WO2023171759A1 - Solid state battery module - Google Patents

Solid state battery module Download PDF

Info

Publication number
WO2023171759A1
WO2023171759A1 PCT/JP2023/009101 JP2023009101W WO2023171759A1 WO 2023171759 A1 WO2023171759 A1 WO 2023171759A1 JP 2023009101 W JP2023009101 W JP 2023009101W WO 2023171759 A1 WO2023171759 A1 WO 2023171759A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
state battery
solid state
battery module
substrate
Prior art date
Application number
PCT/JP2023/009101
Other languages
French (fr)
Japanese (ja)
Inventor
友裕 加藤
圭輔 清水
公博 水上
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023171759A1 publication Critical patent/WO2023171759A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid state battery module. More specifically, the present invention relates to a solid state battery that is modularized so that it can be mounted on a board.
  • Secondary batteries that can be repeatedly charged and discharged have been used for a variety of purposes.
  • secondary batteries are used as power sources for electronic devices such as smartphones and notebook computers.
  • a liquid electrolyte is generally used as a medium for ion movement that contributes to charging and discharging.
  • electrolytes are used in secondary batteries.
  • safety is generally required in terms of preventing electrolyte leakage.
  • organic solvent used in the electrolyte is a flammable substance, safety is also required in this respect.
  • a solid-state battery has a battery element including a positive electrode layer, a negative electrode layer, and a solid electrolyte interposed between the positive electrode layer and the negative electrode layer.
  • an object of the present invention is to provide a solid state battery module that can suitably heat a solid state battery.
  • a solid battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer provided between the positive electrode layer and the negative electrode layer, a conductor part, a heating part, and a substrate, the solid state battery is disposed on the substrate, A solid-state battery module is provided, in which the heating section and the solid-state battery can be thermally coupled via the conductor section.
  • the solid state battery that is a component of the module can be suitably heated.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of a modular solid-state battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the minimum distance between the opposing surface of the conductor portion facing the solid battery and the solid battery.
  • FIG. 3 is a plan view schematically showing the relationship in plane size between a modular solid-state battery and battery elements according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing a modular solid-state battery according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing a modularized solid-state battery according to another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of a modular solid-state battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the minimum distance between the opposing surface of the conductor portion facing the solid battery and the solid battery.
  • FIG. 3 is a plan
  • FIG. 6 is a cross-sectional view schematically showing a modular solid-state battery according to another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing a modularized solid state battery according to another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view schematically showing a modularized solid state battery according to another embodiment of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing a modular solid-state battery according to another embodiment of the present invention.
  • FIG. 10 is a cross-sectional view schematically showing a modular solid-state battery according to another embodiment of the present invention.
  • FIG. 11 is a plan view schematically showing an arrangement of conductor parts according to an embodiment of the present invention.
  • FIG. 11 is a plan view schematically showing an arrangement of conductor parts according to an embodiment of the present invention.
  • FIG. 12 is a cross-sectional view schematically showing a modularized solid-state battery according to another embodiment of the present invention.
  • FIG. 13A is a process cross-sectional view schematically showing a manufacturing process of a solid state battery module according to an embodiment of the present invention.
  • FIG. 13B is a process cross-sectional view schematically showing a manufacturing process of a solid state battery module according to an embodiment of the present invention.
  • FIG. 13C is a process cross-sectional view schematically showing a manufacturing process of a solid state battery module according to an embodiment of the present invention.
  • FIG. 13D is a process cross-sectional view schematically showing a manufacturing process of a solid state battery module according to an embodiment of the present invention.
  • solid battery module refers to a solid state battery device that is configured to protect a solid battery from the external environment, and in a narrow sense, it refers to a solid battery device configured to protect a solid battery from the external environment. It refers to a protected, mountable solid-state battery device.
  • a solid state battery module may also be referred to as a solid state battery package.
  • cross-sectional view refers to the shape viewed from a direction substantially perpendicular to the stacking direction in the stacked structure of a solid-state battery (simply put, the cross-sectional view when cut along a plane parallel to the thickness direction of the layers) form).
  • planar view or “planar view shape” as used in this specification is based on a sketch when the object is viewed from above or below along the thickness direction of such layers (i.e., the above-mentioned lamination direction). ing.
  • the vertically downward direction corresponds to the "downward direction"/"bottom side
  • the opposite direction corresponds to the "upward direction"/"top side”. I can do it.
  • the term "solid battery” refers to a battery whose constituent elements are made of solid matter, and in a narrow sense, it refers to an all-solid-state battery whose constituent elements are made of solid matter.
  • the solid-state battery of the present invention is a stacked solid-state battery configured such that the layers constituting the battery constituent units are stacked on each other, and preferably each layer is made of a fired body.
  • a “solid battery” includes not only a so-called “secondary battery” that can be repeatedly charged and discharged, but also a "primary battery” that can only be discharged.
  • the "solid battery” is a secondary battery.
  • the term “secondary battery” is not excessively limited by its name, and may include, for example, power storage devices. Note that, in the present invention, the solid-state battery included in the module can also be referred to as a "solid-state battery element.”
  • FIG. 1 is a cross-sectional view schematically showing the configuration of a modular solid-state battery according to an embodiment of the present invention.
  • a solid state battery module 1000 according to an embodiment of the present invention includes a solid state battery 100 provided on a substrate 200.
  • the solid state battery module 1000 includes a board 200 that contributes to mounting, and a solid state battery 100 provided on the board 200 and protected from the external environment.
  • the solid battery 100 includes at least positive and negative electrode layers and a solid electrolyte.
  • the solid battery 100 has a battery element that includes a battery structural unit consisting of a positive electrode layer, a negative electrode layer, and at least a solid electrolyte interposed between them.
  • each of its constituent layers may be formed by firing, and the positive electrode layer, negative electrode layer, solid electrolyte, etc. may form the fired layers.
  • the positive electrode layer, the negative electrode layer, and the solid electrolyte are integrally fired with each other, and therefore, it is preferable that the battery element forms an integrally fired body.
  • the positive electrode layer is an electrode layer containing at least a positive electrode active material.
  • the positive electrode layer may further contain a solid electrolyte.
  • the positive electrode layer may be composed of a fired body containing at least positive electrode active material particles and a solid electrolyte.
  • the negative electrode layer is an electrode layer containing at least a negative electrode active material.
  • the negative electrode layer may further contain a solid electrolyte.
  • the negative electrode layer may be composed of a sintered body containing at least negative electrode active material particles and a solid electrolyte.
  • a positive electrode active material and a negative electrode active material are substances that participate in the transfer of electrons in a solid battery. Ions move (conduct) between the positive electrode layer and the negative electrode layer via the solid electrolyte, and electrons are exchanged to perform charging and discharging. It is particularly preferable that each electrode layer of the positive electrode layer and the negative electrode layer is a layer capable of intercalating and deintercalating lithium ions or sodium ions. That is, the solid battery is preferably an all-solid-state secondary battery in which lithium ions or sodium ions move between a positive electrode layer and a negative electrode layer via a solid electrolyte to charge and discharge the battery.
  • Examples of the positive electrode active material contained in the positive electrode layer include a lithium-containing phosphoric acid compound having a Nasicon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing layered oxide, and a lithium-containing phosphoric acid compound having a spinel-type structure. At least one selected from the group consisting of oxides and the like can be mentioned.
  • An example of a lithium-containing phosphoric acid compound having a Nasicon type structure includes Li 3 V 2 (PO 4 ) 3 and the like.
  • Examples of lithium-containing phosphate compounds having an olivine structure include Li 3 Fe 2 (PO 4 ) 3 , LiFePO 4 , and/or LiMnPO 4 .
  • lithium-containing layered oxides examples include LiCoO 2 and/or LiCo 1/3 Ni 1/3 Mn 1/3 O 2 .
  • lithium-containing oxides having a spinel structure examples include LiMn 2 O 4 and/or LiNi 0.5 Mn 1.5 O 4 .
  • sodium-containing phosphoric acid compounds having a Nasicon-type structure sodium-containing phosphoric acid compounds having an olivine-type structure, sodium-containing layered oxides, and spinel-type structures are used. At least one selected from the group consisting of sodium-containing oxides and the like can be mentioned.
  • Examples of the negative electrode active material contained in the negative electrode layer include oxides containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, and Mo, carbon materials such as graphite, and graphite-lithium. At least one selected from the group consisting of compounds, lithium alloys, lithium-containing phosphoric acid compounds having a Nasicon-type structure, lithium-containing phosphoric acid compounds having an olivine-type structure, lithium-containing oxides having a spinel-type structure, etc. It will be done.
  • An example of a lithium alloy is Li-Al.
  • lithium-containing phosphoric acid compounds having a Nasicon type structure examples include Li 3 V 2 (PO 4 ) 3 and/or LiTi 2 (PO 4 ) 3 .
  • examples of the lithium-containing phosphoric acid compound having an olivine structure include Li 3 Fe 2 (PO 4 ) 3 and/or LiCuPO 4 .
  • An example of a lithium-containing oxide having a spinel structure is Li 4 Ti 5 O 12 and the like.
  • negative electrode active materials capable of intercalating and releasing sodium ions include sodium-containing phosphoric acid compounds having a Nasicon-type structure, sodium-containing phosphoric acid compounds having an olivine-type structure, and sodium-containing oxides having a spinel-type structure. At least one selected from the group consisting of:
  • the positive electrode layer and the negative electrode layer may be made of the same material.
  • the positive electrode layer and/or the negative electrode layer may contain a conductive material.
  • the conductive material contained in the positive electrode layer and the negative electrode layer include at least one metal material such as silver, palladium, gold, platinum, aluminum, copper, and nickel, and carbon.
  • the positive electrode layer and/or the negative electrode layer may contain a sintering aid.
  • the sintering aid include at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide, and phosphorus oxide.
  • the thickness of the positive electrode layer and the negative electrode layer is not particularly limited, but may be, for example, independently 2 ⁇ m or more and 50 ⁇ m or less, particularly 5 ⁇ m or more and 30 ⁇ m or less.
  • the positive electrode layer and the negative electrode layer may each include a positive electrode current collecting layer and a negative electrode current collecting layer.
  • Each of the positive electrode current collecting layer and the negative electrode current collecting layer may be in the form of a foil.
  • the positive electrode current collecting layer and the negative electrode current collecting layer should each form a fired body. It may have.
  • the positive electrode current collecting layer and the negative electrode current collecting layer it is preferable to use a material with high electrical conductivity, and for example, silver, palladium, gold, platinum, aluminum, copper, and/or nickel may be used.
  • the positive electrode current collecting layer and the negative electrode current collecting layer may each have an electrical connection part for electrically connecting with the outside, and may be configured to be electrically connectable to the end surface electrode.
  • the positive electrode current collecting layer and the negative electrode current collecting layer are fired bodies, they may be composed of fired bodies containing a conductive material and a sintering aid.
  • the conductive material contained in the positive electrode current collection layer and the negative electrode current collection layer is selected from, for example, the same materials as the conductive materials contained in the positive electrode layer and the negative electrode layer.
  • the sintering aid contained in the positive electrode current collecting layer and the negative electrode current collecting layer is selected, for example, from the same materials as the sintering aid contained in the positive electrode layer and the negative electrode layer.
  • a positive electrode current collecting layer and a negative electrode current collecting layer are not necessarily required in a solid battery, and a solid battery that is not provided with a positive electrode current collecting layer and a negative electrode current collecting layer is also conceivable. That is, the solid state battery included in the module of the present invention may be a solid state battery without a current collecting layer.
  • a solid electrolyte is a material that can conduct lithium ions or sodium ions.
  • a solid electrolyte that forms a battery constituent unit in a solid battery is a layer that can conduct lithium ions between a positive electrode layer and a negative electrode layer.
  • Specific solid electrolytes include, for example, lithium-containing phosphate compounds having a Nasicon structure, oxides having a perovskite structure, oxides having a garnet-type or garnet-like structure, oxide glass ceramic-based lithium ion conductors, and sulfide. Examples include glass ceramics-based lithium ion conductors, oxide-based glass materials, and sulfide-based glass materials.
  • an oxide having an amorphous structure an oxide having a composition containing a glassy substance made of Li, B, Si, and O and a halogen such as Cl or Br as an additive can be used.
  • the lithium-containing phosphoric acid compound having the above Nasicon structure includes Li x My (PO 4 ) 3 (1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, M is composed of Ti, Ge, Al, Ga, and Zr). at least one selected from the group).
  • An example of a lithium-containing phosphoric acid compound having a Nasicon structure includes Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like.
  • Examples of oxides having a perovskite structure include La 0.55 Li 0.35 TiO 3 and the like.
  • An example of an oxide having a garnet type or garnet type similar structure includes Li 7 La 3 Zr 2 O 12 and the like.
  • oxide glass-ceramic lithium ion conductors include phosphoric acid compounds containing lithium, aluminum and titanium as constituent elements (LATP), phosphoric acid compounds containing lithium, aluminum and germanium as constituent elements (LAGP), etc. It will be done. Further, examples of the sulfide glass ceramic lithium ion conductor include Li 7 P 3 S 11 and Li 3.25 P 0.95 S 4 .
  • oxide glass material examples include 50Li 4 SiO 4 .50Li 3 BO 3 and the like.
  • Sulfide glass materials include, for example , 30Li 2 S.26B 2 S 3.44LiI, 63Li 2 S.36SiS 2.1Li 3 PO 4 , 57Li 2 S.38SiS 2.5Li 4 SiO 4 and 70Li 2 S. Examples include 30P 2 S 5 and 50Li 2 S.50GeS 2 .
  • the solid electrolyte is selected from the group consisting of oxides, oxide glass ceramics-based lithium ion conductors, and oxide-based glass materials. It may contain at least one kind.
  • Examples of the solid electrolyte that can conduct sodium ions include sodium-containing phosphoric acid compounds having a Nasicon structure, oxides having a perovskite structure, and oxides having a garnet type or garnet type similar structure.
  • sodium-containing phosphate compound having a Nasicon structure Na x My (PO 4 ) 3 (1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, M is from the group consisting of Ti, Ge, Al, Ga and Zr) at least one selected type).
  • the solid electrolyte may contain a sintering aid.
  • the sintering aid contained in the solid electrolyte is selected, for example, from the same materials as the sintering aid contained in the positive electrode layer and the negative electrode layer.
  • the thickness of the solid electrolyte is not particularly limited.
  • the thickness of the solid electrolyte located between the positive electrode layer and the negative electrode layer may be, for example, 1 ⁇ m or more and 50 ⁇ m or less, particularly 10 ⁇ m or more and 40 ⁇ m or less.
  • Solid state batteries are generally provided with end electrodes 120.
  • end electrodes 120 are provided on the side surfaces of the solid state battery. More specifically, an end surface electrode 120A on the positive electrode side connected to the positive electrode layer and an end surface electrode 120B on the negative electrode side connected to the negative electrode layer are provided (see FIG. 1).
  • such end electrodes include a material with high electrical conductivity.
  • Specific materials for the end electrodes are not particularly limited, but may include at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, tin, and nickel. Note that antimony, bismuth, indium, zinc, aluminum, etc., which form an alloy with tin, may be included.
  • the solid state battery module 1000 includes the substrate 200 and the solid state battery 100 provided on the substrate 200 (see FIG. 1). Therefore, by interposing the substrate 200 between the solid-state battery 100 and an external substrate, it is possible to suppress the entry of water vapor into the solid-state battery 100.
  • the substrate 200 has a main surface larger than, for example, a solid state battery.
  • a printed circuit board can be used.
  • the type thereof is not particularly limited, and may be a resin substrate or a ceramic substrate.
  • a rigid substrate or a flexible substrate may be used.
  • examples of the ceramic substrate include an alumina substrate, an LTCC substrate, or an HTCC substrate.
  • the resin substrate may be made of a material in which a base material is impregnated with resin. Examples of the base material include paper, glass fiber cloth, and resin film.
  • the resin may be a thermoplastic resin and/or a thermosetting resin.
  • paper phenolic substrates made by impregnating a paper base material with phenolic resin paper epoxy substrates made by impregnating a paper base material with epoxy resin, glass epoxy substrates made by impregnating glass fiber cloth with epoxy resin, polyimide and PET (polyethylene terephthalate), etc.
  • Examples include flexible substrates using talate resin.
  • the substrate is preferably a member for electrically connecting the modular solid-state battery to the outside.
  • the substrate serves as a terminal substrate for the external terminals of the solid-state battery.
  • the solid state battery can be mounted on another secondary substrate such as a printed wiring board with the substrate interposed therebetween.
  • the solid state battery module of the present invention is preferably an SMD (Surface Mount Device) type battery module.
  • the solid state battery module 1000 itself be configured to prevent water vapor permeation as a whole.
  • the solid state battery 100 provided on the substrate 200 can be covered with the covering part 500 so as to be completely surrounded.
  • the solid battery 100 on the substrate 200 is modularized so that the main surface 100A and the side surface 100B are surrounded by the covering part 500.
  • the inventor of the present application has diligently studied solutions for suitably heating the solid state battery 100 (specifically, the battery element 110) in the solid state battery module 1000, and as a result, has published a book having the following technical idea. He came up with an invention.
  • the technical idea of the present invention is to "thermally couple the heating section 300 as a heat source and the solid battery 100 via the conductor section 400" (see FIG. 1).
  • thermal coupling refers to a state in which one component (heating section) and another component (solid-state battery) are thermally coupled, that is, thermally connected and/or heat transfer Refers to a possible state.
  • conductor section refers to a component having thermal conductivity.
  • the heat of the heating section 300 can be suitably transferred to the solid battery 100 via the conductor section 400.
  • the solid state battery 100 ie, the battery element 110 of the solid state battery 100
  • the heat of the heating section 300 can be suitably transferred to the solid battery 100 via the conductor section 400.
  • the solid state battery 100 ie, the battery element 110 of the solid state battery 100
  • the conductor section 400 and the heating section 300 may be provided between the solid state battery 100 and the substrate 200. That is, the conductor part 400 and the heating part 300 can be arranged below the solid state battery 100, specifically, the battery element 110. According to this arrangement, the overall size of the solid state battery module 1000 can be reduced. Further, the heating unit 300 may be arranged on the main surface 210 (hereinafter also referred to as the first main surface) of the substrate 200 on the side facing the solid battery 100.
  • the heating unit 300 does not necessarily need to be disposed between the solid battery 100 and the substrate 200, but may be placed anywhere on the first main surface 210 of the substrate 200 (between the solid battery 100 and the substrate 200). (including locations where there is no such thing).
  • the conductor section 400 may be provided between the heating section 300 and the solid battery 100.
  • the conductor section 400 may be placed adjacent to and/or in direct contact with the heating section 300.
  • the wiring 220 provided on the first main surface 210 of the substrate 200, specifically, so that both the heating section 300 and the conductor section 400 are adjacent to each other in cross-sectional view share metal wiring.
  • the wiring 220 may be made of, for example, Cu plated with Au (Cu-Au), or Cu plated with Ni and Au (Cu-Ni-Au). Although not particularly limited, the thickness of the wiring 220 can be 2 to 50 ⁇ m, for example 30 ⁇ m.
  • the conductor part 400D is provided on the heating part 300 so that the conductor part and the heating part 300 form a row in cross-sectional view (see FIG. 7). With such a row-like arrangement, heat from the heating section 300 can be suitably transferred to the conductor section 400D without using wiring having heat conductive properties.
  • the conductor section 400D and the heating section 300 can form a row, the thermal conductivity of the group consisting of the conductor section 400D and the heating section 300 is improved compared to the case where the conductor section 400 and the heating section 300 are arranged adjacently.
  • the number of partial aggregates can be increased.
  • the heat of the heating section 300 can be more suitably transferred to the solid battery 100 side, specifically, to the battery element 110 side via the conductor section 400D.
  • the conductor part 400 can be a metal conductor part.
  • the metal conductor portion may be made of at least one material selected from the group consisting of Cu, Al, and Au.
  • the metal conductor portion may be a pillar-shaped metal conductor portion.
  • pillar-shaped metal conductor section as used herein mainly refers to a column-shaped metal conductor section that extends in a predetermined direction, but it also refers to a column-shaped metal conductor section that has a bent or curved portion at a predetermined location. Also includes the department.
  • a metal pin for example, a Cu pin can be used.
  • a PTC heater or the like can be used as the heating section 300.
  • the minimum distance D1 between the solid battery 100 and the opposing surface 410 of the conductor portion 400 facing the solid battery 100 is smaller than the minimum distance D2 between the solid battery 100 and the substrate 200.
  • the minimum distance D1 between the facing surface 410 of the conductor section 400 that faces the battery element 110 and the battery element 110 is smaller than the minimum distance D2 between the battery element 110 and the substrate 200.
  • the minimum distance D1 between the opposing surface 410 of the conductor section 400 that faces the solid battery 100 and the solid battery 100 is between 0% and 50% of the minimum distance L2 between the solid battery 100 and the substrate 200. obtain.
  • the conductor section 400 does not necessarily need to be disposed between the solid state battery 100 and the substrate 200. Instead, the conductor portion 400 may extend from the substrate 200 side so as to be able to face the side surface of the battery element 110 or the like.
  • the planar size of the solid-state battery module 1000 may be 110% or more and 250% or less, preferably 150% or more and 200% or less, of the planar size of the battery element 110 of the solid-state battery 100.
  • the heating section 300 and the conductor section 400 are not only arranged so as to overlap the battery element 110, but also at least a part thereof is arranged within the covering section 500 that covers the side and top surfaces of the battery element 110 of the solid-state battery. It's good that it has been done.
  • the present invention preferably adopts the following embodiments.
  • the heating section 300 may further include a low thermal conductivity section 600 having a relatively lower thermal conductivity than that of the conductor section 400, and the heating section 300 may be provided between the low thermal conduction section 600 and the conductor section 400. Preferred (see Figure 4).
  • the heat of the heating section 300 can be suitably transferred to the solid battery 100 side via the conductor section 400.
  • the wiring 220 of the substrate 200 is connected from the first main surface 210 side through the interior of the substrate 200 to the opposite side of the first main surface 210. It continues to the second main surface 230 side (mounting side). Therefore, the heat of the heating section 300 arranged on the wiring 220 on the first main surface 210 of the substrate 200 may go out not only through the conductor section 400 side but also through the second main surface 230 side of the substrate 200. There is.
  • a heating section 300 is provided between the low thermal conductivity section 600 and the conductor section 400 (see FIG. 4). That is, the heating section 300 can be sandwiched between the low thermal conductivity section 600 and the conductor section 400.
  • the low thermal conductivity portion 600 a ceramic jumper resistor, a ceramic chip fuse, or the like having electrical short-circuit characteristics can be used.
  • the material of the low thermal conductivity portion 600 for example, a material containing an inorganic insulator such as alumina can be used.
  • the low thermal conductivity section 600 since the low thermal conductivity section 600 has a relatively lower thermal conductivity than that of the conductor section 400, the heat generated from the heating section 300 is transferred from the first principal surface 210 side of the substrate 200 to the second principal surface 210 side of the substrate 200. Movement toward the main surface 230 can be suppressed. By such suppression, the power consumed by the heating section 300 to generate heat can also be suppressed.
  • a conductive adhesive layer 700 is further provided between the conductor portion 400 and the solid battery 100 in a cross-sectional view (see FIG. 5).
  • the conductive adhesive layer 700 can be positioned between the conductor portion 400 and the solid battery 100, specifically the battery element 110.
  • the conductive adhesive layer 700 is a layer that has conductive and adhesive properties. Due to this property, one side 710 of the conductive adhesive layer 700 can be in contact with the conductor section 400 and the other side 720 can be in contact with the battery element 110. That is, the conductive adhesive layer 700 can be in contact with the conductor portion 400 and the solid battery 100. Thereby, the electrical connection between the solid battery 100 and the conductor portion 400 can be ensured by the conductive adhesive layer 700, and the physical connection strength between the two can be improved. Note that, from the viewpoint of preventing short circuits, it is preferable that the conductive adhesive layer 700 is separated from the end electrode 120.
  • the width of the conductive adhesive layer 700 is larger than the width of the facing surface 410 of the conductor portion 400. According to this configuration, in addition to the electrical connection and physical connection strength between the solid-state battery 100 and the conductor part 400, the heat of the heating part is transmitted from the conductor part 400 to the inside of the solid-state battery 100. be able to. That is, more suitable heat transfer to the inside of the solid state battery 100 becomes possible.
  • a conductive adhesive layer 800 is further provided to be wrapped around the outer periphery of the battery element 110 of the solid battery 100 (see FIGS. 6 and 7).
  • the battery element 110 is further provided with a second conductor portion 850 that partially surrounds the battery element 110, and the second conductor portion 850 is provided to face the conductor portion 400 in a cross-sectional view. It is more preferable to do so (see FIG. 8).
  • the second conductor portion 850 may be a housing-like metal conductor. Note that as the conductive adhesive layers 700 and 800, for example, metal foil, solder, etc. can be used.
  • the second conductor portion 850 for example, metal foil, solder, conductive paste, etc. can be used.
  • the conductive paste may be at least one material selected from the group consisting of Cu, Al, Au, and Ni.
  • the second conductor section 850 for example, one made of Cu foil can also be used.
  • the solder is not particularly limited, but at least one type selected from the group consisting of SnAgCu type, SnAg type, SnSb type, AuSn type, and AlZn type can be used.
  • the heat of the heating section 300 is further spread from the conductor section 400 into the inside of the solid state battery 100. can be conveyed to. That is, even more suitable heat transfer to the inside of the battery element 110 is possible.
  • the conductive adhesive layers 700 and 800 for example, an Ag conductive adhesive layer can be used.
  • the covering portion 500 includes at least a covering insulating layer 510 (see FIGS. 6 to 8).
  • Covering insulating layer 510 is a layer provided so as to cover main surface 100A and side surface 100B of solid battery 100. The entire solid state battery 100 on the substrate 200 is largely covered by such a covering insulating layer.
  • the covering insulating layer 510 may be made of any material as long as it exhibits insulating properties.
  • the covering insulating layer may contain a resin, and the resin may be either a thermosetting resin or a thermoplastic resin.
  • the covering insulating layer may contain an inorganic filler.
  • the covering insulating layer may be made of an epoxy resin containing an inorganic filler such as SiC, SiO 2 , SiN, or the like.
  • the insulating cover layer 510 has a relatively lower thermal conductivity than the conductor part 400, the heat of the heating part 300 transmitted to the solid battery 100 side is radiated to the outside via the cover part 500. It is possible to suppress the Further, all the surfaces forming the solid state battery 100 are not exposed to the outside, and water vapor permeation can be suitably prevented.
  • the covering portion 500 may include a covering insulating layer 510 and a covering inorganic layer 520.
  • the solid state battery 100 may be covered with a covering insulating layer 510 and a covering inorganic layer 520 of the covering portion 500 (see FIGS. 6 to 8).
  • the covering inorganic layer 520 is provided to cover the covering insulating layer. Since the covering inorganic layer is positioned on the covering insulating layer, it has a form that largely envelops the solid battery 100 on the substrate 200 together with the covering insulating layer.
  • This coated inorganic layer may have a film form, for example. Furthermore, the covering inorganic layer can also cover the side surfaces of the substrate 200.
  • the insulating coating layer together with the inorganic coating layer forms a suitable water vapor barrier, and the inorganic coating layer also forms a suitable water vapor barrier together with the insulating coating layer.
  • the term "barrier” as used herein means having a property of preventing water vapor permeation to such an extent that water vapor in the external environment does not pass through the substrate and cause deterioration of characteristics that are disadvantageous to the solid-state battery. In a narrow sense, this means that the water vapor permeability is less than 5 ⁇ 10 ⁇ 3 g/(m 2 ⁇ Day). To put it simply, the water vapor barrier layer preferably has a water vapor permeability of 0 or more and less than 5 ⁇ 10 ⁇ 3 g/(m 2 ⁇ Day).
  • the material of the covering inorganic layer 520 is not particularly limited, and may be metal, glass, oxide ceramics, or a mixture thereof.
  • the covering inorganic layer may correspond to an inorganic layer in the form of a thin film, and in this case it is preferably a metal film, for example.
  • the inorganic coating layer may be composed of a plated Cu-based and/or Ni-based material having a thickness of 2 to 50 ⁇ m.
  • the device further includes a temperature detection device 900 capable of detecting the temperature of the solid battery 100, and that the temperature detection device 900 is provided between the solid battery 100 and the substrate 200 (see FIG. 10).
  • a temperature detection device 900 an NTC thermistor can be used. With such a temperature sensing device 900, the temperature inside the solid-state battery 100, specifically, the temperature inside the battery element 110, can be measured in a timely manner. As a result, heating control of the heating section 300 can be performed stably by checking the temperature situation inside the battery element 110. Further, since it is possible to control the heating unit 300 so that it is not driven except when necessary, abnormal heating of the heating unit 300 and excessive current consumption of the heating unit 300 can be suppressed.
  • the temperature sensing device 900 is arranged adjacent to a joining member 950 (that is, equivalent to a metal pin for an electrode) that is responsible for electrically connecting the end surface electrode of the solid battery 100 (for example, the negative end surface electrode 122) and the substrate 200. It is more preferable that According to such an adjacent arrangement, the temperature sensing device 900 and the bonding member 950 can share the wiring 220 arranged on the first main surface 210 of the substrate 200. Therefore, one electrode (eg, negative electrode) side of the battery and the temperature sensing device 900 can be interconnected not only electrically but also thermally via the wiring 220.
  • a joining member 950 that is, equivalent to a metal pin for an electrode
  • the temperature sensing device 900 and the bonding member 950 can share the wiring 220 arranged on the first main surface 210 of the substrate 200. Therefore, one electrode (eg, negative electrode) side of the battery and the temperature sensing device 900 can be interconnected not only electrically but also thermally via the wiring 220.
  • the distance between the conductor section 400 and the heating section 300 adjacent thereto and the temperature detection device 900 is longer than the distance between the temperature detection device 900 and the electrode joining member (i.e., equivalent to the metal pin for the electrode). It is preferable to make it long. As a result, the temperature sensing device 900 unnecessarily detects not only the temperature inside the battery element 100 but also the heating temperature of the heating section 300 and/or the heat transfer temperature of the conductor section 400, and It is possible to avoid stopping heating and/or causing the heating unit 300 to become inactive.
  • the conductor portion 400 is provided at least in the central region 111 of the solid-state battery 100 in plan view (see FIGS. 10 and 11). Note that, from the viewpoint of suitable heat transfer of the heat of the heating unit 300 to the solid-state battery 100 via the conductor part 400, the conductor part 400 is located in the central region 111 and the central region of the solid-state battery 100 in a plan view of the solid-state battery 100. It is preferable that a total of 2 or more and 10 or less, for example, 5, are provided in the peripheral area 112 located around 111 (see FIGS. 10 and 11).
  • the conductor portion 400X has an inverted tapered shape in cross-sectional view (see FIG. 12). According to this shape, the size of the opposing surface 41X of the conductor portion 400X that faces the solid battery 100 can be made larger than in the case where the conductor portion 400X does not have an inverted tapered shape. This allows suitable heat transfer of the heat of the heating section 300 to the solid battery 100 via the conductor section 400X.
  • the solid-state battery module that is the object of the present invention is a process of preparing a solid-state battery including battery constituent units having a positive electrode layer, a negative electrode layer, and a solid electrolyte between these electrodes, and then modularizing the solid-state battery. It can be obtained by going through.
  • the production of the solid-state battery of the present invention can be broadly divided into the production of the solid-state battery itself (hereinafter also referred to as "pre-module battery"), which corresponds to the preliminary stage of modularization, preparation of the substrate, and modularization. .
  • the pre-module battery can be manufactured by a printing method such as a screen printing method, a green sheet method using a green sheet, or a combination thereof.
  • the pre-module battery itself may be manufactured according to a conventional manufacturing method for solid-state batteries (therefore, the solid electrolyte, organic binder, solvent, optional additives, positive electrode active material, negative electrode active material, etc. described below), etc.
  • the raw materials used in the production of known solid-state batteries may be used).
  • (Laminated block formation) Prepare a slurry by mixing the solid electrolyte, organic binder, solvent, and optional additives. Next, a sheet containing a solid electrolyte is formed from the prepared slurry by firing. -Create a positive electrode paste by mixing the positive electrode active material, solid electrolyte, conductive material, organic binder, solvent, and optional additives. Similarly, a negative electrode paste is prepared by mixing the negative electrode active material, solid electrolyte, conductive material, organic binder, solvent, and optional additives. - Print a positive electrode paste on the sheet, and also print a current collecting layer and/or a negative layer as necessary.
  • a negative electrode paste is printed on the sheet, and if necessary, a current collecting layer and/or a negative layer are printed.
  • a laminate by alternately stacking sheets printed with positive electrode paste and sheets printed with negative electrode paste.
  • the outermost layer (the uppermost layer and/or the lowermost layer) of the laminate may be an electrolyte layer, an insulating layer, or an electrode layer.
  • the laminate is crimped and integrated, it is cut into a predetermined size.
  • the obtained cut laminate is subjected to degreasing and firing. Thereby, a fired laminate is obtained.
  • the laminate may be degreased and fired before cutting, and then the laminate may be cut.
  • the end electrode on the positive electrode side can be formed by applying a conductive paste to the exposed side surface of the positive electrode in the fired laminate.
  • the end electrode on the negative electrode side can be formed by applying a conductive paste to the exposed side surface of the negative electrode in the fired laminate.
  • the end face electrodes on the positive electrode side and the negative electrode side may be provided so as to extend to the main surface of the fired laminate.
  • the component of the end electrode may be selected from at least one selected from silver, gold, platinum, aluminum, copper, tin, and nickel. Note that antimony, bismuth, indium, zinc, aluminum, etc., which form an alloy with tin, may be included.
  • end electrodes on the positive electrode side and the negative electrode side are not limited to being formed after firing the laminate, but may be formed before firing and subjected to simultaneous firing.
  • a desired pre-module battery (corresponding to the solid battery 100) can be obtained.
  • the substrate is prepared.
  • a resin substrate when used as the substrate, it may be prepared by laminating a plurality of layers and subjecting them to heating and pressure treatment.
  • a substrate precursor is formed using a resin sheet made by impregnating a fiber cloth serving as a base material with a resin raw material. After forming the substrate precursor, the substrate precursor is heated and pressurized using a press.
  • a ceramic substrate when used as a substrate, its preparation is, for example, by thermocompression bonding a plurality of green sheets to form a green sheet laminate, and by subjecting the green sheet laminate to firing to obtain a ceramic substrate. I can do it.
  • the ceramic substrate can be prepared, for example, in accordance with the preparation of an LTCC substrate.
  • a semirac substrate may have vias and/or lands.
  • holes may be formed in the green sheet using a punch press or carbon dioxide laser, and the holes may be filled with conductive paste material, or a printing method using conductive paste material or solder may be used.
  • Precursors of conductive parts such as vias and lands may be formed by this method. Note that the lands and the like can also be formed after the green sheet laminate is fired.
  • a plurality of wiring lines 220 are formed at predetermined intervals on the first main surface 210 of the substrate 200 for electrical connection (see FIG. 13A). Through the above steps, a desired substrate 200 can be obtained.
  • At least electronic components such as the conductor section 400, the heating section 300, and the joining member 950 (that is, equivalent to a metal pin for an electrode) are placed on the wiring 220 located at a predetermined location.
  • the low thermal conductivity section 600 it is preferable to place the low thermal conductivity section 600 so that the heating section 300 is sandwiched between the low thermal conductivity section 600 and the conductor section 400 (see FIG. 13B).
  • solder or conductive paste for example, Ag conductive paste
  • a precursor 950' of the bonding member responsible for the electrical connection between the solid battery 100 and the substrate 200 is formed. It may be set in advance.
  • solder and Ag conductive paste it can be provided by printing a conductive paste that does not require cleaning with flux or the like after formation, such as nanopaste, alloy paste, brazing material, etc.
  • a conductive paste that does not require cleaning with flux or the like after formation, such as nanopaste, alloy paste, brazing material, etc.
  • the pre-module battery 100 is placed on the substrate 200 on which electronic components are placed on the first main surface 210. That is, a “non-modular solid-state battery” is placed on the substrate (hereinafter, the battery used for modularization is also simply referred to as a “solid-state battery”).
  • the solid state battery 100 is connected so that the wiring 220 and the end electrode 120 of the solid state battery are electrically connected to each other, and the heating part 300 and the solid state battery 100 can be thermally coupled via the conductor part 400.
  • the substrate 200 is placed on the substrate 200.
  • the solid battery 100 can be placed on the substrate 200 so that the battery element 110 and the conductor part 400/heating part 300, etc., face each other.
  • a conductive paste for example, Ag conductive paste
  • solder or the like may be applied to the upper surface of the conductor portion 400 and the like before placing the solid battery.
  • the covering portion 500 preferably includes at least an insulating covering layer and further includes an inorganic covering layer (see FIG. 13D).
  • a covering insulating layer is formed so as to cover the solid state battery 100 on the substrate 200. Therefore, the raw material for the covering insulating layer is provided so that the solid state battery on the substrate is completely covered.
  • the insulating cover layer is made of a resin material
  • the insulating cover layer is formed by providing a resin precursor on the substrate and subjecting it to curing.
  • the covering insulating layer may be formed by applying pressure with a mold.
  • the overlying insulating layer encapsulating the solid state battery on the substrate may be formed through compression molding.
  • the raw material for the insulating coating layer may be in the form of granules, and may be thermoplastic. Note that such molding is not limited to mold molding, and may be performed through polishing, laser processing, and/or chemical treatment.
  • a part of the covering portion 500 may be formed first by applying and curing a resin to cover the electronic component-attached substrate before placing the solid battery 100 thereon. Thereafter, the top surface (corresponding to the above-mentioned opposing surface) of the conductor section 400 may be located. In this case, after indexing, the hardened resin and the upper surface of the conductor section 400 may be covered with a conductive paste or solder. Thereafter, after the solid state battery 100 is placed, the remaining portion of the insulating cover layer may be formed so as to cover the solid state battery 100.
  • the covering inorganic layer is formed.
  • a covering inorganic layer is formed on "a covering precursor in which each solid-state battery 100 is covered with a covering insulating layer on a substrate 200".
  • dry plating may be performed to form a dry plating film as the covering inorganic layer.
  • dry plating is performed to form a coating inorganic layer on exposed surfaces other than the bottom surface of the coating precursor (that is, other than the bottom surface of the supporting substrate).
  • a solid battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer provided between the positive electrode layer and the negative electrode layer, a conductor part, a heating part, and a substrate, the solid state battery is disposed on the substrate, A solid-state battery module, wherein the heating section and the solid-state battery can be thermally coupled via the conductor section.
  • a solid-state battery module wherein the heating section and the solid-state battery can be thermally coupled via the conductor section.
  • ⁇ 3> The solid state battery module according to ⁇ 1> or ⁇ 2>, wherein the conductor part is provided between the heating part and the solid state battery.
  • ⁇ 4> The solid battery module according to any one of ⁇ 1> to ⁇ 3>, wherein the conductor portion is adjacent to and/or directly in contact with the heating portion.
  • ⁇ 5> Any one of ⁇ 1> to ⁇ 4>, wherein the minimum distance between the opposing surface of the conductor portion facing the solid battery and the solid battery is smaller than the minimum distance between the solid battery and the substrate.
  • the solid state battery module described in . ⁇ 6> The minimum distance between the opposing surface of the conductor portion facing the solid battery and the solid battery is 0% or more and 50% or less of the minimum distance between the solid battery and the substrate, ⁇ 1> to The solid battery module according to any one of ⁇ 5>.
  • ⁇ 8> The solid-state battery module according to any one of ⁇ 1> to ⁇ 7>, which has a conductive adhesive layer between the conductor portion and the solid-state battery.
  • ⁇ 10> The solid battery module according to ⁇ 8> or ⁇ 9>, wherein the width of the conductive adhesive layer is larger than the width of the opposing surface of the conductor part.
  • ⁇ 11> The device according to any one of ⁇ 1> to ⁇ 10>, further including a second conductor portion that partially surrounds the solid battery, and the second conductor portion is provided so as to face the conductor portion in cross-sectional view.
  • solid state battery module ⁇ 12> The solid-state battery module according to any one of ⁇ 1> to ⁇ 11>, wherein the conductor portion is provided at least in a central region of the solid-state battery in plan view.
  • ⁇ 13> The solid-state battery module according to ⁇ 12>, wherein two or more conductor parts are provided in a central region of the solid-state battery and a peripheral region located around the central region in a plan view.
  • ⁇ 14> The solid battery module according to any one of ⁇ 1> to ⁇ 13>, wherein the conductor portion has an inverted tapered shape when viewed in cross section.
  • ⁇ 15> The solid battery module according to any one of ⁇ 1> to ⁇ 14>, wherein the heating section is a PTC heater.
  • the conductor portion is a metal pin.
  • ⁇ 17> The solid battery module according to any one of ⁇ 8> to ⁇ 16> that is subordinate to ⁇ 7>, wherein the low thermal conductivity part is a chip fuse.
  • ⁇ 18> further comprising a temperature detection device capable of detecting the temperature of the solid-state battery, The solid-state battery module according to any one of ⁇ 1> to ⁇ 17>, wherein the temperature sensing device is provided between the solid-state battery and the substrate.
  • the temperature sensing device is disposed adjacent to a joining member responsible for electrical connection between the end electrode of the solid state battery and the substrate.
  • the substrate is a resin substrate.
  • the solid state battery module according to one embodiment of the present invention can be used in various fields where battery use or power storage is expected.
  • the solid state battery module of the present invention can be used in the electrical, information, and communication fields where mobile devices are used (e.g., mobile phones, smartphones, notebook computers, digital cameras, activity meters, arm computers, electronic paper, RFID tags, card-type electronic money, small electronic devices such as smart watches, electrical/electronic equipment field or mobile equipment field), home/small industrial applications (e.g., power tools, golf carts, household/electronic equipment field), nursing care/industrial robots), large industrial applications (e.g. forklifts, elevators, harbor cranes), transportation systems (e.g.
  • hybrid cars electric cars, buses, trains, electrically assisted bicycles, electric motorcycles, etc.
  • power system applications e.g., various power generation, road conditioners, smart grids, home-installed electricity storage systems, etc.
  • medical applications medical equipment such as earphones and hearing aids
  • pharmaceutical applications medication management systems, etc.
  • IoT field space and deep sea applications (for example, in the fields of space probes, underwater research vessels, etc.).
  • Solid-state battery 100A Main surface of solid-state battery 100B Side surface of solid-state battery 110 Battery element 111 Central region of solid-state battery 112 Surrounding region located around the central region of solid-state battery 120 End surface electrode 121 Positive electrode end surface electrode 122 Negative electrode end surface 200 Substrate 210 First main surface of the board 220 Wiring 230 Second main surface of the board opposite to the first main surface 300 Heating section 400, 400D, 400X Conductor section 410, 410X Opposing surface of the conductor section facing the solid battery 500 , 500F Covering portion 510, 510F Covering insulating layer 520 Covering inorganic layer 600 Low thermal conductivity portion 700 Conductive adhesive layer 710 One side of the conductive adhesive layer 720 Other side of the conductive adhesive layer 800 Conductive adhesive layer 850 Second conductor Part 900 Temperature sensing device 950 Bonding member 950' Precursor of bonding member 1000, 1000A to 1000H Solid state battery module D1 Minimum distance between the facing surface of the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

An embodiment of the present invention provides a solid state battery module comprising: a solid state battery that has a positive electrode layer, a negative electrode layer, and a solid state electrolyte layer provided between the positive electrode layer and the negative electrode layer; a conductor unit; a heating unit; and a substrate. The solid state battery is disposed on the substrate, and the heating unit and the solid state battery can be thermally coupled to each other via the conductor unit.

Description

固体電池モジュールsolid state battery module
 本発明は、固体電池モジュールに関する。より具体的には、本発明は、基板実装できるようにモジュール化された固体電池に関する。 The present invention relates to a solid state battery module. More specifically, the present invention relates to a solid state battery that is modularized so that it can be mounted on a board.
 従前より、繰り返しの充放電が可能な二次電池が様々な用途に用いられている。例えば、二次電池は、スマートフォンおよびノートパソコン等の電子機器の電源として用いられたりする。二次電池においては、充放電に寄与するイオン移動のための媒体として液体の電解質が一般に使用されている。つまり、いわゆる電解液が二次電池に用いられている。しかしながら、そのような二次電池においては、電解液の漏出防止点で安全性が一般に求められる。また、電解液に用いられる有機溶媒等は可燃性物質ゆえ、その点でも安全性が求められる。 Secondary batteries that can be repeatedly charged and discharged have been used for a variety of purposes. For example, secondary batteries are used as power sources for electronic devices such as smartphones and notebook computers. In secondary batteries, a liquid electrolyte is generally used as a medium for ion movement that contributes to charging and discharging. In other words, so-called electrolytes are used in secondary batteries. However, in such secondary batteries, safety is generally required in terms of preventing electrolyte leakage. Furthermore, since the organic solvent used in the electrolyte is a flammable substance, safety is also required in this respect.
 そこで、電解液に代えて、固体電解質を用いた固体電池について研究が進められている。固体電池は、正極層、負極層、および正極層と負極層との電極層間に介在する固体電解質を備える電池要素を有する。 Therefore, research is progressing on solid-state batteries that use solid electrolytes instead of electrolytes. A solid-state battery has a battery element including a positive electrode layer, a negative electrode layer, and a solid electrolyte interposed between the positive electrode layer and the negative electrode layer.
特開2009-87814号公報JP2009-87814A
 従前より、固体電池の充電の特性向上のために、固体電池を加熱して固体電解質のイオン伝導度を高めることが知られている。従前においては、加熱部と固体電池の電極層、具体的には集電体との間に位置付けられた絶縁層を介して、電極層側を加熱する方法が採られている(特許文献1参照)。しかしながら、かかる態様では、介在する絶縁層の厚みだけ加熱部と電極層とが離隔するため、全体として、加熱部により固体電池が好適に加熱されるとは言い難い。 It has long been known to heat the solid battery to increase the ionic conductivity of the solid electrolyte in order to improve the charging characteristics of the solid battery. Conventionally, a method has been adopted in which the electrode layer side is heated via an insulating layer positioned between the heating section and the electrode layer of the solid-state battery, specifically the current collector (see Patent Document 1). ). However, in this embodiment, since the heating section and the electrode layer are separated by the thickness of the intervening insulating layer, it is difficult to say that the solid battery is suitably heated by the heating section as a whole.
 本発明はかかる課題に鑑みて為されたものである。即ち、本発明の目的は、固体電池を好適に加熱可能な固体電池モジュールを提供することである。 The present invention has been made in view of such problems. That is, an object of the present invention is to provide a solid state battery module that can suitably heat a solid state battery.
 上記目的を達成するために、
 正極層、負極層、および前記正極層と前記負極層との間に設けられた固体電解質層を備えた固体電池と、導体部と、加熱部と、基板と
を含み、
 前記固体電池が前記基板上に配置され、
 前記加熱部と前記固体電池とが前記導体部を介して熱結合可能となっている、固体電池モジュールが提供される。
In order to achieve the above purpose,
A solid battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer provided between the positive electrode layer and the negative electrode layer, a conductor part, a heating part, and a substrate,
the solid state battery is disposed on the substrate,
A solid-state battery module is provided, in which the heating section and the solid-state battery can be thermally coupled via the conductor section.
 本発明の一実施形態に係る固体電池モジュールによれば、その構成要素である固体電池を好適に加熱可能である。 According to the solid state battery module according to an embodiment of the present invention, the solid state battery that is a component of the module can be suitably heated.
図1は、本発明の一実施形態に係るモジュール化された固体電池の構成を模式的に示した断面図である。FIG. 1 is a cross-sectional view schematically showing the configuration of a modular solid-state battery according to an embodiment of the present invention. 図2は、固体電池と対向する導体部の対向面と固体電池との間の最小距離を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing the minimum distance between the opposing surface of the conductor portion facing the solid battery and the solid battery. 図3は、本発明の一実施形態に係るモジュール化された固体電池と電池要素との平面サイズの大小関係を模式的に示す平面図である。FIG. 3 is a plan view schematically showing the relationship in plane size between a modular solid-state battery and battery elements according to an embodiment of the present invention. 図4は、本発明の別の実施形態に係るモジュール化された固体電池を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a modular solid-state battery according to another embodiment of the present invention. 図5は、本発明の別の実施形態に係るモジュール化された固体電池を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a modularized solid-state battery according to another embodiment of the present invention. 図6は、本発明の別の実施形態に係るモジュール化された固体電池を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a modular solid-state battery according to another embodiment of the present invention. 図7は、本発明の別の実施形態に係るモジュール化された固体電池を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing a modularized solid state battery according to another embodiment of the present invention. 図8は、本発明の別の実施形態に係るモジュール化された固体電池を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing a modularized solid state battery according to another embodiment of the present invention. 図9は、本発明の別の実施形態に係るモジュール化された固体電池を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a modular solid-state battery according to another embodiment of the present invention. 図10は、本発明の別の実施形態に係るモジュール化された固体電池を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a modular solid-state battery according to another embodiment of the present invention. 図11は、本発明の一実施形態に係る導体部の配置形態を模式的に示す平面図である。FIG. 11 is a plan view schematically showing an arrangement of conductor parts according to an embodiment of the present invention. 図12は、本発明の別の実施形態に係るモジュール化された固体電池を模式的に示す断面図である。FIG. 12 is a cross-sectional view schematically showing a modularized solid-state battery according to another embodiment of the present invention. 図13Aは、本発明の一実施形態に係る固体電池モジュールの製造プロセスを模式的に示した工程断面図である。FIG. 13A is a process cross-sectional view schematically showing a manufacturing process of a solid state battery module according to an embodiment of the present invention. 図13Bは、本発明の一実施形態に係る固体電池モジュールの製造プロセスを模式的に示した工程断面図である。FIG. 13B is a process cross-sectional view schematically showing a manufacturing process of a solid state battery module according to an embodiment of the present invention. 図13Cは、本発明の一実施形態に係る固体電池モジュールの製造プロセスを模式的に示した工程断面図である。FIG. 13C is a process cross-sectional view schematically showing a manufacturing process of a solid state battery module according to an embodiment of the present invention. 図13Dは、本発明の一実施形態に係る固体電池モジュールの製造プロセスを模式的に示した工程断面図である。FIG. 13D is a process cross-sectional view schematically showing a manufacturing process of a solid state battery module according to an embodiment of the present invention.
 以下、本発明の一実施形態に係る固体電池モジュールについて具体的に説明する。必要に応じて図面を参照して説明を行うものの、図示する内容は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比などは実物と異なり得る。 Hereinafter, a solid state battery module according to an embodiment of the present invention will be specifically described. Although the explanation will be made with reference to the drawings as necessary, the contents shown in the drawings are merely shown schematically and exemplarily for understanding the present invention, and the appearance, dimensional ratio, etc. may differ from the actual thing.
 本明細書でいう「固体電池モジュール」は、広義には、外部環境から固体電池が保護されるように構成された固体電池デバイスのことを指しており、狭義には、外部環境から固体電池が保護された実装可能な固体電池デバイスのことを指している。固体電池モジュールは固体電池パッケージとも称し得る。 In a broad sense, the term "solid battery module" used herein refers to a solid state battery device that is configured to protect a solid battery from the external environment, and in a narrow sense, it refers to a solid battery device configured to protect a solid battery from the external environment. It refers to a protected, mountable solid-state battery device. A solid state battery module may also be referred to as a solid state battery package.
 本明細書でいう「断面視」とは、固体電池の積層構造における積層方向に対して略垂直な方向から捉えた形態(端的にいえば、層の厚み方向に平行な面で切り取った場合の形態)に基づいている。また、本明細書で用いる「平面視」または「平面視形状」とは、かかる層の厚み方向(即ち、上記の積層方向)に沿って対象物を上側または下側からみた場合の見取図に基づいている。 In this specification, "cross-sectional view" refers to the shape viewed from a direction substantially perpendicular to the stacking direction in the stacked structure of a solid-state battery (simply put, the cross-sectional view when cut along a plane parallel to the thickness direction of the layers) form). In addition, "planar view" or "planar view shape" as used in this specification is based on a sketch when the object is viewed from above or below along the thickness direction of such layers (i.e., the above-mentioned lamination direction). ing.
 本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材・部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」/「底面側」に相当し、その逆向きが「上方向」/「頂面側」に相当すると捉えることができる。 The "up-down direction" and "left-right direction" used directly or indirectly in this specification correspond to the up-down direction and the left-right direction in the drawings, respectively. Unless otherwise specified, the same reference numerals or symbols indicate the same members/parts or the same meanings. In a preferred embodiment, the vertically downward direction (that is, the direction in which gravity acts) corresponds to the "downward direction"/"bottom side", and the opposite direction corresponds to the "upward direction"/"top side". I can do it.
 本発明でいう「固体電池」は、広義にはその構成要素が固体から成る電池を指し、狭義にはすべての構成要素が固体から成る全固体電池を指している。ある好適な態様では、本発明における固体電池は、電池構成単位を成す各層が互いに積層するように構成された積層型固体電池であり、好ましくはそのような各層が焼成体から成っている。「固体電池」は、充電および放電の繰り返しが可能な、いわゆる「二次電池」のみならず、放電のみが可能な「一次電池」をも包含する。本発明のある好適な態様に従うと「固体電池」は二次電池である。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、蓄電デバイスなども包含し得る。なお、本発明において、モジュールに含まれる固体電池は「固体電池素子」と称すこともできる。 In the present invention, the term "solid battery" refers to a battery whose constituent elements are made of solid matter, and in a narrow sense, it refers to an all-solid-state battery whose constituent elements are made of solid matter. In a preferred embodiment, the solid-state battery of the present invention is a stacked solid-state battery configured such that the layers constituting the battery constituent units are stacked on each other, and preferably each layer is made of a fired body. A "solid battery" includes not only a so-called "secondary battery" that can be repeatedly charged and discharged, but also a "primary battery" that can only be discharged. According to a preferred embodiment of the present invention, the "solid battery" is a secondary battery. The term "secondary battery" is not excessively limited by its name, and may include, for example, power storage devices. Note that, in the present invention, the solid-state battery included in the module can also be referred to as a "solid-state battery element."
 図1は、本発明の一実施形態に係るモジュール化された固体電池の構成を模式的に示した断面図である。図1に示すように、本発明の一実施形態に係る固体電池モジュール1000は、基板200上に設けられた固体電池100を備えている。具体的には、固体電池モジュール1000は、実装に資する基板200と、基板200上に設けられかつ外部環境から保護された固体電池100とを備える。 FIG. 1 is a cross-sectional view schematically showing the configuration of a modular solid-state battery according to an embodiment of the present invention. As shown in FIG. 1, a solid state battery module 1000 according to an embodiment of the present invention includes a solid state battery 100 provided on a substrate 200. Specifically, the solid state battery module 1000 includes a board 200 that contributes to mounting, and a solid state battery 100 provided on the board 200 and protected from the external environment.
[固体電池の基本的構成]
 以下では、まず、固体電池100の基本的構成について説明する。ここで説明する固体電池の構成は、あくまでも発明の理解のための例示にすぎず、発明を限定するものではない。固体電池100は、正極・負極の電極層と固体電解質とを少なくとも有する。具体的には、固体電池100は、正極層、負極層、およびそれらの間に少なくとも介在する固体電解質から成る電池構成単位を含んだ電池要素を有する。
[Basic configuration of solid-state battery]
Below, first, the basic configuration of the solid state battery 100 will be explained. The configuration of the solid-state battery described here is merely an example for understanding the invention, and does not limit the invention. The solid battery 100 includes at least positive and negative electrode layers and a solid electrolyte. Specifically, the solid battery 100 has a battery element that includes a battery structural unit consisting of a positive electrode layer, a negative electrode layer, and at least a solid electrolyte interposed between them.
 固体電池100は、その構成要素である各層が焼成によって形成されていてもよく、正極層、負極層および固体電解質などが焼成層をなしていてもよい。好ましくは、正極層、負極層および固体電解質は、互いに一体焼成されており、それゆえ電池要素が一体焼成体を成していることが好ましい。 In the solid state battery 100, each of its constituent layers may be formed by firing, and the positive electrode layer, negative electrode layer, solid electrolyte, etc. may form the fired layers. Preferably, the positive electrode layer, the negative electrode layer, and the solid electrolyte are integrally fired with each other, and therefore, it is preferable that the battery element forms an integrally fired body.
 正極層は、少なくとも正極活物質を含む電極層である。正極層は、更に固体電解質を含んでいてもよい。ある好適な態様では、正極層は、正極活物質粒子と固体電解質とを少なくとも含む焼成体から構成されていてもよい。一方、負極層は、少なくとも負極活物質を含む電極層である。負極層は、更に固体電解質を含んでいてもよい。ある好適な態様では、負極層は、負極活物質粒子と固体電解質とを少なくとも含む焼結体から構成されていてもよい。 The positive electrode layer is an electrode layer containing at least a positive electrode active material. The positive electrode layer may further contain a solid electrolyte. In a preferred embodiment, the positive electrode layer may be composed of a fired body containing at least positive electrode active material particles and a solid electrolyte. On the other hand, the negative electrode layer is an electrode layer containing at least a negative electrode active material. The negative electrode layer may further contain a solid electrolyte. In a preferred embodiment, the negative electrode layer may be composed of a sintered body containing at least negative electrode active material particles and a solid electrolyte.
 正極活物質および負極活物質は、固体電池において電子の受け渡しに関与する物質である。固体電解質を介してイオンは正極層と負極層との間で移動(伝導)して電子の受け渡しが行われることで充放電がなされる。正極層および負極層の各電極層は特にリチウムイオンまたはナトリウムイオンを吸蔵放出可能な層であることが好ましい。つまり、固体電池は、固体電解質を介してリチウムイオンまたはナトリウムイオンが正極層と負極層との間で移動して電池の充放電が行われる全固体型二次電池であることが好ましい。 A positive electrode active material and a negative electrode active material are substances that participate in the transfer of electrons in a solid battery. Ions move (conduct) between the positive electrode layer and the negative electrode layer via the solid electrolyte, and electrons are exchanged to perform charging and discharging. It is particularly preferable that each electrode layer of the positive electrode layer and the negative electrode layer is a layer capable of intercalating and deintercalating lithium ions or sodium ions. That is, the solid battery is preferably an all-solid-state secondary battery in which lithium ions or sodium ions move between a positive electrode layer and a negative electrode layer via a solid electrolyte to charge and discharge the battery.
(正極活物質)
 正極層に含まれる正極活物質としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、および、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li(PO等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、LiFe(PO、LiFePO、および/またはLiMnPO等が挙げられる。リチウム含有層状酸化物の一例としては、LiCoO、および/またはLiCo1/3Ni1/3Mn1/3等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiMn、および/またはLiNi0.5Mn1.5等が挙げられる。
(Cathode active material)
Examples of the positive electrode active material contained in the positive electrode layer include a lithium-containing phosphoric acid compound having a Nasicon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing layered oxide, and a lithium-containing phosphoric acid compound having a spinel-type structure. At least one selected from the group consisting of oxides and the like can be mentioned. An example of a lithium-containing phosphoric acid compound having a Nasicon type structure includes Li 3 V 2 (PO 4 ) 3 and the like. Examples of lithium-containing phosphate compounds having an olivine structure include Li 3 Fe 2 (PO 4 ) 3 , LiFePO 4 , and/or LiMnPO 4 . Examples of lithium-containing layered oxides include LiCoO 2 and/or LiCo 1/3 Ni 1/3 Mn 1/3 O 2 . Examples of lithium-containing oxides having a spinel structure include LiMn 2 O 4 and/or LiNi 0.5 Mn 1.5 O 4 .
 また、ナトリウムイオンを吸蔵放出可能な正極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、ナトリウム含有層状酸化物、および、スピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。 In addition, as positive electrode active materials capable of intercalating and releasing sodium ions, sodium-containing phosphoric acid compounds having a Nasicon-type structure, sodium-containing phosphoric acid compounds having an olivine-type structure, sodium-containing layered oxides, and spinel-type structures are used. At least one selected from the group consisting of sodium-containing oxides and the like can be mentioned.
(負極活物質)
 負極層に含まれる負極活物質としては、例えば、Ti、Si、Sn、Cr、Fe、NbおよびMoから成る群より選ばれる少なくとも一種の元素を含む酸化物、黒鉛などの炭素材料、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、ならびに、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。リチウム合金の一例としては、Li-Al等が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li(PO、および/またはLiTi(PO等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、LiFe(PO、および/またはLiCuPO等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiTi12等が挙げられる。
(Negative electrode active material)
Examples of the negative electrode active material contained in the negative electrode layer include oxides containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, and Mo, carbon materials such as graphite, and graphite-lithium. At least one selected from the group consisting of compounds, lithium alloys, lithium-containing phosphoric acid compounds having a Nasicon-type structure, lithium-containing phosphoric acid compounds having an olivine-type structure, lithium-containing oxides having a spinel-type structure, etc. It will be done. An example of a lithium alloy is Li-Al. Examples of lithium-containing phosphoric acid compounds having a Nasicon type structure include Li 3 V 2 (PO 4 ) 3 and/or LiTi 2 (PO 4 ) 3 . Examples of the lithium-containing phosphoric acid compound having an olivine structure include Li 3 Fe 2 (PO 4 ) 3 and/or LiCuPO 4 . An example of a lithium-containing oxide having a spinel structure is Li 4 Ti 5 O 12 and the like.
 また、ナトリウムイオンを吸蔵放出可能な負極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、および、スピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。 In addition, negative electrode active materials capable of intercalating and releasing sodium ions include sodium-containing phosphoric acid compounds having a Nasicon-type structure, sodium-containing phosphoric acid compounds having an olivine-type structure, and sodium-containing oxides having a spinel-type structure. At least one selected from the group consisting of:
 なお、固体電池において、正極層と負極層とが同一材料でもよい。 Note that in the solid battery, the positive electrode layer and the negative electrode layer may be made of the same material.
 正極層および/または負極層は、導電性材料を含んでいてもよい。正極層および負極層に含まれる導電性材料として、銀、パラジウム、金、プラチナ、アルミニウム、銅およびニッケル等の金属材料、ならびに炭素などから成る少なくとも1種を挙げることができる。 The positive electrode layer and/or the negative electrode layer may contain a conductive material. Examples of the conductive material contained in the positive electrode layer and the negative electrode layer include at least one metal material such as silver, palladium, gold, platinum, aluminum, copper, and nickel, and carbon.
 さらに、正極層および/または負極層は、焼結助剤を含んでいてもよい。焼結助剤としては、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、酸化ケイ素、酸化ビスマスおよび酸化リンから成る群から選択される少なくとも1種を挙げることができる。 Furthermore, the positive electrode layer and/or the negative electrode layer may contain a sintering aid. Examples of the sintering aid include at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide, and phosphorus oxide.
 正極層および負極層の厚みは特に限定されないが、例えば、それぞれ独立して2μm以上50μm以下、特に5μm以上30μm以下であってよい。 The thickness of the positive electrode layer and the negative electrode layer is not particularly limited, but may be, for example, independently 2 μm or more and 50 μm or less, particularly 5 μm or more and 30 μm or less.
(正極集電層/負極集電層)
 電極層の必須要素ではないものの、正極層および負極層は、それぞれ正極集電層および負極集電層を備えていてもよい。正極集電層および負極集電層はそれぞれ箔の形態を成していてもよい。しかしながら、一体焼成による電子伝導性向上、固体電池の製造コスト低減および/または固体電池の内部抵抗低減などの観点をより重視するならば、正極集電層および負極集電層はそれぞれ焼成体の形態を有していてもよい。正極集電層および負極集電層としては、導電率が大きい材料を用いることが好ましく、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、および/またはニッケルなどを用いてよい。正極集電層および負極集電層はそれぞれ、外部と電気的に接続するための電気接続部を有していてもよく、端面電極と電気的に接続可能に構成されていてもよい。なお、正極集電層および負極集電層が焼成体の場合、それらは導電性材料および焼結助剤を含む焼成体により構成されていてもよい。正極集電層および負極集電層に含まれる導電性材料は、例えば、正極層および負極層に含まれる導電性材料と同様の材料から選択される。正極集電層および負極集電層に含まれる焼結助剤は、例えば、正極層・負極層に含まれる焼結助剤と同様の材料から選択さる。上述したように、固体電池において、正極集電層および負極集電層が必須というわけではなく、正極集電層および負極集電層が設けられていない固体電池も考えられる。つまり、本発明のモジュールに含まれる固体電池は、集電層レスの固体電池であってもよい。
(Positive electrode current collecting layer/Negative electrode current collecting layer)
Although not essential elements of the electrode layer, the positive electrode layer and the negative electrode layer may each include a positive electrode current collecting layer and a negative electrode current collecting layer. Each of the positive electrode current collecting layer and the negative electrode current collecting layer may be in the form of a foil. However, if more emphasis is placed on improving electronic conductivity through integral firing, reducing manufacturing costs of solid-state batteries, and/or reducing internal resistance of solid-state batteries, then the positive electrode current collecting layer and the negative electrode current collecting layer should each form a fired body. It may have. As the positive electrode current collecting layer and the negative electrode current collecting layer, it is preferable to use a material with high electrical conductivity, and for example, silver, palladium, gold, platinum, aluminum, copper, and/or nickel may be used. The positive electrode current collecting layer and the negative electrode current collecting layer may each have an electrical connection part for electrically connecting with the outside, and may be configured to be electrically connectable to the end surface electrode. Note that when the positive electrode current collecting layer and the negative electrode current collecting layer are fired bodies, they may be composed of fired bodies containing a conductive material and a sintering aid. The conductive material contained in the positive electrode current collection layer and the negative electrode current collection layer is selected from, for example, the same materials as the conductive materials contained in the positive electrode layer and the negative electrode layer. The sintering aid contained in the positive electrode current collecting layer and the negative electrode current collecting layer is selected, for example, from the same materials as the sintering aid contained in the positive electrode layer and the negative electrode layer. As described above, a positive electrode current collecting layer and a negative electrode current collecting layer are not necessarily required in a solid battery, and a solid battery that is not provided with a positive electrode current collecting layer and a negative electrode current collecting layer is also conceivable. That is, the solid state battery included in the module of the present invention may be a solid state battery without a current collecting layer.
(固体電解質)
 固体電解質は、リチウムイオンまたはナトリウムイオンが伝導可能な材質である。特に固体電池で電池構成単位を成す固体電解質は、正極層と負極層との間においてリチウムイオンが伝導可能な層である。具体的な固体電解質としては、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物、酸化物ガラスセラミックス系リチウムイオン伝導体、硫化物ガラスセラミックス系リチウムイオン伝導体、酸化物系ガラス材、硫化物系ガラス材等が挙げられる。非晶質構造を有する酸化物の例としては、Li、B、Si、Oからなるガラス状物質にCl、Br等のハロゲンが添加剤として含まれた組成を有するものを用いることができる。
(solid electrolyte)
A solid electrolyte is a material that can conduct lithium ions or sodium ions. In particular, a solid electrolyte that forms a battery constituent unit in a solid battery is a layer that can conduct lithium ions between a positive electrode layer and a negative electrode layer. Specific solid electrolytes include, for example, lithium-containing phosphate compounds having a Nasicon structure, oxides having a perovskite structure, oxides having a garnet-type or garnet-like structure, oxide glass ceramic-based lithium ion conductors, and sulfide. Examples include glass ceramics-based lithium ion conductors, oxide-based glass materials, and sulfide-based glass materials. As an example of an oxide having an amorphous structure, an oxide having a composition containing a glassy substance made of Li, B, Si, and O and a halogen such as Cl or Br as an additive can be used.
 上記のナシコン構造を有するリチウム含有リン酸化合物としては、Li(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物の一例としては、例えば、Li1.2Al0.2Ti1.8(PO等が挙げられる。ペロブスカイト構造を有する酸化物の一例としては、La0.55Li0.35TiO等が挙げられる。ガーネット型またはガーネット型類似構造を有する酸化物の一例としては、LiLaZr12等が挙げられる。酸化物ガラスセラミックス系リチウムイオン伝導体としては、例えば、リチウム、アルミニウムおよびチタンを構成元素に含むリン酸化合物(LATP)、リチウム、アルミニウムおよびゲルマニウムを構成元素に含むリン酸化合物(LAGP)等が挙げられる。また、硫化物系ガラスセラミックス系リチウムイオン伝導体は、例えば、Li11およびLi3.250.95等が挙げられる。 The lithium-containing phosphoric acid compound having the above Nasicon structure includes Li x My (PO 4 ) 3 (1≦x≦2, 1≦y≦2, M is composed of Ti, Ge, Al, Ga, and Zr). at least one selected from the group). An example of a lithium-containing phosphoric acid compound having a Nasicon structure includes Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like. Examples of oxides having a perovskite structure include La 0.55 Li 0.35 TiO 3 and the like. An example of an oxide having a garnet type or garnet type similar structure includes Li 7 La 3 Zr 2 O 12 and the like. Examples of oxide glass-ceramic lithium ion conductors include phosphoric acid compounds containing lithium, aluminum and titanium as constituent elements (LATP), phosphoric acid compounds containing lithium, aluminum and germanium as constituent elements (LAGP), etc. It will be done. Further, examples of the sulfide glass ceramic lithium ion conductor include Li 7 P 3 S 11 and Li 3.25 P 0.95 S 4 .
 酸化物系ガラス材は、例えば、50LiSiO・50LiBO等が挙げられる。また、硫化物系ガラス材は、例えば、30LiS・26B・44LiI、63LiS・36SiS・1LiPO、57LiS・38SiS・5LiSiO、70LiS・30Pおよび50LiS・50GeS等が挙げられる。 Examples of the oxide glass material include 50Li 4 SiO 4 .50Li 3 BO 3 and the like. Sulfide glass materials include, for example , 30Li 2 S.26B 2 S 3.44LiI, 63Li 2 S.36SiS 2.1Li 3 PO 4 , 57Li 2 S.38SiS 2.5Li 4 SiO 4 and 70Li 2 S. Examples include 30P 2 S 5 and 50Li 2 S.50GeS 2 .
 大気安定性に優れ、一体焼結を容易に成し得る観点をより重視すると、固体電解質は、酸化物、酸化物ガラスセラミックス系リチウムイオン伝導体および酸化物系ガラス材から成る群から選択される少なくとも一種を含んでいてもよい。 If more emphasis is placed on excellent atmospheric stability and ease of integral sintering, the solid electrolyte is selected from the group consisting of oxides, oxide glass ceramics-based lithium ion conductors, and oxide-based glass materials. It may contain at least one kind.
 また、ナトリウムイオンが伝導可能な固体電解質としては、例えば、ナシコン構造を有するナトリウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するナトリウム含有リン酸化合物としては、Na(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)が挙げられる。 Examples of the solid electrolyte that can conduct sodium ions include sodium-containing phosphoric acid compounds having a Nasicon structure, oxides having a perovskite structure, and oxides having a garnet type or garnet type similar structure. As a sodium-containing phosphate compound having a Nasicon structure, Na x My (PO 4 ) 3 (1≦x≦2, 1≦y≦2, M is from the group consisting of Ti, Ge, Al, Ga and Zr) at least one selected type).
 固体電解質は、焼結助剤を含んでいてもよい。固体電解質に含まれる焼結助剤は、例えば、正極層・負極層に含まれる焼結助剤と同様の材料から選択される。 The solid electrolyte may contain a sintering aid. The sintering aid contained in the solid electrolyte is selected, for example, from the same materials as the sintering aid contained in the positive electrode layer and the negative electrode layer.
 固体電解質の厚みは特に限定されない。正極層と負極層との間に位置する固体電解質の厚みは、例えば1μm以上50μm以下、特に10μm以上40μm以下であってよい。 The thickness of the solid electrolyte is not particularly limited. The thickness of the solid electrolyte located between the positive electrode layer and the negative electrode layer may be, for example, 1 μm or more and 50 μm or less, particularly 10 μm or more and 40 μm or less.
(端面電極)
 固体電池には、一般に端面電極120が設けられている。特に、固体電池の側面に端面電極120が設けられている。より具体的には、正極層と接続された正極側の端面電極120Aと、負極層と接続された負極側の端面電極120Bとが設けられている(図1参照)。そのような端面電極は、導電率が大きい材料を含むことが好ましい。端面電極の具体的な材質としては、特に制限されるわけではないが、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから成る群から選択される少なくとも一種を挙げることができる。なお、スズと合金を作る、アンチモン、ビスマス、インジウム、亜鉛、アルミニウム等が含まれていてもよい。
(end face electrode)
Solid state batteries are generally provided with end electrodes 120. In particular, end electrodes 120 are provided on the side surfaces of the solid state battery. More specifically, an end surface electrode 120A on the positive electrode side connected to the positive electrode layer and an end surface electrode 120B on the negative electrode side connected to the negative electrode layer are provided (see FIG. 1). Preferably, such end electrodes include a material with high electrical conductivity. Specific materials for the end electrodes are not particularly limited, but may include at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, tin, and nickel. Note that antimony, bismuth, indium, zinc, aluminum, etc., which form an alloy with tin, may be included.
[固体電池モジュールの基本的構成]
 以下では、固体電池モジュールの基本的構成について説明する。上述のように、本発明の一実施形態に係る固体電池モジュール1000は、基板200と、基板200上に設けられた固体電池100とを備える(図1参照)。そのため、固体電池100と外部基板などの間に基板200が介在することで、固体電池100内への水蒸気の浸入抑制を図ることもできる。
[Basic configuration of solid battery module]
Below, the basic configuration of the solid state battery module will be explained. As described above, the solid state battery module 1000 according to one embodiment of the present invention includes the substrate 200 and the solid state battery 100 provided on the substrate 200 (see FIG. 1). Therefore, by interposing the substrate 200 between the solid-state battery 100 and an external substrate, it is possible to suppress the entry of water vapor into the solid-state battery 100.
 又、図1に示すように、基板200は、例えば固体電池よりも大きい主面を有している。基板200としては、プリント基板が使用できる。その種類は特に限定されず、樹脂基板であってもよく、あるいは、セラミック基板であってもよい。さらに、リジッド基板でもよく、あるいは、フレキシブル基板であってもよい。なお、セラミック基板はアルミナ基板、LTCC基板、またはHTCC基板等が挙げられる。樹脂基板は、基材に、樹脂を含浸させた材料で製造されたものであってもよい。基材には、紙、ガラス繊維布、樹脂フィルム等が挙げられる。樹脂は、熱可塑性樹脂、および/または、熱硬化性樹脂であってもよい。例えば、紙基材にフェノール樹脂を含浸させた紙フェノール基板、紙基材にエポキシ樹脂を含浸させた紙エポキシ基板、ガラス繊維布にエポキシ樹脂を含浸させたガラスエポキシ基板、ポリイミドやPET(ポリエチレンテレフタラート)樹脂を用いたフレキシブル基板等が挙げられる。 Further, as shown in FIG. 1, the substrate 200 has a main surface larger than, for example, a solid state battery. As the substrate 200, a printed circuit board can be used. The type thereof is not particularly limited, and may be a resin substrate or a ceramic substrate. Furthermore, a rigid substrate or a flexible substrate may be used. Note that examples of the ceramic substrate include an alumina substrate, an LTCC substrate, or an HTCC substrate. The resin substrate may be made of a material in which a base material is impregnated with resin. Examples of the base material include paper, glass fiber cloth, and resin film. The resin may be a thermoplastic resin and/or a thermosetting resin. For example, paper phenolic substrates made by impregnating a paper base material with phenolic resin, paper epoxy substrates made by impregnating a paper base material with epoxy resin, glass epoxy substrates made by impregnating glass fiber cloth with epoxy resin, polyimide and PET (polyethylene terephthalate), etc. Examples include flexible substrates using talate resin.
 基板は、好ましくは、モジュール化された固体電池と外部を電気的に接続するための部材となっている。つまり、基板が固体電池の外部端子のための端子基板となっているともいえる。このような基板を備えた固体電池モジュールは、基板が介在するような形態で固体電池をプリント配線板などの別の2次基板上に実装できる。例えば、はんだや導電性ペーストを用いて表面実装できる。このようなことから、本発明の固体電池モジュールは、好ましくは、SMD(SMD:Surface Mount Device)タイプの電池モジュールである。 The substrate is preferably a member for electrically connecting the modular solid-state battery to the outside. In other words, it can be said that the substrate serves as a terminal substrate for the external terminals of the solid-state battery. In a solid state battery module equipped with such a substrate, the solid state battery can be mounted on another secondary substrate such as a printed wiring board with the substrate interposed therebetween. For example, it can be surface mounted using solder or conductive paste. For this reason, the solid state battery module of the present invention is preferably an SMD (Surface Mount Device) type battery module.
 更に、基板200のみならず固体電池モジュール1000自体が、全体として水蒸気透過を防止できるように構成されることが好ましい。例えば、本発明の一実施形態に係る固体電池モジュール1000では、基板200上に設けられた固体電池100が全体的に包囲されるように被覆部500で覆うことができる。具体的には、基板200上の固体電池100の主面100Aおよび側面100Bが被覆部500で包囲されるようにモジュール化される。 Furthermore, it is preferable that not only the substrate 200 but also the solid state battery module 1000 itself be configured to prevent water vapor permeation as a whole. For example, in the solid state battery module 1000 according to one embodiment of the present invention, the solid state battery 100 provided on the substrate 200 can be covered with the covering part 500 so as to be completely surrounded. Specifically, the solid battery 100 on the substrate 200 is modularized so that the main surface 100A and the side surface 100B are surrounded by the covering part 500.
[本発明の特徴部分]
 以下、本発明の特徴部分について説明する。
[Characteristics of the present invention]
Hereinafter, the characteristic parts of the present invention will be explained.
 本願発明者は、上記固体電池モジュール1000にて、固体電池100(具体的には電池要素110)を好適に加熱するための解決策について鋭意検討し、その結果、以下の技術的思想を有する本発明を案出するに至った。 The inventor of the present application has diligently studied solutions for suitably heating the solid state battery 100 (specifically, the battery element 110) in the solid state battery module 1000, and as a result, has published a book having the following technical idea. He came up with an invention.
 具体的には、本発明の技術的思想は、「導体部400を介して、熱源としての加熱部300と固体電池100とを熱結合させる」というものである(図1参照)。本明細書でいう「熱結合」とは一方の構成要素(加熱部)と他方の要素(固体電池)とを熱的に結合された状態、即ち熱的に接続された状態および/または熱伝達可能な状態を指す。又、本明細書でいう「導体部」とは熱伝導性を有する構成要素を指す。 Specifically, the technical idea of the present invention is to "thermally couple the heating section 300 as a heat source and the solid battery 100 via the conductor section 400" (see FIG. 1). As used herein, "thermal coupling" refers to a state in which one component (heating section) and another component (solid-state battery) are thermally coupled, that is, thermally connected and/or heat transfer Refers to a possible state. Furthermore, the term "conductor section" as used herein refers to a component having thermal conductivity.
 かかる技術的思想によれば、導体部400を介して、加熱部300の熱を固体電池100へと好適に伝えることができる。これにより、固体電池100、即ち固体電池100の電池要素110を好適に加熱することができる。その結果、固体電解質のイオン伝導度を高めることが可能となり、全体として、固体電池100の充放電の特性を向上させることが可能となる。 According to this technical idea, the heat of the heating section 300 can be suitably transferred to the solid battery 100 via the conductor section 400. Thereby, the solid state battery 100, ie, the battery element 110 of the solid state battery 100, can be suitably heated. As a result, it becomes possible to increase the ionic conductivity of the solid electrolyte, and it becomes possible to improve the charging and discharging characteristics of the solid battery 100 as a whole.
 一実施形態では、図1に示すように、導体部400および加熱部300は、固体電池100と基板200との間に設けられ得る。即ち、導体部400および加熱部300は固体電池100、具体的には電池要素110の下方に配置され得る。かかる配置によれば、固体電池モジュール1000の全体サイズの低減化を図ることができる。又、加熱部300は、固体電池100と対向する側の基板200の主面210(以下、第1主面とも称する)に配置され得る。 In one embodiment, as shown in FIG. 1, the conductor section 400 and the heating section 300 may be provided between the solid state battery 100 and the substrate 200. That is, the conductor part 400 and the heating part 300 can be arranged below the solid state battery 100, specifically, the battery element 110. According to this arrangement, the overall size of the solid state battery module 1000 can be reduced. Further, the heating unit 300 may be arranged on the main surface 210 (hereinafter also referred to as the first main surface) of the substrate 200 on the side facing the solid battery 100.
 なお、加熱部300は、固体電池100と基板200との間に配置されることを必ずしも要せず、基板200の第1主面210の任意の箇所(固体電池100と基板200との間にない箇所も含む)に配置されていればよい。 Note that the heating unit 300 does not necessarily need to be disposed between the solid battery 100 and the substrate 200, but may be placed anywhere on the first main surface 210 of the substrate 200 (between the solid battery 100 and the substrate 200). (including locations where there is no such thing).
 更に、導体部400は、加熱部300と固体電池100との間に設けられ得る。例えば、導体部400は、加熱部300に隣り合うおよび/または直接接するように配置され得る。導体部400が加熱部300に隣り合う場合、断面視で、加熱部300と導体部400の両方が、相互に隣り合うように基板200の第1主面210に設けられた配線220、具体的には金属配線を共有する。 Further, the conductor section 400 may be provided between the heating section 300 and the solid battery 100. For example, the conductor section 400 may be placed adjacent to and/or in direct contact with the heating section 300. When the conductor section 400 is adjacent to the heating section 300, the wiring 220 provided on the first main surface 210 of the substrate 200, specifically, so that both the heating section 300 and the conductor section 400 are adjacent to each other in cross-sectional view share metal wiring.
 かかる配線の共有により、熱伝導特性を有する配線を介して、加熱部300からの熱を導体部400へと好適に伝えることができる。配線220としては、例えば、CuにAuがめっきされたもの(Cu-Au)、又はCuにNiおよびAuがめっきされたもの(Cu-Ni-Au)等から構成され得る。特に限定されるものではないが、配線220の厚みは、2~50μm、例えば30μmであることができる。 By sharing such wiring, heat from the heating section 300 can be suitably transferred to the conductor section 400 via the wiring having heat conductive properties. The wiring 220 may be made of, for example, Cu plated with Au (Cu-Au), or Cu plated with Ni and Au (Cu-Ni-Au). Although not particularly limited, the thickness of the wiring 220 can be 2 to 50 μm, for example 30 μm.
 一方、導体部が加熱部300に直接接する場合、断面視で、導体部と加熱部300とが列形態をなすように、導体部400Dが加熱部300上に設けられる(図7参照)。かかる列形態の配置により、熱伝導特性を有する配線を用いることなく、加熱部300からの熱を導体部400Dへと好適に伝えることができる。 On the other hand, when the conductor part is in direct contact with the heating part 300, the conductor part 400D is provided on the heating part 300 so that the conductor part and the heating part 300 form a row in cross-sectional view (see FIG. 7). With such a row-like arrangement, heat from the heating section 300 can be suitably transferred to the conductor section 400D without using wiring having heat conductive properties.
 更に、導体部400Dと加熱部300とが列形態をなし得るため、導体部400と加熱部300とが隣接配置される場合と比べて、導体部400Dと加熱部300とからなる一群の熱伝導部集合体の配置数を増加させることができる。これにより、導体部400Dを介して加熱部300の熱を固体電池100側、具体的には電池要素110側へとより好適に伝えることができる。 Furthermore, since the conductor section 400D and the heating section 300 can form a row, the thermal conductivity of the group consisting of the conductor section 400D and the heating section 300 is improved compared to the case where the conductor section 400 and the heating section 300 are arranged adjacently. The number of partial aggregates can be increased. Thereby, the heat of the heating section 300 can be more suitably transferred to the solid battery 100 side, specifically, to the battery element 110 side via the conductor section 400D.
 導体部400としては、金属導体部であることができる。金属導体部としては、Cu、Al、およびAuから成る群から選択される少なくとも一種の材料から構成されるものであり得る。金属導体部としては、ピラー状金属導体部であることができる。なお、本明細書でいう「ピラー状金属導体部」とは、主として所定方向に延在する柱状の金属導体部を指すが、これに加え所定箇所に屈曲部分又は湾曲部分を有する柱状の金属導体部も含む。導体部400の一例としては、金属ピン、例えばCuピンを用いることができる。加熱部300としては、PTCヒータ等を用いることができる。 The conductor part 400 can be a metal conductor part. The metal conductor portion may be made of at least one material selected from the group consisting of Cu, Al, and Au. The metal conductor portion may be a pillar-shaped metal conductor portion. Note that the term "pillar-shaped metal conductor section" as used herein mainly refers to a column-shaped metal conductor section that extends in a predetermined direction, but it also refers to a column-shaped metal conductor section that has a bent or curved portion at a predetermined location. Also includes the department. As an example of the conductor portion 400, a metal pin, for example, a Cu pin can be used. As the heating section 300, a PTC heater or the like can be used.
 図1に示すように、導体部400および加熱部300が固体電池100と基板200との間に設けられ、導体部400が加熱部300と固体電池100との間に設けられる場合において、断面視で、固体電池100と対向する導体部400の対向面410と固体電池100との間の最小距離D1は、固体電池100と基板200との間の最小距離D2よりも小さい。具体的には、電池要素110と対向する導体部400の対向面410と電池要素110との間の最小距離D1は、電池要素110と基板200との間の最小距離D2よりも小さい。例えば、固体電池100と対向する導体部400の対向面410と固体電池100との間の最小距離D1は、固体電池100と基板200との間の最小距離L2の0%以上50%以下であり得る。 As shown in FIG. 1, when the conductor part 400 and the heating part 300 are provided between the solid battery 100 and the substrate 200, and the conductor part 400 is provided between the heating part 300 and the solid battery 100, in cross-sectional view, The minimum distance D1 between the solid battery 100 and the opposing surface 410 of the conductor portion 400 facing the solid battery 100 is smaller than the minimum distance D2 between the solid battery 100 and the substrate 200. Specifically, the minimum distance D1 between the facing surface 410 of the conductor section 400 that faces the battery element 110 and the battery element 110 is smaller than the minimum distance D2 between the battery element 110 and the substrate 200. For example, the minimum distance D1 between the opposing surface 410 of the conductor section 400 that faces the solid battery 100 and the solid battery 100 is between 0% and 50% of the minimum distance L2 between the solid battery 100 and the substrate 200. obtain.
 なお、導体部400の対向面410と固体電池100との間の最小距離D1が所定範囲になるならば、導体部400は、固体電池100と基板200との間に配置されることを必ずしも必要とせず、導体部400は電池要素110の側面等と対向可能に基板200側から延在していてよい。 Note that if the minimum distance D1 between the facing surface 410 of the conductor section 400 and the solid state battery 100 falls within a predetermined range, the conductor section 400 does not necessarily need to be disposed between the solid state battery 100 and the substrate 200. Instead, the conductor portion 400 may extend from the substrate 200 side so as to be able to face the side surface of the battery element 110 or the like.
 又、図3の平面図に示すように、固体電池モジュール1000の平面サイズは固体電池100の電池要素110の平面サイズの110%以上250%以下、好ましくは150%以上200%以下であり得る。この場合において、加熱部300および導体部400は、電池要素110と重なるように配置されるのみでなく、その少なくとも一部が固体電池の電池要素110の側面および上面を覆う被覆部500内に配置されていてよい。 Further, as shown in the plan view of FIG. 3, the planar size of the solid-state battery module 1000 may be 110% or more and 250% or less, preferably 150% or more and 200% or less, of the planar size of the battery element 110 of the solid-state battery 100. In this case, the heating section 300 and the conductor section 400 are not only arranged so as to overlap the battery element 110, but also at least a part thereof is arranged within the covering section 500 that covers the side and top surfaces of the battery element 110 of the solid-state battery. It's good that it has been done.
 本発明は、下記態様を採ることが好ましい。 The present invention preferably adopts the following embodiments.
 一態様では、導体部400の熱伝導率よりも相対的に低い熱伝導率を有する低熱伝導部600を更に含み、加熱部300が低熱伝導部600と導体部400との間に設けられることが好ましい(図4参照)。 In one embodiment, the heating section 300 may further include a low thermal conductivity section 600 having a relatively lower thermal conductivity than that of the conductor section 400, and the heating section 300 may be provided between the low thermal conduction section 600 and the conductor section 400. Preferred (see Figure 4).
 上記の本発明の一実施形態(基本形態)では、導体部400を介して加熱部300の熱を固体電池100側へと好適に伝えることができる。この基本形態につき、加熱部300は、電気的制御を可能とするために、基板200の配線220は、第1主面210側から基板200内の内部を介して第1主面210とは反対側(実装側)の第2主面230側まで連続している。そのため、基板200の第1主面210にて配線220に配置された加熱部300の熱は、導体部400側のみでなく基板200の第2主面230側を通じて外部へと出ていく可能性がある。 In the embodiment (basic form) of the present invention described above, the heat of the heating section 300 can be suitably transferred to the solid battery 100 side via the conductor section 400. In this basic form, in order to enable electrical control, the wiring 220 of the substrate 200 is connected from the first main surface 210 side through the interior of the substrate 200 to the opposite side of the first main surface 210. It continues to the second main surface 230 side (mounting side). Therefore, the heat of the heating section 300 arranged on the wiring 220 on the first main surface 210 of the substrate 200 may go out not only through the conductor section 400 side but also through the second main surface 230 side of the substrate 200. There is.
 この点を鑑み、本態様では、低熱伝導部600と導体部400との間に加熱部300が設けられる(図4参照)。即ち、加熱部300が低熱伝導部600と導体部400との間に挟み込まれ得る。なお、低熱伝導部600としては、電気的にショート特性を有するセラミックスジャンパ抵抗、セラミックスのチップヒューズ等を用いることができる。低熱伝導部600の材料としては、例えば、アルミナ等の無機絶縁体を含むものを用いることができる。 In view of this point, in this embodiment, a heating section 300 is provided between the low thermal conductivity section 600 and the conductor section 400 (see FIG. 4). That is, the heating section 300 can be sandwiched between the low thermal conductivity section 600 and the conductor section 400. Note that as the low thermal conductivity portion 600, a ceramic jumper resistor, a ceramic chip fuse, or the like having electrical short-circuit characteristics can be used. As the material of the low thermal conductivity portion 600, for example, a material containing an inorganic insulator such as alumina can be used.
 かかる構成によれば、低熱伝導部600は導体部400の熱伝導率よりも相対的に低い熱伝導率を有するため、加熱部300から生じる熱が基板200の第1主面210側から第2主面230側へと移動することを抑制することができる。かかる抑制により、加熱部300が熱を発生するのに消費する電力も抑えることができる。 According to this configuration, since the low thermal conductivity section 600 has a relatively lower thermal conductivity than that of the conductor section 400, the heat generated from the heating section 300 is transferred from the first principal surface 210 side of the substrate 200 to the second principal surface 210 side of the substrate 200. Movement toward the main surface 230 can be suppressed. By such suppression, the power consumed by the heating section 300 to generate heat can also be suppressed.
 一態様では、断面視で、導体部400と固体電池100との間に導電性接着層700が更に設けられることが好ましい(図5参照)。 In one embodiment, it is preferable that a conductive adhesive layer 700 is further provided between the conductor portion 400 and the solid battery 100 in a cross-sectional view (see FIG. 5).
 本態様によれば、導電性接着層700が導体部400と固体電池100、具体的には電池要素110との間に位置付けられ得る。導電性接着層700は、導電性および接着性の性質を有する層である。かかる性質により、導電性接着層700の一方の側710は導体部400と接し、他方の側720は電池要素110に接し得る。即ち、導電性接着層700は、導体部400と固体電池100とに接することができる。これにより、導電性接着層700により、固体電池100と導体部400との間の電気的接続を確保しつつ、両者間における物理的な接続強度を向上させることができる。なお、短絡防止の観点から、導電性接着層700は端面電極120と離隔することが好ましい。 According to this aspect, the conductive adhesive layer 700 can be positioned between the conductor portion 400 and the solid battery 100, specifically the battery element 110. The conductive adhesive layer 700 is a layer that has conductive and adhesive properties. Due to this property, one side 710 of the conductive adhesive layer 700 can be in contact with the conductor section 400 and the other side 720 can be in contact with the battery element 110. That is, the conductive adhesive layer 700 can be in contact with the conductor portion 400 and the solid battery 100. Thereby, the electrical connection between the solid battery 100 and the conductor portion 400 can be ensured by the conductive adhesive layer 700, and the physical connection strength between the two can be improved. Note that, from the viewpoint of preventing short circuits, it is preferable that the conductive adhesive layer 700 is separated from the end electrode 120.
 又、導電性接着層700の幅寸法が導体部400の対向面410の幅寸法よりも大きいことがより好ましい。かかる構成によれば、固体電池100と導体部400との間の電気的接続、物理的な接続強度に加えて、導体部400から加熱部の熱を固体電池100の内部へと拡がるように伝えることができる。即ち、固体電池100の内部へのより好適な熱伝達が可能となる。 Furthermore, it is more preferable that the width of the conductive adhesive layer 700 is larger than the width of the facing surface 410 of the conductor portion 400. According to this configuration, in addition to the electrical connection and physical connection strength between the solid-state battery 100 and the conductor part 400, the heat of the heating part is transmitted from the conductor part 400 to the inside of the solid-state battery 100. be able to. That is, more suitable heat transfer to the inside of the solid state battery 100 becomes possible.
 これに加えて、一態様では、固体電池100の電池要素110の外周に巻き付けられる導電性接着層800が更に設けられることがより好ましい(図6および図7参照)。又は、同様の観点から言えば、一態様では、電池要素110を部分的に包囲する第2導体部850を更に含み、断面視で、第2導体部850が導体部400と対向するように設けられることがより好ましい(図8参照)。一例として、第2導体部850は筐体状金属導体であってよい。なお、上記導電性接着層700、800としては、例えば金属箔、はんだ等を用いることができる。第2導体部850としては、例えば、金属箔、はんだ、導電性ペースト等を用いることができる。導電性ペーストとしては、Cu、Al、Au、およびNiから成る群から選択される少なくとも一種の材料であってよい。第2導体部850としては、例えばCu箔からなるものを用いることもできる。なお、はんだは、特に限定されるものでではないが、SnAgCu系、SnAg系、SnSb系、AuSn系、およびAlZn系から成る群から選択される少なくとも1種を用いることができる。 In addition to this, in one embodiment, it is more preferable that a conductive adhesive layer 800 is further provided to be wrapped around the outer periphery of the battery element 110 of the solid battery 100 (see FIGS. 6 and 7). Alternatively, from a similar viewpoint, in one embodiment, the battery element 110 is further provided with a second conductor portion 850 that partially surrounds the battery element 110, and the second conductor portion 850 is provided to face the conductor portion 400 in a cross-sectional view. It is more preferable to do so (see FIG. 8). As an example, the second conductor portion 850 may be a housing-like metal conductor. Note that as the conductive adhesive layers 700 and 800, for example, metal foil, solder, etc. can be used. As the second conductor portion 850, for example, metal foil, solder, conductive paste, etc. can be used. The conductive paste may be at least one material selected from the group consisting of Cu, Al, Au, and Ni. As the second conductor section 850, for example, one made of Cu foil can also be used. Note that the solder is not particularly limited, but at least one type selected from the group consisting of SnAgCu type, SnAg type, SnSb type, AuSn type, and AlZn type can be used.
 かかる構成によれば、固体電池100と導体部400との間の電気的接続、物理的な接続強度に加えて、導体部400から加熱部300の熱を固体電池100の内部へと更に拡がるように伝えることができる。即ち、電池要素110の内部への更により好適な熱伝達が可能となる。なお、上記導電性接着層700、800としては、例えばAg導電性接着層を用いることができる。 According to this configuration, in addition to the electrical connection and physical connection strength between the solid state battery 100 and the conductor section 400, the heat of the heating section 300 is further spread from the conductor section 400 into the inside of the solid state battery 100. can be conveyed to. That is, even more suitable heat transfer to the inside of the battery element 110 is possible. Note that as the conductive adhesive layers 700 and 800, for example, an Ag conductive adhesive layer can be used.
 一態様では、被覆部500が少なくとも被覆絶縁層510を含むことが好ましい(図6~図8参照)。被覆絶縁層510は、固体電池100の主面100Aおよび側面100Bを覆うように設けられる層である。かかる被覆絶縁層により、基板200上の固体電池100が全体として大きく包み込まれる。 In one aspect, it is preferable that the covering portion 500 includes at least a covering insulating layer 510 (see FIGS. 6 to 8). Covering insulating layer 510 is a layer provided so as to cover main surface 100A and side surface 100B of solid battery 100. The entire solid state battery 100 on the substrate 200 is largely covered by such a covering insulating layer.
 被覆絶縁層510の材質は、絶縁性を呈するものであればいずれの種類であってよい。例えば被覆絶縁層が樹脂を含んでいてよく、その樹脂は熱硬化性樹脂または熱可塑性樹脂のいずれであってもよい。被覆絶縁層には無機フィラーが含まれていてよい。あくまでも1つの例示にすぎないが、被覆絶縁層は、SiC、 SiO、SiN等の無機フィラーを含有したエポキシ系の樹脂から構成されていてよい。 The covering insulating layer 510 may be made of any material as long as it exhibits insulating properties. For example, the covering insulating layer may contain a resin, and the resin may be either a thermosetting resin or a thermoplastic resin. The covering insulating layer may contain an inorganic filler. Although this is just one example, the covering insulating layer may be made of an epoxy resin containing an inorganic filler such as SiC, SiO 2 , SiN, or the like.
 かかる構成によれば、被覆絶縁層510は導体部400よりも熱伝導率が相対的に低いため、固体電池100側へと伝わった加熱部300の熱が被覆部500を介して外部へ放熱されることを抑制することができる。又、固体電池100を成す全ての面が外部に露出することがなく、好適に水蒸気透過防止を図ることもできる。 According to this configuration, since the insulating cover layer 510 has a relatively lower thermal conductivity than the conductor part 400, the heat of the heating part 300 transmitted to the solid battery 100 side is radiated to the outside via the cover part 500. It is possible to suppress the Further, all the surfaces forming the solid state battery 100 are not exposed to the outside, and water vapor permeation can be suitably prevented.
 より好ましくは、被覆部500は、被覆絶縁層510および被覆無機層520から構成され得る。固体電池100が被覆部500の被覆絶縁層510および被覆無機層520で覆われた形態を有し得る(図6~図8参照)。 More preferably, the covering portion 500 may include a covering insulating layer 510 and a covering inorganic layer 520. The solid state battery 100 may be covered with a covering insulating layer 510 and a covering inorganic layer 520 of the covering portion 500 (see FIGS. 6 to 8).
 被覆無機層520は、被覆絶縁層を覆うように設けられている。被覆無機層は、被覆絶縁層上に位置付けられるので、被覆絶縁層とともに、基板200上の固体電池100を全体として大きく包み込む形態を有している。この被覆無機層は、例えば膜形態を有していてもよい。更に、被覆無機層は、基板200の側面も覆う形態を採ることもできる。被覆絶縁層が被覆無機層と相俟って好適な水蒸気バリアを成すとともに、被覆無機層も被覆絶縁層と相俟って好適な水蒸気バリアを成すようになっている。 The covering inorganic layer 520 is provided to cover the covering insulating layer. Since the covering inorganic layer is positioned on the covering insulating layer, it has a form that largely envelops the solid battery 100 on the substrate 200 together with the covering insulating layer. This coated inorganic layer may have a film form, for example. Furthermore, the covering inorganic layer can also cover the side surfaces of the substrate 200. The insulating coating layer together with the inorganic coating layer forms a suitable water vapor barrier, and the inorganic coating layer also forms a suitable water vapor barrier together with the insulating coating layer.
 本明細書でいう「バリア」とは、外部環境の水蒸気が基板を通過して固体電池にとって不都合な特性劣化を引き起す、といったことがない程度の水蒸気透過の阻止特性を有することを意味しており、狭義には、水蒸気透過率が5×10-3g/(m・Day)未満となっていることを意味している。端的にいえば、水蒸気バリア層は、好ましくは0以上5×10-3g/(m・Day)未満の水蒸気透過率を有している。 The term "barrier" as used herein means having a property of preventing water vapor permeation to such an extent that water vapor in the external environment does not pass through the substrate and cause deterioration of characteristics that are disadvantageous to the solid-state battery. In a narrow sense, this means that the water vapor permeability is less than 5×10 −3 g/(m 2 ·Day). To put it simply, the water vapor barrier layer preferably has a water vapor permeability of 0 or more and less than 5×10 −3 g/(m 2 ·Day).
 被覆無機層520の材質は特に制限されず、金属、ガラス、酸化物セラミックスまたはそれらの混合物などであってもよい。被覆無機層は、薄膜形態を有する無機層に相当するものであってよく、この場合は例えば金属膜であることが好ましい。あくまでも1つの例示にすぎないが、被覆無機層は、めっき形成された厚み2~50μmのCu系および/またはNi系の材料から構成されていてよい。 The material of the covering inorganic layer 520 is not particularly limited, and may be metal, glass, oxide ceramics, or a mixture thereof. The covering inorganic layer may correspond to an inorganic layer in the form of a thin film, and in this case it is preferably a metal film, for example. By way of example only, the inorganic coating layer may be composed of a plated Cu-based and/or Ni-based material having a thickness of 2 to 50 μm.
 なお、被覆部500を介した外部への放熱抑制する手法としては、被覆部500の材料特性のみでなく、図9に示すように被覆部500F(被覆絶縁層510F)内に間隙530を設けることで、外部への熱伝達を非連続にすることができる。これにより、固体電解質のイオン伝導度の向上状態を維持することができ、その結果として、固体電池100の充放電の特性の向上状態を維持することが可能となる。 Note that as a method for suppressing heat radiation to the outside through the covering part 500, not only the material properties of the covering part 500 but also providing a gap 530 in the covering part 500F (covering insulating layer 510F) as shown in FIG. This allows discontinuous heat transfer to the outside. Thereby, it is possible to maintain an improved state of the ionic conductivity of the solid electrolyte, and as a result, it becomes possible to maintain an improved state of the charging and discharging characteristics of the solid battery 100.
 一態様では、固体電池100の温度を検知可能な温度検知デバイス900を更に含み、当該温度検知デバイス900が固体電池100と基板200との間に設けられることが好ましい(図10参照)。温度検知デバイス900としては、NTCサーミスタを用いることができる。かかる温度検知デバイス900により、固体電池100内の温度、具体的には電池要素110内の温度を適時測定することができる。その結果、電池要素110内の温度状況をみて、加熱部300の加熱制御を安定的に行うことができる。又、加熱部300を必要時以外に駆動させない制御が可能となるため、加熱部300の異常加熱および加熱部300への過剰な消費電流を抑制することができる。 In one aspect, it is preferable that the device further includes a temperature detection device 900 capable of detecting the temperature of the solid battery 100, and that the temperature detection device 900 is provided between the solid battery 100 and the substrate 200 (see FIG. 10). As the temperature detection device 900, an NTC thermistor can be used. With such a temperature sensing device 900, the temperature inside the solid-state battery 100, specifically, the temperature inside the battery element 110, can be measured in a timely manner. As a result, heating control of the heating section 300 can be performed stably by checking the temperature situation inside the battery element 110. Further, since it is possible to control the heating unit 300 so that it is not driven except when necessary, abnormal heating of the heating unit 300 and excessive current consumption of the heating unit 300 can be suppressed.
 なお、温度検知デバイス900は、固体電池100の端面電極(例えば負極の端面電極122)と基板200との電気的接続を担う接合部材950(即ち電極用金属ピンに相当)に隣接して配置されることがより好ましい。かかる隣接配置によれば、温度検知デバイス900と接合部材950とが基板200の第1主面210に配置された配線220を共有することができる。そのため、配線220を介して、電池の一方の電極(例えば、負極)側と温度検知デバイス900とを電気的のみならず熱的にも相互接続することができる。 Note that the temperature sensing device 900 is arranged adjacent to a joining member 950 (that is, equivalent to a metal pin for an electrode) that is responsible for electrically connecting the end surface electrode of the solid battery 100 (for example, the negative end surface electrode 122) and the substrate 200. It is more preferable that According to such an adjacent arrangement, the temperature sensing device 900 and the bonding member 950 can share the wiring 220 arranged on the first main surface 210 of the substrate 200. Therefore, one electrode (eg, negative electrode) side of the battery and the temperature sensing device 900 can be interconnected not only electrically but also thermally via the wiring 220.
 なお、導体部400およびこれに隣接する加熱部300と温度検知デバイス900との間の距離が、温度検知デバイス900と電極の接合部材(即ち電極用金属ピンに相当)との間の距離よりも長くすることが好ましい。これにより、温度検知デバイス900が電池要素100内の温度のみならず加熱部300の加熱温度および/または導体部400の伝熱温度も不必要に検知して、本来必要な際における加熱部300による加熱の停止および/または同加熱部300の非作動状態の発生を回避することができる。 Note that the distance between the conductor section 400 and the heating section 300 adjacent thereto and the temperature detection device 900 is longer than the distance between the temperature detection device 900 and the electrode joining member (i.e., equivalent to the metal pin for the electrode). It is preferable to make it long. As a result, the temperature sensing device 900 unnecessarily detects not only the temperature inside the battery element 100 but also the heating temperature of the heating section 300 and/or the heat transfer temperature of the conductor section 400, and It is possible to avoid stopping heating and/or causing the heating unit 300 to become inactive.
 かかる観点から、一態様では、平面視で、導体部400が少なくとも固体電池100の中央領域111に設けられることが好ましい(図10および図11参照)。なお、導体部400を介した固体電池100への加熱部300の熱の好適な熱伝達の観点から、固体電池100の平面視で、導体部400は、固体電池100の中央領域111および中央領域111の周囲に位置する周囲領域112に計2本以上10本以下、例えば5本設けられることが好ましい(図10および図11参照)。 From this point of view, in one embodiment, it is preferable that the conductor portion 400 is provided at least in the central region 111 of the solid-state battery 100 in plan view (see FIGS. 10 and 11). Note that, from the viewpoint of suitable heat transfer of the heat of the heating unit 300 to the solid-state battery 100 via the conductor part 400, the conductor part 400 is located in the central region 111 and the central region of the solid-state battery 100 in a plan view of the solid-state battery 100. It is preferable that a total of 2 or more and 10 or less, for example, 5, are provided in the peripheral area 112 located around 111 (see FIGS. 10 and 11).
 一態様では、断面視で、導体部400Xが逆テーパー形状を有することが好ましい(図12参照)。かかる形状によれば、固体電池100と対向する導体部400Xの対向面41Xのサイズを逆テーパー形状でない場合と比べて大きくすることができる。これにより、導体部400Xを介した固体電池100への加熱部300の熱の好適な熱伝達が可能となる。 In one aspect, it is preferable that the conductor portion 400X has an inverted tapered shape in cross-sectional view (see FIG. 12). According to this shape, the size of the opposing surface 41X of the conductor portion 400X that faces the solid battery 100 can be made larger than in the case where the conductor portion 400X does not have an inverted tapered shape. This allows suitable heat transfer of the heat of the heating section 300 to the solid battery 100 via the conductor section 400X.
[固体電池モジュールの製造方法]
 以下、本発明の対象物である固体電池モジュールの製造方法について説明する。本発明の対象物である固体電池モジュールは、正極層、負極層、およびそれらの電極間に固体電解質を有する電池構成単位を含んだ固体電池を調製し、次いで、その固体電池をモジュール化するプロセスを経ることで得ることができる。
[Method for manufacturing solid battery module]
Hereinafter, a method for manufacturing a solid state battery module, which is an object of the present invention, will be explained. The solid-state battery module that is the object of the present invention is a process of preparing a solid-state battery including battery constituent units having a positive electrode layer, a negative electrode layer, and a solid electrolyte between these electrodes, and then modularizing the solid-state battery. It can be obtained by going through.
 本発明の固体電池の製造は、モジュール化の前段階に相当する固体電池自体(以下では、「モジュール前電池」とも称する)の製造と、基板の調製と、モジュール化とに大きく分けることができる。 The production of the solid-state battery of the present invention can be broadly divided into the production of the solid-state battery itself (hereinafter also referred to as "pre-module battery"), which corresponds to the preliminary stage of modularization, preparation of the substrate, and modularization. .
≪モジュール前電池の製造方法≫
 モジュール前電池は、スクリーン印刷法等の印刷法、グリーンシートを用いるグリーンシート法、またはそれらの複合法により製造することができる。つまり、モジュール前電池自体は、常套的な固体電池の製法に準じて作製してよい(よって、下記で説明する固体電解質、有機バインダ、溶剤、任意の添加剤、正極活物質、負極活物質などの原料物質は、既知の固体電池の製造で用いられるものを使用してよい)。
≪Production method of module front battery≫
The pre-module battery can be manufactured by a printing method such as a screen printing method, a green sheet method using a green sheet, or a combination thereof. In other words, the pre-module battery itself may be manufactured according to a conventional manufacturing method for solid-state batteries (therefore, the solid electrolyte, organic binder, solvent, optional additives, positive electrode active material, negative electrode active material, etc. described below), etc. The raw materials used in the production of known solid-state batteries may be used).
 以下では、本発明のより良い理解のために、ある1つの製法を例示説明するが、本発明は当該方法に限定されない。また、以下の記載順序など経時的な事項は、あくまでも説明のための便宜上のものにすぎず、必ずしもそれに拘束されない。 In the following, one manufacturing method will be illustrated and explained for a better understanding of the present invention, but the present invention is not limited to this method. Further, the following chronological matters such as the order of description are merely for convenience of explanation, and are not necessarily restricted thereto.
(積層体ブロック形成)
 ・固体電解質、有機バインダ、溶剤および任意の添加剤を混合してスラリーを調製する。次いで、調製されたスラリーから、焼成によって固体電解質を含むシートを形成する。
 ・正極活物質、固体電解質、導電性材料、有機バインダ、溶剤および任意の添加剤を混合して正極用ペーストを作成する。同様にして、負極活物質、固体電解質、導電性材料、有機バインダ、溶剤および任意の添加剤を混合して負極用ペーストを作成する。
 ・シート上に正極用ペーストを印刷し、また、必要に応じて集電層および/またはネガ層を印刷する。同様にして、シート上に負極用ペーストを印刷し、また、必要に応じて集電層および/またはネガ層を印刷する。
 ・正極用ペーストを印刷したシートと、負極用ペーストを印刷したシートとを交互に積層して積層体を得る。なお、積層体の最外層(最上層および/または最下層)についていえば、それが電解質層でも絶縁層でもよく、あるいは、電極層であってもよい。
(Laminated block formation)
- Prepare a slurry by mixing the solid electrolyte, organic binder, solvent, and optional additives. Next, a sheet containing a solid electrolyte is formed from the prepared slurry by firing.
-Create a positive electrode paste by mixing the positive electrode active material, solid electrolyte, conductive material, organic binder, solvent, and optional additives. Similarly, a negative electrode paste is prepared by mixing the negative electrode active material, solid electrolyte, conductive material, organic binder, solvent, and optional additives.
- Print a positive electrode paste on the sheet, and also print a current collecting layer and/or a negative layer as necessary. Similarly, a negative electrode paste is printed on the sheet, and if necessary, a current collecting layer and/or a negative layer are printed.
- Obtain a laminate by alternately stacking sheets printed with positive electrode paste and sheets printed with negative electrode paste. Note that the outermost layer (the uppermost layer and/or the lowermost layer) of the laminate may be an electrolyte layer, an insulating layer, or an electrode layer.
(電池焼成体形成)
 積層体を圧着一体化させた後、所定のサイズにカットする。得られたカット済み積層体を脱脂および焼成に付す。これにより、焼成積層体を得る。なお、カット前に積層体を脱脂および焼成に付し、その後にカットを行ってもよい。
(Battery firing body formation)
After the laminate is crimped and integrated, it is cut into a predetermined size. The obtained cut laminate is subjected to degreasing and firing. Thereby, a fired laminate is obtained. Note that the laminate may be degreased and fired before cutting, and then the laminate may be cut.
(端面電極形成)
 正極側の端面電極は、焼成積層体における正極露出側面に対して導電性ペーストを塗布することを通じて形成できる。同様にして、負極側の端面電極は、焼成積層体における負極露出側面に対して導電性ペーストを塗布することを通じて形成できる。正極側および負極側の端面電極は、焼成積層体の主面にまで及ぶように設けてよい。端面電極の成分としては、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから選択される少なくとも一種から選択され得る。なお、スズと合金を作る、アンチモン、ビスマス、インジウム、亜鉛、アルミニウム等が含まれていてもよい。
(End face electrode formation)
The end electrode on the positive electrode side can be formed by applying a conductive paste to the exposed side surface of the positive electrode in the fired laminate. Similarly, the end electrode on the negative electrode side can be formed by applying a conductive paste to the exposed side surface of the negative electrode in the fired laminate. The end face electrodes on the positive electrode side and the negative electrode side may be provided so as to extend to the main surface of the fired laminate. The component of the end electrode may be selected from at least one selected from silver, gold, platinum, aluminum, copper, tin, and nickel. Note that antimony, bismuth, indium, zinc, aluminum, etc., which form an alloy with tin, may be included.
 なお、正極側および負極側の端面電極は、積層体の焼成後に形成することに限らず、焼成前に形成し、同時焼成に付してもよい。 Note that the end electrodes on the positive electrode side and the negative electrode side are not limited to being formed after firing the laminate, but may be formed before firing and subjected to simultaneous firing.
 以上の工程を経ることによって、所望のモジュール前電池(固体電池100に相当)を得ることができる。 By going through the above steps, a desired pre-module battery (corresponding to the solid battery 100) can be obtained.
≪基板の調製≫
 本工程では、基板の調製を行う。
≪Preparation of substrate≫
In this step, the substrate is prepared.
 特に限定されるものではないが、基板として樹脂基板を用いる場合、その調製は、複数の層を積層して加熱および加圧処理することによって行ってよい。例えば、基材となる繊維布に樹脂原料が含浸して構成された樹脂シートを用いて基板前駆体を形成する。基板前駆体の形成後、この基板前駆体をプレス機で加熱および加圧に付す。一方、基板としてセラミック基板を用いる場合、その調製は、例えば、複数のグリーンシートを熱圧着することによってグリーンシート積層体を形成し、グリーンシート積層体を焼成に付すことによって、セラミック基板を得ることができる。セラミック基板の調製は、例えばLTCC基板の作成に準じて行うことができる。セミラック基板はビアおよび/またはランドを有していてよい。このような場合、例えば、グリーンシートに対してパンチプレスまたは炭酸ガスレーザなどによって孔を形成し、その孔に導電性ペースト材料を充填したり、あるいは、導電性ペースト材料やはんだを用いて印刷法などによりビア、ランドなどの導電性部分の前駆体を形成してよい。なお、ランドなどは、グリーンシート積層体の焼成後において形成することもできる。 Although not particularly limited, when a resin substrate is used as the substrate, it may be prepared by laminating a plurality of layers and subjecting them to heating and pressure treatment. For example, a substrate precursor is formed using a resin sheet made by impregnating a fiber cloth serving as a base material with a resin raw material. After forming the substrate precursor, the substrate precursor is heated and pressurized using a press. On the other hand, when a ceramic substrate is used as a substrate, its preparation is, for example, by thermocompression bonding a plurality of green sheets to form a green sheet laminate, and by subjecting the green sheet laminate to firing to obtain a ceramic substrate. I can do it. The ceramic substrate can be prepared, for example, in accordance with the preparation of an LTCC substrate. A semirac substrate may have vias and/or lands. In such cases, for example, holes may be formed in the green sheet using a punch press or carbon dioxide laser, and the holes may be filled with conductive paste material, or a printing method using conductive paste material or solder may be used. Precursors of conductive parts such as vias and lands may be formed by this method. Note that the lands and the like can also be formed after the green sheet laminate is fired.
 その後、電気的に接続するため基板200の第1主面210に、所定の間隔をおいて配線220を複数形成する(図13A参照)。以上により、所望の基板200を得ることができる。 Thereafter, a plurality of wiring lines 220 are formed at predetermined intervals on the first main surface 210 of the substrate 200 for electrical connection (see FIG. 13A). Through the above steps, a desired substrate 200 can be obtained.
≪電子部品等の載置≫
 次に、所定箇所に位置する配線220に導体部400、加熱部300等の電子部品、および接合部材950(即ち電極用金属ピンに相当)を少なくとも載置する。これに加えて、低熱伝導部600を、低熱伝導部600と導体部400とにより加熱部300が挟み込まれるように載置することが好ましい(図13B参照)。接合部材950については、はんだや導電性ペースト(例えばAg導電性ペースト)を基板の配線220に塗布し、固体電池100と基板200との間の電気的接続を担う接合部材の前駆体950’を予め設けておいてよい。はんだ、Ag導電ペーストの他、ナノペーストや合金系ペースト、ロー材など、形成後にフラックスなどの洗浄を必要としない導電性ペーストを印刷することで設けることができる。固体電池の端面電極と接合部材の前駆体950’とが互いに接するように基板上に固体電池100を配した後、加熱処理に付すことで前駆体950’から固体電池100と基板200との間の電気的接続に資する接合部材950が形成されることになる。
≪Placement of electronic parts, etc.≫
Next, at least electronic components such as the conductor section 400, the heating section 300, and the joining member 950 (that is, equivalent to a metal pin for an electrode) are placed on the wiring 220 located at a predetermined location. In addition, it is preferable to place the low thermal conductivity section 600 so that the heating section 300 is sandwiched between the low thermal conductivity section 600 and the conductor section 400 (see FIG. 13B). Regarding the bonding member 950, solder or conductive paste (for example, Ag conductive paste) is applied to the wiring 220 of the substrate, and a precursor 950' of the bonding member responsible for the electrical connection between the solid battery 100 and the substrate 200 is formed. It may be set in advance. In addition to solder and Ag conductive paste, it can be provided by printing a conductive paste that does not require cleaning with flux or the like after formation, such as nanopaste, alloy paste, brazing material, etc. After disposing the solid battery 100 on the substrate so that the end electrode of the solid battery and the precursor 950' of the bonding member are in contact with each other, heat treatment is performed to form a gap between the solid battery 100 and the substrate 200 from the precursor 950'. A joining member 950 that contributes to electrical connection is formed.
≪モジュール化≫
 次に、上記で得られた電池および基板等を用いてモジュール化を行う(図13C参照)。
≪Modularization≫
Next, modularization is performed using the battery, substrate, etc. obtained above (see FIG. 13C).
 まず、第1主面210に電子部品が載置された基板200上にモジュール前電池100を配置する。つまり、基板上に“モジュール化されていない固体電池”を配置する(以下、モジュール化に用いる電池を単に「固体電池」とも称する)。 First, the pre-module battery 100 is placed on the substrate 200 on which electronic components are placed on the first main surface 210. That is, a "non-modular solid-state battery" is placed on the substrate (hereinafter, the battery used for modularization is also simply referred to as a "solid-state battery").
 具体的には、配線220と固体電池の端面電極120とが互いに電気的に接続され、かつ加熱部300と固体電池100とが導体部400を介して熱結合可能となるように、固体電池100を基板200上に配置する。一例としては、電池要素110と導体部400/加熱部300等とが相互に対向するように、固体電池100を基板200上に配置することができる。この際、固体電池の配置前に、例えば、導電性ペースト(例えばAg導電性ペースト)、はんだ等を導体部400等の上面に供してよい。 Specifically, the solid state battery 100 is connected so that the wiring 220 and the end electrode 120 of the solid state battery are electrically connected to each other, and the heating part 300 and the solid state battery 100 can be thermally coupled via the conductor part 400. is placed on the substrate 200. For example, the solid battery 100 can be placed on the substrate 200 so that the battery element 110 and the conductor part 400/heating part 300, etc., face each other. At this time, for example, a conductive paste (for example, Ag conductive paste), solder, or the like may be applied to the upper surface of the conductor portion 400 and the like before placing the solid battery.
 又、この際に、被覆部500を形成する。被覆部500としては、少なくとも被覆絶縁層を含み、被覆無機層を更に設けることが好ましい(図13D参照)。 Also, at this time, a covering portion 500 is formed. The covering portion 500 preferably includes at least an insulating covering layer and further includes an inorganic covering layer (see FIG. 13D).
 まず、基板200上の固体電池100が覆われるように被覆絶縁層を形成する。それゆえ、基板上の固体電池が全体的に覆われるように被覆絶縁層の原料を供する。被覆絶縁層が樹脂材から成る場合、樹脂前駆体を基板上に設けて硬化などに付して被覆絶縁層を成型する。ある好適な態様では、金型で加圧に付すことを通じて被覆絶縁層の成型を行ってもよい。例示にすぎないが、コンプレッション・モールドを通じて基板上の固体電池を封止する被覆絶縁層を成型してよい。一般的にモールドで用いられる樹脂材であるならば、被覆絶縁層の原料の形態は、顆粒状でもよく、また、その種類は熱可塑性であってもよい。なお、このような成型は、金型成型に限らず、研磨加工、レーザー加工および/または化学的処理などを通じて行ってもよい。 First, a covering insulating layer is formed so as to cover the solid state battery 100 on the substrate 200. Therefore, the raw material for the covering insulating layer is provided so that the solid state battery on the substrate is completely covered. When the insulating cover layer is made of a resin material, the insulating cover layer is formed by providing a resin precursor on the substrate and subjecting it to curing. In a preferred embodiment, the covering insulating layer may be formed by applying pressure with a mold. By way of example only, the overlying insulating layer encapsulating the solid state battery on the substrate may be formed through compression molding. As long as the resin material is generally used in molds, the raw material for the insulating coating layer may be in the form of granules, and may be thermoplastic. Note that such molding is not limited to mold molding, and may be performed through polishing, laser processing, and/or chemical treatment.
 なお、被覆部500については、固体電池100を載置する前に電子部品付き基板を覆うように樹脂を塗布、硬化させ、被覆部500の一部を先に形成してよい。その後導体部400の上面(上記対向面に相当)の頭出しを行ってもよい。この場合、頭出し後に、硬化させた樹脂と導体部400の上面とを導電性ペーストやはんだで覆ってもよい。その後、固体電池100を載置した後に、固体電池100が覆われるように被覆絶縁層の残りの部分を形成してよい。 Note that for the covering portion 500, a part of the covering portion 500 may be formed first by applying and curing a resin to cover the electronic component-attached substrate before placing the solid battery 100 thereon. Thereafter, the top surface (corresponding to the above-mentioned opposing surface) of the conductor section 400 may be located. In this case, after indexing, the hardened resin and the upper surface of the conductor section 400 may be covered with a conductive paste or solder. Thereafter, after the solid state battery 100 is placed, the remaining portion of the insulating cover layer may be formed so as to cover the solid state battery 100.
 なお、好ましくは、被覆絶縁層の形成後、被覆無機層を形成する。具体的には、「個々の固体電池100が基板200上にて被覆絶縁層で覆われた被覆前駆体」に対して被覆無機層を形成する。例えば、乾式めっきを実施し、被覆無機層として乾式めっき膜を形成してよい。より具体的には、乾式めっきを実施し、被覆前駆体の底面以外(即ち、支持基板の底面以外)の露出面に対して被覆無機層を形成する。 Note that preferably, after the formation of the covering insulating layer, the covering inorganic layer is formed. Specifically, a covering inorganic layer is formed on "a covering precursor in which each solid-state battery 100 is covered with a covering insulating layer on a substrate 200". For example, dry plating may be performed to form a dry plating film as the covering inorganic layer. More specifically, dry plating is performed to form a coating inorganic layer on exposed surfaces other than the bottom surface of the coating precursor (that is, other than the bottom surface of the supporting substrate).
 以上のような工程を経ることによって、基板上の固体電池が被覆部で覆われたモジュール品を得ることができる。つまり、本発明に係る「固体電池モジュール」を最終的に得ることができる。 By going through the steps described above, it is possible to obtain a module product in which the solid-state battery on the substrate is covered with the covering part. In other words, the "solid battery module" according to the present invention can finally be obtained.
 以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。本発明はこれに限定されず、本発明の要旨を変更しない範囲において種々の態様が考えられることを当業者は容易に理解されよう。 Although the embodiments of the present invention have been described above, these are merely typical examples. Those skilled in the art will readily understand that the present invention is not limited thereto, and that various embodiments can be considered without changing the gist of the present invention.
なお、本発明は下記態様を含み得る。
<1>
 正極層、負極層、および前記正極層と前記負極層との間に設けられた固体電解質層を備えた固体電池と、導体部と、加熱部と、基板と
を含み、
 前記固体電池が前記基板上に配置され、
 前記加熱部と前記固体電池とが前記導体部を介して熱結合可能となっている、固体電池モジュール。
<2>
 前記導体部および前記加熱部が、前記固体電池と前記基板との間に設けられている、<1>に記載の固体電池モジュール。
<3>
 前記導体部が、前記加熱部と前記固体電池との間に設けられている、<1>または<2>に記載の固体電池モジュール。
<4>
 前記導体部が前記加熱部に隣り合うおよび/または直接接する、<1>~<3>のいずれかに記載の固体電池モジュール。
<5>
 前記固体電池と対向する前記導体部の対向面と前記固体電池との間の最小距離が、前記固体電池と前記基板との間の最小距離よりも小さい、<1>~<4>のいずれかに記載の固体電池モジュール。
<6>
 前記固体電池と対向する前記導体部の対向面と前記固体電池との間の最小距離が、前記固体電池と前記基板との間の最小距離の0%以上50%以下である、<1>~<5>のいずれかに記載の固体電池モジュール。
<7>
 前記導体部の熱伝導率よりも相対的に低い熱伝導率を有する低熱伝導部を更に含み、前記加熱部が前記低熱伝導部と前記導体部との間に設けられる、<1>~<6>のいずれかに記載の固体電池モジュール。
<8>
 前記導体部と前記固体電池との間に導電性接着層を有する、<1>~<7>のいずれかに記載の固体電池モジュール。
<9>
 前記導電性接着層は、前記導体部と前記固体電池とに接する、<8>に記載の固体電池モジュール。
<10>
 前記導電性接着層の幅寸法が前記導体部の前記対向面の幅寸法よりも大きい、<8>又は<9>に記載の固体電池モジュール。
<11>
 前記固体電池を部分的に包囲する第2導体部を更に含み、断面視で、前記第2導体部が前記導体部と対向するように設けられる、<1>~<10>のいずれかに記載の固体電池モジュール。
<12>
 平面視で、前記導体部が少なくとも前記固体電池の中央領域に設けられる、<1>~<11>のいずれかに記載の固体電池モジュール。
<13>
 平面視で、前記導体部が、前記固体電池の中央領域および前記中央領域の周囲に位置する周囲領域に計2本以上設けられる、<12>に記載の固体電池モジュール。
<14>
 断面視で、前記導体部が逆テーパー形状を有する、<1>~<13>のいずれかに記載の固体電池モジュール。
<15>
 前記加熱部がPTCヒータである、<1>~<14>のいずれかに記載の固体電池モジュール。
<16>
 前記導体部が金属ピンである、<1>~<15>のいずれかに記載の固体電池モジュール。
<17>
 前記低熱伝導部がチップヒューズである、<7>に従属する<8>~<16>のいずれかに記載の固体電池モジュール。
<18>
 前記固体電池の温度を検知可能な温度検知デバイスを更に含み、
前記温度検知デバイスが、前記固体電池と前記基板との間に設けられている、<1>~<17>のいずれかに記載の固体電池モジュール。
<19>
 前記温度検知デバイスが、前記固体電池の端面電極と前記基板との電気的接続を担う接合部材に隣接して配置される、<18>に記載の固体電池モジュール。
<20>
 前記固体電池を包囲する被覆部を更に含み、前記被覆部が被覆絶縁層を含む、<1>~<19>のいずれかに記載の固体電池モジュール。
<21>
 前記基板が樹脂基板である、<1>~<20>のいずれかに記載の固体電池モジュール。
Note that the present invention may include the following aspects.
<1>
A solid battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer provided between the positive electrode layer and the negative electrode layer, a conductor part, a heating part, and a substrate,
the solid state battery is disposed on the substrate,
A solid-state battery module, wherein the heating section and the solid-state battery can be thermally coupled via the conductor section.
<2>
The solid-state battery module according to <1>, wherein the conductor part and the heating part are provided between the solid-state battery and the substrate.
<3>
The solid state battery module according to <1> or <2>, wherein the conductor part is provided between the heating part and the solid state battery.
<4>
The solid battery module according to any one of <1> to <3>, wherein the conductor portion is adjacent to and/or directly in contact with the heating portion.
<5>
Any one of <1> to <4>, wherein the minimum distance between the opposing surface of the conductor portion facing the solid battery and the solid battery is smaller than the minimum distance between the solid battery and the substrate. The solid state battery module described in .
<6>
The minimum distance between the opposing surface of the conductor portion facing the solid battery and the solid battery is 0% or more and 50% or less of the minimum distance between the solid battery and the substrate, <1> to The solid battery module according to any one of <5>.
<7>
<1> to <6, further including a low thermal conductivity part having a thermal conductivity relatively lower than that of the conductor part, and the heating part is provided between the low thermal conductivity part and the conductor part. >The solid battery module according to any one of >.
<8>
The solid-state battery module according to any one of <1> to <7>, which has a conductive adhesive layer between the conductor portion and the solid-state battery.
<9>
The solid-state battery module according to <8>, wherein the conductive adhesive layer is in contact with the conductor portion and the solid-state battery.
<10>
The solid battery module according to <8> or <9>, wherein the width of the conductive adhesive layer is larger than the width of the opposing surface of the conductor part.
<11>
The device according to any one of <1> to <10>, further including a second conductor portion that partially surrounds the solid battery, and the second conductor portion is provided so as to face the conductor portion in cross-sectional view. solid state battery module.
<12>
The solid-state battery module according to any one of <1> to <11>, wherein the conductor portion is provided at least in a central region of the solid-state battery in plan view.
<13>
The solid-state battery module according to <12>, wherein two or more conductor parts are provided in a central region of the solid-state battery and a peripheral region located around the central region in a plan view.
<14>
The solid battery module according to any one of <1> to <13>, wherein the conductor portion has an inverted tapered shape when viewed in cross section.
<15>
The solid battery module according to any one of <1> to <14>, wherein the heating section is a PTC heater.
<16>
The solid battery module according to any one of <1> to <15>, wherein the conductor portion is a metal pin.
<17>
The solid battery module according to any one of <8> to <16> that is subordinate to <7>, wherein the low thermal conductivity part is a chip fuse.
<18>
further comprising a temperature detection device capable of detecting the temperature of the solid-state battery,
The solid-state battery module according to any one of <1> to <17>, wherein the temperature sensing device is provided between the solid-state battery and the substrate.
<19>
The solid state battery module according to <18>, wherein the temperature sensing device is disposed adjacent to a joining member responsible for electrical connection between the end electrode of the solid state battery and the substrate.
<20>
The solid-state battery module according to any one of <1> to <19>, further comprising a covering part surrounding the solid-state battery, and the covering part includes a covering insulating layer.
<21>
The solid battery module according to any one of <1> to <20>, wherein the substrate is a resin substrate.
 本発明の一実施形態に係る固体電池モジュールは、電池使用または蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の固体電池モジュールは、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパーなどや、RFIDタグ、カード型電子マネー、スマートウォッチなどの小型電子機などを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。 The solid state battery module according to one embodiment of the present invention can be used in various fields where battery use or power storage is expected. Although this is just an example, the solid state battery module of the present invention can be used in the electrical, information, and communication fields where mobile devices are used (e.g., mobile phones, smartphones, notebook computers, digital cameras, activity meters, arm computers, electronic paper, RFID tags, card-type electronic money, small electronic devices such as smart watches, electrical/electronic equipment field or mobile equipment field), home/small industrial applications (e.g., power tools, golf carts, household/electronic equipment field), nursing care/industrial robots), large industrial applications (e.g. forklifts, elevators, harbor cranes), transportation systems (e.g. hybrid cars, electric cars, buses, trains, electrically assisted bicycles, electric motorcycles, etc.) ), power system applications (e.g., various power generation, road conditioners, smart grids, home-installed electricity storage systems, etc.), medical applications (medical equipment such as earphones and hearing aids), and pharmaceutical applications (medication management systems, etc.) ), as well as the IoT field, space and deep sea applications (for example, in the fields of space probes, underwater research vessels, etc.).
関連出願の相互参照Cross-reference of related applications
 本出願は、日本国特許出願第2022-038379号(出願日:2022年3月11日、発明の名称:「固体電池モジュール」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるものとする。 This application claims priority under the Paris Convention based on Japanese Patent Application No. 2022-038379 (filing date: March 11, 2022, title of invention: "Solid Battery Module"). All content disclosed in that application is hereby incorporated by reference.
 100   固体電池
 100A  固体電池の主面
 100B  固体電池の側面
 110   電池要素
 111   固体電池の中央領域
 112   固体電池の中央領域の周囲に位置する周囲領域
 120   端面電極
 121   正極の端面電極
 122   負極の端面電極
 200   基板
 210   基板の第1主面
 220   配線
 230   基板の第1主面とは反対側の第2主面
 300   加熱部
 400、400D、400X   導体部
 410、410X   固体電池と対向する導体部の対向面
 500、500F   被覆部
 510、510F  被覆絶縁層
 520   被覆無機層
 600   低熱伝導部
 700   導電性接着層
 710   導電性接着層の一方の側
 720   導電性接着層の他方の側
 800   導電性接着層
 850   第2導体部
 900   温度検知デバイス
 950   接合部材
 950’  接合部材の前駆体
 1000、1000A~1000H  固体電池モジュール
 D1 導体部の対向面と固体電池との間の最小距離
 D2 固体電池と基板との間の最小距離
DESCRIPTION OF SYMBOLS 100 Solid-state battery 100A Main surface of solid-state battery 100B Side surface of solid-state battery 110 Battery element 111 Central region of solid-state battery 112 Surrounding region located around the central region of solid-state battery 120 End surface electrode 121 Positive electrode end surface electrode 122 Negative electrode end surface 200 Substrate 210 First main surface of the board 220 Wiring 230 Second main surface of the board opposite to the first main surface 300 Heating section 400, 400D, 400X Conductor section 410, 410X Opposing surface of the conductor section facing the solid battery 500 , 500F Covering portion 510, 510F Covering insulating layer 520 Covering inorganic layer 600 Low thermal conductivity portion 700 Conductive adhesive layer 710 One side of the conductive adhesive layer 720 Other side of the conductive adhesive layer 800 Conductive adhesive layer 850 Second conductor Part 900 Temperature sensing device 950 Bonding member 950' Precursor of bonding member 1000, 1000A to 1000H Solid state battery module D1 Minimum distance between the facing surface of the conductor part and the solid battery D2 Minimum distance between the solid battery and the substrate

Claims (21)

  1.  正極層、負極層、および前記正極層と前記負極層との間に設けられた固体電解質層を備えた固体電池と、導体部と、加熱部と、基板と
    を含み、
     前記固体電池が前記基板上に配置され、
     前記加熱部と前記固体電池とが前記導体部を介して熱結合可能となっている、固体電池モジュール。
    A solid battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer provided between the positive electrode layer and the negative electrode layer, a conductor part, a heating part, and a substrate,
    the solid state battery is disposed on the substrate,
    A solid-state battery module, wherein the heating section and the solid-state battery can be thermally coupled via the conductor section.
  2.  前記導体部および前記加熱部が、前記固体電池と前記基板との間に設けられている、請求項1に記載の固体電池モジュール。 The solid state battery module according to claim 1, wherein the conductor part and the heating part are provided between the solid state battery and the substrate.
  3.  前記導体部が、前記加熱部と前記固体電池との間に設けられている、請求項1または2に記載の固体電池モジュール。 The solid state battery module according to claim 1 or 2, wherein the conductor part is provided between the heating part and the solid state battery.
  4.  前記導体部が前記加熱部に隣り合うおよび/または直接接する、請求項1~3のいずれかに記載の固体電池モジュール。 The solid state battery module according to any one of claims 1 to 3, wherein the conductor portion is adjacent to and/or in direct contact with the heating portion.
  5.  前記固体電池と対向する前記導体部の対向面と前記固体電池との間の最小距離が、前記固体電池と前記基板との間の最小距離よりも小さい、請求項1~4のいずれかに記載の固体電池モジュール。 According to any one of claims 1 to 4, the minimum distance between the opposing surface of the conductor section facing the solid battery and the solid battery is smaller than the minimum distance between the solid battery and the substrate. solid state battery module.
  6.  前記固体電池と対向する前記導体部の対向面と前記固体電池との間の最小距離が、前記固体電池と前記基板との間の最小距離の0%以上50%以下である、請求項1~5のいずれかに記載の固体電池モジュール。 The minimum distance between the opposing surface of the conductor portion facing the solid battery and the solid battery is 0% or more and 50% or less of the minimum distance between the solid battery and the substrate. 5. The solid battery module according to any one of 5.
  7.  前記導体部の熱伝導率よりも相対的に低い熱伝導率を有する低熱伝導部を更に含み、前記加熱部が前記低熱伝導部と前記導体部との間に設けられる、請求項1~6のいずれかに記載の固体電池モジュール。 Claims 1 to 6, further comprising a low thermal conductivity part having a thermal conductivity relatively lower than that of the conductor part, and the heating part is provided between the low thermal conductivity part and the conductor part. The solid battery module according to any one of the above.
  8.  前記導体部と前記固体電池との間に導電性接着層を有する、請求項1~7のいずれかに記載の固体電池モジュール。 The solid state battery module according to any one of claims 1 to 7, further comprising a conductive adhesive layer between the conductor portion and the solid state battery.
  9.  前記導電性接着層は、前記導体部と前記固体電池とに接する、請求項8に記載の固体電池モジュール。 The solid state battery module according to claim 8, wherein the conductive adhesive layer is in contact with the conductor portion and the solid state battery.
  10.  前記導電性接着層の幅寸法が前記導体部の前記対向面の幅寸法よりも大きい、請求項8又は9に記載の固体電池モジュール。 The solid state battery module according to claim 8 or 9, wherein the width of the conductive adhesive layer is larger than the width of the opposing surface of the conductor portion.
  11.  前記固体電池を部分的に包囲する第2導体部を更に含み、断面視で、前記第2導体部が前記導体部と対向するように設けられる、請求項1~10のいずれかに記載の固体電池モジュール。 The solid state according to any one of claims 1 to 10, further comprising a second conductor part that partially surrounds the solid state battery, and the second conductor part is provided so as to face the conductor part in a cross-sectional view. battery module.
  12.  平面視で、前記導体部が少なくとも前記固体電池の中央領域に設けられる、請求項1~11のいずれかに記載の固体電池モジュール。 The solid state battery module according to any one of claims 1 to 11, wherein the conductor portion is provided at least in a central region of the solid state battery in plan view.
  13.  平面視で、前記導体部が、前記固体電池の中央領域および前記中央領域の周囲に位置する周囲領域に計2本以上設けられる、請求項12に記載の固体電池モジュール。 The solid state battery module according to claim 12, wherein, in plan view, two or more conductor parts are provided in a central region of the solid state battery and a peripheral region located around the central region.
  14.  断面視で、前記導体部が逆テーパー形状を有する、請求項1~13のいずれかに記載の固体電池モジュール。 The solid state battery module according to any one of claims 1 to 13, wherein the conductor portion has an inverted tapered shape when viewed in cross section.
  15.  前記加熱部がPTCヒータである、請求項1~14のいずれかに記載の固体電池モジュール。 The solid state battery module according to any one of claims 1 to 14, wherein the heating section is a PTC heater.
  16.  前記導体部が金属ピンである、請求項1~15のいずれかに記載の固体電池モジュール。 The solid state battery module according to any one of claims 1 to 15, wherein the conductor portion is a metal pin.
  17.  前記低熱伝導部がチップヒューズである、請求項7に従属する請求項8~16のいずれかに記載の固体電池モジュール。 The solid state battery module according to any one of claims 8 to 16 depending on claim 7, wherein the low thermal conductivity part is a chip fuse.
  18.  前記固体電池の温度を検知可能な温度検知デバイスを更に含み、
    前記温度検知デバイスが、前記固体電池と前記基板との間に設けられている、請求項1~17のいずれかに記載の固体電池モジュール。
    further comprising a temperature detection device capable of detecting the temperature of the solid-state battery,
    The solid state battery module according to any one of claims 1 to 17, wherein the temperature sensing device is provided between the solid state battery and the substrate.
  19.  前記温度検知デバイスが、前記固体電池の端面電極と前記基板との電気的接続を担う接合部材に隣接して配置される、請求項18に記載の固体電池モジュール。 The solid state battery module according to claim 18, wherein the temperature sensing device is arranged adjacent to a joining member that is responsible for electrically connecting the end electrode of the solid state battery and the substrate.
  20.  前記固体電池を包囲する被覆部を更に含み、前記被覆部が被覆絶縁層を含む、請求項1~19のいずれかに記載の固体電池モジュール。 The solid state battery module according to any one of claims 1 to 19, further comprising a covering part surrounding the solid state battery, and the covering part includes an insulating covering layer.
  21.  前記基板が樹脂基板である、請求項1~20のいずれかに記載の固体電池モジュール。 The solid state battery module according to any one of claims 1 to 20, wherein the substrate is a resin substrate.
PCT/JP2023/009101 2022-03-11 2023-03-09 Solid state battery module WO2023171759A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-038379 2022-03-11
JP2022038379 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023171759A1 true WO2023171759A1 (en) 2023-09-14

Family

ID=87935302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009101 WO2023171759A1 (en) 2022-03-11 2023-03-09 Solid state battery module

Country Status (1)

Country Link
WO (1) WO2023171759A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220981A1 (en) * 2018-05-15 2019-11-21 株式会社村田製作所 Solid battery, battery module, and method for charging solid battery
WO2020203879A1 (en) * 2019-03-29 2020-10-08 株式会社村田製作所 Solid-state battery
JP2021114359A (en) * 2020-01-16 2021-08-05 セイコーエプソン株式会社 Electronic device and liquid discharge apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220981A1 (en) * 2018-05-15 2019-11-21 株式会社村田製作所 Solid battery, battery module, and method for charging solid battery
WO2020203879A1 (en) * 2019-03-29 2020-10-08 株式会社村田製作所 Solid-state battery
JP2021114359A (en) * 2020-01-16 2021-08-05 セイコーエプソン株式会社 Electronic device and liquid discharge apparatus

Similar Documents

Publication Publication Date Title
JP7192866B2 (en) solid state battery
JP7396352B2 (en) solid state battery
WO2020195381A1 (en) Solid-state battery
US20220302506A1 (en) Solid-state battery
CN113016092A (en) Solid-state battery
JP7259980B2 (en) solid state battery
US20220302507A1 (en) Solid-state battery
WO2023171759A1 (en) Solid state battery module
US20220013816A1 (en) Solid-state battery
WO2021235451A1 (en) Solid-state battery and exterior body for solid-state battery
JP7180685B2 (en) solid state battery
JP7115559B2 (en) solid state battery
CN114503339A (en) Solid-state battery
WO2024014345A1 (en) Solid-state battery module
WO2023243489A1 (en) Solid battery package
WO2024014260A1 (en) Solid-state battery and electronic device
WO2024014261A1 (en) Packaged solid-state battery
JP7327496B2 (en) solid state battery
US20220302498A1 (en) Solid-state battery
WO2024042927A1 (en) Solid-state battery module
WO2024009963A1 (en) Solid-state battery
WO2022230901A1 (en) Solid battery package
US20230163434A1 (en) Solid state battery
WO2023167100A1 (en) Solid-state battery package
WO2023127247A1 (en) Solid-state battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766935

Country of ref document: EP

Kind code of ref document: A1