircular section subtends, from the center of curvature (C), an angle of 136 s (D). The rays after being reflected in the mirror (A), mostly affect the extended receiving tube (E) which is located tangentially touching the foci below. paraxial vernal FV and winter Fl. The flat section (6) of the mirror forms an angle (G) with the horizontal equal to the minimum solar altitude at noon on the Boreal winter solstice (Austral summer), which is reached.
Figura 4. Muestra una vista transversal de una segunda modalidad que consiste en un sistema híbrido térmico-fotovoltáico con el espejo concentrador semicilíndrico plano asimétrico (A) y un tubo receptor aleteado (F), cuya aleta (2) metálica está recubierta por celdas fotovoltaicas (3). Por el tubo receptor aleteado (F) circula un fluido caloportador y se ubica entre los focos vernal e invernal del sistema concentrador, se muestran, además rayos incidentes de invierno (B). Figure 4. Shows a cross-sectional view of a second modality that consists of a hybrid thermal-photovoltaic system with the asymmetrical flat semi-cylindrical concentrating mirror (A) and a finned receiving tube (F), whose metal fin (2) is covered by photovoltaic cells. (3). A heat transfer fluid circulates through the finned receiving tube (F) and is located between the vernal and winter foci of the concentrator system; incident winter rays are also shown (B).
Figura 5. Se muestra una vista transversal de un arreglo modular de cuatro espejos concentradores semicilíndricos planos asimétricos (A), funcionando solo como sistema fototérmico aquellos módulos (Mi) que tienen el tubo receptor extendido (E) y como sistema híbrido térmico-fotovoltáico con aquellos módulos (M2) que tienen el tubo receptor aleteado (F) con celdas fotovoltaicas (3). Los espejos (A) tienen una espuma de material polimérico (v.g. poliuretano o poliestireno expandido) como relleno para dotarlos de soporte mecánico y una cubierta poliméhca delgada de alta transparencia (9) (v.g. policarbonato con tratamiento UV) para proteger los espejos y evitar pérdidas por convección o advección. Es notorio el perfil aerodinámico del arreglo, mismo que le confiere una sección óptima de arrastre eólico que minimiza los esfuerzos producidos por el viento. Figure 5. A cross-sectional view of a modular arrangement of four asymmetrical flat semi-cylindrical concentrating mirrors (A) is shown, only those modules (Mi) that have the extended receiver tube (E) functioning as a photothermal system and as a hybrid thermal-photovoltaic system with those modules (M2) that have the finned receiving tube (F) with photovoltaic cells (3). The mirrors (A) have a foam of polymeric material (e.g. polyurethane or expanded polystyrene) as a filler to provide them with mechanical support and a thin, highly transparent polymeric cover (9) (e.g. polycarbonate with UV treatment) to protect the mirrors and prevent losses. by convection or advection. The aerodynamic profile of the arrangement is notable, which gives it an optimal wind drag section that minimizes the stresses produced by the wind.
Figuras 6a-6b. Se muestra el arreglo modular de cuatro espejos concentradores semicilíndricos planos asimétricos (A), funcionando como sistema híbrido térmico- fotovoltáico con aquellos módulos (M2) que tienen el tubo receptor aleteado (F) con celdas fotovoltaicas (3). Los espejos (A) tienen una espuma de material polimérico (v.g. poliuretano o poliestireno expandido) como relleno para dotarlos de soporte mecánico y una cubierta poliméhca delgada de alta transparencia (9) (v.g. policarbonato con tratamiento UV) para proteger los espejos y evitar pérdidas por convección o advección. Es notorio el perfil aerodinámico del arreglo, mismo que le confiere una sección óptima de arrastre eólico que minimiza los esfuerzos producidos por el viento. DESCRIPCIÓN DE LA INVENCIÓN Figures 6a-6b. The modular arrangement of four asymmetrical flat semi-cylindrical concentrating mirrors (A) is shown, functioning as a hybrid thermal-photovoltaic system with those modules (M2) that have the finned receiving tube (F) with photovoltaic cells (3). The mirrors (A) have a foam of polymeric material (eg polyurethane or expanded polystyrene) as a filler to provide them with mechanical support and a thin, highly transparent polymeric cover (9) (eg polycarbonate with UV treatment) to protect the mirrors and prevent losses. by convection or advection. The aerodynamic profile of the arrangement is notable, which gives it an optimal wind drag section that minimizes the stresses produced by the wind. DESCRIPTION OF THE INVENTION
En geometría, un cilindro es una superficie formada por el desplazamiento paralelo de una recta llamada generatriz, a lo largo de una curva plana, denominada directriz. Así, en sistemas lineales de concentración, las superficies reflectoras más usadas son cilíndrico-parabólicas, es decir, son superficies cuya sección recta es la directriz del cilindro y tiene forma parabólica. Estos espejos concentradores se denominan de “canal parabólico y son extensamente usados en centrales termosolares de potencia, en las que el espejo concentrador debe seguir al Sol durante el día. In geometry, a cylinder is a surface formed by the parallel displacement of a straight line called the generatrix, along a plane curve, called the directrix. Thus, in linear concentration systems, the most used reflecting surfaces are cylindrical-parabolic, that is, they are surfaces whose straight section is the directrix of the cylinder and has a parabolic shape. These concentrating mirrors are called “parabolic trough” and are widely used in solar thermal power plants, in which the concentrating mirror must follow the Sun during the day.
Como se ha mencionado anteriormente, una superficie cilindrica está conformada por rectas paralelas, denominadas generatrices, las cuales contienen los puntos de una curva plana, denominada directriz del cilindro. La superficie lateral cilindrica se obtiene mediante el giro de una recta alrededor de un eje. As mentioned above, a cylindrical surface is made up of parallel lines, called generatrices, which contain the points of a plane curve, called the cylinder directrix. The cylindrical lateral surface is obtained by rotating a straight line around an axis.
Con el objeto de hacer más clara la descripción de la presente invención, así como para mejor comprensión de esta, debe entenderse que la terminología utilizada en este documento no se pretende que sea limitante. A continuación, se enlista un glosario de términos técnicos utilizados en la presente memoria descriptiva. In order to make the description of the present invention clearer, as well as for a better understanding of it, it should be understood that the terminology used in this document is not intended to be limiting. A glossary of technical terms used in this specification is listed below.
Con el objeto de hacer más clara la descripción de la presente invención, así como para mejor comprensión de esta, debe entenderse que la terminología utilizada en este documento no se pretende que sea limitante. A continuación, se enlista un glosario de términos técnicos utilizados en la presente memoria descriptiva. In order to make the description of the present invention clearer, as well as for a better understanding of it, it should be understood that the terminology used in this document is not intended to be limiting. A glossary of technical terms used in this specification is listed below.
En la presente memoria, las formas singulares "un", "una" y "el" incluyen tanto las referencias en singular y plural a menos que el contexto indique claramente lo contrario. A modo de ejemplo, "una nanopartícula" significa una nanopartícula o más de una nanopartícula. Los términos "que comprende", "comprende" como se usa en el presente documento son sinónimo de "incluyendo", "incluye" o "que contiene", "contiene", y están incluidos o de composición abierta y no excluye adicional, no recitado miembros, elementos o etapas del procedimiento. Se apreciará que los términos "que comprende", "comprende" y "que comprenden" como se usa en la presente memoria comprenden los términos "que consiste en", "consiste en" y "consiste en". La recitación de intervalos numéricos por puntos finales incluye todos los números enteros y, en su caso, fracciones subsumidas dentro de ese rango (por ejemplo 1 a 5 puede incluir 1 , 2, 3, 4 cuando se refiere a, por ejemplo, una serie de elementos, y puede también incluir 1.5, 2, 2.75 y 3.80, cuando se refiere a, por ejemplo, las mediciones). La recitación de puntos finales incluye también el punto final valora a sí mismos (por ejemplo, de 1.0 a 5.0 incluye tanto 1.0 y 5.0). Cualquier rango numérico citado en el presente documento se pretende que incluya todos los subintervalos subsumidos en el mismo. As used herein, the singular forms "a", "an" and "the" include both singular and plural references unless the context clearly indicates otherwise. By way of example, "a nanoparticle" means one nanoparticle or more than one nanoparticle. The terms "comprising", "comprises" as used herein are synonymous with "including", "includes" or "containing", "contains", and are included or open-ended and do not exclude additional, no recited members, elements or stages of the procedure. It will be appreciated that the terms "comprising", "comprises" and "comprising" as used herein comprise the terms "consisting of", "consists of" and "consists of". The recitation of numerical intervals by endpoints includes all whole numbers and, where appropriate, subsumed fractions within that range (for example 1 to 5 may include 1, 2, 3, 4 when referring to, for example, a series of elements, and may also include 1.5, 2, 2.75 and 3.80, when referring to, for example, measurements). Recitation of endpoints also includes the endpoint rates themselves (e.g., 1.0 to 5.0 includes both 1.0 and 5.0). Any numerical range cited herein is intended to include all subranges subsumed therein.
A lo largo de esta solicitud, el término "aproximadamente" se utiliza para indicar que un valor incluye la desviación estándar del error para el dispositivo o método que se emplea para determinar el valor. Throughout this application, the term "approximately" is used to indicate that a value includes the standard deviation of the error for the device or method used to determine the value.
En esta memoria, se emplea el término "una realización" o "una realización" que significa un rasgo, estructura o característica particular descrita en conexión con la realización se incluye en al menos una realización de la presente invención. Por lo tanto, las apariciones de las frases "en una realización" o "en una realización" en diversos lugares a lo largo de esta especificación no son necesariamente todo lo referente a la misma realización, pero puede. Además, las características particulares, estructuras o características se pueden combinar de cualquier manera adecuada, como sería evidente para un experto en la técnica a partir de esta descripción, en una o más realizaciones. Además, aunque algunas realizaciones descritas en este documento incluyen algunos, pero no otras características incluidas en otras realizaciones, las combinaciones de características de diferentes formas de realización están destinadas a estar dentro del alcance de la invención, y formar diferentes formas de realización, tal como se comprendería por aquellos en la técnica. Por ejemplo, en las reivindicaciones adjuntas, cualesquiera de las realizaciones reivindicadas se pueden utilizar en cualquier combinación. Herein, the term "an embodiment" or "an embodiment" is used to mean a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Therefore, appearances of the phrases "in an embodiment" or "in an embodiment" in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, particular features, structures or features may be combined in any suitable manner, as would be apparent to one skilled in the art from this description, in one or more embodiments. Furthermore, although some embodiments described herein include some, but not other features included in other embodiments, combinations of features of different embodiments are intended to be within the scope of the invention, and form different embodiments, such as would be understood by those in the technique. For example, in the appended claims, any of the claimed embodiments may be used in any combination.
En la figura 1 se muestra como los rayos (7) paralelos provenientes del sol se reflejan en una superficie de espejo semicircular que define un concentrador semicilíndhco plano asimétrico (A) y se concentran mayohtahamente en un foco ubicado a la mitad del radio de curvatura del espejo, sobre el rayo que cruza dicho centro, denominado foco paraxial (4), sin embargo, conforme se alejan del rayo que cruza por el centro de curvatura o rayo axial, los demás rayos (5) son reflejados hacia posiciones cada vez más por debajo del foco paraxial (4). Así, definimos la sección paraxial del espejo como aquella para la cual los rayos reflejados forman un ángulo menor o igual a 90s con su correspondiente rayo incidente. Es decir, que la región paraxial del espejo semicircular corresponde a un arco de círculo que subtiende un ángulo (H) de los mismos 90s desde el centro de curvatura (ángulo central) del espejo. Figure 1 shows how the parallel rays (7) coming from the sun are reflected in a semicircular mirror surface that defines an asymmetric flat semi-cylindrical concentrator (A) and are largely concentrated in a focus located at half the radius of curvature of the mirror, on the ray that crosses said center, called paraxial focus (4), however, as they move away from the ray that crosses the center of curvature or axial ray, the other rays (5) are reflected towards positions that are increasingly below the paraxial focus (4). Thus, we define the paraxial section of the mirror as that for which the reflected rays form an angle less than or equal to 90 s with their corresponding incident ray. That is, the paraxial region of the semicircular mirror corresponds to an arc of a circle that subtends an angle (H) of the same 90 s from the center of curvature (central angle) of the mirror.
Considerando las anteriores definiciones, para el caso del invento que se presenta, el dispositivo concentrador solar comprende un espejo concentrador semicircular (A) consiste en una lámina de alta reflectancia de aluminio anodizado que se arrola con un radio de curvatura del doble del diámetro máximo de un tubo receptor (E). Considering the previous definitions, in the case of the invention presented, the solar concentrator device comprises a semicircular concentrating mirror (A) consisting of a highly reflective sheet of anodized aluminum that is wound with a radius of curvature twice the maximum diameter of a receiving tube (E).
En la figura 2 se muestra que el espejo concentrador semicircular (A) define un arco de circunferencia que subtiende un ángulo (D) desde el centro de curvatura de 136e que corresponden a 90s de la sección paraxial (H) del espejo, más 46s correspondientes a la variación estacional máxima de la altitud solar a mediodía, dicho espejo concentrador semicircular se encuentra rotado con respecto al eje vertical, de manera que dicho espejo concentrador semicircular (A) define un par de bordes rectos en los puntos extremos del arco circular, quedando uno de los bordes rectos a una altura mayor que el otro borde recto. Figure 2 shows that the semicircular concentrating mirror (A) defines an arc of circumference that subtends an angle (D) from the center of curvature of 136 e that corresponds to 90 s of the paraxial section (H) of the mirror, plus 46 s corresponding to the maximum seasonal variation of the solar altitude at noon, said semicircular concentrating mirror is rotated with respect to the vertical axis, so that said semicircular concentrating mirror (A) defines a pair of straight edges at the end points of the arc circular, with one of the straight edges being at a higher height than the other straight edge.
A partir de uno de los puntos extremos del arco circular, es decir del borde recto inferior, se proyecta una sección de lámina recta (6) formando un ángulo (G) con la horizontal igual a la altitud solar mínima al mediodía del solsticio de invierno (verano) y se prolonga su longitud hasta que alcance la altura máxima sobre la horizontal que alcanzará el foco paraxial invernal Boreal (Fl) (vernal en hemisferio Austral) del espejo semi-circular (A) así construido. Con ello se consigue un canal semi-cilíndrico cuya directriz es la curva compuesta por el arco de círculo y las secciones (segmentos en la zona tórrida) de recta antes descritos. Al ser la directriz un arco de círculo, las variaciones estacionales de la altitud solar al mediodía harán que la mayor parte de la radiación se enfoque en los focos de invierno y verano respectivamente, en donde se dispone un tubo receptor (E), si éste, por su tamaño, se ubica interceptando ambos focos (que es el caso, como se verá más adelante). Además, la parte baja del tubo receptor (E) interceptará los rayos reflejados en las regiones distales, no paraxiales del espejo. Starting from one of the extreme points of the circular arc, that is, from the lower straight edge, a section of straight sheet (6) is projected forming an angle (G) with the horizontal equal to the minimum solar altitude at noon on the winter solstice (summer) and its length is extended until it reaches the maximum height above the horizontal that the winter paraxial focus of the Boreal (Fl) (vernal in the Southern Hemisphere) of the mirror will reach. semi-circular (A) thus constructed. With this, a semi-cylindrical channel is achieved whose guideline is the curve composed of the circular arc and the straight sections (segments in the torrid zone) described above. Since the guideline is an arc of a circle, seasonal variations in the solar altitude at noon will cause most of the radiation to focus on the winter and summer foci respectively, where a receiving tube (E) is arranged, if this , due to its size, is located intercepting both foci (which is the case, as will be seen later). In addition, the lower part of the receiving tube (E) will intercept the rays reflected in the distal, non-paraxial regions of the mirror.
Además, el dispositivo concentrador solar puede incluir una sola sección de lámina recta (6) en uno de sus bordes rectos o puede incluir dos secciones de lámina recta (6), una en cada borde recto, dependiendo de la latitud de la instalación, siendo tangente(s) al arco de círculo en su(s) extremo(s). Additionally, the solar concentrator device may include a single straight sheet section (6) on one of its straight edges or may include two straight sheet sections (6), one on each straight edge, depending on the latitude of the installation, being tangent(s) to the arc of a circle at its end(s).
Las generatrices del espejo concentrador (A), así construido deberán orientarse de Este a Oeste (evitando el seguimiento horario) y la sección de lámina recta y plana (6) del espejo formará un ángulo (G) con la horizontal igual a la mínima altitud solar al mediodía en el solsticio de invierno Boreal (verano Austral), que se alcanza. Dicha sección de lámina recta (6) deberá tener su normal orientada hacia el sur o norte dependiendo del hemisferio en donde se ubique el sistema. The generators of the concentrating mirror (A), thus constructed, must be oriented from East to West (avoiding clockwise tracking) and the straight and flat sheet section (6) of the mirror will form an angle (G) with the horizontal equal to the minimum altitude. solar at noon on the Boreal winter solstice (Austral summer), which is reached. Said section of straight sheet (6) must have its normal facing south or north depending on the hemisphere where the system is located.
La geometría del espejo concentrador semicircular (A), es definida a partir del diámetro máximo del tubo receptor (E), por donde circula el fluido a calentar, este tubo receptor (E) se coloca en una ubicación que toque de manera tangencial a los dos focos paraxiales (invernal y vernal) (Fl y FV) del espejo concentrador semicircular (A). Con ello se garantiza que toda la luz incidente en las regiones paraxiales correspondientes a cada estación del año sea colectada por el tubo receptor (E). Adicionalmente, al ser el diámetro máximo del tubo receptor igual a la distancia focal paraxial del espejo circular, éste interceptará la mayoría de los rayos reflejados tanto en la sección paraxial como en la no paraxial correspondiente a la época del año. Cabe señalar que el tubo receptor (E) deberá estar recubierto con un material selectivo, el cual puede extenderse desde el tubo formando aletas receptoras cuyas dimensiones deberán considerarse al definir el diámetro mayor del tubo receptor. The geometry of the semicircular concentrating mirror (A) is defined from the maximum diameter of the receiving tube (E), through which the fluid to be heated circulates. This receiving tube (E) is placed in a location that tangentially touches the two paraxial foci (winter and vernal) (Fl and FV) of the semicircular concentrating mirror (A). This guarantees that all the light incident in the paraxial regions corresponding to each season of the year is collected by the receiving tube (E). Additionally, since the maximum diameter of the receiving tube is equal to the paraxial focal length of the circular mirror, it will intercept most of the rays. reflected in both the paraxial and non-paraxial sections corresponding to the time of year. It should be noted that the receiving tube (E) must be covered with a selective material, which can extend from the tube forming receiving fins whose dimensions must be considered when defining the largest diameter of the receiving tube.
Con este diseño del espejo concentrador semicircular (A) y la ubicación del tubo receptor extendido (E), se asegura que: i) Durante todo el año, el factor de concentración sobre el receptor será mayor a dos soles. With this design of the semicircular concentrating mirror (A) and the location of the extended receiver tube (E), it is ensured that: i) Throughout the year, the concentration factor on the receiver will be greater than two sols.
¡i) El espejo no tendrá auto-sombreado durante las horas de máxima intensidad de radiación incidente sobre ellos. iii) Durante el verano, cuando la altitud solar al mediodía es mayor que en el resto del año, los segmentos planos del espejo estarán aportando una mayor cantidad de luz reflejada que incide sobre el receptor. i) The mirror will not have self-shading during the hours of maximum intensity of radiation incident on them. iii) During the summer, when the solar altitude at noon is higher than the rest of the year, the flat segments of the mirror will be providing a greater amount of reflected light that falls on the receiver.
Basados en los principios de diseño antes descritos, se tiene una segunda modalidad de la invención, en donde el tubo receptor extendido (E) de la luz solar se puede modificar para ser un elemento híbrido que provea de energía fototérmica y fotovoltaica simultáneamente. Para ello, el tubo receptor (E) puede ser sustituido por un tubo receptor aleteado (F) que consiste de un tubo de cobre de diámetro mucho menor al radio de curvatura del espejo concentrador semicircular (aproximadamente 1/8 de dicho radio de curvatura) como se muestra en la figura 4 con una aleta recta radial (2) de aluminio o cobre de anchura aproximadamente igual a % del radio de curvatura del espejo y longitud igual a la del tubo receptor aleteado (F) como se muestra en la Fig. 4, dicha aleta (2) se recubre de celdas fotovoltaicas (3), como se muestra en la Fig. 4, interconectadas parcialmente en serie y parcialmente en paralelo para lograr voltajes y corrientes de salida acordes con los elementos de electrónica de potencia o microinversores disponibles en el mercado. Las celdas fotovoltaicas (3) deben hacer un buen contacto térmico con la aleta metálica (2) para poder transferir el calor residual debido a la luz solar concentrada sobre ellas, luego de producir electricidad y disipar dicho calor en la aleta metálica (2), misma que lo transferirá hacia el tubo receptor aleteado (F) y al agua o fluido circulante en dicho tubo receptor aleteado (F) en un sistema de calentamiento solar activo, por ser de circulación forzada. Based on the design principles described above, there is a second modality of the invention, where the extended receiving tube (E) of sunlight can be modified to be a hybrid element that provides photothermal and photovoltaic energy simultaneously. To do this, the receiving tube (E) can be replaced by a finned receiving tube (F) that consists of a copper tube with a diameter much smaller than the radius of curvature of the semicircular concentrating mirror (approximately 1/8 of said radius of curvature). as shown in Figure 4 with a straight radial fin (2) of aluminum or copper of width approximately equal to % of the radius of curvature of the mirror and length equal to that of the finned receiving tube (F) as shown in Fig. 4, said fin (2) is covered with photovoltaic cells (3), as shown in Fig. 4, interconnected partially in series and partially in parallel to achieve output voltages and currents in accordance with the power electronics elements or microinverters. available on the market. The photovoltaic cells (3) must make good thermal contact with the metal fin (2) to be able to transfer the residual heat due to the sunlight concentrated on them, after producing electricity and dissipating said heat in the metal fin (2), which will transfer it to the finned receiving tube (F) and to the water or circulating fluid in said finned receiving tube (F) in an active solar heating system, because it is forced circulation.
Los canales concentradores definidos por los espejos concentradores semicirculares (A), se pueden disponer de forma modular, repitiéndose paralelamente uno tras otro, con el fin de hacer un módulo o arreglo que se coloca horizontal y rasante sobre la techumbre como se muestra en la Fig . 5, presentando un perfil aerodinámico óptimo para evitar los esfuerzos eólicos ejercidos sobre estos sistemas. La estructura que da soporte y solidez al aluminio reflectante de los espejos concentradores se consigue inyectando espuma de poliuretano (no ¡lustrado), entre el espejo concentrador semicircular (A) y la caja de soporte de lámina (10), dentro de un molde que tiene la forma del concentrador diseñado conforme a los principios ópticos antes descritos. Con ello se consiguen arreglos modulares de concentradores que se ensamblan uno tras otro, para posteriormente colocar los arreglos de tubos receptores extendidos (E) o los tubos receptores aleteados (F) y las cubiertas transparentes de protección (D) como se muestra en la Fig. 5. The concentrating channels defined by the semicircular concentrating mirrors (A) can be arranged in a modular way, repeating in parallel one after another, in order to make a module or arrangement that is placed horizontally and flush on the roof as shown in Fig. . 5, presenting an optimal aerodynamic profile to avoid the wind stress exerted on these systems. The structure that gives support and strength to the reflective aluminum of the concentrating mirrors is achieved by injecting polyurethane foam (not shown), between the semicircular concentrating mirror (A) and the sheet support box (10), inside a mold that It has the shape of the concentrator designed according to the optical principles described above. With this, modular arrangements of concentrators are achieved that are assembled one after another, to later place the arrangements of extended receiver tubes (E) or the finned receiver tubes (F) and the transparent protection covers (D) as shown in Fig. . 5.
Siguiendo los pasos anteriores se logran módulos concentradores como los mostrados esquemáticamente en la Figura 5, cuyo peso por cada metro cuadrado de superficie reflectora no supera los 4 kg y que, ya con los tubos receptores y las cubiertas protectoras no supera los 10 kg/m2. Following the previous steps, concentrator modules are achieved such as those shown schematically in Figure 5, whose weight for each square meter of reflecting surface does not exceed 4 kg and which, with the receiving tubes and protective covers, does not exceed 10 kg/m2. .
Por último, para protección de los espejos concentradores (A) y con la finalidad de evitar pérdidas por convección y radiación desde los tubos receptores (E), se coloca una cubierta de policarbonato (D) de alta transparencia y tapas laterales al sistema. Dicha cubierta (D) deberá ser ligera con el fin de mantener un bajo peso de los sistemas y poder ubicarlos sobre techumbres industriales sin necesidad de reforzar las estructuras. El dispositivo concentrador solar es modular y puede incluir arreglos modulares solo con sistemas fototérmicos (Mi) o híbridos (M2) combinando sistemas fototérmicos con sistemas fotovoltaicos, como en la Figura 5 en donde se muestra un arreglo modular de cuatro espejos concentradores semicilíndhcos planos asimétricos (A), funcionando solo como sistema fototérmico aquellos módulos (Mi) que tienen el tubo receptor extendido (E) y como sistema híbrido térmico-fotovoltáico con aquellos módulos (M2) que tienen el tubo receptor aleteado (F) con celdas fotovoltaicas (3). Finally, to protect the concentrating mirrors (A) and in order to avoid losses due to convection and radiation from the receiving tubes (E), a highly transparent polycarbonate cover (D) and side covers are placed on the system. Said cover (D) must be light in order to maintain a low weight of the systems and be able to place them on industrial roofs without the need to reinforce the structures. The solar concentrator device is modular and can include modular arrangements with only photothermal systems (Mi) or hybrid (M2) combining photothermal systems with photovoltaic systems, as in Figure 5 where a modular arrangement of four asymmetric flat semi-cylindrical concentrator mirrors is shown ( A), functioning only as a photothermal system those modules (Mi) that have the extended receiver tube (E) and as a hybrid thermal-photovoltaic system with those modules (M2) that have the finned receiver tube (F) with photovoltaic cells (3) .
Los aspectos ventajosos no esperados son aportados por el diseño óptico de un sistema de concentración de la radiación solar no-formadora de imágenes que difiere de los principios descritos en la literatura usada en dichos sistemas, además de incorporar un receptor que colecta la energía radiante para producir electricidad y calor simultáneamente, incrementando con ello la eficiencia del sistema. Unexpected advantageous aspects are provided by the optical design of a non-image-forming solar radiation concentration system that differs from the principles described in the literature used in such systems, in addition to incorporating a receiver that collects the radiant energy to produce electricity and heat simultaneously, thereby increasing the efficiency of the system.
No obstante que la anterior descripción se realizó tomando en cuenta las modalidades preferidas del invento, deberá tenerse en cuenta por aquellos expertos en el ramo, que cualquier modificación de forma y detalle estará comprendida dentro del espíritu y el alcance del presente invento. Los términos en los que se ha redactado esta memoria deberán ser tomados siempre en sentido amplio y no limitativo. Los materiales, forma y descripción de los elementos, serán susceptibles de variación siempre y cuando ello no suponga una alteración de la característica esencial del modelo. Notwithstanding that the previous description was made taking into account the preferred embodiments of the invention, it should be taken into account by those experts in the field that any modification of shape and detail will be included within the spirit and scope of the present invention. The terms in which this report has been written should always be taken in a broad and non-limiting sense. The materials, shape and description of the elements will be susceptible to variation as long as this does not imply an alteration of the essential characteristic of the model.

Claims

REIVINDICACIONES Un dispositivo concentrador solar con espejo semicircular asimétrico, caracterizado porque se compone de un espejo concentrador semicircular cuya directriz consiste de un arco de círculo, dicho espejo concentrador semicircular se encuentra rotado con respecto al eje vertical, de manera que define un par de bordes rectos en los puntos extremos del arco circular, quedando uno de los bordes rectos a una altura mayor que el otro borde recto; al menos una sección de lámina recta (6) tangente al arco de círculo en al menos uno de sus extremos, que se prolonga hasta la altura máxima que alcance el foco de invierno o de verano del espejo concentrador, formando un ángulo (G) con la horizontal igual a la altitud solar mínima al mediodía del solsticio de invierno (verano); y un tubo receptor de recolección de energía solar fototérmica, dispuesto longitudinalmente, por donde circula de manera forzada el fluido caloportador, dicho tubo receptor se encuentra ubicado entre los focos de invierno y verano del espejo concentrador semicircular. Un dispositivo concentrador solar con espejo semicircular asimétrico de acuerdo a la reivindicación 1 , en donde el arco de círculo correspondiente a un ángulo preferente de 136s. Un dispositivo concentrador solar con espejo semicircular asimétrico de acuerdo a la reivindicación 1 , en donde el ángulo de 136s del arco de círculo corresponde a la suma de los 90s que definen la región paraxial más los 46s de variación estacional de la altitud solar a mediodía. Un dispositivo concentrador solar con espejo semicircular asimétrico de acuerdo a la reivindicación 1 , en donde el tubo receptor tubular consiste en un tubo receptor tubular extendido de diámetro igual a la mitad del radio de curvatura del espejo concentrador. CLAIMS A solar concentrator device with an asymmetric semicircular mirror, characterized in that it is composed of a semicircular concentrator mirror whose guideline consists of an arc of a circle, said semicircular concentrator mirror is rotated with respect to the vertical axis, so that it defines a pair of straight edges. at the extreme points of the circular arc, with one of the straight edges being at a higher height than the other straight edge; at least one section of straight sheet (6) tangent to the arc of a circle at at least one of its ends, which extends to the maximum height reached by the winter or summer focus of the concentrating mirror, forming an angle (G) with the horizontal equal to the minimum solar altitude at noon on the winter (summer) solstice; and a receiver tube for collecting photothermal solar energy, arranged longitudinally, through which the heat transfer fluid forcibly circulates, said receiver tube is located between the winter and summer focuses of the semicircular concentrating mirror. A solar concentrator device with an asymmetric semicircular mirror according to claim 1, wherein the arc of a circle corresponding to a preferred angle of 136 s . A solar concentrator device with an asymmetric semicircular mirror according to claim 1, wherein the angle of 136 s of the arc of a circle corresponds to the sum of the 90 s that define the paraxial region plus the 46 s of seasonal variation in solar altitude. at noon. A solar concentrator device with an asymmetric semicircular mirror according to claim 1, wherein the tubular receiving tube consists of an extended tubular receiving tube with a diameter equal to half the radius of curvature of the concentrating mirror.
5. Un dispositivo concentrador solar con espejo semicircular asimétrico de acuerdo a la reivindicación 1 , en donde y la sección de lámina recta (6) puede ser una sola o dos, dependiendo de la latitud de la instalación, siendo tangente(s) al arco de círculo en su(s) extremo(s). 5. A solar concentrator device with an asymmetric semicircular mirror according to claim 1, wherein the straight sheet section (6) can be one or two, depending on the latitude of the installation, being tangent(s) to the arc. of a circle at its end(s).
6. Un dispositivo concentrador solar con espejo semicircular asimétrico de acuerdo a la reivindicación 1 , el cual es modular al colocar arreglos paralelos de espejos concentradores de forma horizontal manteniendo un perfil aerodinámico para minimizar esfuerzos eólicos, quedando dichos espejos concentradores colocados en orientación Este-Oeste. 6. A solar concentrator device with an asymmetric semicircular mirror according to claim 1, which is modular by placing parallel arrangements of concentrating mirrors horizontally, maintaining an aerodynamic profile to minimize wind forces, said concentrating mirrors being placed in an East-West orientation. .
7. Un dispositivo concentrador solar con espejo semicircular asimétrico de acuerdo a la reivindicación 1 , en donde el tubo receptor de recolección de la energía solar, es un tubo receptor aleteado para recolección de energía híbrida fotovoltaica y fototérmica que consiste de un tubo metálico, dispuesto longitudinalmente, de radio mucho menor al radio de curvatura del espejo concentrador, preferentemente un octavo (%), con una aleta metálica radial de ancho igual a % del radio de curvatura del espejo concentrador, dicha aleta soporta en toda su longitud a unas celdas fotovoltaicas que transforman la radiación solar en energía eléctrica y disipan el calor residual a través de la aleta metálica hacia el tubo receptor por el que circula un fluido caloportador que transporta el calor a un tanque de almacenamiento. 7. A solar concentrator device with an asymmetric semicircular mirror according to claim 1, wherein the receiving tube for collecting solar energy is a finned receiving tube for collecting hybrid photovoltaic and photothermal energy that consists of a metal tube, arranged longitudinally, with a radius much smaller than the radius of curvature of the concentrating mirror, preferably one eighth (%), with a radial metal fin with a width equal to % of the radius of curvature of the concentrating mirror, said fin supports photovoltaic cells along its entire length. that transform solar radiation into electrical energy and dissipate the residual heat through the metal fin towards the receiving tube through which a heat transfer fluid circulates that transports the heat to a storage tank.
8. Un dispositivo concentrador solar con espejo semicircular asimétrico de acuerdo a la reivindicación 1 , en donde por la asimetría en los espejos concentradores, permite su instalación de forma horizontal y de manera rasante a las techumbres de cualquier edificación, sin necesidad de inclinar los sistemas a un ángulo igual a la latitud, para optimizar la recepción de la energía solar. 8. A solar concentrator device with an asymmetric semicircular mirror according to claim 1, wherein due to the asymmetry in the concentrating mirrors, it allows its installation horizontally and flush with the roofs of any building, without the need to tilt the systems. at an angle equal to latitude, to optimize the reception of solar energy.
9. Un dispositivo concentrador solar con espejo semicircular asimétrico de acuerdo a la reivindicación 1 , el cual incluye espuma de poliuretano, entre el espejo concentrador semicircular (A) y una caja de soporte de lámina (10), y una cubierta transparente de protección (D) y tapas laterales. Un dispositivo concentrador solar con espejo semicircular asimétrico de acuerdo a las reivindicaciones 2 y 6, el cual es modular y puede incluir arreglos modulares solo con sistemas fototérmicos (Mi) o híbridos (M2) combinando sistemas foto térmicos con sistemas fotovoltaicos, incluyendo un arreglo modular de una pluralidad de espejos concentradores semicilíndhcos planos asimétricos (A), funcionando solo como sistema fototérmico aquellos módulos (Mi) que tienen el tubo receptor extendido (E) y como sistema híbrido térmico- fotovoltáico con aquellos módulos (M2) que tienen el tubo receptor aleteado (F) con celdas fotovoltaicas (3). Un sistema de concentración de radiación solar, caracterizado porque comprende al menos un dispositivo concentrador solar con espejo semicircular asimétrico como el que se reclama en cualquiera de las reivindicaciones anteriores. 9. A solar concentrator device with an asymmetric semicircular mirror according to claim 1, which includes polyurethane foam, between the semicircular concentrator mirror (A) and a sheet support box (10), and a transparent protective cover ( D) and side covers. A solar concentrator device with asymmetric semicircular mirror according to claims 2 and 6, which is modular and can include modular arrangements only with photothermal systems (Mi) or hybrid (M2) combining photothermal systems with photovoltaic systems, including a modular arrangement of a plurality of asymmetrical flat semi-cylindrical concentrating mirrors (A), only those modules (Mi) that have the extended receiver tube (E) functioning as a photothermal system and as a hybrid thermal-photovoltaic system with those modules (M2) that have the receiver tube finned (F) with photovoltaic cells (3). A solar radiation concentration system, characterized in that it comprises at least one solar concentrator device with an asymmetric semicircular mirror as claimed in any of the previous claims.
PCT/MX2023/050006 2022-03-11 2023-01-24 Solar concentrator device with asymmetrical semicircular mirror WO2023172123A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2022003106 2022-03-11
MXMX/A/2022/003106 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023172123A1 true WO2023172123A1 (en) 2023-09-14

Family

ID=87935580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2023/050006 WO2023172123A1 (en) 2022-03-11 2023-01-24 Solar concentrator device with asymmetrical semicircular mirror

Country Status (1)

Country Link
WO (1) WO2023172123A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0678714A2 (en) * 1994-04-22 1995-10-25 Manuel Pedro Ivens Collares Pereira Solar energy collector of the non-evacuated compound parabolic concentrator type
KR20030027528A (en) * 2001-09-29 2003-04-07 모인에너지(주) Solar asymmetric compound parabolic concentrator with a tubular absorber or flat plate absorber
US20120073567A1 (en) * 2010-09-23 2012-03-29 Roland Winston Solar thermal concentrator apparatus, system, and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0678714A2 (en) * 1994-04-22 1995-10-25 Manuel Pedro Ivens Collares Pereira Solar energy collector of the non-evacuated compound parabolic concentrator type
KR20030027528A (en) * 2001-09-29 2003-04-07 모인에너지(주) Solar asymmetric compound parabolic concentrator with a tubular absorber or flat plate absorber
US20120073567A1 (en) * 2010-09-23 2012-03-29 Roland Winston Solar thermal concentrator apparatus, system, and method

Similar Documents

Publication Publication Date Title
Ju et al. A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR)
ES2548879T3 (en) Parabolic collector for a solar power plant
ES2306813T3 (en) SOLAR ELECTRICITY GENERATOR.
Devanarayanan et al. Integrated collector storage solar water heater with compound parabolic concentrator–development and progress
ES2745116T3 (en) Solar energy collector system
US9091462B2 (en) Solar canopy systems and methods
EA013199B1 (en) Thin film trough-shaped solar collector
US20110226308A1 (en) Solar energy hybrid module
ES2734191T3 (en) Double stage parabolic concentrator
US20120174966A1 (en) Concentrating tracking solar energy collector
WO2010100293A1 (en) Fresnel-type solar-concentration plant with an optimized secondary reconcentrator
Hadjiat et al. Design and analysis of a novel ICS solar water heater with CPC reflectors
WO2018083506A1 (en) Concentrating solar system of 3 suns for the simultaneous production of electrical, cooling and thermal energy for buildings
ES2715612T3 (en) Element of capture and concentration of direct solar radiation
ES2843253T3 (en) Solar unit assembly and construction procedure of such assembly
WO2008012390A1 (en) Solar-powered boiler
WO2018015598A1 (en) Solar energy concentrator with movable mirrors for use in flat solar thermal collectors or in static photovoltaic modules
RU2172903C1 (en) Solar module with concentrator
US8899763B2 (en) Device for concentrating solar radiation with longitudinal mirrors and a longitudinal receiver
WO2023172123A1 (en) Solar concentrator device with asymmetrical semicircular mirror
ES2750551T3 (en) Solar energy collector apparatus and design method
ES2803101B2 (en) BIFUNCTIONAL CYLINDER-PARABOLIC MANIFOLD AND INSTALLATION THAT INCLUDES SUCH MANIFOLD
RU2206837C2 (en) Solar module with concentrator (alternatives)
RU2569423C1 (en) Solar heater with protection against precipitation
KR20180023430A (en) Photovolataic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23767220

Country of ref document: EP

Kind code of ref document: A1