WO2023171748A1 - Cellulose material - Google Patents

Cellulose material Download PDF

Info

Publication number
WO2023171748A1
WO2023171748A1 PCT/JP2023/009057 JP2023009057W WO2023171748A1 WO 2023171748 A1 WO2023171748 A1 WO 2023171748A1 JP 2023009057 W JP2023009057 W JP 2023009057W WO 2023171748 A1 WO2023171748 A1 WO 2023171748A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
cellulose
usually
ppm
cellulose material
Prior art date
Application number
PCT/JP2023/009057
Other languages
French (fr)
Japanese (ja)
Inventor
薫 佐治
敦 小野
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022037771A external-priority patent/JP2023132440A/en
Priority claimed from JP2022037772A external-priority patent/JP2023132441A/en
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Publication of WO2023171748A1 publication Critical patent/WO2023171748A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/08Fractionation of cellulose, e.g. separation of cellulose crystallites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • the present invention relates to cellulose materials.
  • Cellulose materials such as powdered cellulose are used as reinforcing agents for resin materials such as rubber and plastics (for example, Patent Document 1).
  • the present invention has been made in view of the above, and provides a cellulose material that has good recyclability even when used as an additive for a resin component, and a cellulose material that has excellent recyclability and tabletability.
  • the purpose is to
  • the present invention provides [1] to [17].
  • a cellulose material in which the amount of iron component detected by a triple quadrupole-inductively coupled plasma mass spectrometer is 1 to 50 ppm.
  • the cellulose material according to [1], wherein the amount of iron component detected by a triple quadrupole-inductively coupled plasma mass spectrometer is more than 10 ppm and less than 50 ppm.
  • the cellulose material according to [1] or [2], wherein the ash content after heating at 800° C. for 2 hours is 0.13% by weight or more based on 100% by weight of the cellulose material before heating.
  • a rubber composition comprising the cellulose material according to any one of [1] to [11].
  • a molded article comprising the cellulose material according to any one of [1] to [11].
  • the molded article according to [16] which has a hardness of 30 to 100 MPa.
  • the present invention also provides the following [1-1] to [1-10].
  • [1-1] A cellulose material in which the amount of iron component detected by a triple quadrupole-inductively coupled plasma mass spectrometer is more than 10 ppm and less than 50 ppm.
  • [1-2] The cellulose material according to [1-1], wherein the ash content after heating at 800° C. for 2 hours is 0.13% by weight or more based on 100% by weight of the cellulose material before heating.
  • the cellulose material according to [1-1] or [1-2] which has a thermogravimetric residual rate at 500° C. of 10% or more.
  • [1-5] The cellulose material according to any one of [1-1] to [1-4], which is powdered cellulose.
  • [1-6] The cellulose material according to [1-5], wherein the powdered cellulose has an average particle diameter of 5.0 to 150.0 ⁇ m.
  • [1-8] A resin composition containing the cellulose material according to any one of [1-1] to [1-6].
  • [1-9] A rubber composition comprising the cellulose material according to any one of [1-1] to [1-6].
  • [1-10] A molded article comprising the cellulose material according to any one of [1-1] to [1-6].
  • the present invention further provides the following [2-1] to [2-10].
  • [2-1] Powdered cellulose having an average particle diameter of 5.0 to 150.0 ⁇ m and an amount of iron component detected by a triple quadrupole-inductively coupled plasma mass spectrometer of 1 to 10 ppm.
  • [2-2] The powdered cellulose according to [2-1], wherein the ash content after heating at 800° C. for 2 hours is 1.0% by weight or less based on 100% by weight of the powdered cellulose before heating.
  • [2-3] The powdered cellulose according to [2-1] or [2-2], which has a thermogravimetric residual rate at 400°C of 10 to 20%.
  • thermogravimetric residual rate a cellulose material that can exhibit a high thermogravimetric residual rate and has good recyclability as a biomass material when mixed with a resin.
  • powdered cellulose that can exhibit a high thermogravimetric residual rate, has excellent recyclability as a biomass material when mixed with resin, and has excellent tabletability.
  • a cellulose material is a material whose main component is cellulose and contains an iron component.
  • Iron component Cellulosic materials contain iron components.
  • the iron component may be bound to the cellulose molecules of the cellulose material, or may be present separately without being bound (it can also be said to be a composition containing the cellulose material).
  • Iron components usually exist as iron atoms, compounds and derivatives containing iron atoms.
  • iron atoms Fe
  • oxides Fe 2 O 3 , Fe 3 O 4
  • hydroxides Fe(OH) 2 , Fe(OH) 3
  • oxyhydroxides FeO( OH)
  • chlorides FeCl 2 , FeCl 3
  • nitrates Fe(NO) 3
  • sulfates FeSO 4 , Fe 2 (SO 4 ) 3
  • halides Br, I
  • complex compounds The main component is usually an oxide.
  • the iron component content is a value detected by a triple quadrupole-inductively coupled plasma (ICP) mass spectrometer. Specifically, it can be measured under the following conditions, and the values in Examples are also the values measured by the following method. Note that when the iron component is other than iron atoms, the amount of iron component represents the amount of iron atoms.
  • the amount of iron component in the cellulose material is usually 1 ppm or more, preferably 1.3 ppm or more or 1.5 ppm or more, more preferably 1.6 ppm or more or 1.7 ppm or more. Thereby, the effect of containing the iron component can be efficiently exhibited.
  • the upper limit is usually 50 ppm or less, preferably 40 ppm or less, more preferably 29 ppm or less, 28 ppm or less, 27 ppm or less, or 26 ppm or less. Thereby, it is possible to suppress the contamination of foreign matter into the resin during recycling. Therefore, the amount of iron component is usually 1 to 50 ppm, preferably 1.3 to 40 ppm, more preferably 1.5 to 29 ppm, 1.5 to 28 ppm, 1.6 to 27 ppm, or 1.7 to 26 ppm. be.
  • the amount of iron component in the cellulose material is usually more than 10 ppm, preferably 10.5 ppm or more, more preferably 11 ppm or more, so that the thermogravimetric residual rate is high and the recyclability of the biomass material when mixed with resin is improved. An excellent cellulose material can be obtained.
  • the upper limit is usually 50 ppm or less, preferably 40 ppm or less, more preferably 30 ppm or less, still more preferably 29 ppm or less, 28 ppm or less, 27 ppm or less, or 26 ppm or less. Thereby, it is possible to suppress the contamination of foreign matter into the resin during recycling.
  • the iron component content of the cellulose material is usually more than 10 ppm and less than 50 ppm, more preferably more than 10 ppm and less than 40 ppm, still more preferably 10.5 to 30 ppm, even more preferably 11 to 29 ppm, 11 to 28 ppm. , 11 to 27 ppm, or 11 to 26 ppm.
  • the amount of iron component in the cellulose material is usually 1 ppm or more, preferably 1.3 ppm or more, more preferably 1.5 ppm or more, 1.6 ppm or more, or 1.7 ppm or more, so that the thermogravimetric residual rate is high, It can improve the recyclability of biomass materials when mixed with resin, and prevents the frictional force on the tablet surface from becoming excessively strong when tabletting cellulose materials (e.g., powdered cellulose), making them less likely to break. You can get tablets.
  • the upper limit is usually 10 ppm or less, preferably 7 ppm or less, more preferably 5 ppm or less, still more preferably 4 ppm or less, 3.8 ppm or less, 3.6 ppm or less, or 3.5 ppm or less.
  • the powdered cellulose can be made into tablets. Therefore, the iron content of the powdered cellulose is preferably 1 to 10 ppm, more preferably 1 to 7 ppm, even more preferably 1.3 to 5 ppm, even more preferably 1.5 to 4 ppm, and 1.6 to 3 ppm. .8 ppm, 1.7 to 3.6 ppm, or 1.7 to 3.5 ppm.
  • the amount of iron component can be adjusted by the amount of iron component contained in the raw material and the amount of iron component mixed during manufacturing.
  • the cellulosic material contains ash after heating at 800°C for 2 hours.
  • Ash is usually a component other than organic matter that remains after the raw material is ashed.
  • the ash content after heating is usually 0.05% by weight or more, preferably 0.07% by weight or more, based on 100% by weight of the cellulose material before heating. This makes it possible to obtain a cellulose material with a high thermogravimetric residual rate and excellent recyclability of the biomass material when mixed with resin.
  • the upper limit is usually 2.0% by weight or less, preferably 1.6% by weight. Thereby, it is possible to suppress the contamination of foreign matter into the resin during recycling. Therefore, the ash content is usually 0.05 to 2.0% by weight, preferably 0.07 to 1.6% by weight.
  • the ash content after heating is preferably 0.13% by weight or more or 0.14% by weight based on 100% by weight of the cellulose material before heating.
  • the content is more preferably 0.15% by weight or more.
  • the upper limit is preferably 2.0% by weight or less, more preferably 1.6% by weight or less.
  • the ash content is preferably 0.13 to 2.0% by weight or 0.14 to 2.0% by weight, more preferably 0.15 to 1.6% by weight.
  • the ash content after heating is preferably 1.0% by weight or less or 0.5% by weight based on 100% by weight of the powdered cellulose before heating. It is 5% by weight or less, more preferably 0.3% by weight or less or 0.15% by weight or less. Thereby, the powdered cellulose can be made into tablets.
  • the lower limit is preferably 0.05% by weight or more or 0.07% by weight or more, more preferably 0.09% by weight or more.
  • the ash content is preferably 0.05 to 1.0% by weight or 0.07 to 0.5% by weight, more preferably 0.09 to 0.3% by weight or 0.09 to 0.15% by weight. It is.
  • the amount of ash after heating at 800 ° C. for 2 hours can be determined by, for example, carbonizing a sample (measure the sample weight in advance), heating it at 800 ° C. for 2 hours to incinerate it, and measuring the weight of the residue after ashing. It can be measured by calculating the ratio (%) of the ash residue to the sample weight.
  • thermogravimetric residual rate Cellulose materials can exhibit a high thermogravimetric survival rate.
  • the thermogravimetric residual rate after heating at 500°C is usually 6% or more, 7% or more, or 10% or more, preferably 10.5% or more, more preferably 11% or more.
  • the upper limit is preferably 35% or less, more preferably 30% or less.
  • the thermogravimetric residual rate after heating at 400° C. is usually 8% or more, 9% or more, or 10% or more.
  • the upper limit is usually 20% or less, or 18% or less, preferably 16% or less, or 15% or less, more preferably 13% or less.
  • thermogravimetric residual rate after heating at 500° C. satisfies the above range.
  • the amount of iron component in the cellulose material is 10 ppm or less, it is preferable that the thermogravimetric residual rate after heating at 400°C satisfies the above range, and when the cellulose material is powdered cellulose, the thermogravimetric residual rate after heating at 400°C It is more preferable that the residual rate satisfies the above range.
  • the thermogravimetric residual rate after heating at 500°C or 400°C can be confirmed using a thermal analyzer as the ratio (%) of the weight after heating at 500°C or 400°C to the weight before the start of heating.
  • Form of cellulose material examples include powder and fibrous forms (microfibrils and nanofibers), with powdered cellulose being preferred.
  • the particle size distribution of powdered cellulose is the particle size distribution when the integrated value of the volume accumulation distribution is 10%, 50%, and 90% (10% diameter, 50% diameter, 90% diameter, respectively, D.10, D.50, D.90).
  • the particle size distribution is a value obtained by wet measurement (with ultrasonic irradiation), wet measurement (without ultrasonic irradiation), or dry measurement using a laser scattering method as the measurement principle.
  • the span of the particle size distribution is determined by the D. 10,D. 50, D. It is calculated by substituting 90 into the following formula (1).
  • Formula (1): Span of particle size distribution ((D.90)-(D.10))/(D.50)
  • wet conditions refer to conditions in which the particle diameter is directly measured without ultrasonic irradiation after adding water to the sample.
  • D under wet conditions no ultrasonic irradiation.
  • 10,D. 50, D. 90 the preferred range of span is as follows. Generally, the larger the particle size, the more entangled the fibers tend to be. Further, within the following range, when added to resins, rubbers, etc., the strength can be appropriately improved without impairing their properties. Further, when the amount of iron component is 1 to 10 ppm, in addition to the above properties, it can exhibit good tabletability.
  • D. 10 is usually 5.0 ⁇ m or more, preferably 9.0 ⁇ m or more, more preferably 10.0 ⁇ m or more, even more preferably 11.0 ⁇ m or more.
  • the upper limit is usually 40.0 ⁇ m or less, preferably 25.0 ⁇ m or less, more preferably 23.0 ⁇ m or less, even more preferably 22.0 ⁇ m or less. Therefore, it is usually 5.0 to 40.0 ⁇ m, preferably 9.0 to 25.0 ⁇ m, more preferably 10.0 to 23.0 ⁇ m, and still more preferably 11.0 to 22.0 ⁇ m.
  • the amount of iron component in powdered cellulose exceeds 10 ppm and is 50 ppm, D. 10 is usually 5.0 ⁇ m or more, 9.0 ⁇ m or more, or 10.0 ⁇ m or more, preferably 11.0 ⁇ m or more, more preferably 11.5 ⁇ m or more, preferably 12.0 ⁇ m or more, more preferably 13.0 ⁇ m or more.
  • the upper limit is usually 40.0 ⁇ m or less or 25.0 ⁇ m or less, preferably 23.0 ⁇ m or less or 22.0 ⁇ m or less, preferably 14.0 ⁇ m or less, more preferably 13.0 ⁇ m or less.
  • D. 10 is usually 5.0 ⁇ m or more, 9.0 ⁇ m or more, or 10.0 ⁇ m or more, preferably 12.0 ⁇ m or more, more preferably 13.0 ⁇ m or more.
  • the upper limit is usually 40.0 ⁇ m or less or 25.0 ⁇ m or less, preferably 23.0 ⁇ m or less, and more preferably 22.0 ⁇ m or less. Therefore, it is usually 5.0 to 40.0 ⁇ m, 9.0 to 40.0 ⁇ m, or 10.0 to 25.0 ⁇ m, preferably 12.0 to 23.0 ⁇ m, more preferably 13.0 to 22.0 ⁇ m. be.
  • D. 50 (average particle diameter) is usually 5.0 ⁇ m or more, 10.0 ⁇ m or more, preferably 20.0 ⁇ m or more, or 25.0 ⁇ m or more, more preferably 30.0 ⁇ m or more, or 34.0 ⁇ m or more, even more preferably It is 36.0 ⁇ m or more, or 38.0 ⁇ m or more (however, it is a value larger than D.10).
  • the upper limit is usually 150.0 ⁇ m or less, 140.0 ⁇ m or less, or 130.0 ⁇ m or less, preferably 120.0 ⁇ m or less, or 110.0 ⁇ m or less, more preferably 100.0 ⁇ m or less, or 90.0 ⁇ m or less, even more preferably is 80.0 ⁇ m or less, 75.0 ⁇ m or less, or 70.0 ⁇ m or less.
  • 50 (average particle diameter) is usually 5.0 to 150.0 ⁇ m, 5.0 to 140.0 ⁇ m, 10.0 to 130.0 ⁇ m, 10.0 to 120.0 ⁇ m, 20.0 to 110.0 ⁇ m, 20.0 to 100.0 ⁇ m, 25.0 to 90.0 ⁇ m, 30.0 to 80.0 ⁇ m, 34.0 to 80.0 ⁇ m, 36.0 to 75.0 ⁇ m, and 38.0 to 70.0 ⁇ m.
  • D. 50 (average particle diameter) is usually 5.0 ⁇ m or more, 10.0 ⁇ m or more, 20.0 ⁇ m or more, or 25.0 ⁇ m or more, preferably 30.0 ⁇ m or more or 34.0 ⁇ m or more, more preferably 36.0 ⁇ m or more, More preferably, it is 38.0 ⁇ m or more (however, it is a value larger than D.10).
  • the upper limit is usually 150.0 ⁇ m or less, 100.0 ⁇ m or less, 90.0 ⁇ m or less, 70.0 ⁇ m or less, or 50.0 ⁇ m or less, preferably 45.0 ⁇ m or less, 44.0 ⁇ m or less, or 43.0 ⁇ m or less, more preferably It is 42.0 ⁇ m or less, more preferably 40.0 ⁇ m or less.
  • 50 (average particle diameter) is usually 5.0 to 150.0 ⁇ m, 5.0 to 100.0 ⁇ m, 10.0 to 90.0 ⁇ m, 20.0 to 70.0 ⁇ m or 25.0 to 50.0 ⁇ m, Preferably it is 30.0 to 45.0 ⁇ m, 30.0 to 44.0 ⁇ m or 34.0 to 43.0 ⁇ m, more preferably 36.0 to 42.0 ⁇ m, still more preferably 38.0 to 40.0 ⁇ m.
  • D. 50 (average particle diameter) is usually 5.0 ⁇ m or more, 10.0 ⁇ m or more, 20.0 ⁇ m or more, or 25.0 ⁇ m or more, preferably 30.0 ⁇ m or more or 34.0 ⁇ m or more, more preferably 38.0 ⁇ m or more, More preferably, it is 40.0 ⁇ m or more (however, it is a value larger than D.10).
  • the upper limit is usually 150.0 ⁇ m or less, 140.0 ⁇ m or less, 130.0 ⁇ m or less, 120.0 ⁇ m or less, or 110.0 ⁇ m or less, preferably 100.0 ⁇ m or less, 90.0 ⁇ m or less, or 80.0 ⁇ m or less, more preferably It is 75.0 ⁇ m or less, more preferably 70.0 ⁇ m or less.
  • 50 (average particle diameter) is usually 5.0 to 150.0 ⁇ m, 5.0 to 140.0 ⁇ m, 10.0 to 130.0 ⁇ m, 20.0 to 120.0 ⁇ m or 25.0 to 110.0 ⁇ m, Preferably 30.0 to 100.0 ⁇ m, 30.0 to 90.0 ⁇ m or 34.0 to 80.0 ⁇ m, more preferably 38.0 to 75.0 ⁇ m, still more preferably 40.0 to 70.0 ⁇ m.
  • D. 90 is usually 70.0 ⁇ m or more or 75.0 ⁇ m or more, preferably 80.0 ⁇ m or more, 85.0 ⁇ m or more, or 90.0 ⁇ m or more, more preferably 95.0 ⁇ m or more, still more preferably 100.0 ⁇ m or more, 105. It is 0 ⁇ m or more, or 110.0 ⁇ m or more (however, it is a value larger than D.50).
  • the upper limit is usually 250.0 ⁇ m or less, or 240.0 ⁇ m or less, preferably 230.0 ⁇ m or less, or 225.0 ⁇ m or less, more preferably 220.0 ⁇ m or less, or 215.0 ⁇ m or less, even more preferably 210.0 ⁇ m or less. It is.
  • D. 90 is usually 70.0 ⁇ m or more or 75.0 ⁇ m or more, preferably 80.0 ⁇ m or more, 85.0 ⁇ m or more, or 90.0 ⁇ m or more, more preferably 95.0 ⁇ m or more, and still more preferably 100.0 ⁇ m or more ( However, the value is larger than D.50).
  • the upper limit is usually 250.0 ⁇ m or less, 230.0 ⁇ m or less, or 220.0 ⁇ m or less, preferably 210.0 ⁇ m or less or 200.0 ⁇ m or less, more preferably 195.0 ⁇ m or less, and even more preferably 190.0 ⁇ m or less. .
  • D. 90 is usually 70.0 ⁇ m or more or 80.0 ⁇ m or more, preferably 90.0 ⁇ m or more, 95.0 ⁇ m or more, or 100.0 ⁇ m or more, more preferably 105.0 ⁇ m or more, and still more preferably 110.0 ⁇ m or more ( However, the value is larger than D.50).
  • the upper limit is usually 250.0 ⁇ m or less, 240.0 ⁇ m or less, or 230.0 ⁇ m or less, preferably 225.0 ⁇ m or less or 220.0 ⁇ m or less, more preferably 215.0 ⁇ m or less, and still more preferably 210.0 ⁇ m or less. .
  • the span of the particle size distribution is usually 1.5 or more, preferably 1.7 or more, more preferably 1.9 or more, and still more preferably 2.0 or more.
  • the upper limit is usually 6.0 or less, preferably 5.5 or less, more preferably 5.0 or less, still more preferably 4.5 or less. Therefore, usually 1.5 to 6.0, or 1.7 to 6.0, preferably 1.9 to 5.5, more preferably 1.9 to 5.0, or 2.0 to 5.0 , more preferably from 2.0 to 4.5.
  • the span of the particle size distribution is usually 1.5 or more, preferably 1.7 or more, more preferably 1.9 or more, and even more preferably 2. .0 or more.
  • the upper limit is usually 6.0 or less, preferably 5.5 or less, more preferably 5.0 or less, still more preferably 4.5 or less. Therefore, it is usually 1.5 to 6.0, preferably 1.7 to 5.5, more preferably 1.9 to 5.0, and even more preferably 2.0 to 4.5.
  • the span of the particle size distribution is usually 2.1 or more, preferably 2.2 or more, more preferably 2.3 or more, and still more preferably 2.4. That's all.
  • the upper limit is usually 6.0 or less, preferably 5.0 or less, more preferably 4.0 or less, and even more preferably 3.0 or less. Therefore, it is usually 2.1 to 6.0, preferably 2.2 to 5.0, more preferably 2.3 to 4.0, and even more preferably 2.4 to 3.0.
  • wet conditions refer to conditions in which a sample is subjected to ultrasonic irradiation after being hydrated, and then the particle diameter is measured.
  • D. for wet type (with ultrasonic waves) 10,D. 50, D. 90 the preferred range of span is as follows. Generally, the larger the particle size, the more entangled the fibers tend to be. Further, within the following range, when added to resins, rubbers, etc., the strength can be appropriately improved without impairing their properties. Further, when the amount of iron component is 1 to 10 ppm, in addition to the above properties, it can exhibit good tabletability.
  • D. 10 is usually 1.0 ⁇ m or more, or 3.0 ⁇ m or more, preferably 5.0 ⁇ m or more, or 9.0 ⁇ m or more, more preferably 9.5 ⁇ m or more, or 10.0 ⁇ m or more, and even more preferably 10.5 ⁇ m. That's all.
  • the upper limit is usually 24.0 ⁇ m or less, preferably 23.0 ⁇ m or less, more preferably 22.5 ⁇ m or less, still more preferably 22.0 ⁇ m or less.
  • the amount of iron component in powdered cellulose exceeds 10 ppm and is 50 ppm, D. 10 is usually 1.0 ⁇ m or more, 3.0 ⁇ m or more, or 5.0 ⁇ m or more, preferably 9.0 ⁇ m or more or 10.0 ⁇ m or more, more preferably 10.5 ⁇ m or more, and still more preferably 11.0 ⁇ m or more.
  • the upper limit is usually 20.0 ⁇ m or less or 16.0 ⁇ m or less, preferably 13.0 ⁇ m or less, and more preferably 12.5 ⁇ m or less.
  • D. 10 is usually 1.0 ⁇ m or more, 3.0 ⁇ m or more, or 5.0 ⁇ m or more, preferably 9.0 ⁇ m or more or 9.5 ⁇ m or more, more preferably 10.0 ⁇ m or more, still more preferably 10.5 ⁇ m or more.
  • the upper limit is usually 24.0 ⁇ m or less or 23.0 ⁇ m or less, preferably 22.5 ⁇ m or less, and more preferably 22.0 ⁇ m or less.
  • D. 50 is usually 5.0 ⁇ m or more, or 10.0 ⁇ m or more, preferably 20.0 ⁇ m or more, or 23.0 ⁇ m or more, more preferably 25.0 ⁇ m or more, or 26.0 ⁇ m or more, still more preferably 27 .0 ⁇ m or more, 27.5 ⁇ m or more, or 28.0 ⁇ m or more (however, the value is larger than D.10).
  • the upper limit is usually 150.0 ⁇ m or less, preferably 120.0 ⁇ m or less, more preferably 100.0 ⁇ m or less, still more preferably 80.0 ⁇ m or less, or 70.0 ⁇ m or less.
  • D. 50 is usually 5.0 ⁇ m or more, 10.0 ⁇ m or more, or 20.0 ⁇ m or more, preferably 25.0 ⁇ m or more, 30.0 ⁇ m or more, or 32.0 ⁇ m or more, more preferably 34.0 ⁇ m or more or 36.0 ⁇ m or more, More preferably, it is 36.5 ⁇ m or more (however, the value is larger than D.10).
  • the upper limit is usually 70.0 ⁇ m or less, 60.0 ⁇ m or less, or 50.0 ⁇ m or less, preferably 45.0 ⁇ m or less or 40.0 ⁇ m or less, more preferably 39.5 ⁇ m or less, still more preferably 39.0 ⁇ m or less. Therefore, usually 5.0 to 70.0 ⁇ m, 10.0 to 60.0 ⁇ m or 20.0 to 50.0 ⁇ m, preferably 25.0 to 45.0 ⁇ m, 30.0 to 40.0 ⁇ m or 32.0 to 40.0 ⁇ m, more preferably 34.0 to 39.5 ⁇ m, still more preferably 36.0 to 39.0 ⁇ m or 36.5 to 39.0 ⁇ m.
  • D. 50 is usually 5.0 ⁇ m or more, 10.0 ⁇ m or more, or 20.0 ⁇ m or more, preferably 23.0 ⁇ m or more, 25.0 ⁇ m or more, or 26.0 ⁇ m or more, more preferably 27.0 ⁇ m or more or 27.5 ⁇ m or more, More preferably, it is 28.0 ⁇ m or more (however, the value is larger than D.10).
  • the upper limit is usually 150.0 ⁇ m or less, 120.0 ⁇ m or less, or 100.0 ⁇ m or less, preferably 80.0 ⁇ m or less or 70.0 ⁇ m or less, more preferably 69.5 ⁇ m or less, still more preferably 69.0 ⁇ m or less. Therefore, usually 5.0 to 150.0 ⁇ m, 10.0 to 120.0 ⁇ m or 20.0 to 100.0 ⁇ m, preferably 23.0 to 80.0 ⁇ m, 25.0 to 70.0 ⁇ m or 26.0 to 70.0 ⁇ m, more preferably 27.0 to 69.5 ⁇ m, even more preferably 27.5 to 69.0 ⁇ m or 28.0 to 69.0 ⁇ m.
  • D. 90 is usually 50.0 ⁇ m or more, 55.0 ⁇ m or more, 60.0 ⁇ m or more, 65.0 ⁇ m or more, 70.0 ⁇ m or more, 75.0 ⁇ m or more (however, it is a value larger than D.50).
  • the upper limit is usually 230.0 ⁇ m or less, 225.0 ⁇ m or less, or 220.0 ⁇ m or less, preferably 215.0 ⁇ m or less, 210.0 ⁇ m or less. Therefore, D.
  • 90 is usually 50.0 to 230.0 ⁇ m, 55.0 to 225.0 ⁇ m, 60.0 to 220.0 ⁇ m, 65.0 to 215.0 ⁇ m or 70.0 to 210.0 ⁇ m, preferably 75.0 ⁇ 200.0 ⁇ m, 80.0 to 215.0 ⁇ m, more preferably 90.0 to 215.0 ⁇ m, even more preferably 100.0 to 210.0 ⁇ m.
  • D. 90 is usually 50.0 ⁇ m or more, 60.0 ⁇ m or more, 70.0 ⁇ m or more, or 90.0 ⁇ m or more, preferably 98.0 ⁇ m or more, more preferably 100.0 ⁇ m or more, even more preferably 101.5 ⁇ m or more ( However, the value is larger than D.50).
  • the upper limit is usually 210.0 ⁇ m or less or 200.0 ⁇ m or less, preferably 200.0 ⁇ m or less, more preferably 195.0 ⁇ m or less, even more preferably 190.0 ⁇ m or less. Therefore, D.
  • 90 is usually 50.0 to 210.0 ⁇ m, 60.0 to 200.0 ⁇ m or 70.0 to 200.0 ⁇ m, preferably 80.0 to 195.0 ⁇ m, more preferably 90.0 to 190.0 ⁇ m, More preferably, it is 100.0 to 190.0 ⁇ m.
  • D. 90 is usually 50.0 ⁇ m or more, 55.0 ⁇ m or more, or 60.0 ⁇ m or more, preferably 65.0 ⁇ m or more, more preferably 70.0 ⁇ m or more, even more preferably 75.0 ⁇ m or more (however, D.50 ).
  • the upper limit is usually 230.0 ⁇ m or less or 225.0 ⁇ m or less, preferably 220.0 ⁇ m or less, more preferably 215.0 ⁇ m or less, even more preferably 210.0 ⁇ m or less. Therefore, D.
  • 90 is usually 50.0 to 230.0 ⁇ m, 55.0 to 225.0 ⁇ m or 60.0 to 225.0 ⁇ m, preferably 65.0 to 220.0 ⁇ m, more preferably 70.0 to 215.0 ⁇ m, More preferably, it is 75.0 to 210.0 ⁇ m.
  • the span of the particle size distribution is usually 1.5 or more, preferably 1.7 or more, more preferably 1.9 or more, and still more preferably 2.0 or more.
  • the upper limit is usually 5.0 or less, preferably 4.5 or less. Therefore, it is usually 1.5 to 5.0, preferably 1.7 to 5.0, more preferably 1.9 to 5.0, or 2.0 to 4.5.
  • the span of the particle size distribution is usually 1.5 or more, preferably 1.7 or more, more preferably 1.9 or more, and even more preferably 2. .0 or more.
  • the upper limit is usually 5.0 or less, preferably 4.5 or less. Therefore, it is usually 1.5 to 5.0, preferably 1.7 to 4.5, more preferably 1.9 to 4.5, or 2.0 to 4.5.
  • the span of the particle size distribution is usually 1.5 or more, preferably 1.7 or more, more preferably 2.0 or more, and even more preferably 2.2. That's all.
  • the upper limit is usually 5.0 or less, preferably 3.5 or less, more preferably 2.9 or less. Therefore, it is usually 1.5 to 5.0, preferably 2.0 to 3.5, and more preferably 2.2 to 2.9.
  • dry measurement refers to conditions in which the particle diameter is directly measured without adding water to the sample.
  • D. for dry measurement. 10,D. 50, D. 90 the preferred range of span is as follows. Generally, the larger the particle size, the more entangled the fibers tend to be. Further, within the following range, when added to resins, rubbers, etc., the strength can be appropriately improved without impairing their properties. Further, when the amount of iron component is 1 to 10 ppm, in addition to the above properties, it can exhibit good tabletability.
  • D. 10 is usually 1.0 ⁇ m or more, 3.0 ⁇ m or more, or 5.0 ⁇ m or more, preferably 7.0 ⁇ m or more or 8.0 ⁇ m or more, more preferably 9.0 ⁇ m or more, or 9.5 ⁇ m or more.
  • the upper limit is usually 40.0 ⁇ m or less, 35.0 ⁇ m or less, or 30.0 ⁇ m or less, preferably 27.0 ⁇ m or less, 26.0 ⁇ m or less. Therefore, usually 1.0 to 40.0 ⁇ m, 3.0 to 40.0 ⁇ m or 5.0 to 35.0 ⁇ m, preferably 7.0 to 35.0 ⁇ m, 8.0 to 30.0 ⁇ m, or 9.0 ⁇ m -27.0 ⁇ m, more preferably 9.5-26.0 ⁇ m.
  • the amount of iron component in powdered cellulose exceeds 10 ppm and is 50 ppm, D. 10 is usually 1.0 ⁇ m or more, 3.0 ⁇ m or more, or 5.0 ⁇ m or more, preferably 7.0 ⁇ m or more or 8.0 ⁇ m or more, more preferably 9.0 ⁇ m or more, and still more preferably 9.5 ⁇ m or more.
  • the upper limit is usually 40.0 ⁇ m or less or 20.0 ⁇ m or less, preferably 15.0 ⁇ m or less, more preferably 14.0 ⁇ m or less, even more preferably 13.0 ⁇ m or less.
  • D. 10 is usually 1.0 ⁇ m or more, 3.0 ⁇ m or more, or 5.0 ⁇ m or more, preferably 7.0 ⁇ m or more or 10.0 ⁇ m or more, more preferably 13.0 ⁇ m or more, and still more preferably 13.5 ⁇ m or more.
  • the upper limit is usually 40.0 ⁇ m or less or 35.0 ⁇ m or less, preferably 30.0 ⁇ m or less, more preferably 27.0 ⁇ m or less, even more preferably 26.0 ⁇ m or less.
  • D. 50 is usually 5.0 ⁇ m or more, 10.0 ⁇ m or more, or 15.0 ⁇ m or more, preferably 20.0 ⁇ m or more, 25.0 ⁇ m or more, or 30.0 ⁇ m or more, more preferably 33.0 ⁇ m or more, 34.0 ⁇ m or more, or 35.0 ⁇ m or more (however, the value is larger than D.10).
  • the upper limit is usually 150.0 ⁇ m or less, or 100.0 ⁇ m or less, preferably 90.0 ⁇ m or less, more preferably 88.0 ⁇ m or less, even more preferably 87.0 ⁇ m or less. Therefore, D.
  • 50 is usually 5.0 to 150.0 ⁇ m, 10.0 to 150.0 ⁇ m or 15.0 to 100.0 ⁇ m, preferably 20.0 to 100.0 ⁇ m, 25.0 to 90.0 ⁇ m or 30.0 ⁇ m. -90.0 ⁇ m, more preferably 33.0-88.0 ⁇ m or 34.0-88.0 ⁇ m, even more preferably 35.0-87.0 ⁇ m.
  • D. 50 is usually 5.0 ⁇ m or more, 10.0 ⁇ m or more, or 15.0 ⁇ m or more, preferably 20.0 ⁇ m or more, 25.0 ⁇ m or more, or 30.0 ⁇ m or more, more preferably 33.0 ⁇ m or more, 34.0 ⁇ m or more, More preferably, it is 35.0 ⁇ m or more (however, the value is larger than D.10).
  • the upper limit is usually 100.0 ⁇ m or less or 60.0 ⁇ m or less, preferably 52.5 ⁇ m or less or 52.0 ⁇ m or less, more preferably 51.5 ⁇ m or less. Therefore, D.
  • 50 is usually 5.0 to 100.0 ⁇ m, 10.0 to 60.0 ⁇ m or 15.0 to 60.0 ⁇ m, preferably 20.0 to 52.5 ⁇ m, 25.0 to 52.5 ⁇ m or 30.0 ⁇ 52.5 ⁇ m, more preferably 33.0 ⁇ 52.0 ⁇ m or 34.0 ⁇ 52.0 ⁇ m, still more preferably 35.0 ⁇ 51.5 ⁇ m.
  • D. 50 is usually 5.0 ⁇ m or more, 10.0 ⁇ m or more, or 15.0 ⁇ m or more, preferably 25.0 ⁇ m or more, 30.0 ⁇ m or more, or 35.0 ⁇ m or more, more preferably 40.0 ⁇ m or more or 41.0 ⁇ m or more, More preferably, it is 41.5 ⁇ m or more (however, it is a value larger than D.10).
  • the upper limit is usually 150.0 ⁇ m or less or 100.0 ⁇ m or less, preferably 90.0 ⁇ m or less or 88.0 ⁇ m or less, more preferably 87.0 ⁇ m or less. Therefore, D.
  • 50 is usually 5.0 to 150.0 ⁇ m, 10.0 to 100.0 ⁇ m or 15.0 to 100.0 ⁇ m, preferably 25.0 to 90.0 ⁇ m, 30.0 to 90.0 ⁇ m or 35.0 -90.0 ⁇ m, more preferably 40.0-88.0 ⁇ m or 41.0-88.0 ⁇ m, even more preferably 41.5-87.0 ⁇ m.
  • D. 90 is usually 80.0 ⁇ m or more, preferably 90.0 ⁇ m or more, more preferably 93.0 ⁇ m or more, even more preferably 94.0 ⁇ m or more (however, it is a value larger than D.50) .
  • the upper limit is usually 330.0 ⁇ m or less, preferably 320.0 ⁇ m or less, more preferably 315.0 ⁇ m or less, or 310.0 ⁇ m or less, still more preferably 305.0 ⁇ m or less. Therefore, D. 90 is usually 80.0 to 330.0 ⁇ m, preferably 80.0 to 320.0 ⁇ m, more preferably 90.0 to 315.0 ⁇ m, or 93.0 to 310.0 ⁇ m, still more preferably 94 .0 to 305.0 ⁇ m.
  • D. 90 is usually 80.0 ⁇ m or more, or 90.0 ⁇ m or more, preferably 93.0 ⁇ m or more, more preferably 94.0 ⁇ m or more (however, it is a value larger than D.50).
  • the upper limit is usually 310.0 ⁇ m or less or 280.0 ⁇ m or less, preferably 260.0 ⁇ m or less or 255.0 ⁇ m, more preferably 251.0 ⁇ m or less. Therefore, D. 90 is usually 80.0 to 310.0 ⁇ m or 90.0 to 280.0 ⁇ m, preferably 93.0 to 260.0 ⁇ m or 93.0 to 255.0 ⁇ m, more preferably 94.0 to 251.0 ⁇ m. be.
  • D. 90 is usually 90.0 ⁇ m or more or 110.0 ⁇ m or more, preferably 120.0 ⁇ m or more, more preferably 130.0 ⁇ m or more (however, it is a value larger than D.50).
  • the upper limit is usually 330.0 ⁇ m or less or 320.0 ⁇ m or less, preferably 315.0 ⁇ m or less or 310.0 ⁇ m or less, more preferably 305.0 ⁇ m or less. Therefore, D. 90 is usually 90.0 to 330.0 ⁇ m or 110.0 to 320.0 ⁇ m, preferably 120.0 to 315.0 ⁇ m or 120.0 to 310.0 ⁇ m, more preferably 130.0 to 305.0 ⁇ m. be.
  • the span of the particle size distribution is usually 1.5 or more, preferably 1.7 or more, more preferably 1.8 or more, still more preferably 2.0 or more.
  • the upper limit is usually 9.0 or less, preferably 7.0 or less, more preferably 6.0 or less, even more preferably 5.0 or less. Therefore, the span of the particle size distribution is usually 1.5 to 9.0, preferably 1.7 to 7.0, more preferably 1.8 to 6.0, even more preferably 2.0 to 5.0. It is.
  • the span of the particle size distribution is usually 1.5 or more, preferably 1.7 or more, more preferably 1.8 or more, and still more preferably 2. .0 or more.
  • the upper limit is usually 9.0 or less, preferably 7.0 or less, more preferably 6.0 or less, still more preferably 5.0 or less. Therefore, the span of the particle size distribution is usually 1.5 to 9.0, preferably 1.7 to 7.0, more preferably 1.8 to 6.0, even more preferably 2.0 to 5.0. It is.
  • the span of the particle size distribution is usually 2.5 or more, preferably 2.6 or more, more preferably 2.7 or more, and still more preferably 2.8. That's all.
  • the upper limit is usually 7.0 or less, preferably 6.0 or less, more preferably 5.0 or less, still more preferably 4.0 or less. Therefore, the span of the particle size distribution is usually 2.5 to 7.0, preferably 2.6 to 6.0, more preferably 2.7 to 5.0, even more preferably 2.8 to 4.0. It is.
  • the average fiber width ( ⁇ m), average fiber length (mm), average fiber length/average fiber width
  • the average fiber width (minor axis) refers to the average value of the minimum value orthogonal to the major axis of the fiber width of powdered cellulose.
  • the average fiber length (length axis) refers to the average value of the maximum length of the fiber width of powdered cellulose.
  • the average fiber width is usually 10 ⁇ m or more, preferably 15 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the upper limit is usually 40 ⁇ m or less, preferably 35 ⁇ m or less, more preferably 33 ⁇ m or less, still more preferably 32 ⁇ m or less. Therefore, the average fiber width is usually 10 to 40 ⁇ m, preferably 10 to 35 ⁇ m or 10 to 24 ⁇ m, more preferably 15 to 33 ⁇ m, and still more preferably 20 to 32 ⁇ m.
  • the average fiber width is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and still more preferably 20 ⁇ m or more.
  • the upper limit is preferably 35 ⁇ m or less, more preferably 30 ⁇ m or less, even more preferably 24 ⁇ m or less. Therefore, the average fiber width is preferably 10 to 35 ⁇ m or 10 to 24 ⁇ m, more preferably 15 to 30 ⁇ m, even more preferably 20 to 24 ⁇ m.
  • the average fiber width is usually 10 ⁇ m or more, preferably 20 ⁇ m or more, more preferably 24 ⁇ m or more, and still more preferably 24.5 ⁇ m or more.
  • the upper limit is usually 40 ⁇ m or less, preferably 35 ⁇ m or less, more preferably 33 ⁇ m or less, even more preferably 32 ⁇ m or less. Therefore, the average fiber width is usually 10 to 40 ⁇ m, preferably 20 to 35 ⁇ m, more preferably 24 to 33 ⁇ m, and still more preferably 24.5 to 32 ⁇ m.
  • the average fiber length is usually 0.03 mm or more, preferably 0.05 mm or more.
  • the upper limit is usually 0.3 mm or less, preferably 0.25 mm or less, more preferably 0.2 mm or less. Therefore, the average fiber length is usually 0.03 to 0.3 mm, preferably 0.05 to 0.25, and more preferably 0.05 to 0.2 mm.
  • the average fiber length is preferably 0.05 mm or more, more preferably 0.06 mm or more.
  • the upper limit is preferably 0.3 mm or less, more preferably 0.25 mm or less. Therefore, the average fiber length is preferably 0.05 to 0.3 mm, more preferably 0.06 to 0.25 mm.
  • the average fiber length is preferably 0.03 mm or more, more preferably 0.05 mm or more.
  • the upper limit is preferably 0.3 mm or less, more preferably 0.2 mm or less. Therefore, the average fiber length is preferably 0.03 to 0.3 mm, more preferably 0.05 to 0.2 mm.
  • the average fiber length/average fiber width (L/D) of powdered cellulose is usually 2.0 or more, preferably 3.0 or more.
  • the upper limit is usually 12.0 or less, preferably 11.5 or less. Therefore, L/D is usually 2.0 to 12.0, preferably 3.0 to 11.5.
  • L/D is preferably 2.5 to 12.0, more preferably 3.0 to 11.5.
  • the larger the L/D the more entangled the fibers tend to be.
  • the strength can be appropriately improved without impairing their properties.
  • L/D is preferably 3.0 to 8.0, more preferably 3.0 to 7.0, and still more preferably 3.0 to 8.0. It is 0 to 6.0. Generally, the larger the L/D, the more entangled the fibers tend to be. Further, within the above range, when added to resins, rubbers, etc., the strength can be appropriately improved without impairing their properties, and good suitability for tabletting can be exhibited.
  • the average fiber length and average fiber width can be measured using Fiber Tester Plus manufactured by ABB, and L/D is a value calculated from these measured values.
  • Fibrous cellulose refers to cellulose fibers prepared through a micronization process and having a fiber diameter on the nano-order or micro-order. In this specification, they are respectively referred to as cellulose nanofibers (CNF) and cellulose microfibrils (MFC).
  • CNF cellulose nanofibers
  • MFC cellulose microfibrils
  • the average fiber diameter (length-weighted average fiber diameter) of CNF is 500 nm or less, preferably 300 nm or less, more preferably 100 nm or less, even more preferably 50 nm or less.
  • the lower limit is not particularly limited, it is usually 1 nm or more, preferably 2 nm or more. Therefore, the average fiber diameter (length-weighted average fiber diameter) of CNF is usually 1 to 500 nm or 2 to 500 nm, preferably 2 to 300 nm or 2 to 100 nm, more preferably 2 to 50 nm or 3 to 30 nm.
  • the average fiber length (length-weighted average fiber length) is usually 50 to 2000 nm, preferably 100 to 1000 nm.
  • the aspect ratio of CNF is usually 10 or more, preferably 50 or more.
  • the upper limit is not particularly limited, but is usually 1000 or less.
  • the average fiber diameter of MFC is usually 500 nm or more, preferably 1 ⁇ m or more, and more preferably 3 ⁇ m or more. As a result, it can exhibit higher water retention than undefibrated cellulose fibers, and even in a small amount, a high strength imparting effect and yield improvement effect can be obtained compared to finely defibrated CNF.
  • the upper limit of the average fiber diameter is preferably 60 ⁇ m or less, more preferably 40 ⁇ m or less, even more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less, but there is no particular restriction.
  • the average fiber length is usually 10 ⁇ m or more, 20 ⁇ m or more, or 40 ⁇ m or more, preferably 200 ⁇ m or more, 300 ⁇ m or more, or 400 ⁇ m or more, more preferably 500 ⁇ m or more or 550 ⁇ m or more, even more preferably 600 ⁇ m or more, 700 ⁇ m or more, or 800 ⁇ m. That's all.
  • the upper limit is not particularly limited, but is usually 3,000 ⁇ m or less, preferably 2,500 ⁇ m or less, more preferably 2,000 ⁇ m or less, still more preferably 1,500 ⁇ m or less, 1,400 ⁇ m or less, or 1,300 ⁇ m.
  • the aspect ratio of MFC is preferably 3 or more, more preferably 5 or more, even more preferably 7 or more, and may be 10 or more, 20 or more, or 30 or more.
  • the upper limit of the aspect ratio is not particularly limited, but is preferably 1000 or less, more preferably 100 or less, and even more preferably 80 or less.
  • the average fiber diameter and average fiber length of fibrous cellulose can be determined using a fractionator manufactured by Valmet Corporation. When using a fractionator, it can be determined as length-weighted fiber width and length-weighted average fiber length, respectively.
  • the fibrous cellulose may be modified or unmodified.
  • Modified fibrous cellulose refers to fine cellulose fibers (e.g., cellulose nanofibers, cellulose microfibrils) in which at least one of the three hydroxyl groups contained in the glucose unit has been chemically modified (hereinafter simply referred to as "modified"). ) means.
  • modified cellulose fibers are sufficiently refined, and cellulose nanofibers having a uniform average fiber length and average fiber diameter can be obtained by defibration. Therefore, when compounded with a rubber component, it can exhibit a sufficient reinforcing effect. From this point of view, modified cellulose fibers are preferred.
  • modification examples include oxidation, etherification, esterification such as phosphoric acid esterification, silane coupling, fluorination, cationization, and the like. Among these, oxidation (carboxylation), etherification, cationization, and esterification are preferred, and oxidation (carboxylation) is more preferred.
  • the cellulose material is not particularly limited as long as it is obtained by a method of obtaining a cellulose material from a cellulose raw material.
  • a method including at least a pulverization treatment may be mentioned, and a method including a mechanical pulverization treatment is preferred.
  • a method including defibration treatment can be mentioned.
  • the cellulose raw material is usually naturally derived cellulose, preferably pulp, and more preferably pulp derived from wood.
  • pulp derived from wood include pulp derived from broad-leaved trees and pulp derived from coniferous trees.
  • methods for preparing wood-derived pulp include methods that include bleaching treatment.
  • Bleaching treatment methods include, for example, chlorine treatment (C), chlorine dioxide bleaching (D), alkaline extraction (E), hypochlorite bleaching (H), Hydrogen peroxide bleaching (P), alkaline hydrogen peroxide treatment stage (Ep), alkaline hydrogen peroxide/oxygen treatment stage (Eop), ozone treatment (Z), chelation treatment (Q), and two or more of these treatments
  • chlorine treatment C
  • chlorine dioxide bleaching D
  • alkaline extraction E
  • hypochlorite bleaching H
  • Hydrogen peroxide bleaching P
  • alkaline hydrogen peroxide treatment stage Ep
  • alkaline hydrogen peroxide/oxygen treatment stage Eop
  • Z ozone treatment
  • chelation treatment Q
  • Examples of combinations (sequences) of two or more processes include D-E/P-D, C/D-E-HD, Z-E-D-PZ/D-Ep-D, and Z/D- Ep-DP, D-Ep-D, D-Ep-DP, D-Ep-PD, Z-Eop-DD, Z/D-Eop-D, Z/D-Eop- An example is DE (the "/" in the sequence means that the processes before and after the "/" are performed consecutively without washing).
  • Bleaching treatment is not limited to the above example, and may be any commonly used method. Pulp that has undergone bleaching treatment is usually in a fluid state (fluid pulp). The whiteness of the pulp is preferably 80% or more based on ISO 2470.
  • An example of a method for preparing pulp is a pulping method (cooking method).
  • the pulping method dissolves and removes the colored substance lignin, making it possible to obtain pulp with a high degree of whiteness.
  • Examples of the pulping method (cooking method) include sulfite cooking, kraft cooking, soda quinone cooking, and organosolve cooking, with kraft pulp being preferred from an environmental standpoint.
  • Mechanical pulps such as ground wood pulp (GP), refined ground wood pulp (RGP), thermomechanical pulp (TMP), and chemi-thermomechanical pulp (CTMP) can also be used.
  • the moisture content of the cellulose raw material is usually preferably 5 to 30%, preferably 6 to 20%, based on 100% of the cellulose raw material.
  • the moisture content may be adjusted by dehydration/drying treatment described below.
  • the pulverization process is a process of mechanically pulverizing the cellulose raw material. Prior to the pulverization treatment, pretreatment such as dehydration/drying treatment, acid hydrolysis treatment, etc. may be performed, and dehydration/drying treatment is preferred. A classification process may be performed simultaneously with the pulverization process or after the pulverization process.
  • Examples of the crusher include a cutting type mill, an impact type mill, an air flow type mill, a hammer type mill, a roll mill, a roller mill, a media mill, a media stirring mill, a vibration mill, and a freeze crusher. Two or more types may be used in combination.
  • cutting-type mills examples include cutting mills (manufactured by Horai Co., Ltd.), mesh mills (manufactured by Horai Co., Ltd.), Atoms (manufactured by Yamamoto Hyakuma Seisakusho Co., Ltd.), knife mills (manufactured by Palman Co., Ltd.), and cutter mills (manufactured by Tokyo Atomizer Co., Ltd.).
  • Examples of the hammer type mill include a hammer mill (manufactured by Hosokawa Micron Co., Ltd.), a jaw crusher (manufactured by Makino Co., Ltd.), and a hammer crusher (manufactured by Makino Sangyo Co., Ltd.).
  • impact mills examples include Pulverizer (manufactured by Hosokawa Micron Corporation), Fine Impact Mill (manufactured by Hosokawa Micron Corporation), Super Micron Mill (registered trademark, manufactured by Hosokawa Micron Corporation), Innomizer (registered trademark, manufactured by Hosokawa Micron Corporation), Fine Mill (manufactured by Japan Pneumatic Industries Co., Ltd.), CUM centrifugal mill (manufactured by Mitsui Mining Co., Ltd.), Exceed Mill (manufactured by Makino Sangyo Co., Ltd.), Ultraplex (manufactured by Makino Sangyo Co., Ltd.), Contraplex (manufactured by Makino Sangyo Co., Ltd.) Coloplex (manufactured by Makino Sangyo Co., Ltd.), Atomizer (manufactured by Seishin Kogyo Co., Ltd.), Tornado Mill (manufactured by Nikkiso Co.,
  • airflow mills examples include CGS type jet mill (manufactured by Mitsui Mining Co., Ltd.), Micron Jet (registered trademark, manufactured by Hosokawa Micron Co., Ltd.), Counter Jet Mill (registered trademark, manufactured by Hosokawa Micron Co., Ltd.), and Cross Jet Mill (trademark manufactured by Hosokawa Micron Co., Ltd.).
  • Kurimoto Iron Works Co., Ltd. Kurimoto Iron Works Co., Ltd.
  • supersonic jet mill Japan Pneumatic Industry Co., Ltd.
  • current jet Nesin Engineering Co., Ltd.
  • jet mill Selenium mirror (Masuko Sangyo Co., Ltd.) company
  • New Microsictomat manufactured by Masuno Seisakusho Co., Ltd.
  • Kryptron manufactured by Earth Technica Co., Ltd.
  • Nano Jet Miser manufactured by Aisin Nano Technologies Co., Ltd.
  • roller mill examples include a vertical roller mill (manufactured by Seishin Co., Ltd.), a vertical roller mill (manufactured by Shinion Co., Ltd.), a roller mill (manufactured by Kotobuki Giken Kogyo Co., Ltd.), and a VX mill (manufactured by Kurimoto Iron Works Co., Ltd.). ), KVM type vertical roller mill (manufactured by Earth Technica Co., Ltd.), and IS mill (manufactured by IHI Plant Engineering Co., Ltd.).
  • vibration mill examples include a batch type vibration mill (manufactured by Chuo Kakoki Co., Ltd.). Among these, cutting type mills, roller mills, and vibration mills are preferred.
  • the conditions for the pulverization treatment can be appropriately set so as to obtain the desired powdered cellulose.
  • the processing conditions can be adjusted with reference to a calibration curve created from the pulverization conditions (eg, processing time, input amount) and desired physical properties of the powdered cellulose.
  • pretreatment When producing powdered cellulose from cellulose raw materials, appropriate pretreatment is performed before pulverization. Examples of pretreatment include neutralization, washing, deliquification, and drying treatment, and it is preferable to perform dehydration and drying treatment in this order.
  • the solid content concentration of the cellulose raw material can be adjusted by drying (dehydration) treatment, and the physical properties of the powdered cellulose can be easily controlled.
  • the solid content concentration is usually adjusted to 15% or more, preferably 20% or more. For drying, it is preferable to use a flash dryer.
  • the processed cellulose raw material is in the form of a cake-like solid, slurry, solution, etc.
  • it is possible to apply high-speed hot air while dispersing it in the air stream, and also to utilize the depressurizing effect inside the dryer. can be dried instantly.
  • the product temperature can be kept low, making it ideal for drying products that are sensitive to heat or products with low melting points.
  • the conditions for drying using the flash dryer are not particularly limited and can be set as appropriate, but an example is as follows.
  • the outlet drying temperature is usually 80 to 180°C, preferably 90 to 160°C.
  • the amount of air supplied is usually 150 to 350 m 3 /h, preferably 160 to 320 m 3 /h.
  • the product when using a spray dryer, the product is sprayed and instantly dried with hot air to produce granules. Therefore, it may not be suitable for drying solid or semi-solid objects with a small moisture content. Furthermore, the particles are more easily exposed to high heat instantaneously than when drying with a flash dryer, and there may be concerns about the effect on the product.
  • acids used in the acid hydrolysis treatment include mineral acids such as hydrochloric acid, sulfuric acid, and nitric acid.
  • the acid concentration is not particularly limited, but from the viewpoint of maintaining the degree of polymerization and whiteness, it is preferably lower than the acid concentration in the conventional acid hydrolysis treatment for producing powdered cellulose, and is preferably 0.4 to 2.0N. More preferably, 0.5 to 1.5N is more preferable.
  • the acid concentration is less than 0.4N, depolymerization of cellulose due to acid is suppressed and a decrease in the degree of polymerization of cellulose can be reduced, but it may be difficult to refine the cellulose.
  • reaction conditions for the acid hydrolysis treatment are not particularly limited, but the reaction temperature is usually 80 to 100°C and the reaction time is usually 30 minutes to 3 hours.
  • the cellulose raw material Prior to the acid hydrolysis treatment, the cellulose raw material may be pretreated. Examples include slurrying the cellulose raw material (preparation of a dispersion) and adjusting the concentration of the cellulose raw material. The concentration of the cellulose raw material is usually 3 to 10% by weight (based on solid content) based on the dispersion.
  • a treatment to increase the pulp density is usually performed before hydrolysis.
  • a dehydrator such as a screw press or a belt filter may be used to adjust (concentrate) the cellulose raw material concentration.
  • the acid hydrolysis treatment may be performed on a slurry of cellulose raw material, or may be performed on a sheet-shaped cellulose raw material. When the cellulose raw material is a dry sheet of pulp, the acid hydrolysis treatment is usually performed after the pulp is loosened. When loosening the pulp, a crusher such as a roll crusher may be used.
  • At least one other component for example, an organic component, an inorganic component
  • the acid-hydrolyzed product may be further subjected to the above-mentioned neutralization, washing, dehydration, and drying treatments.
  • the cellulose material may be chemically treated as necessary.
  • the chemical treatment is preferably a treatment that does not significantly impair the degree of polymerization of the cellulose raw material.
  • the chemical treatment may be performed on the cellulose raw material during the pulverization treatment, or may be performed before the pretreatment of the pulverization treatment.
  • Fibrous cellulose can be produced by a method including defibration treatment.
  • Defibration is usually obtained by mechanical treatment, and the mechanical treatment is preferably defibration or beating treatment.
  • the mechanical treatment preferably beating or disintegration treatment
  • Examples of devices used for mechanical processing include refining devices (refiners; e.g., disk type, conical type, cylinder type), high-speed fibrillators, shear type stirrers, colloid mills, high-pressure injection dispersers, beaters, PFI mills, Kneader, disperser, high-speed disintegrator (top finer), high-pressure or ultra-high-pressure homogenizer, grinder (stone mill type crusher), ball mill, vibration mill, bead mill, single-shaft, double-shaft or multi-shaft kneading machine or high-speed extruder homomixers under rotation, refiners, defibrators, friction grinders, high-share defibrators, dispergers, homogenizers (e.g., microfluidizers)
  • a device that can apply a mechanical defibrating force such as a microfluidizer (microfluidizer) can be mentioned, and a device that can apply a defibrating force in a
  • the fibrous cellulose is modified fibrous cellulose
  • chemical modification treatment is performed before or after (usually before) defibration.
  • the modification treatment include oxidation, etherification, esterification such as phosphoric acid esterification, silane coupling, fluorination, and cationization.
  • oxidation (carboxylation), etherification (for example, carboxyalkylation), cationization, and esterification are preferred, and oxidation (carboxylation) and carboxyalkylation are more preferred.
  • cellulose materials include, for example, industrial additives (for example, for resins such as polypropylene, phenol resin, melamine resin, and various rubbers), and for tablets and other preparations (foods, pharmaceuticals, quasi-drugs, cosmetics). It can be used as an excipient.
  • resin compositions e.g., polyolefin resins, modified polyolefin resins, rubber
  • rubber compositions e.g., automobiles, personal computers, building materials, containers
  • food additives e.g., shredded cheese, fried products, bread crumbs, ham, sausage casings, their pickle liquid
  • hygiene products/cosmetics e.g.
  • Powdered cellulose can be used as an excipient for molded bodies (for example, preparations for foods, medicines, quasi-drugs, cosmetics, manufacturing industry, construction industry, etc.). Thereby, the molded product can exhibit good hardness.
  • Examples of the dosage form of the molded product include tablets.
  • the molded body has a moderate (practical) hardness, for example, usually 30 MPa or more, more preferably 40 MPa or more, still more preferably 50 MPa or more.
  • the upper limit is preferably 100 MPa or less, more preferably 80 MPa or less, still more preferably 60 MPa or less. Therefore, the hardness of the powdered cellulose is preferably 30 to 100 MPa, more preferably 40 to 80 MPa, and still more preferably 50 to 60 MPa. Tablet hardness can be measured, for example, using a tablet hardness meter under the conditions shown in Examples.
  • a sample was prepared by weighing 0.5 g of powdered cellulose into a microwave digestion container and adding 2 ml of pure water and 5 ml of nitric acid. After the sample was subjected to microwave digestion, it was transferred to a constant volume polypropylene container. After adding 2 ml of the internal standard solution to the sample, the volume was fixed (50 ml), and the iron component content was measured using a triple quadrupole ICP mass spectrometer.
  • the measurement conditions of the ICP mass spectrometer are as follows. ⁇ Model: Agilent 8800 (manufactured by Agilent Technologies Co., Ltd.) ⁇ Collision and reaction cell introduction gas: Helium and hydrogen ⁇ Measurement m/z: Iron; 56 ⁇ Internal standard element m/z: Rhodium; 103
  • ⁇ Particle size distribution, average particle size, span of particle size distribution> A laser diffraction particle size distribution analyzer (Mastersizer 3000, Spectris Malvern Panalytical Division) was used. Using a laser scattering method as the measurement principle, particle size distribution was measured by dry measurement, wet measurement (with ultrasonic irradiation), and wet measurement (without ultrasonic irradiation). When the particle size distribution is expressed as a volume accumulation distribution, the values at which the integrated value of the volume accumulation distribution is 10%, 50%, and 90% are respectively defined as the particle size distribution D. 10,D. 50, D. It was set at 90. Wet type (no ultrasonic irradiation) D. 50 was taken as the average particle diameter. Furthermore, the span of the particle size distribution was calculated using the above equation (1).
  • the dry measurement was carried out under the following conditions by adding a sample into the supply port so that the scattering intensity was less than 1%.
  • ⁇ Distributed unit Aero5 ⁇ Air pressure: 2 bar ⁇ Feed rate: 25
  • thermogravimetric residual rate 500°C% or thermogravimetric residual rate (400°C)%>
  • the thermogravimetric residual rate was measured using a thermal analyzer. That is, heat the powdered cellulose to 600°C (in an oxygen-free, nitrogen atmosphere), read the weight at 500°C or 400°C, and calculate the ratio (%) to the weight before the start of heating as the thermogravimetric residual rate (500°C). It was calculated as % (°C)% or thermogravimetric residual rate (400°C)%.
  • a cylindrical molded body or tablet made of 100% cellulose powder was produced as follows. 0.3 g of the sample was placed in a mortar (manufactured by Ichihashi Seiki Co., Ltd., 8 mm in diameter) and compressed with a pestle (manufactured by Ichihashi Seiki Co., Ltd.) with a diameter of 8 mm. 100% cellulose powder was compressed at 10 MPa and the stress was maintained for 10 seconds to produce a cylindrical molded body or tablet (the compressor used was HANDTAB-100 manufactured by Enerpac).
  • the load when the produced cylindrical molded body or tablet was broken was measured using a Schleungel hardness meter (manufactured by Freund Sangyo Co., Ltd., model MT50). The load was applied in the diametrical direction of the cylindrical molded body or tablet. Calculated using the average value of 5 samples.
  • Example 1 A pulverized product obtained by cutting a bleached wood pulp sheet (LBKP dry sheet, manufactured by Nippon Paper Industries Co., Ltd., moisture 20%) with a cutting mill (PIH3-20210YRFS, manufactured by Horai Co., Ltd., using a 3 mm diameter punching plate) as a raw material. was pulverized with a vertical roller mill (STR-20, manufactured by Seishin Enterprise Co., Ltd., feed rate 600 g/min, pulverizing rotor 40 Hz, classification rotor 50 Hz, blower 50 Hz), and the obtained pulverized product was used as the powdered cellulose of Example 1. It was used as Various physical property values are shown in Table 1.
  • Example 2 The process was carried out in the same manner as in Example 1, except that a cutting mill (HA8-2542, manufactured by Horai Co., Ltd., main mesh #250, auxiliary mesh #20) was used as the second-stage crusher, and the obtained pulverized product was It was used as the powdered cellulose in Example 2.
  • a cutting mill H8-2542, manufactured by Horai Co., Ltd., main mesh #250, auxiliary mesh #20
  • Example 3 Wood pulp (thermomechanical pulp, manufactured by Nippon Paper Industries Co., Ltd., moisture 60%) is dehydrated, loosened and dried, and then processed into a cutting mill (HA8-2542, manufactured by Horai Co., Ltd., main mesh #). 250, auxiliary mesh #50), and the resulting pulverized product was used as powdered cellulose in Example 3.
  • Various physical property values are listed in Table 1.
  • Example 4 Using a bleached wood pulp sheet (NDPT dry sheet, manufactured by Nippon Paper Industries Co., Ltd., moisture 7%) as a raw material, a raw material charge amount of 100 kg and a feed rate of 5. It was pulverized under the conditions of 0 kg/min and 10 rpm. The obtained pulverized product was processed using a batch type vibration mill (MB3 type, manufactured by Chuo Kakoki Co., Ltd.) with a raw material charge amount of 45 g (0.25 L), a vibration frequency of 1000 cpm, an amplitude of 8 mm, a ball diameter of 30 mm, and a ball filling rate of 80. % for 30 minutes, and the resulting pulverized product was used as the powdered cellulose of Example 4. Various physical property values are listed in Table 1.
  • Example 5 The same operation as in Example 4 was carried out, except that a bleached wood pulp sheet (LDPT dry sheet, manufactured by Nippon Paper Industries, Ltd., water content: 7%) was used, and the obtained pulverized material was mixed with the powdered cellulose of Example 5. It was used as Various physical property values are shown in Table 1.
  • LDPT dry sheet manufactured by Nippon Paper Industries, Ltd., water content: 7%
  • Example 6 A bleached wood pulp sheet (NDPT dry sheet, manufactured by Nippon Paper Industries Co., Ltd., moisture 7%) was used as a raw material, and a raw material amount of 40 g (pulp slurry concentration 5%) was acid-hydrolyzed with 0.5N hydrochloric acid at 90°C for 40 minutes. The obtained powdered cellulose was used as the powdered cellulose of Example 6.
  • NDPT dry sheet manufactured by Nippon Paper Industries Co., Ltd., moisture 7%
  • the obtained powdered cellulose was used as the powdered cellulose of Example 6.
  • Various physical property values are listed in Table 1.
  • Comparative example 1 Commercially available powdered cellulose ST-02 (manufactured by Asahi Kasei Corporation) was used as the powdered cellulose in Comparative Example 1. Various physical property values are listed in Table 1.
  • Example 3 it was difficult to make tablets, whereas in Examples 4 to 6, it was possible to make tablets.
  • the tablets obtained from Examples 4 to 6 had appropriate hardness. It is presumed that in Comparative Example 1, as a result of no inorganic substance being contained, the frictional force on the tablet surface was strong, making it easier to break, whereas in Example 3, the tablet was not formed as a result of the high inorganic substance content.

Abstract

The purpose of the present invention is to provide: a cellulose material that has excellent recycling efficiency even when used as an additive for a resin component; and a cellulose material that has excellent recycling efficiency and tableting suitability. The present invention provides a cellulose material of a powder cellulose or the like containing an iron component in an amount of 1-50 ppm as detected by a triple-quadrupole inductively coupled plasma mass spectrometer. The cellulose material can be used as material for a molded body such as a tablet, an excipient, a rubber composition, a resin composition, and an industrial additive.

Description

セルロース材料cellulose material
 本発明は、セルロース材料に関する。 The present invention relates to cellulose materials.
 粉末状セルロース等のセルロース材料は、ゴム、プラスチック等の樹脂材料の強化剤として用いられている(例えば、特許文献1)。 Cellulose materials such as powdered cellulose are used as reinforcing agents for resin materials such as rubber and plastics (for example, Patent Document 1).
特開2022-012875号公報JP2022-012875A
 ところで、環境保護のため、プラスチックのケミカルリサイクルの重要性が注目されている。上記従来技術のようなセルロース材料を含む樹脂材料を、クローズドループと呼ばれる手法でリサイクルする場合、その過程で、通常、樹脂成分とセルロース成分を分離する。しかし、セルロース材料は熱重量残存率が低く、樹脂材料からの分離が難しいという欠点があった。また、錠剤硬度をより高めることのできる粉末状セルロースが求められている。 By the way, the importance of chemical recycling of plastics is attracting attention for environmental protection. When recycling a resin material containing a cellulose material as in the prior art described above by a method called a closed loop, the resin component and the cellulose component are usually separated during the process. However, cellulose materials have a low thermogravimetric residual rate and are difficult to separate from resin materials. There is also a need for powdered cellulose that can further increase tablet hardness.
 本発明は、上記に鑑みてなされたものであって、樹脂成分の添加剤として用いた場合も、リサイクル性が良好なセルロース材料、及び、リサイクル性及び錠剤化適性に優れたセルロース材料を提供することを目的とする。 The present invention has been made in view of the above, and provides a cellulose material that has good recyclability even when used as an additive for a resin component, and a cellulose material that has excellent recyclability and tabletability. The purpose is to
 本発明は、〔1〕~〔17〕を提供する。
〔1〕トリプル四重極-誘導結合プラズマ質量分析測定器により検出される鉄成分の量が1~50ppmである、セルロース材料。
〔2〕トリプル四重極-誘導結合プラズマ質量分析測定器により検出される鉄成分の量が10ppmを超えて50ppm以下である、〔1〕に記載のセルロース材料。
〔3〕800℃で2時間加熱した後の灰分量が、加熱前のセルロース材料100重量%に対し0.13重量%以上である、〔1〕又は〔2〕に記載のセルロース材料。
〔4〕500℃における熱重量残存率が、10%以上である、〔1〕~〔3〕のいずれか1項に記載のセルロース材料。
〔5〕平均繊維幅が10~24μmである、〔1〕~〔4〕のいずれか1項に記載のセルロース材料。
〔6〕トリプル四重極-誘導結合プラズマ質量分析測定器により検出される鉄成分の量が1~10ppmである、〔1〕に記載のセルロース材料。
〔7〕800℃で2時間加熱した後の灰分量が、加熱前のセルロース材料100重量%に対し1.0重量%以下である、〔6〕に記載のセルロース材料。
〔8〕400℃における熱重量残存率が、10~20%である、〔1〕~〔7〕のいずれか1項に記載のセルロース材料。
〔9〕平均繊維長/平均繊維幅が3.0~8.0である、〔1〕~〔8〕のいずれか1項に記載のセルロース材料。
〔10〕粉末状セルロースである、〔1〕~〔9〕のいずれか1項に記載のセルロース材料。
〔11〕平均粒子径が5.0~150.0μmである、〔10〕に記載のセルロース材料。
〔12〕〔1〕~〔11〕のいずれか1項に記載のセルロース材料を含む工業用添加剤。
〔13〕〔1〕~〔11〕のいずれか1項に記載のセルロース材料を含む樹脂組成物。
〔14〕〔1〕~〔11〕のいずれか1項に記載のセルロース材料を含むゴム組成物。
〔15〕〔1〕~〔11〕のいずれか1項に記載のセルロース材料を含む賦形剤。
〔16〕〔1〕~〔11〕のいずれか1項に記載のセルロース材料を含む成型体。
〔17〕硬度が30~100MPaである、〔16〕に記載の成型体。
The present invention provides [1] to [17].
[1] A cellulose material in which the amount of iron component detected by a triple quadrupole-inductively coupled plasma mass spectrometer is 1 to 50 ppm.
[2] The cellulose material according to [1], wherein the amount of iron component detected by a triple quadrupole-inductively coupled plasma mass spectrometer is more than 10 ppm and less than 50 ppm.
[3] The cellulose material according to [1] or [2], wherein the ash content after heating at 800° C. for 2 hours is 0.13% by weight or more based on 100% by weight of the cellulose material before heating.
[4] The cellulose material according to any one of [1] to [3], which has a thermogravimetric residual rate at 500° C. of 10% or more.
[5] The cellulose material according to any one of [1] to [4], which has an average fiber width of 10 to 24 μm.
[6] The cellulose material according to [1], wherein the amount of iron component detected by a triple quadrupole-inductively coupled plasma mass spectrometer is 1 to 10 ppm.
[7] The cellulose material according to [6], wherein the ash content after heating at 800° C. for 2 hours is 1.0% by weight or less based on 100% by weight of the cellulose material before heating.
[8] The cellulose material according to any one of [1] to [7], which has a thermogravimetric residual rate at 400°C of 10 to 20%.
[9] The cellulose material according to any one of [1] to [8], which has an average fiber length/average fiber width of 3.0 to 8.0.
[10] The cellulose material according to any one of [1] to [9], which is powdered cellulose.
[11] The cellulose material according to [10], which has an average particle diameter of 5.0 to 150.0 μm.
[12] An industrial additive containing the cellulose material according to any one of [1] to [11].
[13] A resin composition comprising the cellulose material according to any one of [1] to [11].
[14] A rubber composition comprising the cellulose material according to any one of [1] to [11].
[15] An excipient containing the cellulose material according to any one of [1] to [11].
[16] A molded article comprising the cellulose material according to any one of [1] to [11].
[17] The molded article according to [16], which has a hardness of 30 to 100 MPa.
 本発明はまた、以下の〔1-1〕~〔1-10〕を提供する。
〔1-1〕トリプル四重極-誘導結合プラズマ質量分析測定器により検出される鉄成分の量が10ppmを超えて50ppm以下である、セルロース材料。
〔1-2〕800℃で2時間加熱した後の灰分量が、加熱前のセルロース材料100重量%に対し0.13重量%以上である、〔1-1〕に記載のセルロース材料。
〔1-3〕500℃における熱重量残存率が、10%以上である、〔1-1〕又は〔1-2〕に記載のセルロース材料。
〔1-4〕平均繊維幅が10~24μmである、〔1-1〕~〔1-3〕のいずれか1項に記載のセルロース材料。
〔1-5〕粉末状セルロースである、〔1-1〕~〔1-4〕のいずれか1項に記載のセルロース材料。
〔1-6〕粉末状セルロースの平均粒子径が5.0~150.0μmである、〔1-5〕に記載のセルロース材料。
〔1-7〕〔1-1〕~〔1-6〕のいずれか1項に記載のセルロース材料を含む工業用添加剤。
〔1-8〕〔1-1〕~〔1-6〕のいずれか1項に記載のセルロース材料を含む樹脂組成物。
〔1-9〕〔1-1〕~〔1-6〕のいずれか1項に記載のセルロース材料を含むゴム組成物。
〔1-10〕〔1-1〕~〔1-6〕のいずれか1項に記載のセルロース材料を含む成型体。
The present invention also provides the following [1-1] to [1-10].
[1-1] A cellulose material in which the amount of iron component detected by a triple quadrupole-inductively coupled plasma mass spectrometer is more than 10 ppm and less than 50 ppm.
[1-2] The cellulose material according to [1-1], wherein the ash content after heating at 800° C. for 2 hours is 0.13% by weight or more based on 100% by weight of the cellulose material before heating.
[1-3] The cellulose material according to [1-1] or [1-2], which has a thermogravimetric residual rate at 500° C. of 10% or more.
[1-4] The cellulose material according to any one of [1-1] to [1-3], having an average fiber width of 10 to 24 μm.
[1-5] The cellulose material according to any one of [1-1] to [1-4], which is powdered cellulose.
[1-6] The cellulose material according to [1-5], wherein the powdered cellulose has an average particle diameter of 5.0 to 150.0 μm.
[1-7] An industrial additive containing the cellulose material according to any one of [1-1] to [1-6].
[1-8] A resin composition containing the cellulose material according to any one of [1-1] to [1-6].
[1-9] A rubber composition comprising the cellulose material according to any one of [1-1] to [1-6].
[1-10] A molded article comprising the cellulose material according to any one of [1-1] to [1-6].
 本発明は更に、以下の〔2-1〕~〔2-10〕を提供する。
〔2-1〕平均粒子径が5.0~150.0μmであり、トリプル四重極-誘導結合プラズマ質量分析測定器により検出される鉄成分の量が1~10ppmである、粉末状セルロース。
〔2-2〕800℃で2時間加熱した後の灰分量が、加熱前の粉末状セルロース100重量%に対し1.0重量%以下である、〔2-1〕に記載の粉末状セルロース。
〔2-3〕400℃における熱重量残存率が、10~20%である、〔2-1〕又は〔2-2〕に記載の粉末状セルロース。
〔2-4〕平均繊維長/平均繊維幅が3.0~8.0である、〔2-1〕~〔2-3〕のいずれか1項に記載の粉末状セルロース。
〔2-5〕〔2-1〕~〔2-4〕のいずれか1項に記載の粉末状セルロースを含む賦形剤。
〔2-6〕〔2-1〕~〔2-4〕のいずれか1項に記載の粉末状セルロースを含む成型体。
〔2-7〕硬度が30~100MPaである、〔2-6〕に記載の成型体。
〔2-8〕〔2-1〕~〔2-4〕のいずれか1項に記載の粉末状セルロースを含む工業用添加剤。
〔2-9〕〔2-1〕~〔2-4〕のいずれか1項に記載の粉末状セルロースを含む樹脂組成物。
〔2-10〕〔2-1〕~〔2-4〕のいずれか1項に記載の粉末状セルロースを含むゴム組成物。
The present invention further provides the following [2-1] to [2-10].
[2-1] Powdered cellulose having an average particle diameter of 5.0 to 150.0 μm and an amount of iron component detected by a triple quadrupole-inductively coupled plasma mass spectrometer of 1 to 10 ppm.
[2-2] The powdered cellulose according to [2-1], wherein the ash content after heating at 800° C. for 2 hours is 1.0% by weight or less based on 100% by weight of the powdered cellulose before heating.
[2-3] The powdered cellulose according to [2-1] or [2-2], which has a thermogravimetric residual rate at 400°C of 10 to 20%.
[2-4] The powdered cellulose according to any one of [2-1] to [2-3], which has an average fiber length/average fiber width of 3.0 to 8.0.
[2-5] An excipient containing the powdered cellulose according to any one of [2-1] to [2-4].
[2-6] A molded article containing the powdered cellulose according to any one of [2-1] to [2-4].
[2-7] The molded article according to [2-6], which has a hardness of 30 to 100 MPa.
[2-8] An industrial additive containing the powdered cellulose according to any one of [2-1] to [2-4].
[2-9] A resin composition containing the powdered cellulose according to any one of [2-1] to [2-4].
[2-10] A rubber composition containing the powdered cellulose according to any one of [2-1] to [2-4].
 本発明によれば、高い熱重量残存率を発揮でき、樹脂と混ぜた際のバイオマス素材のリサイクル性が良好なセルロース材料を提供することが可能となる。また、本発明によれば、高い熱重量残存率を発揮でき、樹脂と混ぜた際のバイオマス素材のリサイクル性に優れ、かつ、錠剤化適性に優れた粉末状セルロースを提供することが可能となる。 According to the present invention, it is possible to provide a cellulose material that can exhibit a high thermogravimetric residual rate and has good recyclability as a biomass material when mixed with a resin. Further, according to the present invention, it is possible to provide powdered cellulose that can exhibit a high thermogravimetric residual rate, has excellent recyclability as a biomass material when mixed with resin, and has excellent tabletability. .
〔1.セルロース材料〕
 セルロース材料は、セルロースを主成分とする材料であり、鉄成分を含有する。
[1. Cellulose material]
A cellulose material is a material whose main component is cellulose and contains an iron component.
〔1.1.鉄成分〕
 セルロース材料は、鉄成分を含む。鉄成分は、セルロース材料のセルロース分子に結合してもよいし、結合はせずに別個に存在していてもよい(セルロース材料を含む組成物とも言える)。鉄成分は、通常、鉄原子、これを含む化合物及び誘導体として存在する。これらの例としては、鉄原子(Fe)、酸化物(Fe23、Fe34)、水酸化物(Fe(OH)2、Fe(OH)3)、オキシ水酸化物(FeO(OH))、塩化物(FeCl2、FeCl3)、硝酸塩(Fe(NO)3)、硫酸塩(FeSO4、Fe2(SO43)、ハロゲン(Br、I)化物、錯化合物が挙げられ、主成分は、通常、酸化物である。
[1.1. Iron component]
Cellulosic materials contain iron components. The iron component may be bound to the cellulose molecules of the cellulose material, or may be present separately without being bound (it can also be said to be a composition containing the cellulose material). Iron components usually exist as iron atoms, compounds and derivatives containing iron atoms. Examples of these include iron atoms (Fe), oxides (Fe 2 O 3 , Fe 3 O 4 ), hydroxides (Fe(OH) 2 , Fe(OH) 3 ), oxyhydroxides (FeO( OH)), chlorides (FeCl 2 , FeCl 3 ), nitrates (Fe(NO) 3 ), sulfates (FeSO 4 , Fe 2 (SO 4 ) 3 ), halides (Br, I), and complex compounds. The main component is usually an oxide.
 本明細書において、鉄成分含有量は、トリプル四重極-誘導結合プラズマ(ICP)質量分析測定器により検出される値である。具体的には、下記の条件により測定でき、実施例の値も下記方法で測定された値である。なお、鉄成分が鉄原子以外の場合、鉄成分の量は、鉄原子の量を表す。
 機種:Agilent 8800 (アジレント・テクノロジー株式会社製)
 コリジョン及びリアクションセル導入ガス:ヘリウム及び水素
 測定m/z:鉄;56
 内標準元素m/z:ロジウム;103
As used herein, the iron component content is a value detected by a triple quadrupole-inductively coupled plasma (ICP) mass spectrometer. Specifically, it can be measured under the following conditions, and the values in Examples are also the values measured by the following method. Note that when the iron component is other than iron atoms, the amount of iron component represents the amount of iron atoms.
Model: Agilent 8800 (manufactured by Agilent Technologies Co., Ltd.)
Collision and reaction cell introduced gas: Helium and hydrogen Measurement m/z: Iron; 56
Internal standard element m/z: rhodium; 103
 セルロース材料の鉄成分の量は、通常、1ppm以上、好ましくは1.3ppm以上又は1.5ppm以上、より好ましくは1.6ppm以上又は1.7ppm以上である。これにより、鉄成分含有による効果を効率的に発揮できる。上限は、通常、50ppm以下、好ましくは40ppm以下、更に好ましくは29ppm以下、28ppm以下、27ppm以下、又は26ppm以下である。これにより、リサイクルした際の樹脂への異物の混入を抑えることができる。したがって、鉄成分の量は、通常、1~50ppm、好ましくは1.3~40ppm、更に好ましくは1.5~29ppm、1.5~28ppm、1.6~27ppm、又は1.7~26ppmである。 The amount of iron component in the cellulose material is usually 1 ppm or more, preferably 1.3 ppm or more or 1.5 ppm or more, more preferably 1.6 ppm or more or 1.7 ppm or more. Thereby, the effect of containing the iron component can be efficiently exhibited. The upper limit is usually 50 ppm or less, preferably 40 ppm or less, more preferably 29 ppm or less, 28 ppm or less, 27 ppm or less, or 26 ppm or less. Thereby, it is possible to suppress the contamination of foreign matter into the resin during recycling. Therefore, the amount of iron component is usually 1 to 50 ppm, preferably 1.3 to 40 ppm, more preferably 1.5 to 29 ppm, 1.5 to 28 ppm, 1.6 to 27 ppm, or 1.7 to 26 ppm. be.
 セルロース材料の鉄成分の量が、通常、10ppm超、好ましくは10.5ppm以上、より好ましくは11ppm以上であることにより、熱重量残存率が高く、樹脂と混ぜた際のバイオマス素材のリサイクル性に優れるセルロース材料を得ることができる。この場合、上限は、通常、50ppm以下、好ましくは40ppm以下、より好ましくは30ppm以下、更に好ましくは29ppm以下、28ppm以下、27ppm以下、又は26ppm以下である。これにより、リサイクルした際の樹脂への異物の混入を抑えることができる。したがって、セルロース材料の鉄成分含有量は、通常、10ppmを超えて50ppm以下、より好ましくは10ppmを超えて40ppm以下、更に好ましくは10.5~30ppm、更により好ましくは11~29ppm、11~28ppm、11~27ppm、又は11~26ppmである。 The amount of iron component in the cellulose material is usually more than 10 ppm, preferably 10.5 ppm or more, more preferably 11 ppm or more, so that the thermogravimetric residual rate is high and the recyclability of the biomass material when mixed with resin is improved. An excellent cellulose material can be obtained. In this case, the upper limit is usually 50 ppm or less, preferably 40 ppm or less, more preferably 30 ppm or less, still more preferably 29 ppm or less, 28 ppm or less, 27 ppm or less, or 26 ppm or less. Thereby, it is possible to suppress the contamination of foreign matter into the resin during recycling. Therefore, the iron component content of the cellulose material is usually more than 10 ppm and less than 50 ppm, more preferably more than 10 ppm and less than 40 ppm, still more preferably 10.5 to 30 ppm, even more preferably 11 to 29 ppm, 11 to 28 ppm. , 11 to 27 ppm, or 11 to 26 ppm.
 セルロース材料の鉄成分の量は、通常、1ppm以上、好ましくは1.3ppm以上、より好ましくは1.5ppm以上、1.6ppm以上又は1.7ppm以上であることにより、熱重量残存率が高く、樹脂と混ぜた際のバイオマス素材のリサイクル性を向上させることができ、かつ、セルロース材料(例えば、粉末状セルロース)を錠剤化したときに錠剤表面の摩擦力が過剰に強まることを防ぎ、割れにくい錠剤を得ることができる。上限は、通常、10ppm以下、好ましくは7ppm以下、より好ましくは5ppm以下、更に好ましくは4ppm以下、3.8ppm以下、3.6ppm以下、又は3.5ppm以下である。これにより、粉末状セルロースを錠剤化することができる。したがって、粉末状セルロースの鉄成分含有量は、好ましくは、1~10ppm、より好ましくは1~7ppm、更に好ましくは1.3~5ppm、更により好ましくは1.5~4ppm、1.6~3.8ppm、1.7~3.6ppm、又は1.7~3.5ppmである。 The amount of iron component in the cellulose material is usually 1 ppm or more, preferably 1.3 ppm or more, more preferably 1.5 ppm or more, 1.6 ppm or more, or 1.7 ppm or more, so that the thermogravimetric residual rate is high, It can improve the recyclability of biomass materials when mixed with resin, and prevents the frictional force on the tablet surface from becoming excessively strong when tabletting cellulose materials (e.g., powdered cellulose), making them less likely to break. You can get tablets. The upper limit is usually 10 ppm or less, preferably 7 ppm or less, more preferably 5 ppm or less, still more preferably 4 ppm or less, 3.8 ppm or less, 3.6 ppm or less, or 3.5 ppm or less. Thereby, the powdered cellulose can be made into tablets. Therefore, the iron content of the powdered cellulose is preferably 1 to 10 ppm, more preferably 1 to 7 ppm, even more preferably 1.3 to 5 ppm, even more preferably 1.5 to 4 ppm, and 1.6 to 3 ppm. .8 ppm, 1.7 to 3.6 ppm, or 1.7 to 3.5 ppm.
 鉄成分の量は、原料に含まれる鉄成分の量、製造時に混入する鉄成分の量により調整できる。 The amount of iron component can be adjusted by the amount of iron component contained in the raw material and the amount of iron component mixed during manufacturing.
〔1.2.加熱後の灰分量〕
 セルロース材料は、800℃で2時間加熱後に灰分を含むことが好ましい。灰分とは、通常、原料が灰化して残る有機物以外の成分である。上記加熱後の灰分量は、加熱前のセルロース材料100重量%に対し、通常、0.05重量%以上、好ましくは0.07重量%以上である。これにより、熱重量残存率が高く、樹脂と混ぜた際のバイオマス素材のリサイクル性に優れるセルロース材料を得ることができる。上限は、通常、2.0重量%以下、好ましくは1.6重量%である。これにより、リサイクルした際の樹脂への異物の混入を抑えることができる。したがって、灰分量は、通常、0.05~2.0重量%、好ましくは0.07~1.6重量%である。
[1.2. Ash content after heating〕
Preferably, the cellulosic material contains ash after heating at 800°C for 2 hours. Ash is usually a component other than organic matter that remains after the raw material is ashed. The ash content after heating is usually 0.05% by weight or more, preferably 0.07% by weight or more, based on 100% by weight of the cellulose material before heating. This makes it possible to obtain a cellulose material with a high thermogravimetric residual rate and excellent recyclability of the biomass material when mixed with resin. The upper limit is usually 2.0% by weight or less, preferably 1.6% by weight. Thereby, it is possible to suppress the contamination of foreign matter into the resin during recycling. Therefore, the ash content is usually 0.05 to 2.0% by weight, preferably 0.07 to 1.6% by weight.
 セルロース材料の鉄成分の量が10ppmを超えて50ppm以下の場合、上記加熱後の灰分量は、加熱前のセルロース材料100重量%に対し、好ましくは0.13重量%以上又は0.14重量%以上、より好ましくは0.15重量%以上である。これにより、熱重量残存率が高く、樹脂と混ぜた際のバイオマス素材のリサイクル性に優れるセルロース材料を得ることができる。上限は、好ましくは2.0重量%以下、より好ましくは1.6重量%以下である。これにより、リサイクルした際の樹脂への異物の混入を抑えることができる。したがって、灰分量は、好ましくは0.13~2.0重量%又は0.14~2.0重量%、より好ましくは0.15~1.6重量%である。 When the amount of iron component in the cellulose material is more than 10 ppm and less than 50 ppm, the ash content after heating is preferably 0.13% by weight or more or 0.14% by weight based on 100% by weight of the cellulose material before heating. The content is more preferably 0.15% by weight or more. This makes it possible to obtain a cellulose material with a high thermogravimetric residual rate and excellent recyclability of the biomass material when mixed with resin. The upper limit is preferably 2.0% by weight or less, more preferably 1.6% by weight or less. Thereby, it is possible to suppress the contamination of foreign matter into the resin during recycling. Therefore, the ash content is preferably 0.13 to 2.0% by weight or 0.14 to 2.0% by weight, more preferably 0.15 to 1.6% by weight.
 セルロース材料が粉末状セルロースであり、鉄成分の量が10ppm以下の場合、上記加熱後の灰分量は、加熱前の粉末状セルロース100重量%に対し、好ましくは1.0重量%以下又は0.5重量%以下、より好ましくは0.3重量%以下又は0.15重量%以下である。これにより、粉末状セルロースを錠剤化することができる。下限は、好ましくは0.05重量%以上又は0.07重量%以上、より好ましくは0.09重量%以上である。これにより、熱重量残存率が高く、樹脂と混ぜた際のバイオマス素材のリサイクル性に優れる粉末状セルロースを得ることができ、かつ、粉末状セルロースを錠剤化したときに錠剤表面の摩擦力が過剰に強まることを防ぎ、割れにくい錠剤を得ることができる。したがって、灰分量は、好ましくは0.05~1.0重量%又は0.07~0.5重量%、より好ましくは0.09~0.3重量%又は0.09~0.15重量%である。 When the cellulose material is powdered cellulose and the amount of iron component is 10 ppm or less, the ash content after heating is preferably 1.0% by weight or less or 0.5% by weight based on 100% by weight of the powdered cellulose before heating. It is 5% by weight or less, more preferably 0.3% by weight or less or 0.15% by weight or less. Thereby, the powdered cellulose can be made into tablets. The lower limit is preferably 0.05% by weight or more or 0.07% by weight or more, more preferably 0.09% by weight or more. As a result, it is possible to obtain powdered cellulose that has a high thermogravimetric residual rate and excellent recyclability as a biomass material when mixed with resin, and when the powdered cellulose is made into tablets, there is no excessive frictional force on the tablet surface. It is possible to prevent tablets from becoming hard and hard to break. Therefore, the ash content is preferably 0.05 to 1.0% by weight or 0.07 to 0.5% by weight, more preferably 0.09 to 0.3% by weight or 0.09 to 0.15% by weight. It is.
 800℃で2時間加熱後の灰分量は、例えば、試料(試料重量を予め測定)を炭化させた後800℃で2時間加熱して灰化し、灰化後の残分の重量を測定し、灰化残分の試料重量に対する比率(%)として算出する方法により測定できる。 The amount of ash after heating at 800 ° C. for 2 hours can be determined by, for example, carbonizing a sample (measure the sample weight in advance), heating it at 800 ° C. for 2 hours to incinerate it, and measuring the weight of the residue after ashing. It can be measured by calculating the ratio (%) of the ash residue to the sample weight.
〔1.3.熱重量残存率〕
 セルロース材料は、高い熱重量残存率を発揮できる。一例をあげると、500℃で加熱後の熱重量残存率が、通常6%以上、7%以上、又は10%以上、好ましくは10.5%以上、より好ましくは11%以上である。上限は、好ましくは35%以下、より好ましくは30%以下である。他の例を挙げると、400℃で加熱後の熱重量残存率が、通常8%以上、9%以上、又は10%以上である。上限は、通常20%以下、又は18%以下、好ましくは16%以下、又は15%以下、より好ましくは13%以下である。セルロース材料の鉄成分の量が10ppmを超えて50ppm以下の場合、500℃で加熱後の熱重量残存率が上記範囲を満たすことが好ましい。セルロース材料の鉄成分の量が10ppm以下の場合、400℃で加熱後の熱重量残存率が上記範囲を満たすことが好ましく、セルロース材料がさらに粉末状セルロースの場合、400℃で加熱後の熱重量残存率が上記範囲を満たすことがより好ましい。500℃又は400℃で加熱後の熱重量残存率は、熱分析装置を用いて、500℃又は400℃で加熱後の重量の、加熱開始前の重量に対する比率(%)として確認できる。
[1.3. Thermogravimetric residual rate]
Cellulose materials can exhibit a high thermogravimetric survival rate. For example, the thermogravimetric residual rate after heating at 500°C is usually 6% or more, 7% or more, or 10% or more, preferably 10.5% or more, more preferably 11% or more. The upper limit is preferably 35% or less, more preferably 30% or less. To give another example, the thermogravimetric residual rate after heating at 400° C. is usually 8% or more, 9% or more, or 10% or more. The upper limit is usually 20% or less, or 18% or less, preferably 16% or less, or 15% or less, more preferably 13% or less. When the amount of iron component in the cellulose material is more than 10 ppm and less than 50 ppm, it is preferable that the thermogravimetric residual rate after heating at 500° C. satisfies the above range. When the amount of iron component in the cellulose material is 10 ppm or less, it is preferable that the thermogravimetric residual rate after heating at 400°C satisfies the above range, and when the cellulose material is powdered cellulose, the thermogravimetric residual rate after heating at 400°C It is more preferable that the residual rate satisfies the above range. The thermogravimetric residual rate after heating at 500°C or 400°C can be confirmed using a thermal analyzer as the ratio (%) of the weight after heating at 500°C or 400°C to the weight before the start of heating.
〔1.4.セルロース材料の形態〕
 セルロース材料の形態としては、例えば、粉末状、繊維状(マイクロフィブリル、ナノファイバー)が挙げられ、粉末状セルロースが好ましい。
[1.4. Form of cellulose material]
Examples of the form of the cellulose material include powder and fibrous forms (microfibrils and nanofibers), with powdered cellulose being preferred.
〔1.5.粉末状セルロース〕
〔粒子径分布〕
 粉末状セルロースの粒子径分布は、体積蓄積分布の積算値が10%、50%、90%となるときの粒子径分布(10%径、50%径、90%径、それぞれ、D.10、D.50、D.90)として表すことができる。本明細書において粒子径分布は、測定原理としてレーザー散乱法を用いて、湿式測定(超音波照射あり)、湿式測定(超音波照射なし)、又は乾式測定にて得られる値である。
[1.5. Powdered cellulose]
[Particle size distribution]
The particle size distribution of powdered cellulose is the particle size distribution when the integrated value of the volume accumulation distribution is 10%, 50%, and 90% (10% diameter, 50% diameter, 90% diameter, respectively, D.10, D.50, D.90). In this specification, the particle size distribution is a value obtained by wet measurement (with ultrasonic irradiation), wet measurement (without ultrasonic irradiation), or dry measurement using a laser scattering method as the measurement principle.
 粒子径分布のスパンは、各方法により得られるD.10、D.50、D.90を下記式(1)に代入して算出する。
 式(1):粒子径分布のスパン=((D.90)-(D.10))/(D.50)
The span of the particle size distribution is determined by the D. 10,D. 50, D. It is calculated by substituting 90 into the following formula (1).
Formula (1): Span of particle size distribution = ((D.90)-(D.10))/(D.50)
-湿式測定(超音波照射なし)の条件-
 本明細書において湿式条件(超音波照射なし)とは、試料に加水後超音波照射を行わずにそのまま粒子径を測定する条件を言う。湿式条件(超音波照射なし)のD.10、D.50、D.90、スパンの好ましい範囲は以下のとおりである。一般に粒子径が大きいほど、繊維同士の絡まりが高まる傾向にある。さらに、以下の範囲であることにより、樹脂、ゴム等に添加した際にそれらの特性を損なわずに適切に強度を向上させることができる。また、鉄成分の量が1~10ppmである場合、上記特性に加えてさらに、良好な錠剤化適性を示し得る。
-Conditions for wet measurement (no ultrasonic irradiation)-
In this specification, wet conditions (no ultrasonic irradiation) refer to conditions in which the particle diameter is directly measured without ultrasonic irradiation after adding water to the sample. D under wet conditions (no ultrasonic irradiation). 10,D. 50, D. 90, the preferred range of span is as follows. Generally, the larger the particle size, the more entangled the fibers tend to be. Further, within the following range, when added to resins, rubbers, etc., the strength can be appropriately improved without impairing their properties. Further, when the amount of iron component is 1 to 10 ppm, in addition to the above properties, it can exhibit good tabletability.
 D.10は、通常、5.0μm以上、好ましくは9.0μm以上、より好ましくは10.0μm以上、更に好ましくは11.0μm以上である。上限は、通常、40.0μm以下、好ましくは25.0μm以下、より好ましくは23.0μm以下、更に好ましくは22.0μm以下である。したがって、通常、5.0~40.0μm、好ましくは9.0~25.0μm、より好ましくは10.0~23.0μm、更に好ましくは11.0~22.0μmである。 D. 10 is usually 5.0 μm or more, preferably 9.0 μm or more, more preferably 10.0 μm or more, even more preferably 11.0 μm or more. The upper limit is usually 40.0 μm or less, preferably 25.0 μm or less, more preferably 23.0 μm or less, even more preferably 22.0 μm or less. Therefore, it is usually 5.0 to 40.0 μm, preferably 9.0 to 25.0 μm, more preferably 10.0 to 23.0 μm, and still more preferably 11.0 to 22.0 μm.
 粉末状セルロースの鉄成分の量が10ppmを超えて50ppmの場合、D.10は、通常、5.0μm以上、9.0μm以上又は10.0μm以上、好ましくは11.0μm以上、より好ましくは11.5μm以上、好ましくは12.0μm以上、より好ましくは13.0μm以上である。上限は、通常、40.0μm以下又は25.0μm以下、このましくは23.0μm以下又は22.0μm以下、好ましくは14.0μm以下、より好ましくは13.0μm以下である。したがって、通常、5.0~40.0μm、9.0~40.0μm、又は10.0~25.0μm、好ましくは12.0~23.0μm、13.0~22.0μm、又は11.0~14.0μm、より好ましくは11.5~13.0μmである。 If the amount of iron component in powdered cellulose exceeds 10 ppm and is 50 ppm, D. 10 is usually 5.0 μm or more, 9.0 μm or more, or 10.0 μm or more, preferably 11.0 μm or more, more preferably 11.5 μm or more, preferably 12.0 μm or more, more preferably 13.0 μm or more. be. The upper limit is usually 40.0 μm or less or 25.0 μm or less, preferably 23.0 μm or less or 22.0 μm or less, preferably 14.0 μm or less, more preferably 13.0 μm or less. Therefore, typically 5.0 to 40.0 μm, 9.0 to 40.0 μm, or 10.0 to 25.0 μm, preferably 12.0 to 23.0 μm, 13.0 to 22.0 μm, or 11. It is 0 to 14.0 μm, more preferably 11.5 to 13.0 μm.
 粉末状セルロースの鉄成分の量が1~10ppmの場合、D.10は、通常、5.0μm以上、9.0μm以上又は10.0μm以上、好ましくは12.0μm以上、より好ましくは13.0μm以上である。上限は、通常、40.0μm以下又は25.0μm以下、好ましくは23.0μm以下、より好ましくは22.0μm以下である。したがって、通常、5.0~40.0μm、9.0~40.0μm、又は10.0~25.0μm、好ましくは12.0~23.0μm、より好ましくは13.0~22.0μmである。 When the amount of iron component in powdered cellulose is 1 to 10 ppm, D. 10 is usually 5.0 μm or more, 9.0 μm or more, or 10.0 μm or more, preferably 12.0 μm or more, more preferably 13.0 μm or more. The upper limit is usually 40.0 μm or less or 25.0 μm or less, preferably 23.0 μm or less, and more preferably 22.0 μm or less. Therefore, it is usually 5.0 to 40.0 μm, 9.0 to 40.0 μm, or 10.0 to 25.0 μm, preferably 12.0 to 23.0 μm, more preferably 13.0 to 22.0 μm. be.
 D.50(平均粒子径)は、通常、5.0μm以上、10.0μm以上、好ましくは20.0μm以上、又は25.0μm以上、より好ましくは30.0μm以上、又は34.0μm以上、更に好ましくは36.0μm以上、又は38.0μm以上である(但し、D.10よりも大きい値である)。これにより、粉末状セルロースの凝集性の上昇及びこれに起因する粉体流動性の低下を抑制でき、作業性の悪化を抑制できる。上限は、通常、150.0μm以下、140.0μm以下、又は130.0μm以下、好ましくは120.0μm以下、又は110.0μm以下、より好ましくは100.0μm以下、又は90.0μm以下、更に好ましくは80.0μm以下、75.0μm以下、又は70.0μm以下である。これにより、熱重量残存率が高く、リサイクル性に優れる粉末状セルロースを得ることができる。したがって、D.50(平均粒子径)は、通常、5.0~150.0μm、5.0~140.0μm、10.0~130.0μm、10.0~120.0μm、20.0~110.0μm、20.0~100.0μm、25.0~90.0μm、30.0~80.0μm、34.0~80.0μm、36.0~75.0μm、38.0~70.0μmである。 D. 50 (average particle diameter) is usually 5.0 μm or more, 10.0 μm or more, preferably 20.0 μm or more, or 25.0 μm or more, more preferably 30.0 μm or more, or 34.0 μm or more, even more preferably It is 36.0 μm or more, or 38.0 μm or more (however, it is a value larger than D.10). Thereby, it is possible to suppress an increase in the cohesiveness of the powdered cellulose and a decrease in powder fluidity due to this, and it is possible to suppress deterioration in workability. The upper limit is usually 150.0 μm or less, 140.0 μm or less, or 130.0 μm or less, preferably 120.0 μm or less, or 110.0 μm or less, more preferably 100.0 μm or less, or 90.0 μm or less, even more preferably is 80.0 μm or less, 75.0 μm or less, or 70.0 μm or less. Thereby, powdered cellulose having a high thermogravimetric residual rate and excellent recyclability can be obtained. Therefore, D. 50 (average particle diameter) is usually 5.0 to 150.0 μm, 5.0 to 140.0 μm, 10.0 to 130.0 μm, 10.0 to 120.0 μm, 20.0 to 110.0 μm, 20.0 to 100.0 μm, 25.0 to 90.0 μm, 30.0 to 80.0 μm, 34.0 to 80.0 μm, 36.0 to 75.0 μm, and 38.0 to 70.0 μm.
 粉末状セルロースの鉄成分の量が10ppmを超えて50ppmの場合、D.50(平均粒子径)は、通常、5.0μm以上、10.0μm以上、20.0μm以上又は25.0μm以上、好ましくは30.0μm以上又は34.0μm以上、より好ましくは36.0μm以上、更に好ましくは38.0μm以上である(但し、D.10よりも大きい値である)。これにより、粉末状セルロースの凝集性の上昇及びこれに起因する粉体流動性の低下を抑制でき、作業性の悪化を抑制できる。上限は、通常、150.0μm以下、100.0μm以下、90.0μm以下、70.0μm以下又は50.0μm以下、好ましくは45.0μm以下、44.0μm以下又は43.0μm以下、より好ましくは42.0μm以下、更に好ましくは40.0μm以下である。これにより、熱重量残存率が高く、リサイクル性に優れる粉末状セルロースを得ることができる。したがって、D.50(平均粒子径)は、通常、5.0~150.0μm、5.0~100.0μm、10.0~90.0μm、20.0~70.0μm又は25.0~50.0μm、好ましくは30.0~45.0μm、30.0~44.0μm又は34.0~43.0μm、より好ましくは36.0~42.0μm、更に好ましくは38.0~40.0μmである。 If the amount of iron component in powdered cellulose exceeds 10 ppm and is 50 ppm, D. 50 (average particle diameter) is usually 5.0 μm or more, 10.0 μm or more, 20.0 μm or more, or 25.0 μm or more, preferably 30.0 μm or more or 34.0 μm or more, more preferably 36.0 μm or more, More preferably, it is 38.0 μm or more (however, it is a value larger than D.10). Thereby, it is possible to suppress an increase in the cohesiveness of the powdered cellulose and a decrease in powder fluidity due to this, and it is possible to suppress deterioration in workability. The upper limit is usually 150.0 μm or less, 100.0 μm or less, 90.0 μm or less, 70.0 μm or less, or 50.0 μm or less, preferably 45.0 μm or less, 44.0 μm or less, or 43.0 μm or less, more preferably It is 42.0 μm or less, more preferably 40.0 μm or less. Thereby, powdered cellulose having a high thermogravimetric residual rate and excellent recyclability can be obtained. Therefore, D. 50 (average particle diameter) is usually 5.0 to 150.0 μm, 5.0 to 100.0 μm, 10.0 to 90.0 μm, 20.0 to 70.0 μm or 25.0 to 50.0 μm, Preferably it is 30.0 to 45.0 μm, 30.0 to 44.0 μm or 34.0 to 43.0 μm, more preferably 36.0 to 42.0 μm, still more preferably 38.0 to 40.0 μm.
 粉末状セルロースの鉄成分の量が1~10ppmの場合、D.50(平均粒子径)は、通常、5.0μm以上、10.0μm以上、20.0μm以上又は25.0μm以上、好ましくは30.0μm以上又は34.0μm以上、より好ましくは38.0μm以上、更に好ましくは40.0μm以上である(但し、D.10よりも大きい値である)。これにより、粉末状セルロースの凝集性の上昇及びこれに起因する粉体流動性の低下を抑制でき、作業性の悪化を抑制できる。上限は、通常、150.0μm以下、140.0μm以下、130.0μm以下、120.0μm以下又は110.0μm以下、好ましくは100.0μm以下、90.0μm以下又は80.0μm以下、より好ましくは75.0μm以下、更に好ましくは70.0μm以下である。これにより、熱重量残存率が高く、リサイクル性に優れる粉末状セルロースを得ることができる。したがって、D.50(平均粒子径)は、通常、5.0~150.0μm、5.0~140.0μm、10.0~130.0μm、20.0~120.0μm又は25.0~110.0μm、好ましくは30.0~100.0μm、30.0~90.0μm又は34.0~80.0μm、より好ましくは38.0~75.0μm、更に好ましくは40.0~70.0μmである。 When the amount of iron component in powdered cellulose is 1 to 10 ppm, D. 50 (average particle diameter) is usually 5.0 μm or more, 10.0 μm or more, 20.0 μm or more, or 25.0 μm or more, preferably 30.0 μm or more or 34.0 μm or more, more preferably 38.0 μm or more, More preferably, it is 40.0 μm or more (however, it is a value larger than D.10). Thereby, it is possible to suppress an increase in the cohesiveness of the powdered cellulose and a decrease in powder fluidity due to this, and it is possible to suppress deterioration in workability. The upper limit is usually 150.0 μm or less, 140.0 μm or less, 130.0 μm or less, 120.0 μm or less, or 110.0 μm or less, preferably 100.0 μm or less, 90.0 μm or less, or 80.0 μm or less, more preferably It is 75.0 μm or less, more preferably 70.0 μm or less. Thereby, powdered cellulose having a high thermogravimetric residual rate and excellent recyclability can be obtained. Therefore, D. 50 (average particle diameter) is usually 5.0 to 150.0 μm, 5.0 to 140.0 μm, 10.0 to 130.0 μm, 20.0 to 120.0 μm or 25.0 to 110.0 μm, Preferably 30.0 to 100.0 μm, 30.0 to 90.0 μm or 34.0 to 80.0 μm, more preferably 38.0 to 75.0 μm, still more preferably 40.0 to 70.0 μm.
 D.90は、通常、70.0μm以上又は75.0μm以上、好ましくは80.0μm以上、85.0μm以上又は90.0μm以上、より好ましくは95.0μm以上、更に好ましくは100.0μm以上、105.0μm以上、又は110.0μm以上である(但し、D.50よりも大きい値である)。上限は、通常、250.0μm以下、又は240.0μm以下、好ましくは230.0μm以下、又は225.0μm以下、より好ましくは220.0μm以下、又は215.0μm以下、更に好ましくは210.0μm以下である。したがって、通常、70.0~250.0μm、75.0~250.0μm、80.0~240.0μm、85.0~240.0μm、又は90.0~230.0μm、好ましくは95.0~225.0μm、100.0~220.0μm、105.0~215.0μm、110.0~210.0μmである。 D. 90 is usually 70.0 μm or more or 75.0 μm or more, preferably 80.0 μm or more, 85.0 μm or more, or 90.0 μm or more, more preferably 95.0 μm or more, still more preferably 100.0 μm or more, 105. It is 0 μm or more, or 110.0 μm or more (however, it is a value larger than D.50). The upper limit is usually 250.0 μm or less, or 240.0 μm or less, preferably 230.0 μm or less, or 225.0 μm or less, more preferably 220.0 μm or less, or 215.0 μm or less, even more preferably 210.0 μm or less. It is. Therefore, typically 70.0 to 250.0 μm, 75.0 to 250.0 μm, 80.0 to 240.0 μm, 85.0 to 240.0 μm, or 90.0 to 230.0 μm, preferably 95.0 μm. -225.0 μm, 100.0-220.0 μm, 105.0-215.0 μm, and 110.0-210.0 μm.
 粉末状セルロースの鉄成分の量が10ppmを超えて50ppmの場合、D.90は、通常、70.0μm以上又は75.0μm以上、好ましくは80.0μm以上、85.0μm以上又は90.0μm以上、より好ましくは95.0μm以上、更に好ましくは100.0μm以上である(但し、D.50よりも大きい値である)。上限は、通常、250.0μm以下、230.0μm以下、又は220.0μm以下、好ましくは210.0μm以下又は200.0μm以下、より好ましくは195.0μm以下、更に好ましくは190.0μm以下である。したがって、通常、70.0~250.0μm、70.0~230.0μm、又は75.0~220.0μm、好ましくは80.0~210.0μm、85.0~200.0μm又は90.0~200.0μm、より好ましくは95.0~195.0μm、更に好ましくは100.0~190.0μmである。 If the amount of iron component in powdered cellulose exceeds 10 ppm and is 50 ppm, D. 90 is usually 70.0 μm or more or 75.0 μm or more, preferably 80.0 μm or more, 85.0 μm or more, or 90.0 μm or more, more preferably 95.0 μm or more, and still more preferably 100.0 μm or more ( However, the value is larger than D.50). The upper limit is usually 250.0 μm or less, 230.0 μm or less, or 220.0 μm or less, preferably 210.0 μm or less or 200.0 μm or less, more preferably 195.0 μm or less, and even more preferably 190.0 μm or less. . Therefore, usually 70.0 to 250.0 μm, 70.0 to 230.0 μm, or 75.0 to 220.0 μm, preferably 80.0 to 210.0 μm, 85.0 to 200.0 μm, or 90.0 μm. -200.0 μm, more preferably 95.0-195.0 μm, still more preferably 100.0-190.0 μm.
 粉末状セルロースの鉄成分の量が1~10ppmの場合、D.90は、通常、70.0μm以上又は80.0μm以上、好ましくは90.0μm以上、95.0μm以上又は100.0μm以上、より好ましくは105.0μm以上、更に好ましくは110.0μm以上である(但し、D.50よりも大きい値である)。上限は、通常、250.0μm以下、240.0μm以下、又は230.0μm以下、好ましくは225.0μm以下又は220.0μm以下、より好ましくは215.0μm以下、更に好ましくは210.0μm以下である。したがって、通常、70.0~250.0μm、70.0~240.0μm、又は80.0~230.0μm、好ましくは90.0~225.0μm、95.0~220.0μm又は100.0~220.0μm、より好ましくは105.0~215.0μm、更に好ましくは110.0~210.0μmである。 When the amount of iron component in powdered cellulose is 1 to 10 ppm, D. 90 is usually 70.0 μm or more or 80.0 μm or more, preferably 90.0 μm or more, 95.0 μm or more, or 100.0 μm or more, more preferably 105.0 μm or more, and still more preferably 110.0 μm or more ( However, the value is larger than D.50). The upper limit is usually 250.0 μm or less, 240.0 μm or less, or 230.0 μm or less, preferably 225.0 μm or less or 220.0 μm or less, more preferably 215.0 μm or less, and still more preferably 210.0 μm or less. . Therefore, usually 70.0 to 250.0 μm, 70.0 to 240.0 μm, or 80.0 to 230.0 μm, preferably 90.0 to 225.0 μm, 95.0 to 220.0 μm, or 100.0 μm. -220.0 μm, more preferably 105.0-215.0 μm, even more preferably 110.0-210.0 μm.
 粒子径分布のスパンは、通常、1.5以上、好ましくは、1.7以上、より好ましくは、1.9以上、更に好ましくは2.0以上である。上限は、通常、6.0以下、好ましくは5.5以下、より好ましくは5.0以下、更に好ましくは4.5以下である。したがって、通常、1.5~6.0、又は1.7~6.0、好ましくは1.9~5.5、より好ましくは1.9~5.0、又は2.0~5.0、更に好ましくは、2.0~4.5である。 The span of the particle size distribution is usually 1.5 or more, preferably 1.7 or more, more preferably 1.9 or more, and still more preferably 2.0 or more. The upper limit is usually 6.0 or less, preferably 5.5 or less, more preferably 5.0 or less, still more preferably 4.5 or less. Therefore, usually 1.5 to 6.0, or 1.7 to 6.0, preferably 1.9 to 5.5, more preferably 1.9 to 5.0, or 2.0 to 5.0 , more preferably from 2.0 to 4.5.
 粉末状セルロースの鉄成分の量が10ppmを超えて50ppmの場合、粒子径分布のスパンは、通常、1.5以上、好ましくは1.7以上、より好ましくは1.9以上、更に好ましくは2.0以上である。上限は、通常、6.0以下、好ましくは5.5以下、より好ましくは5.0以下、更に好ましくは4.5以下である。したがって、通常、1.5~6.0、好ましくは1.7~5.5、より好ましくは1.9~5.0、より好ましくは2.0~4.5である。 When the amount of iron component in powdered cellulose exceeds 10 ppm and is 50 ppm, the span of the particle size distribution is usually 1.5 or more, preferably 1.7 or more, more preferably 1.9 or more, and even more preferably 2. .0 or more. The upper limit is usually 6.0 or less, preferably 5.5 or less, more preferably 5.0 or less, still more preferably 4.5 or less. Therefore, it is usually 1.5 to 6.0, preferably 1.7 to 5.5, more preferably 1.9 to 5.0, and even more preferably 2.0 to 4.5.
 粉末状セルロースの鉄成分の量が1~10ppmの場合、粒子径分布のスパンは、通常、2.1以上、好ましくは2.2以上、より好ましくは2.3以上、更に好ましくは2.4以上である。上限は、通常、6.0以下、好ましくは5.0以下、より好ましくは4.0以下、より好ましくは3.0以下である。したがって、通常、2.1~6.0、好ましくは2.2~5.0、より好ましくは2.3~4.0、より好ましくは2.4~3.0である。 When the amount of iron component in powdered cellulose is 1 to 10 ppm, the span of the particle size distribution is usually 2.1 or more, preferably 2.2 or more, more preferably 2.3 or more, and still more preferably 2.4. That's all. The upper limit is usually 6.0 or less, preferably 5.0 or less, more preferably 4.0 or less, and even more preferably 3.0 or less. Therefore, it is usually 2.1 to 6.0, preferably 2.2 to 5.0, more preferably 2.3 to 4.0, and even more preferably 2.4 to 3.0.
-湿式測定(超音波照射あり)-
 本明細書において湿式条件(超音波照射あり)とは、試料に加水後超音波照射を行ってから粒子径を測定する条件を言う。湿式(超音波あり)の場合のD.10、D.50、D.90、スパンの好ましい範囲は以下のとおりである。一般に粒子径が大きいほど、繊維同士の絡まりが高まる傾向にある。さらに、以下の範囲であることにより、樹脂、ゴム等に添加した際にそれらの特性を損なわずに適切に強度を向上させることができる。また、鉄成分の量が1~10ppmである場合、上記特性に加えて更に、良好な錠剤化適性を示し得る。
-Wet measurement (with ultrasonic irradiation)-
In this specification, wet conditions (with ultrasonic irradiation) refer to conditions in which a sample is subjected to ultrasonic irradiation after being hydrated, and then the particle diameter is measured. D. for wet type (with ultrasonic waves) 10,D. 50, D. 90, the preferred range of span is as follows. Generally, the larger the particle size, the more entangled the fibers tend to be. Further, within the following range, when added to resins, rubbers, etc., the strength can be appropriately improved without impairing their properties. Further, when the amount of iron component is 1 to 10 ppm, in addition to the above properties, it can exhibit good tabletability.
 D.10は、通常、1.0μm以上、又は3.0μm以上、好ましくは、5.0μm以上、又は9.0μm以上、より好ましくは、9.5μm以上又は10.0μm以上、更に好ましくは10.5μm以上である。上限は、通常、24.0μm以下、好ましくは、23.0μm以下、より好ましくは、22.5μm以下、更に好ましくは、22.0μm以下である。したがって、通常、1.0~24.0μm、又は3.0~24.0μm、好ましくは、5.0~23.0μm、又は9.0~23.0μm、より好ましくは、9.5~22.5μm、又は10.0~22.5μm、更に好ましくは10.5~22.0μmである。 D. 10 is usually 1.0 μm or more, or 3.0 μm or more, preferably 5.0 μm or more, or 9.0 μm or more, more preferably 9.5 μm or more, or 10.0 μm or more, and even more preferably 10.5 μm. That's all. The upper limit is usually 24.0 μm or less, preferably 23.0 μm or less, more preferably 22.5 μm or less, still more preferably 22.0 μm or less. Therefore, usually 1.0 to 24.0 μm, or 3.0 to 24.0 μm, preferably 5.0 to 23.0 μm, or 9.0 to 23.0 μm, more preferably 9.5 to 22 .5 μm, or 10.0 to 22.5 μm, more preferably 10.5 to 22.0 μm.
 粉末状セルロースの鉄成分の量が10ppmを超えて50ppmの場合、D.10は、通常、1.0μm以上、3.0μm以上又は5.0μm以上、好ましくは9.0μm以上又は10.0μm以上、より好ましくは10.5μm以上、更に好ましくは11.0μm以上である。上限は、通常、20.0μm以下又は16.0μm以下、好ましくは13.0μm以下、より好ましくは12.5μm以下である。したがって、通常、1.0~20.0μm、3.0~16.0μm又は5.0~16.0μm、好ましくは9.0~13.0μm又は10.0~13.0μm、より好ましくは10.5~12.5μm、更に好ましくは11.0~12.5μmである。 If the amount of iron component in powdered cellulose exceeds 10 ppm and is 50 ppm, D. 10 is usually 1.0 μm or more, 3.0 μm or more, or 5.0 μm or more, preferably 9.0 μm or more or 10.0 μm or more, more preferably 10.5 μm or more, and still more preferably 11.0 μm or more. The upper limit is usually 20.0 μm or less or 16.0 μm or less, preferably 13.0 μm or less, and more preferably 12.5 μm or less. Therefore, usually 1.0 to 20.0 μm, 3.0 to 16.0 μm or 5.0 to 16.0 μm, preferably 9.0 to 13.0 μm or 10.0 to 13.0 μm, more preferably 10 .5 to 12.5 μm, more preferably 11.0 to 12.5 μm.
 粉末状セルロースの鉄成分の量が1~10ppmの場合、D.10は、通常、1.0μm以上、3.0μm以上又は5.0μm以上、好ましくは9.0μm以上又は9.5μm以上、より好ましくは10.0μm以上、更に好ましくは10.5μm以上である。上限は、通常、24.0μm以下又は23.0μm以下、好ましくは22.5μm以下、より好ましくは22.0μm以下である。したがって、通常、1.0~24.0μm、3.0~23.0μm又は5.0~23.0μm、好ましくは9.0~22.5μm又は9.5~22.5μm、より好ましくは10.0~22.0μm、更に好ましくは10.5~22.0μmである。 When the amount of iron component in powdered cellulose is 1 to 10 ppm, D. 10 is usually 1.0 μm or more, 3.0 μm or more, or 5.0 μm or more, preferably 9.0 μm or more or 9.5 μm or more, more preferably 10.0 μm or more, still more preferably 10.5 μm or more. The upper limit is usually 24.0 μm or less or 23.0 μm or less, preferably 22.5 μm or less, and more preferably 22.0 μm or less. Therefore, usually 1.0 to 24.0 μm, 3.0 to 23.0 μm or 5.0 to 23.0 μm, preferably 9.0 to 22.5 μm or 9.5 to 22.5 μm, more preferably 10 .0 to 22.0 μm, more preferably 10.5 to 22.0 μm.
 D.50は、通常、5.0μm以上、又は10.0μm以上、好ましくは、20.0μm以上、又は23.0μm以上、より好ましくは、25.0μm以上、又は26.0μm以上、更に好ましくは、27.0μm以上、27.5μm以上、又は28.0μm以上である(但し、D.10よりも大きい値である)。上限は、通常、150.0μm以下、好ましくは、120.0μm以下、より好ましくは、100.0μm以下、更に好ましくは80.0μm以下、又は70.0μm以下である。したがって、通常、5.0~150.0μm、10.0~150.0μm又は20.0~150.0μm、好ましくは23.0~120.0μm、25.0~120.0μm、26.0~100.0μm、27.0~100.0μm、27.5~80.0μm、又は28.0~70.0μmである。 D. 50 is usually 5.0 μm or more, or 10.0 μm or more, preferably 20.0 μm or more, or 23.0 μm or more, more preferably 25.0 μm or more, or 26.0 μm or more, still more preferably 27 .0 μm or more, 27.5 μm or more, or 28.0 μm or more (however, the value is larger than D.10). The upper limit is usually 150.0 μm or less, preferably 120.0 μm or less, more preferably 100.0 μm or less, still more preferably 80.0 μm or less, or 70.0 μm or less. Therefore, usually 5.0 to 150.0 μm, 10.0 to 150.0 μm, or 20.0 to 150.0 μm, preferably 23.0 to 120.0 μm, 25.0 to 120.0 μm, 26.0 to 100.0 μm, 27.0 to 100.0 μm, 27.5 to 80.0 μm, or 28.0 to 70.0 μm.
 粉末状セルロースの鉄成分の量が10ppmを超えて50ppmの場合、D.50は、通常、5.0μm以上、10.0μm以上又は20.0μm以上、好ましくは25.0μm以上、30.0μm以上又は32.0μm以上、より好ましくは34.0μm以上又は36.0μm以上、更に好ましくは36.5μm以上である(但し、D.10よりも大きい値である)。上限は、通常、70.0μm以下、60.0μm以下又は50.0μm以下、好ましくは45.0μm以下又は40.0μm以下、より好ましくは39.5μm以下、更に好ましくは39.0μm以下である。したがって、通常、5.0~70.0μm、10.0~60.0μm又は20.0~50.0μm、好ましくは25.0~45.0μm、30.0~40.0μm又は32.0~40.0μm、より好ましくは34.0~39.5μm、更に好ましくは36.0~39.0μm又は36.5~39.0μmである。 If the amount of iron component in powdered cellulose exceeds 10 ppm and is 50 ppm, D. 50 is usually 5.0 μm or more, 10.0 μm or more, or 20.0 μm or more, preferably 25.0 μm or more, 30.0 μm or more, or 32.0 μm or more, more preferably 34.0 μm or more or 36.0 μm or more, More preferably, it is 36.5 μm or more (however, the value is larger than D.10). The upper limit is usually 70.0 μm or less, 60.0 μm or less, or 50.0 μm or less, preferably 45.0 μm or less or 40.0 μm or less, more preferably 39.5 μm or less, still more preferably 39.0 μm or less. Therefore, usually 5.0 to 70.0 μm, 10.0 to 60.0 μm or 20.0 to 50.0 μm, preferably 25.0 to 45.0 μm, 30.0 to 40.0 μm or 32.0 to 40.0 μm, more preferably 34.0 to 39.5 μm, still more preferably 36.0 to 39.0 μm or 36.5 to 39.0 μm.
 粉末状セルロースの鉄成分の量が1~10ppmの場合、D.50は、通常、5.0μm以上、10.0μm以上又は20.0μm以上、好ましくは23.0μm以上、25.0μm以上又は26.0μm以上、より好ましくは27.0μm以上又は27.5μm以上、更に好ましくは28.0μm以上である(但し、D.10よりも大きい値である)。上限は、通常、150.0μm以下、120.0μm以下又は100.0μm以下、好ましくは80.0μm以下又は70.0μm以下、より好ましくは69.5μm以下、更に好ましくは69.0μm以下である。したがって、通常、5.0~150.0μm、10.0~120.0μm又は20.0~100.0μm、好ましくは23.0~80.0μm、25.0~70.0μm又は26.0~70.0μm、より好ましくは27.0~69.5μm、更に好ましくは27.5~69.0μm又は28.0~69.0μmである。 When the amount of iron component in powdered cellulose is 1 to 10 ppm, D. 50 is usually 5.0 μm or more, 10.0 μm or more, or 20.0 μm or more, preferably 23.0 μm or more, 25.0 μm or more, or 26.0 μm or more, more preferably 27.0 μm or more or 27.5 μm or more, More preferably, it is 28.0 μm or more (however, the value is larger than D.10). The upper limit is usually 150.0 μm or less, 120.0 μm or less, or 100.0 μm or less, preferably 80.0 μm or less or 70.0 μm or less, more preferably 69.5 μm or less, still more preferably 69.0 μm or less. Therefore, usually 5.0 to 150.0 μm, 10.0 to 120.0 μm or 20.0 to 100.0 μm, preferably 23.0 to 80.0 μm, 25.0 to 70.0 μm or 26.0 to 70.0 μm, more preferably 27.0 to 69.5 μm, even more preferably 27.5 to 69.0 μm or 28.0 to 69.0 μm.
 D.90は、通常、50.0μm以上、55.0μm以上、60.0μm以上、65.0μm以上、70.0μm以上、75.0μm以上である(但し、D.50よりも大きい値である)。上限は、通常、230.0μm以下、225.0μm以下、又は220.0μm以下、好ましくは215.0μm以下、210.0μm以下である。したがって、D.90は、通常、50.0~230.0μm、55.0~225.0μm、60.0~220.0μm、65.0~215.0μm又は70.0~210.0μm、好ましくは75.0~200.0μm、80.0~215.0μm、より好ましくは90.0~215.0μm、更に好ましくは100.0~210.0μmである。 D. 90 is usually 50.0 μm or more, 55.0 μm or more, 60.0 μm or more, 65.0 μm or more, 70.0 μm or more, 75.0 μm or more (however, it is a value larger than D.50). The upper limit is usually 230.0 μm or less, 225.0 μm or less, or 220.0 μm or less, preferably 215.0 μm or less, 210.0 μm or less. Therefore, D. 90 is usually 50.0 to 230.0 μm, 55.0 to 225.0 μm, 60.0 to 220.0 μm, 65.0 to 215.0 μm or 70.0 to 210.0 μm, preferably 75.0 ~200.0 μm, 80.0 to 215.0 μm, more preferably 90.0 to 215.0 μm, even more preferably 100.0 to 210.0 μm.
 粉末状セルロースの鉄成分の量が10ppmを超えて50ppmの場合、D.90は、通常、50.0μm以上、60.0μm以上、70.0μm以上又は90.0μm以上、好ましくは98.0μm以上、より好ましくは100.0μm以上、更に好ましくは101.5μm以上である(但し、D.50よりも大きい値である)。上限は、通常、210.0μm以下又は200.0μm以下、好ましくは200.0μm以下、より好ましくは195.0μm以下、更に好ましくは190.0μm以下である。したがって、D.90は、通常、50.0~210.0μm、60.0~200.0μm又は70.0~200.0μm、好ましくは80.0~195.0μm、より好ましくは90.0~190.0μm、更に好ましくは100.0~190.0μmである。 If the amount of iron component in powdered cellulose exceeds 10 ppm and is 50 ppm, D. 90 is usually 50.0 μm or more, 60.0 μm or more, 70.0 μm or more, or 90.0 μm or more, preferably 98.0 μm or more, more preferably 100.0 μm or more, even more preferably 101.5 μm or more ( However, the value is larger than D.50). The upper limit is usually 210.0 μm or less or 200.0 μm or less, preferably 200.0 μm or less, more preferably 195.0 μm or less, even more preferably 190.0 μm or less. Therefore, D. 90 is usually 50.0 to 210.0 μm, 60.0 to 200.0 μm or 70.0 to 200.0 μm, preferably 80.0 to 195.0 μm, more preferably 90.0 to 190.0 μm, More preferably, it is 100.0 to 190.0 μm.
 粉末状セルロースの鉄成分の量が1~10ppmの場合、D.90は、通常、50.0μm以上、55.0μm以上又は60.0μm以上、好ましくは65.0μm以上、より好ましくは70.0μm以上、更に好ましくは75.0μm以上である(但し、D.50よりも大きい値である)。上限は、通常、230.0μm以下又は225.0μm以下、好ましくは220.0μm以下、より好ましくは215.0μm以下、更に好ましくは210.0μm以下である。したがって、D.90は、通常、50.0~230.0μm、55.0~225.0μm又は60.0~225.0μm、好ましくは65.0~220.0μm、より好ましくは70.0~215.0μm、更に好ましくは75.0~210.0μmである。 When the amount of iron component in powdered cellulose is 1 to 10 ppm, D. 90 is usually 50.0 μm or more, 55.0 μm or more, or 60.0 μm or more, preferably 65.0 μm or more, more preferably 70.0 μm or more, even more preferably 75.0 μm or more (however, D.50 ). The upper limit is usually 230.0 μm or less or 225.0 μm or less, preferably 220.0 μm or less, more preferably 215.0 μm or less, even more preferably 210.0 μm or less. Therefore, D. 90 is usually 50.0 to 230.0 μm, 55.0 to 225.0 μm or 60.0 to 225.0 μm, preferably 65.0 to 220.0 μm, more preferably 70.0 to 215.0 μm, More preferably, it is 75.0 to 210.0 μm.
 粒子径分布のスパンは、通常、1.5以上、好ましくは1.7以上、より好ましくは1.9以上、更に好ましくは2.0以上である。上限は、通常、5.0以下、好ましくは4.5以下である。したがって、通常、1.5~5.0、好ましくは1.7~5.0、より好ましくは1.9~5.0、又は2.0~4.5である。 The span of the particle size distribution is usually 1.5 or more, preferably 1.7 or more, more preferably 1.9 or more, and still more preferably 2.0 or more. The upper limit is usually 5.0 or less, preferably 4.5 or less. Therefore, it is usually 1.5 to 5.0, preferably 1.7 to 5.0, more preferably 1.9 to 5.0, or 2.0 to 4.5.
 粉末状セルロースの鉄成分の量が10ppmを超えて50ppmの場合、粒子径分布のスパンは、通常、1.5以上、好ましくは1.7以上、より好ましくは1.9以上、更に好ましくは2.0以上である。上限は、通常、5.0以下、好ましくは4.5以下である。したがって、通常、1.5~5.0、好ましくは1.7~4.5、より好ましくは1.9~4.5、又は2.0~4.5である。 When the amount of iron component in powdered cellulose exceeds 10 ppm and is 50 ppm, the span of the particle size distribution is usually 1.5 or more, preferably 1.7 or more, more preferably 1.9 or more, and even more preferably 2. .0 or more. The upper limit is usually 5.0 or less, preferably 4.5 or less. Therefore, it is usually 1.5 to 5.0, preferably 1.7 to 4.5, more preferably 1.9 to 4.5, or 2.0 to 4.5.
 粉末状セルロースの鉄成分の量が1~10ppmの場合、粒子径分布のスパンは、通常、1.5以上、好ましくは1.7以上、より好ましくは2.0以上、更に好ましくは2.2以上である。上限は、通常、5.0以下、好ましくは3.5以下、より好ましくは2.9以下である。したがって、通常、1.5~5.0、好ましくは2.0~3.5、より好ましくは2.2~2.9である。 When the amount of iron component in the powdered cellulose is 1 to 10 ppm, the span of the particle size distribution is usually 1.5 or more, preferably 1.7 or more, more preferably 2.0 or more, and even more preferably 2.2. That's all. The upper limit is usually 5.0 or less, preferably 3.5 or less, more preferably 2.9 or less. Therefore, it is usually 1.5 to 5.0, preferably 2.0 to 3.5, and more preferably 2.2 to 2.9.
-乾式測定-
 本明細書において乾式測定とは、試料に加水せずそのまま粒子径を測定する条件を言う。乾式測定の場合のD.10、D.50、D.90、スパンの好ましい範囲は以下のとおりである。一般に粒子径が大きいほど、繊維同士の絡まりが高まる傾向にある。更に、以下の範囲であることにより、樹脂、ゴム等に添加した際にそれらの特性を損なわずに適切に強度を向上させることができる。また、鉄成分の量が1~10ppmである場合、上記特性に加えて更に、良好な錠剤化適性を示し得る。
-Dry measurement-
In this specification, dry measurement refers to conditions in which the particle diameter is directly measured without adding water to the sample. D. for dry measurement. 10,D. 50, D. 90, the preferred range of span is as follows. Generally, the larger the particle size, the more entangled the fibers tend to be. Further, within the following range, when added to resins, rubbers, etc., the strength can be appropriately improved without impairing their properties. Further, when the amount of iron component is 1 to 10 ppm, in addition to the above properties, it can exhibit good tabletability.
 D.10は、通常、1.0μm以上、3.0μm以上又は5.0μm以上、好ましくは7.0μm以上又は8.0μm以上、より好ましくは9.0μm以上、9.5μm以上である。上限は、通常、40.0μm以下、35.0μm以下、又は、30.0μm以下、好ましくは、27.0μm以下、26.0μm以下である。したがって、通常、1.0~40.0μm、3.0~40.0μm又は5.0~35.0μm、好ましくは7.0~35.0μm、8.0~30.0μm、又は9.0~27.0μm、より好ましくは9.5~26.0μmである。 D. 10 is usually 1.0 μm or more, 3.0 μm or more, or 5.0 μm or more, preferably 7.0 μm or more or 8.0 μm or more, more preferably 9.0 μm or more, or 9.5 μm or more. The upper limit is usually 40.0 μm or less, 35.0 μm or less, or 30.0 μm or less, preferably 27.0 μm or less, 26.0 μm or less. Therefore, usually 1.0 to 40.0 μm, 3.0 to 40.0 μm or 5.0 to 35.0 μm, preferably 7.0 to 35.0 μm, 8.0 to 30.0 μm, or 9.0 μm -27.0 μm, more preferably 9.5-26.0 μm.
 粉末状セルロースの鉄成分の量が10ppmを超えて50ppmの場合、D.10は、通常、1.0μm以上、3.0μm以上又は5.0μm以上、好ましくは7.0μm以上又は8.0μm以上、より好ましくは9.0μm以上、更に好ましくは9.5μm以上である。上限は、通常、40.0μm以下又は20.0μm以下、好ましくは15.0μm以下、より好ましくは14.0μm以下、更に好ましくは13.0μm以下である。したがって、通常、1.0~40.0μm、3.0~20.0μm又は5.0~20.0μm、好ましくは7.0~15.0μm又は8.0~15.0μm、より好ましくは9.0~14.0μm、更に好ましくは9.5~13.0μmである。 If the amount of iron component in powdered cellulose exceeds 10 ppm and is 50 ppm, D. 10 is usually 1.0 μm or more, 3.0 μm or more, or 5.0 μm or more, preferably 7.0 μm or more or 8.0 μm or more, more preferably 9.0 μm or more, and still more preferably 9.5 μm or more. The upper limit is usually 40.0 μm or less or 20.0 μm or less, preferably 15.0 μm or less, more preferably 14.0 μm or less, even more preferably 13.0 μm or less. Therefore, usually 1.0 to 40.0 μm, 3.0 to 20.0 μm or 5.0 to 20.0 μm, preferably 7.0 to 15.0 μm or 8.0 to 15.0 μm, more preferably 9 .0 to 14.0 μm, more preferably 9.5 to 13.0 μm.
 粉末状セルロースの鉄成分の量が1~10ppmの場合、D.10は、通常、1.0μm以上、3.0μm以上又は5.0μm以上、好ましくは7.0μm以上又は10.0μm以上、より好ましくは13.0μm以上、更に好ましくは13.5μm以上である。上限は、通常、40.0μm以下又は35.0μm以下、好ましくは30.0μm以下、より好ましくは27.0μm以下、更に好ましくは26.0μm以下である。したがって、通常、1.0~40.0μm、3.0~35.0μm又は5.0~35.0μm、好ましくは7.0~30.0μm又は10.0~30.0μm、より好ましくは13.0~27.0μm、更に好ましくは13.5~26.0μmである。 When the amount of iron component in powdered cellulose is 1 to 10 ppm, D. 10 is usually 1.0 μm or more, 3.0 μm or more, or 5.0 μm or more, preferably 7.0 μm or more or 10.0 μm or more, more preferably 13.0 μm or more, and still more preferably 13.5 μm or more. The upper limit is usually 40.0 μm or less or 35.0 μm or less, preferably 30.0 μm or less, more preferably 27.0 μm or less, even more preferably 26.0 μm or less. Therefore, usually 1.0 to 40.0 μm, 3.0 to 35.0 μm or 5.0 to 35.0 μm, preferably 7.0 to 30.0 μm or 10.0 to 30.0 μm, more preferably 13 0 to 27.0 μm, more preferably 13.5 to 26.0 μm.
 D.50は、通常、5.0μm以上、10.0μm以上又は15.0μm以上、好ましくは20.0μm以上、25.0μm以上又は30.0μm以上、より好ましくは33.0μm以上、34.0μm以上、又は35.0μm以上である(但し、D.10よりも大きい値である)。上限は、通常、150.0μm以下、又は100.0μm以下、好ましくは、90.0μm以下、より好ましくは88.0μm以下、更に好ましくは87.0μm以下である。したがって、D.50は、通常、5.0~150.0μm、10.0~150.0μm又は15.0~100.0μm、好ましくは20.0~100.0μm、25.0~90.0μm又は30.0~90.0μm、より好ましくは33.0~88.0μm又は34.0~88.0μm、更に好ましくは35.0~87.0μmである。 D. 50 is usually 5.0 μm or more, 10.0 μm or more, or 15.0 μm or more, preferably 20.0 μm or more, 25.0 μm or more, or 30.0 μm or more, more preferably 33.0 μm or more, 34.0 μm or more, or 35.0 μm or more (however, the value is larger than D.10). The upper limit is usually 150.0 μm or less, or 100.0 μm or less, preferably 90.0 μm or less, more preferably 88.0 μm or less, even more preferably 87.0 μm or less. Therefore, D. 50 is usually 5.0 to 150.0 μm, 10.0 to 150.0 μm or 15.0 to 100.0 μm, preferably 20.0 to 100.0 μm, 25.0 to 90.0 μm or 30.0 μm. -90.0 μm, more preferably 33.0-88.0 μm or 34.0-88.0 μm, even more preferably 35.0-87.0 μm.
 粉末状セルロースの鉄成分の量が10ppmを超えて50ppmの場合、D.50は、通常、5.0μm以上、10.0μm以上又は15.0μm以上、好ましくは20.0μm以上、25.0μm以上又は30.0μm以上、より好ましくは33.0μm以上、34.0μm以上、更に好ましくは35.0μm以上である(但し、D.10よりも大きい値である)。上限は、通常、100.0μm以下又は60.0μm以下、好ましくは52.5μm以下又は52.0μm以下、より好ましくは51.5μm以下である。したがって、D.50は、通常、5.0~100.0μm、10.0~60.0μm又は15.0~60.0μm、好ましくは20.0~52.5μm、25.0~52.5μm又は30.0~52.5μ、より好ましくは33.0~52.0μm又は34.0~52.0μm、更に好ましくは35.0~51.5μmである。 If the amount of iron component in powdered cellulose exceeds 10 ppm and is 50 ppm, D. 50 is usually 5.0 μm or more, 10.0 μm or more, or 15.0 μm or more, preferably 20.0 μm or more, 25.0 μm or more, or 30.0 μm or more, more preferably 33.0 μm or more, 34.0 μm or more, More preferably, it is 35.0 μm or more (however, the value is larger than D.10). The upper limit is usually 100.0 μm or less or 60.0 μm or less, preferably 52.5 μm or less or 52.0 μm or less, more preferably 51.5 μm or less. Therefore, D. 50 is usually 5.0 to 100.0 μm, 10.0 to 60.0 μm or 15.0 to 60.0 μm, preferably 20.0 to 52.5 μm, 25.0 to 52.5 μm or 30.0 ~52.5μm, more preferably 33.0~52.0μm or 34.0~52.0μm, still more preferably 35.0~51.5μm.
 粉末状セルロースの鉄成分の量が1~10ppmの場合、D.50は、通常、5.0μm以上、10.0μm以上又は15.0μm以上、好ましくは25.0μm以上、30.0μm以上又は35.0μm以上、より好ましくは40.0μm以上又は41.0μm以上、更に好ましくは41,5μm以上である(但し、D.10よりも大きい値である)。上限は、通常、150.0μm以下又は100.0μm以下、好ましくは90.0μm以下又は88.0μm以下、より好ましくは87.0μm以下である。したがって、D.50は、通常、5.0~150.0μm、10.0~100.0μm又は15.0~100.0μm、好ましくは25.0~90.0μm、30.0~90.0μm又は35.0~90.0μm、より好ましくは40.0~88.0μm又は41.0~88.0μm、更に好ましくは41.5~87.0μmである。 When the amount of iron component in powdered cellulose is 1 to 10 ppm, D. 50 is usually 5.0 μm or more, 10.0 μm or more, or 15.0 μm or more, preferably 25.0 μm or more, 30.0 μm or more, or 35.0 μm or more, more preferably 40.0 μm or more or 41.0 μm or more, More preferably, it is 41.5 μm or more (however, it is a value larger than D.10). The upper limit is usually 150.0 μm or less or 100.0 μm or less, preferably 90.0 μm or less or 88.0 μm or less, more preferably 87.0 μm or less. Therefore, D. 50 is usually 5.0 to 150.0 μm, 10.0 to 100.0 μm or 15.0 to 100.0 μm, preferably 25.0 to 90.0 μm, 30.0 to 90.0 μm or 35.0 -90.0 μm, more preferably 40.0-88.0 μm or 41.0-88.0 μm, even more preferably 41.5-87.0 μm.
 D.90は、通常、80.0μm以上、好ましくは、90.0μm以上、より好ましくは、93.0μm以上、更に好ましくは、94.0μm以上である(但し、D.50よりも大きい値である)。上限は、通常、330.0μm以下、好ましくは、320.0μm以下、より好ましくは315.0μm以下、又は310.0μm以下、更に好ましくは、305.0μm以下である。したがって、D.90は、通常、80.0~330.0μm、好ましくは、80.0~320.0μm、より好ましくは、90.0~315.0μm、又は93.0~310.0μm、更に好ましくは、94.0~305.0μmである。 D. 90 is usually 80.0 μm or more, preferably 90.0 μm or more, more preferably 93.0 μm or more, even more preferably 94.0 μm or more (however, it is a value larger than D.50) . The upper limit is usually 330.0 μm or less, preferably 320.0 μm or less, more preferably 315.0 μm or less, or 310.0 μm or less, still more preferably 305.0 μm or less. Therefore, D. 90 is usually 80.0 to 330.0 μm, preferably 80.0 to 320.0 μm, more preferably 90.0 to 315.0 μm, or 93.0 to 310.0 μm, still more preferably 94 .0 to 305.0 μm.
 粉末状セルロースの鉄成分の量が10ppmを超えて50ppmの場合、D.90は、通常、80.0μm以上、又は90.0μm以上、好ましくは93.0μm以上、より好ましくは94.0μm以上である(但し、D.50よりも大きい値である)。上限は、通常、310.0μm以下又は280.0μm以下、好ましくは260.0μm以下又は255.0μm以下、より好ましくは251.0μm以下である。したがって、D.90は、通常、80.0~310.0μm又は90.0~280.0μm、好ましくは93.0~260.0μm又は93.0~255.0μm、より好ましくは94.0~251.0μmである。 If the amount of iron component in powdered cellulose exceeds 10 ppm and is 50 ppm, D. 90 is usually 80.0 μm or more, or 90.0 μm or more, preferably 93.0 μm or more, more preferably 94.0 μm or more (however, it is a value larger than D.50). The upper limit is usually 310.0 μm or less or 280.0 μm or less, preferably 260.0 μm or less or 255.0 μm, more preferably 251.0 μm or less. Therefore, D. 90 is usually 80.0 to 310.0 μm or 90.0 to 280.0 μm, preferably 93.0 to 260.0 μm or 93.0 to 255.0 μm, more preferably 94.0 to 251.0 μm. be.
 粉末状セルロースの鉄成分の量が1~10ppmの場合、D.90は、通常、90.0μm以上又は110.0μm以上、好ましくは120.0μm以上、より好ましくは130.0μm以上である(但し、D.50よりも大きい値である)。上限は、通常、330.0μm以下又は320.0μm以下、好ましくは315.0μm以下又は310.0μm以下、より好ましくは305.0μm以下である。したがって、D.90は、通常、90.0~330.0μm又は110.0~320.0μm、好ましくは120.0~315.0μm又は120.0~310.0μm、より好ましくは130.0~305.0μmである。 When the amount of iron component in powdered cellulose is 1 to 10 ppm, D. 90 is usually 90.0 μm or more or 110.0 μm or more, preferably 120.0 μm or more, more preferably 130.0 μm or more (however, it is a value larger than D.50). The upper limit is usually 330.0 μm or less or 320.0 μm or less, preferably 315.0 μm or less or 310.0 μm or less, more preferably 305.0 μm or less. Therefore, D. 90 is usually 90.0 to 330.0 μm or 110.0 to 320.0 μm, preferably 120.0 to 315.0 μm or 120.0 to 310.0 μm, more preferably 130.0 to 305.0 μm. be.
 粒子径分布のスパンは、通常、1.5以上、好ましくは、1.7以上、より好ましくは、1.8以上、更に好ましくは、2.0以上である。上限は、通常、9.0以下、好ましくは、7.0以下、より好ましくは6.0以下、更に好ましくは5.0以下である。したがって、粒子径分布のスパンは、通常、1.5~9.0、好ましくは1.7~7.0、より好ましくは1.8~6.0、更に好ましくは2.0~5.0である。 The span of the particle size distribution is usually 1.5 or more, preferably 1.7 or more, more preferably 1.8 or more, still more preferably 2.0 or more. The upper limit is usually 9.0 or less, preferably 7.0 or less, more preferably 6.0 or less, even more preferably 5.0 or less. Therefore, the span of the particle size distribution is usually 1.5 to 9.0, preferably 1.7 to 7.0, more preferably 1.8 to 6.0, even more preferably 2.0 to 5.0. It is.
 粉末状セルロースの鉄成分の量が10ppmを超えて50ppmの場合、粒子径分布のスパンは、通常、1.5以上、好ましくは1.7以上、より好ましくは1.8以上、更に好ましくは2.0以上である。上限は、通常、9.0以下、好ましくは7.0以下、より好ましくは6.0以下、更に好ましくは5.0以下である。したがって、粒子径分布のスパンは、通常、1.5~9.0、好ましくは1.7~7.0、より好ましくは1.8~6.0、更に好ましくは2.0~5.0である。 When the amount of iron component in powdered cellulose exceeds 10 ppm and is 50 ppm, the span of the particle size distribution is usually 1.5 or more, preferably 1.7 or more, more preferably 1.8 or more, and still more preferably 2. .0 or more. The upper limit is usually 9.0 or less, preferably 7.0 or less, more preferably 6.0 or less, still more preferably 5.0 or less. Therefore, the span of the particle size distribution is usually 1.5 to 9.0, preferably 1.7 to 7.0, more preferably 1.8 to 6.0, even more preferably 2.0 to 5.0. It is.
 粉末状セルロースの鉄成分の量が1~10ppmの場合、粒子径分布のスパンは、通常、2.5以上、好ましくは2.6以上、より好ましくは2.7以上、更に好ましくは2.8以上である。上限は、通常、7.0以下、好ましくは6.0以下、より好ましくは5.0以下、更に好ましくは4.0以下である。したがって、粒子径分布のスパンは、通常、2.5~7.0、好ましくは2.6~6.0、より好ましくは2.7~5.0、更に好ましくは2.8~4.0である。 When the amount of iron component in powdered cellulose is 1 to 10 ppm, the span of the particle size distribution is usually 2.5 or more, preferably 2.6 or more, more preferably 2.7 or more, and still more preferably 2.8. That's all. The upper limit is usually 7.0 or less, preferably 6.0 or less, more preferably 5.0 or less, still more preferably 4.0 or less. Therefore, the span of the particle size distribution is usually 2.5 to 7.0, preferably 2.6 to 6.0, more preferably 2.7 to 5.0, even more preferably 2.8 to 4.0. It is.
〔平均繊維幅(μm)、平均繊維長(mm)、平均繊維長/平均繊維幅〕
 平均繊維幅(短径)とは、粉末状セルロースの繊維幅の長径と直交する最小値の平均値をいう。また、平均繊維長(長径)とは、粉末状セルロースの繊維幅の最大長の平均値をいう。
[Average fiber width (μm), average fiber length (mm), average fiber length/average fiber width]
The average fiber width (minor axis) refers to the average value of the minimum value orthogonal to the major axis of the fiber width of powdered cellulose. Moreover, the average fiber length (length axis) refers to the average value of the maximum length of the fiber width of powdered cellulose.
 平均繊維幅は、通常、10μm以上、好ましくは、15μm以上、より好ましくは、20μm以上である。上限は、通常、40μm以下、好ましくは、35μm以下、より好ましくは、33μm以下、更に好ましくは、32μm以下である。したがって、平均繊維幅は、通常、10~40μm、好ましくは、10~35μm又は10~24μm、より好ましくは、15~33μm、更に好ましくは、20~32μmである。 The average fiber width is usually 10 μm or more, preferably 15 μm or more, and more preferably 20 μm or more. The upper limit is usually 40 μm or less, preferably 35 μm or less, more preferably 33 μm or less, still more preferably 32 μm or less. Therefore, the average fiber width is usually 10 to 40 μm, preferably 10 to 35 μm or 10 to 24 μm, more preferably 15 to 33 μm, and still more preferably 20 to 32 μm.
 粉末状セルロースの鉄成分の量が10ppmを超えて50ppmの場合、平均繊維幅は、好ましくは10μm以上、より好ましくは15μm以上、更に好ましくは20μm以上である。上限は、好ましくは35μm以下、より好ましくは30μm以下、更に好ましくは24μm以下である。したがって、平均繊維幅は、好ましくは10~35μm又は10~24μm、より好ましくは15~30μm、更に好ましくは20~24μmである。 When the amount of iron component in the powdered cellulose is more than 10 ppm and 50 ppm, the average fiber width is preferably 10 μm or more, more preferably 15 μm or more, and still more preferably 20 μm or more. The upper limit is preferably 35 μm or less, more preferably 30 μm or less, even more preferably 24 μm or less. Therefore, the average fiber width is preferably 10 to 35 μm or 10 to 24 μm, more preferably 15 to 30 μm, even more preferably 20 to 24 μm.
 粉末状セルロースの鉄成分の量が1~10ppmの場合、平均繊維幅は、通常、10μm以上、好ましくは20μm以上、より好ましくは24μm以上、更に好ましくは24.5μm以上である。上限は、通常40μm以下、好ましくは35μm以下、より好ましくは33μm以下、更に好ましくは32μm以下である。したがって、平均繊維幅は、通常、10~40μm、好ましくは20~35μm、より好ましくは24~33μm、更に好ましくは24.5~32μmである。 When the amount of iron component in the powdered cellulose is 1 to 10 ppm, the average fiber width is usually 10 μm or more, preferably 20 μm or more, more preferably 24 μm or more, and still more preferably 24.5 μm or more. The upper limit is usually 40 μm or less, preferably 35 μm or less, more preferably 33 μm or less, even more preferably 32 μm or less. Therefore, the average fiber width is usually 10 to 40 μm, preferably 20 to 35 μm, more preferably 24 to 33 μm, and still more preferably 24.5 to 32 μm.
 平均繊維長は、通常、0.03mm以上、好ましくは、0.05mm以上である。上限は、通常、0.3mm以下、好ましくは、0.25mm以下、より好ましくは、0.2mm以下である。したがって、平均繊維長は通常、0.03~0.3mm、好ましくは0.05~0.25、より好ましくは0.05~0.2mmである。 The average fiber length is usually 0.03 mm or more, preferably 0.05 mm or more. The upper limit is usually 0.3 mm or less, preferably 0.25 mm or less, more preferably 0.2 mm or less. Therefore, the average fiber length is usually 0.03 to 0.3 mm, preferably 0.05 to 0.25, and more preferably 0.05 to 0.2 mm.
 粉末状セルロースの鉄成分の量が10ppmを超えて50ppmの場合、平均繊維長は、好ましくは0.05mm以上、より好ましくは0.06mm以上である。上限は、好ましくは0.3mm以下、より好ましくは0.25mm以下である。したがって、平均繊維長は好ましくは0.05~0.3mm、より好ましくは0.06~0.25mmである。 When the amount of iron component in the powdered cellulose is more than 10 ppm and 50 ppm, the average fiber length is preferably 0.05 mm or more, more preferably 0.06 mm or more. The upper limit is preferably 0.3 mm or less, more preferably 0.25 mm or less. Therefore, the average fiber length is preferably 0.05 to 0.3 mm, more preferably 0.06 to 0.25 mm.
 粉末状セルロースの鉄成分の量が1~10ppmの場合、平均繊維長は、好ましくは0.03mm以上、より好ましくは0.05mm以上である。上限は、好ましくは0.3mm以下、より好ましくは0.2mm以下である。したがって、平均繊維長は好ましくは0.03~0.3mm、より好ましくは0.05~0.2mmである。 When the amount of iron component in the powdered cellulose is 1 to 10 ppm, the average fiber length is preferably 0.03 mm or more, more preferably 0.05 mm or more. The upper limit is preferably 0.3 mm or less, more preferably 0.2 mm or less. Therefore, the average fiber length is preferably 0.03 to 0.3 mm, more preferably 0.05 to 0.2 mm.
 粉末状セルロースの平均繊維長/平均繊維幅(L/D)は、通常、2.0以上、好ましくは3.0以上である。上限は、通常、12.0以下、好ましくは11.5以下である。従って、L/Dは、通常、2.0~12.0、好ましくは、3.0~11.5である。 The average fiber length/average fiber width (L/D) of powdered cellulose is usually 2.0 or more, preferably 3.0 or more. The upper limit is usually 12.0 or less, preferably 11.5 or less. Therefore, L/D is usually 2.0 to 12.0, preferably 3.0 to 11.5.
 粉末状セルロースの鉄成分の量が10ppmを超えて50ppmの場合、L/Dは、好ましくは2.5~12.0であり、より好ましくは3.0~11.5である。一般にL/Dが大きいほど、繊維同士の絡まりが高まる傾向にある。更に、上記範囲であることにより、樹脂、ゴム等に添加した際にそれらの特性を損なわずに適切に強度を向上させることができる。 When the amount of iron component in the powdered cellulose exceeds 10 ppm and is 50 ppm, L/D is preferably 2.5 to 12.0, more preferably 3.0 to 11.5. Generally, the larger the L/D, the more entangled the fibers tend to be. Furthermore, within the above range, when added to resins, rubbers, etc., the strength can be appropriately improved without impairing their properties.
 粉末状セルロースの鉄成分の量が1~10ppmの場合、L/Dは、好ましくは3.0~8.0であり、より好ましくは3.0~7.0であり、更に好ましくは3.0~6.0である。一般にL/Dが大きいほど、繊維同士の絡まりが高まる傾向にある。更に、上記範囲であることにより、樹脂、ゴム等に添加した際にそれらの特性を損なわずに適切に強度を向上させることができ、また、良好な錠剤化適性を示し得る。 When the amount of iron component in powdered cellulose is 1 to 10 ppm, L/D is preferably 3.0 to 8.0, more preferably 3.0 to 7.0, and still more preferably 3.0 to 8.0. It is 0 to 6.0. Generally, the larger the L/D, the more entangled the fibers tend to be. Further, within the above range, when added to resins, rubbers, etc., the strength can be appropriately improved without impairing their properties, and good suitability for tabletting can be exhibited.
 平均繊維長、平均繊維幅は、ABB社製Fiber Tester Plusで測定でき、L/Dは、これらの測定値から算出した値である。 The average fiber length and average fiber width can be measured using Fiber Tester Plus manufactured by ABB, and L/D is a value calculated from these measured values.
〔1.6.繊維状セルロース〕
 繊維状セルロースは、微細化処理を経て調製される、ナノオーダー、又はマイクロオーダーの繊維径を有するセルロース繊維を意味する。本明細書においてそれぞれ、セルロースナノファイバー(CNF)、セルロースマイクロフィブリル(MFC)と称する。
[1.6. fibrous cellulose]
Fibrous cellulose refers to cellulose fibers prepared through a micronization process and having a fiber diameter on the nano-order or micro-order. In this specification, they are respectively referred to as cellulose nanofibers (CNF) and cellulose microfibrils (MFC).
 CNFの平均繊維径(長さ加重平均繊維径)は、500nm以下、好ましくは300nm以下、より好ましくは100nm以下、更に好ましくは50nm以下である。下限は特に限定されないが、通常は1nm以上、好ましくは2nm以上である。したがって、CNFの平均繊維径(長さ加重平均繊維径)は、通常1~500nm又は2~500nm、好ましくは2~300nm又は2~100nm、より好ましくは2~50nm又は3~30nmである。平均繊維長(長さ加重平均繊維長)は、通常、50~2000nm、好ましくは100~1000nmである。CNFのアスペクト比は、通常10以上、好ましくは50以上である。上限は特に限定されないが、通常は1000以下である。 The average fiber diameter (length-weighted average fiber diameter) of CNF is 500 nm or less, preferably 300 nm or less, more preferably 100 nm or less, even more preferably 50 nm or less. Although the lower limit is not particularly limited, it is usually 1 nm or more, preferably 2 nm or more. Therefore, the average fiber diameter (length-weighted average fiber diameter) of CNF is usually 1 to 500 nm or 2 to 500 nm, preferably 2 to 300 nm or 2 to 100 nm, more preferably 2 to 50 nm or 3 to 30 nm. The average fiber length (length-weighted average fiber length) is usually 50 to 2000 nm, preferably 100 to 1000 nm. The aspect ratio of CNF is usually 10 or more, preferably 50 or more. The upper limit is not particularly limited, but is usually 1000 or less.
 MFCの平均繊維径は、通常500nm以上、1μm以上が好ましく、3μm以上がより好ましい。これにより、未解繊のセルロース繊維に比べて高い保水性を呈することができ、微細に解繊されたCNFと比較して少量でも高い強度付与効果や歩留まり向上効果が得られる。平均繊維径の上限は60μm以下が好ましく、40μm以下がより好ましく、30μm以下が更に好ましく、20μm以下が更により好ましいが、特に制限はない。平均繊維長は、通常、10μm以上、20μm以上、又は40μm以上であり、好ましくは200μm以上、300μm以上又は400μm以上、より好ましくは、500μm以上又は550μm以上、更に好ましくは600μm以上、700μm以上、800μm以上である。上限は、特に限定されないが、通常、3,000μm以下、好ましくは2,500μm以下、より好ましくは2,000μm以下、更に好ましくは1,500μm以下、1,400μm以下又は1,300μmである。MFCのアスペクト比は、3以上が好ましく、5以上がより好ましく、7以上が更に好ましく、10以上、20以上又は30以上でもよい。アスペクト比の上限は特に限定されないが、1000以下が好ましく、100以下がより好ましく、80以下が更に好ましい。 The average fiber diameter of MFC is usually 500 nm or more, preferably 1 μm or more, and more preferably 3 μm or more. As a result, it can exhibit higher water retention than undefibrated cellulose fibers, and even in a small amount, a high strength imparting effect and yield improvement effect can be obtained compared to finely defibrated CNF. The upper limit of the average fiber diameter is preferably 60 μm or less, more preferably 40 μm or less, even more preferably 30 μm or less, and even more preferably 20 μm or less, but there is no particular restriction. The average fiber length is usually 10 μm or more, 20 μm or more, or 40 μm or more, preferably 200 μm or more, 300 μm or more, or 400 μm or more, more preferably 500 μm or more or 550 μm or more, even more preferably 600 μm or more, 700 μm or more, or 800 μm. That's all. The upper limit is not particularly limited, but is usually 3,000 μm or less, preferably 2,500 μm or less, more preferably 2,000 μm or less, still more preferably 1,500 μm or less, 1,400 μm or less, or 1,300 μm. The aspect ratio of MFC is preferably 3 or more, more preferably 5 or more, even more preferably 7 or more, and may be 10 or more, 20 or more, or 30 or more. The upper limit of the aspect ratio is not particularly limited, but is preferably 1000 or less, more preferably 100 or less, and even more preferably 80 or less.
 繊維状セルロースの平均繊維径及び平均繊維長は、バルメット株式会社製フラクショネーターにより求めることができる。フラクショネーターを用いた場合、それぞれ、length-weighted fiber width及びlength-weighted average fiber lengthとして求めることができる。微細セルロース繊維の平均アスペクト比は、式:平均アスペクト比=平均繊維長/平均繊維径により算出できる。 The average fiber diameter and average fiber length of fibrous cellulose can be determined using a fractionator manufactured by Valmet Corporation. When using a fractionator, it can be determined as length-weighted fiber width and length-weighted average fiber length, respectively. The average aspect ratio of fine cellulose fibers can be calculated by the formula: average aspect ratio=average fiber length/average fiber diameter.
 繊維状セルロースは、変性又は未変性のいずれでもよい。変性繊維状セルロースとは、グルコース単位に含まれる3つのヒドロキシル基の少なくともいずれかが化学変性(以下、単に「変性」と記載する)している微細セルロース繊維(例えば、セルロースナノファイバー、セルロースマイクロフィブリル)を意味する。化学変性処理により、セルロース繊維の微細化が十分に進み、解繊により均一な平均繊維長及び平均繊維径のセルロースナノファイバーが得られる。そのため、ゴム成分と複合化した際に、十分な補強効果を発揮し得る。このような観点から、変性処理したセルロース繊維が好ましい。 The fibrous cellulose may be modified or unmodified. Modified fibrous cellulose refers to fine cellulose fibers (e.g., cellulose nanofibers, cellulose microfibrils) in which at least one of the three hydroxyl groups contained in the glucose unit has been chemically modified (hereinafter simply referred to as "modified"). ) means. Through the chemical modification treatment, cellulose fibers are sufficiently refined, and cellulose nanofibers having a uniform average fiber length and average fiber diameter can be obtained by defibration. Therefore, when compounded with a rubber component, it can exhibit a sufficient reinforcing effect. From this point of view, modified cellulose fibers are preferred.
 変性としては、例えば、酸化、エーテル化、リン酸エステル化等のエステル化、シランカップリング、フッ素化、カチオン化等が挙げられる。中でも、酸化(カルボキシル化)、エーテル化、カチオン化、エステル化が好ましく、酸化(カルボキシル化)がより好ましい。 Examples of modification include oxidation, etherification, esterification such as phosphoric acid esterification, silane coupling, fluorination, cationization, and the like. Among these, oxidation (carboxylation), etherification, cationization, and esterification are preferred, and oxidation (carboxylation) is more preferred.
〔2.セルロース材料の製造方法〕
 セルロース材料は、セルロース原料からセルロース材料を得る方法であれば特に限定されない。粉末状セルロースの場合、例えば、少なくとも粉砕処理を含む方法が挙げられ、機械的な粉砕処理を含む方法が好ましい。繊維状セルロースの場合、例えば、解繊処理を含む方法が挙げられる。
[2. Manufacturing method of cellulose material]
The cellulose material is not particularly limited as long as it is obtained by a method of obtaining a cellulose material from a cellulose raw material. In the case of powdered cellulose, for example, a method including at least a pulverization treatment may be mentioned, and a method including a mechanical pulverization treatment is preferred. In the case of fibrous cellulose, for example, a method including defibration treatment can be mentioned.
〔2.1.セルロース原料〕
 セルロース原料は、通常は天然由来のセルロースであり、パルプが好ましく、木材由来のパルプがより好ましい。木材由来のパルプとしては、例えば、広葉樹由来のパルプ、針葉樹由来のパルプが挙げられる。木材由来のパルプの調製方法としては、例えば、漂白処理を含む方法が挙げられる。漂白処理方法としては、例えば、任意に通常の方法で脱リグニンしたパルプに対し、塩素処理(C)、二酸化塩素漂白(D)、アルカリ抽出(E)、次亜塩素酸塩漂白(H)、過酸化水素漂白(P)、アルカリ性過酸化水素処理段(Ep)、アルカリ性過酸化水素・酸素処理段(Eop)、オゾン処理(Z)、キレート処理(Q)、及びこれらの2以上の処理の組み合わせを施す方法が挙げられる。2以上の処理の組み合わせ(シーケンス)としては、例えば、D-E/P-D、C/D-E-H-D、Z-E-D-PZ/D-Ep-D、Z/D-Ep-D-P、D-Ep-D、D-Ep-D-P、D-Ep-P-D、Z-Eop-D-D、Z/D-Eop-D、Z/D-Eop-D-E-D(シーケンス中の「/」は、「/」の前後の処理を洗浄なしで連続して行なうことを意味する)が挙げられる。漂白処理は、上記の例に限定されることなく、一般的に使用される方法でもよい。漂白処理を経たパルプは、通常は流動状態(流動パルプ)である。パルプの白色度は、ISO 2470に基づいて、80%以上が好ましい。
[2.1. Cellulose raw material]
The cellulose raw material is usually naturally derived cellulose, preferably pulp, and more preferably pulp derived from wood. Examples of pulp derived from wood include pulp derived from broad-leaved trees and pulp derived from coniferous trees. Examples of methods for preparing wood-derived pulp include methods that include bleaching treatment. Bleaching treatment methods include, for example, chlorine treatment (C), chlorine dioxide bleaching (D), alkaline extraction (E), hypochlorite bleaching (H), Hydrogen peroxide bleaching (P), alkaline hydrogen peroxide treatment stage (Ep), alkaline hydrogen peroxide/oxygen treatment stage (Eop), ozone treatment (Z), chelation treatment (Q), and two or more of these treatments One example is a method of applying a combination. Examples of combinations (sequences) of two or more processes include D-E/P-D, C/D-E-HD, Z-E-D-PZ/D-Ep-D, and Z/D- Ep-DP, D-Ep-D, D-Ep-DP, D-Ep-PD, Z-Eop-DD, Z/D-Eop-D, Z/D-Eop- An example is DE (the "/" in the sequence means that the processes before and after the "/" are performed consecutively without washing). Bleaching treatment is not limited to the above example, and may be any commonly used method. Pulp that has undergone bleaching treatment is usually in a fluid state (fluid pulp). The whiteness of the pulp is preferably 80% or more based on ISO 2470.
 パルプの調製方法の一例としては、パルプ化法(蒸解法)が挙げられる。パルプ化法(蒸解法)による処理により着色物質であるリグニンが溶解して取り除かれ、白色度の高いパルプを得ることができる。パルプ化法(蒸解法)としては、例えば、サルファイト蒸解法、クラフト蒸解法、ソーダ・キノン蒸解法、オルガノソルブ蒸解法が挙げられ、環境面から、クラフトパルプが好ましい。また、砕木パルプ(GP)、リファイナーグラウンドウッドパルプ(RGP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等の機械パルプも使用できる。 An example of a method for preparing pulp is a pulping method (cooking method). The pulping method (cooking method) dissolves and removes the colored substance lignin, making it possible to obtain pulp with a high degree of whiteness. Examples of the pulping method (cooking method) include sulfite cooking, kraft cooking, soda quinone cooking, and organosolve cooking, with kraft pulp being preferred from an environmental standpoint. Mechanical pulps such as ground wood pulp (GP), refined ground wood pulp (RGP), thermomechanical pulp (TMP), and chemi-thermomechanical pulp (CTMP) can also be used.
 セルロース原料の水分量は、通常、セルロース原料100%に対して好ましくは5~30%であり、好ましくは6~20%である。セルロース原料の水分量が前述の範囲よりも多いときは、後述する脱水・乾燥処理によって水分量を調節すればよい。 The moisture content of the cellulose raw material is usually preferably 5 to 30%, preferably 6 to 20%, based on 100% of the cellulose raw material. When the moisture content of the cellulose raw material is higher than the above range, the moisture content may be adjusted by dehydration/drying treatment described below.
〔2.2.粉末状セルロースの製造方法〕
〔機械的粉砕処理〕
 粉砕処理は、セルロース原料を機械的に粉砕する処理である。粉砕処理に先立ち、脱水・乾燥処理、酸加水分解処理等の前処理を行ってもよく、脱水・乾燥処理が好ましい。粉砕処理と同時、又は粉砕後に、分級処理を行ってもよい。
[2.2. Method for producing powdered cellulose]
[Mechanical crushing process]
The pulverization process is a process of mechanically pulverizing the cellulose raw material. Prior to the pulverization treatment, pretreatment such as dehydration/drying treatment, acid hydrolysis treatment, etc. may be performed, and dehydration/drying treatment is preferred. A classification process may be performed simultaneously with the pulverization process or after the pulverization process.
 粉砕機としては、例えば、カッティング式ミル、衝撃式ミル、気流式ミル、ハンマー式ミル、ロールミル、ローラーミル、媒体ミル、媒体撹拌ミル、振動ミル、凍結粉砕機が挙げられ、1種単独でも、2種以上併用でもよい。 Examples of the crusher include a cutting type mill, an impact type mill, an air flow type mill, a hammer type mill, a roll mill, a roller mill, a media mill, a media stirring mill, a vibration mill, and a freeze crusher. Two or more types may be used in combination.
 カッティング式ミルとしては、例えば、カッティングミル(株式会社ホーライ製)、メッシュミル(株式会社ホーライ製)、アトムズ(株式会社山本百馬製作所製)、ナイフミル(パルマン社製)、カッターミル(東京アトマイザー製造株式会社製)、セントリカッター(日本コークス工業株式会社製)、ロータリーカッターミル(株式会社奈良機械製作所製)、ターボカッター(フロイント・ターボ株式会社製)、パルプ粗砕機(株式会社瑞光製)が挙げられる。 Examples of cutting-type mills include cutting mills (manufactured by Horai Co., Ltd.), mesh mills (manufactured by Horai Co., Ltd.), Atoms (manufactured by Yamamoto Hyakuma Seisakusho Co., Ltd.), knife mills (manufactured by Palman Co., Ltd.), and cutter mills (manufactured by Tokyo Atomizer Co., Ltd.). (manufactured by Freund Turbo Co., Ltd.), Centricutter (manufactured by Nippon Coke Industry Co., Ltd.), Rotary Cutter Mill (manufactured by Nara Kikai Seisakusho Co., Ltd.), Turbo Cutter (manufactured by Freund Turbo Co., Ltd.), and Pulp Crusher (manufactured by Zuiko Co., Ltd.). It will be done.
 ハンマー式ミルとしては、例えば、ハンマミル(ホソカワミクロン株式会社製)、ジョークラッシャ(株式会社マキノ製)、ハンマークラッシャー(槇野産業株式会社製)が挙げられる。 Examples of the hammer type mill include a hammer mill (manufactured by Hosokawa Micron Co., Ltd.), a jaw crusher (manufactured by Makino Co., Ltd.), and a hammer crusher (manufactured by Makino Sangyo Co., Ltd.).
 衝撃式ミルとしては、例えば、パルベライザ(ホソカワミクロン株式会社製)、ファインインパクトミル(ホソカワミクロン株式会社製)、スーパーミクロンミル(登録商標、ホソカワミクロン株式会社製)、イノマイザ(登録商標、ホソカワミクロン株式会社製)、ファインミル(日本ニューマチック工業株式会社製)、CUM型遠心ミル(三井鉱山株式会社製)、イクシードミル(槇野産業株式会社製)、ウルトラプレックス(槇野産業株式会社製)、コントラプレックス(槇野産業株式会社製)、コロプレックス(槇野産業株式会社製)、アトマイザー(株式会社セイシン企業製)、トルネードミル(日機装株式会社製)、ネアミル(株式会社ダルトン製)、自由粉砕機(株式会社奈良機械製作所製)、ニューコスモマイザー(株式会社奈良機械製作所製)、ターボミル(フロイント・ターボ株式会社製)、スーパーパウダーミル(株式会社西村機械製作所製)、ブレードミル(日清エンジニアリング株式会社製)、スーパーローター(日清エンジニアリング株式会社製)、ウイレー粉砕機(株式会社三喜製作所製)、パルプ粉砕機(株式会社瑞光製)、ヤコブソン微粉砕機(神鋼パンテック株式会社製)、ユニバーサルミル(株式会社徳寿工作所製)、連続式バイブロミル(ユーラステクノ株式会社製)が挙げられる。 Examples of impact mills include Pulverizer (manufactured by Hosokawa Micron Corporation), Fine Impact Mill (manufactured by Hosokawa Micron Corporation), Super Micron Mill (registered trademark, manufactured by Hosokawa Micron Corporation), Innomizer (registered trademark, manufactured by Hosokawa Micron Corporation), Fine Mill (manufactured by Japan Pneumatic Industries Co., Ltd.), CUM centrifugal mill (manufactured by Mitsui Mining Co., Ltd.), Exceed Mill (manufactured by Makino Sangyo Co., Ltd.), Ultraplex (manufactured by Makino Sangyo Co., Ltd.), Contraplex (manufactured by Makino Sangyo Co., Ltd.) Coloplex (manufactured by Makino Sangyo Co., Ltd.), Atomizer (manufactured by Seishin Kogyo Co., Ltd.), Tornado Mill (manufactured by Nikkiso Co., Ltd.), Nair Mill (manufactured by Dalton Co., Ltd.), Jiyu Grinder (manufactured by Nara Kikai Seisakusho Co., Ltd.) ), New Cosmomizer (manufactured by Nara Kikai Seisakusho Co., Ltd.), Turbo Mill (manufactured by Freund Turbo Co., Ltd.), Super Powder Mill (manufactured by Nishimura Kikai Seisakusho Co., Ltd.), Blade Mill (manufactured by Nisshin Engineering Co., Ltd.), Super Rotor (manufactured by Nisshin Engineering Co., Ltd.) (manufactured by Nisshin Engineering Co., Ltd.), Willey crusher (manufactured by Sanki Seisakusho Co., Ltd.), pulp crusher (manufactured by Zuiko Co., Ltd.), Jacobson fine grinder (manufactured by Shinko Pantech Co., Ltd.), Universal mill (manufactured by Tokuju Kosho Co., Ltd.) (manufactured by Eurus Techno Co., Ltd.) and continuous vibromill (manufactured by Eurus Techno Co., Ltd.).
 気流式ミルとしては、例えば、CGS型ジェットミル(三井鉱山株式会社製)、ミクロンジェット(登録商標、ホソカワミクロン株式会社製)、カウンタジェットミル(登録商標、ホソカワミクロン株式会社製)、クロスジェットミル(株式会社栗本鐵工所製)、超音速ジェットミル(日本ニューマチック工業株式会社製)、カレントジェット(日清エンジニアリング株式会社製)、ジェットミル(三庄インダストリー株式会社製)、セレンミラー(増幸産業株式会社製)、ニューミクロシクトマット(株式会社増野製作所製)、クリプトロン(株式会社アーステクニカ製)、ナノジェットマイザー(株式会社アイシンナノテクノロジーズ)が挙げられる。 Examples of airflow mills include CGS type jet mill (manufactured by Mitsui Mining Co., Ltd.), Micron Jet (registered trademark, manufactured by Hosokawa Micron Co., Ltd.), Counter Jet Mill (registered trademark, manufactured by Hosokawa Micron Co., Ltd.), and Cross Jet Mill (trademark manufactured by Hosokawa Micron Co., Ltd.). Kurimoto Iron Works Co., Ltd.), supersonic jet mill (Japan Pneumatic Industry Co., Ltd.), current jet (Nissin Engineering Co., Ltd.), jet mill (Sansho Industry Co., Ltd.), selenium mirror (Masuko Sangyo Co., Ltd.) company), New Microsictomat (manufactured by Masuno Seisakusho Co., Ltd.), Kryptron (manufactured by Earth Technica Co., Ltd.), and Nano Jet Miser (manufactured by Aisin Nano Technologies Co., Ltd.).
 ローラーミルとしては、例えば、竪型ローラーミル(セイシン株式会社製)、竪型ローラーミル(シニオン株式会社製)、ローラーミル(コトブキ技研工業株式会社製)、VXミル(株式会社栗本鐵工所製)、KVM型竪形ローラミル(株式会社アーステクニカ製)、ISミル(株式会社IHIプラントエンジニアリング製)が挙げられる。
 振動ミルとしては、例えば、バッチ式振動ミル(中央化工機株式会社製)が挙げられる。
 これらのうち、カッティング式ミル、ローラーミル、振動ミルが好ましい。 
Examples of the roller mill include a vertical roller mill (manufactured by Seishin Co., Ltd.), a vertical roller mill (manufactured by Shinion Co., Ltd.), a roller mill (manufactured by Kotobuki Giken Kogyo Co., Ltd.), and a VX mill (manufactured by Kurimoto Iron Works Co., Ltd.). ), KVM type vertical roller mill (manufactured by Earth Technica Co., Ltd.), and IS mill (manufactured by IHI Plant Engineering Co., Ltd.).
Examples of the vibration mill include a batch type vibration mill (manufactured by Chuo Kakoki Co., Ltd.).
Among these, cutting type mills, roller mills, and vibration mills are preferred.
 粉砕処理の条件は、所望の粉末状セルロースが得られるように適宜設定できる。例えば、粉砕条件(例えば、処理時間、投入量)と粉末状セルロースの所望の物性とから作成した検量線を参照して、処理条件を調整できる。 The conditions for the pulverization treatment can be appropriately set so as to obtain the desired powdered cellulose. For example, the processing conditions can be adjusted with reference to a calibration curve created from the pulverization conditions (eg, processing time, input amount) and desired physical properties of the powdered cellulose.
〔中和・洗浄・脱水・乾燥処理〕
 セルロース原料から粉末状セルロースを製造する場合、粉砕処理の前に適宜前処理を経る。前処理としては例えば、中和、洗浄、脱液、乾燥処理が挙げられ、脱水、乾燥処理をこの順に行うことが好ましい。セルロース原料は、乾燥(脱水)処理により、固形分濃度を調整でき、粉末状セルロースの物性値の制御が容易にできる。固形分濃度は、通常、15%以上、好ましくは20%以上に調整される。乾燥は、気流式乾燥機を用いることが好ましい。これにより、セルロース原料の処理物がケーキ状固体、スラリー、溶液等の態様にかかわらず、これらを気流中に分散しながら高速の熱風を当てることができ、かつ、ドライヤー内部の減圧効果を利用でき、瞬時に乾燥できる。また、熱風に触れる時間が極めて短いため、製品温度を低く保つことができ、熱に敏感な製品や融点の低い製品の乾燥に最適である。気流式乾燥機による乾燥の条件は特に限定されず、適宜設定できるが、一例を挙げると以下のとおりである。出口乾燥温度は、通常、80~180℃、好ましくは90~160℃である。給気量は、通常、150~350m3/h、好ましくは160~320m3/hである。
 一方、噴霧乾燥機を用いる場合、噴霧し熱風で瞬時に乾燥させ顆粒物を生成する。そのため、水分量が少ない固形状又は半固形状の対象物の乾燥には適さない場合がある。また、気流式乾燥機による乾燥よりも粒子が瞬間的に高熱に暴露されやすく、製品への影響が懸念される場合がある。
[Neutralization, cleaning, dehydration, drying treatment]
When producing powdered cellulose from cellulose raw materials, appropriate pretreatment is performed before pulverization. Examples of pretreatment include neutralization, washing, deliquification, and drying treatment, and it is preferable to perform dehydration and drying treatment in this order. The solid content concentration of the cellulose raw material can be adjusted by drying (dehydration) treatment, and the physical properties of the powdered cellulose can be easily controlled. The solid content concentration is usually adjusted to 15% or more, preferably 20% or more. For drying, it is preferable to use a flash dryer. As a result, regardless of whether the processed cellulose raw material is in the form of a cake-like solid, slurry, solution, etc., it is possible to apply high-speed hot air while dispersing it in the air stream, and also to utilize the depressurizing effect inside the dryer. , can be dried instantly. In addition, since the exposure time to hot air is extremely short, the product temperature can be kept low, making it ideal for drying products that are sensitive to heat or products with low melting points. The conditions for drying using the flash dryer are not particularly limited and can be set as appropriate, but an example is as follows. The outlet drying temperature is usually 80 to 180°C, preferably 90 to 160°C. The amount of air supplied is usually 150 to 350 m 3 /h, preferably 160 to 320 m 3 /h.
On the other hand, when using a spray dryer, the product is sprayed and instantly dried with hot air to produce granules. Therefore, it may not be suitable for drying solid or semi-solid objects with a small moisture content. Furthermore, the particles are more easily exposed to high heat instantaneously than when drying with a flash dryer, and there may be concerns about the effect on the product.
〔酸加水分解処理〕
 酸加水分解処理に用いる酸としては、例えば、塩酸、硫酸、硝酸等の鉱酸が挙げられる。酸濃度は、特に限定されないが、重合度及び白色度の維持の観点から、従来の粉末状セルロース製造の酸加水分解処理の際の酸濃度より低いことが好ましく、0.4~2.0Nがより好ましく、0.5~1.5Nがより好ましい。酸濃度が0.4N未満であると、酸によるセルロースの解重合が抑制されセルロースの重合度の低下を軽減できるが、微細化が困難となる場合がある。一方、2.0Nを超えると、セルロースの解重合が進み微細化が容易となるため、粉体流動性は向上するが、重合度の低下に伴い錠剤硬度が低下する(成形した際に、崩壊しやすくなる)場合がある。酸加水分解処理の反応条件は特に限定されないが、反応温度は通常、80~100℃、反応時間は通常、30分~3時間である。
[Acid hydrolysis treatment]
Examples of acids used in the acid hydrolysis treatment include mineral acids such as hydrochloric acid, sulfuric acid, and nitric acid. The acid concentration is not particularly limited, but from the viewpoint of maintaining the degree of polymerization and whiteness, it is preferably lower than the acid concentration in the conventional acid hydrolysis treatment for producing powdered cellulose, and is preferably 0.4 to 2.0N. More preferably, 0.5 to 1.5N is more preferable. When the acid concentration is less than 0.4N, depolymerization of cellulose due to acid is suppressed and a decrease in the degree of polymerization of cellulose can be reduced, but it may be difficult to refine the cellulose. On the other hand, if it exceeds 2.0N, the depolymerization of cellulose progresses and it becomes easier to refine the powder, improving powder flowability, but tablet hardness decreases as the degree of polymerization decreases (when molded, it disintegrates). It may be easier to do so.) The reaction conditions for the acid hydrolysis treatment are not particularly limited, but the reaction temperature is usually 80 to 100°C and the reaction time is usually 30 minutes to 3 hours.
 酸加水分解処理に先立ち、セルロース原料について前処理を行ってもよい。例えば、セルロース原料のスラリー化(分散液の調製)、セルロース原料濃度の調整が挙げられる。セルロース原料の濃度は、通常、分散液に対し3~10重量%(固形分換算)である。セルロース原料が漂白処理を経た流動パルプの場合、通常、加水分解前にパルプ濃度を高める処理を行うことが多い。セルロース原料濃度の調整(濃縮)には、スクリュープレス、ベルトフィルター等の脱水機を用いてもよい。酸加水分解処理は、セルロース原料のスラリーに対して行われてもよいが、シート状のセルロース原料に対し行われてもよい。セルロース原料がパルプのドライシートの場合、通常、パルプをほぐしてから酸加水分解処理を行う。パルプをほぐす際には、ロールクラッシャー等の解砕機を用いてもよい。 Prior to the acid hydrolysis treatment, the cellulose raw material may be pretreated. Examples include slurrying the cellulose raw material (preparation of a dispersion) and adjusting the concentration of the cellulose raw material. The concentration of the cellulose raw material is usually 3 to 10% by weight (based on solid content) based on the dispersion. When the cellulose raw material is a fluidized pulp that has undergone bleaching treatment, a treatment to increase the pulp density is usually performed before hydrolysis. A dehydrator such as a screw press or a belt filter may be used to adjust (concentrate) the cellulose raw material concentration. The acid hydrolysis treatment may be performed on a slurry of cellulose raw material, or may be performed on a sheet-shaped cellulose raw material. When the cellulose raw material is a dry sheet of pulp, the acid hydrolysis treatment is usually performed after the pulp is loosened. When loosening the pulp, a crusher such as a roll crusher may be used.
 酸加水分解後の粉砕処理の際、必要に応じて、少なくとも1つの他の成分(例えば、有機成分、無機成分)を酸加水分解処理物とともに粉砕処理に供してもよい。これにより、粉末状セルロースに機能性を付与、又は機能性を向上させることができる。他の成分の配合量は、適量を適宜選定すればよい。また、粉砕工程に先立ち、酸加水分解処理物に更に上述の中和・洗浄・脱水・乾燥処理を行ってもよい。 During the pulverization treatment after acid hydrolysis, at least one other component (for example, an organic component, an inorganic component) may be subjected to the pulverization treatment together with the acid-hydrolyzed product, if necessary. Thereby, functionality can be imparted to the powdered cellulose or the functionality can be improved. The amounts of other components to be blended may be appropriately selected. Further, prior to the pulverization step, the acid-hydrolyzed product may be further subjected to the above-mentioned neutralization, washing, dehydration, and drying treatments.
 セルロース材料は、必要に応じて、化学的処理が施されていてもよい。化学的処理は、セルロース原料の重合度を大幅に損なうおそれのない処理が好ましい。化学的処理の時期は、セルロース原料に対して粉砕処理の際に行ってもよいし、粉砕処理の前処理の前に行ってもよい。 The cellulose material may be chemically treated as necessary. The chemical treatment is preferably a treatment that does not significantly impair the degree of polymerization of the cellulose raw material. The chemical treatment may be performed on the cellulose raw material during the pulverization treatment, or may be performed before the pretreatment of the pulverization treatment.
〔2.3.繊維状セルロースの製造方法〕
 繊維状セルロースは、解繊処理を含む方法にて製造できる。解繊(フィブリル化)は、通常は機械的処理により得られ、機械的処理は離解または叩解処理であることが好ましい。機械的処理(好ましくは叩解または離解処理)は、通常は湿式で(すなわち、水分散体の形態で)行う。機械的処理に用いる装置としては、例えば、精製装置(リファイナー;例、ディスク型、コニカル型、シリンダー型)、高速解繊機、せん断型撹拌機、コロイドミル、高圧噴射分散機、ビーター、PFIミル、ニーダー、ディスパーザー、高速離解機(トップファイナー)、高圧または超高圧ホモジナイザー、グラインダー(石臼型粉砕機)、ボールミル、振動ミル、ビーズミル、1軸、2軸又は多軸の混錬機又は押出機高速回転下でのホモミキサー、精製装置(refiner)、デフィブレーター(defibrator)、摩擦グラインダー、高せん断デフィブレーター(high-share defibrator)、ディスパージャー(disperger)、ホモゲナイザー(例、微細流動化機(microfluidizer))等の機械的な解繊力を付与できる装置が挙げられ、湿式にて解繊力を付与できる装置が好ましく、高速離解機、精製装置がより好ましいが、特に限定されない。解繊処理は、通常、セルロース原料を水に分散した状態で行う。
[2.3. Method for producing fibrous cellulose]
Fibrous cellulose can be produced by a method including defibration treatment. Defibration (fibrillation) is usually obtained by mechanical treatment, and the mechanical treatment is preferably defibration or beating treatment. The mechanical treatment (preferably beating or disintegration treatment) is usually carried out wet (ie in the form of an aqueous dispersion). Examples of devices used for mechanical processing include refining devices (refiners; e.g., disk type, conical type, cylinder type), high-speed fibrillators, shear type stirrers, colloid mills, high-pressure injection dispersers, beaters, PFI mills, Kneader, disperser, high-speed disintegrator (top finer), high-pressure or ultra-high-pressure homogenizer, grinder (stone mill type crusher), ball mill, vibration mill, bead mill, single-shaft, double-shaft or multi-shaft kneading machine or high-speed extruder homomixers under rotation, refiners, defibrators, friction grinders, high-share defibrators, dispergers, homogenizers (e.g., microfluidizers) A device that can apply a mechanical defibrating force such as a microfluidizer (microfluidizer) can be mentioned, and a device that can apply a defibrating force in a wet manner is preferable, and a high-speed disintegrator and a purification device are more preferable, but there are no particular limitations. Defibration treatment is usually performed with the cellulose raw material dispersed in water.
 繊維状セルロースが変性繊維状セルロースの場合、解繊の前又は後(通常は前)に化学変性処理を行う。変性処理としては、例えば、酸化、エーテル化、リン酸エステル化等のエステル化、シランカップリング、フッ素化、カチオン化が挙げられる。中でも、酸化(カルボキシル化)、エーテル化(例えば、カルボキシアルキル化)、カチオン化、エステル化が好ましく、酸化(カルボキシル化)、カルボキシアルキル化がより好ましい。 If the fibrous cellulose is modified fibrous cellulose, chemical modification treatment is performed before or after (usually before) defibration. Examples of the modification treatment include oxidation, etherification, esterification such as phosphoric acid esterification, silane coupling, fluorination, and cationization. Among these, oxidation (carboxylation), etherification (for example, carboxyalkylation), cationization, and esterification are preferred, and oxidation (carboxylation) and carboxyalkylation are more preferred.
〔3.セルロース材料の用途〕
 セルロース材料の用途としては、例えば、工業用添加剤(例えば、ポリプロピレン、フェノール樹脂、メラミン樹脂等の樹脂用、各種ゴム用)、錠剤等製剤(食品、医薬、医薬部外品、化粧品)用の賦形剤等として利用できる。また、樹脂組成物(例えば、ポリオレフィン樹脂、変性ポリオレフィン樹脂、ゴム)、ゴム組成物(例えば、自動車、パソコン、建築材、容器)、食品添加剤(例えば、シュレッドチーズ、フライ製品、パン粉、ハム又はソーセージのケーシング、それらのピックル液)、衛生用品/化粧品(例えば、洗顔剤、歯磨剤、ファンデーション用)、ろ過助剤(例えば、レアメタル、食品用)、塗料/接着剤添加剤(例えば、ウレタン塗料用)、飼料(例えば、ペットフード、釣り餌)等の成分、原料として利用できる。
[3. Uses of cellulose materials]
Applications of cellulose materials include, for example, industrial additives (for example, for resins such as polypropylene, phenol resin, melamine resin, and various rubbers), and for tablets and other preparations (foods, pharmaceuticals, quasi-drugs, cosmetics). It can be used as an excipient. In addition, resin compositions (e.g., polyolefin resins, modified polyolefin resins, rubber), rubber compositions (e.g., automobiles, personal computers, building materials, containers), food additives (e.g., shredded cheese, fried products, bread crumbs, ham, sausage casings, their pickle liquid), hygiene products/cosmetics (e.g. for face washes, toothpastes, foundations), filter aids (e.g. rare metals, food grade), paint/adhesive additives (e.g. urethane paints) It can be used as an ingredient or raw material for feed (e.g., pet food, fishing bait), etc.
〔4.成型体〕
 粉末状セルロースは、成型体(例えば、食品、医薬、医薬部外品、化粧品、製造業、建設業等の用途の製剤)の賦形剤として用いることができる。これにより、成型体は良好な硬度を示すことができる。成型体の剤型としては、例えば、錠剤が挙げられる。
[4. Molded body]
Powdered cellulose can be used as an excipient for molded bodies (for example, preparations for foods, medicines, quasi-drugs, cosmetics, manufacturing industry, construction industry, etc.). Thereby, the molded product can exhibit good hardness. Examples of the dosage form of the molded product include tablets.
 成型体は、適度な(実用的な)硬度を有することが好ましく、例えば、通常30MPa以上、より好ましくは40MPa以上、更に好ましくは50MPa以上である。上限は、好ましくは100MPa以下、より好ましくは80MPa以下、更に好ましくは60MPa以下である。したがって、粉末状セルロースの硬度は、好ましくは30~100MPa、より好ましくは40~80MPa、更に好ましくは50~60MPaである。錠剤硬度は、例えば、実施例に示す条件で錠剤硬度計を用いて測定できる。 It is preferable that the molded body has a moderate (practical) hardness, for example, usually 30 MPa or more, more preferably 40 MPa or more, still more preferably 50 MPa or more. The upper limit is preferably 100 MPa or less, more preferably 80 MPa or less, still more preferably 60 MPa or less. Therefore, the hardness of the powdered cellulose is preferably 30 to 100 MPa, more preferably 40 to 80 MPa, and still more preferably 50 to 60 MPa. Tablet hardness can be measured, for example, using a tablet hardness meter under the conditions shown in Examples.
 以下、本発明を実施例により説明する。以下の実施例は、本発明を限定するものではない。本願の実施例における試験方法を、次に示す。なお、物性値等の測定方法は、別途記載がない限り、上記に記載した測定方法である。 Hereinafter, the present invention will be explained with reference to Examples. The following examples do not limit the invention. The test method in the Examples of the present application is shown below. Note that the measurement methods for physical property values, etc. are the measurement methods described above, unless otherwise specified.
<鉄成分含有量の測定(ppm)>
 粉末状セルロース0.5gをマイクロ波分解容器に秤取し、純水2ml及び硝酸5mlを添加して試料を調製した。試料をマイクロ波分解した後、ポリプロピレン製定容容器に移した。試料に内標準溶液2mlを添加した後、定容(50ml)し、トリプル四重極ICP質量分析装置を用いて、鉄成分含有量を測定した。
<Measurement of iron component content (ppm)>
A sample was prepared by weighing 0.5 g of powdered cellulose into a microwave digestion container and adding 2 ml of pure water and 5 ml of nitric acid. After the sample was subjected to microwave digestion, it was transferred to a constant volume polypropylene container. After adding 2 ml of the internal standard solution to the sample, the volume was fixed (50 ml), and the iron component content was measured using a triple quadrupole ICP mass spectrometer.
 ICP質量分析装置の測定条件は下記の通りである。
・機種:Agilent 8800 (アジレント・テクノロジー株式会社製)
・コリジョン及びリアクションセル導入ガス:ヘリウム及び水素
・測定m/z:鉄;56
・内標準元素m/z:ロジウム;103
The measurement conditions of the ICP mass spectrometer are as follows.
・Model: Agilent 8800 (manufactured by Agilent Technologies Co., Ltd.)
・Collision and reaction cell introduction gas: Helium and hydrogen ・Measurement m/z: Iron; 56
・Internal standard element m/z: Rhodium; 103
<灰分量(%)>
 灰分量の測定は、以下の手順で行った。
 1)試料5~8gを重量既知の磁製ルツボに入れ、試料重量を精秤した。なお、ルツボは試料を入れる前に予め空焼きし(800℃、1時間程度)デシケーター中で30分間放冷後の重量を精秤しておいた。ソーダ灰が溶融しルツボ内に溜まった場合は塩酸で洗浄した。
 2)精秤後、試料を収容したルツボを電熱ヒーターで加熱し、炭化させた。炭化は、白煙が生じなくなるまで行った。その後、800℃に調節した電気炉に入れ、2時間灰化した。
 3)灰化後、ルツボを取り出しデシケーターに入れた。
 4)30分間放冷後、灰化残分を精密天秤で精秤した。灰分は次式によって算出し、小数点以下3位まで計算し、小数点以下2位まで報告した。
Figure JPOXMLDOC01-appb-M000001

 精密天秤はATX224(島津製作所)を、電気炉はFUW232PA(ADVANTEC)を、それぞれ用いた。
<Ash content (%)>
The ash content was measured using the following procedure.
1) 5 to 8 g of the sample was placed in a porcelain crucible of known weight, and the sample weight was accurately weighed. The crucible was air-baked in advance (800° C., about 1 hour) before the sample was placed in it, and the weight was accurately weighed after cooling in a desiccator for 30 minutes. If soda ash was melted and accumulated in the crucible, it was washed with hydrochloric acid.
2) After accurate weighing, the crucible containing the sample was heated with an electric heater to carbonize it. Carbonization was carried out until no white smoke was produced. Thereafter, it was placed in an electric furnace adjusted to 800°C and incinerated for 2 hours.
3) After incineration, the crucible was taken out and placed in a desiccator.
4) After cooling for 30 minutes, the incinerated residue was accurately weighed using a precision balance. The ash content was calculated using the following formula, calculated to three decimal places, and reported to two decimal places.
Figure JPOXMLDOC01-appb-M000001

ATX224 (Shimadzu Corporation) was used as the precision balance, and FUW232PA (ADVANTEC) was used as the electric furnace.
<粒子径分布、平均粒子径、粒子径分布のスパン>
 レーザー回析式粒度分布測定装置(マスターサイザー3000、スペクトリス社マルバーンパナリティカル事業部)を用いた。測定原理としてレーザー散乱法を用いて、乾式測定、湿式測定(超音波照射あり)、及び湿式測定(超音波照射なし)により粒子径分布を測定した。粒度分布を体積蓄積分布として表した場合に、体積蓄積分布の積算値が10%、50%、90%である値を、それぞれ粒子径分布D.10、D.50、D.90とした。湿式(超音波照射なし)のD.50を平均粒子径とした。また、前記の式(1)により、粒子径分布のスパンを算出した。
<Particle size distribution, average particle size, span of particle size distribution>
A laser diffraction particle size distribution analyzer (Mastersizer 3000, Spectris Malvern Panalytical Division) was used. Using a laser scattering method as the measurement principle, particle size distribution was measured by dry measurement, wet measurement (with ultrasonic irradiation), and wet measurement (without ultrasonic irradiation). When the particle size distribution is expressed as a volume accumulation distribution, the values at which the integrated value of the volume accumulation distribution is 10%, 50%, and 90% are respectively defined as the particle size distribution D. 10,D. 50, D. It was set at 90. Wet type (no ultrasonic irradiation) D. 50 was taken as the average particle diameter. Furthermore, the span of the particle size distribution was calculated using the above equation (1).
 乾式測定は、供給口内に、散乱強度が1%未満となるように試料を添加して以下の条件で行った。
・分散ユニット:Aero5
・空気圧:2bar
・フィードレート:25 
The dry measurement was carried out under the following conditions by adding a sample into the supply port so that the scattering intensity was less than 1%.
・Distributed unit: Aero5
・Air pressure: 2 bar
・Feed rate: 25
 湿式測定は、3500rpmで攪拌されている水中の測定部に、散乱強度が10%程度になるように試料を添加して行った。超音波を照射する場合、下記条件に基づいて水中の試料に超音波を当ててから湿式測定を行った。
・モード:連続
・強度:100%
・時間:600秒 
Wet measurements were carried out by adding a sample to a measuring section in water that was stirred at 3500 rpm so that the scattering intensity was about 10%. When applying ultrasonic waves, wet measurements were performed after applying ultrasonic waves to the sample in water based on the following conditions.
・Mode: Continuous ・Intensity: 100%
・Time: 600 seconds
 粒子径分布の解析は、いずれの測定条件の場合も以下の条件で行った。
・解析:汎用
・解析感度:強調
・光散乱モデル:Mie理論
The analysis of particle size distribution was carried out under the following conditions for all measurement conditions.
・Analysis: General purpose ・Analysis sensitivity: Enhancement ・Light scattering model: Mie theory
<平均繊維長(mm)、平均繊維幅(μm)、L/D>
 L&W Fiber Tester Plus(ABB社製)を用いて以下の手順で測定を行った。純水200mlを入れたシリンダーに試料を0.1g入れ、1分程撹拌したのち、専用の300mlビーカーに移し、サンプルサイクラーにセットして測定を開始し、平均繊維長および平均繊維幅を測定した。得られた平均繊維長および平均繊維幅より、L/Dを算出した。
<Average fiber length (mm), average fiber width (μm), L/D>
Measurement was performed using L&W Fiber Tester Plus (manufactured by ABB) according to the following procedure. 0.1 g of the sample was placed in a cylinder containing 200 ml of pure water, stirred for about 1 minute, then transferred to a special 300 ml beaker, set in a sample cycler, and started measurement to measure the average fiber length and average fiber width. . L/D was calculated from the obtained average fiber length and average fiber width.
<熱重量残存率(500℃)%又は熱重量残存率(400℃)%>
 熱重量残存率は、熱分析装置を用いて測定した。すなわち、粉末状セルロースを600℃まで昇温し(無酸素、窒素雰囲気下)、500℃又は400℃における重量を読み取り、昇温開始前の重量に対する比率(%)をそれぞれ熱重量残存率(500℃)%又は熱重量残存率(400℃)%として算出した。
<Thermogravimetric residual rate (500°C)% or thermogravimetric residual rate (400°C)%>
The thermogravimetric residual rate was measured using a thermal analyzer. That is, heat the powdered cellulose to 600°C (in an oxygen-free, nitrogen atmosphere), read the weight at 500°C or 400°C, and calculate the ratio (%) to the weight before the start of heating as the thermogravimetric residual rate (500°C). It was calculated as % (°C)% or thermogravimetric residual rate (400°C)%.
<錠剤硬度(10MPa)>
 セルロース粉末100%の円柱状成型体あるいは錠剤は、以下のようにして作製した。試料0.3gを、臼(市橋精機(株)製、直径8mm)に入れ、直径8mmの杵(市橋精機(株)製)で圧縮した。セルロース粉末100%を10MPaで圧縮し、その応力を10秒間保持し、円柱状成型体あるいは錠剤を作製した(圧縮機は、エナパック社製、HANDTAB-100を使用した)。
<Tablet hardness (10MPa)>
A cylindrical molded body or tablet made of 100% cellulose powder was produced as follows. 0.3 g of the sample was placed in a mortar (manufactured by Ichihashi Seiki Co., Ltd., 8 mm in diameter) and compressed with a pestle (manufactured by Ichihashi Seiki Co., Ltd.) with a diameter of 8 mm. 100% cellulose powder was compressed at 10 MPa and the stress was maintained for 10 seconds to produce a cylindrical molded body or tablet (the compressor used was HANDTAB-100 manufactured by Enerpac).
 作製した円柱状成型体あるいは錠剤を、シュロインゲル硬度計(フロイント産業社製、MT50型)を用いて、破壊したときの荷重を測定した。荷重は、円柱状成型体あるいは錠剤の直径方向に加えた。試料5個の平均値で算出した。 The load when the produced cylindrical molded body or tablet was broken was measured using a Schleungel hardness meter (manufactured by Freund Sangyo Co., Ltd., model MT50). The load was applied in the diametrical direction of the cylindrical molded body or tablet. Calculated using the average value of 5 samples.
<粉末状セルロースの調製>
(実施例1)
 晒し木材パルプシート(LBKPドライシート、日本製紙(株)製、水分20%)を原料として、カッティングミル(PIH3-20210YRFS、ホーライ社製、直径3mmパンチングプレート使用)で裁断し、得られた粉砕物を竪型ローラーミル(STR-20、株式会社セイシン企業製、供給速度600g/分、粉砕ローター40Hz、分級ローター50Hz、ブロワー50Hz)で粉砕し、得られた粉砕物を実施例1の粉末状セルロースとして用いた。各種物性値を表1に記す。
<Preparation of powdered cellulose>
(Example 1)
A pulverized product obtained by cutting a bleached wood pulp sheet (LBKP dry sheet, manufactured by Nippon Paper Industries Co., Ltd., moisture 20%) with a cutting mill (PIH3-20210YRFS, manufactured by Horai Co., Ltd., using a 3 mm diameter punching plate) as a raw material. was pulverized with a vertical roller mill (STR-20, manufactured by Seishin Enterprise Co., Ltd., feed rate 600 g/min, pulverizing rotor 40 Hz, classification rotor 50 Hz, blower 50 Hz), and the obtained pulverized product was used as the powdered cellulose of Example 1. It was used as Various physical property values are shown in Table 1.
(実施例2)
 2段目の粉砕機にカッティングミル(HA8-2542、株式会社ホーライ社製、主メッシュ♯250、補助メッシュ♯20)を用いたこと以外は実施例1と同様に行い、得られた粉砕物を実施例2の粉末状セルロースとして用いた。各種物性値を表1に記す。
(Example 2)
The process was carried out in the same manner as in Example 1, except that a cutting mill (HA8-2542, manufactured by Horai Co., Ltd., main mesh #250, auxiliary mesh #20) was used as the second-stage crusher, and the obtained pulverized product was It was used as the powdered cellulose in Example 2. Various physical property values are shown in Table 1.
(実施例3)
 木材パルプ(サーモメカニカルパルプ、日本製紙(株)製、水分60%)を脱水し、ほぐして乾燥させた原料(水分10%)をカッティングミル(HA8-2542、株式会社ホーライ社製、主メッシュ♯250、補助メッシュ♯50)で粉砕し、得られた粉砕物を実施例3の粉末状セルロースとして用いた。各種物性値を表1に記す。
(Example 3)
Wood pulp (thermomechanical pulp, manufactured by Nippon Paper Industries Co., Ltd., moisture 60%) is dehydrated, loosened and dried, and then processed into a cutting mill (HA8-2542, manufactured by Horai Co., Ltd., main mesh #). 250, auxiliary mesh #50), and the resulting pulverized product was used as powdered cellulose in Example 3. Various physical property values are listed in Table 1.
(実施例4)
 晒し木材パルプシート(NDPTドライシート、日本製紙(株)製、水分7%)を原料として、鬼歯クラッシャー(RC-600、槇野産業株式会社製)にて、原料仕込み量100kg、供給速度5.0kg/min、回転数10rpmの条件で粉砕した。得られた粉砕物を、バッチ式振動ミル(MB3型、中央化工機株式会社製)にて、原料仕込み量45g(0.25L)、振動数1000cpm、振幅8mm、ボール径30mm、ボール充填率80%の条件で30分間粉砕し、得られた粉砕物を実施例4の粉末状セルロースとして用いた。各種物性値を表1に記す。
(Example 4)
Using a bleached wood pulp sheet (NDPT dry sheet, manufactured by Nippon Paper Industries Co., Ltd., moisture 7%) as a raw material, a raw material charge amount of 100 kg and a feed rate of 5. It was pulverized under the conditions of 0 kg/min and 10 rpm. The obtained pulverized product was processed using a batch type vibration mill (MB3 type, manufactured by Chuo Kakoki Co., Ltd.) with a raw material charge amount of 45 g (0.25 L), a vibration frequency of 1000 cpm, an amplitude of 8 mm, a ball diameter of 30 mm, and a ball filling rate of 80. % for 30 minutes, and the resulting pulverized product was used as the powdered cellulose of Example 4. Various physical property values are listed in Table 1.
(実施例5)
 晒し木材パルプシート(LDPTドライシート、日本製紙(株)製、水分7%)を用いたこと以外は、実施例4と同様の操作を行い、得られた粉砕物を実施例5の粉末状セルロースとして用いた。各種物性値を表1に記す。
(Example 5)
The same operation as in Example 4 was carried out, except that a bleached wood pulp sheet (LDPT dry sheet, manufactured by Nippon Paper Industries, Ltd., water content: 7%) was used, and the obtained pulverized material was mixed with the powdered cellulose of Example 5. It was used as Various physical property values are shown in Table 1.
(実施例6)
 晒し木材パルプシート(NDPTドライシート、日本製紙(株)製、水分7%)を原料として、原料仕込み量40g(パルプスラリー濃度5%)、0.5N塩酸で90℃・40分間酸加水分解し、得られた粉末状セルロースを実施例6の粉末状セルロースとして用いた。各種物性値を表1に記す。
(Example 6)
A bleached wood pulp sheet (NDPT dry sheet, manufactured by Nippon Paper Industries Co., Ltd., moisture 7%) was used as a raw material, and a raw material amount of 40 g (pulp slurry concentration 5%) was acid-hydrolyzed with 0.5N hydrochloric acid at 90°C for 40 minutes. The obtained powdered cellulose was used as the powdered cellulose of Example 6. Various physical property values are listed in Table 1.
(比較例1)
 市販の粉末状セルロースST-02(旭化成社製)を比較例1の粉末状セルロースとして用いた。各種物性値を表1に記す。
(Comparative example 1)
Commercially available powdered cellulose ST-02 (manufactured by Asahi Kasei Corporation) was used as the powdered cellulose in Comparative Example 1. Various physical property values are listed in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 鉄成分を含有しない比較例1と比較して、鉄成分を含有量する実施例1~6は、熱重量残存率が高く、中でも実施例1~3はより高かった。また、実施例1~6の熱重量残存率は灰分量に比例していた。これらの結果は、本発明の粉末セルロースは鉄成分を含むことにより、熱処理後の収率が高く、リサイクル性に優れていることを示している。 Compared to Comparative Example 1, which does not contain an iron component, Examples 1 to 6 containing an iron component had higher thermogravimetric residual rates, and among them, Examples 1 to 3 were higher. Furthermore, the thermogravimetric residual rates of Examples 1 to 6 were proportional to the ash content. These results show that the powdered cellulose of the present invention has a high yield after heat treatment and is excellent in recyclability because it contains an iron component.
 一方、実施例3では、錠剤化が困難であったのに対し、実施例4~6では錠剤化でき、かつ、鉄成分を含有しない比較例1で得られた錠剤と比較して、実施例4~6から得られた錠剤は、適度な硬度を有していた。比較例1では、無機物が含まれない結果、錠剤表面の摩擦力が強まり、割れやすくなり、実施例3では、無機物含量が多い結果、錠剤化しなかったものと推測される。これらの結果は、本発明の粉末状セルロースは鉄成分を比較的少量含むことにより、熱処理後の収率が高く、リサイクル性に優れ、かつ、錠剤化適性に優れていることを示している。 On the other hand, in Example 3, it was difficult to make tablets, whereas in Examples 4 to 6, it was possible to make tablets. The tablets obtained from Examples 4 to 6 had appropriate hardness. It is presumed that in Comparative Example 1, as a result of no inorganic substance being contained, the frictional force on the tablet surface was strong, making it easier to break, whereas in Example 3, the tablet was not formed as a result of the high inorganic substance content. These results show that the powdered cellulose of the present invention has a high yield after heat treatment, excellent recyclability, and excellent suitability for tabletting because it contains a relatively small amount of iron component.

Claims (17)

  1.  トリプル四重極-誘導結合プラズマ質量分析測定器により検出される鉄成分の量が1~50ppmである、セルロース材料。 A cellulose material in which the amount of iron component detected by a triple quadrupole-inductively coupled plasma mass spectrometer is 1 to 50 ppm.
  2.  トリプル四重極-誘導結合プラズマ質量分析測定器により検出される鉄成分の量が10ppmを超えて50ppm以下である、請求項1に記載のセルロース材料。 The cellulose material according to claim 1, wherein the amount of iron component detected by a triple quadrupole-inductively coupled plasma mass spectrometer is more than 10 ppm and less than 50 ppm.
  3.  800℃で2時間加熱した後の灰分量が、加熱前のセルロース材料100重量%に対し0.13重量%以上である、請求項1又は2に記載のセルロース材料。 The cellulose material according to claim 1 or 2, wherein the ash content after heating at 800°C for 2 hours is 0.13% by weight or more based on 100% by weight of the cellulose material before heating.
  4.  500℃における熱重量残存率が、10%以上である、請求項1~3のいずれか1項に記載のセルロース材料。 The cellulose material according to any one of claims 1 to 3, which has a thermogravimetric residual rate at 500°C of 10% or more.
  5.  平均繊維幅が10~24μmである、請求項1~4のいずれか1項に記載のセルロース材料。 The cellulose material according to any one of claims 1 to 4, having an average fiber width of 10 to 24 μm.
  6.  トリプル四重極-誘導結合プラズマ質量分析測定器により検出される鉄成分の量が1~10ppmである、請求項1に記載のセルロース材料。 The cellulose material according to claim 1, wherein the amount of iron component detected by a triple quadrupole-inductively coupled plasma mass spectrometer is 1 to 10 ppm.
  7.  800℃で2時間加熱した後の灰分量が、加熱前のセルロース材料100重量%に対し1.0重量%以下である、請求項6に記載のセルロース材料。 The cellulose material according to claim 6, wherein the ash content after heating at 800°C for 2 hours is 1.0% by weight or less based on 100% by weight of the cellulose material before heating.
  8.  400℃における熱重量残存率が、10~20%である、請求項1~7のいずれか1項に記載のセルロース材料。 The cellulose material according to any one of claims 1 to 7, which has a thermogravimetric residual rate at 400°C of 10 to 20%.
  9.  平均繊維長/平均繊維幅が3.0~8.0である、請求項1~8のいずれか1項に記載のセルロース材料。 The cellulose material according to any one of claims 1 to 8, wherein the average fiber length/average fiber width is 3.0 to 8.0.
  10.  粉末状セルロースである、請求項1~9のいずれか1項に記載のセルロース材料。 The cellulose material according to any one of claims 1 to 9, which is powdered cellulose.
  11.  平均粒子径が5.0~150.0μmである、請求項10に記載のセルロース材料。 The cellulose material according to claim 10, having an average particle diameter of 5.0 to 150.0 μm.
  12.  請求項1~11のいずれか1項に記載のセルロース材料を含む工業用添加剤。 An industrial additive comprising the cellulose material according to any one of claims 1 to 11.
  13.  請求項1~10のいずれか1項に記載のセルロース材料を含む樹脂組成物。 A resin composition comprising the cellulose material according to any one of claims 1 to 10.
  14.  請求項1~11のいずれか1項に記載のセルロース材料を含むゴム組成物。 A rubber composition comprising the cellulose material according to any one of claims 1 to 11.
  15.  請求項1~11のいずれか1項に記載のセルロース材料を含む賦形剤。 An excipient comprising the cellulose material according to any one of claims 1 to 11.
  16.  請求項1~11のいずれか1項に記載のセルロース材料を含む成型体。 A molded article comprising the cellulose material according to any one of claims 1 to 11.
  17.  硬度が30~100MPaである、請求項16に記載の成型体。 The molded article according to claim 16, which has a hardness of 30 to 100 MPa.
PCT/JP2023/009057 2022-03-11 2023-03-09 Cellulose material WO2023171748A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-037771 2022-03-11
JP2022037771A JP2023132440A (en) 2022-03-11 2022-03-11 cellulose material
JP2022-037772 2022-03-11
JP2022037772A JP2023132441A (en) 2022-03-11 2022-03-11 Powdery cellulose

Publications (1)

Publication Number Publication Date
WO2023171748A1 true WO2023171748A1 (en) 2023-09-14

Family

ID=87935237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009057 WO2023171748A1 (en) 2022-03-11 2023-03-09 Cellulose material

Country Status (1)

Country Link
WO (1) WO2023171748A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020402A (en) * 2000-05-12 2002-01-23 Johnson & Johnson Medical Ltd Solid composition having selective bonding ability to dissolved iron
JP2004115700A (en) * 2002-09-27 2004-04-15 Nippon Paper Industries Co Ltd Powdery cellulose and method for producing the same
JP2011093990A (en) * 2009-10-28 2011-05-12 Mitsubishi Paper Mills Ltd Process for producing cellulose-containing thermoplastic resin, cellulose-containing thermoplastic resin and molded product thereof
JP2012528256A (en) * 2009-05-28 2012-11-12 ゲーペー ツェルローゼ ゲーエムベーハー Modified cellulose derived from chemical kraft fibers and methods of making and using the same
JP2013139540A (en) * 2011-12-08 2013-07-18 Nippon Paper Industries Co Ltd Powdered cellulose
WO2016125497A1 (en) * 2015-02-04 2016-08-11 日本ゼオン株式会社 Metal-containing oxidized cellulose nanofiber dispersion and method for preparing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020402A (en) * 2000-05-12 2002-01-23 Johnson & Johnson Medical Ltd Solid composition having selective bonding ability to dissolved iron
JP2004115700A (en) * 2002-09-27 2004-04-15 Nippon Paper Industries Co Ltd Powdery cellulose and method for producing the same
JP2012528256A (en) * 2009-05-28 2012-11-12 ゲーペー ツェルローゼ ゲーエムベーハー Modified cellulose derived from chemical kraft fibers and methods of making and using the same
JP2011093990A (en) * 2009-10-28 2011-05-12 Mitsubishi Paper Mills Ltd Process for producing cellulose-containing thermoplastic resin, cellulose-containing thermoplastic resin and molded product thereof
JP2013139540A (en) * 2011-12-08 2013-07-18 Nippon Paper Industries Co Ltd Powdered cellulose
WO2016125497A1 (en) * 2015-02-04 2016-08-11 日本ゼオン株式会社 Metal-containing oxidized cellulose nanofiber dispersion and method for preparing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KONGDEE, A. BECHTOLD, T.: "The complexation of Fe(III)-ions in cellulose fibres: a fundamental property", CARBOHYDRATE POLYMERS, APPLIED SCIENCE PUBLISHERS , LTD BARKING, GB, vol. 56, no. 1, 17 May 2004 (2004-05-17), GB , pages 47 - 53, XP004504332, ISSN: 0144-8617, DOI: 10.1016/j.carbpol.2003.12.001 *

Similar Documents

Publication Publication Date Title
Lee et al. Facile and eco-friendly extraction of cellulose nanocrystals via electron beam irradiation followed by high-pressure homogenization
RU2580746C2 (en) Method for obtaining microcellulose
JP6787136B2 (en) Fine cellulose fiber-containing resin composition and its manufacturing method
WO2020049995A1 (en) Cellulose composition, cellulose molded body, and method for producing cellulose composition
JP4581320B2 (en) Powdered cellulose and process for producing the same
WO2023171748A1 (en) Cellulose material
Mense et al. Physical aspects of the biopolymer matrix in wheat bran and its dissected layers
JP2015183019A (en) Powdery cellulose
JP6765217B2 (en) Method for producing powdered cellulose
JP2023132440A (en) cellulose material
JP2016183232A (en) Powdered cellulose
JP2023132598A (en) cellulose material
JP6619576B2 (en) Method for producing cellulose nanofiber
JP6670059B2 (en) Method for producing cellulose nanofiber
WO2021112195A1 (en) Method for manufacturing modified cellulose microfibrils
KR101173154B1 (en) Pulp separation method of used hygiene article
EP3747910A1 (en) Pulverized pulp and method of producing cellulose ether using the same
JP2023132441A (en) Powdery cellulose
JP6638290B2 (en) Powdered cellulose
JP6921351B1 (en) Powdered cellulose, its use and manufacturing method
JP6921352B1 (en) Powdered cellulose, its use and manufacturing method
JP2022160303A (en) Powdery cellulose, use and production method thereof
JP2022160302A (en) Powdery cellulose, use thereof, and production method
WO2020196077A1 (en) Powdered cellulose and production method and use for same
JP2015183018A (en) Method for manufacturing powdery cellulose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766924

Country of ref document: EP

Kind code of ref document: A1