WO2008012390A1 - Solar-powered boiler - Google Patents

Solar-powered boiler Download PDF

Info

Publication number
WO2008012390A1
WO2008012390A1 PCT/ES2007/000462 ES2007000462W WO2008012390A1 WO 2008012390 A1 WO2008012390 A1 WO 2008012390A1 ES 2007000462 W ES2007000462 W ES 2007000462W WO 2008012390 A1 WO2008012390 A1 WO 2008012390A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
collectors
solar
boiler
fluid
Prior art date
Application number
PCT/ES2007/000462
Other languages
Spanish (es)
French (fr)
Inventor
José María MARTÍNEZ-VAL PEÑALOSA
Alberto ABÁNADES VELASCO
Original Assignee
Universidad Politécnica de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politécnica de Madrid filed Critical Universidad Politécnica de Madrid
Publication of WO2008012390A1 publication Critical patent/WO2008012390A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the invention is framed in the field of solar energy utilization in order to heat materials, typically fluids, to very high temperature, possibly with phase change, particularly boiling.
  • the invention falls within the scope of installations based on concentration of sunlight through optical reflection systems, to focus it on a more or less wide area in which the desired heating occurs.
  • the invention is located in systems with one, or several, central towers, in which the heating zones are located, with concentrated sunlight proceeding from the reflection of several conveniently orientable mirrors , which are deployed in what is called the heliostat field.
  • the invention focuses on the geometric and physical arrangement of the absorbing collectors of concentrated sunlight, and therefore also affects, or conditions, the heliostat orientation system along of the diurnal and seasonal evolution of the sun.
  • the entire tower was covered with absorbed tubes of concentrated solar radiation, in such a way that at any moment there was a part of the tower that acted as an active collecting element, and the rest would be useless for that purpose.
  • a major drawback of that invention was that the heating surface was much smaller than the total cooling surface (thermal losses) by convection and radiation from the entire tower lining.
  • the control of the inclination of the heliostats to obtain high concentration values of sunlight can be done by various methods, such as that of the patent PCTYIL96 / 00018, of A. Yogrev and V. Krupkin, in which it seeks to maximize energy concentrated in a small receiver volume, which acts as a true solar oven.
  • This solar oven idea is the common and dominant in all concentration tower configurations, such as those existing in the Almer ⁇ a Solar Platform (CIEMAT, Spain) in the National Solar Thermal Test Facility of the Sandia National Laboratory of Albuquerque (New Mexico, USA), in the Barstow Center (California) belonging to the US DOE, as well as the prototype thermoelectric power plant under construction in Seville (SOLUCAR, Abengoa).
  • CIEMAT Almer ⁇ a Solar Platform
  • Castow Center California
  • the invention is based on using the entire height of a reception tower of sunlight reflected with concentration, so that the illuminated wall of the tower, on which the appropriate collectors are arranged, acts in a manner similar to how a Conventional vertical tube boiler, although in the conventional case the smoke-tube convection has a very important role, and in the case of this invention the thermal load is produced by the incident radiation on the active side of the tower.
  • the tower therefore has an elementary structural mission that is to give mechanical consistency to the structure, and to support the active elements thereof, which are described in more detail in subsequent drawings.
  • the fundamental active elements of this invention are the sensors located at the width and height of the tower, within which the fluid to be heated circulates to boiling conditions.
  • the separation boiler of the liquid-vapor phase is located, from which the recirculation of the liquid phase falls, and from which the separated steam emerges above.
  • the specific aspect of this invention is that a solar superheat receiver is available in the upper part of the tower, until it is finished, so that a totally dry and superheated steam is reached, with the advantage that this reports from the point of view of the thermodynamic cycle in which the energy of said steam has to be exploited.
  • the tower is presented with a flat active facade, it could be circular or with a certain curvature, to accommodate it as efficiently as possible to the reception of the reflected sunlight.
  • a fundamental issue in this invention is that the reflection heliostats of sunlight are not oriented exclusively towards the upper area of the tower where the solar collector (or solar oven) is located in conventional installations, but that the heliostats focus their reflected light towards different heights of the tower, being able to adjust the monitoring control of each heliostat, or group of heliostats, to make the thermal radiation with the necessary intensity at each height influence the tower collector.
  • the tower Given the cross-sectional and height dimensions that the tower can have, there is enough surface to be able to concentrate the sunlight from a given heliostat field, and achieve the best exergy conversion conditions of the initial solar radiation into superheated steam of the working fluid.
  • heating must occur gradually, and depending on the film coefficient of the working fluid inside the tower collectors. This will depend on the thermodynamic conditions that the fluid has at each height.
  • the optimum performance will be achieved by adapting the radiation intensity to the cooling conditions, to effect the transmission of energy in optimal conditions, with a minimum temperature jump. This also avoids mechanical stress problems due to strong thermal gradients.
  • the recirculation of the liquid phase that occurs from the boiler to the foot of the tower through the non-active part of the tower, or inside, allows the flow of fluid that rises through the active part to reach these conditions suitable for the boiling heat transmission, combining good cooling of the solar collector with the generation of the steam flow required for the power sought in the installation.
  • Said recirculation can be modified by means of a recirculation pump at the foot of the recirculation column, which will appropriately modify the contribution of the main fluid that comes from the thermodynamic cycle of expansion and condensation of the generated steam.
  • the fluid is driven from the supply line by the pump, 4, which drives it towards the active part of the tower with its collectors, 2. Said drive is complemented with that provided with the recirculation pump, 5, located at the foot of the recirculation drop column or columns 6.
  • control of the conditions in the boiler allows monitoring of power in the demand of the thermodynamic cycle, which however is not the object of the invention, which is limited to providing the steam to be exploited thermodynamically.
  • the columns and pipes of said systems should be conveniently insulated or heat-insulated, as shown in the insulating layer, 12.
  • the tower may have its proper structural foundation, 13, just like heliostats, but this does not specifically pertain to the invention, which focuses on the arrangement of solar panels across the active wall of the tower.
  • Said panels may have a different type of configuration, particularly with regard to the channeling of the ascending fluid, which can go through independent pipes, or in a wide conduit that covers the entire cross section available for the passage of the fluid.
  • FIG. 2 a cross-section of a possible arrangement of the collector of the active part of the tower is shown, in which it would correspond to the structural part, 1, on which the collector assembly, which decomposes into the following elements: an absorbent plate, 2, of low emissivity for the predictable operating temperatures of the installation, and of very high absorbency for the typical wavelengths of solar radiation.
  • the absorbent panel In order to avoid convection cooling of the surrounding air, the absorbent panel would be within a vacuum area limited by a transparent window, 14.
  • the glass of said window would be chosen in its characteristics such that it would be of high transparency for the photons. typical of sunlight, and yet, backscatter the photons characteristic of the radiation emission of the panel, 2, with temperatures characteristic of the application in question (typically hundreds of K or even 1,000 K). This greenhouse effect created within the absorption cell will minimize thermal losses from the active face of the panel.
  • an insulator, 15, will be available that will minimize the passage of heat from the fluid channel, 7, to the tower and its components.
  • a matter of particular relevance in the active part of the panel, 2 is the accommodation of the expansions that may suffer between the mounting temperature or ambient temperature and the operating temperatures, including the possible overpower conditions that are anticipated.
  • the collector of said active part will have to settle on the lateral surface of the tower or on the insulator, 15, so that dilations can be allowed, and for this the flat part must be coupled to a semi-circumferential strap, 16 , with turning point to be welded both to the collector at one end and to the surface of the tower or to the insulator, at the other end.
  • the active manifold, 2 is composed of a set of tubes joined together by an absorbent plate, of features similar to those of the tubes, all embedded in the interior of the absorbent cell, confined between the transparent window, 14, and the rear insulating wall, 15.
  • the active manifold, 2 is composed of a set of tubes joined together by an absorbent plate, of features similar to those of the tubes, all embedded in the interior of the absorbent cell, confined between the transparent window, 14, and the rear insulating wall, 15.
  • the invention can be materialized on various types of tower, and for a wide variety of heliostat fields, since the requirements imposed on their control for solar tracking would be absolutely ordinary.
  • the specific aspect of the invention would be the arrangement of the panels across the width and height of the concentration tower, in such a way that during the ascent of the working fluid through the interior of the solar collectors the partial boiling of the same took place.
  • conventional materials such as copper, aluminum or steel can be used, although the decreasing thermal conductivity in the indicated materials must be taken into account. In this sense it is essential to have a coating specific, which can also be ordinary in the current solar industry, with high absorbency for sunlight, and low emisivity for thermal radiation of the panels (corresponding to the operating temperature, several hundred K, and even 1,000 K) .
  • the assembly would be on the active wall of the tower, injecting the ascending fluid into the boiler, which would be mounted as a floating head on the ascending duct of the working fluid.
  • the invention could therefore be implemented in any of the existing towers with heliostat fields, however, requiring their refocusing to aim with the rays reflected at the appropriate height of the tower in each case, adapting the power density incident in each sector of the collecting tower, in order to maximize the exergy performance in steam production and in its reheating, for which an adequate sectorial direction of the heliostat field would have to be carried out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The invention relates to a solar-powered boiler. According to the invention, collectors that absorb concentrated reflected sunlight are positioned along the height and width of a central tower in a field of heliostats, such that said collectors occupy most of the active facade of the tower. The invention is intended for the efficient boiling of the thermodynamic fluid flowing through the panels, with smaller exergetic losses, thereby producing superheated steam at the outlet of the tower. The assembly of tubes includes the recirculation of the liquid phase of the fluid.

Description

Caldera de energía solar. Sector de la técnica Boiler of solar energy. Technical sector
La invención se enmarca en el campo del aprovechamiento de la energía solar con el fin de calentar materiales, típicamente fluidos, hasta muy alta temperatura, eventualmente con cambio de fase, particularmente ebullición.The invention is framed in the field of solar energy utilization in order to heat materials, typically fluids, to very high temperature, possibly with phase change, particularly boiling.
Dentro de este sector, la invención se encuadra en el ámbito de las instalaciones basadas en concentración de la luz solar mediante sistemas de reflexión óptica, para focalizarla en una zona más o menos amplia en la cual se produce el calentamiento buscado.Within this sector, the invention falls within the scope of installations based on concentration of sunlight through optical reflection systems, to focus it on a more or less wide area in which the desired heating occurs.
A su vez, dentro de este tipo de instalaciones, la invención se ubica en los sistemas con una, o varias, torres centrales, en las cuales se ubican las zonas de calentamiento, procediendo la luz solar concentrada de la reflexión de varios espejos convenientemente orientables, que se despliegan en lo que se denomina campo de helióstatos.In turn, within this type of installation, the invention is located in systems with one, or several, central towers, in which the heating zones are located, with concentrated sunlight proceeding from the reflection of several conveniently orientable mirrors , which are deployed in what is called the heliostat field.
Por último, dentro de este tipo de instalaciones, la invención se centra en la disposición geométrica y física de los elementos colectores absorbentes de la luz solar concentrada, y por tanto también afecta, o condiciona, al sistema de orientación de los helióstatos a lo largo de las evoluciones diurna y estacional del sol. Estado de la técnicaFinally, within this type of installation, the invention focuses on the geometric and physical arrangement of the absorbing collectors of concentrated sunlight, and therefore also affects, or conditions, the heliostat orientation system along of the diurnal and seasonal evolution of the sun. State of the art
Desde hace más de un siglo (véase la patente histórica norteamericana n° 608755, concedida a H.F.Cottle en 1898 sobre un "Apparatus for storing and using solar heat") se han ido proponiendo diversas configuraciones de un receptor central en el cual concentrar una importante irradiación de luz solar con objeto de obtener muy altas temperaturas.For more than a century (see US historical patent No. 608755, granted to HFCottle in 1898 on an "Apparatus for storing and using solar heat") various configurations of a central receiver have been proposed in which to concentrate an important irradiation of sunlight in order to obtain very high temperatures.
Una patente especialmente significativa en este campo fue concedida en 1975 en Estados Unidos a D.E. Anderson (US Patent 3.924.604) en la cual una torre central alojaba en su parte superior un volumen receptor (muy en la idea original de Cottle) en el cual incidían los rayos reflejados por un conjunto de helióstatos con una inclinación adecuada respecto de la posición del sol en cada momento. Aunque en dicha patente la torre ocupaba una posición central al campo, una generalización obvia de la idea podía desplazar la ubicación de la torre hacia el extremo meridional del campo de helióstatos (en el hemisferio norte) con objeto de obtener ángulos de incidencia y reflexión más fácilmente manejables por los sistemas de seguimiento solar (sun tracking).An especially significant patent in this field was granted in 1975 in the United States to D.E. Anderson (US Patent 3,924,604) in which a central tower housed in its upper part a receiving volume (very much in Cottle's original idea) in which the rays reflected by a set of heliostats with an adequate inclination with respect to the position of the sun at every moment. Although in that patent the tower occupied a central position to the field, an obvious generalization of the idea could shift the location of the tower towards the southern end of the heliostat field (in the northern hemisphere) in order to obtain angles of incidence and reflection more easily manageable by solar tracking systems.
De hecho, una simplificación del sistema de seguimiento solar y de la orientación mecánica de los helióstatos puede encontrarse en la US Patent 4.136.674, concendida a A.L.Korr en 1977. En esta patente, la torre ocupaba una posición central al campo de helióstatos, dispuestos circularmente alrededor de la torre, con inclinación fija, de tal modo que sólo se realizaba un giro azimutal (en el plano horizontal) en función de la evolución horaria del sol. Al tener los helióstatos una inclinación fija, la incidencia, sobre la torre, de los rayos reflejados, no se produciría siempre a la misma altura; sino que los rayos incidirían sobre la parte alta de la torre cuando el sol estuviera bajo, y sobre la parte baja cuando el sol estuviera alto. Por tal motivo, toda la torre estaba revestida de tubos absorbentes de la radiación solar concentrada, de tal manera que hubiera en cada momento una parte de la torre que actuara como elemento captador activo, y el resto sería inútil a esos efectos. Obviamente, un gran inconveniente de esa invención era que la superficie de calentamiento era mucho menor que la superficie total de enfriamiento (pérdidas térmicas) por convección y radiación desde todo el revestimiento de la torre.In fact, a simplification of the solar tracking system and the mechanical orientation of heliostats can be found in US Patent 4,136,674, granted to ALKorr in 1977. In this patent, the tower occupied a central position to the heliostat field, arranged circularly around the tower, with fixed inclination, so that only an azimuthal turn (in the horizontal plane) was performed in function of the sun's hourly evolution. Since the heliostats have a fixed inclination, the incidence, on the tower, of the reflected rays, would not always occur at the same height; but the rays would affect the high part of the tower when the sun was low, and on the low part when the sun was high. For this reason, the entire tower was covered with absorbed tubes of concentrated solar radiation, in such a way that at any moment there was a part of the tower that acted as an active collecting element, and the rest would be useless for that purpose. Obviously, a major drawback of that invention was that the heating surface was much smaller than the total cooling surface (thermal losses) by convection and radiation from the entire tower lining.
El control de la inclinación de los helióstatos para obtener altos valores de concentración de la luz solar puede hacerse por diversos métodos, como el de la patente PCTYIL96/00018, de A.Yogrev y V.Krupkin, en la cual se busca maximizar la energía concentrada en un pequeño volumen receptor, que actúa de verdadero horno solar.The control of the inclination of the heliostats to obtain high concentration values of sunlight can be done by various methods, such as that of the patent PCTYIL96 / 00018, of A. Yogrev and V. Krupkin, in which it seeks to maximize energy concentrated in a small receiver volume, which acts as a true solar oven.
Esta idea de horno solar es la común y dominante en todas las configuraciones de torre de concentración, como las existentes en la Plataforma Solar de Almería (CIEMAT, España) en el National Solar Thermal Test Facility del Sandia National Laboratory de Alburquerque (New México, USA), en el Centro de Barstow (California) perteneciente al US DOE, así como la central termoeléctrica prototipo en construcción en Sevilla (SOLUCAR, de Abengoa). La adopción de un reactor solar de pequeña superficie de focalización de la luz solar concentrada por la reflexión del campo de helióstatos es comprensible desde la finalidad de disponer de un horno solar de alta temperatura, que sirva como foco calorífico de un ciclo termodinámico. Sin embargo, no parece la solución más adecuada para una utilización óptima de la exergía disponible en la luz solar concentrada, cuando ésta se desea emplear para producir electricidad mediante un ciclo termodinámico con ebullición y condensación, que es la vía más usual.This solar oven idea is the common and dominant in all concentration tower configurations, such as those existing in the Almería Solar Platform (CIEMAT, Spain) in the National Solar Thermal Test Facility of the Sandia National Laboratory of Albuquerque (New Mexico, USA), in the Barstow Center (California) belonging to the US DOE, as well as the prototype thermoelectric power plant under construction in Seville (SOLUCAR, Abengoa). The adoption of a small surface focusing solar reactor focused on the reflection of the heliostat field is understandable from the purpose of having a high temperature solar furnace, which serves as a heat source of a thermodynamic cycle. However, it does not seem the most appropriate solution for optimal use of exergy available in concentrated sunlight, when it is desired to be used to produce electricity by means of a thermodynamic cycle with boiling and condensation, which is the most usual route.
Explicación de la invenciónExplanation of the invention.
La invención se basa en utilizar toda la altura de una torre de recepción de la luz solar reflejada con concentración, de tal manera que la pared iluminada de la torre, sobre la cual se disponen los captadores apropiados, actúe de manera similar a como hace una caldera convencional de tubos verticales, aunque en el caso convencional tiene un papel muy importante la convección humo- tubos, y en el caso de esta invención la carga térmica se produce por la radiación incidente en el lado activo de la torre.The invention is based on using the entire height of a reception tower of sunlight reflected with concentration, so that the illuminated wall of the tower, on which the appropriate collectors are arranged, acts in a manner similar to how a Conventional vertical tube boiler, although in the conventional case the smoke-tube convection has a very important role, and in the case of this invention the thermal load is produced by the incident radiation on the active side of the tower.
La torre tiene por tanto una misión estructural elemental que es la de dar consistencia mecánica a la estructura, y soportar los elementos activos de la misma, que se describen más detalladamente en los dibujos subsiguientes. Los elementos activos fundamentales de esta invención son los captadores ubicados a lo ancho y alto de la torre, dentro de los cuales circula el fluido que se desea calentar hasta condiciones de ebullición. En la parte superior de la torre, pero no en su ápice, se ubica el calderín de separación de la fase líquido-vapor, del cual baja la recirculación de la fase líquida, y del cual emerge por arriba el vapor separado.The tower therefore has an elementary structural mission that is to give mechanical consistency to the structure, and to support the active elements thereof, which are described in more detail in subsequent drawings. The fundamental active elements of this invention are the sensors located at the width and height of the tower, within which the fluid to be heated circulates to boiling conditions. On top of the tower, but not in at its apex, the separation boiler of the liquid-vapor phase is located, from which the recirculation of the liquid phase falls, and from which the separated steam emerges above.
Al margen de que el calderín pueda incorporar separadores de vapor para evitar el arrastre de gotas líquidas, lo específico de esta invención es que se dispone de un receptor solar de sobrecalentamiento en la zona superior de la torre, hasta su remate, de tal manera que se alcance un vapor totalmente seco y sobrecalentado, con la ventaja que esto reporta desde el punto de vista del ciclo termodinámico en el que se ha de explotar la energía de dicho vapor.Apart from the fact that the boiler can incorporate steam separators to avoid the drag of liquid droplets, the specific aspect of this invention is that a solar superheat receiver is available in the upper part of the tower, until it is finished, so that a totally dry and superheated steam is reached, with the advantage that this reports from the point of view of the thermodynamic cycle in which the energy of said steam has to be exploited.
Aunque en las figuras subsiguientes la torre se presenta con una fachada activa plana, ésta podría ser de tipo circular o con cierta curvatura, para acomodarla lo más eficazmente posible a la recepción de la luz solar reflejada.Although in the subsequent figures the tower is presented with a flat active facade, it could be circular or with a certain curvature, to accommodate it as efficiently as possible to the reception of the reflected sunlight.
Cuestión fundamental en esta invención es que los helióstatos de reflexión de la luz solar no se orientan exclusivamente hacia la zona superior de la torre donde se ubica el colector solar (u horno solar) en las instalaciones convencionales, sino que los helióstatos enfocan su luz reflejada hacia distintas alturas de la torre, pudiéndose ajustar el control de seguimiento de cada helióstato, o grupo de helióstatos, para hacer incidir sobre el colector de la torre la radiación térmica con la intensidad necesaria a cada altura.A fundamental issue in this invention is that the reflection heliostats of sunlight are not oriented exclusively towards the upper area of the tower where the solar collector (or solar oven) is located in conventional installations, but that the heliostats focus their reflected light towards different heights of the tower, being able to adjust the monitoring control of each heliostat, or group of heliostats, to make the thermal radiation with the necessary intensity at each height influence the tower collector.
Habida cuenta las dimensiones transversal y de altura que puede tener la torre, se dispone de superficie suficiente para poder concentrar la luz solar de un campo de helióstatos dado, y conseguir las mejores condiciones de conversión exergética de la radiación solar inicial en vapor sobrecalentado del fluido de trabajo.Given the cross-sectional and height dimensions that the tower can have, there is enough surface to be able to concentrate the sunlight from a given heliostat field, and achieve the best exergy conversion conditions of the initial solar radiation into superheated steam of the working fluid.
Hay que tener en cuenta que el calentamiento debe producirse de manera gradual, y en función del coeficiente de película del fluido de trabajo por el interior de los colectores de la torre. Ello dependerá de las condiciones termodinámicas que tenga el fluido a cada altura.It must be taken into account that heating must occur gradually, and depending on the film coefficient of the working fluid inside the tower collectors. This will depend on the thermodynamic conditions that the fluid has at each height.
Las prestaciones óptimas se alcanzarán adecuando la intensidad de radiación a las condiciones de refrigeración, para efectuar la transmisión de energía en condiciones óptimas, con un salto mínimo de temperaturas. Esto evita también problemas de tensiones mecánicas por fuertes gradientes térmicos.The optimum performance will be achieved by adapting the radiation intensity to the cooling conditions, to effect the transmission of energy in optimal conditions, with a minimum temperature jump. This also avoids mechanical stress problems due to strong thermal gradients.
La recirculación de la fase líquida que se produce desde el calderín hasta el pie de la torre por la parte no activa de la misma, o por su interior, permite que el caudal de fluido que sube por la parte activa alcance dichas condiciones idóneas para la transmisión de calor por ebullición, compatibilizando una buena refrigeración del colector solar con la generación del caudal de vapor necesario para la potencia buscada en la instalación.The recirculation of the liquid phase that occurs from the boiler to the foot of the tower through the non-active part of the tower, or inside, allows the flow of fluid that rises through the active part to reach these conditions suitable for the boiling heat transmission, combining good cooling of the solar collector with the generation of the steam flow required for the power sought in the installation.
Dicha recirculación se puede modificar merced a una bomba de recirculación al pié de la columna de recirculación, la cual modificará apropiadamente la aportación del fluido principal que procede del ciclo termodinámico de expansión y condensación del vapor generado. Explicación de los dibujosSaid recirculation can be modified by means of a recirculation pump at the foot of the recirculation column, which will appropriately modify the contribution of the main fluid that comes from the thermodynamic cycle of expansion and condensation of the generated steam. Explanation of the drawings
En el dibujo 1, se representa la torre, 1, que da consistencia mecánica al conjunto, en el que destacan los colectores absorbentes, 2, de la parte activa de la torre. Estos colectores absorbentes recubren prácticamente la totalidad de la fachada en la cual inciden los rayos reflejados desde el campo de helióstatos, 3.In drawing 1, the tower, 1, which gives mechanical consistency to the assembly is shown, in which the absorbent collectors, 2, of the active part of the tower stand out. These absorbent collectors cover practically the entire facade on which the rays reflected from the heliostat field, 3.
El fluido es impulsado desde la tubería de alimentación por la bomba, 4, que le impulsa hacia la parte activa de la torre con sus colectores, 2. Dicha impulsión se complementa con la proporcionada con la bomba de recirculación, 5, situada al pié de la columna o columnas de bajada de recirculación 6.The fluid is driven from the supply line by the pump, 4, which drives it towards the active part of the tower with its collectors, 2. Said drive is complemented with that provided with the recirculation pump, 5, located at the foot of the recirculation drop column or columns 6.
A medida que el fluido asciende por el interior de los colectores de absorción de la luz solar, 7, va cambiando de fase, incrementándose su título en vapor, hasta la llegada al calderín, 8, donde coexisten ambas fases, lo cual es función de la presión de trabajo existente en el calderín, que ha de estar en equilibrio con la admisión de vapor sobrecalentado, 9, en el ciclo termodinámico de explotación de la energía, y asimismo ha de estar en equilibrio con la sobrepresión de impulsión dada por las bombas 4 y 5, más la pérdida de carga manométrica en la ascensión.As the fluid rises inside the solar light absorption collectors, 7, it changes phase, increasing its steam title, until the arrival at the boiler, 8, where both phases coexist, which is a function of the working pressure in the boiler, which has to be in equilibrium with the admission of superheated steam, 9, in the thermodynamic cycle of energy exploitation, and also has to be in balance with the impulse overpressure given by the pumps 4 and 5, plus the loss of manometric load on the ascent.
El control de las condiciones en el calderín permite efectuar seguimiento de potencia en la demanda del ciclo termodinámico, lo cual sin embargo no es objeto de la invención, que se limita a proporcionar el vapor a ser explotado termodinámicamente. δThe control of the conditions in the boiler allows monitoring of power in the demand of the thermodynamic cycle, which however is not the object of the invention, which is limited to providing the steam to be exploited thermodynamically. δ
Para mejorar las condiciones de dicho vapor producido, en la parte superior del calderín se dispone de un conjunto de separadores de vapor, 10, que devuelven hacia abajo las gotas de líquido, permitiendo que el vapor continúe su ascensión con título prácticamente unidad, y a partir de ahí se sobrecaliente en el colector superior de la torre, 11, que tendrá su parte activa rematando la misma, y recibiendo la radiación térmica adecuada a sus condiciones de absorción del calor por parte del vapor seco.To improve the conditions of said steam produced, in the upper part of the boiler there is a set of steam separators, 10, which return the drops of liquid down, allowing the steam to continue its ascent with practically unit title, and from from there it is superheated in the upper collector of the tower, 11, which will have its active part finishing off it, and receiving the appropriate thermal radiation to its conditions of heat absorption by dry steam.
Para evitar pérdidas de calor en la recirculación del fluido y en el vapor producido, las columnas y tuberías de dichos sistemas deberán ir convenientemente aisladas o calorifugadas, tal como se muestra en la capa aislante, 12.To avoid heat losses in the recirculation of the fluid and in the steam produced, the columns and pipes of said systems should be conveniently insulated or heat-insulated, as shown in the insulating layer, 12.
La torre podrá tener su cimentación estructural adecuada, 13, al igual que los helióstatos, pero ello no pertenece específicamente a la invención, que se centra en la disposición de los paneles solares a lo ancho y alto de la pared activa de la torre.The tower may have its proper structural foundation, 13, just like heliostats, but this does not specifically pertain to the invention, which focuses on the arrangement of solar panels across the active wall of the tower.
Dichos paneles pueden tener diverso tipo de configuración, particularmente en lo referente a la canalización del fluido ascendente, que puede ir por tuberías independientes, o en un conducto amplio que cubra toda la sección recta transversal disponible para el paso del fluido.Said panels may have a different type of configuration, particularly with regard to the channeling of the ascending fluid, which can go through independent pipes, or in a wide conduit that covers the entire cross section available for the passage of the fluid.
En el dibujo 2, se representa un corte transversal de una posible disposición del colector de la parte activa de la torre, en la cual esta correspondería a la parte estructural, 1, sobre la que se asentaría el conjunto del colector, que se descompone en los siguientes elementos: una placa absorbente, 2, de baja emisividad para las temperaturas de funcionamiento previsible de la instalación, y de muy alta absortancia para las longitudes de onda típicas de la radiación solar. Con objeto de evitar la refrigeración por convección del aire circundante el panel absorbente estaría dentro de un ámbito de vacío limitado por una ventana transparente, 14. El vidrio de dicha ventana estaría escogido en sus características de tal manera que fuera de alta transparencia para los fotones típicos de la luz solar, y sin embargo, retrodispersara los fotones propios de la emisión de radiación del panel, 2, con temperaturas características de la aplicación de la que se tratara (típicamente de cientos de K ó incluso 1.000 K). Este efecto invernadero creado dentro de la célula de absorción minimizará las pérdidas térmicas por la cara activa del panel.In drawing 2, a cross-section of a possible arrangement of the collector of the active part of the tower is shown, in which it would correspond to the structural part, 1, on which the collector assembly, which decomposes into the following elements: an absorbent plate, 2, of low emissivity for the predictable operating temperatures of the installation, and of very high absorbency for the typical wavelengths of solar radiation. In order to avoid convection cooling of the surrounding air, the absorbent panel would be within a vacuum area limited by a transparent window, 14. The glass of said window would be chosen in its characteristics such that it would be of high transparency for the photons. typical of sunlight, and yet, backscatter the photons characteristic of the radiation emission of the panel, 2, with temperatures characteristic of the application in question (typically hundreds of K or even 1,000 K). This greenhouse effect created within the absorption cell will minimize thermal losses from the active face of the panel.
Similarmente, para reducir las pérdidas por conducción hacia la torre, se dispondrá de un aislante, 15, que minimizará el paso de calor desde el canal de fluido, 7, hacia la torre y sus componentes.Similarly, to reduce losses by conduction to the tower, an insulator, 15, will be available that will minimize the passage of heat from the fluid channel, 7, to the tower and its components.
Una cuestión de particular relevancia en la parte activa del panel, 2, es la acomodación de las dilataciones que pueda sufrir entre la temperatura de montaje o temperatura ambiente y las temperaturas de operación, incluyendo las posibles condiciones de sobrepotencia que se prevean. Para ello, el colector de dicha parte activa tendrá que asentarse sobre la superficie lateral de la torre o sobre el aislante, 15, de manera que se puedan permitir las dilataciones, y para ello se deberá acoplar la parte plana a un fleje semicircunferencial, 16, con punto de inflexión para ser soldado tanto al colector por un extremo como a la superficie de la torre o al aislante, por el otro extremo.A matter of particular relevance in the active part of the panel, 2, is the accommodation of the expansions that may suffer between the mounting temperature or ambient temperature and the operating temperatures, including the possible overpower conditions that are anticipated. For this, the collector of said active part will have to settle on the lateral surface of the tower or on the insulator, 15, so that dilations can be allowed, and for this the flat part must be coupled to a semi-circumferential strap, 16 , with turning point to be welded both to the collector at one end and to the surface of the tower or to the insulator, at the other end.
Podría haber otras configuraciones similares, pero basadas en canalización del fluido por tubos, como se representa en el dibujo 3. En tal caso, el colector activo, 2, está compuesto de un conjunto de tubos unidos entre sí por una placa absorbente, de características similares a las de los tubos, embebido todo ello en el interior de la célula del absorbente, confinada entre la ventana transparente, 14, y la pared aislante posterior, 15. En esta configuración habría que disponer de una lira de acomodación de la expansión, 17, para permitir las dilataciones transversales del conjunto de los tubos. Lógicamente, estos tendrían que tener su acomodación de dilatación en altura, antes de la entrada en el calderín.There could be other similar configurations, but based on channeling the fluid through tubes, as shown in drawing 3. In this case, the active manifold, 2, is composed of a set of tubes joined together by an absorbent plate, of features similar to those of the tubes, all embedded in the interior of the absorbent cell, confined between the transparent window, 14, and the rear insulating wall, 15. In this configuration it would be necessary to have a lyre to accommodate the expansion, 17, to allow transverse dilations of the tube assembly. Logically, these would have to have their height expansion accommodation, before entering the boiler.
Modo de realización de la invenciónEmbodiment of the invention
La invención puede materializarse sobre diversos tipos de torre, y para una amplísima variedad de campos de helióstatos, pues los requisitos impuestos al control de éstos para el seguimiento solar serían absolutamente ordinarios. Lo específico de la invención sería la disposición de los paneles a lo ancho y alto de la torre de concentración, de tal manera que durante la ascensión del fluido de trabajo por el interior de los colectores solares se produjera la ebullición parcial del mismo. Para ello se pueden utilizar materiales convencionales como cobre, aluminio o acero, aunque hay que tener en cuenta la conductividad térmica decreciente en los materiales indicados. En este sentido es fundamental contar con un recubrimiento específico, que también puede ser ordinario en la industria solar actual, con alta absortancia para la luz solar, y baja emísividad para la radiación térmica de los paneles (correspondiente a la temperatura de operación, de varios cientos de K, e incluso 1.000 K).The invention can be materialized on various types of tower, and for a wide variety of heliostat fields, since the requirements imposed on their control for solar tracking would be absolutely ordinary. The specific aspect of the invention would be the arrangement of the panels across the width and height of the concentration tower, in such a way that during the ascent of the working fluid through the interior of the solar collectors the partial boiling of the same took place. For this, conventional materials such as copper, aluminum or steel can be used, although the decreasing thermal conductivity in the indicated materials must be taken into account. In this sense it is essential to have a coating specific, which can also be ordinary in the current solar industry, with high absorbency for sunlight, and low emisivity for thermal radiation of the panels (corresponding to the operating temperature, several hundred K, and even 1,000 K) .
El montaje sería sobre la pared activa de la torre, inyectando el fluido ascendente en el calderín, que se montaría como un cabezal flotante sobre el conducto ascendente del fluido de trabajo.The assembly would be on the active wall of the tower, injecting the ascending fluid into the boiler, which would be mounted as a floating head on the ascending duct of the working fluid.
La invención por tanto podría materializarse en cualquiera de las torres existentes con campos de helióstatos, requiriendo no obstante la refocalización de éstos para apuntar con los rayos reflejados a la altura apropiada de la torre en cada caso, adecuándose la densidad de potencia incidente en cada sector de la torre colectora, para conseguir maximizar el rendimiento exergético en la producción de vapor y en su recalentamiento, para lo cual se habría de realizar un adecuado direccionamiento sectorial del campo de helióstatos. The invention could therefore be implemented in any of the existing towers with heliostat fields, however, requiring their refocusing to aim with the rays reflected at the appropriate height of the tower in each case, adapting the power density incident in each sector of the collecting tower, in order to maximize the exergy performance in steam production and in its reheating, for which an adequate sectorial direction of the heliostat field would have to be carried out.

Claims

Reivindicaciones Claims
1. Caldera de energía solar, caracterizada por disponer verticalmente los colectores de absorción de la luz solar (2) a lo ancho y alto de la pared, plana o curva, de una torre (1) de altura suficiente para posibilitar la ebullición de un fluido de trabajo que ascienda por el interior de dichos colectores, hasta un calderín (8) en el cual se verifique la separación de las fases del fluido, descendiendo por una canalización adecuada (6) la fase líquida para su recirculación, y ascendiendo la fase de vapor para su ulterior sobrecalentamiento en los colectores ubicados en la parte más alta de la torre (11), desde los cuales emergerán como vapor apropiado para la alimentación de un ciclo termodinámico.1. Solar energy boiler, characterized by vertically arranging the solar light absorption collectors (2) across the width and height of the wall, flat or curved, of a tower (1) of sufficient height to enable the boiling of a working fluid that ascends through the interior of said collectors, to a boiler (8) in which the separation of the phases of the fluid is verified, descending by a suitable channeling (6) the liquid phase for its recirculation, and ascending the phase of steam for further overheating in the collectors located in the highest part of the tower (11), from which they will emerge as suitable steam for the feeding of a thermodynamic cycle.
2. Caldera de energía solar, según reivindicación 1, caracterizada por que la luz incidente sobre los colectores situados en la torre proviene de un campo de helióstatos con seguimiento solar, para reflejar la luz directa del sol sobre la pared activa de la torre con sus colectores, de tal manera que la densidad superficial de potencia incidente sobre éstos a las diversas alturas provoca el consiguiente aumento de entalpia y la correspondiente ebullición en la primera etapa de paso del fluido a través de los colectores verticales (2), hasta llegar al calderín (8) con cierto título de vapor, que será función de la potencia solar recibida y de las condiciones del flujo de fluido, en caudal y temperatura de entrada.2. Solar energy boiler according to claim 1, characterized in that the incident light on the collectors located in the tower comes from a field of heliostats with solar tracking, to reflect direct sunlight on the active wall of the tower with its collectors, in such a way that the surface density of power incident on them at various heights causes the consequent increase in enthalpy and the corresponding boiling in the first stage of passage of the fluid through the vertical collectors (2), until reaching the boiler (8) with a certain vapor title, which will be a function of the solar power received and the conditions of the fluid flow, in flow and inlet temperature.
3. Caldera de energía solar, según reivindicación 1, caracterizada por que en el calderín (8) se produce la separación de fases, recirculándose la fase líquida merced a la bomba (5) que actúa en la tubería de recirculación (6), teniéndose así un grado de libertad para variar el caudal de fluido ascendiente en la primera etapa de colectores (2), pudiendo por tanto tener un título óptimo de cara a favorecer la ebullición, independientemente del caudal de vapor a producir, que se restituye al circuito a través de la bomba de condensado (4) proveniente del ciclo termodinámico que se alimenta por la salida de vapor seco (12). 3. Solar energy boiler, according to claim 1, characterized in that phase separation occurs in the boiler (8), the liquid phase being recirculated thanks to the pump (5) acting in the recirculation pipe (6), thus having a degree of freedom to vary the flow of ascending fluid in the first stage of manifolds (2), thus being able to have an optimal title in order to favor boiling, regardless of the steam flow rate produce, which is restored to the circuit through the condensate pump (4) from the thermodynamic cycle that is fed by the dry steam outlet (12).
PCT/ES2007/000462 2006-07-28 2007-07-26 Solar-powered boiler WO2008012390A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200602052 2006-07-28
ES200602052A ES2272194A1 (en) 2006-08-28 2006-08-28 Solar-powered boiler

Publications (1)

Publication Number Publication Date
WO2008012390A1 true WO2008012390A1 (en) 2008-01-31

Family

ID=38325003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/000462 WO2008012390A1 (en) 2006-07-28 2007-07-26 Solar-powered boiler

Country Status (2)

Country Link
ES (1) ES2272194A1 (en)
WO (1) WO2008012390A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009129167A3 (en) * 2008-04-16 2010-06-24 Alstom Technology Ltd A solar steam generator
EP2218978A1 (en) 2009-02-17 2010-08-18 Cockerill Maintenance & Ingéniérie Flag heat exchanger
WO2012052588A1 (en) 2010-10-20 2012-04-26 Abengoa Solar New Technologies, S.A. Tower receiver configuration for high power values
WO2013004869A1 (en) 2011-07-05 2013-01-10 Abengoa Solar New Technologies, S. A. Receiver for a thermosolar installation and thermosolar installation comprising said receiver
US11560449B2 (en) 2005-04-22 2023-01-24 Mitsubishi Chemical Corporation Biomass-resource-derived polyester and production process thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8893714B2 (en) * 2009-02-12 2014-11-25 Babcock Power Services, Inc. Expansion joints for panels in solar boilers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136674A (en) * 1977-07-28 1979-01-30 A. L. Korr Associates, Inc. System for solar radiation energy collection and conversion
US4245618A (en) * 1978-10-10 1981-01-20 The Babcock & Wilcox Co. Vapor generator
EP1066688A1 (en) * 1998-12-31 2001-01-10 Samsung Electronics Co., Ltd. A decoder having a gain controller in a mobile communication system
DE10248064A1 (en) * 2002-10-11 2004-04-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solar receiver device for utilization of solar energy has absorber tube in pressurizing region with higher linear expansion than pressurizing surface of tube
ES2222838A1 (en) * 2002-08-29 2005-02-01 Deutsches Zentrum Fuer Luft-Und Raumfahrt E.V. Solar receiver for solar thermic energy plant has absorber field with absorber elements enclosed by edge absorber with absorber modules

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485803A (en) * 1982-10-14 1984-12-04 The Babcock & Wilcox Company Solar receiver with interspersed panels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136674A (en) * 1977-07-28 1979-01-30 A. L. Korr Associates, Inc. System for solar radiation energy collection and conversion
US4245618A (en) * 1978-10-10 1981-01-20 The Babcock & Wilcox Co. Vapor generator
EP1066688A1 (en) * 1998-12-31 2001-01-10 Samsung Electronics Co., Ltd. A decoder having a gain controller in a mobile communication system
ES2222838A1 (en) * 2002-08-29 2005-02-01 Deutsches Zentrum Fuer Luft-Und Raumfahrt E.V. Solar receiver for solar thermic energy plant has absorber field with absorber elements enclosed by edge absorber with absorber modules
DE10248064A1 (en) * 2002-10-11 2004-04-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solar receiver device for utilization of solar energy has absorber tube in pressurizing region with higher linear expansion than pressurizing surface of tube

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560449B2 (en) 2005-04-22 2023-01-24 Mitsubishi Chemical Corporation Biomass-resource-derived polyester and production process thereof
WO2009129167A3 (en) * 2008-04-16 2010-06-24 Alstom Technology Ltd A solar steam generator
CN102046969A (en) * 2008-04-16 2011-05-04 阿尔斯托姆科技有限公司 A solar steam generator
US8607567B2 (en) 2008-04-16 2013-12-17 Alstom Technology Ltd Solar steam generator
EP2218978A1 (en) 2009-02-17 2010-08-18 Cockerill Maintenance & Ingéniérie Flag heat exchanger
WO2010094618A1 (en) 2009-02-17 2010-08-26 Cockerill Maintenance & Ingenierie Flag-shaped heat exchanger
WO2012052588A1 (en) 2010-10-20 2012-04-26 Abengoa Solar New Technologies, S.A. Tower receiver configuration for high power values
WO2013004869A1 (en) 2011-07-05 2013-01-10 Abengoa Solar New Technologies, S. A. Receiver for a thermosolar installation and thermosolar installation comprising said receiver

Also Published As

Publication number Publication date
ES2272194A1 (en) 2007-04-16

Similar Documents

Publication Publication Date Title
US4505260A (en) Radiant energy device
USRE30027E (en) Solar radiation collector and concentrator
US9989278B1 (en) Solar energy collector and/or concentrator, and thermal energy storage and retrieval system including the same
ES2745116T3 (en) Solar energy collector system
ES2646926T3 (en) Solar collector for solar heat boiler, and tower-type solar heat boiler equipped with it
ES2375389B1 (en) FRESNEL TYPE SOLAR CONCENTRATION PLANT WITH OPTIMIZED SECONDARY RECONCENTRATOR.
US20100294266A1 (en) Concentrated solar thermal energy collection device
WO2008012390A1 (en) Solar-powered boiler
Kalogirou Recent patents in solar energy collectors and applications
ES2715612T3 (en) Element of capture and concentration of direct solar radiation
US20100051088A1 (en) Photovoltaic solar concentrating power system
ES2352714A1 (en) Solar energy generating device
ES1162359U (en) Solar energy concentrator with mobile mirrors for use in thermal solar surface caprators or in static photovoltaic modules. (Machine-translation by Google Translate, not legally binding)
ES2803101B2 (en) BIFUNCTIONAL CYLINDER-PARABOLIC MANIFOLD AND INSTALLATION THAT INCLUDES SUCH MANIFOLD
WO2015139152A1 (en) Solar concentrator comprising flat mirrors oriented north-south and a cylindrical-parabolic secondary mirror having a central absorber
ES2636800B1 (en) Solar power generation plant
ES2575743B1 (en) Solar collector equipment
WO2013079744A1 (en) Configuration of the receivers in concentrated solar plants with towers
RU2194928C1 (en) Solar collector
ES2950333T3 (en) solar power plant
US20090126718A1 (en) Method and device for utilizing solar energy
WO2012059605A1 (en) Solar collector having a multi-tube receiver, thermosolar plants that use said collector and method for operating said plants
ES2782149B2 (en) ADAPTABLE FRESNEL LINEAR SOLAR COLLECTOR
ES2400647B1 (en) RECEIVER FOR A THERMOSOLAR INSTALLATION AND THERMOSOLAR INSTALLATION THAT INCLUDES SUCH RECEIVER
ES2901996T3 (en) solar power condenser system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07803649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07803649

Country of ref document: EP

Kind code of ref document: A1